A Case for Packing and Indexing in Cloud File Systems

Saurabh Kadekodi!
Garth A. Gibson'?3

Bin Fan?

Adit Madan?
Gregory R. Ganger!

YCarnegie Mellon University *Alluxio Inc. 3Vector Institute

Abstract

Small (kilobyte-sized) objects are the bane of highly
scalable cloud object stores. Larger (at least megabyte-
sized) objects not only improve performance, but also
result in orders of magnitude lower cost, due to the cur-
rent operation-based pricing model of commodity cloud
object stores. For example, in Amazon S3’s current pric-
ing scheme, uploading 1GiB data by issuing 4KiB PUT
requests (at 0.0005¢ each) is approximately 57X more
expensive than storing that same 1GiB for a month. To
address this problem, we propose client-side packing of
small immutable files into gigabyte-sized blobs with em-
bedded indices to identify each file’s location. Exper-
iments with a packing implementation in Alluxio (an
open-source distributed file system) illustrate the poten-
tial benefits, such as simultaneously increasing file cre-
ation throughput by up to 60x and decreasing cost to
1/25000 of the original.

1 Introduction and motivation

Cloud file systems provide file system style access to
cloud storage. Since the most popular cloud storage
model is based on so-called “objects” (arbitrary-sized se-
quences of bytes identified by an object ID), the straight-
forward approach is to map files to objects on a one-to-
one basis. For example, directories can then be relatively
simple mappings of file names to object IDs.

While straightforward to implement, this approach
risks both performance and cost consequences. Study
after study, along with our own experiences with data
analytics storage, show that most files are small (KiB-
sized) and that file creation occurs in bursts [1, 4, 5].
Yet, small object creation and write bursts are improper
fits for cloud storage, for which both the performance
behaviors and the cost models are heavily tilted in fa-
vor of using large access units and large objects. In par-
ticular, with direct file-to-object mapping, per-operation
costs and operation rate throttling dominate other consid-
erations during bursts of small file creation.

2,000 100 715
1729
1,500 1 g T
2 =
o] >
Y 1,000 25000x 2 © 60x
Q 2
& 5
500 I_E
1.2
ol <0.1 1] —
Direct Packed Direct Packed

(a) Price comparison (b) Throughput comparison

Figure 1: Price and throughput comparison of client-side file

packing with direct storage of each file as an object, for creating
and writing 24.4GiB worth of 8KiB files to Amazon S3.

This paper illustrates the scale of this issue and the
potential benefits from modifying cloud file systems
(backed by commodity cloud object stores) to aggres-
sively pack small immutable files into large objects. Us-
ing Amazon S3 as a concrete example, Figure 1 shows
the benefits of packing 8KiB files into 1GiB objects
rather than directly storing each 8KiB file as an indi-
vidual object. In addition to achieving a >60X increase
in throughput, aggressive packing reduces the price to
1/25000 of the original.

Packing files into large cloud objects draws inspira-
tion from the batching of file writes into large sequen-
tial disk writes commonly applied in traditional storage
systems. But, the benefits we observe are much greater
in the cloud context, because cloud object storage sys-
tems like S3 are not intended to play the role of tra-
ditional file servers. Perhaps to avoid such usage, they
heavily penalize workloads with large numbers of small
operations—there is a significant per-operation charge,
regardless of operation size, and users are explicitly rate
limited in terms of operations/ 5.1 In fact, the throttling

I Amazon S3’s best practice guideline states that if an application

@ 600
g 457 432
5 4004 35
Qo
<
(=]
3
= 200 A
'_
o 0
Z o :
4KB 4MB 40MB 400MB
Object Size

Figure 2: This graph reports average throughput (MiB/s) seen
by clients creating 12.5GiB using object sizes ranging from
4KiB through 400MiB. Larger (MiB-sized) objects saw a >
300x improvement over KiB-sized objects.

is so aggressive that PUTing one 4MiB object instead of
1K 4KiB objects can be almost 1000x faster. Figure 2
shows the throughput of 32 clients writing 12.5GiB to an
S3 bucket as a function of the object size. So, each client
writes hundred thousand 4KiB objects, hundred 4MiB
objects, ten 40MiB objects or one 400MiB object. Natu-
rally, there are diminishing returns, but the performance
and cost benefits of client-side packing suggests its ag-
gressive use in cloud file storage.

