

Formal Methods at Scale
2019 Workshops Report

Computing-Enabled Networked Physical Systems (CNPS)
Interagency Working Group (IWG)

Patrick Lincoln and William Scherlis, Co-Chairs

Report Co-Authors
Patrick Lincoln, William Martin, and William Scherlis

Workshops Organizers
William Martin, Sponsor
Katie Dey, Coordinator

May 2022

Formal Methods at Scale: 2019 Workshops Report

ii

Contents
Executive Summary ... 1
1.0 Introduction .. 2
2.0 Formal Methods: History, Challenges, and Progress ... 2

2.1 Models and Composition ... 2
2.2 Specifications .. 3
2.3 Tools ... 3
2.4 Evidence and Proofs ... 3
2.5 Performance ... 3

3.0 Summary of Results of the Workshops ... 4
3.1 Payoff of Successful Application of Formal Methods at Scale .. 6

4.0 Key Findings .. 8
5.0 Conclusion ... 9
Appendix A. Abbreviations .. A-1

About the Authors ... A-1
Acknowledgments ... A-1

List of Tables
Table 3-1. Participant Use Cases ... 4

Copyright Notice: This document is a work of the United States Government and is in the public domain (see 17 U.S.C. §105). It
may be freely distributed and copied with acknowledgment to the NITRD Program. This and other NITRD documents are
available online at https://www.nitrd.gov/publications/. Published in the United States of America, 2022.

https://www.nitrd.gov/publications/

Formal Methods at Scale: 2019 Workshops Report

1

Executive Summary
Formal methods for systems assurance have a rich history spanning half a century. Even in the early days
of computing, there were efforts directed at mathematical specifications and proof of properties of
programs. Motivated by emerging uses of computing software and hardware in critical systems, several
U.S. agencies invested in research in formal methods. For decades, however, formal methods tools and
ecosystems could operate only on problems and systems of modest scale. Computer science students
often had only limited exposure to formal methods techniques and tools, partly on the basis that the
techniques were long considered to be a theoretical possibility but not a practical reality that could
affordably provide real benefits to larger system and software engineering projects. Recently there have
been revolutionary advances in tools, practices, training, and ecosystems that have facilitated the
application of formal methods at larger scales, in a manner that is affordable and usable by professional
software and hardware engineers.
Recognizing the opportunity afforded by these advances, two workshops were convened in fall 2019 on
the topic of formal methods at scale. This report provides a summary of those workshops, including
their principal conclusions and relevant reports on experience in practice. The workshops included
participants from the U.S. Government, industry, and academia, gathering to discuss recent advances
that address the challenges of both scalability and adoptability into practice, including evidence from
early adopters, with a focus on understanding prospects for the future and how they might be better
enabled. Following the workshop, select formal methods practitioners from the community offered
abstracts communicating use cases and related discussions of formal methods at scale. This report
concludes with a discussion of key findings and emerging capabilities that can speed the adoption of
formal methods.

Formal Methods at Scale: 2019 Workshops Report

2

1.0 Introduction
Two workshops were convened in 2019 on the topic of formal methods at scale. The workshops took
place on September 25, 2019 (East), and October 9, 2019 (West).1 Participants from U.S. Government,
industry, and academia gathered to discuss recent advances in the application of formal methods at
scale and prospects for the future. Specific topics included improvements in tools, practices, and training
and characteristics of existing and emerging applications with a focus on advances in formal methods
technology, the scale of existing applications, and the potential for a new and broader scope for formal
methods applications.

2.0 Formal Methods: History, Challenges, and Progress
Formal methods2 for systems assurance have a rich history spanning half a century. Even in the early
days of computing, there were efforts directed at mathematical specifications and proof of properties of
programs. Motivated by emerging uses of computing software and hardware in critical systems
(e.g., space or aircraft flight control, communication security, or medical devices), several U.S. agencies
invested in research in formal methods. For decades, however, formal methods tools and ecosystems
could operate only on problems and systems of modest scale. Computer science students often had only
limited exposure to formal methods techniques and tools, partly on the basis that the techniques were
long considered to be a theoretical possibility but not a practical reality that could affordably provide
real benefits to larger system and software engineering projects. Recently there have been
revolutionary advances in tools, practices, training, and ecosystems that have facilitated the application
of formal methods at larger scales, in a manner that is affordable and usable by professional software
and hardware engineers. The following subsections describe challenges that have been at least partially
addressed.

