
Model Checking Aspectual Pervasive Software Services

Dhaminda B. Abeywickrama, Sita Ramakrishnan
Clayton School of Information Technology

Monash University, Clayton Campus
Victoria 3800, Australia

dhaminda.abeywickrama@gmail.com, sita.ramakrishnan@monash.edu

Abstract—Context-dependent information is tightly coupling
or crosscutting the core functionality of a service at the service
interface level. This results in a complex design, which is
difficult to implement and maintain. The crosscutting context-
dependent functionality of interacting pervasive services can
be modeled as aspect-oriented models in UML. However, this
has two challenges: the semi-formal nature of UML notations,
and the expressive power of aspects. This paper explores
model checking as a solution for modeling aspectual perva-
sive software services and their compositions, and rigorously
verifying the process behavior of these models against specified
system properties. Model checking is applied, first to check the
behavior of the individual pervasive aspects and components,
and second to verify the overall behavior of the woven model
even if no errors are found in the individual pervasive aspects
and components. These verification stages have been used
to gain confidence before the complex pervasive services are
actually implemented. The approach is explored using a real-
world case study in intelligent transport with more than 30
properties formalized to provide a comprehensive coverage of
the system requirements. An evaluation framework has been
established to validate the main methods and tools employed
in the study.

Keywords-pervasive services; model checking; aspect-
oriented modeling; model-driven development;

I. INTRODUCTION

A pervasive Web service is a special type of service
that adapts its behavior or the content it processes to the
context of one or several parameters of a target entity in
a transparent way (e.g. restaurant finder services, attractions
and activities recommendation services, navigation and real-
time traffic services, and dating services) [1]. With the pro-
liferation of ubiquitous computing devices and the Internet,
pervasive services continue to evolve from simple proof
of concept implementations created in the laboratory to
large and complex real-world services developed in industry.
Context-awareness capabilities in service interfaces intro-
duce additional challenges to the software engineer. Context
information is characterized by several qualities that make
pervasive services challenging compared to conventional
Web services, such as a highly dynamic nature, real-time
requirements, quality of context information and automation.
The additional complexities associated with these special
services necessitate the use of solid software engineering
methodologies during their development and execution, such

as model-driven architecture, aspect-oriented modeling and
formal model checking.

Context-dependent information is tightly coupling or
crosscutting the core functionality of a service at service
interface level. This results in a complex design, which
is difficult to implement and maintain. The crosscutting
context-dependent functionality of interacting pervasive ser-
vices can be modeled as aspect-oriented models in UML.
However, this has two challenges: the semi-formal nature of
UML notations, and the expressive power of aspects. First,
one of the main limitations of UML is its lack of support
for rigorous verification due to its informal or semi-formal
nature. Second, the expressive power of aspects in design
specifications can be potentially harmful. The crosscutting
nature and the obliviousness principle of aspects are two
main issues that can introduce an additional correctness
problem in an aspect-oriented design specification. In gen-
eral, the crosscutting effect and oblivious principle of aspects
can create several issues such as partial weaving, unknown
aspect assumptions, unintended aspect effects, arbitrary as-
pect precedence, failure to preserve state invariants, and
incorrect changes in control dependencies [2], [3]. Thus,
the need for a more formal, rigorous specification and
verification method for context-dependent adaptive behavior
in service specifications is clear, such as model checking.

This paper explores model checking as a solution for
modeling aspectual pervasive software services and their
compositions, and verifying the process behavior of these
models against specified system properties [4]. Model check-
ing is applied, first to check the behavior of the individual
pervasive aspects and components, and second to verify the
overall behavior of the woven model even if no errors are
found in the individual pervasive aspects and components.
These verification stages can be used to gain confidence
before the complex pervasive services are actually imple-
mented. The approach is explored using a real-world case
study in intelligent transport with more than 30 properties
formalized to provide a comprehensive coverage of the
system requirements. While several researchers [2], [3] have
emphasized the challenges associated with the expressive
power of aspects in design specifications, to the best of our
knowledge there is no work that explores model checking as
a solution to the crosscutting effects of pervasive aspects at

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.41

262

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.41

263

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.41

253

the service interface level. This verification approach is novel
in this respect. An evaluation framework is established to
validate the main methods and tools employed in the study.

The rest of the paper is organized as follows. Section
II provides background information on the tools and tech-
niques, the overall research methodology, the case study, and
the context-dependent adaptive behavior generation process
applied in this study. An overview of this authors’ model
checking process is provided in Section III. Sections IV
and V discuss the aspect-oriented pervasive models created
and concurrency modeling performed on the services. In
Section VI the properties specification and verification of the
models are elaborated. The evaluation framework established
to validate the main methods and tools used is provided
in Section VII. Section VIII summarizes related work, and
Section IX concludes the paper.

II. BACKGROUND

This section provides background information on (A) the
tools and techniques, (B) the overall research methodology,
(C) the case study, and (D) the adaptive behavior generation
process applied in this study [4].

