
CORTEX: A COMPILER FOR RECURSIVE DEEP LEARNING MODELS

Pratik Fegade 1 Tianqi Chen 1 2 Phillip B. Gibbons 1 Todd C. Mowry 1

ABSTRACT
Optimizing deep learning models is generally performed in two steps: (i) high-level graph optimizations such as
kernel fusion and (ii) low level kernel optimizations such as those found in vendor libraries. This approach often
leaves significant performance on the table, especially for the case of recursive deep learning models. In this paper,
we present CORTEX, a compiler-based approach to generate highly-efficient code for recursive models for low
latency inference. Our compiler approach and low reliance on vendor libraries enables us to perform end-to-end
optimizations, leading to up to 14X lower inference latencies over past work, across different backends.

1 INTRODUCTION

Deep learning models are increasingly being used in produc-
tion as part of applications such as personal assistants, self-
driving cars (Maqueda et al., 2018; Bojarski et al., 2016) and
chatbots (Yan et al., 2016; Li et al., 2016). These applica-
tions place strict requirements on the inference latency of the
models. Therefore, a wide variety of hardware substrates,
including CPUs (Zhang et al., 2018), GPUs (Nvidia AI,
2019) and specialized accelerators (Jouppi et al., 2017), are
being used in production for low latency inference.

Reducing inference latency is especially hard for models
with recursive and other dynamic control flow. Such mod-
els have been proposed to handle data in fields like natural
language and image processing. Textual data, represented
as parse trees, can be fed to models such as TreeLSTM (Tai
et al., 2015) and MV-RNN (Socher et al., 2012b). Hierarchi-
cal and spatial relations in images can be learned by mod-
eling them as trees (Socher et al., 2012a) or graphs (Shuai
et al., 2015). These recursive models are often extensions of
models designed for sequential data such as LSTM (Hochre-
iter & Schmidhuber, 1997) and GRU (Cho et al., 2014). A
simple recursive model is illustrated in Fig. 1.1 We use this
model as a running example throughout the text.

Past work on recursive and dynamic models such
as DyNet (Neubig et al., 2017a;b), Cavs (Xu et al.,
2018) and PyTorch (Paszke et al., 2019) has relied on
hardware-specific, highly-optimized vendor libraries such as
cuDNN (Chetlur et al., 2014) for Nvidia GPUs and MKL (In-

1Carnegie Mellon University, Pittsburgh, USA 2OctoML. Cor-
respondence to: Pratik Fegade <ppf@cs.cmu.edu>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

1This is a simplified model used here for illustrative purposes.
Our evaluation is performed on actual models.

It is a dog

.

lh, rh, Emb are tensors
treeRNN(n):
 if isleaf(n):
 return Emb[words[n]]
 else:
 lh = treeRNN(n.left)
 rh = treeRNN(n.right)
 return tanh(lh+rh)

for i = 0:256:
 ret[i] = tanh(lh[i]+rh[i])

Figure 1. A simple recursive model. The text ‘It is a dog.’ is parsed
into the parse tree which is then fed to the model.

tel, 2020a) for Intel CPUs. The use of vendor libraries al-
lows these frameworks to offer a generic interface to users,
while employing specialized and high-performance kernel
implementations in the runtime, and to effectively utilize
the wide array of backends that need to be targeted.

Vendor libraries, however, have disadvantages in terms of
model coverage and development effort. As these libraries
are highly optimized, implementing them is a very intensive
process. They, therefore, contain implementations only for
the most commonly used models and kernels. For example,
cuDNN contains implementations for the LSTM and GRU
models, but not for the less commonly used TreeLSTM and
MV-RNN models.

Moreover, each kernel in a vendor library is optimized in
isolation. This often precludes optimizations such as kernel
fusion (combining multiple kernel calls into a single call)
that have proven quite beneficial (Microsoft, 2020). Model
persistence (persisting any model parameters that are reused
in every iteration of a recursive or iterative model in fast
on-chip memory) is another important optimization (Zhang
et al., 2018; Holmes et al., 2019; Diamos et al., 2016). But
exploiting such reuse is difficult when using vendor libraries,
especially on accelerators such as GPUs with manually man-
aged caches (Liu et al., 2019; Vasilache et al., 2018; Chen
et al., 2018a). These difficulties also hold for frameworks
such as Nimble (Shen et al., 2020), which relies on auto-
tuned implementations of individual kernels.

In this work, instead of relying on vendor libraries or

CORTEX: A Compiler for Recursive Deep Learning Models

auto-tuned kernels, we propose a compiler-based approach,
which enables us to perform optimizations such kernel fu-
sion and model persistence. While there is past work that
compiles common feed forward models, applying this ap-
proach to recursive models has the following challenges:

C.1 Effective representation of recursive control flow:
Fig. 1 illustrates that recursive models contain dynamic
control flow, along with regular numerical (tensor)
code. Such models require an intermediate represen-
tation (IR) that is amenable to compiler optimizations
and code generation over tensor computations with
recursive control flow.

C.2 Optimizing recursive control flow: Achieving low
latency inference for recursive models requires effec-
tive ways to execute the control flow without hindering
optimizations such as kernel fusion.

C.3 Static optimizations: Dynamic models are generally
optimized at runtime by constructing a dataflow graph
that unrolls all recursion and makes optimizations
such as dynamic batching easier (Neubig et al., 2017a;
Looks et al., 2017). Such optimizations have to be
performed statically in a compiler-based approach.

With these challenges in mind, we present CORTEX2, a com-
piler framework enabling users to express iterative and recur-
sive models and to generate efficient code across different
backends (CPUs and GPUs). To overcome challenge C.1,
we observe that the control flow in recursive models often
depends solely on the input data structure. This insight,
along with a few others discussed in §2, enables us to lower
the recursive computation into an efficient loop-based one
(illustrated in Fig. 2). To overcome C.2 and C.3, we em-
ploy scheduling primitives to perform optimizations such as
specialization and dynamic batching (Neubig et al., 2017b;
Looks et al., 2017), along with compile-time optimizations
such as computation hoisting.

CORTEX’s compiler-based approach enables it to optimize
model computations in an end-to-end manner, without hav-
ing to treat operators as black-box function calls, as is the
case when using vendor libraries. This enables extensive
kernel fusion (§7.3) while avoiding some overheads associ-
ated with the dynamic batching optimization (§7.2). As part
of CORTEX’s design, we extend a tensor compiler (Ragan-
Kelley et al., 2013; Chen et al., 2018a; Baghdadi et al.,
2019; Kjolstad et al., 2017). This enables us to reuse past
work on tensor compilers in the context of recursive mod-
els. It also opens the door to the use of the extensive work
on auto-scheduling (Mullapudi et al., 2016; Adams et al.,
2019; Chen et al., 2018b; Zheng et al., 2020) for optimizing
these models. Table 1 provides a qualitative comparison of
CORTEX with related work on recursive models.

2COmpiler for Recursive Tensor EXecution

Table 1. Comparison between CORTEX and related work on recur-
sive models (Cavs, DyNet, Nimble and PyTorch).

Frame-
work Kernel Fusion Vendor

Libraries
Dynamic
Batching

Model
Persistence

Cavs Partial Y Y N
DyNet N Y Y N
Nimble Partial N N N
PyTorch N Y N N

CORTEX Y N Y Y

In short, this paper makes the following contributions:

1. We design CORTEX, a compiler-based framework that
enables end-to-end optimization and efficient code gen-
eration for low latency inference of recursive deep learn-
ing models.

2. As part of the design, we broaden the abstractions pro-
vided by tensor compilers and propose new scheduling
primitives and optimizations for recursive models.

3. We prototype the proposed framework, evaluate it
against state-of-the-art recursive deep learning frame-
works (Xu et al., 2018; Neubig et al., 2017a; Paszke
et al., 2019) and report significant performance gains
(up to 14X) on Nvidia GPUs and Intel and ARM CPUs.

2 OVERVIEW

Recursive deep learning models generally traverse recursive
data structures while performing tensor computations. Effi-
ciently executing such models is challenging because their
dynamic control flow often precludes common optimiza-
tions such as kernel fusion. In CORTEX, we observe that
the control flow in recursive models often satisfies certain
properties, allowing us to lower it to loop-based iterative
control flow efficiently. In particular, we note that a lot of
recursive models have the following properties:

P.1 All control flow depends on the connectivity of the
data structure, and not on dynamically computed data.

P.2 All recursive calls can be made before performing any
tensor computation.

P.3 Recursive calls to the children of a data structure node
are independent of each other: the arguments to one
call do not depend on the results of a previous call.

Property P.1 implies that all control flow in the model is
encapsulated in the input data structure. Property P.2 means
that computation can start at the leaves of the data structure,
moving up towards the roots. Property P.3 allows us to
process sibling nodes in parallel. Taken together, these
properties make it possible to generate efficient loop-based
code for these recursive model computations.

We now look at CORTEX’s compilation and runtime work-
flows (illustrated in Fig. 2) that make use of these insights.
Compilation starts with the recursive model computation
1 expressed in the Recursive API (RA). The user can also

CORTEX: A Compiler for Recursive Deep Learning Models

ILIR lowering
(Sec. 5)

Generated
target code

RA lowering
(Sec. 4.1)

Data structure
linearizer
(Sec. 4.2)

Lowering recursion
to loops (Sec. 4)

leaves 4 5 6 87

internal_batches 2 3

1

0

0
left 4 61 2

right 8 3 5 7

2 31

Compilation

Runtime

RA Computation (Sec. 3)
treeRNN(n):
 if isleaf(n):
 return Emb[words[n]]
 else:
 lh = treeRNN(n.left)
 rh = treeRNN(n.right)
 return tanh(lh+rh)
RA Scheduling (Sec. 3.1)
dynamic_batch(treeRNN)
specialize(isleaf(n))

Recursive Inputs

Generated ILIR (Sec. 5)
for n in leaves:
 for i in 0:256:
 rnn[n,i] = Emb[words[n],i]

for batch in internal_batches:
 for n in batch:
 for i in 0:256:
 rnn[n,i] = tanh(rnn[left[n],i] +
 rnn[right[n],i])

Intermediate Iterative Repr.

