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Abstract

We identify a class of economies for which tatonnement is equivalent to gradient descent. This is the class
of economies for which there is a convex potential function whose gradient is always equal to the negative of
the excess demand. Among other consequences, we show that a discrete version of tatonnement converges
to the equilibrium for the following economies of complementary goods.

i. Fisher economies in which all buyers have complementary CES utilities, with a linear rate of conver-
gence. (In Fisher economies all agents are either buyers or sellers of non-numeraire goods, but not both.)

This shows that tatonnement converges for the entire range of Fisher economies when buyers have
complementary CES utilities, in contrast to prior work, which could analyze only the substitutes range,
together with a small portion of the complementary range.

ii. Fisher economies in which all buyers have Leontief utilities, with an O(1/t) rate of convergence.
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1. Introduction

Two central questions in general equilibrium theory are whether equilibria exist and if so how to compute
them. The issue of existence was settled for a very general setting in 1954 by Arrow and Debreu [3]. The
formal study of this topic began with the introduction of an equilibrium model by Walras in 1874 [64], along
with an intuitive, simple, distributed price update process which he named tatonnement.1

Tatonnement is broadly defined as follows: if the demand for a good exceeds its supply, increase its price,
and conversely, decrease its price when the demand is smaller. Classically, tatonnement has been thought of
as a continuous process, with price adjustments and demand responses happening continuously. A computer
science approach is to consider updates at discrete time intervals and to bound the number required (though
discrete updates were also considered in the economics literature as early as the 60s [63]).

A crucial issue is whether economies reach and remain at equilibria, and do so in a reasonable time. The
classic approach to this question is the study of stability, both local and global. This asks, given a price
adjustment scheme, such as tatonnement, in the form of a differential equation, whether the prices converge
to an equilibrium (a) when starting at a point near enough to the equilibrium (local stability) or (b) when
starting at (almost) any set of prices (global stability).

An early positive result, due to Arrow, Block and Hurwitz [2], showed that a continuous version of
tatonnement is globally stable for economies satisfying the weak gross substitutes (WGS) property, namely
that increasing the price of one good does not decrease the demand for any other good. However, the hope
that tatonnement would converge for all economies was dashed by Scarf [60], who showed an example of
an economy in which tatonnement exhibits cyclic behavior. Thus one can hope to show that tatonnement
converges at all, let alone quickly, only for specific classes of economies.

∗Corresponding author.
1Tatonnement is distributed in the sense that each price can be updated independently of the current updates to other

prices.
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This then led to the consideration of other price update procedures, most notably the methods due to
Scarf [61] and Kuhn [53], and combinations of these [43, 54, 48]. These methods have high information
demands, which makes them somewhat implausible as models of real-world price-updating, but as shown
by Saari and Simon [59], this is unavoidable in general. Another approach has been to identify classes
of economies for which tatonnement is globally stable. These include economies having weighted diagonal
dominance [30, 31], satisfying the strong law of demand [49], and having aggregate substitution effects [50].

More recently, these same issues have been examined from the perspective of computational complexity.
This work can be organized in terms of two broad questions. The first asks whether equilibria, or at least
good approximations, can be reached in a reasonable time, which is reformulated as whether they can
be reached in polynomial time2. The answer appears to be “no” in general: the problem is NP-hard for
economies of indivisible goods and it is PPAD-hard for economies of divisible goods [23, 14, 13]. This led to
much work on identifying classes of economies3 according to whether there are polynomial time algorithms
for computing equilibria, either exactly or approximately [29, 56, 26, 32, 21, 38, 28]. The second broad
question is whether there are simple, “natural” processes that provide these convergence guarantees, such
as tatonnement [24, 18] and proportional response [65, 66, 6, 19].

We note that analogous questions have been asked about Nash equilibria. Here too, in general their
computation is PPAD-hard [25, 12]. Also, as shown by Hart and Mansour [42], there are no “natural
dynamics” that reach a Nash equilibrium quickly in general. Natural dynamics have been shown to converge
quickly only for limited classes of games [37, 20].

In the same spirit, our goal is to identify broad classes of economies for which tatonnement converges
quickly toward an equilibrium. Cole and Fleischer [24] showed this for a discrete version of tatonnement
for a class of economies satisfying the weak gross substitutes property. The current paper is particularly
concerned with economies that exhibit complementarity, such as the Constant Elasticity of Substitution
(CES) utilities and Leontief utilities; it will focus mainly on Fisher economies, economies in which the
agents can be partitioned into buyers and sellers.4. (See Section 2 for formal definitions.)

The existing results all rely on very strong properties of WGS economies. For example, for Fisher
economies, tatonnement guarantees that the bound on the ratio of the current price to the equilibrium price
always shrinks [24]. Another example, again for Fisher economies, is that the equilibrium can be reached
by starting with very small prices and increasing them monotonically [39]. These strong properties cease to
hold in the complementary regime. Therefore new techniques are needed to handle such economies.

Our contributions. We identify settings for which tatonnement amounts to another simple and natural
process: gradient descent. Gradient descent is a family of algorithms used to minimize convex functions. It
works by starting at some point and moving in the direction of the negative of the gradient. We consider
the class of economies for which tatonnement is formally equivalent to performing gradient descent on a
convex function. We note that while gradient descent has been viewed as a tatonnement rule in various
contexts [1, 7, 10, 57], it is not immediately clear that in general, given an economy, there is a function on
which gradient descent corresponds to tatonnement. Thus in order to treat tatonnement as gradient descent
one has to identify a convex function corresponding to the economy in question. Accordingly, we define
the class of Convex Potential Function (CPF) economies to be those economies for which there is a convex
potential function whose gradient5 is always equal to the negative of the excess demand. We show that this
class contains the class of Eisenberg-Gale (EG) economies introduced by Jain and Vazirani [46].

The equivalence with gradient descent opens up the entire tool box developed to analyze gradient descent
and provides a principled approach to show convergence of the tatonnement process. We show convergence

2Polynomial time refers to a computation that runs in a number of steps that is bounded by a polynomial function of the
size in bits of the problem instance description, which in this context is the specification of the economy.

3In much of the computer science literature, economies are called markets.
4The term Fisher market was coined by the computer science community to refer to this class of economies, which were the

economies defined by Fisher and experimented with using a hydraulic apparatus (see [9] for a description).
5More generally, the potential function need not be differentiable and the demand need not be unique, in which case the

equivalence is between the subgradient of the potential function and the set of excess demand vectors.
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for a discrete version of tatonnement for Fisher economies with CES and Leontief utilities, by proving certain
structural properties of the corresponding convex functions for these economies.

While one would expect these results to extend to the case of continuous updates, it is not even imme-
diately evident how to define a continuous version of tatonnement based on the type of gradient descent we
consider. Nonetheless, for a large class of CPF economies, we show that a continuous version of tatonnement
converges to an equilibrium. Interesting, the tatonnement rules we consider are quite general, including rules
that are linear in the price, unlike most other work on global convergence.

We now summarize the main results in the paper.

i. The class of Eisenberg-Gale (EG) economies comprises all Fisher economies for which the equilibrium
allocation is captured by a certain type of convex program called the Eisenberg-Gale-type (EG-type) convex
program. We show that EG economies are CPF economies by explicitly constructing a convex potential
function (Theorem 3.1).

ii. For Fisher economies with Leontief utilities, we show a fairly fast rate of convergence for a discrete version
of the process, namely, the number of time steps required to reduce the distance from the equilibrium to an
ε fraction of its initial value, as measured by the potential function, is O(1/ε) (Theorem 4.1). 6

We also show that, in the worst case, tatonnement uses Ω(1/
√
ε) iterations. Consequently, the linear

convergence bounds achieved for complementary CES utilities (see below) cannot extend to Leontief utilities.

iii. For Fisher economies with complementary CES utilities we show a linear convergence, i.e., the number
of time steps required to reduce the distance from the equilibrium to an ε fraction of its initial value, again
as measured by the potential function, is O(log(1/ε)) (Theorem 5.1).

In addition, we show that this analysis extends to CES utilities that are substitutes, providing an alternate
analysis for some of the results in [24].

iv. We show that a family of continuous versions of tatonnement process converges from essentially any
starting prices to an equilibrium for a large subclass of CPF economies.

Figures 1 summarizes our results and their relationships. Figure 2 at the end of Section 3 shows the
structure of the analyses for discrete tatonnement updates.

Figure 1: Classes of Economies

Convex Potential Function (CPF) Economy

(has a potential function with gradient = negative of excess demand
hence tatonnement ≡ gradient descent)

For suitable economies, continuous
updating converges globally
(Theorem 7.1)

Eisenberg-Gale Economies

⊃ (Theorem 3.1)

Fisher Economies with
Leontief Utilities

Convergence Rate O(1/t)
(Theorem 4.1)

Fisher Economies with
Complementary CES Utilities
Convergence Rate (1 − Θ(1))t

(Theorem 5.1)

Related Work. The stability of the tatonnement process has been considered to be one of the most funda-
mental issues in general equilibrium theory. Hahn [41] provides a thorough survey on the topic, and the
textbook of Mas-Colell, Whinston and Green [55] contains a good summary of the classic results.

6The O() hides economy dependent parameters.
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The longstanding interpretation of tatonnement is that it is a method used by an auctioneer for iteratively
updating prices, followed by trading at the equilibrium prices once they are reached. If trading is allowed as
the price updating occurs, this is called a non-tatonnement process. Thus tatonnement is not an “in-market”
process, and nor is it for any other price update rule for a static model such as the Arrow-Debreu model.
Hermann and Kahn [44] stated that “it is certainly desirable to find a mechanism that mimics the actual
market adjustment process”. Fisher [35], discussing the classic auctioneer interpretation of tatonnement,
states: “such a model of price adjustment ... describes nobody’s actual behavior”. The main point of [35],
however, was to give an alternate and more plausible basis for tatonnement. More recently, Cole and
Fleischer [24] sought to provide another self-contained basis for the tatonnement price-update by introducing
the Ongoing Market model, in which tatonnement and other price update processes can naturally be viewed
as in-market processes (these are non-tatonnement processes). The continued interest in the plausibility of
tatonnement is also reflected in some experiments by Hirota [45], which showed the predictive accuracy of
tatonnement in a non-equilibrium trade setting.

Equilibria in economies with complementary goods have been considered by Arrow and Hahn [4], who
introduced a general notion of Diagonal Dominance and showed it implies a unique equilibrium and local
stability (though it is not clear whether it implies global stability). Subsequently, Dohtani [30] introduced
another condition of a similar flavor which did imply global stability. However, the relation of each of these
conditions to the classes we consider is not immediately obvious.7

Gradient and subgradient descent have been viewed as tatonnement in various contexts, including com-
binatorial auctions [7], power markets [57], multi-agent scheduling [1], and others [10, p. 495].

The use of differential inclusions8, instead of differential equations that require unique demands, was
initiated by Champsaur et al. [11]; we will also be using differential inclusions for our continuous analysis.

In recent years, discrete versions of tatonnement have received increased attention. Codenotti et al. [22]
considered a tatonnement-like process that required some coordination among different goods and showed
polynomial time convergence for WGS economies. Cole and Fleischer [24] were the first to establish fast
convergence for a truly distributed discrete version of tatonnement, once again for a class of WGS economies.
Cheung, Cole and Rastogi [18] extended this result slightly beyond WGS economies, to CES utilities for
a limited range of parameters.9 In comparison, our results cover the entire range of parameters for CES
utilities. Fleischer et al. [36] also consider price dynamics that are similar to tatonnement but they also
need coordination and further, their results concern the average price throughout the process rather than
convergence of the sequence.

In a similar spirit to this paper, Birnbaum, Devanur and Xiao [6] considered another distributed process
called the Proportional Response (PR) dynamics for the linear utilities case, showed its equivalence to
gradient descent with KL-divergence for a different convex function and obtained convergence rates for
the process. PR dynamics work in the space of offers rather than the space of prices, which is why the
corresponding convex function is different. For linear utilities, PR dynamics are more appropriate than
tatonnement, since the demand function is not continuous. [6] proved a certain convergence result (Theorem
2.1) which we use in this paper to show convergence for the case of Leontief utilities.

EG economies were defined by Jain and Vazirani [46], after observing that many economies in the
Fisher model had similar convex programs that captured the equilibrium. The following is a brief list of
such economies: Eisenberg and Gale [34] gave a convex program for the linear utilities case, generalized by
Eisenberg [33] to the case of homothetic utilities, Jain et al. [47] for homothetic utilities with production, and
Kelly and Vazirani [52] for certain network-flow economies. Jain and Vazirani [46] showed many algorithmic
and structural properties of such economies.

7We can show that Diagonal Dominance holds for Fisher CES economies with ρ > −1 (see Section 5 for the definitions of
these terms), by setting hi(pi) = pi (using the notation in [30]).

8“Differential inclusion” is sometimes called “differential correspondence”.
9CES utilities are parameterized by an exponent, ρ. When 0 < ρ ≤ 1 the economy is WGS, and when ρ < 0 the goods are

complementary. [18] analyzed the range −1 < ρ ≤ 0.
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2. Preliminaries

In the next three subsections we review, in turn, some standard definitions relating to economies, the
definition of Eisenberg-Gale economies, and some known results about gradient descent. Then, in Section 2.4,
we turn to the definitions of the new classes of economies we shall be analyzing in this paper.

2.1. Definitions Relating to Economies

Definition 2.1. An Exchange economy has m divisible goods and n agents. Each agent i has a utility
function ui : Rm+ → R that specifies the agent’s utility for a given bundle of goods. Each agent i has an
initial endowment of eij amount of good j. The supply of good j, wj :=

∑
i eij is the total endowment

of good j among all the agents. Without loss of generality we choose the units of measurement such that
the supplies are all 1. Suppose we assign a price pj to each good j, then a (possibly non-unique) demand
of agent i is a bundle of goods (xi1, xi2, . . . , xim) that maximizes her utility function subject to the budget
constraint, namely that she does not spend more than the value of her endowment; it is a solution to the
following optimization problem:

max ui(xi1, xi2, . . . , xim)

s.t. ∀i,
∑
j

pjxij ≤
∑
j

pjeij ,

∀ i, j, xij ≥ 0.

