
RACOD: Algorithm/Hardware Co-design for
Mobile Robot Path Planning

Mohammad Bakhshalipour
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
bakhshalipour@cmu.edu

Seyed Borna Ehsani
University of Washington
Seattle, Washington, USA

behsani@uw.edu

Mohamad Qadri
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
mqadri@andrew.cmu.edu

Dominic Guri
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
dguri@andrew.cmu.edu

Maxim Likhachev
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
maxim@cs.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
gibbons@cs.cmu.edu

ABSTRACT
RACOD is an algorithm/hardware co-design for mobile robot path
planning. It consists of two main components: CODAcc, a hard-
ware accelerator for collision detection; and RASExp, an algorithm
extension for runahead path exploration. CODAcc uses a novel
MapReduce-style hardware computational model and massively
parallelizes individual collision checks. RASExp predicts future path
explorations and proactively computes its collision status ahead of
time, thereby overlappingmultiple collision detections. By affording
multiple cheap CODAcc accelerators and overlapping collision de-
tections using RASExp, RACOD significantly accelerates planning
for mobile robots operating in arbitrary environments. Evaluations
of popular benchmarks show up to 41.4× (self-driving cars) and
34.3× (pilotless drones) speedup with less than 0.3% area overhead.

While the performance is maximized when CODAcc and RASExp
are used together, they can also be used individually. To illustrate,
we evaluate CODAcc alone in the context of a stationary robotic
arm and show that it improves performance by 3.4×–3.8×. Also, we
evaluate RASExp alone on commodity many-core CPU and GPU
platforms by implementing it purely in software and show that with
32/128 CPU/GPU threads, it accelerates the end-to-end planning
time by 8.6×/2.9×.

CCS CONCEPTS
•Hardware→Application-specificVLSI designs; •Computer
systems organization→ Parallel architectures.

KEYWORDS
hardware acceleration, speculative parallelism, robotics, path plan-
ning, collision detection

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527383

ACM Reference Format:
Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Do-
minic Guri, Maxim Likhachev, and Phillip B. Gibbons. 2022. RACOD: Al-
gorithm/Hardware Co-design for Mobile Robot Path Planning. In The 49th
Annual International Symposium on Computer Architecture (ISCA ’22), June
18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3470496.3527383

1 INTRODUCTION
Path planning is a core task in nearly any autonomous robot. Path
planning is the process of finding a collision-free path in an envi-
ronment from the current state (location) to a goal state. Collision
detection is the task of checking whether the robot would collide
with obstacles in the environment if it were in a particular state.

“Path planning can be so compute- and memory-intensive that it
is typically off-loaded to the cloud,” according to a recent quote by
Intel engineers [33]. However, such offloading often cannot meet
real-time requirements because the latency of communicating with
the cloud is too high and unpredictable [33]. Thus, real-time appli-
cations, e.g., an aerial vehicle performing complex maneuvers [7],
require path planning to be performed by the robot itself, as fast
as possible. Not only does the high cost of planning present per-
formance challenges, it can also make the robot unsafe: safety is
greatly dependent on how quickly the robot can react to emergen-
cies [49]. In fact, the inability to generate plans in real-time is the
major barrier that hinders the widespread deployment of robots in
the wild [36].

In this paper, we study path planning at the architectural level.
We first architect COllision Detection Accelerator (CODAcc), a hard-
ware accelerator for collision detection. Collision detection is ex-
tremely time-consuming, taking up to 99% of the entire planning
time [11, 30, 31, 34]. CODAcc accelerates collision detection by mas-
sively parallelizing individual collision checks: different parts of
the robot’s body are tested for collision in parallel with each other.
CODAcc achieves a high level of parallelism by employing a novel
MapReduce-style collision computation: the memory addresses,
corresponding to different locations of the environment that the
robot’s body would intersect, are generated in parallel using multi-
ple function units; the addresses that are mapped to the same cache
blocks are tested for collision together.

https://doi.org/10.1145/3470496.3527383
https://doi.org/10.1145/3470496.3527383

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

While individual collision checks are perfectly parallelized by
CODAcc, the end-to-end speedup of hardware acceleration is lim-
ited due to the obstructive serialization in the process of exploring
the environment (i.e., path search). Search algorithms like Dijkstra,
A★, and their variants and extensions exhibit little to no parallelism
for path planning [37]. The reason is the inherent serialization in
the process of searching for an optimal (or efficient) path. At every
step, search algorithms explore a certain location in the environ-
ment and determine the movement with the highest prospect of
reaching the destination (e.g., move left), then assuming that the
movement is taken, they explore the new location. In other words,
parallelizing the path search algorithms is not straightforward be-
cause until the current location is explored, the next to-be-explored
location is not known. This serialization barrier becomes the single
major performance bottleneck of path planning after CODAcc has
been used to speed up individual collision checks.

We overcome this serialization barrier using a technique named
Run-Ahead State Exploration (RASExp). The key idea is to predict
future states (locations) that will likely be explored, perform their
collision checks speculatively ahead of time, and memoize the colli-
sion status for later usage. The key observation is that although the
search patterns are too complicated for state-of-the-art hardware
predictors [40], they can be semantically predicted using domain
knowledge. Specifically, as we show in §2.2.2, path planning ex-
hibits “cone-like” patterns: the footprint of explored areas mostly
comprises narrow cones with few turns in direction. We leverage
this observation to predict future states and overlap their collision
checks with current collision checks. We equip the system with
multiple (up to 32) CODAcc accelerators; at every step, we perform
collision checks of current (demand) and future (speculative) states
in parallel, thereby achieving additional speedups. We call the com-
bined algorithm/accelerator system Run-Ahead COllision Detection
(RACOD).

In summary, our work makes the following contributions:
(A) We architect CODAcc, an efficient collision detection hardware
accelerator. CODAcc is applicable to a wide range of robots oper-
ating in arbitrary environments. As we will discuss in §7.1, prior
work on hardware acceleration of collision detection [31, 35] makes
restrictive assumptions about the environment (e.g., (most) obsta-
cles never move), which greatly limits their application.
(B) We propose RASExp, a novel algorithm extension for paralleliz-
ing path search algorithms. RASExp is the first semantic speculation
technique in path search and beyond.
(C) We evaluate CODAcc and RASExp both separately and syner-
gistically:

• CODAcc accelerates mobile planning by 1.24×–1.49×.
• RASExp, with no hardware change, accelerates mobile robot
planning by 8.6× (2.9×) on a commodity CPU (GPU).

• RACOD, i.e., the synergistic implementation of CODAcc and
RASExp, accelerates mobile robot planning by up to 34.3×
(pilotless drone) and 41.4× (self-driving car), with less than
0.3% hardware overhead.

• To show our design’s applicability beyond mobile robots, we
also evaluate CODAcc in the context of a stationary robotic
armwith a state-of-the-art sampling-based planner.We show
that it improves end-to-end planning time by 3.4×–3.8×.

2 BACKGROUND AND MOTIVATION
2.1 Path Planning & Bounding Volumes
Our focus is mobile robots, like self-driving cars and pilotless drones,
whose ability to operate in real time is challenged by the lengthy
planning time [7]. An example is given in Figure 1 (left). A circle-
shaped robot, with radius 𝑟 , moves from a start point, (𝑥𝑠 , 𝑦𝑠), to a
goal point, (𝑥𝑔, 𝑦𝑔). The path planner’s task is to find an optimal (or
efficient) collision-free path from the start point to the goal point:
a series of (𝑥𝑖 , 𝑦𝑖)s such that if the robot is located at any (𝑥𝑖 , 𝑦𝑖), it
will not collide with the obstacles (gray cells) in the environment.

(𝑥𝑔, 𝑦𝑔)
𝑋

𝑌

(𝑥𝑠, 𝑦𝑠)
𝑔

𝑠

𝑣

Figure 1: 2D mobile robot path planning (left), oriented
bounded box (middle), and path graph search (right).

An occupancy grid, produced by the robot’s perception unit, is
provided to the path planner. The occupancy grid indicates which
cells in the environment are free (‘0’), and which cells are occu-
pied with obstacles (‘1’). The perception unit constantly updates
the occupancy grid to reflect the most recent understanding of the
environment. Note that perception is a separate stage in the ro-
bot’s software pipeline: the occupancy grid does not change during
planning.

To ensure the final path is collision-free, the planner performs
collision detection for the points that are considered for inclusion in
the final path. To find out whether a point satisfies this condition,
the planner first should calculate which cells will be involved if the
robot is placed at that point. This operation is known as forward
kinematics (FK). Then, the planner checks all the cells determined
by FK, and if none of them is an obstacle, the point is identified as
collision-free.