2.1 Models and Composition
Early formal tools required a high degree of mathematical sophistication on the part of users,
developers, and evaluators. In the modern context, an explicit focus has emerged on "invisible" formal
methods techniques, with enough success to demonstrate that deep mathematical sophistication is not
an intrinsic requirement for users of the formal methods approach. Programmers with no formal
training already receive significant value from formal analysis even when they are unaware of the
analyses employed behind the scenes. Principal examples include modern type systems and safe
abstractions, which are now widely evident in programming languages and tooling, including safe
variants for traditionally unsafe languages such as C/C++ and JavaScript. Modern tools manifest
scalability through a combination of components with a focus on a diversity of models and scaling
through composition. The growing diversity of models and methods allows an incremental adoption
approach in which particularly salient system attributes can be addressed rigorously while other, less
critical attributes may be addressed using more conventional methods including testing and inspection.
This is a realization of the concept (from the late 1980s) of "small theorems about large programs."

1 https://cps-vo.org/group/FMatScale
2 See https://ep.jhu.edu/courses/605729-formal-methods/ for more information about formal methods.

https://cps-vo.org/group/FMatScale
https://ep.jhu.edu/courses/605729-formal-methods/

Formal Methods at Scale: 2019 Workshops Report

3

2.2 Specifications
Early formal specification languages were often difficult to learn and use, creating challenges for both
verification (consistency of system and specification) and validation (consistency of specification with
actual requirements). Building specifications and sustaining their consistency with the evolution of
systems and their operating context require the ability to develop specifications incrementally and
rapidly iterate. This reduced boundaries in the engineering process among specification writing, model
building, analysis and reasoning, and evolution of the system itself. This is analogous to established
engineering practices for cloud-based software as a service (SaaS) such as development operations
(DevOps) and development, security, and operations (DevSecOps). Modern specification languages have
been developed with familiar syntax and semantics, and, importantly, domain-specific ties to existing
languages and tools. Tools associated with these languages support not only explicit authoring by
humans but also inference and learning of intent to be expressed, based on both forward-looking
requirements analysis and backward-looking legacy system realities.

2.3 Tools
Early formal toolchains were often quirky and incompatible with other development environments.
Indeed, many toolchains required the use of programming languages and tools that were unfamiliar to
engineers and that had uncertain domain compatibility. The effect was an unacceptably high degree of
risk because of the commitment required prior to any realization of benefit. Modern formal tools can be
incrementally integrated with standard development tools and operate within virtualized environments.
Formal methods tools are already integrated into many development environments to provide support
for modeling and analysis. Indeed, there are several examples of hybrid specification and execution
languages that incorporate a combination of code development, execution, modeling, and proving.

2.4 Evidence and Proofs
Early proofs and formal models of systems were mostly disconnected from the actual running code.
Indeed, much of the formal reasoning identified in widely adopted security standards relates only to
specifications and designs, not to the code that will actually be executed. Emerging formal toolchains
support continuous integration and direct connections between models and executable artifacts. They
not only support keeping proofs in sync with evolving systems, but also can integrate other kinds of
engineering evidence including tests and regression suites. Integrating mechanisms such as
argumentation structures and truth maintenance can assist in sustaining consistency within the body of
evidence and system artifacts.

2.5 Performance
High-performance systems sometimes used optimizations that, with early a posteriori methods, were
not readily formally modeled or proven, increasing the gap between the formally analyzed model and
the actual running system; e.g., with regard to numerical stability as systems are optimized and tuned to
particular high performance architectures. Modern formal tools can support refinement and other
transformations for performance, thus maintaining proofs and high assurance as systems are tuned for
performance.
In early systems, assumptions underlying key formal reasoning steps were sometimes implicit, lost
during system evolution, or ignored. Modern methods are increasing integration with rigorous
approaches to assumption tracking, safety/security cases, argumentation, and discharge of assumptions.

Formal Methods at Scale: 2019 Workshops Report

4

Early formal tools tended to assume an unrealistic top-down or waterfall model of system development,
and often required development of full system-wide specifications before analysis could be undertaken.
Modern formal methods tools can support incremental and iterative processes, along with analyses
targeted to more specific critical attributes. These are a much better match for engineering practices
including opportunistic design and implementation, continuous integration, continuous development,
and continuous verification.

3.0 Summary of Results of the Workshops
At the workshops, progress in the beneficial use of formal methods at scale was highlighted. Discussion
acknowledged that there are multiple dimensions of scale to be considered:

• Complexity and size of systems and their supply chains, including issues related to composability
and the influence of structural and semantic architectural decisions.