A market demand (x1, x2, · · · , xm) is a sum of demands of different buyers, which again can be non-unique.
Market demand depends on the prices p = (p1, p2, . . . , pm). Prices p∗ = (p∗1, p

∗
2, · · · , p∗m) form a market

equilibrium if the resulting market can clear: there exists a market demand at these prices such that for all
j, xj ≤ wj = 1, and further the inequality is an equality if p∗j > 0. For notational convenience, we define
an excess demand for good j by zj = xj − 1.

Note that if the utility function is strictly concave, then there is a unique utility maximizing bundle
when the prices are all positive, so we can talk of the demand of an agent. If all agents have strictly concave
utility functions, we can talk of the market demand.

It is known that equilibrium prices exist if the utility functions are all monotonic, quasi-concave and
continuous.

An alternate model is the Fisher economy model, defined next.

Definition 2.2. In a Fisher economy there is a fixed endogenous supply of each good (which is again chosen
to be 1 unit). The agents have a fixed endowment of money, which defines their budget constraint. Let agent
i have an endowment of ei units of money. The budget constraint for agent i is

∑
j pjxij ≤ ei. Each agent

has a utility function as in the Exchange economy, with the detail that the agent has no desire for its money,
i.e. each agent seeks to spend all its money on goods. Again, prices p∗ form a market equilibrium if there
exists market demand at these prices that clears the market.

The Fisher model is actually a special case of the exchange model. To see this, view the supplies of the
good as being initially owned by an agent called the seller, and view money as another good, while the seller
desires only money.

We now define some interesting subclasses of economies.

Definition 2.3. An economy satisfies the Weak Gross Substitutes (WGS) property, or equivalently an
economy is a WGS economy, if increasing the price of any one good does not reduce the demand for any
other good. If the demand function is differentiable, then this property can be written as

∂xj
∂pj′

≥ 0, ∀ j 6= j′.

In terms of the Jacobian of the demand function, in a WGS economy all the off-diagonal entries are non-
negative.
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Definition 2.4. The Leontief utilities are of the form ui = minj{xij/bij}. In order to get one unit of utility
one needs bij units of good j, for every good j.

Thus Leontief utilities capture the case of perfect complements. It is easy to see that the demand for good
j is

xij = βibij , where βi =
ei∑
j bijpj

. (1)

Thus the maximum utility buyer i can obtain is

ui =
ei∑
j bijpj

. (2)

Definition 2.5. Utilities with a Constant Elasticity of Substitution, CES utilities for short, are of the form

ui = (ai1x
ρi
1 + ai2x

ρi
2 + · · ·+ aimx

ρi
m)

1/ρi (3)

with ρi ≤ 1 and aij ≥ 0.

If 0 < ρi ≤ 1 then the goods are substitutes; the goods are complementary when ρi < 0. Leontief utilities
are obtained in the limit, as ρ → −∞. The utility function obtained in the limit, as ρ → 0, is called the
Cobb-Douglas utility.

2.2. Eisenberg-Gale Economies

Eisenberg-Gale economies are a class of economies in which one can have a single representative consumer.
Following Jain and Vazirani [46], we first define Eisenberg-Gale type convex programs.

Definition 2.6. An Eisenberg-Gale-type convex program is a convex program of the form

max
∑
i

ei log ui(xi1, xi2, . . . , xim)

s.t. ∀ j,
∑
i

xij ≤ 1, (supply constraints)

∀ i, j, xij ≥ 0.

The base of the log does not matter for the maximization in the convex program. However, later in the
paper some calculations are simplified if we assume that the natural logarithm is intended, and so we assume
this henceforth.

We note that the above program satisfies Slater’s conditions for strong duality (see [8], p. 226, for
example) and consequently an optimal solution to the dual problem yields the same optimizing value as the
primal program.

Definition 2.7. An Eisenberg-Gale (EG) economy is a Fisher economy for which the optimal solution
and the (corresponding) Lagrange multipliers of the supply constraints in the above convex program are
respectively equilibrium allocations and prices for the economy.

Conversely, equilibrium allocations and prices are respectively an optimal solution and Lagrange multipli-
ers of the supply constraints to the above convex program. Note that any strictly monotone transformation
of the utility function leaves the economy unchanged, since the demand function is invariant under such
transformations. Thus one may need to apply suitable monotone transformations to the utility functions in
order to obtain an EG economy.

It is known that buyers with Leontief and CES utilities in the Fisher model form EG economies (to see
this, it suffices to note that these utility functions are homogeneous of degree 1 and then apply Theorem 2
in [33]).
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2.3. Generalized Gradient Descent

We next present a generalized version of gradient descent and a corresponding convergence result.

Definition 2.8. For any strictly convex differentiable function h, the Bregman divergence with kernel h is
defined as

dh(p, q) = h(p)− h(q)−∇h(q) · (p− q). (4)

For example, the square of the Euclidean distance is obtained as a Bregman divergence, ‖p− q‖2 = dh(p, q),

if h(p) = 1
2‖p‖2. Another well-known example is the KL-divergence dh(p, q) =

∑
j

(
pj log

pj
qj

+ qj − pj
)

,

which is obtained when
h(p) =

∑
j

pj log pj − pj . (5)

For a convex function φ, define the first order approximation to φ as follows:

`φ(p; q) = φ(q) +∇φ(q) · (p− q) (6)

where, for each q, ∇φ(q) denotes an arbitrary subgradient of φ at q. For any given point q, `φ(p; q) is a
linear function in p, which can be viewed as the equation for a tangent hyperplane at the point q.

Definition 2.9. Given a specific subgradient of φ(q) for every q, the generalized gradient descent w.r.t. a
Bregman divergence dh on the convex function φ is a sequence p0, p1, . . . , pt . . . , defined inductively (for any
given starting point p0) by

pt+1 = arg min
p
{`φ(p; pt) + dh(p, pt)}. (7)

Note that if the subgradient is not unique, then each selection of choices for the subgradient values may result
in a distinct sequence of prices.

For the quadratic kernel, h(p) = 1
2‖p‖2, the above update rule reduces to the usual gradient descent rule:

pt+1 = pt −∇φ(pt).

If the kernel is the weighted entropy, h(p) =
∑
j γj(pj log pj − pj) for some weights γj , the update rule is

pt+1
j = ptj · exp

(
−∇jφ(pt)

γj

)
, for all j. (8)

Birnbaum, Devanur and Xiao [6] showed the following convergence result for this generalized gradient
descent (7).

Theorem 2.1 ([6]). Suppose that for all choices of the subgradient, the convex function φ and the kernel
h satisfy: for all p, q,

φ(p) ≤ `φ(p; q) + dh(p, q). (9)

Let p∗ be a minimizer of φ. Then for all t,

φ(pt)− φ(p∗) ≤ dh(p∗, p0)

t
.

We need a slightly more general version of this theorem where we require (9) to hold only for consecutive
pairs pt, pt+1 for all t, instead of requiring it for all pairs p, q. It is easy to see that their proof needs only
this weaker condition, yielding the following theorem.
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Theorem 2.2. Suppose that the sequence of prices pt obey the following condition:

φ(pt+1) ≤ `φ(pt+1; pt) + dh(pt+1, pt). (10)

Let p∗ be a minimizer of φ. Then for all t,

φ(pt)− φ(p∗) ≤ dh(p∗, p0)

t
.

The discrete version of the tatonnement process we consider will be equivalent to the gradient descent (7)
where h is the weighted entropy function, i.e., update (8) for a suitable choice of weights γj . The potential
function φ will satisfy ∇jφ = −zj . The continuous versions we consider are presented in Section 7.

2.4. New Definitions

Definition 2.10. An economy is said to be a Convex Potential Function (CPF) economy if there is a convex
potential function φ of the prices such that for all prices p, ∇φ(p) = −z(p). By abuse of notation, we let
∇φ denote the set of sub-gradients when φ is not differentiable10 and we let z(p) denote the set of excess
demand vectors when the demand is not unique.

3. EG Economies

In this section we prove the following theorem.

Theorem 3.1. All EG economies are CPF economies.

Proof. We give an explicit construction of a convex potential function φ for which ∇φ(p) = −z(p). φ is
actually the dual of the corresponding EG-type convex program. Recall that the EG-type convex program
has variables xij for all i and j. We let X denote the set of all these variables. Also recall that the optimum
solution gives the equilibrium allocation and the optimal Lagrangian multipliers of the supply constraints
in the program are the equilibrium prices. The saddle point conditions characterize the optimal solution to
a convex program and the corresponding Lagrange multipliers, in terms of the Lagrangian function, which
is obtained by multiplying the supply constraints by the prices and adding them to the objective function.

L(X, p) :=
∑
i

ei log(ui)−
∑
i,j

pjxij + p · 1,

on the domain {X, p: ∀i, j, xij ≥ 0; ∀j, pj ≥ 0}. X∗ and p∗ are said to satisfy the saddle point conditions if

1. X∗ ∈ arg max
X≥0

L(X, p∗) and

2. p∗ ∈ arg min
p≥0

L(X∗, p).
(11)

We define the potential function to be the dual objective of the EG-type convex program.

φ(p) := max
X≥0

L(X, p).

φ is convex by construction. Theorem 3.1 follows from Lemma 3.2, which shows that the gradient of φ
is equal to the negative of the excess demand.

The key property of EG economies is captured by the following lemma.

10We assume throughout that φ is continuous.
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Lemma 3.1. For an EG economy, for all p, the demand set x(p) is exactly equal to arg maxX≥0 L(X, p),
whenever they are both finite.

Proof.
Part 1, showing x(p) ⊆ arg maxX≥0 L(X, p): We first argue that if x(p) is a demand at price p then it must

also maximize L(X, p). In fact, we first argue it for the special case when the price and the demand form
an equilibrium, denoted by p∗ and x(p∗). Since this is an EG economy, by its definition, the pair (x(p∗), p∗)
must correspond to an optimal solution of the corresponding convex program. They must therefore satisfy
the corresponding saddle point conditions (11), which imply that x(p∗) ∈ arg maxX≥0 L(X, p∗) as desired.

This immediately shows the same for any price p and every demand x(p), since the pair forms an
equilibrium when the supply is equal to x(p). Thus the above holds for all prices and for all demand vectors.

Part 2, arg maxX≥0 L(X, p) ⊆ x(p): The argument is similar to Part 1. Consider any p and an X that

maximize L(X, p). Consider the economy instance with supply equal to
∑
i xij for good j. Note that the

saddle point conditions (11) are then satisfied with p and X for this instance and therefore they form an
optimal solution to the corresponding EG-type convex program. Since any optimal solution to the convex
program must also be an equilibrium, it follows that X must be a demand at price p as desired.

In fact it is easy to see that the converse of Lemma 3.1 is also true, that if for all p the demand set is equal
to arg maxX≥0 L(X, p) then the economy is an EG economy. The saddle point conditions (11) are then
exactly the same as the equilibrium conditions. In particular, the second condition holds if and only if for
all j,

∑
i x
∗
ij ≤ 1, and whenever pj > 0 this relation is an equality.

Lemma 3.2. ∇φ(p) = 1− x(p) = −z(p).

Proof. It is well known that if a convex function is defined as the maximum of many linear functions then
the gradient is given by the gradient of the linear function providing this maximum. φ is indeed defined in
this way and by Lemma 3.1 the arg max’es are given by the demands, or in other words the maximizing
linear function L(X, p) is the one defined using the demands. Thus ∇φ(p) = 1− x(p) = −z(p).

The following convenient form for φ(p) was shown in [27], and will be used in the analyses of Fisher
economies with Leontief and CES utilities.

Lemma 3.3. For EG economies with linear, CES or Leontief utilities (and others) the dual objective can
be written as

φ(p) =
∑
j

pj −
∑
i

ei log(νi) + a constant independent of p,

where νi is the ratio of ei to the optimal utility of i at price p, i.e., the minimum cost for obtaining one unit
of utility.

Proof. Recall that

φ(p) := max
X≥0

L(X, p) = max
X≥0

∑
j

pj +
∑
i

ei log ui(xi)−
∑
i,j

pjxij

 ,

where xi denotes the demands of buyer i. From Lemma 3.1, for each i, an xij in the arg max above is buyer
i’s demand for good j and therefore

∑
j pjxij must be equal to ei. Hence

∑
i,j pjxij =

∑
i ei is a constant.

We also rewrite
∑
i ei log ui(xi) =

∑
i−ei log[ei/ui(xi)] +

∑
i ei log ei; then setting νi = ei/ui(xi) gives

φ in the desired form.

The following figure outlines and contrasts the key elements of the analyses of Fisher Economies with
Leontief and complementary CES utilities.
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Figure 2: The Two Main Subclasses of CPF Economies Being Analyzed: Fisher Economies with Leontief
and with Complementary CES Utilities

Key Steps in the Analyses
1. Both are EG Economies: They each have a convex program characterizing its equilibrium.
2. Lemma 3.3: They each have a specific potential function for which tatonnement ≡ gradient descent.