A. Tools and Techniques used
Model checking is an automatic technique for verifying

finite state concurrent systems [5]. The Labeled Transition
System Analyzer (LTSA) is a model checking tool for
concurrency modeling, model animation and model property
checking [6]. Finite State Processes (FSP) is a process
calculus provided by the LTSA for concisely describing and
reasoning about concurrent programs. In FSP, processes can
be defined by using one or more auxiliary processes sepa-
rated by commas and terminated by a full stop. Processes
can be composed using the parallel composition operator
and interactions can be modeled using shared actions, the re-
naming operator and the hiding operator. System properties
can be defined using safety and progress property processes
and fluent linear temporal logic (FLTL) assertions. The
LTSA-MSC tool is an extension of the LTSA, which allows
documenting scenarios in the form of graphical message
sequence charts and generating a behavioral model in FSP.

B. Engineering Aspectual Pervasive Services
The overall pervasive service-oriented development pro-

cess of this study is divided into three stages (Fig. 1) [4].
First, using the case study we extract use cases and define
a service specification for the system under consideration
using message sequence charts. Second, the architecture
for the system is defined using a component configuration
and an architecture model in FSP using the LTSA-MSC
tool. Third, the architecture model synthesized from the
previous step is modularized with aspect-oriented models
in UML called the contextual-FSP aspects (c-FSP
aspects), and automatically transformed into FSP before
applying model checking using the LTSA tool.

���������	

���	���� ���	
���� ��
�

��������	
�����������

����	���	
�������	����	

�����	�������

���� �����	
�����	���������!

��
�	�"	���

�����	
���������������!

�����	�������	�"	���

����
�����	

���#���

��������	���
�	���	����

�����	���	�������������

�����	���	�����������������

Figure 1: Pervasive services engineering.

C. Case Study: Awareness Monitoring and Notification

The research approach is explored using a real-world
case study in intelligent tagging for transport known as
the ParcelCall project [7]. ParcelCall [7] is a European
Union project within the Information Society Technologies
program. The case study describes a scalable, real-time,
intelligent, end-to-end tracking and tracing system using
radio frequency identification (RFID), sensor networks, and
services for transport and logistics. This case study is
particularly appealing to the current research as it pro-
vides several scenarios for representing software services
that interoperate in a pervasive, mobile and distributed
environment. A significant subset of the ParcelCall case
study is exception handling that needs to be enforced
when a transport item’s context information violates accept-
able threshold values. The reference scenario used in this
research describes an awareness monitoring and
notification pervasive service, which alerts
with regards to any exceptional situations that may arise
on transport items, primarily to the vehicle driver of the
transport unit. The threshold values for environment status
(e.g., temperature, pressure, acceleration) of transport items
and route (location) for the vehicle are set by the carrier
organization in advance. The service alerts if items’ envi-
ronment status exceeds acceptable levels or if an item is
lost or stolen during transport. The primary context param-
eters modeled in the study include item identity, location,
temperature, pressure and acceleration.

D. Context-Dependent Adaptive Behavior Generation

The notion of context used in this research is based on
a definition provided by Analyti et al. [8] for context in
information modeling. They describe context as a set of
objects, each of which is associated with a set of names
and another context called its reference. Furthermore, they
enhance the definition for context by stating that each object
of a context is either a simple object or a link object
(attribute, instance-of, ISA) and each object can be related
to other objects through attribute, instance-of or ISA links.
Analyti et al. [8] use traditional object-oriented abstraction
mechanisms of attribution, classification, generalization and
encapsulation to structure the contents of a context.

263264254

The model transformation tool created in our study is
called the Aspectual FSP Generation tool [4].
The transformations have been applied to the reference sce-
nario in intelligent transport. We use model transformations
to automate the application of design patterns and generate
infrastructure code for the c-FSP aspects using FSP
semantics. The current study explores the strengths of both
semi-formal UML meta-level extensions and formal finite
state machines for representing the context-dependent be-
havior of software services, and model transformation tech-
niques are applied as a bridge to enforce correct separation
of concerns between these two design abstractions. The
main benefits of this approach are: improving the quality
and productivity of service development; easing system
maintenance and evolution; and increasing the portability
of the service design for the pervasive services engineer.

This approach focuses on the application of model-driven
development for engineering pervasive services at finite
state machine level. An aspect in FSP can be identified
as an independent finite state machine that executes con-
currently and synchronizes with its base state machine. In
general, an aspect in FSP needs to contain synchroniza-
tion events (transitions) to coordinate with its base state
machine and other aspects. Also, each aspect type (e.g.
context, trigger and recovery) contains its unique
constructs which can be generated automatically using
model transformation techniques. For example, a trigger
aspect requires constructs to alert and send notifications
while a recovery aspect needs constructs to recover
from exception-handling situations. On the other hand, a
context aspect has attribution, instance-of, ISA, and
reference constructs from the notion of context applied in
this research.

In Fig. 2, the models and activities of the development
process are represented as ellipses and square boxes re-
spectively. The development process is structured into three
main flows of activities. Flow 1 and Flow 2 extensively
apply model transformations where Flow 1 uses a model-
to-text JET transformation and Flow 2 applies an effective
pipeline of model-to-model and model-to-text JET trans-
formations. Both Flow 1 and Flow 2 originate from the
c-FSP-UML profile. This profile describes our concep-
tual model to decouple crosscutting context-dependent infor-
mation of a service from the core service behavior at service
interface level. Flow 3 represents activities involved for
rigorously verifying the context-dependent adaptive behavior
and the core service behavior of the pervasive software
services using formal model checking, which is the focus
of this paper.