• Range of specific system properties and qualities, both functional and quality focused, such as
aspects of security, safety, performance, fault tolerance, hybrid systems, and real-time, that are
modeled and reasoned.

• Effectiveness and efficiency of formal methods-related modeling and tooling to include integration
into mainstream integration and practice. This includes a range of issues related to usability,
training, and integration with legacy tooling and practices.

• Ability to rapidly co-evolve systems and associated evidence within continuous integration and
continuous development frameworks. Evidence may include a mix of formal and informal
elements such as partial proofs, strong type checking, and principled test plans and results. These
elements may be included as a consequence of language design (e.g., type systems and memory
safety) as well as explicit modeling and analysis (e.g., various safety and liveness properties). This
can include programming language designs that are verification aware; for example, including
annotation capabilities for assertion tagging as well as prover capabilities to support developers as
they author code and assertions.

• Ease of use (particularly for non-expert developers and evaluators). One goal would be to make
obvious to a casual technical observer any critical features or flaws in a formal argument. Another
goal would be to support incremental assimilation of formal methods techniques into practices
and toolchains. This area of focus includes issues related to validation, assisting engineers in
developing specifications and models that are correctly aligned with requirements and system
operating context.

Following the workshop, select formal methods practitioners from the community offered abstracts
communicating use cases and related discussions of formal methods at scale.3 Table 3-1 offers a
presentation of these use cases and a mapping of associated dimensions of scale.

Table 3-1. Participant Use Cases

Point(s) of Contact Use Cases Dimensions of Scale

• Clark Barrett Solvers for Boolean satisfiability
and Satisfiability Modulo Theories
(SMT) as industrial workhorses

• Complexity and the size of systems
• Range of properties and qualities
• Effectiveness and efficiency of formal methods-

related modeling and tooling
• Ease of use

3 See https://cps-vo.org/group/FMatScale/report. Note: This site requires a user name and password

https://cps-vo.org/group/FMatScale/report

Formal Methods at Scale: 2019 Workshops Report

5

Point(s) of Contact Use Cases Dimensions of Scale

• Darren Cofer
• Matt Wilding

Large aerospace and defense
systems

• Effectiveness and efficiency of formal methods-
related modeling and tooling

• Michael Collins
• Kristin Giammarco

Modeling behavior of complex
systems concepts supporting
reasoning methods critical to
national cyber and cryptologic
missions

• Range of properties and qualities
• Ease of use

• Takeaways from
presentation by
Byron Cook

Cloud Services foundational
assurance (e.g. cryptography,
virtualization, storage)

• Complexity and size of systems
• Range of properties and qualities
• Ability to rapidly co-evolve systems and

associated evidence within continuous
integration/deployment (CI/CD)

• Ease of use

• Mike Dodds
• John Launchbury
• Stephen Magill

Cryptography & Formal Methods
as a Service

• Range of properties and qualities
• Effectiveness and efficiency of formal methods-

related modeling and tooling
• Ability to rapidly co-evolve systems and

associated evidence within CI/CD
• Ease of use

• Kathleen Fisher Cyber-retrofit of DoD platforms • Range of properties and qualities
• Ability to co-evolve systems

• Warren A. Hunt, Jr.
• J. Strother Moore

Creation, analysis, and
maintenance of models of
computational systems, assist with
creating, analyzing, and
maintaining models of
computational systems developed
by in use by companies including
AMD, ARM, Centaur Technology,
IBM, and Intel

• Effectiveness and efficiency of formal methods-
related modeling and tooling

• Range of properties and qualities
• Complexity and the size of systems
• Ability to rapidly co-evolve systems and

associated evidence within CI/CD
• Ease of use

• Peter O’Hearn Scaling the impact of analysis of
apps for Android and iOS,
Facebook Messenger, Instagram,
and other apps

• Complexity and size of systems
• Range of properties and qualities
• Effectiveness and efficiency of formal methods-

related modeling and tooling
• Ability to rapidly co-evolve systems and

associated evidence within CI/CD
• Ease of use

• Ray Richards DoD military systems • Complexity and size of systems
• Effectiveness and efficiency of formal methods-

related modeling and tooling
• Ability to rapidly co-evolve systems and

associated evidence within CI/CD
• Ease of use

Formal Methods at Scale: 2019 Workshops Report

6

Point(s) of Contact Use Cases Dimensions of Scale

• Natarajan Shankar Designing, analyzing, and creating
computer systems

• Complexity and size of systems
• Range of properties and qualities
• Effectiveness and efficiency of formal methods-

related modeling and tooling
• Ability to rapidly co-evolve systems and

associated evidence within CI/CD
• Ease of use

• Nikhil Swamy Components in HTTPS ecosystem,
including transport layer security,
the main protocol at the heart of
HTTPS, as well as the main
underlying cryptographic
algorithms, such as AES, SHA2 or
X25519