In the example, if 𝑟 is around one resolution unit, as the figure
suggests, then for every point, collision detection entails checking
9 cells: the point’s cell and the 8 cells surrounding it. Collision
detection can be quite intensive: e.g., with a radius 𝑟 = 10𝑐𝑚 and
a resolution unit of 1𝑐𝑚 , collision detection for any point entails
checking 384 cells.

In practice, the robot’s shape can be more complex than a circle.
For example, a rough shape of the Arduino Ant Hexapod Robot [3]
is shown inside the rectangles in Figure 1 (middle). In such cases,
precise computation of FK can itself be too complex and costly, let
alone the post-FK collision detection.

Oriented Bounded Box (OBB) [17] is a method used to handle
robots with arbitrary shapes and orientations. OBB bounds the
shape with an oriented rectangle (in 2D; cube in 3D), as exemplified
by the blue rectangles in Figure 1 (middle). By bounding the robot’s
body, collision detection reduces to checking whether the robot’s

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

OBB falls into a collision-free cell or not.

Observation I: Collision detection can be massively parallelized;
however, the parallelism is extremely fine-grained.

Checking the collision status of every part of the robot’s body
is independent of other parts; the operations can be completely
parallelized. E.g., in the example of Figure 1 (left), the 9 cells the
robot’s body may occupy at a time can all be checked in paral-
lel. Importantly, the parallelism is extremely fine-grained: every
operation is simply checking a cell value.

The fine-grained parallelism makes hardware acceleration a per-
fect fit for collision detection; simply ORing the cells in hardware
(inherently parallel) will provide the collision status. Vectorization
and multithreading may seem like promising alternatives for such
computation, but each has its own problems. Vectorization can
accelerate the collision detection of axis-aligned OBBs, but other
orientations would not have a regular, array-like layout in memory,
rendering vector instructions useless. Multithreading, in CPU or
GPU, is a poor match for this kind of computation: creating, prepar-
ing, and joining a thread is much costlier than simply checking a
cell value.

Observation II: Collision detection computation exhibits a high
level of spatial locality.

Because a robot is one integrated body, collision detection compu-
tation is fundamentally spatially-located. The occupancy grid cells
that are checked during a collision detection are nearby each other,
clustered around the physical robot. In the Figure 1 (left) example,
a 256-byte cache dedicated for collision detection memory accesses
results in a 99+% hit ratio.

2.2 Path Search
2.2.1 Search Algorithm. Mobile robot path planning is ultimately
reduced to a graph search problem: nodes are states (locations) and
edges are robot motions. For example, with a robot that can move
in four cardinal directions (N, E, S, and W) in a 2D environment,
every non-terminal node is connected to 4 surrounding nodes (4-
connected grid). With a robot that can further move in four inter-
cardinal directions (NE, SE, SW, and NW), the graph will be an
8-connected grid.

The graph can be searched using practically any graph search
algorithm to extract an optimal or efficient path. A★ [20], along
with its variants and extensions (§5.9), is the seminal algorithm
widely used in various robot path planning applications. The key
novelty of A★ over other graph search algorithms like Dijkstra is
employing a heuristic that results in significant speedup, e.g., an
estimate of a point’s distance from the goal. In what follows, we
briefly overview the algorithm (pseudo-code in §3.2.1).

Consider the graph depicted in Figure 1 (right). The algorithm
should find a path from the start point (𝑠) to the goal point (𝑔). For
every node 𝑣 in the graph, A★ defines 𝑓 (𝑣) = 𝑔(𝑣) + ℎ(𝑣), where
𝑔(𝑣) is the actual movement cost (distance) from 𝑠 to 𝑣 , and ℎ(𝑣) is
the heuristic cost from 𝑣 to 𝑔 (an underestimate of the actual cost).
In this paper, the default heuristic is Euclidean distance.

A★ maintains an OPEN list, which initially contains only 𝑠 . At
every iteration, the node with the lowest 𝑓 value is expanded: it
is removed from the OPEN list, is marked as visited, and its “eli-
gible neighbors” are added to the OPEN list. Whenever the goal
is expanded, the algorithm is done, and the path leading to the
expansion of 𝑔 is returned as the final output path.

In path planning, eligible neighbors of a node are its unvisited,
collision-free neighbors. That is, the costly collision detection op-
erations are performed for the unvisited neighbors of an expanded
node at every iteration. A★ has only one parallelization source: the
eligible neighbors of an expanded node can be tested for collision in
parallel. For example, with an 8-connected grid, up to eight collision
detections can be parallelized (and typically far fewer). Other than
this, A★ path planning is serial, as are most of its extensions and
variants [37, 41]. The reason is the fact that the optimality of the al-
gorithm depends on the expansion order, and (naive) parallelization
can potentially disturb the order, sacrificing the optimality. This is
a severe performance bottleneck given that modern mainstream
computing systems support much more parallelism.

2.2.2 Patterns Exposed During Path Search. The green arrows in
Figure 1 (left) show how the robot moves following the optimal
path returned by A★. It first moves north (N), then keeps moving N
for another two steps, then moves NE, then E, then keeps moving
in the same direction for another six steps, and so on.

Observation III: The footprint of path exploration exhibits
“cone-like” patterns.

Paths extracted in planning, exhibit regular, predictable patterns
in state space: connected straight-line segments rather than frequent,
irregular direction changes (green arrows in Figure 1 (left)). And,
exploration of those pathsmanifests cone-like patterns: the footprint
of traversing the graph mostly comprises cones, with few turns
in direction, around each segment of the explored paths (purple
cone in Figure 1 (left)). Figure 4 in §5.3 depicts the cones for a 2D
benchmark.

The patterns arise partly because of the geometric features of path
planning and partly because of regular organization and structure
of real-world environments. Consider a collision-free 2D space in
which a mobile robot tries to reach a destination from a start point.
The shortest path between the two points is a straight line that
connects them (a basic geometry principle). In such an environment,
the robot will start to move in the direction of the goal and will keep
moving in the same direction until it reaches the goal. Inmore general
environments, the robot changes direction due to obstacles, but
again otherwise keeps moving in the same direction. Moreover, the
structure of many real-world environments encourages continuing
in a given direction. Picture a self-driving car moving in a certain
direction in a street bounded by buildings from the sides. Even
in the presence of lane changes and overtaking, the vehicle will
mostly move in a regular, straight direction (same as manual cars).
As a result, the extracted paths in real-world environments mostly
comprise connected straight-line segments, and the exploration
of such paths (i.e., the graph search algorithm) exhibits cone-like
patterns: each explored path is embraced by a cone.

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

Our argument is that relying on the history of directions that
have been taken so far, we can speculate on the path going forward.
Even in the short scenario of Figure 1 (left), two-thirds of the taken
directions in the final path are the same as the preceding direction.
Although the set of explored nodes in path planning is a superset of
the final path, we show that the history of directions can be effectively
used to speculate on what nodes will be explored.

Importantly, the cone-like patterns are spatial. That is, the con-
secutive expansions (in time order) do not necessarily exhibit any
patterns. Search algorithms may explore more than one growing
tree (GT) inside the graph (dashed lines in Figure 1 (right)), and
their exploration can be temporally interleaved. There is not neces-
sarily any pattern among the multiple GTs whose explorations are
interleaved during path planning; the pattern is exhibited only in
each GT independently.

Finally, the cone-like patterns are “conceptual” and are exhibited
at the algorithm-level (i.e., semantic), and not necessarily at the
underlying memory layout. Therefore, we argue that path planning
exhibits semantic spatial locality and implement a spatial predic-
tor in software, not in hardware where semantic information is
unavailable (§5.7.2).

3 RUNAHEAD COLLISION DETECTION
(RACOD)

This section presents the two main components of RACOD.

3.1 Collision Detection Accelerator (CODAcc)
CODAcc’s task is computing the collision status of an OBB. There
are two major challenges for a hardware design: (i) OBB size (in
number of cells) is dependent on the robot’s body shape and the
planner’s resolution unit, and hence, could be different from one
robot to the next. (ii) Checking a large OBB entails checking many
occupancy grid cells; given a narrow memory interface, naively
loading memory addresses of the cells would result in serialization,
possibly offsetting much of the benefits of hardware acceleration.

We address the first challenge by designing a Hardware OBB
(HOBB) coupled with a greedy scheduler. HOBB is a fixed-size hard-
ware unit (set of registers) on which the actual OBB, determined
by the software, is loaded. HOBB uses 𝐿 = 10,𝑊 = 3, and 𝐻 = 3
registers to represent length, width, and height, respectively. When
an OBB is larger than the HOBB, a greedy scheduler partitions the
OBB on the HOBB, in multiple steps.

We address the second problem using a MapReduce-style hard-
ware computation model: all memory addresses are generated in
parallel (map), then they go through circuitry that coalesces requests
to the same cache blocks (reduce). Ultimately, a few unique cache
blocks are requested from memory. Below, we explain the details
of these techniques, along with CODAcc’s other building blocks.