III. MODEL CHECKING ASPECTUAL PERVASIVE
SOFTWARE SERVICES

In this section, we provide an overview of the activities
involved in rigorously verifying the models generated for

��������	���
���
�����

���	�������	
����	��������	

����	��
���	���

���������	�������

�����	�����
����	�� ���

�� ��	��	��!�	
����	��	����

��������	���

�� ��	��	�� ��
����	��	"���

"��	#����$� ����	�� ��

�� ��	��	��!�	
�%��	��	����

�� ��	&�����������
�����	�� ��	����'����

������

������

������

������

������

������

������

������

�����������	�
���
������������

��������������
�
�����������	�
���
������������
�����

�����
��������

������

������

������

������

����������

������

Figure 2: Adaptive behavior generation process.

��������	
����
�������
���

����������������
�������	
����������
�
�
�����������

���������
����
���� ��������!

��	
���������

!��
��
�"��
����

#
�"��

����
��$
%���
�
����
�!��
���������&�
��

�������'
����	
���
�

���	
��������
��
��
(������)*	�
������

#�"
�����
��������

����!������
����(�
�&�����������
��������

��������
��!�
�+��

!��	��
������
���
"
�
���
�

����
��$
%���
�
��������
��$
%���
�
����
�!��
���������&�
���!��
���������&�
��

�������'
����	
���
�

���	
��������
��
��
(������)*	�
������(������)*	�
������(������)*	�
������

!����
�
*��	�
��(
#���
���)*
�������

���������������� 	
����������

����������������������

�
�"��
�����!��

������

��	
�
	
��

�����

Figure 3: Model checking aspectual pervasive services.

the context-dependent adaptive behavior and the core service
behavior using formal model checking [4]. This is shown by
Flow 3 in Fig. 2, and further elaborated in Fig. 3.

• Modeling: The modeling step involves two main tasks.
They are performed to obtain the context-dependent
adaptive behavior and the core service model of the
software services. In this study, the Aspectual FSP
Generation tool is used to generate the context-
dependent behavioral code in formal FSP (Fig. 2). The
LTSA-MSC tool is used to generate the architecture
model for the service specification in FSP, which is
used to extract the core service model of the services
(Fig. 2, Fig. 3). All service components and aspects
are modeled as processes represented as finite state
machines in FSP. To verify the pervasive service speci-
fication, first the aspects are woven into their base state
machines in FSP using an explicit weaving mechanism.
Then concurrency and distributed notions are added to
the service specification to facilitate reasoning by the
LTSA tool. Abstraction mechanisms are introduced to
reduce the size of the woven model.

• Specification: The properties to be verified are formal-
ized according to the system requirements, which are

264265255

Figure 4: ACA TEMP aspect and the label literals created for the attribution construct.

expressed as property processes (safety and progress)
and FLTL assertions. According to the system require-
ments from the case study subset, more than 30 prop-
erties have been formalized focusing on the required
behavior from both service components and aspects in
the specification.

• Verification: Finally, all behavior and property pro-
cesses are composed into a system-level process and
this process is fed to the LTSA. The LTSA tool
verifies whether any properties are violated and if so
it reports a trace to the property violation known as
a counterexample. Also, the use of FLTL assertions
provides the opportunity to generate examples of model
executions or traces (witness executions) which satisfy
the property. The use of counterexamples and witness
executions is exploited to identify and track any errors
and their sources in the specification, which consists
of several distributed service components and aspects
collaborating with each other. Thus, this helps to itera-
tively improve the state models or the system properties
for the aspectual pervasive services.

IV. PERVASIVE ASPECT-ORIENTED STATE MODELS

In this study an aspect is modeled as an indepen-
dent state machine that synchronizes with the base state
machine at specific synchronization points [4]. An as-
pect is defined as a modular encapsulation or unit for
the crosscutting context-dependent behavior at the service
interface level. The context procurement and contextual-
ization activities of the awareness monitoring and
notification pervasive service are driven by
the c-FSP aspects. The current study identifies three
types of aspects, which are collectively referred to as
the c-FSP aspects. They are: context aspects,
trigger aspects and recovery aspects.