Compilation stagePipeline dataflow
Code generation

Input recursive
data structure

Linearized
arrays

1

2

3

4

5
64 5 6 7

32

1

It is a dog

8

0

.

Figure 2. Overview of the CORTEX compilation and runtime pipeline.

specify some scheduling primitives 2 at this stage to con-
trol how the recursive computation is lowered. The compiler
then generates Irregular Loop IR (ILIR) 3 corresponding
to the input computation, according to the scheduling primi-
tives provided by the user. The ILIR is an extension of the
IR used by tensor compilers, designed to support additional
features such as indirect memory accesses and variable loop
bounds. It is purely loop-based and data structure agnostic.
The RA lowering phase thus lowers all recursive control
flow into loops and all data structure accesses to potentially
indirect memory accesses at this stage. Loop optimizations
such unrolling, tiling, etc., as performed in tensor compilers,
can be performed here, after which target-specific code 4
is generated as part of ILIR lowering.

The runtime workflow mirrors the lowering during compi-
lation. We start with pointer linked recursive data struc-
tures 5 such as sequences, trees or directed acyclic graphs
(DAGs), which are then lowered to arrays 6 , or in other
words linearized, by the data structure linearizer. Such lin-
earization makes it possible for the generated iterative code
to traverse the data structures. The linearizer must ensure
that the data dependences between the nodes of the data
structure are satisfied as it performs this lowering. Note that
the linearization stage does not involve any tensor computa-
tions. This is because property P.1 allows us to separate out
the recursive control flow from the tensor computation. We
therefore perform linearization on the host CPU.

We now discuss each of the aforementioned compilation
and execution stages below.

3 RECURSIVE API (RA)
CORTEX needs to have an end-to-end view of the model
computation in order to perform optimizations such as ker-
nel fusion. Accordingly, the input program needs to contain
enough information about the tensor operations performed
in the model to enable scheduling when it is lowered to the

1 ################## Model computation ##################
2 # H: Hidden and embedding size
3 # V: Vocabulary size
4 # N: Total number of nodes in the input data structure(s)
5 Tensor Emb = input_tensor((V,H))
6 Tensor words = input_tensor((N))
7
8 # A placeholder that represents results of recursive calls
9 Tensor rnn_ph = placeholder((N,H))

10 # Base case definition
11 Tensor leaf_case =
12 compute((N,H), lambda n,i: Emb[words[n],i])
13 # Recursive body definition
14 Tensor lh = compute((N,H), lambda n,i: rnn_ph[n.left,i])
15 Tensor rh = compute((N,H), lambda n,i: rnn_ph[n.right,i])
16 Tensor recursive_case =
17 compute((N,H), lambda n,i: tanh(lh[n, i]+rh[n, i]))
18 # Conditional check for the base case
19 Tensor body = if_then_else((N,H), lambda n,i: (isleaf(n),
20 leaf_case, recursive_case))
21 # Finally, create the recursion
22 Tensor rnn = recursion_op(rnn_ph, body)
23
24 ############### RA scheduling primitives ###############
25 dynamic_batch(rnn)
26 specialize_if_else(body)

Listing 1. Simplified implementation of the model in Fig. 1 in RA.

ILIR. Therefore, the RA models an input computation as
a DAG of operators where each operator is specified as a
loop nest. This is seen in Listing 1, which shows the sim-
plified model from Fig. 1 expressed in the RA. Along with
the RA computation, the user also needs to provide basic
information about the input data structure such as the maxi-
mum number of children per node, and the kind of the data
structure (sequence, tree or DAG). This information is used
during compilation, and can be easily verified at runtime.

3.1 Recursion Scheduling Primitives

When lowering the recursive computation to loops, we need
to ensure that the data dependences between the data struc-
ture nodes are satisfied. As these dependences generally
specify only a partial ordering on the nodes, we have signif-
icant freedom when scheduling the computations. Different
schedules may afford different degrees of parallelism, or

CORTEX: A Compiler for Recursive Deep Learning Models

Before Unrolling After Unrolling

Reuse along
this edge

Figure 3. Change in execution schedule due to unrolling

allow for data reuse. Lines 25 and 26 specify scheduling
primitives in Listing 1. We propose the following scheduling
primitives to exploit these opportunities:

Dynamic Batching: Dynamic batching (Neubig et al.,
2017b; Gao et al., 2018; Looks et al., 2017; Xu et al., 2018)
involves batching operators on-the-fly to exploit parallelism
in a batch in models with dynamic control flow. As control
flow in the models we study depends only on the input
data structure (property P.1), we perform dynamic batching
during linearization. With dynamic batching, nodes in a tree
are processed top-to-bottom as shown in 6 in Fig. 2.

Specialization: Recursive computations tend to have fre-
quent conditional checks to check for the base condition.
These checks can hinder optimizations such as computation
hoisting and constant propagation (§4.3) and have execu-
tion overheads of their own. Thus, we allow the user to
specialize the program for the two branches of a conditional
check. Listing 2 shows the generated ILIR for our simple
recursive model. Note how it has separate loop nests for the
computation of leaves and internal nodes as the leaf check
was asked to be specialized (on line 26 in Listing 1).

Unrolling: Unrolling recursion changes the order in which
nodes are processed (as illustrated in Fig 3), moving a node’s
computation closer in time to its children’s computation.
This allows reuse of the children’s hidden state via fast on-
chip caches, as opposed to the slower off-chip memory. In
Fig 3 (right), for example, reuse can be exploited along
every edge within a recursive call (yellow box in the figure).
Unrolling also creates opportunities for kernel fusion as we
can then fuse operators across the children’s computations.

Recursive Refactoring: Kernel fusion is harder to perform
across recursive call boundaries. In such cases, recursive
refactoring can be used to change the recursion backedge.
Consider the computation on the left in Fig. 4. A1, A2 and B
represent tensor operators such that there is a dependence
from A1 to A2. In this case, the recursive backedge goes from
B/A2 to A1. Fusing kernels in A1(n) and A2(n.left) or
A2(n.right) would be hard as the kernels lie across a
recursive call boundary. Refactoring changes this boundary
(the backedge now goes from A1 to A2). Thus, A1(n),
A2(n.left) and A2(n.right) now lie in the same call
and can easily be fused.

Note that unrolling and recursive refactoring can lead to
repeated and redundant computations for DAGs as nodes
can have multiple parents. Thus, we currently support these
optimizations only for trees and sequences.

RNN(n):
 if isleaf(n): B(n)
 else:
 A1(n)
 A2(n)

Before
refactoring

Recursive call
boundaries

After
refactoring

RNN(n):
 if isleaf(n.left): B(n.left)
 else: A2(n.left)
 if isleaf(n.right): B(n.right)
 else: A2(n.right)

for all roots n: A2(n)

 A1(n)

B B

A1

A2

B B

A1

A2

A1

A2

B B

A1

A2

B B

A1

A2

A1

A2

Recursive
backedge

Figure 4. Recursive refactoring changes recursion backedge

4 LOWERING RECURSION TO LOOPS

4.1 RA Lowering

The lowering from the RA to the ILIR is, in essence, a lower-
ing from recursion to iteration. Accordingly, we make all the
temporary tensors explicit during the lowering. For instance,
in the ILIR for our running example in Listing 2, the ten-
sors lh and rh are explicitly created. We also materialize
the tensor rnn, which stores the result of the computation.
Each of the three tensors store data for each recursive call,
which in this case amounts to each tree node.

1 for n_idx = 0:leaf_batch_size:
2 node = leaf_batch[n_idx]
3 for i = 0:256:
4 rnn[node,i] = Emb[words[node],i]
5
6 for b_idx = 0:num_internal_batches:
7 for n_idx = 0:batch_sizes[b_idx]:
8 node = internal_batches[b_idx,n_idx]
9 for i = 0:256:

10 lh[node,i] = rnn[left[node],i]
11 for i = 0:256:
12 rh[node,i] = rnn[right[node],i]
13 for i = 0:256:
14 rnn[node,i] = tanh(lh[node,i] + rh[node,i])

Listing 2. ILIR generated for the model in Fig. 1

The scheduling primitives of recursive refactoring and un-
rolling are handled by appropriately transforming the input
RA computation before the lowering. Specialized branches
are handled by generating two versions of the computation,
each specialized for one target of the branch. The data struc-
ture linearizer partitions nodes for such specialized branches
and the ILIR employs the correct version of the computation
for the respective node partition. The lowering phase gener-
ates the appropriate loop nest that iterates over the output
of the data structure linearizer. By default, the ILIR iterates
over the nodes, but if the user specifies dynamic batching,
the ILIR iterates over batches of nodes (as in Listing 2).

4.2 Data Structure Linearization

At runtime, the data structure linearizer traverses the input
linked structure and lays it out as arrays for the lowered
loop-based computation to iterate upon. The pseudocode
for the linearizer for our running example is shown below.

CORTEX: A Compiler for Recursive Deep Learning Models

1 leaf_batch, internal_batches = [], [[]]
2 left, right = [], []
3
4 def linearizer(n):
5 if isleaf(n): leaf_batch.append(node)
6 else:
7 linearizer(n.left)
8 linearizer(n.right)
9 left[n], right[n] = n.left, n.right

10 internal_batches[node.height].append(node)
11
12 leaf_batch_size = len(leaf_batch)
13 batch_sizes = [len(b) for b in internal_batches]
14 num_internal_batches = len(internal_batches)

The data structure linearizer is generated during RA lower-
ing. In the absence of specialization and dynamic batching,
the linearizer essentially has to traverse the data structure
as the input program does, while keeping track of the order
of nodes encountered. This ordering over the nodes would
satisfy data dependences and can be used during the tensor
computations. Thus, in this simple case, the data structure
linearizer is essentially the input program, stripped of all
tensor computation. For conditional checks marked for spe-
cialization, the linearizer will separately collect nodes that
follow each of the two branches of the check. For dynamic
batching, we emit code to traverse the data structure and
identify batches of nodes that can be processed in parallel.