3.1.1 Processor-Accelerator Communication. Collision status is de-
termined based on the occupancy grid information; thus, the ac-
celerator should have access to it. A pointer to the beginning of
the occupancy grid in memory and its size in different dimensions
are sent to the accelerator via a queue-based configuration inter-
face [18]. These parameters are used for generating occupancy grid
memory addresses, and do not change during the planning stage.
All other communications with the accelerator are performed via a

single added instruction:

check_coll <dim> <cfg> <res>

dim is a 1-bit immediate value (can be a part of an opcode), indi-
cating whether OBB is a rectangle (2D) or a cube (3D). cfg is a
pointer to the OBB that should be tested for collision, and res is
the memory location to which the collision status is written. As a
communication convention, the OBB configuration, to which <cfg>
points, is coded in a cacheline-aligned structure as shown in Table 1.

Table 1: OBB configuration encoding.

origin size orientation

2D (𝑥𝑜 , 𝑦𝑜) (𝑙, 𝑤) sin𝜃, cos𝜃
3D (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) (𝑙, 𝑤,ℎ) sin𝛼, cos𝛼, sin 𝛽, cos 𝛽, sin𝛾, cos𝛾

origin is the coordinates of OBB’s origin. size is OBB’s size in
different dimensions. orientation is OBB’s orientation. In 2D, it is
simply described by 𝜃 , the angle between the rectangle and 𝑥-axis.
In 3D, it is defined by 𝛼 , 𝛽 , and 𝛾 , three angles each representing ro-
tation around one axis (roll-pitch-yaw). Also, instead of sending the
angles themselves, their sine and cosine are sent to the accelerator;
this simplifies the accelerator design since it gets rid of including
circuitry to implement trigonometric functions. All the arguments
are 32-bit floating point numbers.

When the instruction is decoded, the core forwards it to the
accelerator. The accelerator computes the collision result, as de-
scribed below, and writes it to the memory location specified in the
operand. Finally, the instruction is committed.

3.1.2 Data Path. Before explaining the data path, we explain one
simple optimization we make to the occupancy grid’s memory
layout. Namely, we optimize for spatial locality by implementing the
occupancy grid using uint32_t such that every grid cell occupies
only one bit. This way, more nearby cells are captured in a single
cache block, at a cost of having to do bit masks to extract the desired
occupancy bit.

Figure 2 shows an overview of CODAcc. 1 shows CODAcc’s
address generation unit (AGU). AGU generates all to-be-checked
cells’ locations and then their memory addresses, storing them in
2 HOBB. The cells’ locations are generated using the configuration
information (origin, size, and orientation). For example, for a 2D
OBB (see Table 1), the location of its origin is (𝑥𝑜 , 𝑦𝑜), and the
location of its top-right corner is (𝑥𝑜 + 𝑙 cos𝜃 −𝑤 sin𝜃,𝑦𝑜 + 𝑙 sin𝜃 +
𝑤 cos𝜃). After generating locations, the corresponding memory
addresses are obtained according to memory layout semantics (row-
major layout), using the occupancy grid memory address and its
sizes in different dimensions (§3.1.1).

HOBB consists of a set of registers, each corresponding to a
specific cell in the OBB. Every register keeps a key-value pair: the
memory address of the location it corresponds to, and its occupancy
status (collision or free; 1 bit). The figure is drawn to resemble the
registers-OBB correspondences. Assuming zero angles, on the front
pane, the bottom-left corner register represents (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) cell,
and the top-right corner register represents (𝑥𝑜 +𝐿,𝑦𝑜 +𝑊,𝑧𝑜) cell.
Every register holds the corresponding cell’s memory address and
its occupancy status. Also, as we will describe shortly, the same
HOBB is used for both 2D and 3D OBBs but with different circuitry.

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

Configuration

𝐿!
Cache

Load Queue

Collision?

Cache Block

RU

Address Value

1

3

4

5
6

7

2

Scheduler 9

8

Figure 2: Hardware realization of CODAcc.

The generated addresses pass through a 3 reduction unit (RU),
and then the requests for distinct cache blocks enter a 4 load queue
(LQ). When the LQ is empty, the cache block request of the first1
non-empty register enters the LQ. Then, RU performs an associative
search (i.e., parallel) to find which registers need addresses that fall
into the cache block at the head of the LQ, marks them as pending,
and enqueues the cache block request of the first non-empty, non-
pending register into the LQ. This repetitive process is stalled if
the LQ becomes full, and finishes when no non-pending register
remains.2

Noteworthy, due to the high spatial locality (§2.1), this process
repeats only a few times. One cache block alone incorporates 512
bits (cells), while all registers together request 90 bits. As such, a
few cache blocks serve all requests, and an 8-entry LQ is rarely
filled up in practice.

LQ entries are constantly 5 dequeued and sent to the memory
hierarchy. Upon a cache block arrival 6 , registers whose addresses
fall into that cache block take their value. The 1-bit values are
placed into the registers, and are 7 ORed to produce the collision
detection output. This process continues until either (i) the outcome
of the OR gate rises anytime during the check, or (ii) the entire OBB
has been checked.

Note that the entire load-to-OR path (4 - 5 - 6 - 7) works in a
pipelined manner. I.e., the accelerator does not wait for all the loads
before ORing them; a cell can raise the output of the OR gate as
soon as its value is received from memory. This massive parallelism
provided by pipelining/ORing in hardware, rather than checking
one-by-one in software, is the major contributor to CODAcc’s per-
formance improvement.

A corner case arises when an OBB extends outside the environ-
ment boundaries—it is an invalid configuration. When any of the
memory addresses falls outside the occupancy grid’s address range,
the output is 8 short-circuited. Finally, when the collision result is
computed, the registers are cleared.

1The order among registers is hardwired; e.g., reg0 precedes reg1.
2The RU’s reduction mechanism is different from that of caches’ miss status
holding registers (MSHRs). MSHRs handle requests one-by-one: the first
request triggers a cache miss, the block address is stored in MSHR, and
subsequent accesses to the outstanding cache block are served one-by-one.
The RU uses a different approach: all requests are reduced at the source and in
parallel. Also, the RU is different from recent GPUs’ address coalescers [15];
the RU supports bit-granular, irregular (oriented) address coalescing while
most GPUs coalesce regular addresses at a word granularity.

When an OBB is smaller than the HOBB, some of its registers
are left unused. To avoid having separate valid bits in registers
and setting/resetting them, the unused registers in every dimen-
sion take the address of the last register in that dimension. This
way, in fact, we include some states multiple times in our collision
computation, but note that doing so does not affect the outcome of
computation (bitwise OR). When an OBB is larger than the HOBB,
9 the scheduler partitions it, performing its collision detection in
multiple serial steps.

To design a simple yet efficient scheduler, we deem the partition-
ing as an optimization problem whose goal is to maximize cache
hits across multiple steps. We use this greedy algorithm: first, fully
evaluate the 𝑥 dimension, which will be done in ⌈ 𝑙

𝐿
⌉ steps, 𝑙 being

the length of the OBB; then complete the 𝑦 dimension; and finally,
complete the 𝑧 dimension (if 3D). We prioritize 𝑥 over 𝑦 (and 𝑦 over
𝑧) to leverage the row-major layout of multi-dimensional arrays in
memory, for cases when the OBB is axis-aligned or nearly so. This
is also in part a reason why we chose a large 𝐿 for the HOBB.

Finally, although the location of cells in a 2D OBB can be com-
puted by the same circuit used for 3D (by zeroing the third dimen-
sion), we dedicate separate circuits to the AGU and scheduler of
2D and 3D computations. This has two benefits: (i) a 2D OBB can
be computed faster, and (ii) when a 2D OBB is large, the scheduler
can dispatch parts of it on idle 𝑧 registers, computing the collision
status in fewer steps.

3.1.3 𝐿0 Cache. We provision the accelerator with a 256-byte
(2048-bit) 𝐿0 cache. This 𝐿0 caches the data requested by the AGU.
The 𝐿0 efficiently filters the majority of requests not only by exploit-
ing spatial locality, but also temporal locality: subsequent collision
checks have a large amount of overlap.

3.1.4 System Integration. A processor can be integrated with mul-
tiple instances of the accelerator. When so, like other functional
units (adders, multipliers), the core’s scheduler is responsible for
dispatching different check_coll instructions to CODAcc units.
Also, every CODAcc unit has its own 𝐿0 cache; all 𝐿0 caches are
backed by the core’s 𝐿1 cache and forward misses to its interface
(a 16-entry queue).

To keep the entire system coherent, blocks cached in 𝐿0 are
marked in the processor’s 𝐿1 cache (1-bit extension); whenever a
marked block is evicted from 𝐿1 or invalidated or written, the block
is invalidated in 𝐿0. The cache extension overhead is 128 bytes per
core (not per accelerator). Also, 𝐿0 is virtually indexed, physically
tagged. A TLB with a couple of entries is sufficient to translate
nearly all accesses.