Leontief Utilities Complementary CES Utilities
3. Use known convergence result on proximal gra-
dient descent to show O(1/t) convergence rate.
(Lemma 4.1 + Theorem 2.2 ⇒ Theorem 4.1)

3. Progress Bound: a lower bound on the reduction
of the potential function value due to one round of
tatonnement updates. (Lemma 5.1)
4. Distance Bound: an upper bound on the distance
between current prices and the equilibrium prices
via the potential function. (Lemma 5.2)
5. Combining the above two bounds to show a linear
rate of convergence. (Theorem 5.1)

4. Fisher Economies with Leontief Utilities

In this section we consider Fisher economies in which every buyer has a Leontief utility. By Lemma 3.1,
these economies are EG economies and hence CPF economies. By Lemma 3.3, the potential function can be
written as φ(p) =

∑
j pj−

∑
i ei log νi, where νi is the minimum cost buyer i has to pay to obtain one unit of

utility. By (2), the maximum utility obtainable by buyer i equals ei

/∑
j bijpj . This utility is obtained by

spending ei money; consequently, the minimum cost for one unit of utility is
∑
j bijpj . Thus the potential

function is given by

φ(p) =
∑
j

pj −
∑
i

ei log
∑
j

bijpj .

We analyze update rule (7) with dh = 6 · γ · dKL where dKL is the KL-divergence, and γ is a market
dependent parameter. This update rule, which minimizes ∇φ(pt) · (p − pt) + γdh(p, pt), or equivalently
minimizes −z(pt) · (p− pt) + γ (p log p− p− (p− pt) log pt), amounts to

pt+1
j = ptj · exp

(
ztj
γ

)
. (12)

Our main result is to show an O(1/ε) convergence rate as specified in Theorem 4.1 below.

Notation. Let xt denote the demands following the price updates at time t, and x◦ denote the initial
demands. Let ∆ptj = pt+1

j − ptj for all j.
In the rest of this section, we drop the superscript t when the meaning is clear from the context.

Theorem 4.1. For a Leontief Fisher economy, for the sequence of prices defined by the update rule (12)

with γ = 5 ·maxj

{
x◦j + 2 ·∑i maxk:bik>0

bij
bik

}
, for all t,

φ(pt)− φ(p∗) ≤ 6γdKL(p∗, p0)

t
.

Proof. The result follows by applying Theorem 2.2. To do this, it suffices to ensure that Equation (10) holds
for every price update (recall that dh = 6·γ ·dKL here). By Lemma 4.1 below, it suffices to ensure |∆ptj | ≤ ptj/4
for every price update. To this end, we require that γ ≥ 5 ·maxj,t{1, xtj}, where we are maximizing the xtj
over all the time steps of the algorithm, for then ptje

−1/5 ≤ pt+1
j ≤ ptje

1/5 and
∣∣∆ptj∣∣ /ptj ≤ e1/5 − 1 ≤ 1

4 .

Lemma 4.2 below shows that setting γ = 5 ·maxj

{
x◦j + 2 ·∑i maxk:bik>0

bij
bik

}
suffices.

10



Comment. If a better bound on maxj,t{1, xtj} were known, that could be used to reduce the value of γ.

Complementing this upper bound, we show that in general the convergence rate is Ω(1/
√
ε) as specified

in the next theorem (the proof is in Appendix A.1).

Theorem 4.2. There is a 2-good, 2-buyer Leontief Fisher economy such that

φ(pt)− φ(p∗) = Ω

[
φ(p0)− φ(p∗)

t2

]
.

4.1. Proofs of Lemmas 4.1 and 4.2

Lemma 4.1 states that the bound in Equation (10) holds so long as the price update is not too large.
The bound states that

φ(pt+1)− `φ(pt+1; pt) = φ(pt+1)− φ(pt)−∇φ(pt)(pt+1 − pt) ≤ dKL(pt+1, pt).

We can bound the expression on the LHS of the inequality by means of a power series expansion around pt,
yielding a bound consisting of second order terms which take the form

4

3ei

∑
k,`

xikxi`|∆pk| · |∆p`|.

It is convenient to bound this expression in turn using terms of the form 1
pj

(∆pj)
2 using Claim 4.1 below.

Finally, it suffices to bound the terms 1
pj

(∆pj)
2 by a multiple of dKL(pj + ∆pj , pj), which we do using

Claim 4.2.
Claims 4.1 and 4.2 are proved in Appendix A. In these claims, the index t on the prices and demands is

implicit.

Claim 4.1.
1

ei

∑
j,k

xikxi`|∆pk| · |∆p`| ≤
∑
j

xij
pj

(∆pj)
2.

Claim 4.2. Suppose that |∆pj | ≤ pj/4. Then

(∆pj)
2

pj
≤ 9

2
dKL(pj + ∆pj , pj).

Lemma 4.1. If |∆ptj | ≤ ptj/4, then Equation (10) holds with dh = 6 · γ · dKL.

Proof. We will use the inequalities x(1 + x)−1 ≥ x− 4
3x

2 for |x| ≤ 1
4 and log(1 + y) ≤ y for |y| ≤ 1, along

with Claims 4.1 and 4.2.

φ(pt+1)− `φ(pt+1; pt) = φ(pt+1)− φ(pt)−∇φ(pt) · (pt+1 − pt)
=
∑
j

(pj + ∆pj)−
∑
i

ei log
∑
k

bik(pk + ∆pk)

−
∑
j

pj +
∑
i

ei log
∑
k

bikpk +
∑
j

zj∆pj

=
∑
j

xj∆pj +
∑
i

ei log

∑
k bikpk∑

k bik(pk + ∆pk)

=
∑
j

xj∆pj +
∑
i

ei log

[
1−

∑
k bik∆pk∑
k bikpk

(
1 +

∑
k bik∆pk∑
k bikpk

)−1
]
.
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Note that
∣∣∣∑k bik∆pk∑

k bikpk

∣∣∣ ≤ 1
4 , as every |∆pk| ≤ 1

4pk by assumption. Thus, we can apply the bound x(1+x)−1 ≥
x− 4

3x
2 to x =

∑
k bik∆pk∑
k bikpk

, yielding:

φ(pt+1)− `φ(pt+1; pt) ≤
∑
j

xj∆pj +
∑
i

ei log

[
1−

∑
k bik∆pk∑
k bikpk

+
4

3

(
∑
k bik∆pk) (

∑
` bi`∆p`)

(
∑
k bikpk) (

∑
` bi`p`)

]
.

Now we use the bound log(1 + y) ≤ y, which applies as the second and third terms in the log are bounded
by 1

4 and 1
12 respectively.

φ(pt+1)− `φ(pt+1; pt) ≤
∑
j

xj∆pj +
∑
i

ei

(
−
∑
k bik∆pk∑
k bikpk

+
4

3

(
∑
k bik∆pk) (

∑
` bi`∆p`)

(
∑
k bikpk) (

∑
` bi`p`)

)
≤
∑
j

xj∆pj −
∑
k

xk∆pk +
4

3

∑
i

1

ei

∑
k

xik∆pk
∑
`

xi`∆p` (by (1))

≤ 4

3

∑
i,j

xij
pj

(∆pj)
2 (by Claim 4.1)

=
4

3

∑
j

xj
pj

(∆pj)
2

≤ 6
∑
j

xj · dKL(pj + ∆pj , pj) (by Claim 4.2).

Our global bound on xtij follows from the fact that if xtij is large enough, then the prices of the goods
which buyer i desires will all increase, forcing xtij to decrease. Lemma 4.2 specifies “large enough” precisely.

Lemma 4.2. For all goods j and all times t, xtj ≤ x◦j + 2 ·∑i maxk:bik>0
bij
bik

. Hence

max
j,t
{1, xtj} ≤ max

j

{
x◦j + 2 ·

∑
i

max
k:bik>0

bij
bik

}
.

Proof. If xtij ≥ maxk:bik>0
bij
bik

, then for any k with bik > 0, xtik = bik
bij
xtij ≥ 1 and hence xtk ≥ xtik ≥ 1.

Thus, all these pk increase, so xij must decrease, i.e. xt+1
ij ≤ xtij .

If xtij < maxk:bik>0
bij
bik

, then xt+1
ij ≤ 2xtij < 2 ·maxk:bik>0

bij
bik

.
Given the two observations above, it is easy to show by induction that for all t,

xtij ≤ max

{
x◦ij , 2 · max

k:bik>0

bij
bik

}
,

and hence

xtj ≤
∑
i

(
x◦ij + 2 · max

k:bik>0

bij
bik

)
= x◦j + 2 ·

∑
i

max
k:bik>0

bij
bik

.

5. Fisher Economies with Complementary CES Utilities

In this section we consider Fisher economies in which every buyer has a complementary CES utility.
Again, these are EG and hence CPF economies. Broadly speaking, the analysis has the same structure as
in the previous section. We prove a progress lemma, Lemma 5.1, analogous to Lemma 4.1; however, instead
of relying on Theorem 2.2 to provide a convergence result, in Lemma 5.2 we prove an upper bound on the
distance to the equilibrium point. Together, they demonstrate the linear convergence rate.
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Suppose buyer i has utility function

ui = (ai1x
ρi
1 + ai2x

ρi
2 + · · ·+ aimx

ρi
m)

1/ρi ,

with −∞ < ρi < 0. Let ci := ρi/(ρi − 1). Recall that ei denotes buyer i’s budget. Let bij := a1−ci
ij and

Si :=
∑
` bi`p

ci
` . As is well known, the demand of buyer i for good j is given by

xij = eibijp
ci−1
j S−1

i . (13)

Substituting in (3) shows that the utility obtained by this demand equals eiS
−1/ci
i . It follows that the

minimum cost for one unit of utility is S
1/ci
i . Thus, by Lemma 3.3, the potential function for this economy

φ is

φ(p) =
∑
j

pj −
∑
i

ei logS
1/ci
i .

For these economies, we analyze the update rule

pt+1
j = ptj · exp

(
ztj
γtj

)
. (14)

Note that the weights γtj are allowed to change from one time step to the next; in particular, we use the

weight γtj = 5 ·max{1, xtj}.11 This seems a very natural distributed rule, and indeed a linearization of this

rule, pt+1
j = ptj [1 + λ · min{1, zj}],12 was used in earlier papers by Cole and Fleischer [24] and Cheung et

al. [18].

Notation. Let c := maxi ci. Let ∆pj denote pt+1
j − ptj . Henceforth, the superscript t on all the parameters

except prices will be implicit.
Our main result for complementary CES Fisher economies is stated in Theorem 5.1 below. We show that

φ(pt)−φ(p∗) reduces by at least a 1−µ factor at each time step, where 0 < µ < 1 depends on the following
parameters of the economy: c, the total money M , the initial prices p0, and the equilibrium prices p∗. This
follows by showing that the potential function in this case satisfies a new progress property, as specified in
Lemma 5.1, and a new upper bound on the distance to the equilibrium, as specified in Lemma 5.2. These
lemmas are stated below and proved in the next two subsections. To obtain the new bounds we introduce
a new polynomial function which will be used when bounding the log term. This function, hc(·), and a
relevant parameter r are specified next.

For all j, define rtj := p∗j/p
t
j and r̄j = supt{rtj}. By Lemma 5.5, which will be stated in Section 5.3,

r̄j is finite. Also define hc(r) to be the following function of r: hc(r) = 1−rc+c(r−1)
(r−1)2 for any r ≥ 0 except

r = 1, and hc(1) = c(1− c)/2. Finally, define Hc(r) := hc(r)/c. Some basic properties of hc(r) are shown in
Claim 5.1 below.

Lemma 5.1.

φ(pt)− φ(pt+1) ≥ 1

2

∑
j

z2
j p
t
j

γtj
.

Lemma 5.2.

φ(pt)− φ(p∗) ≤ max
j

{
10,

5

2Hc(r̄j)

}
·
∑
j

z2
j p
t
j

γtj
.

11Any greater value for γj would work too, but would entail a proportionate change to the bound in Lemma 5.2.
12The λ replaces the constant of 5 used here, as a greater range of values for this parameter is needed in economies of

substitutes.
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Claim 5.1. Suppose 0 < c < 1. Then

i. For fixed 0 < c < 1, hc(r) is continuous at r = 1. hc(r) > 0 for all r ≥ 0, and hc(r) is a decreasing
function of r for r ≥ 0.

ii. For fixed r ≥ 0, hc(r)/c is a decreasing function of c for c ∈ (0, 1).

Proof. By simple calculus.

Theorem 5.1. For a complementary CES Fisher economy, for the sequence of prices pt defined by the
update rule (14) with γtj = 5 ·max{1, xtj}, for all t,

φ(pt)− φ(p∗) ≤ (1−Θ(1))
t [
φ(pt)− φ(p0)

]
.

In other words, for any ε > 0, φ(pt)− φ(p∗) ≤ ε[φ(pt)− φ(p0)], if t = Ω(log(1/ε)).

Proof. (of Theorem 5.1) We show that φ(pt)− φ(p∗) drops by a constant factor in every step as follows:

φ(pt+1)− φ(p∗) = φ(pt)− φ(p∗)− [φ(pt)− φ(pt+1)]

≤ φ(pt)− φ(p∗)− 1

2

∑
j

z2
j p
t
j

γtj
(by Lemma 5.1)

≤ [φ(pt)− φ(p∗)]

[
1− 1

2

(
max
j

{
10,

5

2Hc(r̄j)

})−1
]

(by Lemma 5.2)

= [φ(pt)− φ(p∗)]

[
1−min

j

{
1

20
,
hc(r̄j)

5c

}]
.

By Claim 5.1(i), minj

{
1
20 ,

hc(r̄j)
5c

}
is strictly positive. Consequently,

φ(pt+1)− φ(p∗) = (1−Θ(1))[φ(pt)− φ(p∗)].

5.1. Proof of Lemma 5.1: Good Progress on a Price Update

We begin by showing that the price update is bounded by 1
4p
t
j (Claim 5.2). Modulo this condition, we

bound φ(p+ ∆p)− `φ(p+ ∆p; p) (Lemma 5.3). Lemma 5.1 then follows fairly easily.

Claim 5.2. |pt+1
j − ptj | ≤ 1

4p
t
j.