Amazon’s Elastic File System (EFS) and DynamoDB
are natural alternatives to S3 since EFS is intended for
regular file system and big data workloads, while Dy-
namoDB is a NoSQL database meant for KiB-sized data.
The EFS pricing model charges only for the space used
and not for the data transferred or requests issued. But,
the EFS space is charged at $0.3 per GB-month. On the
other hand, DynamoDB charges $0.25 per GB-month
with a write cost per month of $0.47 for 1-write-per-
second and $0.09 for 1-read-per-second. In compari-
son, S3 charges $0.023 per GB and 0.0005¢ per PUT.
Suppose we have to store 1TiB worth of 4KiB files
per month, this translates to slightly over 100 write re-
quests/s. The monthly charges for S3 -without-packing,
EFS, DynamoDB and S3-with-packing (henceforth re-
ferred to as just packing) are approximately $1366, $307,
$303 and $24 respectively. Furthermore, the fraction of
the operation costs (which in this example means writes
or PUTS) in each are 98%, 0%, 16% and <0.001%. As a
result, packing is at least > 10X cheaper than existing al-
ternatives. Even though EFS has zero per-operation cost,
packing shifts the dominant cost in accessing S3 objects
to storage, instead of operations. Another way to quan-
tify the benefit is to calculate the time it would take for
the storage cost of 1GiB data to be equal to its access cost
(break-even point). This comes out almost 5 years for
S3-without-packing, >5 days for DynamoDB and just

rapidly issues more than 300 PUT/LIST/DELETE req/s, or more than
800 GET req/s, to a single bucket, S3 may limit the request rate of the
application for an unknown amount of time [2]. Figure 3 shows S3’s
rate limiting in action when creating millions of 4KiB objects.

>27 seconds for packing! Thus, packing is lucrative for
systems like Alluxio that employ client-side caching and
try hard to minimize remote cloud operations.

This paper describes a plug-able client-side packing
and indexing module designed for Alluxio (previously
Tachyon) [8], an open-source distributed file system that
is co-located with applications (e.g., Spark computa-
tions) and can ensure that memory-resident data is per-
sisted in a multitude of (both remote and local) backing
stores. Our optimization applies to Alluxio backed by
commodity cloud object stores like Amazon S3, Google
Cloud Storage, Microsoft Azure, etcZ. Behind Alluxio’s
HDFS-compatable interface, our module packs data into
GiB-sized blobs with an index of where each packed
file is located in the blob. It also maintains a redundant
client-side index, so that most reads can directly GET
particular file data; the embedded indices are used to re-
construct this index if the client crashes rather than shut-
ting down cleanly. With packing+indexing Alluxio is
able to efficiently serve big-data workloads (e.g., Spark,
MapReduce) while also optimizing the performance and
price of its backend cloud object stores like S3. The
remainder of this paper overviews our module’s design,
presents more evidence of the effectiveness of such pack-
ing, and discusses related work.

2 Design

Our packing and indexing solution resides as a module in
the cloud file system which acts as a middleware between
applications and the cloud object stores. The packing
module uses a packing policy to pack application data
into blobs and indexes it before pushing it to the cloud.
§ 2.1 describes the structures used within the packing
module and § 2.2 explains the interaction of these struc-
tures for basic file system tasks and fault tolerance. § 2.3
discusses how these design choices help us meet our de-
sign goals.

2.1 Packing structures

Blob: A packed blob is a single immutable self-
describing object that contains several small files. A
packed blob has two parts: the blob body and the blob
footer. The blob body contains concatenated byte ranges
of packed files. We can customize the packing policy
used to choose the files to pack in a particular blob to
suite the read pattern. The blob footer contains a list of
blob extents. A blob extent maps the logical byte-range
of a file that was packed to the physical byte-range in the
blob body. We call this footer the embedded index of the
blob. Thus, we can fetch the complete data of all files

2 Amazon S3, Google Cloud Storage and Microsoft Azure have an
identical operation pricing structure today i.e. 5¢ per 10K PUT op-
erations and 4¢ per 100K GET operations. Moreover, this operation
charge is independent of how much data is transferred.