3.2 Run-Ahead State Exploration (RASExp)
3.2.1 Baseline Algorithm and Extension. As we show later, CODAcc
is so low overhead that we can afford many instances of it. How-
ever, the limited parallelism of the search algorithm (§2.2.1) limits
the benefits of having many CODAccs. RASExp is a technique to
increase parallelism: at every step, it predicts likely-to-be-explored
next states, speculatively performs their collision checks in parallel
with those of the current state, andmemoizes the collision status for
potential later usage. The key insight of RASExp is that expansions
with the search algorithm exhibit cone-like patterns (§2.2.2).

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

01 exp_node = OPEN.pop()
02 // evaluate the expanded node ...

03 for n in exp_node->neighbors():
04 if !visited[n] and collision_status[n] == UNKNOWN:
05 collision_status[n] = PENDING
06 thread {collision_status[n] = check_collision(n)}

07 if any_outstanding_thread:
08 ll_counter = MAX_DEPTH
09 pred_dir = get_dir(exp_node, exp_node->parent)
10 pred_n = exp_node

11 while freeContexts > 0:
12 pred_n = pred_n->neighbors()[pred_dir]
13 for n in pred_n->neighbors():
14 if !visited[n] and collision_status[n] == UNKNOWN:
15 thread {collision_status[n] = check_collision(n)}
16 if freeContexts == 0: break
17 if --ll_counter == 0: break

18 all_threads.join()

19 for n in exp_node->neighbors():
20 if !visited[n] and collision_status[n] == FREE
21 // evaluate n and push to OPEN

RA
SE

xp’s E
xtension

Algorithm 1: Baseline A★ and RASExp’s extension.

RASExp’s prediction mechanism is very simple: the path will
grow in the same direction as it grew in the last step. Therefore,
whenever a node is expanded, RASExp finds out the direction that
led to the expansion, and predicts that the path will grow in the
same direction.

Algorithm 1 shows the main iteration of both the baseline A★

and RASExp’s extension. The pseudo-code depicts a multithreaded
baseline A★, as well as a multithreaded RASExp. With a CODAcc-
rich processor, each thread call gets replaced by a check_coll
instruction.

In line 01, the node with the minimum 𝑓 is expanded (§2.2.1).
Then some basic operations of A★ are performed (e.g., mark visited).
Starting at line 03, the planner looks for eligible neighbors. For
every unvisited neighbor, if its collision status is unknown, a thread
computes its collision status.

In the absence of RASExp, A★ waits for threads to join (line 18). It
then evaluates unvisited, collision-free neighbors and (potentially)
adds them to the OPEN list (lines 19–21).

RASExp (lines 07–17) tries to speculatively overlap future nodes’
collision operations with outstanding collision checks. First off, it
is done only if there are outstanding collision checks (line 07); i.e.,
RASExp does not stall the main execution thread for speculative
operations.

RASExp extracts the direction that led to current expansion (line
09), and predicts the path will grow in the same direction (lines 10
and 12). Then, as long as a free context (thread or CODAcc) exists,
RASExp runs ahead and offloads a collision detection to it (lines
11–17). The computation of these collision checks (speculative) is
overlapped with the computation of outstanding ones (demand).

Finally, to avoid livelock, RASExp uses an ll_counter, initialized
with MAX_DEPTH (line 08), and decrements it after every run-ahead,
and halts the process if it expires (line 17). In this paper, the default
MAX_DEPTH is 8. Hence, RASExp can run up to eight vertices ahead,
and perform the collision checks for each of their neighbors.

3.2.2 Discussion & Optimizations. RASExp is a radically different
parallelization approach. Hence, it opens up new opportunities and
poses different design questions.

Sophisticated Predictors: RASExp’s prediction mechanism is sim-
ple: the last direction in the GT (§2.2.2) will repeat. This can be
replaced by a sophisticated predictor to capture more complex pat-
terns (e.g., zigzag patterns). Our current workloads do not justify
such sophisticated predictors (§5.7.1); however, we believe that
complex predictors could be effective in other applications of A★

(e.g., Protein design [51], natural language processing [27]) or in
other graph search algorithms.

Hardware Prediction: One might wonder why the prediction is
not made in hardware. The answer is: while the patterns are regular
semantically, they are not so in hardware. First, as discussed in
§2.2.2, the expansion of GTs inside the graph can be interleaved; a
hardware predictor could be bewildered by this issue alone. Second,
the spatial patterns are conceptual, and the trees do not necessarily
exhibit those patterns in the memory layout. For example, consider
a tree growing in a diagonal direction: while conceptually the tree
is growing in a straight direction, the memory addresses can be
mapped to distant locations in the memory layout.

4 METHODOLOGY
We evaluate our hardware accelerator alone and in conjunctionwith
our algorithm extension, using simulation, in §5. We also evaluate
a software-only implementation of our algorithm extension on
commodity hardware (CPU and GPU) in §6.

We write CPU applications in C++17 and compile them using
GCC 11. We develop GPU applications using CUDA 11 and com-
pile them with NVCC. We compile the codes with the maximum
optimization level (-O3).

We synthesize the accelerator in TSMC’s 45-nm ASIC flow, us-
ing the Synopsys Design Compiler. We perform simulations using
ZSim [39], and model a processor after the Intel Core i3-8109U [5]—
a state-of-the-art robotic processor deployed in LoCoBot [2]. We
simulate all programs to completion.

We conduct our software-only evaluations using a 32-core Intel
E5-2670 CPU [1] and an NVidia GeForce GTX 1060 GPU [4]. We
use Ubuntu 18.04 with Linux Kernel 4.15 as our operating system.

5 EVALUATION
5.1 Accelerator’s Specifications
Table 2 shows the design parameters of CODAcc in 45-nm technol-
ogy. The ‘Power’ represents the total power at maximum activity
estimated by the synthesis tool.

Table 2: Design parameters of CODAcc.
Cycles Area PowerComponent (@3𝐺𝐻𝑧) (𝑚𝑚2) (𝑚𝑊)

Logic+Registers 5 0.019 12.1
𝐿 0 Cache 1 0.004 0.17
Total - 0.023 12.27

CODAcc has a simple, small structure: 10 × 3 × 3 registers plus
simple logic to implement operations like addition, multiplication,

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

and comparison. The accelerator takes 0.023𝑚𝑚2 and consumes
12.27𝑚𝑊 . As a point of comparison, in 40 nm technology, a com-
parable Intel processor’s die-size is 276𝑚𝑚2, and its power con-
sumption is 94𝑊 ; a single core of the processor alone occupies
25𝑚𝑚2 of silicon area and consumes 11𝑊 power [32]. Even tiny
ARM Cortex-A15 cores in 40 nm technology occupy 4.5𝑚𝑚2 and
consume 1𝑊 [32].

Due to its low overhead, we can integrate tens of CODAccs with
the processor. The area overhead of thirty-two CODAccs altogether
plus the cache extension (§3.1.4) is less than 0.73𝑚𝑚2 (3% of a core’s
area and 0.3% of the die-size). Also, thirty-two accelerators consume
less than 393𝑚𝑊 at full load (3.5% of a core’s power and 0.5% of
chip power).

5.2 Mobile Robot Navigating in 2D
First, we evaluate a mobile robot navigating in 2D environments.
The program resembles a self-driving car navigating in a city. We
use snapshots of four cities available in Moving AI [42]. Figure 3
(top) shows snapshots of the environments, and Figure 3 (bottom)
shows RACOD’s speedup on them, varying the number of accelera-
tors.

0

10

20

30

40

1 2 4 8

1
6

3
2

0

10

20

30

40

1 2 4 8

1
6

3
2

0

10

20

30

40

1 2 4 8

1
6

3
2

0

10

20

30

40

1 2 4 8

1
6

3
2

S
p
e
e
d
u
p

Accelerators Accelerators Accelerators Accelerators

B
o
st
o
n

Lo
n
d
o
n

M
o
sc
o
w

Sh
an
gh
ai

S
p
e
e
d
u
p

S
p
e
e
d
u
p

S
p
e
e
d
u
p

Figure 3: 2D navigation in the wild.

For every map, we choose 100 random start/goal points. The
graph is 8-connected, and a multithreaded A★ is the baseline al-
gorithm. In the baseline implementation, 67.3% of the entire path
planning time is spent in collision detection.

One CODAcc alone improves performance by 1.49×. This is the
speedup of pure hardware acceleration (no RASExp), obtained from
parallelizing individual collision checks. RASExp further enhances
performance by parallelizing different collision checks. RASExp
greatly scales up the parallelism, achieving 41.4× speedup with 32
CODAccs.