4.3 Computation Hoisting and Constant Propagation

Recursive and iterative models often use an initial value for
the base case. If this initial value is same for all leaves, the
same computation is redundantly performed for all leaves.
When lowering to the ILIR, such computation is hoisted out
of the recursion. We also specially optimize the case when
the initial value is the zero tensor.

5 IRREGULAR LOOPS IR (ILIR)
We have briefly mentioned that the ILIR is an extension
of the program representation used by tensor compilers.
Accordingly, computation and optimizations are specified
separately in the ILIR. The computation is expressed as a
DAG of operators, each of which produce a tensor by con-
suming previously-produced or input tensors. Optimizations
such as loop tiling, loop unrolling, vectorization, etc. can be
performed with the help of scheduling primitives.

The ILIR is generated when the recursive RA computation is
lowered. As the ILIR is loop-based and data structure agnos-
tic, this lowering gives rise to indirect memory accesses and
loops with variable loop bounds. Note how, in Listing 2, the
variable node used to index the tensor rnn in the loop on
line 1 is a non-affine function of the loop variable n_idx.
Furthermore, the loop on line 7, which iterates over a batch
of nodes, has a variable bound, as batches can be of differ-
ent lengths. In order to support these features, we extend a
tensor compiler with (1) non-affine index expressions, (2)

0 1 2 3 4 5 6 7
A1

node
current batch 4 5 6 7

n_idx 0 1 2 3

0 1 2 3
A1

n_idx_i

for n_idx_o = 0:batch_sizes[b_idx]/4:
 shared float A1[max_batch_size]
 for n_idx_i = 0:4:
 n_idx = n_idx_o * 4 + n_idx_i
 node = batches[b_idx, n_idx]
 A1[node] = ...

for n_idx_o = 0:batch_sizes[b_idx]/4:
 shared float A1[4]
 for n_idx_i = 0:4:
 A1[n_idx_i] = ...

unused

 for n_idx_i = 0:4:
 n_idx = n_idx_o * 4 + n_idx_i
 node = batches[b_idx, n_idx]
 A2[node] = tanh(A1[n_idx_i])

 for n_idx_i = 0:4:
 n_idx = n_idx_o * 4 + n_idx_i
 node = batches[b_idx, n_idx]
 A2[node] = tanh(A1[node])

Figure 5. Dense indexing for intermediate tensors

loops with variable bounds, and (3) conditional operators.
We describe these modifications in further detail below.

5.1 Indirect Memory Accesses

We represent non-affine index expressions arising as part of
indirect memory accesses as uninterpreted functions of loop
variables (Strout et al., 2018). Indirect memory accesses
necessitate further changes, which are described next.

Bounds Inference: During compilation, a tensor compiler
infers loop bounds for all operators in the input program.
For each operator op producing a tensor t, the compiler first
computes what regions of t are required for its consumers.
This quantity is then translated to the loop bounds for op.
In a traditional tensor compiler, this is straightforward as
there is a one-to-one correspondence between the loops
of an operator and the corresponding tensor dimensions.
This is not, however, the case with ILIR, as is apparent in
Listing 2. Tensors lh, rh and rnn have two dimensions
each, but the generated ILIR has three loops for each of
their corresponding operators. Therefore, we require that
the ILIR explicitly specify the relationship between tensor
dimensions and the loops in the corresponding operator’s
loop nest. This is discussed further in §A.2 in the appendix.

Tensor Data Layouts: Data layouts of intermediate ten-
sors often need to be changed to allow for an efficient use
of the memory subsystem. To enable such optimizations,
the ILIR exposes data layout primitives, which allow tensor
dimensions to be split, reordered and fused, similar to the
corresponding loop transformations.

When an intermediate tensor is stored in a scratchpad mem-
ory, as A1 is Fig. 5, indexing it with non-affine expressions
leads to a sparsely filled tensor. Such a sparsely filled tensor
occupies excess memory, which is problematic as scratch-
pad memory space is often at a premium. This is seen on the
left size of Fig. 5 where half of A1 is unused. In such a case,
we can index the tensor by the loop iteration space instead
as seen on the right side of Fig. 5. Note how we now need
to allocate a much smaller tensor in the scratchpad memory.
This transformation also reduces indexing costs by turning
indirect memory accesses into affine accesses. It is exposed
as a scheduling primitive as well.

CORTEX: A Compiler for Recursive Deep Learning Models

5.2 Conditional Operator

To lower conditional checks such as the isleaf check in
our model, we add a conditional operator to the ILIR. It
takes two sub-graphs and a conditional check as inputs and
is lowered to an if statement. A conditional operator would
have been generated in the ILIR for our running example if
the user had not specialized the leaf check.

More details regarding ILIR lowering as well as a few minor
optimizations we do therein can be found in the appendix.

6 IMPLEMENTATION

For the purposes of evaluation, we prototype the COR-
TEX pipeline for the common case. In this section, we
talk about a few implementation details regarding the same.

RA Lowering: As part of RA lowering, we have imple-
mented support for dynamic batching and specialization, for
the common case of leaf checks.

ILIR Lowering: We extend TVM (Chen et al., 2018a)
v0.6, a deep learning framework and a tensor compiler. Our
current prototype implementation does not perform auto-
scheduling on the generated ILIR. Therefore, the model im-
plementations used for evaluation were based on manually-
defined schedules. We then performed auto-tuning via grid
search to search the space of certain schedule parameters.
Prior work on auto-scheduling is complementary to our
techniques, and could readily be applied to the prototype.

Data Structure Linearizers: We implemented data struc-
ture linearizers (one each for trees and DAGs) for our evalu-
ation. We use a numbering scheme, described in §B of the
appendix, for data structures nodes that generally reduces
the costs of leaf checks and iterating over batches.

7 EVALUATION

We now evaluate CORTEX against Cavs, DyNet and Py-
Torch. Cavs and DyNet are both open source, state-of-the-
art frameworks for recursive neural networks, and have been
shown to be faster than generic frameworks like PyTorch
and TensorFlow (Neubig et al., 2017b; Xu et al., 2018). Py-
Torch is included for reference. We evaluate these systems
on Intel and ARM CPUs and on Nvidia GPUs.

7.1 Experimental Setup

Models and Schedules: We primarily use the models and
datasets listed in Table 2. The TreeGRU model is similar
to the TreeLSTM model, except that it uses the GRU RNN
cell. The TreeLSTM and TreeGRU models were scheduled
similarly to the sequential LSTM and GRU schedules pro-
posed in GRNN (Holmes et al., 2019). In the CORTEX and
PyTorch implementations for TreeLSTM, TreeGRU and

Table 2. Models and datasets used in our evaluation
Model Short name Dataset used

Benchmarking model used
in (Looks et al., 2017) TreeFC Perfect binary trees (height 7)

Recursive portion of
DAG-RNN (Shuai et al., 2015) DAG-RNN Synthetic DAGs (size 10x10)

Child-sum TreeGRU TreeGRU Stanford sentiment
treebank (Socher et al., 2013)

Child-sum TreeLSTM (Tai
et al., 2015) TreeLSTM Stanford sentiment treebank

MV-RNN (Socher et al., 2012b) MV-RNN Stanford sentiment treebank

DAG-RNN, the matrix-vector multiplications involving the
inputs were performed at the beginning of the execution
by a call to a matrix multiplication kernel as in GRNN.
DyNet’s dynamic batching algorithm generally performs
this optimization automatically and we found that doing so
manually resulted in higher inference latencies, so we report
the automatic numbers. Unless otherwise noted, inference
latencies do not include data transfer times.

For each model, we perform measurements for two batch
sizes (1 and 10) and two hidden sizes (256 and 512 for
TreeFC, DAG-RNN, TreeGRU and TreeLSTM and 64 and
128 for MV-RNN). The smaller and larger hidden sizes are
henceforth referred to as hs and hl respectively.

Experimental Environment: We use the three environ-
ments listed in Table 3 for the evaluation. We use cuBLAS,
Intel MKL and OpenBLAS for all BLAS needs on the
GPU, Intel and ARM backends respectively. DyNet also
uses the Eigen library. We compare against PyTorch 1.6.0,
DyNet’s commit 32c71acd (Aug. 2020) and Cavs’ com-
mit 35bcc031 (Sept. 2020).

7.2 Overall Performance

We compare CORTEX’s performance with that of PyTorch
and DyNet for the five models in Table 2 across the three
backends. The open-source implementation of Cavs that
we evaluate against has a few limitations—it does not fully
support CPU backends, or DAG-based models. It does not
implement the lazy batching optimization as described in
the Cavs paper. It does not perform specialization nor does
it provide the user flexibility to perform the optimization
manually. In order to present a fair comparison with Cavs,
we therefore use the TreeFC, TreeGRU and TreeLSTM
models on the GPU backend, with specialization disabled in
CORTEX and do not include the input matrix-vector multipli-
cations in both Cavs and CORTEX. We were also unable to
get the streaming and fusion optimizations in Cavs working
for the TreeFC and TreeGRU models.

We first look at PyTorch. Speedups over PyTorch imple-
mentations for the GPU and Intel backends and for hidden
size hs are shown in Fig. 6. PyTorch does not perform
automatic dynamic batching or kernel fusion. Due to the
lack of batching, it cannot exploit parallelism across data
structure nodes leading to poor performance. The lack of

CORTEX: A Compiler for Recursive Deep Learning Models

Table 3. Experimental environment
Hardware Software1 Short name

Nvidia Tesla V100 GPU (Google
Cloud n1-standard-4 instance)

CUDA 10.2, cuDNN 8.0,
Eigen 3.3.7 GPU

8 core, 16 thread Intel
CascadeLake CPU (Google Cloud
n2-standard-16 instance)

Intel MKL (v2020.0.1),
Eigen (commit 527210) Intel

8 core ARM Graviton2 CPU (AWS
c6g.2xlarge instance)

Eigen (commit
527210), OpenBLAS
(commit 5c6c2cd4)

ARM

1 All cloud instances ran Ubuntu 18.04.

2 4 6 8 10
Batch Size

0

200

Sp
ee

du
p

GPU
TreeFC
DAG-RNN
TreeGRU
TreeLSTM
MV-RNN

2 4 6 8 10
Batch Size

20

40

60
Intel CPU

Figure 6. Speedup over PyTorch for hidden size hs

batching and kernel fusion also means that PyTorch cannot
exploit data reuse across batch elements, as well as between
multiple kernel calls. As such reuse opportunities grow with
increasing batch size, the performance gap between PyTorch
and CORTEX widens. Further, as batch sizes increase, other
overheads such as kernel invocation overheads also increase
for PyTorch (as PyTorch needs to invoke more kernels),
but not for CORTEX due its extensive kernel fusion, as we
discuss later. CORTEX performs better on the GPU back-
end because it can effectively utilize the higher available
parallelism on the GPU due to dynamic batching and the
scratchpad memories due to aggressive kernel fusion.