166 | \/\\/\b

1.66

PUT Req / min

333

09s / suoideox3 €8

02:45 02550 02555 03:00 03:05 03:10 03:15 0320 0325 03:30 03:35 03:40 03:45 0350 03:55 04:00 04:05 04:10 04:15 04:20
Time (hh:mm)

Figure 3: This graph shows a 95-minute window of the PUT request rate (black line; left Y-axis) and S3’s throttling exceptions per
min (red line; right Y-axis) for bulk creation of 3M 4KiB objects. As the request rate exceeds a few hundred requests a minute,
S3 denies some in-flight PUT requests and replies with a “rate-limit” exception code. Such denied requests must be retried, often

leading to more throttling exceptions and lower overall throughput.

using the embedded indices of all packed blobs.

Our blob is conceptually similar to sorted string tables
(SSTables) [4, 6]. The reason we chose to not use SSTa-
bles today is because we wanted to avoid incurring the
additional performance cost of sorting key-value pairs
and the operation cost of reading the SSTable index be-
fore reading data from S3. Constructing raw data blobs
allowed us to directly exploit the range-read feature of
commodity clouds (see §2.3). Having said this, there
is nothing fundamentally wrong with SSTables and it is
possible to tweak SSTables for our purpose.

Blob Descriptor Table (BDT): While an embedded in-
dex is capable of mapping the files it contains, the pro-
cess of bootstrapping with only embedded indices could
entail pre-reading the footers of all blobs, potentially a
very expensive task. Instead we maintain a redundant (as
it can be losslessly reconstructed using the embedded in-
dices of all the packed blobs) global index that stores all
mappings of all blobs. We call this the blob descriptor ta-
ble (BDT). BDT consistency, made harder because blob
creation is decentralized, is discussed in Section 2.2.

2.2 Operation

We implemented packing as an optimization to Alluxio,
which has the canonical distributed file system architec-
ture with one master and k worker nodes. Similar to
GFS [7] or HDFS [3], the data transfer happens directly
between clients and the workers while the distributed
file system’s metadata is solely managed by the master
node. Thus, after file creation, the master delegates the
responsibility of a file to a worker, and all blobs are con-
structed locally at each worker before being pushed to the
cloud. A worker ends up packing and pushing multiple
self-describing blobs. The master node maintains a BDT
which we implemented using LevelDB [6] for bounded
memory consumption.

Packing and pushing: Sufficient data has to accumu-
late to ensure sizeable (GiB-sized) blobs. Thus, buffered
data waiting to be packed cannot be considered durable
until it is uploaded to the cloud as a part of one or more
blobs. Workers choose from buffered data using a par-

ticular packing policy (specified at mount time) to build

a blob. Once data is copied to the blob file, an embed-

ded index is constructed which is nothing but a list of

blob extents that form the blob as explained in § 2.1. The
name of the blob is carefully selected as a combination
of the following attributes:

e Worker IP: to indicate the ownership of the blob to
the other workers.

e Footer byte offset: the embedded index byte offset in
the blob. This is an important fault tolerance require-
ment, see § 2.2.

e Timestamp: the creation timestamp of the blob dis-
ambiguating it from other blobs created from the same
worker having the same footer offset.

The blob name used as the object ID for storing the blob
in the cloud backend. After pushing a blob, the worker
updates the global BDT with the blob extents belonging
to the pushed blob. These extents are the packed data’s
latest address. The global BDT maintains the latest ad-
dress of every file throughout the packing process. Thus,
prior to packing, a file’s address is the worker node on
which it is being buffered, and after packing its address
comprises of one or more blob extents.

Reads: Reading data can mean different things depend-
ing on whether the data has been packed and pushed or
is still waiting to be packed. Since the latest address of
each file before packing is the worker node it is being
buffered on, a read request issued to the correct worker
(i.e. the worker on which the file resides before being
packed and pushed) is fulfilled locally. If a read request
is issued at a different worker, it first queries the global
BDT for the current address of the file>. For an unpacked
file, the global BDT returns the identifier of the correct
worker following which a worker-to-worker communica-
tion takes place exchanging the required data to fulfill the

3In case the worker’s IP address (current worker identifier) changes
dynamically, we treat it similar to a worker crash, which implies loss
of unpacked data, since the master BDT no longer reflects the correct
worker. Multiple solutions are possible to solve this problem. The sim-
plest involves piggybacking the worker IP address with its keepalive
heartbeat and updating the master BDT whenever there is a change.
Another one could be to maintain a separate worker identifier con-
trolled by Alluxio, which stays the same across IP changes.

read. For a packed file, the global BDT returns the blob
extent(s) of the file. We then leverage the range-read fea-
ture of cloud storage systems to fetch the required bytes
from the packed blob.