Interestingly, we observe similar normalized speedups with dif-
ferent maps. This mainly emanates from the high prediction cov-
erage/accuracy of RASExp (see §5.7.1), which results in predicting
enough correct nodes in all the environments and thereby effectively
keeping all the accelerators utilized (see §5.8). As a result, RACOD
brings linear speedup proportionate to speculation runahead across
all the maps.

5.3 Exploration Footprint
Figure 4 shows an approximation of all the nodes explored during
the search (not just the final path) in one planning scenario, where
we have zoomed-in on part of the full map. As shown, the majority

of speculations are accurate (green), with only a few misspecula-
tions (red) typically happening on the fringe of heavily-explored
areas.

Demand

Fat Cones

Narrow Cones

Correct Spec. Wrong Spec.

Figure 4: Cone-like patterns in a Boston snapshot, with a
runahead of 32.

The figure also visualizes cone-like patterns: fat cones (when the
planner struggles to find an efficient path through a cluttered area),
and narrow cones (when the planner keeps exploring an uncluttered,
straight-line path towards the goal).

By running ahead of a path and proactively evaluating neighbors
of prospective nodes, RASExp effectively captures the exploration
patterns (quantitative results in §5.7).

5.4 Mobile Robot Navigating in 3D
Next, we evaluate a mobile robot navigating in a 3D environment.
The program resembles an unmanned aerial vehicle (UAV), a.k.a.
drone, navigating in an outdoor environment. We use the ‘Freiburg
campus’ map available in the OctoMap 3D scan dataset [47] as our
environment. The resolution of the map is 0.2𝑚 . Figure 5 shows the
environment (left) and RACOD’s performance improvement with
different numbers of accelerators (right).

0

10

20

30

40

1 2 4 8 16 32

S
p
e
e
d
u
p

Accelerators

Figure 5: A map of the environment and the performance
improvement.

We choose 10 random start/goal points. The UAV can move
back and forth in all three dimensions. On average, the baseline
spends 54% of the entire path planning time performing collision
detections.

One CODAcc alone accelerates planning by 1.24×. With RASExp,
RACOD substantially scales up the parallelism, providing 34.3×
speedup with 32 CODAccs.

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

5.5 Robotic Arm Operating in 3D
As a proof of concept for our accelerator’s applicability to a wider
domain, we further study a robotic arm planning application: a
stationary robotic arm with multiple degrees-of-freedom (DoF) op-
erating in a 3D environment.

Robotic arm planning has as many dimensions as its DoF. High-
dimensional planning is performed by sampling the configuration
space. Rapidly-exploring Random Trees (RRT) [29] is a widely-used
robotic arm planning algorithm. The main advantage of RRT over
former methods like PRM [25] is the ability to work in arbitrary
environments, which is also a major design consideration of our
accelerator.

RRT extends a tree (not a more general graph, as in mobile robots)
from the start point by drawing random samples; the tree is ex-
tended towards collision-free samples until reaching the goal.

Wemodel a robotic arm based on an in-house 5-DoF LoCoBot [2],
operating in the environment shown in Figure 6 (left), planned
by a state-of-the-art parallel RRT [28]. The arm moves from 𝑠 =

(−80◦, 0◦, 0◦, 0◦, 0◦) to 𝑔 = (0◦, 60◦,−75◦,−75◦, 0◦). With this (𝑠, 𝑔)
pair, the arm traverses a long trajectory with different types of
movement (translation and rotation), forming various configura-
tions for collision detection. On average, the baseline spends 80.5%
of the planning time in collision detection. The robot is bounded
by the OBBs shown in Figure 6 (middle). Figure 6 (right) plots the
speedup with 1–4 accelerators.

3.0

3.2

3.4

3.6

3.8

4.0

1 2 3 4

S
p
e
e
d
u
p

Accelerators

Figure 6: The modeled robot and environment (left), Lo-
CoBot’s OBBs (middle), and the performance improvement
of hardware acceleration (right).

Note that RASExp is not applicable nor needed in RRT . Since RRT
creates a tree, not a graph, there is no need to search the structure
to find a path. The path is simply extracted by traversing each
node’s parent pointers from the goal to the start. Nevertheless,
multiple CODAccs can enable parallel collision status computation
of different links of the arm.

One CODAcc improves the execution time by 3.4×. With in-
creasing the number of CODAccs up to the number of OBBs, the
performance increases slightly, up to 3.8×.

5.6 CPU-Accelerator Communication Latency
When an accelerator is not tightly integrated with the CPU, the com-
munication latency can go up and hurt the performance, sometimes
rendering the accelerator harmful [18].

In this section, we evaluate three communication latency num-
bers: 1 cycle (tightly integrated, default), 10 cycles (co-processor,
system-on-chip), and 100 cycles (off-chip). In the two latter cases,
we assume the communications are explicitly established by the
programmer: the programmer copies all the configurations that

should be tested for collision into a buffer, triggers the accelerator,
and gathers all the results at once when they are ready.3 Also, the
communications have blocking semantics, meaning the processor
waits for the operation to finish before proceeding. Figure 7 shows
the results. With ‘1 CODAcc,’ all robots have only one accelerator,
and in ‘32/4 CODAccs,’ the mobile robot has 32 accelerators and the
arm has 4.

-1
1
3
5
7
9

Mobile
2D

Mobile
3D

Arm
3D

Mobile
2D

Mobile
3D

Arm
3D

1 CODAcc 32/4 CODAccs

N
o
rm

a
li
z
e
d

P
e
rf

o
rm

a
n
ce

1 Cycle 10 Cycles 100 Cycles

1
8

.7

4
1

.4

1
5

.9

3
4

.3

0

Figure 7: Speedup sensitivity to CPU-accelerator communi-
cation latency.

When the system has only one accelerator, the performance
is very sensitive to communication latency. When the number of
accelerators (runahead/parallelism) increases, the communication
overhead gets amortized, especially in mobile robots in which 32
CODAccs are deployed.

5.7 Prediction Coverage and Accuracy
5.7.1 Semantic Predictor. Recall that RASExp uses semantic infor-
mation and is implemented in software (§3.2). Figure 8 (top) shows
its prediction accuracy (bars) and coverage (dots) with different
runaheads (𝑅). Prediction accuracy is the percentage of predictions
whose computation result is eventually used by the planning algo-
rithm. Prediction coverage is the percentage of speculated collision
checks that must otherwise (i.e., without RASExp) be done non-
speculatively.

Boston London Moscow Shanghai Freiburg

R=2 R=4 R=8 R=16 R=32

50%

100%

50%

100%

0%

0%

M
et

ri
c

of
 In

te
re

st

Semantic Prediction

Hardware Prediction

Figure 8: Prediction accuracy/coverage (bars/dots) with dif-
ferent runaheads.

With a runahead of two, 95.1% of predictions are accurate, sub-
stantiating our observation on conceptual, semantic spatial locality
in node expansions. Also, the prediction coverage is 43.4%. With in-
creasing the runahead, RASExp becomes more aggressive, offering
higher coverage and slightly lower accuracy. With a runahead of
thirty-two, RASExp’s coverage reaches 90.9%, while offering more
than 85.1% accuracy.

3Copying latency is assumed to be captured in communication latency.

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

Incorrect predictions result in energy wastage, as the collision
status is computed but never used. Nonetheless, because the pre-
diction accuracy is so high, and the CODAccs, on which misspec-
ulations run, are so low power, the energy wastage of RASExp is
quite negligible (≪0.01% of chip power).

5.7.2 Hardware Predictor. Next, we study the effectiveness of RASExp
implemented in hardware. Since child-parent relations are lost,
RASExp’s simple prediction method cannot be used in hardware. In
Figure 8 (bottom), we study RASExp with a state-of-the-art hard-
ware predictor.

We repurpose VLDP [40], a state-of-the-art pattern prefetcher,
to predict future states in planning. We make several changes to
VLDP’s design: (i) We use infinite-size metadata tables. (ii) We
trigger the predictor only upon collision detection accesses; this
lets the predictor observe one clear-cut access stream, rather than
many interleaved streams. (iii) The predictor operates on virtual
addresses. (iv) The predictions are stored in infinite storage (prefetch
buffer in prefetching terminology). All four changes are in favor of
the prediction accuracy and coverage of hardware prediction.

The coverage and accuracy of semantic prediction are signif-
icantly higher than those of hardware prediction: 2.1× coverage
and 2× accuracy on average. This is particularly true in the drone
application where the addition of a third dimension completely
bewilders the hardware predictor. The results reinforce the impor-
tance of exploiting semantic information that is difficult to extract
in hardware.

Noteworthy, footprint-based spatial pattern predictors [23] could
not be repurposed for this experiment. Those predictors collect
patterns when the tracked region is evicted from the cache, while
the notion of cache does not exist in this problem. Also, temporal
prediction [13] would be meaningless in this context since collision
detection sequences never repeat: there is at most one collision
check per state.