Proof. |pt+1
j − ptj | ≤ (e1/5 − 1)ptj ≤ 1

4p
t
j .

Lemma 5.3. Suppose that for all j, |∆pj |/pj ≤ 1
4 . Then

φ(p+ ∆p)− `φ(p+ ∆p; p) ≤ 2
∑
j

xj
pj

(∆pj)
2.

Proof. (of Lemma 5.1). Recall that ∆pj = pt+1
j − ptj and that pt+1

j = ptj · exp
(
zj
γj

)
. By Lemma 5.3,

φ(pt)− φ(pt+1) ≥
∑
j

zj
(
pt+1
j − ptj

)
− 2

∑
j

xj
ptj

(
pt+1
j − ptj

)2
. (15)

Next, using the formula for pt+1 and the fact that γj ≥ 5xj gives the bound:

φ(pt)− φ(pt+1) ≥
∑
j

zjp
t
j (exp(zj/γj)− 1)− 2

5

∑
j

γjp
t
j (exp(zj/γj)− 1)

2

=
∑
j

γjp
t
j

[
zj
γj

(exp(zj/γj)− 1)− 2

5
(exp(zj/γj)− 1)

2

]
.

To finish, we use the following bound: if |y| ≤ 1/5, then y (exp(y)− 1)− 2
5 (exp(y)− 1)

2 ≥ 1
2y

2. This yields
the lemma, on setting y = zj/γj .
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Proof. (of Lemma 5.3). We will use the following two bounds. First, a bound on log(1 + ε), namely:

log(1 + ε) ≥ ε− 2

3
ε2, when |ε| ≤ 7

24
. (16)

And second, a bound on the following polynomial, which follows from a simple power series expansion: if
|∆pj |/pj ≤ 1/4 and 0 ≤ c ≤ 1,

(pj + ∆pj)
c ≥ pcj + cpc−1

j (∆pj)−
2

3
cpc−2
j (∆pj)

2. (17)

Let Dφ denote φ(p+ ∆p)− `φ(p+ ∆p; p), for short. Recall that Si(p) =
∑
` bi`p

ci
` . Then:

Dφ = φ(p+ ∆p)− φ(p) +
∑
j

zj∆pj

=
∑
j

∆pj +
∑
j

zj∆pj −
∑
i

ei
ci

log
Si(p+ ∆p)

Si(p)
.

=
∑
j

xj∆pj −
∑
i

ei
ci

log

(∑
` bi`(p` + ∆p`)

ci

Si(p)

)
.

As ρi < 0, 0 < ci < 1. So we can apply (17), yielding:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 +

∑
` bi`cip

ci−1
` (∆p`)

Si(p)
−

2
3

∑
` bi`cip

ci−2
` (∆p`)

2

Si(p)

)
.

Recalling from (13) that xi` = eibi`p
ci−1
` /Si(p), yields:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 +

∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)
.

On applying (16), which we can do as
∑
` xi`p` ≤ ei, ci ≤ 1, and |∆p`|/p` ≤ 1

4 , we obtain the bound:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

(∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)

+
∑
i

ei
ci

2

3

(∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`(∆p`)

(
1− 2∆p`

3p`

))2

.

Now recall that |∆p`|/p` ≤ 1
4 , to give the bound:

Dφ ≤ 2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`|∆p`| ·
7

6

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

49

54

∑
i

1

ei

(∑
`

xi`|∆p`|
)2

(as ci ≤ 1)

=
2

3

∑
`

x`
p`

(∆p`)
2 +

49

54

∑
i

1

ei

∑
j,k

xijxik|∆pj ||∆pk|

≤
(

2

3
+

49

54

)∑
`

x`
p`

(∆p`)
2 (by Claim 4.1)

≤ 2
∑
`

x`
p`

(∆p`)
2.
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5.2. Proof of Lemma 5.2: An Upper Bound on the Distance to Equilibrium

Our proof of Lemma 5.2 uses the following bound on φ(p∗)− `φ(p∗; p), stated in Lemma 5.4 below.

Lemma 5.4. Suppose that rtj = p∗j/p
t
j ≤ r̄j for all j. Then

φ(p∗)− `φ(p∗; p) ≥
∑
j

hc(r̄j)

c
xj

(p∗j − pj)2

pj
.

Proof. (of Lemma 5.2). Note that Hc(r̄j) = hc(r̄j)/c. By Lemma 5.4:

φ(pt)− φ(p∗) = `φ(p∗, pt)− φ(p∗)−∇φ(pt) · (p∗ − pt)

≤
∑
j

zj(p
∗
j − ptj)−

∑
j

Hc(r̄j)xj
(p∗j − ptj)2

ptj

≤ max
p′

∑
j

(
zj(p

′
j − ptj)−Hc(r̄j)xj

(p′j − ptj)2

ptj

)
.

There are two cases.

Case 1: 0 ≤ xj ≤ 1/2.
Then −1 ≤ zj ≤ −1/2 and hence zj ≥ −2z2

j . Thus

zj(p
′
j − ptj)−Hc(r̄j)xj

(p′j − ptj)2

ptj
≤ −zjptj ≤ 2z2

j p
t
j = 2γj

z2
j p
t
j

γj
.

As xj ≤ 1/2 < 1, 2γj = 10. Hence

zj(p
′
j − ptj)−Hc(r̄j)xj

(p′j − ptj)2

ptj
≤ 10

z2
j p
t
j

γj
.

Case 2: xj ≥ 1/2.

zj(p
′
j − ptj)−Hc(r̄j)xj

(p′j−p
t
j)2

ptj
is a quadratic function of (p′j − ptj). The quadratic function is maximized

when (p′j − ptj) =
zjp

t
j

2Hc(r̄j)xj
, with its maximum value being

z2j p
t
j

4Hc(r̄j)xj
=

γj
4Hc(r̄j)xj

z2j p
t
j

γj
.

As xj ≥ 1/2 and γj = 5 ·max {1, xj}, γj/xj ≤ 10. Hence

zj(p
′
j − ptj)−Hc(r̄j)xj

(p′j − ptj)2

ptj
≤ 5

2Hc(r̄j)

z2
j p
t
j

γj
.

Combining the two cases yields the lemma.

Proof. (of Lemma 5.4). By a direct calculation,

(p∗j )
ci = pcij + cip

ci−1
j (p∗j − pj)− hci(rtj) · (p∗j − pj)2.

By Claim 5.1(i), hci(r
t
j) ≥ hci(r̄j). Thus

(p∗j )
ci ≤ pcij + cip

ci−1
j (p∗j − pj)− hci(r̄j) · (p∗j − pj)2.

To avoid clutter, we omit the superscript t on the prices.
Let ∆∗pj = p∗j − pj . Then

φ(p∗)− `φ(p∗; p) =
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
` bi`(p

∗
` )
ci

Si(p)

)
.

16



Recalling that Si(p) =
∑
l bi`(p`)

ci and using the upper bound on (p∗j )
ci derived above, gives:

φ(p∗)− `φ(p∗; p) ≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(
1 +

∑
` bi`cip

ci−1
` (∆∗p`)

Si(p)
−
∑
` bi`hci(r̄j)p

ci−2
` (∆∗p`)

2

Si(p)

)

=
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(
1 +

∑
`

ci
xi`
ei

(∆∗p`)−
∑
`

hci(r̄j)
xi`
p`ei

(∆∗p`)
2

)
.

Note that the argument for the log is positive (as it is an upper bound for Si(p
∗)/Si(p)). We apply the

bound ε ≥ log(1 + ε) for ε ≥ −1 to give:

φ(p∗)− `φ(p∗; p) ≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

(∑
`

ci
xi`
ei

(∆∗p`)−
∑
`

hci(r̄j)
xi`
p`ei

(∆∗p`)
2

)

=
∑
i

∑
`

hci(r̄j)

ci
xi`

(∆∗p`)
2

p`

≥
∑
i

∑
`

hc(r̄j)

c
xi`

(∆∗p`)
2

p`
(by Claim 5.1(ii))

=
∑
j

hc(r̄j)

c
xj

(p∗j − pj)2

pj
.

5.3. Bounding rtj
Let pU = maxj{p◦j}, the maximum initial price, U = max{pU,M}, and L∗ = minj{p∗j}. The following

bound is proved in Appendix B.

Lemma 5.5. Let U = 2U . For all t,

rtj =
p∗j
ptj
≤ 2 ·max

{
p∗j
p◦j
,

(
L∗

U

)mini ρi
}
.

6. Fisher Economies with Substitute CES Utilities

The analysis in Section 5 can be extended to Fisher economies with substitute CES utilities, i.e., CES
utility functions with parameters ρ ≥ 0. Cole and Fleischer [24] showed that tatonnement converges in these
economies (and others) via a different potential function. For completeness, we reprove this result here with
the technique developed in Section 5. We will prove lemmas similar to Lemmas 5.1, 5.2, 5.3, 5.4 and then
prove a theorem similar to Theorem 5.1, which is Theorem 6.1 below. All proofs are deferred to Appendix
C.

For substitute CES utilities, the parameter ci = ρi/(ρi − 1) is negative, while it is positive in the
complementary case. Due to the sign switch, some of the proofs of the lemmas for this result differ from the
corresponding proofs in Section 5.

We also need to change the parameter γtj . Let cmin = min ci. We set

γtj = 5(1 + |cmin|) ·max
{

1, xtj
}
.

Note that as ρ↗ 1, γtj ↗ +∞, i.e., the step size shrinks to zero, which is as one would expect for the utility
functions at the limit as ρ↗ 1 are the linear utilities, and for these utilities a discrete tatonnement will not
converge to the equilibrium in general, however small the step size.

Theorem 6.1. For a substitute CES Fisher economy, for the sequence of prices pt defined by update rule
(14) with γtj = 5(1 + |cmin|) ·max{1, xtj}, for all t,

φ(pt)− φ(p∗) ≤ (1−Θ(1))
t [
φ(pt)− φ(p0)

]
.

In other words, for any ε > 0, φ(pt)− φ(p∗) ≤ ε[φ(pt)− φ(p0)], if t = Ω(log(1/ε)).
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7. Convergence of Continuous Time Tatonnement

We begin by explaining how to formulate a continuous version of the tatonnment based on the Bregman
divergence. We follow this with an overview of our analysis, which we then expand upon.

Continuous Time Tatonnement via Differential Inclusion. A continuous version of tatonnement is a trajec-
tory in the price space which, to be notationally consistent with the discrete version, is denoted by pt for all
t ∈ R+. Classically, the trajectory is defined by specifying a differential equation dp

dt = F (t, p(t)) for all t,
which we also call the “update rule”. We define a family of update rules derived from gradient descent. As
before, let h be a strictly convex differentiable function. The natural way to specify the differential equation
is

p(ε) := arg min
p

{
∇φ(pt) · (p− pt) + 1

εdh(p; pt)
}

dpj
dt

:= lim
ε→0

pj(ε)− ptj
ε

.

However, in the economies we consider, the demand function of an agent can be multi-valued at a price
vector13, and hence ∇φ(pt) can also be a set of multiple elements, namely the set of subgradients of φ at pt.

Since ∇φ(pt) can be multi-valued, p(ε) and hence
dpj
dt can be too. To resolve this, as is standard, we employ

differential inclusions, which are a generalization of differential equations. In brief, a differential inclusion
is a system which allows dp

dt to take any value from a set. We specify our class of differential inclusions in
the domain Rm+ , as follows:

pt(~v, ε) := arg min
p

{
~v · (p− pt) + 1

εdh(p; pt)
}

(18)

F (pt) :=

{
lim
ε→0

pt(~v, ε)− pt
ε

∣∣∣∣ ~v ∈ ∇φ(pt)

}
(19)

dp

dt
:∈ F

(
pt
)
. (20)

Overview of the Analysis. Our goal is to show that a general class of continuous tatonnements, specified by
(18)–(20), converges toward equilibrium prices for a broad subclass of CPF economies. To do this we need
to identify conditions that ensure the global existence of a trajectory — in other words, we need to show
that a solution to (20) exists for all t ∈ [0,+∞). We will motivate and provide conditions on the function
h and the economies which guarantee global existence. Having obtained such a trajectory, we then prove
that, modulo these conditions, it must converge to an equilibrium point.

The first set of conditions (Definition 7.1), which we call allowability, concern h alone. The main reason
for its introduction is to exclude those update rules which can cause a price to soar to infinity within a finite
time, which is possible for some unnatural choices of h; see Example D.2 in the appendix for a concrete
example.

The second set of conditions (Definition 7.2), which we call controllability, concern φ and the tatonnement
rule. They will be used to demonstrate the global existence of a solution to the system (18)–(20). Informally,
controllability excludes scenarios in which some absolute excess demand (normalized by h′′(pj)) or price can
blow up to infinity too quickly. If these bad scenarios do not occur, we can ensure that local existence
solutions, as guaranteed by a standard theorem about differential inclusions, can be combined indefinitely
over time to form a global solution.

Theorem 7.1. Let φ : Rm+ → R and pt ∈ Rm+ be defined by (18)–(20). Suppose that φ is convex, h is
allowable and that φ together with the rule given by (18)–(20) is controlled. Then, for any starting bounded

13An example: if a buyer has utility function u(x1, x2) = x1 + 3x2 and budget 40, then at prices (p1, p2) = (2, 6), the buyer
optimizes her utility by purchasing (x1, x2) = (20− 3y, y), for any y ∈ [0, 20/3].
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demand price vector p0 such that for all j, h′′(p0
j ) is finite, if the economy is a Fisher economy, then

limt→∞ pt = p∗, where p∗ is a minimizer of φ.
In Arrow-Debreu economies, if in addition dh is the KL-divergence then

lim
t→∞

p̂t = p̂∗,

where p̂ is the normalized price vector of p, i.e., for any price vector p with at least one positive price, the
corresponding normalized price vector p̂ is given by p̂j = pj/ (

∑
` p`).