We now compare the inference latencies of CORTEX with
Cavs and DyNet, shown in Tables 4 and 5, respectively.
CORTEX latencies are up to 14X lower due to a number of
reasons. As compared to CORTEX, Cavs and DyNet incur
significant overheads unrelated to tensor computations. This
can be seen in Fig. 7, which plots inference latency as a
function of hidden size for the TreeLSTM model3 for batch
size 10 for Cavs and DyNet on the GPU and Intel backends.
At low hidden sizes, the inference latencies are quite high
and are mainly comprised of overheads. As the overheads
are relatively higher for the GPU backend, we explore those
below. Apart from kernel call overheads, the discussion of
the other overheads applies to the CPU backends too.

Table 6 lists the time spent in some runtime components
for DyNet, Cavs, and CORTEX, for the same model con-
figuration as above on the GPU backend. DyNet and Cavs
implement generalized runtime algorithms, which cause
overheads in dynamic batching and graph construction. At
runtime, DyNet constructs a dataflow graph of tensor op-
erators and performs dynamic batching on the same. As

3We use only the recursive part of the TreeLSTM model, with-
out the input matrix-vector multiplications.

Table 4. Cavs vs. CORTEX: Inference latencies (Cavs/CORTEX) in
ms and speedups on GPU
Hidden
Size

Batch
Size

TreeFC TreeGRU TreeLSTM

Time Speedup Time Speedup Time Speedup

hs 1 0.97/0.09 10.24 1.95/0.15 12.94 2.54/0.22 11.38
hs 10 3.74/0.27 14.06 3.28/0.27 12.18 4.01/0.44 9.05
hl 1 1.22/0.16 7.41 2.01/0.2 10.22 2.56/0.28 9.04
hl 10 5.8/0.69 8.46 3.66/0.61 5.96 4.43/0.91 4.88

1 2 4 8 16 32 64 12
8

25
6

51
2

Hidden Size

0

2

4

In
fe

re
nc

e
La

te
nc

y
(m

s) GPU

Cavs
DyNet

1 2 4 8 16 32 64 12
8

25
6

51
2

Hidden Size

0.0

2.5

5.0

7.5

Intel CPU

Figure 7. Inference latency vs. hidden size for the recursive portion
of TreeLSTM for batch size 10.

compared to Cavs and CORTEX, which deal with graphs
corresponding to the input data structures, DyNet there-
fore must handle a much larger graph. Cavs’ ‘think-like-a-
vertex’ approach also has non-trivial overheads as compared
to CORTEX, which is specialized for recursive data struc-
tures. CORTEX’s dynamic batching overheads are limited
to linearization, before tensor computations are executed.

As Cavs and DyNet rely on vendor libraries, they need to
ensure that inputs to batched kernel calls are contiguous in
memory. The resulting checks and memory copy operations
have significant overheads (Xu et al., 2018), both on the
CPU and the GPU (‘Mem. mgmt. time’ in Table 6). As
CORTEX manages the entire compilation process, it is free
from such contiguity restrictions.

CORTEX performs aggressive kernel fusion (illustrated in
Fig. 8 and explored more in §C of the appendix using the
roofline model (Williams et al., 2009)), which has the dual
effect of generating faster GPU code (seen in the ‘GPU
computation time’ column in Table 6) as well as lowering
CUDA kernel call overheads. As seen in Table 6, both
DyNet and Cavs execute a high number of kernel calls,
which cause non-trivial overheads as CUDA kernels calls
are expensive (Lustig & Martonosi, 2013; Nvidia, 2021).
The high number of kernel and memory copy calls also con-
tributes to a high amount of CPU time spent in the CUDA
API as seen in the column ‘CPU CUDA API time’.

To our knowledge, there are no hand-optimized recursive
model implementations available. Therefore, we compare
CORTEX with GRNN’s hand-optimized GPU implemen-
tations of the sequential LSTM and GRU models. These
implementations use a lock-free CUDA global barrier im-
plementation (Xiao & Feng, 2010), which is faster than the
lock-based one (Xiao & Feng, 2010) used by CORTEX. For
a fair comparison, we also compare against a version of the

CORTEX: A Compiler for Recursive Deep Learning Models

Table 5. DyNet vs. CORTEX: Inference latencies (DyNet/CORTEX) in ms and speedups across different backends
Backend Hidden

Size
Batch
Size

TreeFC DAG-RNN TreeGRU TreeLSTM MV-RNN

Time Speedup Time Speedup Time Speedup Time Speedup Time Speedup

GPU hs 1 0.41/0.08 5.13 1.79/0.22 8.15 1.41/0.18 7.69 1.84/0.24 7.73 0.8/0.34 2.38
GPU hs 10 1.54/0.17 9.26 3.83/0.39 9.81 4.72/0.35 13.51 5.28/0.39 13.59 3.46/0.78 4.42
GPU hl 1 0.4/0.12 3.31 1.78/0.26 6.85 1.41/0.25 5.66 1.78/0.29 6.12 0.87/0.39 2.24
GPU hl 10 1.48/0.37 3.97 3.77/0.54 6.92 4.63/0.75 6.17 5.1/0.7 7.32 3.47/1.11 3.14
Intel hs 1 0.42/0.12 3.46 1.12/0.19 5.81 0.98/0.18 5.42 1.15/0.23 5.06 0.43/0.29 1.51
Intel hs 10 3.41/0.64 5.29 6.07/0.89 6.79 4.09/0.89 4.58 5.59/1.02 5.5 4.68/1.22 3.83
Intel hl 1 0.93/0.42 2.22 2.21/0.6 3.66 2.45/0.58 4.19 2.95/0.54 5.42 1.68/1.08 1.55
Intel hl 10 8.03/2.3 3.49 11.57/2.27 5.09 8.63/2.97 2.91 12.36/3.02 4.09 21.2/7.3 2.9
ARM hs 1 1.35/0.21 6.57 3.48/0.38 9.23 2.57/0.3 8.49 2.15/0.39 5.46 0.52/0.4 1.32
ARM hs 10 5.27/1.58 3.32 11.08/2.52 4.4 9.59/1.81 5.3 10.59/2.58 4.1 5.36/2.61 2.05
ARM hl 1 3.24/0.79 4.11 14.39/1.55 9.31 8.74/0.99 8.8 6.11/1.35 4.54 1.96/1.95 1.01
ARM hl 10 10.58/6.54 1.62 26.84/8.67 3.1 21.42/6.08 3.52 20.11/8.86 2.27 15.35/16.8 0.91

Table 6. Time spent (ms) in various activities1 for DyNet, Cavs, and CORTEX for TreeLSTM on the GPU backend for batch size 10
and hidden size 256.

Framework Dyn. batch/ Graph const. Mem. mgmt. time (CPU/GPU) GPU computation time #Kernel calls2 CPU CUDA API time3 Exe. time4

DyNet 1.21/1.82 1.46/1.03 1.71 389 12.28 17.381
Cavs 0.4/- 0.85/1.16 0.71 122 9.56 11.57

CORTEX 0.01/- -/- 0.32 1 0.35 0.35
1 The timings reported correspond to multiple runs, and were obtained using a combination of manual instrumentation and profiling using nvprof.
2 Does not include memory copy kernels.
3 Includes all kernel calls as well as calls to cudaMemcpy and cudaMemcpyAsync.
4 DyNet and Cavs normally execute CUDA kernels asynchronously. For the purposes of profiling (i.e., this table only), these calls were made synchronous, which leads to
slower execution. Shown are execution times under nvprof profiling, provided as a reference.

GRNN implementations which use the lock-based imple-
mentation. We find that CORTEX-generated code performs
competitively as compared to these hand-optimized imple-
mentations (Fig. 9). Notably, CORTEX can generalize these
optimizations for recursive models.

7.3 Benefits of Optimizations

We now look at CORTEX’s different optimizations and their
relative benefits. Fig. 10a shows inference latencies for
different models (on GPU for hidden size 256) as we pro-
gressively perform optimizations. Kernel fusion provides
significant benefits for all models. Fusion benefits GPUs
more as GPUs have manually managed caches, which ker-
nels optimized in isolation cannot exploit. Complex models
such as TreeLSTM that provide more fusion opportunities
benefit more. Specialization enables computation hoist-
ing and constant propagation (§4.3), which dramatically
reduce computation in tree-based models as trees have a
larger proportion of leaves. For DAG-RNN, which performs
computations on DAGs, specialization does not lead to any
speedup as expected. Finally, model persistence leads to
non-negligible improvements by reducing accesses to the
GPU global memory. We discuss some optimization trade-
offs involving register pressure in §D in the appendix.

7.4 Other Scheduling Primitives

We now turn to the scheduling primitives of unrolling and
recursive refactoring.

Unrolling: We evaluate unrolling on the TreeLSTM model
on the GPU backend and a hidden size of 256. In this case,

after unrolling, the cost of a barrier cannot be amortized
across all nodes in a batch, as illustrated in Fig. 11. This
leads to slower inference (Fig.10b) despite the increased
data reuse and kernel fusion (§3.1). We then evaluate un-
rolling on the simpler TreeRNN model, which is an exten-
sion of sequential RNNs for trees. When scheduling this
model implementation, we perform the computation for one
node in one GPU thread block, thus avoiding additional
global barriers when unrolled. Therefore, unrolling leads to
a drop in the inference latency for this model.