5.8 Division of Labor
The bars in Figure 9 show the average number of useful collision
checks per node expansion. Demand represents the collision checks
performed by the baseline algorithm, and speculative represents
those issued by RASExp.With increasing runahead, the contribution
of the speculative computations goes up: more on-the-critical-path
collision checks are performed speculatively ahead of time, and as
a result, the planning is less stalled on every expansion.

0%

25%

50%

75%

100%

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Boston London Moscow Shanghai Freiburg

U
til

iz
at

io
n

C
ol

l.
C
he

ck
s

Pe
r

Ex
p.

Demand Speculative

Figure 9: Division-of-labor, varying the number of accelera-
tors.

The solid dots in Figure 9 show the utilization ratio of the accel-
erators (threads) in non-idle expansions, i.e., expansions in which
at least one collision detection is performed. With a handful of

accelerators (2–8), the utilization ratio is nearly 100%, showing
that the amount of parallelism with the baseline algorithm plus
the additional parallelism provided by RASExp is high enough to
always keep the accelerators busy. With more accelerators, the uti-
lization ratio decreases, mainly because of the livelock-avoidance
mechanism (§3.2.1).

5.9 Weighted A★ & Different Heuristics
A★ is guaranteed to find the shortest path (optimal), with the min-
imum number of expansions (optimally efficient [16]). However,
not all applications require finding the shortest path: some appli-
cations favor a suboptimal path to an optimal path, if finding the
suboptimal path is significantly faster.

Weighted A★ (WA★) [38] is the most popular satisfying algo-
rithm for heuristic search in various domains [46]. WA★ inflates
the heuristic by a factor of 𝜀 > 1. That is, WA★ expands nodes in
the order of 𝑓 (𝑣) = 𝑔(𝑣) + 𝜀 × ℎ(𝑣). This way, the search is biased
towards the nodes that are closer to the goal, resulting in faster
expansion of the goal. On the flip side, the final path cost could
become 𝜀 times higher than the shortest path cost.

Moreover, prior work proposes various heuristics ℎ(𝑣). So far,
we used Euclidean distance as our heuristic. In this section, we re-
evaluate the experiments of §5.2 with two other popular 2D heuris-
tics: Manhattan distance and non-uniform diagonal distance [10].
We also evaluate the Dijkstra search algorithm, which does not use
any heuristics.

Figure 10 shows speedup (bars) and prediction coverage (dots)
with different heuristics and weights, averaged across all workloads.
The speedup is the performance of every method with RACOD
normalized to that without RACOD. All evaluations are done with
32 threads/accelerators.

0%

25%

50%

75%

100%

0

10

20

30

40

50

ε=1 ε=2 ε=4 ε=1 ε=2 ε=4 ε=1 ε=2 ε=4

Dijkstra Manhattan Diagonal Euclidean

P
re

d
ic

ti
o
n
 C

o
v
e
ra

g
e

R
A

C
O

D
's

 S
p
e
e
d
u
p

Figure 10: RACOD’s effectiveness with WA★ and different
heuristics.

RACOD consistently brings significant speedup for all methods,
showing its applicability to a wide range of algorithms and heuris-
tics. With increasing the weight (𝜀), the improvement (slightly)
drops, particularly because of the reduced prediction coverage,
which itself is caused by the fact that fewer nodes are expanded
with larger 𝜀 values.

Not shown in the figure, inflating the heuristic by a factor of
2/4 accelerates planning by 1.6×–2.2×/2×–3.8×. Also, Dijkstra is
on average 25× slower than A★, and the performance of different
heuristics is within 1.2×–5.3× of each other.

5.10 L0 Cache Configuration
Figure 11 shows 𝐿0 hit ratios with different sizes. As shown, a 256 B
cache is sufficient to filter the majority of requests.

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

0%

25%

50%

75%

100%

64B 128B 256B 512B 1KB

H
it
 R

a
ti
o

L0 Cache Size

Mobile 2D Mobile 3D Arm 3D

Figure 11: 𝐿0 cache hit ratio with varying 𝐿0 size.

Note that the major benefit of 𝐿0 is lifting bandwidth pressure
from the core’s 𝐿1 cache. Latency is of less concern because: (i)
all the requests are generated in parallel and their latency, in case
missed in 𝐿0, gets well overlapped, and (ii) 𝐿0 misses are often
served by the 𝐿1, whose latency is not high.

5.11 Controlling Prediction Aggressiveness
RASExp’s predictionmechanism is aggressive: it is always triggered—
this gives the highest coverage/performance in the evaluated bench-
mark environments. But in some rocky environments with frequent,
irregular direction changes, or with platforms with severe power
constraints, it might be beneficial to throttle the predictor in or-
der to avoid making numerous wrong predictions. To reduce the
aggressiveness, RASExp employs this algorithm: the predictor is
triggered only if the path leading to the expanded node was stable
for at least 𝑠 steps. E.g., with 𝑠 = 3, the predictor is triggered only if
a node’s expansion direction is the same as the expansion direction
of its parent and its parent’s parent.

We create synthetic city-resembling maps (§5.2), in which, with
a probability of 10%–70%, we inject random obstacles to an initially
free space. Figure 12 shows how the prediction accuracy (left) and
coverage (right) of RASExp vary. In this experiment, the runahead
is 32.

0%

25%

50%

75%

100%

10% 20% 30% 40% 50% 60% 70%

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Obstacle Density

 s=1 s=2

 s=3 s=4

0%

25%

50%

75%

100%

10% 20% 30% 40% 50% 60% 70%

Pr
ed

ic
tio

n
C
ov

er
ag

e

Obstacle Density

Figure 12: Prediction throttling impact with different obsta-
cles densities, varying the predictor trigger threshold 𝑠.

RASExp’s throttling mechanism is quite effective: with 𝑠 = 4, it
successfully harnesses the predictor’s aggressiveness such that even
in an environment with 70% random obstacles, the accuracy is still
above 50%. On the flip side, the coverage drops as a result of reduced
prediction opportunities.

Another important takeaway of this experiment is the signifi-
cant difference in prediction accuracy/coverage numbers between
synthetic and realistic environments (e.g., with 𝑠 = 1, 39%/68% ac-
curacy/coverage for the 70%-random environment versus 85%/90%
for the benchmarks). As discussed in §2.2.2, the organization of real
environments is not so irregular that it would destroy patterns that
emanate from geometric features of path planning.

6 RUNAHEAD MULTITHREADING
Parallelizing path search algorithms like Dijkstra, A★, and WA★

is not straightforward, because the optimality (or 𝜀-optimality) of
the algorithm depends on the expansion order. Naively parallelizing
different expansions can potentially disturb the correct expansion
order and greatly sacrifice the optimality. Prior work [12, 19, 22, 26,
37, 43, 44] proposes methods for safe parallelization of expansions.
For example, PA★SE [37] parallelizes the expansion of independent
states: if the expansion of 𝑠 cannot lead to a shorter path to 𝑠 ′,
and vice-versa, they are independent and their expansions can be
reordered (safely parallelized).

RASExp is a fundamentally different approach. It does not change
the expansion order and is faithful to the underlying algorithm’s
execution flow. It predicts future expansions, pre-computes their
collision status, and memoizes them for when the actual expan-
sion takes place: no expansion order is changed. In fact, RASExp
is a speculation technique, necessarily done at the algorithm level.
Speculation never changes a program’s behavior but accelerates it.

Figure 13-(a, b) show the speedup of (i) A★ with Baseline Mul-
tithreading (BM) (on expansion, all the node’s eligible neighbors
are evaluated in parallel), (ii) PA★SE [37], and (iii) A★ with RASExp,
over the corresponding single-threaded implementation on CPU
and GPU platforms. In this experiment, we consider the average of
the mobile robot workloads.

0

2

4

6

8

10

1 2 4 8 16 32

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
ce

Number of CPU Threads

0

5

10

15

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
ce

0

1

2

3

4

5

1 2 4 8 16 32 64 128 256 512N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
ce

Number of GPU Threads

BM PA*SE RASExp

39.9

(a)

(b)

(c)

Figure 13: Performance comparison of different platforms
and configurations. All but RACOD are commodity hard-
ware.

On the Xeon CPU, BM has limited speedup: 9% speedup with
32 threads. The reason is the severely limited parallelism of the
baseline path search algorithm (§2.2.1). PA★SE fails to significantly
improve performance: 45% speedup with 32 threads. PA★SE suffers
from two fundamental issues: (i) There are not enough independent
states when running the planning algorithm to fully utilize all
available cores (the evaluations in [37] were only up to 8 cores). (ii)
The overhead of finding independent states is high; this issue is
acknowledged in [37], but because the authors’ evaluations were
on a large PR2 robot [14] with too high resolution, the cost was
amortized to an extent.