For any CPF economy, by definition, there exists a φ such that −∇φ(p) = z(p). Substituting z for −∇φ in
(18)–(20) gives a tatonnement update rule for which, by Theorem 7.1, the prices converge to an equilibrium.

Roadmap. In Section 7.1 we give the definitions of the necessary conditions: allowability and controllability.
Next, in Section 7.2.1, we prove the existence of a local solution starting at the trajectory origin; this uses
allowability alone. Then, in Section 7.2.2, we prove global existence. Finally, in Section 7.3, we demonstrate
convergence to an equilibrium. We will state only the most important intermediate steps, and defer many
of the technical proofs to Appendix D. For the reader’s convenience, we also state some standard definitions
related to differential inclusions in the appendix.

7.1. The necessary conditions

We will limit the study to the special case where h is a separable function, i.e., it is of the form
∑
j h(pj),

for a 1-dimensional function h : R → R. We will also need h to be twice differentiable. It may be that
h′(0) = −∞, but by the convexity of h, this is the only argument for which h′ might be infinite. And if
h′(0) = −∞ then h′′(0) =∞.

As we will see in Lemma 7.2,
dpj
dt = −∇jφ(pt)/h′′(ptj) if ∇jφ(pt) and h′′(ptj) are finite. In order to make

progress, we will need that h′′(ptj) 6= ∞. (We want to stop because ∇jφ(pt) = 0 but not because h′′(ptj)
is ∞.) In addition, we need any solution trajectory to stay away from prices at which ∇jφ(pt) is infinite
(h′′(ptj) = 0 is ruled out as h is strictly convex). Suitable constraints on h, called allowable h, suffice to
achieve these objectives.

7.1.1. Allowable h

As we will show in Lemma 7.1, allowability ensures that the prices and h′′ remain finite at all times.
Assumptions B1 and B2 in the definition of allowability ensure the property for h′′ and Assumptions A1
and A2 together with B2 achieve it for prices.

Note that we want to ensure that h′′ remains finite, for if h′′(pj) = ∞ with ∇jφ(pt) finite, then by

Lemma 7.2,
dptj
dt = 0 which means pj remains unchanged, which is undesirable if ∇jφ(pt) 6= 0. While if both

h′′ and ∇φ(pt) are infinite, then
dptj
dt is not well defined.

Definition 7.1. h(p) is allowable if h is twice differentiable and strictly convex (hence h′′(p) > 0), h′′(p)
is finite if p > 0, 1/h′′ is continuous, and either

A1. The economy is a Fisher economy, or
A2.

∫∞
p
h′′(q)dq =∞ for all p > 0,

and in addition either

B1. h′′(p) is finite for all p, or
B2.

∫ p
0
h′′(q)dq =∞ for all p > 0; in this case, we say h is controlling.

Henceforth, we assume that h is allowable.
We note that two of the most commonly used Bregman divergences satisfy the above assumptions. The

first one uses h(pj) = 1
2p

2
j ; thus h′′(pj) = 1; hence

dpj
dt = −∇jφ(p). Also, for p > 0,

∫∞
p
h′′(q)dq = ∞, so

conditions A2 and B1 are satisfied. The second one, which is the KL-divergence, uses h(pj) = pj log pj − pj ,
h′(pj) = log pj and h′′(pj) = 1/pj . Hence

dpj
dt = −pj∇jφ(p). Also,

∫ p
0
dq
q = log p− log 0 =∞ and for p > 0,∫∞

p
dq
q = log∞− log p =∞, so conditions A2 and B2 are satisfied.
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Lemma 7.1.

i. Suppose that h′′(p0
j ) is finite. If h is allowable then h′′(ptj) is finite for all t ≥ 0.

ii. Suppose that p0 is finite. If h is allowable then pt is finite for all t ≥ 0.

Example D.2 in the appendix shows that a price may blow up to +∞ in finite time if condition A2 is
violated.

7.1.2. Controllability

To understand the definition of controllability, we first need to characterize the set of optimal bundles
of an agent at price vector p. There are two possibilities:

1. Every bundle includes at least one good having infinite demand. Then we say that p is an unbounded
demand price vector. Note that this good must have price zero, and by Lemma 7.1(i) this price
can be reached only if h′′(0) is finite. The controllability requirement ensures that in this case the
tatonnement trajectory does not reach any unbounded demand price vector. (If h′′(0) is infinite this
is already ensured by Lemma 7.1(i)).

2. All the demands in at least one bundle are finite. Then we say that p is a bounded demand price
vector. Note that if p includes a zero price, pj = 0 say, then an optimal bundle can have an infinite
demand for good j; but p is a bounded demand price vector if for all such j, the demand for good j
could also be finite.
For instance, in a Leontief Fisher economy, an equilibrium price vector may include a zero price but
it will be a bounded demand price vector; clearly, we want the tatonnement trajectory to be able to
converge to it. Furthermore, in this case, as the tatonnement proceeds, we want the agent’s sequence of
optimal bundles to always have bounded demands, and further these bounds should apply throughout
the tatonnement process.

We are now ready to define controllability.

Definition 7.2. Let φ be a potential function and T a continuous tatonnement rule. The pair (φ, T ) is
controlled, if for any bounded demand starting price vector p0 and any finite time t̄ ≥ 0, there are finite
bounds b(p0, t̄) and c(p0, t̄) such that for any tatonnement trajectory from time 0 to time t̄ induced by (18)–
(20), there exists a neighbourhood Ω of the trajectory in which for any p ∈ Ω and for any j,

1. |∇jφ(p)/h′′(pj)| ≤ b(p0, t̄) and p ≤ c(p0, t̄);
2. limt↗t̄ b(p

0, t) and limt↗t̄ c(p
0, t) are finite14,

i.e. both the prices and the rate of change of the prices remain bounded throughout the tatonnement process
up to and including time t̄.

In Claim D.1 in the appendix, we will show that controllability is obeyed by Fisher economies with CES,
Leontief and linear utilities along with any tatonnement rule (i.e., even if h is not controlling); this result
was extended to Fisher economies with nested CES utilities (see [51] for a definition) in Cheung’s thesis [15].
Also, in Claim D.2, we will show that if h is controlling (recall Definition 7.1) then (φ, T ) is controlled.
However, it is not clear whether the latter result applies to all economies or even to all EG economies.

7.2. Existence of a Solution for (20)

With h being separable, the minimization in (18) becomes an independent minimization problem for
each good j. We let dh(pj , qj) denote h(pj) − h(qj) − h′(qj)(pj − qj), the one dimensional version of the
Bregman divergence. Note that as h is convex,

dh(pj , qj) ≥ 0, (21)

and, by the strict convexity of h,
if pj 6= qj , dh(pj , qj) > 0. (22)

14Without loss of generality, we may assume that b(p0, t), c(p0, t) are increasing functions of t, so the limits exist.
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Lemma 7.2. For all j, if ∇jφ(pt) and h′′(ptj) are finite, then

dptj
dt

=
−∇jφ(pt)

h′′(ptj)
.

Theorem 7.2, a standard theorem on differential inclusions, guarantees the existence of a solution over a
time interval [0, T ], for some T > 0.

Let B(p0, ρ) denote the closed ball around p0 with radius ρ.

Theorem 7.2 ([62, p. 96–103]). Let dp
dt ∈ F (p(t)) be a differential inclusion, where F : P → P(R) is

upper semi-continuous at every p′ ∈ B(p0, ρ) for some ρ > 0. Suppose that F (p′) is convex and compact for
every p′ ∈ B(p0, ρ), and there exists a finite κ such that sup~z∈F (p′) ||z|| ≤ κ for every p′ ∈ B(p0, ρ). Then for
0 ≤ t ≤ ρ/κ, there exists an absolutely continuous solution p(t) to the differential inclusion with p(0) = p0.

To apply this theorem we would need that all possible demands in a neighborhood N of the tatonnement
trajectory be bounded. But this need not be the case, because the equilibrium and hence the desired end
of the trajectory may have some prices at zero. We will sidestep this difficulty by only considering demands
that lie within some bound b > 0; in order for the differential inclusion to have a solution we need to
ensure that the resulting demand sets for p ∈ N , denoted Fb(p), are all non-empty. This is ensured by the
controllability assumption.

Furthermore, Theorem 7.2 yields a solution only up to some time t̄ = ρ/κ, which we call a local solution,
but we need a global solution, a solution for all t ∈ [0,∞). Controllability will allow the local solution to be
repeatedly extended so as to provide the desired global solution.

7.2.1. Local Existence of a Solution to (20)

We start by showing that there is a solution to (20) for some time interval [0, t̄], albeit modulo some
additional assumptions. Then we will show how to extend the solution to arbitrarily large t and remove
these assumptions.

In order to apply Theorem 7.2 to (20), we need its right hand side (−∇jφ(p)/h′′(pj) when ∇jφ(p) is
finite) to be convex, compact and upper semi-continuous in any ball B(p0, ρ) we consider. The difficulty we
face is that when some prices are zero, the corresponding demands can be infinite, and then compactness
will not hold for such price vectors.

To restore compactness we modify F by intersecting it with a ball of radius b > 0: let Fb(p
t) =

F (pt) ∩ {v | − b1 ≤ v ≤ b1}. Then define the following differential inclusion on Rm+ :

dp

dt
= Fb(p

t). (23)

This introduces the possibility that Fb(p) is empty for some p which makes the differential inclusion trivially
unsatisfiable. For now we assume that Fb(p) is non-empty in a small neighborhood of p; in the next
subsection, we show this assumption is implied by the controllability constraint.

Definition 7.3. F is bounded near p with parameters ρ > 0 and b > 0 if there exists a ball B(p, ρ) such
that for all q ∈ B(p, ρ) ∩ Rm+ , Fb(q) is non-empty and h′′(q) is finite.15

A further challenge to applying Theorem 7.2 is that the trajectory may need to start at a location on
the boundary, i.e. with one or more prices pj = 0, while F needs to be defined in a ball around p. To resolve
this, we extend the definition of F from Rm+ to Rm, essentially by reflection, but in a way that ensures the
trajectory must remain in Rm+ . This then yields the following result.

Lemma 7.3. Suppose that h is allowable, and F is bounded near p0 with parameters ρ > 0 and b > 0. Then
there is a time t̄ = ρ

b > 0 such that (20) has an absolutely continuous solution for time interval [0, t̄] with
p(0) = p0.

15We remark that this condition is satisfied automatically when p > ~0.
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7.2.2. Global Existence of a Solution to (20)

By repeatedly applying Lemma 7.3, together with suitable uses of the definition of controllability, the
global existence of a solution is guaranteed, as stated in the lemma below.

Lemma 7.4. Suppose that h′′(p0) is finite, h is allowable and (φ, T ) is controlled. Then for any bounded
demand starting price vector p0 there exists a solution pt to (20) for time range [0,∞), with pt an absolutely
continuous function for any bounded time span, and pt(t = 0) = p0.

7.3. Differential Inclusion (20) Converges to an Equilibrium

In Arrow-Debreu economies, it is well-known that if p∗ is an equilibrium price vector, then cp∗, where
c is any positive constant, is also an equilibrium price vector. It is standard to consider normalized prices,
price vectors p̂ such that

∑
p̂ = 1. Note that for any price vector p with at least one positive price, the

corresponding normalized price vector p̂ is given by p̂j = pj/ (
∑
` p`).

Lemma 7.5. Suppose that h is allowable and h′′(p0
j ) is finite for all j. Let p∗ be any minimizer of φ. Then

dh(p∗j , p
t
j) is finite for all t and j.

Suppose that φ is the potential function for a Fisher economy. Then
∑
j
d
dtdh(p∗j ; p

t
j) < 0, unless pt is a

minimizer of φ.
Suppose that φ is the potential function for an Arrow-Debreu economy. Then let p̂∗ be any normalized

minimizer of φ, and suppose that dh is the KL-divergence. Then p̂t, the normalized price vector corresponding
to pt, satisfies

∑
j
d
dtdh(p̂∗j , p̂

t
j) < 0, unless pt is a minimizer of φ.

Proof. We prove the result for Fisher economies here; the result for Arrow-Debreu economies is deferred
to the appendix.

By Lemma 7.4, pt is defined for all t ≥ 0. By Lemma 7.1(i), h′′(ptj) is finite for all t and j, and hence so
is h′(ptj).

In the remainder of the proof, to avoid clutter, we write pj for ptj .
As h is always finite, it follows that dh(p∗j , pj) = h(p∗j )− h(pj)− h′(pj)(p∗j − pj) is finite. Differentiating

gives:

d

dt
dh(p∗j , pj) = −dh(pj)

dt
− dh′(pj)

dt
(p∗j − pj) + h′(pj)

dpj
dt

= −h′′(pj) ·
dpj
dt
· (p∗j − pj)

(
since

dh(pj)

dt
= h′(pj)

dpj
dt

)
= ∇jφ(p) · (p∗j − pj) (by Lemma 7.2).

By the definition of the subgradient, φ(p∗) ≥ φ(p) +∇φ(p) · (p∗ − p). Thus∑
j

d

dt
dh(p∗j , pj) =

∑
j

∇jφ(p) · (p∗j − pj) ≤ φ(p∗)− φ(p) < 0, (24)

unless p = p∗.

Proof (of Theorem 7.1). In a Fisher economy the prices are always bounded by the maximum of their
initial values and

∑
i ei. In an Arrow-Debreu economy, we consider only the normalized prices, and these

too are bounded. Let B denote the bounded set of prices. We may assume that B is closed16. The proof
that follows is for Fisher economies, but it applies to Arrow-Debreu economies too on replacing p by p̂
everywhere.

The proof comprises four steps:

16If not, replace B by its closure.
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1. As pt lies in a bounded domain, it must have a convergent subsequence, which converges to a point q,
say.