There are two types of context aspects: atomic
context aspects and composite context
aspects. Atomic context aspects model

low-level context readings from the context sources
(e.g. temperature) while composite context
aspects encapsulate high-level derived context
information (e.g. isAdverseStatus). Also, the current
research applies the notions of attribution, classification,
generalization and encapsulation from the context definition
[8] to structure and link the objects defined in a context
aspect. The notion of context identifies that each object
of a context can be a simple object or a link object (i.e.
attribute, instance-of and ISA). Also, each object can be
related to other objects through attribute, instance-of and
ISA links. The notion of context defines three predicates to
specify the link object, the source object and the destination
object: attr(attr obj, from, to), in(in obj, from, to) and
isa(isa obj, from, to). The present study models these
objects as label literal variables or boolean variables in
FSP as required in the scenario. Variables in FSP may
take an integer value or a label value. Label literals can
be formed by preceding an action label with a quote
(e.g. ’labelname). For example, the Atomic Context
Aspect Temperature aspect (ACA_TEMP) contains
three label literals for modeling attr obj, from and to
objects of the attribution construct. Furthermore, the process
definition for this aspect includes transitions which read and
write to these variables (Fig. 4). Composite Context
Aspect Adverse Environment Status aspect
includes an object to represent the high-level derived
context information (isAdverseState). This object has
been modeled using a boolean variable in FSP. The process
definition for the aspect includes transitions for reading and
writing from this boolean variable.
Trigger aspect (e.g. Trigger Aspect

Adverse Environment Status) models the
contextual adaptation where the service is automatically
executed or modified based on context information.
In general, a trigger aspect has a context
constraint and an action. Context constraint
of the trigger aspect is modeled as a conditional

265266256

transition or a guarded transition in FSP. Action of
the trigger aspect is modeled as a transition in
FSP, which instructs the Notifier component to send
an SMS to the vehicle driver. Recovery aspect
(e.g. Recovery Aspect Adverse Environment
Status) models recovery actions that follow after an
exceptional situation is raised by a trigger aspect.
The execution of this aspect is dependent on the existence
of the trigger aspect. For example, it may include
transitions that control the refrigerator’s temperature in the
transport unit.

A. Joinpoint Model applied

In this subsection, the joinpoint model applied in this re-
search for the pervasive aspect-oriented state models in FSP
is discussed. A main element in the design of any aspect-
oriented language is the notion of the joinpoint model. The
joinpoint model of our approach is used to facilitate the
correct coordination of a base state machine and an aspectual
state machine in FSP. Also, it is applied for weaving an as-
pectual state machine to its non-aspectual base state machine
at specific synchronization points or joinpoints. This study
concentrates only on dynamic crosscutting of the context-
dependent adaptive behavior at the service interface level.
Therefore, the specification of inter-type declarations has
not been considered. The main crosscutting elements of the
joinpoint model are:

• Joinpoints or synchronization events: A joinpoint is
a transition in the base state machine where context-
dependent adaptive behavior crosscuts the base state
machine. It is effectively a transition in the base state
machine which acts as a synchronization point with the
aspectual state machine in FSP.

• Transition pointcuts: A pointcut in this study denotes
a sequence of joinpoints.

• Advice state models: In general, an advice provides
the actual crosscutting behavior which is defined in
terms of pointcuts. In this study, an advice is specified
using a finite state machine that describes the control
logic or behavior applied to each joinpoint picked out
by the pointcut. How an advice is executed depends
on the type of advice used. This study models the
around advice type in FSP, which comprises three
parts: before actions, proceed actions and after actions.
Proceed actions are compulsory control events while
before and after actions can be optional.

• Aspects state models: In the study, an aspect can
be identified as a modular encapsulation or unit for
crosscutting context-dependent adaptive behavior at
the service interface level. It effectively modifies the
execution of the base state machine by adding new
behavior. The notion of aspect applied here is state-
ful. An aspect state model contains an advice state
model and pointcuts. The present research applies the

notions of attribution, instance-of and ISA to formalize
and modularize context information within an aspect.
However, as our pointcut model defines a sequence of
joinpoints as opposed to pairs of pointcuts and advice,
in this respect this study’s aspects state models can be
considered much richer.

B. Pervasive Service Composition through Weaving

Weaving of an aspect to its base state machine is important
in order to analyze the overall system behavior. An explicit
weaving mechanism is used here, where an aspect is woven
into its base state machine using the parallel composition
operator and shared actions in FSP. The main elements of
the weaving process are the base program and an aspectual
state machine (aspect). In general, the base program is not a
single process but it is a combination of several processes. A
base program (core service model) is specified as the parallel
composition of the constituent base state machines in the
model. In order to support explicit parallel composition,
the current study injects synchronization events in both
the aspectual state machine and the base state machine.
These events provide an effective mechanism to control the
coordination between an aspectual state machine and a base
state machine. The advice of an aspect contains three logi-
cal parts: before advice events, proceed events and
after advice events. By using synchronization events
the correct execution of these three sequences of actions
with the base program can be ensured. Also, weaving of
more than one aspect at the same joinpoint is possible using
these explicit synchronization events.

The crosscutting elements of the joinpoint model and
the weaving process followed are discussed next using a
case study example. Fig. 5a shows LTSs for three pro-
cesses. The RFID Tag (RFID_TAG) and the Context
Interpreter (CONTEXT_INTERPRETER) components
are the base state machines while the Atomic Context
Aspect Temperature (ACA_TEMP) is an aspectual
state machine. The joinpoints of the base program are
specified using the following synchronization events: bf_a
(before advice), pr_s (proceed start), pr_e
(proceed end), af_a (after advice). A pointcut
is a sequence of joinpoints; thus, the sequence of bf_a,
pr_s, pr_e and af_a constitutes the pointcut for this
aspect. The execution and coordination of the base program
and the aspect (Fig. 5b) can be explained as follows.
The base program (RFID_TAG) emits the bf_a event to
the aspect. The aspect performs an initialization operation
(initializeACATEMP), which is a before advice event.
The base program waits for a control event from the aspect,
which is a proceed event (pr_s) in this example. The base
program performs the measureTemperature event and
then emits pr_e to return the control back to the aspect.
The aspect performs receiving of temperature readings using
message passing, which is its after advice events. Finally,

266267257

(a) Weaving illustrated using LTSs.