Recursive Refactoring: We evaluate recursive refactoring
on the TreeGRU model. In this case, refactoring enables
us to reduce the number of global barriers as in the GRNN
GRU implementation (Holmes et al., 2019). However, we
find that in the case of TreeGRU, this does not give us sig-
nificant speedups (Fig. 10c). To explore further, we simplify
the TreeGRU model (referred to as SimpleTreeGRU4) and
apply the same optimization again. For the case of this sim-
plified TreeGRU model, refactoring reduces the inference
latency by about 25%. We also use recursive refactoring in
the sequential GRU model implementation discussed above.

7.5 Data Structure Linearization Overheads

The data structure linearizer (§4.2) lowers input data struc-
tures to arrays on the host CPU, performing dynamic batch-
ing if necessary. The table below lists linearization times (in

4Instead of h = z ∗ ht−1 + (1− z) ∗ h′, where h′ is the result
of a linear transform, the h-gate in SimpleTreeGRU is computed
as h = (1− z) ∗ h′.

CORTEX: A Compiler for Recursive Deep Learning Models

concat

W

*

biasrec_ph

rec_ph

+ relu rec_ph

DyNet

+ relu rec_ph

cachebias

*
concat

rec_ph

rec_ph

cacheW Cortex

concat

W

*

biasrec_ph

rec_ph

+ relu rec_ph

Cavs

shared mem. reuserecursion boundaryinput/placeholder registers reuseglobal mem. reusekernel boundary

Figure 8. Kernel fusion and model persistence in CORTEX: CORTEX is able to exploit fast on-chip memory (registers and shared memory)
better than DyNet and Cavs. This reduces accesses to the slow off-chip global memory. Note also how CORTEX persists the model
parameters (W and bias) and reuses the cached versions every iteration.

1 10
Batch Size

0.00

0.25

0.50

0.75

1.00

In
fe

re
nc

e
La

te
nc

y
(m

s) Sequential LSTM

1 10
Batch Size

0.0

0.2

0.4

0.6

0.8
Sequential GRU

GRNN GRNN (lock-based barrier) Cortex

Figure 9. CORTEX vs. hand-optimized GRNN code for sequence
length 100 and hidden and input sizes 256.

µs) for different models.5 We find that on the GPU backend
for batch size 10 and hidden size hs, linearization overheads,
as a percentage of total runtime, range from 1.2% (for MV-
RNN) to 24.4% (for DAG-RNN). Note that the linearization
time is independent of the hidden size as no tensor compu-
tations are performed at this stage. As CORTEX specializes
for the case of recursive data structures, the linearization
overheads are quite low.

Batch Size TreeLSTM/TreeGRU/MV-RNN DAG-RNN TreeFC
1 1.31 8.2 3.04

10 9.64 95.14 30.36

7.6 Memory Usage

We now compare the memory consumption of CORTEX with
PyTorch, DyNet and Cavs. The peak GPU memory con-
sumption for different models for batch size 10 and hidden
size hs is shown in Fig. 12. PyTorch uses the least amount
of memory as it does not perform dynamic batching. DyNet
and Cavs are designed for both deep learning training and
inference. As gradient computations during training require
the values of intermediate operations computed during the
forward pass, DyNet and Cavs do not free the memory used
by these intermediate tensors. Therefore, their memory con-
sumption is quite high as compared to CORTEX, which is
designed for inference. We also compare against a version of
DyNet (shown as ‘DyNet (inference)’ in Fig. 12) modified
to simulate the deallocation of a tensor when it is no longer
needed in the forward inference pass. Despite this deallo-
cation, however, DyNet’s memory consumption is higher
than CORTEX’s. CORTEX materializes fewer intermediate
tensors to the GPU’s global memory due to kernel fusion
(Fig. 8). This reduces its memory consumption. Further,
DyNet requires extra scratch space to ensure contiguous

5Models using the same dataset are grouped together.

inputs to vendor library calls, as discussed previously.

8 RELATED WORK

Compilers for Machine Learning: Tensor compilers
such as TVM (Chen et al., 2018a), Halide (Ragan-Kelley
et al., 2013), Tiramisu (Baghdadi et al., 2019), Tensor Com-
prehensions (Vasilache et al., 2018) and Taco (Kjolstad et al.,
2017) have been well studied. There are similarities between
sparse tensor computations, as supported in Taco, and the
ILIR, which lead to similar implementation techniques. For
example, the idea of dense layouts for intermediate ten-
sors (§5.1) is similar to the concept of workspaces for Taco
introduced in (Kjolstad et al., 2019). More generally, how-
ever, CORTEX extends the abstractions provided by tensor
compilers to support recursive computations and develops
specialized optimizations for the same.

Deep learning compilers such as XLA (Team, 2017) and
Glow (Rotem et al., 2018) optimize static feed forward
models and can perform partial kernel fusion and code gen-
eration. Further, in (Radul et al., 2020), the authors develop
techniques to efficiently lower recursion into iterative con-
trol flow while performing dynamic batching for the XLA
toolchain. Inference engines such as TensorRT (NVIDIA,
2020) and OpenVINO (Intel, 2020b) optimize model execu-
tion for inference. The techniques we develop in this paper
could be used as a low-level backend for these deep learning
compilers and optimizers. MLIR (Lattner et al., 2020) pro-
vides infrastructure to build deep learning compilers, and
CORTEX could potentially be built using MLIR.

Optimizing Dynamic Neural Networks: There is a large
body of work aimed at optimizing recursive and more gen-
erally, dynamic neural networks.

Variants of dynamic batching have been used in frameworks
such as DyNet, Cavs, BatchMaker (Gao et al., 2018), Ten-
sorFlow Fold (Looks et al., 2017) and Matchbox (Bradbury
& Fu, 2018). Unlike these, CORTEX performs dynamic
batching before any tensor computations. Model persis-
tence was first proposed by Persistent RNNs (Diamos et al.,
2016), subsequently used in GRNN (Holmes et al., 2019)
and VPPS (Khorasani et al., 2018) and adapted for CPUs in
DeepCPU (Zhang et al., 2018). CORTEX is able to extend
the these optimizations to recursive models and formalize
them as transformation primitives in the compiler.

CORTEX: A Compiler for Recursive Deep Learning Models

1 10
0.0

0.2

0.4

In
fe

re
nc

e
La

te
nc

y
(m

s) TreeFC

1 10
0.0

0.2

0.4

DAG-RNN

1 10
0.0

0.2

0.4

TreeGRU

1 10
0

1

2
TreeLSTM

No kernel fusion
Maximal kernel fusion

+Specialization
+Persistence

Batch Size

(a) Kernel fusion, specialization and persistence

1 10
0.0

0.5

1.0

In
fe

re
nc

e
La

te
nc

y
(m

s) TreeRNN

1 10

TreeLSTM

Not unrolled
Unrolled

Batch Size
(b) Unrolling

1 10
0.0

0.1

0.2

0.3

In
fe

re
nc

e
La

te
nc

y
(m

s) SimpleTreeGRU

1 10

TreeGRU

Unhoisted
Hoisted

Batch Size
(c) Recursive Refactoring

Figure 10. Benefits of different optimizations on the GPU backend for hidden size 256.

Before Unrolling After Unrolling

Global
barrier

Figure 11. Unrolling TreeLSTM leads to additional barriers.

TreeFC DAG-RNN TreeGRU TreeLSTM MV-RNN
0

5000

10000

15000

Pe
ak

 M
em

or
y

Us
ag

e
(k

B)

10

1766625510 34446 39142
PyTorch
DyNet

DyNet (inference)
Cavs

Cortex

Figure 12. Peak GPU memory consumption in kilobytes, for batch
size 10 and hidden size hs.

Nimble (Shen et al., 2020) adapts deep learning com-
piler technology for better supporting dynamic models.
Janus (Jeong et al., 2019) speculatively creates dataflow
graphs that can be optimized to accelerate dynamic mod-
els. Similar to DyNet, this leads to overheads at runtime.
In (Jeong et al., 2018), the authors extend TensorFlow’s
static dataflow graph with recursion. Further, while COR-
TEX currently focuses on acyclic data structures, the ILIR
infrastructure could also be used to support deep learning on
more graphs, as is supported by DGL (Wang et al., 2019).

As we saw in §3, CORTEX provides a lower level of program-
ming abstraction as compared to the frameworks mentioned
above. We believe that CORTEX could be potentially used
as a backend for these frameworks, which would alleviate
the disadvantages of using vendor libraries discussed in §1.

Sparse Polyhedral Framework: The Sparse Polyhedral
Framework (SPF) (Strout et al., 2018; Mohammadi et al.,
2019; Nandy et al., 2018) extends the polyhedral model for
the case of sparse tensor computations. CORTEX borrows
from these works techniques such as the use of uninterpreted
functions to represent indirect memory accesses. The data
structure linearizer in CORTEX can be viewed as an instance

of the inspector-executor technique (Agrawal et al., 1995).
Using this technique to lower data structures has also been
proposed in (van der Spek et al., 2010).

9 CONCLUSION

In this paper, we presented CORTEX, a compiler for opti-
mizing recursive deep learning models for fast inference.
Eschewing vendor libraries, CORTEX’s approach enables
aggressive kernel fusion and end-to-end optimizations from
the recursive control flow down to the tensor algebra compu-
tations. This allows CORTEX to achieve significantly lower
inference latencies. Past work on machine learning compil-
ers (Roesch et al., 2019; Shen et al., 2020; Yu et al., 2018;
Wei et al.) as well as on deep learning (Tai et al., 2015;
Shazeer et al., 2017; Elbayad et al., 2019) suggests that
supporting efficient execution of various kinds of dynamism
in ML models is very desirable. CORTEX demonstrates
that a fruitful way of doing this is to exploit past work on
general-purpose compilation, such as the inspector-executor
technique or the sparse polyhedral framework. We believe it
is also important to expand the scope of the highly special-
ized ML frameworks and techniques used today (without
compromising their ability to optimize static feed-forward
models), as we do in the case of the ILIR, for example. In the
future, we hope (i) to apply these insights to develop similar
techniques for training and serving models with potentially
non-recursive dynamic control flow and (ii) to integrate
CORTEX into higher level programming abstractions.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Na-
tional Science Foundation and Oracle, by a VMware Uni-
versity Research Fund Award, and by the Parallel Data
Lab (PDL) Consortium (Alibaba, Amazon, Datrium, Face-
book, Google, Hewlett-Packard Enterprise, Hitachi, IBM,
Intel, Microsoft, NetApp, Oracle, Salesforce, Samsung, Sea-
gate, and TwoSigma). We would like to thank Chris Fallin,
Dominic Chen, Hao Zhang, Graham Neubig and Olatunji
Ruwase for their suggestions and feedback on our work.