2. Let P ∗ denote the set of equilibrium prices for Fisher economies, or the set of normalized equilibrium
prices for Arrow-Debreu economies. Recall that dh(p∗, p) =

∑
j dh(p∗j , pj). Then, for any fixed p∗ ∈ P ∗,

we can conclude from Lemma 7.5 that dh(p∗, pt) is monotonically decreasing. By (21), dh(p∗, pt) ≥ 0;
consequently limt→∞ dh(p∗, pt) exists, and it must equal dh(p∗, q), by the continuity of dh.

3. q is a minimizer of φ; i.e. q ∈ P ∗. (Proof below.)

4. By the second and the third steps, dh(q, pt)→ dh(q, q) = 0. Thus pt → q. (Proof below.)

Proof of Step 3. Suppose that q were not a minimizer of φ.
Note that the set P ∗ is closed (due to the continuity of φ), so P ∗ ∩ B is compact. Let d(q′) =

minp′∈P∗∩B dh(p′, q′); since P ∗ ∩B is compact, the minimum is attained.
Since q /∈ P ∗, as d(q) = dh(p∗, q) for some p∗ ∈ P ∗, and as q 6= p∗, by (22), d(q) = dh(p∗, q) > 0. Also,

by Lemma 7.5, dh(p∗, pt) is finite, and hence by continuity of dh so is dh(p∗, q); hence d(q) ≤ dh(p∗, q) is
also finite. Let Q = {q′ | d(q′) ≥ d(q)} ∩B. Since dh is continuous and P ∗ ∩B is compact, it follows that Q
is compact. Let δ = minq′∈Q φ(q′)− φ(p∗); since Q is compact, the minimum is attained. By definition, Q
contains no minimizer of φ, so δ > 0.

From Step 2, for any p∗ ∈ P ∗ ∩B, for all t ≥ 0, dh(p∗, pt) ≥ dh(p∗, q) and dh(p∗, q) ≥ d(q), so pt ∈ Q for
all t ≥ 0. By (24), d

dtdh(p∗, pt) ≤ −[φ(pt) − φ(p∗)] ≤ −δ < 0, which implies that dh(p∗, pt) will eventually
go below zero, a contradiction.

Proof of Step 4. Suppose that pt does not converge to q. Then there exists an ε > 0 such that for any T ,

there exists a t(T ) > T with ||pt(T ), q|| ≥ ε.
Let A = {p | ||q, p|| ≥ ε}, which is closed. Note that A ∩ B is compact. Since dh(q, p) is non-negative

(but possibly +∞), finite at some p ∈ A ∩ B (e.g. pt(T ) for any T ), and continuous at every p ∈ A ∩ B
at which it is finite, infp∈A∩B dh(q, p) = minp∈A∩B dh(q, p) = δ′ > 0, by (22). Since pt(T ) ∈ A ∩ B,
dh(q, pt(T )) ≥ minp∈A∩B dh(q, p) = δ′ > 0, i.e. dh(q, pt) does not converge to zero, a contradiction.

8. Further Comments

We have shown that discrete versions of tatonnement converge for Leontief and CES utilities. Here we
mention some recent extensions of these results. Cheung [15] has shown the convergence of the discrete
tatonnement for economies with CES utilities extends to those with nested CES utilities. Cheung and
Cole [17] extended the convergence results in this paper for discrete tatonnement to allow asynchronous
updating. In an earlier manuscript [16], they also extended the convergence results to the Ongoing Market
model proposed by Cole and Fleischer [24]. In this model, the economy repeats from one time period to the
next, and excess demands and supplies are carried forward to successive time periods using finite buffers,
which they called warehouses. The purpose of this model was to provide a more natural setting for the
tatonnement update process.
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A. Fisher Economies with Leontief Utilities

Proof (of Claim 4.1). This result follows by rewriting ei as
∑
k xikpk.

ei
∑
`

xi`
p`

(∆p`)
2 =

∑
`

xi` (
∑
k xikpk)

p`
(∆p`)

2 =
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`,k

xi`xik
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2
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2 +
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k,`:k 6=`
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x2
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2 +
∑
k<`

xikxi`

(
pk
p`
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2 +

p`
pk

(∆pk)2

)
.

Now, we apply the AM-GM inequality:

ei
∑
`

xi`
p`

(∆p`)
2 ≥

∑
`

x2
i`(∆p`)

2 +
∑
k<`

xikxi` · 2|∆p`||∆pk|

=
∑
j,k

xijxik|∆pj ||∆pk|.

Proof (of Claim 4.2). We use the bound log x ≥ x− 11
18x

2 for |x| ≤ 1
4 .

dKL(pj + ∆pj , pj) = (pj + ∆pj) log(pj + ∆pj)− (pj + ∆pj)− pj log pj + pj − (log pj)∆pj (by (4) and (5))

= −∆pj + (pj + ∆pj) log

(
1 +

∆pj
pj

)
≥ −∆pj + (pj + ∆pj)

(
∆pj
pj
− 11
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(∆pj)
2

p2
j
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(∆pj)
2
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1− 11
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pj

)
≥ 7
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28

(∆pj)
2

pj
≥ 2

9

(∆pj)
2

pj
.

A.1. Leontief Lower Bound

We prove Theorem 4.2 here.
We consider the following Leontief Fisher economy with two buyers and two goods. Buyer 1 has budget

e1 = 3 and b11 : b12 = 1 : 3; buyer 2 has budget e2 = 2 and b21 : b22 = 2 : 1. There is a unique market
equilibrium (p∗1, p

∗
2) = (0, 5), with equilibrium demands (x∗11, x

∗
12, x

∗
21, x

∗
22) = (1/5, 3/5, 4/5, 2/5). We will

show that if tatonnement starts at a carefully chosen price vector, (p1, p2), the potential function value is
Θ((p1)2) but in the next time step the potential function drops by only Θ((p1)3).

Let

B =

{
(p1, p2)

∣∣∣∣ p1 ≤ δ̄ and − 2

5
(p1)2 ≤ p1 + p2 − 5 ≤ 2

5
(p1)2

}
,

where δ̄ > 0 is a sufficiently small positive number which satisfies several conditions stated in the proofs
below.

The price update rule of good j is pt+1
j = ptj · exp

(
ztj/γ

)
.

Lemma A.1. If a tatonnement starts at a price vector in B, then the prices remain in B throughout the
tatonnement.

Proof. Let (p1, p2) be a price vector in B; write (p1, p2) = (δ, 5 − δ + Cδ2), where |C| ≤ 2
5 . Then the

demands are

x1 =
3

15− 2δ + 3Cδ2
+

4

5 + δ + Cδ2
x2 =

9

15− 2δ + 3Cδ2
+

2

5 + δ + Cδ2
.
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Let (p′1, p
′
2) denote the new prices after an update, i.e.

p′1 = δ · exp

(
x1 − 1

γ

)
p′2 = (5− δ + Cδ2) · exp

(
x2 − 1

γ

)
.

The Taylor expansions of x1, x2, p
′
1, p
′
2 (with respect to δ) are

x1 = 1− 2

15
δ +O(δ2), x2 = 1 +

(
2

75
− C

5

)
δ2 +O(δ3),

p′1 = δ − 2

15γ
δ2 +O(δ3), p′2 = 5− δ +

(
C − C

γ
+

2

15γ

)
δ2 +O(δ3).

We choose δ̄ to be sufficiently small such that p′1 < p1. Since p1 ≤ δ̄, p′1 < δ̄.

The Taylor expansion of
p′1+p′2−5

(p′1)2 is

p′1 + p′2 − 5

(p′1)2
= C

(
1− 1

γ

)
+O(δ).

We choose δ̄ to be sufficiently small such that

C

(
1− 1

γ

)
− 1

10γ
≤ p′1 + p′2 − 5

(p′1)2
≤ C

(
1− 1

γ

)
+

1

10γ
.

Since |C| ≤ 2
5 and γ ≥ 1, C

(
1− 1

γ

)
− 1

10γ ≥ − 2
5 and C

(
1− 1

γ

)
+ 1

10γ ≤ 2
5 . So (p′1, p

′
2) is in B.

Lemma A.2. If (pt1, p
t
2) is in B, then φ(pt)− φ(pt+1) = O((p1)3) and φ(pt)− φ(p∗) = Θ((p1)2).

Proof. Write (pt1, p
t
2) = (δ, 5− δ + Cδ2), where |C| ≤ 2

5 . Since φ is convex,

φ(pt)− φ(pt+1) ≤ −∇φ(pt) ·
(
pt+1 − pt

)
= (x1 − 1)

(
exp

(
x1 − 1

γ

)
− 1

)
p1 + (x2 − 1)

(
exp

(
x2 − 1

γ

)
− 1

)
p2

= O

(
p1(x1 − 1)2

γ

)
+O

(
p2(x2 − 1)2

γ

)
.

Recall the Taylor expansions of x1 and x2 in the proof of Lemma A.1. We choose δ̄ to be sufficiently small
so that

|x1 − 1| = O(δ), |x2 − 1| = O(δ2).

Then

φ(pt)− φ(pt+1) ≤ O(δ) ·O
(
δ2

γ

)
+O(1) ·O

(
δ4

γ

)
=

1

γ
O(δ3).

Next, we will show that φ(p)− φ(p∗) is Θ(δ2). Let ∆∗p` = p∗` − p`. Note that (see the proof of Lemma
4.1)

φ(p∗)− `φ(p∗; p) =
∑
j

xj∆
∗pj −

∑
i

ei log

(
1 +

∑
` bi`∆

∗p`∑
` bi`p`

)
.

We choose δ̄ to be sufficiently small such that for i = 1, 2,
∣∣∣∑` bi`∆∗p`∑

` bi`p`

∣∣∣ ≤ 1
4 . Then applying (16) yields

φ(p∗)− `φ(p∗; p) ≤
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Note that ∆∗p1 = −δ and ∆∗p2 = δ − Cδ2. The Taylor expansions of the {xij} are

x11 =
1

5
+O(δ) x12 =

3

5
+O(δ) x21 =

4

5
+O(δ) x22 =

2

5
+O(δ).

Hence, the Taylor expansions of 1
ei

(
∑
` xi`∆

∗p`)
2

are

1

e1
(x11∆∗p1 + x12∆∗p2)

2
=

4

75
δ2 +O(δ3),

1

e2
(x21∆∗p1 + x22∆∗p2)

2
=

2

25
δ2 +O(δ3).

Thus

φ(p∗)− `φ(p∗; p) ≤ 4

45
δ2 +O(δ3).

Then

φ(p∗)− φ(p) ≤ 4

45
δ2 +O(δ3)− z1∆∗p1 − z2∆∗p2

=
4

45
δ2 −

(
− 2

15
δ

)
(−δ)−

(
2

75
− C

5

)
δ2 · (δ − Cδ2) +O(δ3)

= − 2

45
δ2 +O(δ3).

We choose δ̄ to be sufficiently small such that φ(p)− φ(p∗) = Θ(δ2).

Proof. (of Theorem 4.2.) If the tatonnement starts at (δ̄, 5 − δ̄), by Lemma A.1, the prices stay in B
throughout the tatonnement. Then by Lemma A.2, at every time step,

φ(pt)− φ(pt+1) = rcj ·Θ
(
φ(pt)− φ(p∗)

)3/2
.

This easily yields

φ(pt)− φ(p∗) = Ω

(
φ(p0)− φ(p∗)

t2

)
.

B. Fisher Economies with Complementary CES Utilities

Lemma 5.5 is a subcase of the following lemma, which includes a similar result for continuous taton-
nement.

Lemma B.1. Let U = U for any continuous tatonnement, and let U = 2U for the discrete tatonnement
with update rule (14). For any continuous tatonnement and for all t, p∗j/p

t
j ≤ max{p∗j/p◦j , (L∗/U)mini ρi}.

For the discrete tatonnement and for all t, p∗j/p
t
j ≤ 2 ·max{p∗j/p◦j , (L∗/U)mini ρi}.

Proof. The lemma follows from the following two observations.
Observation 1. No price will exceed U during the entire tatonnement.

Reason. Suppose not, then let t = τ be the first time when some price, say pk, exceed U . Then pτk ≥M and
xτk ≤M/pτk ≤ 1. In the continuous tatonnement, the price update rule will not increase pk any further.

For the discrete tatonnement we argue as follows. At t = τ − 1, pτ−1
k < U = 2U . However, as pk can at

most double in one time unit, pτ−1
k ≥ U , and hence pτ−1

k ≥M . By the same argument as for xτk, xτ−1
k ≤ 1.

By the price update rule, pτk ≤ pτ−1
k < U , a contradiction.

Observation 2. pk ≥ min{p◦k, (U/L∗)mini ρip∗k} throughout the entire continuous tatonnement process, and
half this value in the discrete case.
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Reason. Suppose that for some k, pk ≤ L∗(U/L∗)mini ρip∗k. We claim that xk ≥ 1.

At equilibrium prices, all demands equal 1. If the prices are all raised by a factor of U
L∗ , then all demands

equal L∗

U
. Note that now all prices are at least U .

Now reduce the price of pk from U
L∗ p
∗
k to

(
U
L∗

)mini ρi
p∗k, that is, reduce the price by a factor of(

U
L∗

)1−mini ρi
. Recall (13); note that the price reduction can only decrease Si. Then, the new demand

x′k for good k is bounded as follows:

x′k ≥
L∗

U
·
[(

U

L∗

)1−mini ρi
]1−maxi ci

=
L∗

U
·
[(

U

L∗

)1−mini ρi
]1/(1−mini ρi)

= 1.

We just proved that when pk =
(
U
L∗

)mini ρi
p∗k and all other prices are at specified values which are all

at least U , the demand for good k is at least 1. By Observation 1, no price exceeds U during the entire
tatonnement process. In complementary economies, since the demand for one good increases when the prices

of other goods decrease, we have shown that xk ≥ 1 if pk ≤
(
U
L∗

)mini ρi
p∗k.