���� ���� ����

���� ���� ����

��������	

���	��������

������������

������

����
��������

�����������

���	��������

���������	
�����������
��������������
���������

�����������������
��������
���������������������
������
����
������
��

(b) Synchronization events.

Figure 5: Weaving performed.

the base program (Context_Interpreter) waits for the
end of advice event (af_a) from the aspect, and performs
the storeContextInformation action. The woven
program is modeled as the parallel composition of the base
state machines and the aspect.

V. CONCURRENCY MODELING BETWEEN PERVASIVE
ASPECTS AND COMPONENTS

After weaving aspects into their base state machines the
concurrency and distributed notions of the interacting per-
vasive software services are modeled to facilitate reasoning
by the LTSA tool, such as message passing, shared objects
and mutual exclusion (Fig. 6) [4]. The pervasive service
specification includes several distributed service components
and aspects collaborating with each other. These components
and aspects encompass the active entities of the specification.
It also includes shared objects and semaphores, which act
as passive entities. All active and passive entities of the
specification have been modeled as processes represented as
finite state machines in FSP. In the specification, concurrency
has been modeled using action interleaving. Actions a and b
are concurrent if they can occur in the order of a -> b or b
-> a. Concurrency has been modeled using an interleaved

� ��

�������������	� ��

���������		
�	���

���������������

������������ ���
�	�
���
�����
�������

������������������������
������������

������������������������
����
�������
�������������

�
�		�
�������
����
�������
�������������

������
��������
����
�������
�������������

�� ����	

!������

������
�

�������� ���
�
���

���

� �

� �

� �

� �

� ��� ��

� �

���������	�
�����
��
�
�
�����

���������	�
�����
��
�
�
�����

���������	�
�����
��
��
����

���������	�
�����
��
��
����

�������������	�

�������������	�

�
�������������

���������������

� ��

��

��

����������	�
��

����������	�
��

�����������	�

�

����������	����

��

� ����� ��

��������	
��

��	�
��

�

�

�

����

�

����������	�
��

��������

��������������

����������������

��������	����������������	�
������	��

������

� �

���������	��
����

��������

��������������

���������	��
����

��������

�������

���������	

�����
	���

���	�	�
���
	���

�

� �

� �

�

Figure 6: Concurrency modeling.

model of concurrent execution.
This study models the awareness monitoring

and notification service as a process-oriented
context value chain. This value chain contains several stages:
sensing, refinement, aggregation and contextualization. The
context procurement and contextualization tasks of the
pervasive service are driven by the c-FSP aspects. The
communication between the distributed service components
and aspects (e.g. between RFID Tag and Atomic
Context Aspect Temperature) has been modeled
using the synchronous message passing technique. The
environmental readings (e.g. temperature, pressure) from the
RFID Tag are sent using a single channel to the receiver
(e.g. Atomic Context Aspect Temperature,
Atomic Context Aspect Pressure) and the
communication is one to one. In addition to using the
message passing technique, shared objects have been used
to model inter-process communication between the service

267268258

components and the aspects. The problem of interference
has been solved by enforcing mutually exclusive access to
the shared objects. This has been modeled using binary
semaphores, which is a mechanism for dealing with
inter-process synchronization problems. For example, the
Atomic Context Aspect Temperature aspect and
the Context Interpreter component interact using
a shared object for communicating temperature values
used in the refinement stage of the context value chain of
the pervasive service. The mutually exclusive access to
this shared object has been enforced using a semaphore,
thus only one process can access it at a given time. The
Context Database process has been modeled as a
shared resource where the Context Interpreter and
the Context Aggregator service components write
to it (writers) and the Composite Context Aspect
Route Status and the Composite Context
Aspect Adverse Environment Status aspects
read from it (readers). This scenario has been modeled as
a readers-writers problem with writers priority. The readers
are denied access if there are writers waiting to acquire
access and if a writer is not accessing the database any
number of readers can access the database concurrently.
Abstraction Mechanisms applied in the models: These are
needed as a woven program may have too many states to
be analyzed by the LTSA. One of the main challenges asso-
ciated with the model checking technique is the state space
explosion problem. In the present study, action hiding and
minimization features available in FSP are used to reduce
the size of the woven model before analyzing using the
LTSA tool. For example, the actions or events modeled in the
Context Interpreter and Context Aggregator
components for enforcing mutually exclusive access to their
shared variables are not required when modeling the readers-
writers problem with writers priority, which involves the
same components collaborating with aspects. Also, when
executing the entire specification model, the partial order
reduction feature has been used to reduce the size of the
state space searched by the LTSA model checker.