By accurately predicting future expansions, RASExp significantly
improves performance, decisively outperforming the other two.

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

With 32 threads, RASExp improves performance by 9.44×/8.59×/6.5×
over single-threaded/BM/PA★SE.

On the GeForce GPU, more threads are available. As such, we
relax the livelock-avoidance mechanism, and set MAX_DEPTH=64,
which results in discovering (theoretically) up to 64 × 8 = 512 nodes
during speculation.

As the GPU results show, BM exhibits a similar behavior for the
reasons outlined above. The performance improvement of RASExp
is not as significant as on the CPU. There are two major reasons: (i)
A larger portion of the execution time is spent in the serial part of
the algorithm, because it is significantly GPU-averse (e.g., giga-scale
data structures, pointer chasing during insertions). (ii) Collision
detection on multiple GPU threads generates a large number of
branch divergences, since threads check different parts of the en-
vironment whose occupancy status could be different. Also, we
observe performance degradation after 128 threads; the prediction
accuracy significantly drops (17.3% with a runahead of 256) and the
speculation overhead (lines 11–17 in Algorithm 1) grows.

PA★SE is totally inefficient on the GPU; its execution time is an
order of magnitude longer than the single-threaded baseline. The
main reasons are: (i) Checking independence conditions, which is
done serially for a large number of nodes, take a huge amount of
time. (ii) PA★SE’s need for larger and more numerous data struc-
tures (e.g., set to track being-expanded nodes) makes the method
more GPU-averse than the baseline.

Figure 13-(c) compares the performance of the CPU and GPU
platforms with that of RACOD. The CPU and GPU software enjoy
RASExp with runaheads of 32 and 128, respectively; these config-
urations offer the maximum performance that we can achieve on
high-end CPUs and GPUs, without hardware modifications. Our
proposal, RACOD, offloads the collision detection operations on
32 CODAccs and runs the rest of the planning on a low-end Intel
Core i3-8109U Processor [5], a typical processor used in modern
robotic systems like the modeled LoCoBot [2]. The performance
metric is the wall clock time of the execution, and is normalized to a
software-only baseline (no CODAcc, multithreaded but no RASExp),
executed on an Intel Core i3-8109U [5].

The GPU platform is clearly unfit for mobile robot path planning,
because the software is significantly GPU-averse. The CPU plat-
form with high-performance cores is able to considerably improve
the performance over the Intel Core i3-8109 baseline (13.2× on av-
erage), given that the algorithm is equipped with RASExp. However,
this performance comes at the cost of powering four processors
with 115𝑊 TDP, operating within NUMA/sockets. RACOD, using
a low-end processor with 28𝑊 TDP and 32 CODAccs that in total
consume < 0.5𝑊 , improves performance by 39.9×, outperforming
the other platforms and underscoring the importance of hardware
acceleration.

7 RELATEDWORK
7.1 Hardware Acceleration for Path Planning
In the context of path planning, a few proposals design accelerators
for some narrow domains. Particularly, Murray et al. [35] devise an
FPGA-based PRM planner for a stationary robotic arm functioning
in their laboratory. They test various planning scenarios offline
and find that with only 1024 movements (called edges), > 98% of

planning scenarios in their environment can be accomplished. Then
they find the environment points from which those movements
cross and store the entire information on an FPGA. During oper-
ations, they perform collision checking for every movement by
simply checking the occupancy of the stored points in the environ-
ment. The main limitation of this approach is its tight integration
with the environment: if objects in the environment change, the
offline process, which could take hours, needs to be repeated from
scratch.

Dadu-P [31] uses a similar approach but admits some obstacle
movement rather than assuming a fixed environment. Dadu-P uses
more edges, some of which may cross obstacles in the environment
that are likely to move (e.g., a wall is not supposed to move, but a
chair is). During planning, the edges are tested for collision, based
on their latest organization.

While both approaches accelerate the planning, neither are scal-
able. Storing a large number of edges, in the evaluated 3.5𝑐𝑚−7.5𝑐𝑚
resolutions, occupies an entire Stratix V FPGA in [35] or costs
768 Kb SRAM storage in [31]. In larger environments, or in en-
vironments at the same scale but with finer-resolution planning,
much more movements would be required to cover the majority of
planning scenarios, demanding significantly larger storage.

More importantly, both approaches make restrictive assumptions
about the environment (the reachability of certain points through
certain paths, (most) obstacles never move) that do not necessarily
hold in many applications, especially in mobile robots where the
environment changes constantly and unpredictably.

7.2 Path Planning & Parallelism
A myriad of proposals in the robotics community aim at tuning
efficient algorithms and heuristics to accelerate path planning. Still,
state-of-the-art CPU and GPU proposals are not fast enough to
be considered real-time in many applications [45]. We believe our
design is applicable to a wide range of prior proposals, because it
relies on fundamental characteristics of path planning like spatial
locality in collision detection and patterns in path search.

Outside of the context of path planning, several pieces of prior
work have proposed to exploit ordered parallelism [50] by specu-
latively executing different (atomic) tasks of task-based programs:
codes with myriads of short tasks that should be executed based on
the timestamps specified by the programmer. Thread-Level Spec-
ulation (TLS) and Hardware Transactional Memory (HTM) [6, 8,
21, 24, 48] execute different tasks speculatively, committing suc-
cessful speculations and aborting wrong ones. Wrong speculations
(i.e., parallel execution of dependent tasks) are usually detected by
relying on the cache coherence protocol, and the conflicting tasks
are re-executed from scratch.

RASExp is a fundamentally different approach: it exploits ap-
plication semantics to predict future paths, rather than executing
and then monitoring shared-data accesses. Also, RASExp paral-
lelizes computationally-intensive collision detections, while TLS
andHTMparallelize short, atomic tasks. Further, RASExp does accel-
erate dependent tasks, in TLS/HTM terminology, as it proactively
evaluates an expanded node’s (grand)children, while TLS/HTM
methods avoid doing so. Finally, most TLS and HTM approaches ap-
ply heavy microarchitectural modifications to detect conflicts and

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

queue/manage/recover tasks, while RASExp is a semantic technique
and does not cause conflicts.

8 CONCLUSION
Deploying robots in the wild requires the development of real-
time computational solutions. In this work, we study path plan-
ning, a core module in autonomous robots, and propose an algo-
rithm/hardware co-design to substantially improve mobile robot
path planning performance.

We exploit architectural-level computation characteristics of mo-
bile robot path planning, as well as its high-level semantic features,
to massively parallelize the kernel. Specifically, (i) we architect
cheap hardware accelerators to exploit fine-grained parallelism and
spatial locality in costly collision detection operations, and (ii) we
enable proactive exploration by semantically predicting directions
along the search path. Our future work is focusing on other applica-
tion kernels in real-time robotics [9], exploring similar architectural
and semantic acceleration techniques.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
grant CCF-2028949, by a VMware University Research Fund Award,
and by the Parallel Data Lab (PDL) Consortium (Alibaba, Amazon,
Datrium, Facebook, Google, Hewlett-Packard Enterprise, Hitachi,
IBM, Intel, Microsoft, NetApp, Oracle, Salesforce, Samsung, Seagate,
and TwoSigma). Mohammad Bakhshalipour was supported by the
Apple CMU ECE PhD Fellowship in Integrated Systems. We would
like to thank the anonymous reviewers for their valuable comments.

REFERENCES
[1] 2012. Intel Xeon Processor E5-2670. https://ark.intel.com/content/

www/us/en/ark/products/64595/.
[2] 2012. LoCoBot: An Open Source Low Cost Robot. http://www.locobot.

org/.
[3] 2015. Arduino Ant Hexapod Robot. https://antdroid.grigri.cloud/.
[4] 2016. GeForce GTX 1060. https://www.nvidia.com/en-in/geforce/

products/10series/geforce-gtx-1060/.
[5] 2018. Intel Core I3-8109U Processor. https://ark.intel.com/content/

www/us/en/ark/products/135936/.
[6] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Spec-

ulative Parallelism for Accelerators. In International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS).

[7] Ron Alterovitz, Sven Koenig, and Maxim Likhachev. 2016. Robot
Planning in the Real World: Research Challenges and Opportunities.
AI Magazine (2016).

[8] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and
David I August. 2020. Perspective: A Sensible Approach to Speculative
Automatic Parallelization. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[9] Mohammad Bakhshalipour, Maxim Likhachev, and Phillip B. Gibbons.
2022. RTRBench: A Benchmark Suite for Real-Time Robotics. In IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). https://cmu-roboarch.github.io/rtrbench.

[10] Sven Behnke. 2003. Local Multiresolution Path Planning. In Robot
Soccer World Cup.

[11] Joshua Bialkowski, Sertac Karaman, and Emilio Frazzoli. 2011. Mas-
sively Parallelizing the RRT and the RRT∗. In International Conference
on Intelligent Robots and Systems (IROS).