Deletes and Renames: Packing (essentially buffering)
complicates the delete and rename semantics. As our
current focus was to expedite small file writes, we sketch
an outline for handling deletes and renames of packed
objects, and leave its implementation as future work.

When the client issues a delete of a small file, it is un-
reachable once we remove its mapping from the global
BDT. Since there is only one global BDT, and access to
it is synchronized, we don’t need to worry about incon-
sistencies or race conditions. The remaining task is to re-
claim the space occupied by the deleted small file in the
cloud, which we can do so, by tracking the utilization of
a blob in the global BDT. The utilization is the amount of
live (reachable) data that exists in a blob. Once the live
data falls below a threshold, we can spawn a background
job to fetch live data from packed blobs and repack the
data in other blobs being built. The global BDT mod-
ification will atomically reflect the latest blob address,
following which we can delete the original blob once it
is empty.

Handling renames would involve an atomic change-
of-name in the global BDT along with piggybacking re-
names as a part of future blobs’ embedded indices. The
latter process is required to maintain the invariant that the
embedded indices of blobs (read in order of creation) are
sufficient to reflect latest metadata of all packed files.

Fault tolerance: Our fault tolerance strategy follows the
invariant: whatever is pushed to the cloud can be recov-
ered. In the case of an Alluxio based implementation,
two possible failure scenarios can occur, either the mas-
ter dies or one or more workers die.

Master Dies: The master periodically backs up the
BDT to the same cloud backend that is storing the blobs.
The recovery strategy is to load the latest backup and it-
erate through the embedded indices of the blobs commit-
ted after the last backup. This updates the master with all
the blobs, and hence the location of all the packed files.
Moreover, since the packing master does not hold any lo-
cal state, it performs a lossless recovery. It is important
to note that the frequency of global BDT backups only
affects recovery performance and does not impact cor-
rectness. Thus, even though the embedded index adds an
overhead in terms of space, it prevents flooding the mas-
ter with synchronous packing updates from the workers
and also plays a crucial role during recovery.

Worker Dies: In the case of a worker failure, the files
being buffered for packing are lost and cannot be recov-
ered. Note that partial recovery of buffered files may be
possible if they were stored on local disks at the worker,

and the worker restarts. We do not provide an algorithm
for this case and conservatively assume all unpacked
files are lost. In the case of files packed into blobs, if
the necessary blob extents were updated in the global
BDT successfully, then there is no extra recovery pro-
cess. Reloading the latest BDT backup should give us the
locations of packed files. For blobs whose extents were
not updated in the BDT requires reading their embedded
indices and inserting their blob extents in the BDT during
recovery.

2.3 Discussion: meeting design goals

Packing as an Alluxio Under File System: Alluxio sup-
ports accessing multiple and possibly different backing
stores through its under file systems (UFS) abstraction.
The packing layer is also implemented as a UFS mod-
ule. As a result, the packing layer can serve all exist-
ing Alluxio applications (e.g. Spark, MapReduce and
etc) without any code or configuration change in applica-
tions. This serves our design goals of fransparency and
modularity. The packing UFS is mounted to an Alluxio
file system path, with various configurations such as the
maximum blob size, data buffering timeout, number of
packing threads, the packing policy and the underlying
UEFS that will store the data. Thus, all files written to the
packing mount point in Alluxio are subject to packing
via the specified packing policy. A mount-point based
access to packing allows it to co-exist with other pack-
ing solutions (on different mount points, with potentially
different packing policies) and with non-packing Alluxio
solutions.

Worker-local BDT: Every file creation results in two
global BDT RPCs. Moreover, every read operation con-
sults the global BDT to locate the requested file. To
prevent overloading the master in a large cluster, each
worker also maintains a local BDT to store a redun-
dant copy of the blob extents (of blobs packed by only
that worker) which are also stored in the global BDT.
This prevents the master from getting involved in every
read request for a packed file issued by the client to a
worker. Since clients usually persist the connection with
a worker, this optimization reduces a lot of traffic to the
master node. This optimization reduces communication
overhead. Optimizing worker-local BDTs could poten-
tially relieve the global BDT even more, but we leave
this exploration for future work. It also improves scal-
ability because each worker is well-equipped to handle
bidirectional I/O traffic from the clients. Since the mas-
ter has a copy of all the mappings, and is getting backed
up regularly, the worker-local BDT is purely introduced
for performance enhancement and does not need to be
backed up.