• Complexity and size of systems
• Range of properties and qualities
• Effectiveness and efficiency of formal methods-

related modeling and tooling
• Ability to rapidly co-evolve systems and

associated evidence
• Ease of use

Participants offered presentations regarding significant applications of formal methods, and on
addressing various dimensions of scale, such as to major systems for Government and industrial use and
to the proof of deep theorems in mathematics and theoretical computer science (including some new
results). Participants also offered presentations regarding the status of the various formal methods
ecosystems, the ensembles of proof formalisms, proof techniques, tools, libraries, training, and
expertise.
There were significant advancements reported in areas of ecosystems and integration into application
communities. Reports regarding several of the principal formal methods ecosystems highlighted
progress in the development of formal toolchains, associated libraries of theories, and large sets of
worked examples. Several of the most prominent ecosystems, which are very often open source, have
been sustained and advanced over multiple decades by communities of researchers. Members of these
communities are often funded to work on particular technical challenges or applications, and they
sustain and enhance those ecosystems as part of that work.
Integration of formal approaches into broader applications communities was also discussed, including
intensive use to increase the assurance of availability, security, privacy, and integrity of cloud services;
embedded systems from the commercial domain; and military systems.
This intensifying use of formal methods is evidenced by the increasing demand for formal methods
experts and practitioners. A key signal regarding potential demand for formal methods capabilities is the
extent to which the presented application cases came about through "pull" from aspirational users,
based on a business rationale, rather than "push" by researchers to adopt and advance a favored
technology.

3.1 Payoff of Successful Application of Formal Methods at Scale
• Successful application of formal methods at scale can provide many benefits in both the short and

the long term:
◦ Early discovery of bugs. Formal approaches, uniquely, are able to verify an absence of bugs.

Many of the popular heuristic tools identify large numbers of issues; however, because of
often abundant false negatives, they give no basis for full confidence.

Formal Methods at Scale: 2019 Workshops Report

7

◦ Reduction of the number of design iterations needed to achieve system quality goals, and
thereby reduce time-to-market and reduce total cost of development. Formal methods can be
applied to design models and architectural choices (structural and semantic) as well as code,
enabling reasoning about design choices earlier in the process. This concept of "moving to the
left" is an important contribution of emerging modern approaches to modeling and
specification. The goal, in other words, is to understand the consequences of particular design
and engineering commitments as soon as possible, ideally before they are made, and to
minimize the extent and severity of uncertainties that linger beyond those commitments.

• Principled and efficient means to generate test plans. Testing strategies driven by modeling and
analysis, such as fuzzing supported by symbolic execution, are now well established.

• Aid in integration efforts, providing stronger and less subject-to-change interface designs. When
changes are needed, formal methods can support the comprehensive analysis required to ensure
that all system elements are appropriately adapted in response to the needed change.

• Removal of certain runtime checks of values when such can be proven unnecessary. This shifting of
checks, roughly speaking, from runtime to compile time, is complementary to the insertion of
additional security checks to support zero trust architectural approaches. The effect of this
reconfiguring of runtime checks is that, despite the added checking needed for strong cyber
defense, system performance may actually be improved, since high-frequency dynamic checks
(e.g., for data integrity) can more likely be removed. Ironically, this may be a signal that up-front
assurances of safety and security may have the potential to reduce performance costs, counter to
the myth that these benefits come at a cost of performance. This mythology has long been a
justification for programming with unprotected abstractions, including lack of memory safety, as
well as unsafe mutual trust within a system perimeter.

• Increase in the ability to reuse components or subsystems through assured evidence of the
subsystems' quality, correctness, and performance. This ability can include reuse of models and
proofs of critical common libraries and components. When strong assurances are associated with
individual components, composition of those components can be safer.

• High assurance of key properties of requirements, system architecture, design commitments,
implementation choices, configuration settings, test coverage, and maintenance operations.
Automation of evidence and checking into builds and toolchains can create an "electric," or "live,"
configuration of documents, models, requirements, and other artifacts whose consistency (and
coverage) is ensured on an ongoing basis. This capability is in contrast to early document-heavy
systems engineering approaches in which design and engineering documents, once submitted,
would immediately lose consistency with an evolving as-built system.