VI. PROPERTIES SPECIFICATION AND VERIFICATION OF
ASPECTUAL PERVASIVE SOFTWARE SERVICES

This section discusses the properties specification and
verification stages of the model checking process [4].

A. Safety Requirements of the Study

Safety properties are used in a concurrent program
to assert that nothing bad happens during the execution
of the program. In the case study subset, several safety
properties have been specified for verifying the behav-
ior of the individual aspects and the components, and
the behavior of a woven model. As for safety prop-
erties defined at the individual components and aspects
level, a safety property (S_TA_ADENST) has been defined

Figure 7: A safety property to verify weaving between base
program and aspects.

for the Trigger Aspect Adverse Environment
Status aspect to verify whether a notification is sent
only when environment status is adverse. A safety property
(S_CONTEXT_INTERPRETER) has been defined for the
Context Interpreter component to verify whether
the refinement stage of the pervasive service is performed
as expected.

In addition to performing safety analysis on individ-
ual components and aspects, this research performs safety
analysis on a woven model level to verify its behavior.
Safety properties have been defined to ensure the correct
weaving of the base state machines and the aspectual
state machines in the specification. For example, a safety
property (S_WEAVING) has been defined to ensure the
correct weaving between the following components and as-
pects in the specification: RFID Tag, Atomic Context
Aspect Temperature, Atomic Context Aspect
Pressure and Context Interpreter (Fig. 7). In this
example, the RFID Tag and Context Interpreter
components constitute the base program of the model.
Synchronization events essentially represent the joinpoints
where a base program is woven to the aspects. Synchro-
nization events provide an effective mechanism to control
the coordination between an aspectual state machine and
a base state machine. S_WEAVING property ensures that
the ordering of the synchronization events is correct in the
components and aspects of the woven model, thus ensuring
the correct weaving of the components and the aspects at the
joinpoints in the specification. The S_WEAVING property
is composed with the woven process before performing
analysis using the LTSA. Analysis of this system using the
LTSA shows that there are no deadlocks or safety violations.

Mutually exclusive access to shared variables between
the components and the aspects have been modeled using
semaphores in FSP. Safety properties can be created
to verify whether the mutually exclusive access to the
shared variables is enforced properly. For example, the
Atomic Context Aspect Temperature aspect
(ACA_TEMP) and the Context Interpreter

268269259

component (CONTEXT_INTERPRETER) processes
share temperature values using the VAR_ATCI shared
variable. In the same manner, the Atomic Context
Aspect Pressure aspect (ACA_PRESS) and the
CONTEXT_INTERPRETER component processes share
pressure values using the VAR_APCI shared variable. Two
mutual exclusion safety properties (S_AT_CI_MUTEX_T
and S_AP_CI_MUTEX_P) have been created to ensure that
when a process enters the critical section that process needs
to exit before another process can enter it. Although LTSA
analysis of this system shows that there are no deadlocks or
safety violations, if the value of the semaphore is changed
from one to two then the model produces a safety violation.
This is clearly a violation of the mutual exclusion property
as two processes have entered the critical section.

B. Progress Requirements of the Study

Unlike safety properties, which are concerned with
a program not reaching a bad state, liveness properties
are concerned with a program eventually reaching
a good state [6]. In the case study subset, progress
properties have been specified for the readers-writers
problem. To this end, two progress properties (P_READ,
P_WRITE) have been defined to ensure that both readers
(i.e. Composite Context Aspect Adverse
Environment Status, Composite Context
Aspect Route Status aspects) and writers (i.e.
Context Interpreter, Context Aggregator
service components) will eventually gain access to the
lock to access the Context Database component.
A progress analysis for this problem using the LTSA
shows no errors. However, in order to find how the system
performs when loaded, the action priority operator in FSP
can be used to specify adverse scheduling conditions. In
this example, this heavy loading has been modeled by
making the release events lower priority. Analysis of
this system using the LTSA reveals a P_READ progress
violation (Fig. 8), which indicates that if a writer process
is waiting to acquire the lock a reader process will never
gain access to it. However, this P_READ progress violation
can be disregarded as usually the number of write accesses
to a database is less compared to the number of read
accesses. Thus, the importance of preserving writer priority
in acquiring the lock is clear as modeled in this example.
The progress property P_REFRIG_CTRLUNIT ensures
that the Refrigerator Control Unit component
(REFRIG_CTRLUNIT) will eventually be enabled for it
to receive any messages from the Recovery component
using the synchronous message passing technique. A
progress property (P_MOBILE_DEVICE) has been defined
to ensure that the Mobile Device component will
eventually receive reception for its correct operation.

Figure 8: Counterexample for P READ progress violation.

C. FLTL Requirements of the Study

In addition to safety and progress property processes,
properties can be defined as state-based logical propositions
in FSP. Fluents in FSP allow the expression of properties
about the abstract state of a system at a particular point
in time [6]. The current study employs FLTL assertions
as a method for specifying system requirements of the
case study subset. Fluents provide several benefits over the
property processes (i.e. safety and progress). First, fluents
provide a more concise description of the required properties
compared to property processes. Second, they express the
required properties more directly compared to the property
processes. Third, fluents facilitate the generation of witness
executions to identify and locate potential errors in the spec-
ification. With property processes if a property is satisfied by
the model, the LTSA does not return any further information.
By contrast, FLTL properties provide the opportunity to
generate traces or examples of model execution that satisfy
the property which are referred to as witness executions.