[12] Ethan Burns, Seth Lemons, Wheeler Ruml, and Rong Zhou. 2010. Best-
First Heuristic Search for Multicore Machines. Journal of Artificial
Intelligence Research (2010).

[13] Trishul M. Chilimbi and Martin Hirzel. 2002. Dynamic Hot Data
Stream Prefetching for General-Purpose Programs. In Proceedings of

the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation.

[14] Steve Cousins. 2010. ROS on the PR2 [ROS Topics]. IEEE Robotics &
Automation Magazine (2010).

[15] Sina Darabi, Negin Mahani, Hazhir Baxishi, Ehsan Yousefzadeh-Asl-
Miandoab, Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2022.
NURA: A Framework for Supporting Non-Uniform Resource Accesses
in GPUs. Proceedings of the ACM on Measurement and Analysis of
Computing Systems (2022).

[16] Rina Dechter and Judea Pearl. 1985. Generalized Best-First Search
Strategies and the Optimality of A. Journal of the ACM (JACM) (1985).

[17] Christer Ericson. 2004. Real-Time Collision Detection.
[18] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, andDoug Burger. 2012.

Neural Acceleration for General-Purpose Approximate Programs. In
International Symposium on Microarchitecture (MICRO).

[19] Matthew Evett, James Hendler, Ambuj Mahanti, and Dana Nau. 1995.
PRA*: Massively Parallel Heuristic Search. J. Parallel and Distrib.
Comput. (1995).

[20] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics (1968).

[21] Maurice Herlihy and J Eliot B Moss. 1993. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In International
Symposium on Computer Architecture (ISCA).

[22] Kekib Irani and Yi-Fon Shih. 1986. Parallel A∗ and AO∗ Algorithms-
An Optimality Criterion and Performance Evaluation. In International
Conference on Parallel Processing.

[23] Hakbeom Jang, Yongjun Lee, Jongwon Kim, Youngsok Kim, Jangwoo
Kim, Jinkyu Jeong, and JaeW Lee. 2016. Efficient Footprint Caching for
Tagless Dram Caches. In International Symposium on High-Performance
Computer Architecture (HPCA).

[24] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. 2015. A Scalable Architecture for Ordered Parallelism. In
International Symposium on Microarchitecture (MICRO).

[25] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
1996. Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces. IEEE Transactions on Robotics and Automation
(1996).

[26] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. 2009. Scalable, Par-
allel Best-First Search for Optimal Sequential Planning. In International
Conference on Automated Planning and Scheduling.

[27] Dan Klein and Christopher D Manning. 2003. A∗ Parsing: Fast Exact
Viterbi Parse Selection. In Human Language Technology Conference
of the North American Chapter of the Association for Computational
Linguistics.

[28] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio
Frazzoli, and Jonathan P How. 2009. Real-Time Motion Planning with
Applications to Autonomous Urban Driving. IEEE Transactions on
control systems technology (2009).

[29] Steven M LaValle et al. 1998. Rapidly-Exploring Random Trees: A New
Tool for Path Planning. (1998).

[30] Jiaoyang Li, Zhe Chen, Daniel Harabor, P Stuckey, and Sven Koenig.
2021. Anytime Multi-Agent Path Finding Via Large Neighborhood
Search. In International Joint Conference on Artificial Intelligence (IJ-
CAI).

[31] Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, and Hang Xiao.
2018. Dadu-P: A Scalable Accelerator for Robot Motion Planning in a
Dynamic Environment. In Design Automation Conference (DAC).

[32] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos,
Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin
Idgunji, Emre Ozer, et al. 2012. Scale-Out Processors. (2012).

[33] Samuel Moore. 2019. 3 New Chips to Help Robots Find Their Way
Around. IEEE Spectrum (2019).

[34] Sean Murray, Will Floyd-Jones, George Konidaris, and Daniel J Sorin.
2019. A Programmable Architecture for Robot Motion Planning Ac-
celeration. In International Conference on Application-specific Systems,
Architectures and Processors (ASAP).

[35] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and
Daniel J Sorin. 2016. The Microarchitecture of a Real-Time Robot
Motion Planning Accelerator. In International Symposium on Microar-
chitecture (MICRO).

[36] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J Sorin, and
George Dimitri Konidaris. 2016. Robot Motion Planning on a Chip. In
Robotics: Science and Systems.

https://ark.intel.com/content/www/us/en/ark/products/64595/
https://ark.intel.com/content/www/us/en/ark/products/64595/
http://www.locobot.org/
http://www.locobot.org/
https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1060/
https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1060/
https://ark.intel.com/content/www/us/en/ark/products/135936/
https://ark.intel.com/content/www/us/en/ark/products/135936/
https://cmu-roboarch.github.io/rtrbench

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

[37] Mike Phillips, Maxim Likhachev, and Sven Koenig. 2014. PA∗SE: Par-
allel A∗ for Slow Expansions. In Proceedings of the International Con-
ference on Automated Planning and Scheduling.

[38] Ira Pohl. 1970. Heuristic Search Viewed As Path Finding in a Graph.
Artificial intelligence (1970).

[39] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Ac-
curate Microarchitectural Simulation of Thousand-Core Systems. In
International Symposium in Computer Architecture (ISCA).

[40] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris
Wilkerson, Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently
Prefetching Complex Address Patterns. In International Symposium on
Microarchitecture (MICRO).

[41] Egor Shipovalov and Valentin Pryanichnikov. 2020. Scalable State
Space Search on the GPU with Multi-Level Parallelism. In 2020 19th In-
ternational Symposium on Parallel and Distributed Computing (ISPDC).

[42] Nathan R Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding.
IEEE Transactions on Computational Intelligence and AI in Games (TCI-
AIG) (2012).

[43] Richard Anthony Valenzano, Nathan Sturtevant, Jonathan Schaeffer,
Karen Buro, and Akihiro Kishimoto. 2010. Simultaneously Searching
with Multiple Settings: An Alternative to Parameter Tuning for Sub-
optimal Single-Agent Search Algorithms. In International Conference
on Automated Planning and Scheduling.

[44] Vincent Vidal, Lucas Bordeaux, and Youssef Hamadi. 2010. Adap-
tive K-Parallel Best-First Search: A Simple but Efficient Algorithm for
Multi-Core Domain-Independent Planning. In Annual Symposium on

Combinatorial Search.
[45] Zishen Wan, Bo Yu, Thomas Yuang Li, Jie Tang, Yuhao Zhu, Yu Wang,

Arijit Raychowdhury, and Shaoshan Liu. 2020. A Survey of FPGA-
Based Robotic Computing. arXiv preprint arXiv:2009.06034 (2020).

[46] Christopher Makoto Wilt and Wheeler Ruml. 2012. When Does
Weighted A* Fail?. In SOCS.

[47] Kai M Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard. 2010. OctoMap: A Probabilistic, Flexible, and
Compact 3D Map Representation for Robotic Systems. In Proc. of the
ICRA 2010 workshop on best practice in 3D perception and modeling for
mobile manipulation.

[48] Victor A Ying, Mark C Jeffrey, and Daniel Sanchez. 2020. T4: Compiling
Sequential Code for Effective Speculative Parallelization in Hardware.
In International Symposium on Computer Architecture (ISCA).

[49] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu.
2020. Building the Computing System for Autonomous Micromobil-
ity Vehicles: Design Constraints and Architectural Optimizations. In
International Symposium on Microarchitecture (MICRO).

[50] Zhijia Zhao, Bo Wu, and Xipeng Shen. 2014. Challenging the "Embar-
rassingly Sequential": Parallelizing Finite State Machine-Based Com-
putations Through Principled Speculation. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[51] Yichao Zhou, Wei Xu, Bruce R Donald, and Jianyang Zeng. 2014. An
Efficient Parallel Algorithm for Accelerating Computational Protein
Design. Bioinformatics (2014).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Path Planning & Bounding Volumes
	2.2 Path Search

	3 Runahead Collision Detection (RACOD)
	3.1 Collision Detection Accelerator (CODAcc)
	3.2 Run-Ahead State Exploration (RASExp)

	4 Methodology
	5 Evaluation
	5.1 Accelerator's Specifications
	5.2 Mobile Robot Navigating in 2D
	5.3 Exploration Footprint
	5.4 Mobile Robot Navigating in 3D
	5.5 Robotic Arm Operating in 3D
	5.6 CPU-Accelerator Communication Latency
	5.7 Prediction Coverage and Accuracy
	5.8 Division of Labor
	5.9 Weighted A & Different Heuristics
	5.10 L0 Cache Configuration
	5.11 Controlling Prediction Aggressiveness

	6 Runahead Multithreading
	7 Related Work
	7.1 Hardware Acceleration for Path Planning
	7.2 Path Planning & Parallelism

	8 Conclusion
	References