In the case of the continuous tatonnement, it follows that no price can decrease below the minimum of
this value and the initial value of this price.

For the discrete case, we argue as follows. Let

L̄k = (1/2) ·min{p◦k, (U/L∗)mini ρip∗k}.

Suppose that Observation 2 were incorrect, then let t = τ be the first time when some price, say pj , is below
L̄j . At t = τ − 1, pτ−1

j ≥ L̄j . However, as pj can reduce by at most half in one time unit, pτ−1
j ≤ 2L̄j . Then

xτ−1
j ≥ 1. By the price update rule, pτj ≥ pτ−1

j > L̄j , a contradiction.

C. Fisher Economies with Substitute CES Utilities

In substitute CES utilities, 0 < ρ < 1, so c = ρ/(ρ − 1) is negative; by contrast, the parameter c for
complementary CES utilities is positive. Recall that cmin = mini ci.

C.1. The Upper Bound: Good Progress on a Price Update

Lemma C.1. Suppose that for all j, |∆pj |/pj ≤ min{1/4, 1/|cmin|}. Then

φ(p+ ∆p)− `φ(p+ ∆p; p) ≤ (1 + |cmin|)
∑
j

xj
pj

(∆pj)
2.

Proof. We will use the following bound, which follows from a simple power series expansion: if c is negative
and |∆pj |/pj ≤ min{1/4, 1/|c|}, then

(pj + ∆pj)
c ≤ pcj + cpc−1

j (∆pj) + c(c− 1)pc−2
j (∆pj)

2. (C.1)

Recall from the proof of Lemma 5.3 that

Dφ = φ(p+ ∆p)− `φ(p+ ∆p; p) =
∑
j

xj∆pj +
∑
i

ei
|ci|

log

(∑
` bi`(p` + ∆p`)

ci

Si(p)

)
.
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We apply (C.1) and the simple bound log(1 + ε) ≤ ε for ε ≥ −1 to yield

Dφ ≤
∑
j

xj∆pj +
∑
i

ei
|ci|

log

(∑
` bi`

(
pci` − |ci|pci−1

` ∆p` + |ci|(|ci|+ 1)pci−2
` (∆p`)

2
)

Si(p)

)

=
∑
j

xj∆pj +
∑
i

ei
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log
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ei
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ei
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2.

To allow us to apply Lemma C.1 in our analysis, we will require that γtj = 5(1 + |cmin|) ·max{1, xtj}.

Lemma C.2. Suppose that |pt+1
j − ptj | ≤ min{1/4, 1/|cmin|} · ptj for all j. Then

φ(pt)− φ(pt+1) ≥ 1

2

∑
j

z2
j p
t
j

γtj
.

Proof. It is almost identical to the proof of Lemma 5.1. It uses the bound from Lemma C.1 instead of
the bound from Lemma 5.3. This changes the factor 2 in (15) to (1 + |cmin|), and then the new value for γj
yields (??). The rest of the proof is identical.

C.2. An Upper Bound on the Distance to Equilibrium

We will need the following bound. Recall that we are letting log denote the natural logarithm.

Claim C.1. Let r̄ be a fixed number greater than 0. If −1 < x ≤ r̄ − 1, then

log(1 + x) ≤ x− r̄ − 1− log r̄

(r̄ − 1)2
x2. (C.2)

Proof. Consider the function [x − log(1 + x)]/x2 in the domain (−1,+∞); at x = 0, the function takes
value 1/2, so that the function is continuous at x = 0. The claim follows by simply noting that this function
is a decreasing function for x ∈ (−1,+∞).

Lemma C.3. Suppose that rtj = p∗j/pj ≤ r̄j for all j. Then

φ(p∗)− `φ(p∗; p) ≥
∑
j

r̄j − 1− log r̄j
(r̄j − 1)2

xj
(p∗j − pj)2

pj
.

Proof. Let sik = xikpk. First,

φ(p+ ∆∗p)− `φ(p+ ∆∗p; p) =
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
k

bik(pk)ci∑
` bi`(p`)

ci

(
1 +

∆∗pk
pk

)ci)

=
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
k

sik
ei

(
1 +

∆∗pk
pk

)ci)
.
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Note that
∑
k
sik
ei

= 1. Thus, by the concavity of the log function,

log
(∑

k
sik
ei

(
1 + ∆∗pk

pk

)ci)
≥∑k

eik
ei

log
(

1 + ∆∗pk
pk

)ci
. Then

φ(p∗)− `φ(p∗; p) ≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

∑
k

sikci
ei

log

(
1 +

∆∗pk
pk

)

=
∑
j

xj∆
∗pj −

∑
k

xkpk log

(
1 +

∆∗pk
pk

)

≥
∑
j

xj∆
∗pj −

∑
k

xkpk

(
∆∗pk
pk
− r̄k − 1− log r̄k

(r̄k − 1)2

(
∆∗pk
pk

)2
)

(By Claim C.1)

=
∑
j

r̄j − 1− log r̄j
(r̄j − 1)2

xj
(∆∗pj)

2

pj
.

Lemma C.4. Suppose that rtj = p∗j/p
t
j ≤ r̄j. Then

φ(pt)− φ(p∗) ≤ (1 + |cmin|) ·max
j

{
10,

5(r̄j − 1)2

2(r̄j − 1− log r̄j)

}
·
∑
j

z2
j p
t
j

γtj
.

Proof. The proof is almost identical to the proof of Lemma 5.2. The ratio (r̄j − 1− log r̄j)/(r̄j − 1)2 from
Lemma C.3 plays the role of Hc(r̄j) in Lemma 5.4.

In the proof of Lemma 5.2, we used the fact that γj = 5 in Case 1, and that γj = 5 ·max{1, xj} in Case
2. Here, we replace the number 5 in both cases with 5(1 + |cmin|), yielding the new bound.

Proof (of Theorem 6.1). This is almost identical to the proof of Theorem 5.1. We first note that Cole
and Fleisher [24] showed that rtj remains bounded by some finite number r̄j throughout the tatonnement
process. Instead of the bounds from Lemmas 5.1 and 5.2, we use the bounds from Lemmas C.2 and C.4.
This gives

φ(pt+1)− φ(p∗) ≤ [φ(pt)− φ(p∗)]

[
1− 1

2(1 + |cmin|)

(
max
j

{
10,

5(r̄j − 1)2

2(r̄j − 1− log r̄j)

})−1
]
.

Noting that 1 + |cmin| and the max’s two arguments are finite, we are done.

D. Continuous Time Tatonnement

D.1. Differential Inclusion and Semi-Continuity of Sets

The following definitions are taken from Smirnov’s text [62].

Definition D.1. A differential inclusion is an equation of the form dp
dt ∈ F (t, p(t)), where F (t, p) is a non-

empty set for all t and p. This generalizes standard differential equations of the form dp
dt = f(t, p(t)), where

f(t, p) is single-valued.

In our setting, F is a function of p alone.
Let P(A) denote the power set of the set A. Let Ω(a) denote an open neighbourhood of a point a.

Definition D.2. A set-valued map F : Z → P(Y ) is upper semi-continuous at z0 ∈ Z if for any open set
M ∈ P(Y ) which contains F (z0), there exists Ω(z0) such that for all z ∈ Ω(z0), F (z) ⊂ M . A set-valued
map F is upper semi-continuous if it is so at every z0 ∈ Z.

A set-valued map F : Z → P(Y ) is lower semi-continuous at z0 ∈ Z if for any y0 ∈ F (z0) and any
neighbourhood Ω(y0), there exists a neighborhood Ω(z0) such that for all z ∈ Ω(z0), F (z) ∩ Ω(y0) 6= ∅. A
set-valued map F is lower semi-continuous if it is so at every point z0 ∈ Z.

A set-valued map F : Z → P(Y ) is continuous at z0 ∈ Z if it is both upper and lower semi-continuous
at z0. A set-valued map F is continuous if it is so at every z0 ∈ Z.
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The following well-known Maximum Theorem provides results on set-valued map semi-continuity, which
are among the required conditions for the existence of a solution to our differential inclusions.

Theorem D.1 (Maximum Theorem, [5, p. 116]). Let u : P×X → R be a continuous function, and C :
P → P(X) be a compact set-valued map. Let C∗(p) = arg maxx∈C(p) u(p, x) and u∗(p) = maxx∈C(p) u(p, x).
If C is continuous at some p, then u∗ is continuous at p and C∗ is non-empty, compact and upper semi-
continuous at p.

In our scenarios, X is the set of bundles of goods and u is the utility function of an agent. C maps a
price vector to the set of affordable bundles; note that C is a compact set-valued map unless the price vector
contains a zero price.

For any sets A1, A2, · · · , Ak, let their sumset be
{∑k

i=1 ai | ai ∈ Ai
}

. We state the following basic facts,

which will be useful later.

Lemma D.1. (a) If A1, A2, · · · , Ak are convex and compact, then their sumset is convex and compact.
(b) If A1, A2, · · · , Ak : Z → P(Y ) are upper semi-continuous at z ∈ Z, then their sumset is upper semi-
continuous at z.
(c) If F1, F2 : Z → P(Y ) are two set-valued maps which are upper semi-continuous at z ∈ Z, the map
F∩ : Z → P(Y ), defined as F∩(z) = F1(z) ∩ F2(z), is also upper semi-continuous at z ∈ Z.

D.2. Existence of a Solution

Proof (of Lemma 7.2.). The minimizer in (18) must have a zero derivative:

∇jφ(pt) + 1
ε

d
(
dh(pj , p

t
j)
)

dpj
= 0. (D.1)

Since
d(dh(pj ,p

t
j))

dpj
= h′(pj)− h′(ptj), substituting in (D.1) and solving for pj gives

pj(ε) = h′−1
(
h′(ptj)− ε∇jφ(pt)

)
.

Note that since h is strictly convex, h′ is strictly increasing and hence is invertible. For notational conve-
nience, let g(y) = h′−1(y). Then h′(g(y)) = y, h′′(g(y)) · g′(y) = 1, therefore g′(pj) = 1

h′′(g(pj)) . Also note

that g(h′(y)) = y. Using these we obtain

g′(h′(pj)) =
1

h′′(pj)
. (D.2)

Strictly speaking, the above argument is not valid for pj = 0 if h′(0) = −∞. But in this case, we can check
directly that (D.2) is still correct, for then g′(−∞) = 0 and h′′(0) =∞.

Now, lim
ε→0

pj(ε)− ptj
ε

= lim
ε→0

g(h′(ptj)− ε∇jφ(pt))− g(h′(ptj))

ε

= −g′(h′(ptj)) · ∇jφ(pt)

= −∇jφ(pt)/h′′(ptj) (by (D.2)).

D.2.1. Missing Proofs in Section 7.1.1

Proof (of Lemma 7.1.). We begin with (i). If the economy is a Fisher economy then prices remain
bounded by the maximum of their initial value and the amount of money in the economy. So suppose the
economy is not a Fisher economy; then, by assumption,

∫∞
p
h′′(q)dq =∞ for all p > 0. Let pmax = max pj .

Define M t =
∑
j p

t
j ≤ pmax ·m. Then zmax ≤ m. So d

dtp
t
max ≤ m/h′′(ptmax).
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Let t̄ be the earliest time at which ptmax could be infinite. Let tmin = arg mint<t̄ p
t
max. If ptmin

max > 0, then
by Condition A2,

t̄ ≥ 1

m

∫ ∞
ptmin
max

h′′(p)dp =∞,

and if ptmin
max = 0, then the same bound holds by Conditions A2 and B2.

Now we show (ii). If condition B1 of Definition 7.1 holds then the result is immediate. So suppose that
condition B2 holds. By assumption, h′′(p) = ∞ only if p = 0. As zj ≥ −1 always, ∇jφ(p) ≤ 1 always.

Consequently, by Lemma 7.2,
dptj
dt ≥ −1/h′′(ptj). Suppose that p0

j > 0. Then let t̄ > 0 be the earliest time
at which pj could be zero. We use condition B2 to justify the last equality below:

t̄ ≥ −
∫ p0j

0

dptj
dptj/dt

≥
∫ p0j

0

h′′(p)dp =∞.

Thus only at time t =∞ can pj be 0, and hence only at time t =∞ can h′′(pj) be ∞.

Example D.2. Consider an Arrow-Debreu economy with one agent and two goods. The agent has one
unit of each good as initial endowment. The agent wants only good 1. So the equilibrium price vector is
(p∗1, p

∗
2) = (p, 0) for any p > 0. At any (p1, p2), the excess demand for good 1 is (p1 + p2)/p1 − 1 = p2/p1

and the excess demand for good 2 is −1.
Suppose the tatonnement starts at (p1, p2) = (2, 1) and h satisfies h′′(p) = 1/p for p ≤ 1 and h′′(p) = 1/p3

for p ≥ 1. Then
dpt2
dt = −pt2 and

dpt1
dt = (pt1)2pt2. The solution is p1(t) = 2

2e−t−1 and p2(t) = e−t. Note that
p1(t) blows up to +∞ at t = log 2.

D.2.2. Missing Proofs in Section 7.1.2

Claim D.1. Fisher economies with CES, Leontief and linear utilities along with any tatonnement rule are
all controlled.

Proof. We first observe that in Fisher economy prices remain bounded. The following notation will be
helpful. Let U be the maximum initial price and M the total money in the economy, and let U = max{U,M}.
Observe that for any j, if pj = U , then xj ≤ 1, and consequently any tatonnement rule will not increase pj
beyond U .

We can now show that for Fisher economies 1/h′′ remains bounded. For h′′ > 0 and consequently in the
bounded region Rm+ ∩ {p ≤ U 1} the supremum of 1/h′′ is its maximum, which is therefore finite.