Several FLTL properties have been defined for the
case study subset. For example, two FLTL assertions
(F_CI_CA_MUTEX_T, F_CI_CA_MUTEX_P) have been
defined to ensure mutually exclusive access to the
shared variables (valueTempCICA, valuePressCICA)
by the Context Interpreter and the Context
Aggregator service components (Fig. 9). These proper-
ties ensure the required mutual exclusion safety property,
and an additional liveness property, which asserts that if
a process (i.e. Context Interpreter or Context
Aggregator) enters the critical section that process should
eventually exit before another process can enter. Verification
performed for this logical property shows that there are no
violations. This research applies witness executions as a
means of identifying potential errors in the specification. A
FLTL property (F_WEAVING) has been defined to verify the
weaving of the base state machines and aspectual state ma-
chines in the specification. The same property was defined
as a safety property previously (S_WEAVING). The negation
of the F_WEAVING assertion generates a counterexam-
ple, which was not possible with the S_WEAVING safety
property process. By using counterexamples and witness
executions, the state models and system properties for the

269270260

Figure 9: FLTL properties to ensure mutual exclusion.

aspectual pervasive services are iteratively improved.

VII. EVALUATION FRAMEWORK

We have established an evaluation framework to validate
the main methods and tools employed in the study. The
results are addressed in detail in [9]. The method of eval-
uation used here is based on key features comparison. The
evaluation consists of a horizontal view and a vertical view
(dimension) (Fig. 10). The horizontal evaluation view was
designed to validate several desired key features required
mainly at the platform-specific model (PSM) level (i.e. FSP)
of the aspectual pervasive software services specification.
These evaluation criteria mainly cover two aspects employed
in the study. They are the formal methods and tools em-
ployed in the study, and the context and adaptation dimen-
sions of the customization approach used in the pervasive
services. In the vertical view, four research tools ([10],
[11], [12], [13]) were compared to the Aspectual FSP
Generation tool developed in this research. Like the
Aspectual FSP Generation tool, these tools have
been developed using commercially available toolchains of
similar area of application. The tools were compared across
the platform-independent model (PIM) and PSM levels of
the model-driven architecture stack. This evaluation was
based on several criteria: context-dependent behavioral mod-
eling at the PIM level, explicit joinpoint model of aspect-
oriented modeling at the PIM level, weaving performed at
PIM or PSM levels, and context-dependent behavioral code
generation from PIM to the PSM level.

The results of the evaluation are assuring. The hori-
zontal evaluation of the approach has shown that the for-
mal methods and tools employed in the research, and the
customization approach used in the services are indeed
effective towards the overall objectives of this research. The
vertical evaluation has demonstrated that the Aspectual
FSP Generation tool has unique features in context-
dependent behavioral modeling and context-dependent be-

���

���

����	
������
������
����
��

�
��������	
�������

���

���������	���
��������
��
������
����������
����	����������������

���������	���
���������
��
���������
��
��������	��������
������������
��
���������������
����
����	��	������
����
���������
��
��������	����������
�	���

Figure 10: Evaluation framework: vertical, horizontal views.

havioral code generation. Like the Aspectual FSP
Generation tool, [10], [12] and [13] support an ex-
plicit joinpoint model of aspect-oriented modeling at PIM
level. Also, all the compared approaches support PIM or
PSM level weaving of aspects.

VIII. RELATED WORK

Douence et al. [14] propose a model for concurrent
aspects which handles coordination issues between aspects
and the base program and other aspects. Their approach is
similar to our approach as both approaches use models of
concurrently executing aspects and base state machines us-
ing FSP semantics of the LTSA. In [15], the authors present
an approach to model checking state-based specification of
aspect-oriented design. However, similar to [14], their ap-
proach is also not based on pervasive services. Furthermore,
both these approaches do not use model transformations
in their work as done in our research. A similar approach
to ours, where pervasive services have been created using
model-driven development is provided in [16]. However, in
[16] validation of services is provided using petri nets. Also,

270271261

aspect-oriented modeling is not utilized in their approach for
modularizing crosscutting context concerns.

From the analysis of related work, it is clear that there
is very little work which applies model checking to verify
context-dependent adaptive behavior at the service inter-
face level. Also, to the best of our knowledge none of
the approaches applies the software engineering techniques
of model-driven architecture, aspect-oriented modeling and
formal model checking, in the same approach. The inte-
gration or the synergy of these sound software engineering
techniques would mutually complement and augment each
other if used in a single approach. While the application of
these techniques in isolation can be found in existing work
in service engineering, however, an integrated architecture-
centric solution aimed at managing the complexities associ-
ated with pervasive services is novel, as performed here.