CORTEX: A Compiler for Recursive Deep Learning Models

REFERENCES

Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-
M., Gharbi, M., Steiner, B., Johnson, S., Fatahalian,
K., Durand, F., and Ragan-Kelley, J. Learning to op-
timize Halide with tree search and random programs.
ACM Trans. Graph., 38(4), July 2019. ISSN 0730-
0301. doi: 10.1145/3306346.3322967. URL https:
//doi.org/10.1145/3306346.3322967.

Agrawal, G., Sussman, A., and Saltz, J. Integrated run-
time and compile-time approach for parallelizing struc-
tured and block structured applications. Parallel and
Distributed Systems, IEEE Transactions on, 6:747 – 754,
08 1995. doi: 10.1109/71.395403.

Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E.,
Akkas, A., Zhang, Y., Suriana, P., Kamil, S., and Amaras-
inghe, S. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, pp. 193–205. IEEE
Press, 2019. ISBN 9781728114361.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Bradbury, J. and Fu, C. Automatic batching as a compiler
pass in PyTorch. In Workshop on Systems for ML, 2018.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. TVM: An automated end-to-end
optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pp. 578–594, Carlsbad, CA, October
2018a. USENIX Association. ISBN 978-1-939133-08-3.
URL https://www.usenix.org/conference/
osdi18/presentation/chen.

Chen, T., Zheng, L., Yan, E. Q., Jiang, Z., Moreau, T., Ceze,
L., Guestrin, C., and Krishnamurthy, A. Learning to
optimize tensor programs. CoRR, abs/1805.08166, 2018b.
URL http://arxiv.org/abs/1805.08166.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,
J., Catanzaro, B., and Shelhamer, E. cuDNN: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.
URL http://arxiv.org/abs/1410.0759.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL
http://arxiv.org/abs/1406.1078.

De Moura, L. and Bjørner, N. Z3: An efficient SMT solver.
In International conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340.
Springer, 2008.

Diamos, G., Sengupta, S., Catanzaro, B., Chrzanowski, M.,
Coates, A., Elsen, E., Engel, J., Hannun, A., and Satheesh,
S. Persistent RNNs: Stashing recurrent weights on-chip.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, ICML’16, pp. 2024–2033. JMLR.org, 2016.

Elbayad, M., Gu, J., Grave, E., and Auli, M. Depth-adaptive
transformer. CoRR, abs/1910.10073, 2019. URL http:
//arxiv.org/abs/1910.10073.

Gao, P., Yu, L., Wu, Y., and Li, J. Low latency
RNN inference with cellular batching. In Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys
’18, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450355841. doi: 10.
1145/3190508.3190541. URL https://doi.org/
10.1145/3190508.3190541.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, November 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.
9.8.1735.

Holmes, C., Mawhirter, D., He, Y., Yan, F., and Wu,
B. GRNN: Low-latency and scalable RNN infer-
ence on GPUs. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York,
NY, USA, 2019. Association for Computing Machin-
ery. ISBN 9781450362818. doi: 10.1145/3302424.
3303949. URL https://doi.org/10.1145/
3302424.3303949.

Intel. Intel math kernel library, 2020a. URL
https://software.intel.com/content/
www/us/en/develop/tools/math-kernel-
library.html. Last accessed July 18, 2020.

Intel. OpenVINO toolkit, 2020b. URL https://docs.
openvinotoolkit.org/. Last accessed Oct 06,
2020.

Jeong, E., Jeong, J. S., Kim, S., Yu, G.-I., and Chun,
B.-G. Improving the expressiveness of deep learn-
ing frameworks with recursion. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, New
York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355841. doi: 10.1145/
3190508.3190530. URL https://doi.org/10.
1145/3190508.3190530.

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1805.08166
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1910.10073
http://arxiv.org/abs/1910.10073
https://doi.org/10.1145/3190508.3190541
https://doi.org/10.1145/3190508.3190541
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3302424.3303949
https://doi.org/10.1145/3302424.3303949
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://docs.openvinotoolkit.org/
https://docs.openvinotoolkit.org/
https://doi.org/10.1145/3190508.3190530
https://doi.org/10.1145/3190508.3190530

CORTEX: A Compiler for Recursive Deep Learning Models

Jeong, E., Cho, S., Yu, G.-I., Jeong, J. S., Shin, D.-J., and
Chun, B.-G. JANUS: Fast and flexible deep learning via
symbolic graph execution of imperative programs. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pp. 453–468, Boston,
MA, February 2019. USENIX Association. ISBN 978-
1-931971-49-2. URL https://www.usenix.org/
conference/nsdi19/presentation/jeong.

Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell,
J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaem-
maghami, T. V., Gottipati, R., Gulland, W., Hagmann,
R., Ho, R. C., Hogberg, D., Hu, J., Hundt, R., Hurt, D.,
Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan,
H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law,
J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A.,
MacKean, G., Maggiore, A., Mahony, M., Miller, K.,
Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Nor-
rie, T., Omernick, M., Penukonda, N., Phelps, A., Ross,
J., Salek, A., Samadiani, E., Severn, C., Sizikov, G.,
Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan,
M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasude-
van, V., Walter, R., Wang, W., Wilcox, E., and Yoon,
D. H. In-datacenter performance analysis of a tensor
processing unit. CoRR, abs/1704.04760, 2017. URL
http://arxiv.org/abs/1704.04760.

Khorasani, F., Esfeden, H. A., Abu-Ghazaleh, N., and
Sarkar, V. In-register parameter caching for dynamic
neural nets with virtual persistent processor specializa-
tion. In Proceedings of the 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-51,
pp. 377–389. IEEE Press, 2018. ISBN 9781538662403.
doi: 10.1109/MICRO.2018.00038. URL https://
doi.org/10.1109/MICRO.2018.00038.

Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Ama-
rasinghe, S. The tensor algebra compiler. Proc. ACM
Program. Lang., 1(OOPSLA):77:1–77:29, October 2017.
ISSN 2475-1421. doi: 10.1145/3133901. URL http:
//doi.acm.org/10.1145/3133901.

Kjolstad, F., Ahrens, P., Kamil, S., and Amarasinghe, S.
Tensor algebra compilation with workspaces. pp. 180–
192, 2019. URL http://dl.acm.org/citation.
cfm?id=3314872.3314894.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis,
A., Pienaar, J., Riddle, R., Shpeisman, T., Vasilache, N.,
and Zinenko, O. MLIR: A compiler infrastructure for
the end of Moore’s law, 2020. URL https://arxiv.
org/abs/2002.11054.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and
Jurafsky, D. Deep reinforcement learning for dialogue
generation. arXiv preprint arXiv:1606.01541, 2016.

Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and
Wang, Y. Optimizing CNN model inference on
CPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pp. 1025–1040, Renton, WA, July
2019. USENIX Association. ISBN 978-1-939133-03-8.
URL https://www.usenix.org/conference/
atc19/presentation/liu-yizhi.

Looks, M., Herreshoff, M., Hutchins, D., and Norvig, P.
Deep learning with dynamic computation graphs. CoRR,
abs/1702.02181, 2017. URL http://arxiv.org/
abs/1702.02181.

Lustig, D. and Martonosi, M. Reducing GPU offload la-
tency via fine-grained CPU-GPU synchronization. In
2013 IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 354–365.
IEEE, 2013.

Maqueda, A. I., Loquercio, A., Gallego, G., Garcı́a, N., and
Scaramuzza, D. Event-based vision meets deep learning
on steering prediction for self-driving cars. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Microsoft. Microsoft deepspeed achieves the fastest
bert training time, 2020. URL https://www.
deepspeed.ai/news/2020/05/27/fastest-
bert-training.html. Last accessed Sept 15,
2020.

Mohammadi, M. S., Cheshmi, K., Dehnavi, M. M., Venkat,
A., Yuki, T., and Strout, M. M. Extending index-array
properties for data dependence analysis. In Hall, M. and
Sundar, H. (eds.), Languages and Compilers for Parallel
Computing, pp. 78–93, Cham, 2019. Springer Interna-
tional Publishing. ISBN 978-3-030-34627-0.

Mullapudi, R. T., Adams, A., Sharlet, D., Ragan-Kelley,
J., and Fatahalian, K. Automatically scheduling halide
image processing pipelines. ACM Trans. Graph., 35
(4), July 2016. ISSN 0730-0301. doi: 10.1145/
2897824.2925952. URL https://doi.org/10.
1145/2897824.2925952.

Nandy, P., Hall, M., Davis, E. C., Olschanowsky, C., Mo-
hammadi, M. S., He, W., and Strout, M. Abstractions
for specifying sparse matrix data transformations. In
Proceedings of the Eighth International Workshop on
Polyhedral Compilation Techniques, 2018.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Am-
mar, W., Anastasopoulos, A., Ballesteros, M., Chiang, D.,

https://www.usenix.org/conference/nsdi19/presentation/jeong
https://www.usenix.org/conference/nsdi19/presentation/jeong
http://arxiv.org/abs/1704.04760
https://doi.org/10.1109/MICRO.2018.00038
https://doi.org/10.1109/MICRO.2018.00038
http://doi.acm.org/10.1145/3133901
http://doi.acm.org/10.1145/3133901
http://dl.acm.org/citation.cfm?id=3314872.3314894
http://dl.acm.org/citation.cfm?id=3314872.3314894
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://www.usenix.org/conference/atc19/presentation/liu-yizhi
https://www.usenix.org/conference/atc19/presentation/liu-yizhi
http://arxiv.org/abs/1702.02181
http://arxiv.org/abs/1702.02181
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/2897824.2925952

CORTEX: A Compiler for Recursive Deep Learning Models

Clothiaux, D., Cohn, T., et al. Dynet: The dynamic neural
network toolkit. arXiv preprint arXiv:1701.03980, 2017a.
URL https://arxiv.org/abs/1701.03980.