• Development of multiple models of complex systems. An important feature of modern formal
methods is the use of multiple models covering different aspects of a system design and execution.
This support for integration of models enables an incremental addition to existing systems of new
modeling and analysis capabilities as they emerge. In a security setting, for example, side channels
(characteristics not modeled or analyzed) can be reduced, or made more costly to attackers, as
new models are developed to address those characteristics.

• Animation and partial testing of designs and architectures, even before full implementations are
available. This capability is enabled through the use of provers, including the coupling of provers
with modeling and execution. This approach is already evident in a number of experimental
toolsets. This is part of the concept of moving to the left in test and evaluation.

Formal Methods at Scale: 2019 Workshops Report

8

• Support for, and alternative types of, system documentation. Formal models can provide a precise
basis, for example, to generate explanations and other documents that may be more easily read
by stakeholders than the underlying formal mathematical models and analyses. In particular,
"formal" does not necessarily mean mathematical and impenetrable to non-expert engineers.
Modern type systems illustrate that it is often possible to "hide the math" and create high levels of
usability for formally powerful capabilities.

4.0 Key Findings
The discussions at the workshops led to a number of findings:

• There are several major industrial use cases of formal methods. These use cases go beyond
traditional, narrowly targeted formal methods applications such as flight controls and
cryptography and now include larger, more diverse, and more complex business-critical systems.
Leaders of those projects assert a business case with high return-on-investment for the businesses
involved. Indeed, this is accelerating demand for formal methods expertise in these sectors. In
addition, use cases in Government are emerging from an increasing diversity of research and
development projects. Cross-institution academic use cases have focused on building formally
verified infrastructure stacks, as well as entire systems, systems-of-systems, operating systems,
and hardware. These infrastructures are increasingly becoming widely adopted, as signaled, for
example, by the alliance of the Linux Foundation with the verified seL4 operating system.

• The ecosystems around several formal toolchains are maturing and steadily evolving, with
meaningful sustainment activities that have increasing robustness, ease of use, and opportunities
for training new staff to become expert users of the toolchains. Several of the ecosystems have
been evolving over long periods, in some cases three or four decades.

• There is evident opportunity to broaden the scope of applicability of formal tools through
increased usability, adoptability, invisibility, and "integratability" of multiple toolchains. The
concept of integratability is important, since it enables integration into existing toolchains,
practices, languages, and other engineering affordances that have been widely adopted.

• There are increasing opportunities to link formal methods to existing systems engineering
practices, including safety cases, security cases, hazard analysis, model-based approaches, and
test-plan generation for critical systems. These include harmonization with tools, repository
infrastructures, and process models. There are continuing challenges, however, in applying formal
methods techniques to support existing architectural patterns for cyber-physical and embedded
systems. An approach of mutual adaptation, in which engineering practices adapt to the necessity
of production of evidence, may be appropriate in these mode challenging cases.

Emerging capabilities that can greatly speed adoption include the following:

• Model-based development methods, such as SCADE, can directly connect to some formal
reasoning tools, enabling early verification and continuous value-add by formal reasoning tools.
Formalized threat models could be developed across a community, enabling wide agreement of
what is meant by, for example, private information leakage. This kind of model reuse can be widely
useful, enabling reuse of formalism and model development for structural features of systems and
key quality and potentially functional attributes of systems. Threat models are important in
informing priority setting in addressing potential vulnerabilities and weaknesses in a system.

Formal Methods at Scale: 2019 Workshops Report

9

• "Invisible" formal methods can provide the value of formal analysis without requiring all users to
learn a new specification language or requiring complete and correct property specifications
before value is delivered. The canonical example is strong typing in many modern programming
languages (e.g., Java, Ada, and Typescript). In this case, ordinary software developers gain
significant benefit in type integrity in a manner that almost entirely hides the complexity of the
underlying mathematical theory.

• Tools to facilitate "small theorems about large programs" can provide relatively easy on-ramps to a
wider user base; i.e., an incremental approach to the use of formal methods, in which the models
and reasoning are focused on a relatively narrow set of critical properties rather than on all
aspects of functionality and quality.

• Machine learning methods (whether based on neural networks or other foundations) are
increasingly ubiquitous in modern systems, and in certain cases they can be subjected to formal
analysis. There are a number of candidate analyses through which models can be constructed from
networks, with methods ranging from game theory to the use of SMT solvers.4 In addition,
machine learning methods could be used to automatically suggest methods of proof or correction
of issues identified by formal tools, reducing the total human time needed and easing the path for
new users of these techniques toward achieving assurance or other goals.