IX. CONCLUSION

This paper has explored model checking to address two
challenges in context-dependent aspect-oriented UML mod-
els: the semi-formal nature of UML notations, and the
expressive power of aspects. Model checking has been
applied for modeling aspectual pervasive software services
and their compositions, and rigorously verifying the process
behavior of these models against specified system properties.
The approach has been explored using a real-world case
study in intelligent transport, and an evaluation framework
has been developed to validate the main methods and tools
employed. While several researchers have emphasized the
challenges associated with the expressive power of aspects
in design specifications, to the best of our knowledge there
is no work that explores model checking as a solution to
the crosscutting effects of pervasive aspects at the service
interface level. This approach is novel in this respect. As for
future work, the model checked pervasive software services
specification, which is free of erroneous behavior, can be fed
into a model-to-text transformation tool created to automate
the generation of executable service implementation.

REFERENCES

[1] H.-G. Hegering, A. Küpper, C. Linnhoff-Popien, and
H. Reiser, “Management Challenges of Context-Aware Ser-
vices in Ubiquitous Environments,” in Self-Managing Dis-
tributed Systems, ser. Lecture Notes in Computer Science,
vol. 2867. Springer Berlin / Heidelberg, 2003, pp. 321–339.

[2] N. McEachen and R. T. Alexander, “Distributing Classes
with Woven Concerns: An Exploration of Potential Fault
Scenarios,” in Proc. 4th International Conference on Aspect-
Oriented Software Development (AOSD’05). Chicago, USA:
ACM, Mar. 14–18, 2005, pp. 192–200.

[3] M. A. Perez-Toledano, A. Navasa, J. M. Murillo, and
C. Canal, “TITAN: a Framework for Aspect Oriented Sys-
tem Evolution,” in Proc. 2007 International Conference on
Software Engineering Advances (ICSEA’07). Cap Esterel,
France: IEEE, Aug. 25–31, 2007, pp. 23–30.

[4] D. B. Abeywickrama, “Pervasive Services Engineering for
SOAs,” Ph.D. dissertation, Faculty of IT, Clayton Campus,
Monash University, Australia, May 2010.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. Cambridge, UK: The MIT Press, Dec. 1999.

[6] J. Magee and J. Kramer, Concurrency: State Models and Java
Programs, 2nd ed. John Wiley and Sons, Apr. 2006.

[7] A. Davie, “Intelligent Tagging for Transport and Logistics:
The ParcelCall Approach,” Electronics & Communication
Engineering Journal, vol. 14, no. 3, pp. 122–128, Jun. 2002,
Institution of Electrical Engineers, London, UK.

[8] A. Analyti, M. Theodorakis, N. Spyratos, and P. Constan-
topoulos, “Contextualization as an Independent Abstraction
Mechanism for Conceptual Modeling,” Information Systems
Journal, vol. 32, no. 1, pp. 24–60, Mar. 2007, Elsevier.

[9] D. B. Abeywickrama and S. Ramakrishnan, “An Evaluation
Framework for Validating Aspectual Pervasive Software Ser-
vices (Accepted for Publication),” in Proc. 6th International
Conference on Evaluation of Novel Approaches to Software
Engineering, Beijing, China, Jun. 8–11, 2011.

[10] I. Groher and S. Schulze, “Generating Aspect Code from
UML Models,” in Proc. 3rd International Workshop on
Aspect-Oriented Modeling co-located with 2nd Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’03), Boston, USA, Mar. 18, 2003.

[11] J. Whittle and P. Jayaraman, “MATA: A Tool for Aspect-
Oriented Modeling based on Graph Transformation,” in Mod-
els in Software Engineering, ser. Lecture Notes in Computer
Science, vol. 5002. Springer, 2008, pp. 16–27.

[12] T. Cottenier, A. van den Berg, and T. Elrad, “Motorola
WEAVR: Aspect Orientation and Model-Driven Engineer-
ing,” Journal of Object Technology, vol. 6, no. 7, pp. 51–88,
Aug. 2007, Chair of Software Engineering, ETH Zurich.

[13] L. Fuentes, N. Gamez, and P. Sanchez, “Aspect-Oriented
Executable UML Models for Context-Aware Pervasive Appli-
cations,” in Proc. 2008 5th International Workshop on Model-
Based Methodologies for Pervasive and Embedded Software.
Budapest, Hungary: IEEE, Apr. 5, 2008, pp. 34–43.

[14] R. Douence, D. L. Botlan, J. Noye, and M. Sudholt, “Concur-
rent Aspects,” in Proc. 5th International Conference on Gen-
erative Programming and Component Engineering. Portland,
USA: ACM, Oct. 22-26, 2006, pp. 79–88.

[15] D. Xu, I. Alsmadi, and W. Xu, “Model Checking Aspect-
Oriented Design Specification,” in Proc. 31st Annual Inter-
national Computer Software and Applications Conference.
Beijing, China: IEEE, Jul. 23-27, 2007, pp. 491–500.

[16] A. Achilleos, K. Yang, N. Georgalas, and M. Azmoodech,
“Pervasive Service Creation using a Model Driven Petri
Net Based Approach,” in Proc. 2008 International Wireless
Communications and Mobile Computing Conference. Crete
Island, Greece: IEEE, Aug. 6-8, 2008, pp. 309–314.

271272262