Neubig, G., Goldberg, Y., and Dyer, C. On-the-fly operation
batching in dynamic computation graphs. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 3974–3984, Red
Hook, NY, USA, 2017b. Curran Associates Inc. ISBN
9781510860964.

NVIDIA. NVIDIA TensorRT programmable inference
accelerator, 2020. URL https://developer.
nvidia.com/tensorrt. Last accessed July 18,
2020.

Nvidia. Cuda c++ programming guide, 2021. URL
https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html. Last
accessed March 04, 2021.

Nvidia AI, N. GPU inference on the rise, 2019.
URL https://medium.com/@NvidiaAI/gpu-
inference-on-the-rise-b415014019ec.
Last accessed Oct 05, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. PyTorch: An
imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019. URL http://
papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-
deep-learning-library.pdf.

Radul, A., Patton, B., Maclaurin, D., Hoffman, M., and
A. Saurous, R. Automatically batching control-intensive
programs for modern accelerators. In Dhillon, I.,
Papailiopoulos, D., and Sze, V. (eds.), Proceedings
of Machine Learning and Systems, volume 2, pp.
390–399. 2020. URL https://proceedings.
mlsys.org/paper/2020/file/
140f6969d5213fd0ece03148e62e461e-
Paper.pdf.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Du-
rand, F., and Amarasinghe, S. Halide: A language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI

’13, pp. 519–530, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. ISBN 9781450320146.
doi: 10.1145/2491956.2462176. URL https://doi.
org/10.1145/2491956.2462176.

Rawat, P. S., Rastello, F., Sukumaran-Rajam, A., Pouchet,
L.-N., Rountev, A., and Sadayappan, P. Register opti-
mizations for stencils on GPUs. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP ’18, pp. 168–182,
New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450349826. doi: 10.1145/
3178487.3178500. URL https://doi.org/10.
1145/3178487.3178500.

Roesch, J., Lyubomirsky, S., Kirisame, M., Pollock, J., We-
ber, L., Jiang, Z., Chen, T., Moreau, T., and Tatlock,
Z. Relay: A high-level IR for deep learning. CoRR,
abs/1904.08368, 2019. URL http://arxiv.org/
abs/1904.08368.

Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov,
R., Hegeman, J., Levenstein, R., Maher, B., Satish, N.,
Olesen, J., Park, J., Rakhov, A., and Smelyanskiy, M.
Glow: Graph lowering compiler techniques for neural
networks. CoRR, abs/1805.00907, 2018. URL http:
//arxiv.org/abs/1805.00907.

Sakdhnagool, P., Sabne, A., and Eigenmann, R. RegDem:
Increasing GPU performance via shared memory register
spilling. CoRR, abs/1907.02894, 2019. URL http:
//arxiv.org/abs/1907.02894.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. CoRR, abs/1701.06538, 2017. URL http://
arxiv.org/abs/1701.06538.

Shen, H., Roesch, J., Chen, Z., Chen, W., Wu, Y., Li, M.,
Sharma, V., Tatlock, Z., and Wang, Y. Nimble: Efficiently
compiling dynamic neural networks for model inference.
arXiv preprint arXiv:2006.03031, 2020. URL https:
//arxiv.org/abs/2006.03031.

Shuai, B., Zuo, Z., Wang, G., and Wang, B. DAG-
recurrent neural networks for scene labeling. CoRR,
abs/1509.00552, 2015. URL http://arxiv.org/
abs/1509.00552.

Socher, R., Huval, B., Bhat, B., Manning, C. D., and Ng,
A. Y. Convolutional-recursive deep learning for 3d object
classification. In Proceedings of the 25th International
Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pp. 656–664, Red Hook, NY, USA,
2012a. Curran Associates Inc.

https://arxiv.org/abs/1701.03980
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://medium.com/@NvidiaAI/gpu-inference-on-the-rise-b415014019ec
https://medium.com/@NvidiaAI/gpu-inference-on-the-rise-b415014019ec
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.mlsys.org/paper/2020/file/140f6969d5213fd0ece03148e62e461e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/140f6969d5213fd0ece03148e62e461e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/140f6969d5213fd0ece03148e62e461e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/140f6969d5213fd0ece03148e62e461e-Paper.pdf
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3178487.3178500
https://doi.org/10.1145/3178487.3178500
http://arxiv.org/abs/1904.08368
http://arxiv.org/abs/1904.08368
http://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1907.02894
http://arxiv.org/abs/1907.02894
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.03031
https://arxiv.org/abs/2006.03031
http://arxiv.org/abs/1509.00552
http://arxiv.org/abs/1509.00552

CORTEX: A Compiler for Recursive Deep Learning Models

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. Se-
mantic compositionality through recursive matrix-vector
spaces. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, EMNLP-
CoNLL ’12, pp. 1201–1211, USA, 2012b. Association
for Computational Linguistics.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Strout, M. M., Hall, M., and Olschanowsky, C. The sparse
polyhedral framework: Composing compiler-generated
inspector-executor code. Proceedings of the IEEE, 106
(11):1921–1934, 2018.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. arXiv preprint arXiv:1503.00075,
2015.

Team, X. XLA - tensorflow, compiled, 2017. URL
https://developers.googleblog.com/
2017/03/xla-tensorflow-compiled.html.
Last accessed Oct 04, 2020.

van der Spek, H. L. A., Holm, C. W. M., and Wijshoff, H.
A. G. How to unleash array optimizations on code using
recursive data structures. In Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10,
pp. 275–284, New York, NY, USA, 2010. Association for
Computing Machinery. ISBN 9781450300186. doi: 10.
1145/1810085.1810123. URL https://doi.org/
10.1145/1810085.1810123.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li, M.,
Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo, Q., Zhang,
H., Lin, H., Zhao, J., Li, J., Smola, A. J., and Zhang, Z.
Deep graph library: Towards efficient and scalable deep
learning on graphs. CoRR, abs/1909.01315, 2019. URL
http://arxiv.org/abs/1909.01315.

Wei, J., Gibson, G., Vasudevan, V., and Xing,
E. Dynamic scheduling for dynamic control
flow in deep learning systems. URL http:
//www.cs.cmu.edu/˜jinlianw/papers/
dynamic_scheduling_nips18_sysml.pdf.

Williams, S., Waterman, A., and Patterson, D. Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76,
2009.

Xiao, S. and Feng, W. Inter-block GPU communication via
fast barrier synchronization. In 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS),
pp. 1–12, 2010.

Xu, S., Zhang, H., Neubig, G., Dai, W., Kim, J. K.,
Deng, Z., Ho, Q., Yang, G., and Xing, E. P. Cavs:
An efficient runtime system for dynamic neural net-
works. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 937–950, Boston, MA, July
2018. USENIX Association. ISBN 978-1-939133-01-4.
URL https://www.usenix.org/conference/
atc18/presentation/xu-shizen.

Yan, R., Song, Y., and Wu, H. Learning to respond with
deep neural networks for retrieval-based human-computer
conversation system. In Proceedings of the 39th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’16, pp.
55–64, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450340694. doi: 10.
1145/2911451.2911542. URL https://doi.org/
10.1145/2911451.2911542.

Yu, Y., Abadi, M., Barham, P., Brevdo, E., Burrows, M.,
Davis, A., Dean, J., Ghemawat, S., Harley, T., Hawkins,
P., et al. Dynamic control flow in large-scale machine
learning. In Proceedings of the Thirteenth EuroSys Con-
ference, pp. 1–15, 2018.

Zhang, M., Rajbhandari, S., Wang, W., and He, Y. Deep-
CPU: Serving RNN-based deep learning models 10x
faster. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 951–965, Boston, MA, July
2018. USENIX Association. ISBN 978-1-939133-01-4.
URL https://www.usenix.org/conference/
atc18/presentation/zhang-minjia.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-
Ali, A., Wang, Y., Yang, J., Zhuo, D., Sen, K., Gon-
zalez, J. E., and Stoica, I. Ansor: Generating high-
performance tensor programs for deep learning. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 863–879. USENIX As-
sociation, November 2020. ISBN 978-1-939133-19-9.
URL https://www.usenix.org/conference/
osdi20/presentation/zheng.

https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://doi.org/10.1145/1810085.1810123
https://doi.org/10.1145/1810085.1810123
http://arxiv.org/abs/1909.01315
http://www.cs.cmu.edu/~jinlianw/papers/dynamic_scheduling_nips18_sysml.pdf
http://www.cs.cmu.edu/~jinlianw/papers/dynamic_scheduling_nips18_sysml.pdf
http://www.cs.cmu.edu/~jinlianw/papers/dynamic_scheduling_nips18_sysml.pdf
https://www.usenix.org/conference/atc18/presentation/xu-shizen
https://www.usenix.org/conference/atc18/presentation/xu-shizen
https://doi.org/10.1145/2911451.2911542
https://doi.org/10.1145/2911451.2911542
https://www.usenix.org/conference/atc18/presentation/zhang-minjia
https://www.usenix.org/conference/atc18/presentation/zhang-minjia
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/zheng

CORTEX: A Compiler for Recursive Deep Learning Models

A ILIR LOWERING

A.1 Uninterpreted Functions

The ILIR extends a tensor compiler to support indirect mem-
ory accesses and variable loop bounds. During code genera-
tion, CORTEX therefore has to handle expressions involving
such uninterpreted functions. In order to perform simplifi-
cation over such expressions, for purposes such as proving
if certain bound checks are redundant, we use the Z3 SMT
solver (De Moura & Bjørner, 2008).

A.2 Bounds Inference

We briefly mentioned in §5.1 how in a traditional tensor
compiler, there is a one-to-one relationship between the
dimensions of a tensor and the loops in the corresponding
operator’s loop nest.6 This can be seen in Fig. 13. In the
figure, two loops, each corresponding to a dimension of the
tensor r are generated in IR (shown in the generated code
on the right).