Thus to prove the result of the lemma it suffices to show that −∇jφ(p) = zj(p) remains bounded
throughout the tatonnement.

We begin by considering substitutes CES utilities. Let f = minj{pj/p∗j , 1}. Cole and Fleischer [24]
showed that if pj = f p∗j , then xj ≥ 1. Thus if pj is ever reduced to f p∗j , the tatonnement update will
not decrease it further. Consequently, for all j, pj ≥ fp∗j throughout the tatonnement process. Hence
xj ≤ M/(fp∗j ) throughout the tatonnement process, for all j, where M is the total money in the economy.
It follows that zj ≤M/(fp∗j )− 1, for all j. This analysis applies to linear utilities too.

We turn to complementary CES utilities. By Lemma B.1, ptj ≥ p∗j · min{p0
j/p
∗
j , (U/L

∗)mini ρi}, where

L∗ = minj{p∗j}. It follows that the demands are upper bounded by xj ≤ max{p∗j/p0
j , (L

∗/U)mini ρi}, and

hence zj ≤ max{p∗j/p0
j , (L

∗/U)mini ρi} − 1.

Finally, we consider Leontief utilities. By Lemma 4.2,17 xtj ≤ x◦j +
∑
i maxk:bik>0

bij
bik

, and hence ztj ≤
z◦j +

∑
i maxk:bik>0

bij
bik

.

Claim D.2. If h is controlling then (φ, T ) is controlled.

17Lemma 4.2 handles discrete tatonnement, but the same proof can be reused for continuous tatonnement, and the factor 2
in the upper bound can be saved.
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Proof. As h is controlling, in finite time t̄, the trajectory is both upper-bounded and bounded away from
zero18, say 0 < p(t̄) ≤ ptj ≤ p̄(t̄) < +∞, for all j and for all 0 ≤ t ≤ t̄. Then there exists a neighborhood Ω of

the trajectory up to time t̄ such that all prices in Ω are between p(t̄)/2 and p̄(t̄) + 1. Set c(p0, t̄) = p̄(t̄) + 1.
For all p ∈ Ω, 0 < p(t̄)/2 ≤ pj ≤ p̄(t̄) + 1 < +∞, so h′′(pj) is bounded away from 0.
As φ is convex, ∇φ is finite except possibly at the boundary, i.e. when one or more prices is zero. When all

prices are between p(t̄)/2 and p̄(t̄)+1, ∇φ is bounded. Combined with the last paragraph, |−∇φ(p)/h′′(pj)|
is bounded on Ω. Set b(p0, t̄) to be an upper bound of |−∇φ(p)/h′′(pj)| on Ω.

D.2.3. Local Existence: Proof of Lemma 7.3

To prove Lemma 7.3, we need the intermediate lemmas D.2–D.4 below.

Lemma D.2. Suppose that h is allowable and that F is bounded near p. Then Fb(p) is convex-valued,
compact-valued and upper semi-continuous at p.

Proof. Let Ω(p) be the neighborhood of p given by the assumption that F is bounded near p (Defini-
tion 7.3), and let B ⊂ Rm+ be a compact neighborhood of p such that B ⊂ Ω(p) and every positive price in p
is positive in B. By our choice of B h′′(qj) is positive and finite for all q ∈ B and for all j, so there exists a
positive number h̄ such that h′′(qj) ≤ h̄ for all q ∈ B and for all j. Then on B, b ≥ |zj(q)/h′′(qj)| ≥ |zj(q)/h̄|,
i.e. xj(q) = zj(q) + 1 ≤ bh̄+ 1. Let b̄ denote bh̄+ 1.

We apply Theorem D.1 with P = Ω(p), X =
[
0, b̄
]m

. u is the utility function of an agent, which we
assume to be continuous and concave. For any q ∈ Ω(p), C(q) is the set of all affordable bundles in X
of the agent at price q. It is well known that C(q) is continuous, and since its range is confined to the
compact set X, C(q) is compact-valued. By Theorem D.1, C∗(p), the set of all affordable optimal bundles
of the agent at price p contained in X, is compact and upper semi-continuous at p. By our assumption that
Fb(p) is non-empty, C∗(p) is also a subset of all affordable optimal bundles of the agent at price p globally
(i.e. without confinement to X). Also, since u is concave, C∗(p) is convex.

By the definition of C∗(p) and φ, −∇φ(p) is the sumset of C∗(p) over all agents and the set {−1}. As
C∗(p) is non-empty for each agent, −∇φ(p) is also non-empty. By Lemma D.1(a) and (b), −∇φ(p) is convex
and compact, and it is upper semi-continuous at any p. (Fb)j is −∇jφ(p) divided by h′′(pj), while 1/h′′

is continuous and positive at any p ∈ P . So the division by h′′ will not affect convexity, compactness and
upper semi-continuity.

The following corollary is immediate.

Corollary D.1. Any solution to system (23) over time interval [0, t̄] starting at a price vector p0 such that
F is bounded near p0 is also a solution to system (20).

As discussed previously, we want to extend the domain for the differential inclusion to Rm. We will work
with Fb rather than F , however. To help specify the new differential inclusion system, for any price vector
p, we introduce the following notation: letting p = (pj), we define p+

j = max{0, pj} and p+ = (p+
j ). The

new system is given by
dpt

dt
∈ Gb(pt), (D.3)

with Gb defined as follows:

1. For p ∈ Rm+ , Gb(p) = Fb(p).

2. For p /∈ Rm+ , let J(p) = {j | pj < 0}, then set Gb(p) = Gb(p
+) ∩ {z | ∀j ∈ J(p), zj ≥ 0}.

Lemma D.3. Let p ∈ Rm. Suppose that h is allowable and F is bounded near p+. Then Gb(p) is convex,
compact and upper semi-continuous at p.

18These follow easily from the proofs of Lemma 7.1(i) and (ii).
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Proof. As Gb ≡ Fb in Rm+ , by Lemma D.2, the result is immediate for p > ~0.
For the other p’s, note that Gb(p) = Gb(p

+) ∩ {z | ∀j ∈ J(p), zj ≥ 0} is the intersection of two sets, the
first being convex and compact and the second being convex and closed. So Gb(p) is convex and compact.
What remains is to check upper semi-continuity at these p’s. There are two cases: p ∈ Rm+ but it has some
zero prices, or p 6∈ Rm+ .

Case 1: p ∈ Rm+ but it has some zero prices. For any open set M which contains Gb(p) = Fb(p), by
Lemma D.2, we can take a sufficiently small neighborhood B(p, δ) of p such that for all q ∈ B(p, δ) ∩ Rm+ ,
Fb(q) ⊂ M . Then, for any q ∈ B(p, δ) \ Rm+ , note that q+ ∈ B(p, δ) since ||q+, p|| ≤ ||q, p||, and, of course,
q+ ∈ Rm+ . Thus Fb(q

+) ⊂M ; and Gb(q) ⊆ Gb(q+) = Fb(q
+) ⊂M . So Gb is upper semi-continuous at p.

Case 2: p 6∈ Rm+ . For any q ∈ Rm, let V (q) denote the set {v | ∀j ∈ J(q), vj ≥ 0}. For any q 6∈ Rm+ ,
Gb(q) = Gb(q

+) ∩ V (q). By Case 1 and our conditions on p, Gb(p
+) is upper semi-continuous at p+. p+ is

continuous in p. Hence Gb(p
+) is upper semi-continuous at p. Next, we observe that there exists a small

δ > 0 such that for all q ∈ B(p, δ), if pj 6= 0, then sign(qj) = sign(pj) and consequently V (q) ⊆ V (p);
it immediately follows that V (p) is upper semi-continuous at p. Now, by Lemma D.1(c), Gb(p) is upper
semi-continuous at p.

Lemma D.4. Any solution to system (D.3) over time interval [0, t̄] starting at price vector p0 is also a
solution of (20) if F is bounded near p0.

Proof. We will show that any solution of (D.3) is a solution of (23). The result then follows from
Lemma D.1.

In the definition of Gb, at a price vector p with pj < 0, Gb,j(p) is always positive or zero, so it is impossible
for any tatonnement trajectory satisfying (D.3) to enter the region pj < 0. Hence, all prices remain positive
or zero, i.e. pt ∈ Rm+ for all t. In Rm+ , (23) is identical to (D.3), so we are done.

Proof (of Lemma 7.3.). By Lemma D.3, Gb(p) is convex, compact and upper semi-continuous at p in
the interior of Ω(p0). Now, by Theorem 7.2, (D.3) has an absolutely continuous solution with p(0) = p0 for
some time interval [0, t̄], where t̄ = ρ

b > 0. And by Lemma D.4, this is also a solution to (20).

D.2.4. Global Existence: Proof of Lemma 7.4

Proof (of Lemma 7.4). We will prove the result for differential inclusion (D.3) and then the result follows
from Lemma D.4.

We begin by defining some new notation. For any bounded demand price vector p, let B(p, δ) denote
the ball around p with radius δ, let b̄(p, δ) := supp′∈B(p,δ) maxj |∇jφ(p′)/h′′(p′j)|, and let κ(p) := supδ

δ
b̄(p,δ)

.

If κ(p) > 0, then there exists at least one δ′ with δ′

b(p,δ′) ≥
κ(p)

2 ; for any such δ′, we call B(p, δ′) a good ball

for p.
The controllability assumption provides a ball B(p0, δ) for some δ > 0, such that b̄(p0, δ) ≤ b(p0, 0). This

shows κ(p0) > 0. Using a good ball for p0, we apply Lemma 7.3 to get a solution for some time interval
[0, t′] with t′ > 0. Once again, due to the assumption of controllability, there is a good ball for pt

′
, to which

we apply Lemma 7.3 to get a solution for some time interval [t′, t′′] with t′′ > t′. We repeatedly extend the
trajectory in this way by additional applications of Lemma 7.3.

We claim that the process described in the last paragraph yields a trajectory over [0,+∞). Our proof
is by contradiction. Suppose the contrary, i.e. the process yields a trajectory ending at but possibly not
reaching some finite time t̄.

By the controllability assumption, for any t ∈ [0, t̄), all prices in pt are bounded by limt↗t̄ c(p
0, t), which

is finite; consequently the sequence {pt}0≤t<t̄ has a cluster point p̃. By the controllability assumption again,

all
dptj
dt are bounded by limt↗t̄ b(p

0, t), which is again finite. Hence, the sequence {pt}0≤t<t̄ has at most one
cluster point, i.e. p̃ is the unique cluster point of the sequence {pt}0≤t<t̄. Setting pt(t = t̄) = p̃ extends the
solution to t = t̄.

Now we have a solution over [0, t̄]. By the controllability assumption, there exists a neighborhood of
the trajectory such that each q in the neighborhood has a finite ∇φ(q)/h′′(q), bounded by b(p0, t̄). Let ρ
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denote the minimum distance between any point in the trajectory and the boundary of the neighborhood; ρ is
strictly positive. It is then easy to see that for any good ball B(pt

′
, δ′) used in the solution extension process,

δ′

b̄(pt′ ,δ′)
≥ ρ

2b(p0,t̄) . By Lemma 7.3, every step extends the time span of the trajectory by at least ρ
2b(p0,t̄) . So

after finitely many steps, the process reaches or passes beyond time t̄, contradicting the assumption that it
takes infinitely many iterations of the process to reach t̄.

D.3. Convergence of the Solution to an Equilibrium

Claim D.3. For any Arrow-Debreu economy in which φ exists, for any positive real number c, φ(p) = φ(cp).

Proof. By Walras’ law, p · ∇φ(p) = 0. By the definition of φ, ∇φ(p) = ∇φ(cp). By the definition of
subgradient,

φ(p) ≥ φ(cp) + (p− cp) · ∇φ(cp) = φ(cp) + (1− c)p · ∇φ(p) = φ(cp)

and
φ(cp) ≥ φ(p) + (cp− p) · ∇φ(p) = φ(p) + (c− 1)p · ∇φ(p) = φ(p).

These two inequalities imply that φ(p) = φ(cp).

Proof (of Lemma 7.5 for Arrow-Debreu economies). Let S =
∑
` p`. Then p̂j = pj/S.

d

dt
dh(p̂∗, p̂) =

∑
j

∂dh(p̂∗j , p̂j)

∂p̂j
· ∂p̂j
∂t

=
∑
j

∂dh(p̂∗j , p̂j)

∂p̂j

∑
k

∂p̂j
∂pk
· ∂pk
∂t

=
∑
j

∂dh(p̂∗j , p̂j)

∂p̂j

[
1

S

∂pj
∂t

+
∑
k

−pj
S2

∂pk
∂t

]

=
1

S2

∑
j

h′′(p̂j) · (p̂∗j − p̂j)
[
S
∇jφ(p)

h′′(pj)
− pj

∑
k

∇kφ(p)

h′′(pk)

]

=
1

S

∑
j

h′′(p̂j)

h′′(pj)
∇jφ(p) · (p̂∗j − p̂j)−

1

S2

(∑
k

∇kφ(p)

h′′(pk)

)∑
j

pjh
′′(p̂j) · (p̂∗j − p̂j).

When h is the kernel of the KL-divergence, h′′(p̂j) = 1
p̂j

= S
pj

. Thus pjh
′′(p̂j) = S and

h′′(p̂j)
h′′(pj) = S. It

follows that

d

dt
dh(p̂∗, p̂) =

∑
j

∇jφ(p) · (p̂∗j − p̂j)−
1

S

(∑
k

∇kφ(p)

h′′(pk)

)∑
j

(p̂∗j − p̂j)

 .

Since p̂∗ and p̂ are both normalized prices, the second term on the RHS is zero. Noting that∇jφ(p) = ∇jφ(p̂),
and by Lemma D.3, we see that the rest of the argument is the same as for the Fisher economies.
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