• The emerging cloud computing infrastructure can be used to facilitate larger scale computing
resources to formal methods, particularly where there is strong reliance on the use of various
kinds of solvers. It can itself be the subject of formal analysis.

5.0 Conclusion
Opportunities for additional actions with the potential for a large positive impact are as follows:
• Integration with legacy systems. Develop methods to provide for the maintenance of assurance

cases for a system under change and for new integrations in existing platforms and systems-of-
systems. This action enables enhancement to legacy systems through careful balancing of
modeling of existing artifacts and incremental adaptation of those artifacts.

• Security and privacy. Expand existing and develop new methods to apply formal methods to
problems in computer security and privacy. This action includes modeling related to a wide range
of concerns such as threats, configuration integrity and root of trust, security attributes at the
system level, security attributes at internal interfaces (such as for so-called zero trust designs),
data flows, and other metadata.

• Evidence and tool integration. Develop practical methods to ensure that evidence including
formal artifacts is brought along with systems as they are deployed, modified, and maintained.
This is increasingly straightforward as tooling for proof management becomes increasingly
common and capable of integration with more conventional software development toolchains.
This also includes the use of domain-specific models and languages, as well as generation and
synthesis tooling.

• User experience. Develop user experience concepts to support property specification, proof
creation, and proof presentation, which can ensure that flaws in formal evidence are readily
apparent to casual technical observers.

4 This is an incremental step but not a solution to reliable machine learning, since challenges arise at scale and with different kinds of machine

learning network architectures.

Formal Methods at Scale: 2019 Workshops Report

A-1

Appendix A. Abbreviations
AES advanced encryption standard

CI/CD continuous integration/continuous deployment

CNPS Computing-Enabled Networked Physical Systems

DARPA Defense Advanced Research Projects Agency

DevOps development operations

DevSecOps development, security, and operations

DoD Department of Defense

I2O Information Innovation Office

IEEE Institute of Electrical and Electronics Engineers

IWG Interagency Working Group

NITRD Networking and Information Technology Research and Development

NSA National Security Agency

R&D research and development

SaaS software as a service

SHA-2 secure hash algorithm 2

SMT Satisfiability Modulo Theories

About the Authors
Dr. William Scherlis assumed the role of office director for DARPA’s Information Innovation Office (I2O)
in September 2019. In this role, he leads program managers in the development of programs,
technologies, and capabilities to ensure information advantage for the United States and its allies, and
coordinates this work across the Department of Defense and U.S. Government. He is a fellow of the IEEE
and a Lifetime National Associate of the National Academy of Sciences. He currently serves as the
DARPA NITRD Subcommittee representative.
Dr. Patrick Lincoln is Vice President of Information and Computing Sciences, and also director of the
Computer Science Laboratory at SRI International. Dr. Lincoln leads research in the fields of formal
methods, computer security and privacy, cyber-physical systems, computational biology, scalable
distributed systems, and nanoelectronics. He serves on boards of directors and on boards of advisors of
companies and government agencies.
Mr. William Martin joined DARPA as a program manager in the Information Innovation Office (I2O) in
spring 2021. Martin joins DARPA from the National Security Agency (NSA), where he has served in a
variety of roles, most recently as acting technical director and cybersecurity subject matter expert of the
Laboratory for Advanced Cybersecurity Research. While at NSA, Martin focused on domain-specific
languages, system analysis, and trustworthy AI. Mr. Martin serves as co-chair of the NITRD CNPS IWG.

Acknowledgments
Thanks to participants of the two Formal Methods at Scale workshops, to formal methods practitioners
from across the community who offered abstracts communicating use cases and related discussions of
formal methods at scale, and NITRD staff who supported the publication of this report. Special
appreciation to Ms. Katie Dey, Vanderbilt University, for her administration, coordination, and execution
efforts to make the workshops a reality.

	Front Cover: Formal Methods at Scale 2019 Workshops Report
	Contents
	List of Tables
	Executive Summary
	1.0 Introduction
	2.0 Formal Methods: History, Challenges, and Progress
	2.1 Models and Composition
	2.2 Specifications
	2.3 Tools
	2.4 Evidence and Proofs
	2.5 Performance

	3.0 Summary of Results of the Workshops
	3.1 Payoff of Successful Application of Formal Methods at Scale

	4.0 Key Findings
	5.0 Conclusion
	Appendix A. Abbreviations
	About the Authors
	Acknowledgments