Computation
size = (256,256)
m1,m2 = tensor(size),tensor(size)
r = compute(size,
 lambda i,j: m1[i,j]+m2[i,j])

Scheduling
bind_loop(r.loops[0],thread_x())

Input program

Scheduling

for i = 0:256:
 for j = 0:256:
 r[i][j] = m1[i][j]+m2[i][j]

Unscheduled IR

for i = 0:256:
 j = threadIdx.x
 r[i][j] = m1[i][j]+m2[i][j]

Scheduled IR

Figure 13. Element-wise matrix addition in a tensor compiler

We also saw how in the ILIR, this relationship needs to be
explicitly specified. We do this by the way of named dimen-
sions. Named dimensions are identifiers associated with
tensor dimensions and loops, which allow us to explicitly
specify and keep track of relationships between loops and
tensor dimensions. Consider the ILIR in Listing 3, which
shows the named dimensions annotated as comments. The
dimensions of the tensor rnn are labeled with the named
dimensions d_node and d_hidden. The tensor index di-
mension d_node corresponds to the two loop dimensions
d_all_batches and d_batch.

Named dimensions also make the semantic meaning of
loops and index expressions explicit. For example, the
first dimension of the tensor rnn is labeled d_node and
corresponds to the space of all nodes. It, therefore, does not
make sense to index rnn by b_idx, the loop variable for
the loop associated with d_all_batches.

6For brevity, we will not cover the case of optimizations such as
loop splitting that give rise to additional loops. Similarly, operators
involving reduction are not covered here.

1 # rnn[d_node, d_hidden]
2 L1: for n_idx = 0:leaf_batch_size: # d_batch
3 node = leaf_batch[n_idx]
4 L2: for i = 0:256:
5 rnn[node,i] = Emb[words[node],i]
6
7 L3: for b_idx = 0:num_internal_batches: # d_all_batches
8 L4: for n_idx = 0:batch_sizes[b_idx]: # d_batch
9 node = internal_batches[b_idx,n_idx]

10 L5: for i = 0:256: # d_hidden
11 lh[node,i] = rnn[left[node],i]
12 L6: for i = 0:256: # d_hidden
13 rh[node,i] = rnn[right[node],i]
14 L7: for i = 0:256: # d_hidden
15 rnn[node,i] = tanh(lh[node,i] + rh[node,i])

Listing 3. ILIR generated for the model in Fig. 1

A.3 Caching Tensors Indexed by Non-Affine
Expressions

We saw in §5.1 how when an intermediate tensor is stored
in scratchpad memory, it can be better to index it by the
dense contiguous loop iteration space as opposed to the
sparse index space of the original tensor. A similar situ-
ation arises when caching a tensor accessed by multiple
non-affine index expressions. Assume, for example, if we
wished to cache the tensor rnn in loop L4 in Listing 3,
to be used when accessing rnn[left[node],i] and
rnn[right[node],i]. We create a cached tensor with
an additional dimension corresponding to the multiple non-
affine index expressions, as shown in the listing below.

1 for b_idx = 0:num_internal_batches:
2 for n_idx = 0:batch_sizes[b_idx]:
3 node = internal_batches[b_idx,n_idx]
4 for i = 0:256:
5 # rnn_cache has an additional dimension
6 rnn_cache[b_idx,n_idx,i,0] = rnn[left[node],i]
7 rnn_cache[b_idx,n_idx,i,1] = rnn[right[node],i]
8
9 for b_idx = 0:num_internal_batches:

10 for n_idx = 0:batch_sizes[b_idx]:
11 node = internal_batches[b_idx,n_idx]
12 for i = 0:256:
13 rnn[node,i] = tanh(rnn_cache[b_idx,n_idx,i,0] +
14 rnn_cache[b_idx,n_idx,i,1])

A.4 Barrier Insertion

We need to insert synchronization barriers and memory
fences when threads read data written by other threads.
This is true on CPUs as well as on accelerators such as
GPUs. The barrier insertion pass in TVM does well on
tensor programs that do not have loop-carried dependencies.
Specifically, given a loop-carried dependence, the pass con-
servatively places barriers in the innermost loop, as opposed
to placing it in the body of the loop that actually carries the
dependence. This can lead to unnecessary barriers, leading
to inflated runtimes.

As we iterate sequentially either over data structure nodes
(when dynamic batching is not performed) or batches of
nodes (when dynamic batching is performed), the data de-
pendencies between a node and its children manifest as

CORTEX: A Compiler for Recursive Deep Learning Models

F = B ×N × (4×H ×H︸ ︷︷ ︸
Matrix-vector (MV) multiplication

+ H︸︷︷︸
Bias computation

)

BCORTEX = 4× (2×H ×H +H︸ ︷︷ ︸
Model params: Matrix and bias

(read once and cached)

+ B ×N × (2×H︸ ︷︷ ︸
Read children hidden states

+ H︸︷︷︸
Write back hidden state

))

BDyNet = 4× (log2(N)× (2×H ×H +H)︸ ︷︷ ︸
Model params: Matrix and bias

(read for every dyn. batch)

+ B ×N × (2×H︸ ︷︷ ︸
Read children
hidden states

+ H︸︷︷︸
Write back
MV results

+ H︸︷︷︸
Read MV result

+ H︸︷︷︸
Write back
hidden state

))

BPyTorch = 4× (B ×N × (2×H ×H +H)︸ ︷︷ ︸
Model params: Matrix and bias

(read for every node)

+ B ×N × (2×H︸ ︷︷ ︸
Read children
hidden states

+ H︸︷︷︸
Write back
MV results

+ H︸︷︷︸
Read MV result

+ H︸︷︷︸
Write back
hidden state

))

Figure 14. The operational intensities for PyTorch, DyNet and CORTEX, for the TreeFC model. Here, N is the number of nodes in a tree,
B is the batch size and H is the hidden size.

loop-carried dependencies in the generated ILIR code. This
can be seen in the generated ILIR for the running example,
in Listing 3. In the listing, the data written to tensor rnn in
loops L2 and L7 is read by loops L5 and L6. This depen-
dence only exists across a node and its children. We are also
guaranteed, by the properties described in §2 and the way
the data structure linearizer works, that no node in a batch
may be a child of any other node in the same batch. Thus,
the dependence is carried by loop L3, and not by loop L4.

Given this dependence, we would need a barrier at the start
of every iteration of loop L3. However, the conservative
barrier insertion pass in TVM instead places a barrier in the
body of loop L4. We therefore designed a modification to
the pass to insert the barrier in the outer loop, which actually
carries the dependence.

A.5 Other Optimizations during ILIR Lowering

Below, we discuss two minor optimizations and scheduling
knobs we implemented.

Loop Peeling: The generated ILIR in CORTEX involves
loops with variable loop bounds. Splitting such loops gives
rise to bounds checks in the bodies of the loops. We employ
loop peeling to ensure that such checks are only employed
for the last few iterations of the loop.

Rational Approximations of Nonlinear Functions: We
use rational approximations for the tanh and sigmoid func-
tions, which makes exploiting SIMD instructions on CPUs
easier.

B DATA STRUCTURE LINEARIZATION

In our data structure linearizers, when lowering a pointer
linked data structure to arrays, we associate the nodes
with integer identifiers. When doing so for the case of
dynamic batching, we ensure that nodes in a batch are

numbered consecutively and higher than their parents.
This enables us to lower the batches into two arrays —
batch_begin and batch_length, which store the
starting node and the length, respectively, of every batch.
Thus, node n is in batch i if batch_begin[i] <=
n < batch_begin[i] + batch_length[i]. This
numbering scheme also ensures that all leaf nodes are num-
bered higher than all internal nodes. This reduces the cost
of checking if a node is a leaf. When nodes are numbered
in this way, a leaf check involves a single comparison as op-
posed to a memory load (to load the number of children of a
node under question, for example) and a comparison in the
case where the numbering were arbitrary. This scheme thus
generally reduces the overheads of iterating over batches
and performing leaf checks.

C ROOFLINE PERFORMANCE ANALYSIS
FOR TREEFC MODEL

The roofline model (Williams et al., 2009) is a simple ana-
lytical performance model that can be used to quantify the
amount of reuse exploited by a given computation kernel.
As part of this model, the reuse exploited by a kernel is
captured in the operational intensity (O) of that kernel. This
metric is computed as the amount of computation performed
per byte transferred from the memory. Below, we analyze
the PyTorch, DyNet and CORTEX implementations of the
simple TreeFC model using the roofline model.

Let N be the number of nodes in a tree, B be the batch size
and H be the hidden size. In Fig. 14, we compute the total
number of floating point operations (F) in the model, which
remains constant across the three frameworks, and the total
number of bytes (B) read or written to the off-chip memory.

Assuming, N,H � B ≥ 1 and N ≈ H = N0, which
is the case for our evaluation of the TreeFC model when
H = hs, we obtain

CORTEX: A Compiler for Recursive Deep Learning Models

OCORTEX =
F

BCORTEX
≈ B ×N0

3×B + 2

ODyNet =
F

BDyNet
≈ B ×N0

5×B + 8× log2(N0)

OPyTorch =
F

BPyTorch
≈ 0.5

As can be seen, OCORTEX > ODyNet > OPyTorch, suggest-
ing that CORTEX generated kernels exploit more data reuse
as compared to DyNet and PyTorch. One should note that
this is a simple model that does not take into account other
overheads associated with DyNet and PyTorch such as the
kernel call and dynamic batching overheads discussed in
§7.2.

D REGISTER PRESSURE IN CUDA
CORTEX-generated CUDA kernels are often large, due to
optimizations such as aggressive kernel fusion, loop peeling,
loop unrolling and recursive unrolling. Furthermore, model
persistence uses GPU registers to persist model weights.
These factors lead to high register pressure. We find that
recursive unrolling precludes us from using persistence for
the TreeLSTM and TreeRNN models discussed in §7.4.
Similarly, we note that we cannot apply the loop peeling
and model persistence optimizations in the case of the Tree-
LSTM model at the same time. In our schedules, we have
explored this trade-off space and evaluated on the best per-
forming schedule. We note that techniques developed in
past work such as (Rawat et al., 2018) and (Sakdhnagool
et al., 2019) can potentially be applied in our context to
alleviate this issue.