Exploiting range-reads: Most commodity cloud stor-

Configuration Data Ingest Price ($) Runtime (s) Throughput (MB/s) Rate Limit Retries
Direct $17.3 ($16 for files, $1.3 for retries) >21000 1.2 >250000
Packed < 0.1¢ (J 25000 %, no retries) 355 (1 60x) 71.5(160x) None

Table 1: Comparing the average performance of two runs of an experiment storing 24.4GiB of data as 3.2M 8KiB files into a few
hundred packed blobs each of roughly 1GiB in size. The results are means across two runs, with stdev of packed runs and direct
runs being < 7% and < 19% respectively of the mean for each number. The high fluctuation in direct runs is attributed to the heavy
fluctuation in the number of retries caused by how aggressively S3 chooses to rate-limit, affecting both performance and cost.

age services provide range-reads. By downloading only
the required bytes from within an object, we satisfy our
design goal of avoiding large read latencies because of
Jorcibly fetching entire blobs while expediting writes.

Packing open files or large files: Today we do not sup-
port packing open files or files larger than a blob. One
solution approach is to “fake-close” all candidate files
when constructing blobs. Thus, both open and large
files might end up as different extents packed in multi-
ple blobs. Despite being spread out, we can continue to
efficiently read these files by issuing parallel range-reads.

Handling immutable files: Overwrites (also currently
unsupported) are complicated to handle since they could
partially invalidate a packed blob extent. Along with
writing the new data as a new extent in a separate blob,
we need to modify the global BDT along with piggy-
backing the information of the new extent breaks in the
original blob extent. Similar to renames, this modifica-
tion is necessary for ensuring correct global BDT recon-
struction and / or recovery using the blobs’ embedded
indices.

3 Packing + indexing in action

This section presents an ingest benchmarking result for
packing in Alluxio with the following configuration: 1
master node, 4 worker nodes, a backend of one Amazon
S3 bucket storing blobs. All nodes are Amazon EC2 in-
stances with 128GB RAM and local storage via SSDs.
There were 32 workload generators (8 on each worker),
each generating 100K 8KiB files for a total workload size
of approximately 24.4GiB. We report the average of two
runs performed with and without packing.

Each worker has 16 dedicated packing threads and a
5 second timeout triggering packing of files. Since the
timeout essentially implies a fault window, 5 seconds
was an intentional choice mimicking the journal flush
timeout (also a fault window) for mainstream local Linux
file systems like Ext4 [10].

We compare this ingest workload applied to the pack-
ing version of Alluxio to its non-cached mode that
writes files synchronously to S3. The per-client average
throughput in Table 1 shows that without packing, the
average throughput is just 1.2MB/s. This is attributed to
frequently hitting S3 rate limits causing thousands of re-
tries which prevents forward progress. When packing is

enabled, we see a > 60X increase in throughput to about
71.5MB/s. This suggests S3 is not throttling bytes trans-
ferred as aggressively as it is throttling the request rate.
This improvement is not quite as dramatic as Figure 2
because that experiment only simulated packing by cre-
ating large objects, whereas here we are also accounting
for the packing module’s overhead.

Table 1 also shows the price reduction as a result of
packing. Our workload creates 3.2M files. Without pack-
ing, we have to issue one PUT per file. Moreover, we
see >250K rate limit exceptions issued by S3. The re-
jected PUTs need to be retried, with each retry issuing
another PUT operation. In total, our experiment issued
more than 3.45M PUTs (at a cost of 5¢ for 10K PUTs),
totaling $17.3. In contrast, after packing, we issued only
about 104 PUTs with zero retries and spent < 0.1¢.

4 Related work

We don’t have applications that include application-level
packing at hand, but certainly they could be expected to
achieve at least the same cost and performance benefits,
and perhaps better by exploiting application-level knowl-
edge. The paper makes a case for packing and indexing
at the file system level, providing that benefit to unmodi-
fied applications that do not include such packing them-
selves.

Our self-defined blobs are inspired from the Data Do-
main Deduplication File System’s [16] fixed sized im-
mutable self-describing containers packed with data seg-
ments and a segment index to identify packed data. Con-
tainerizing increased their throughput on their storage
media - a RAID disk array. Venti [12], an archival
file system also built self-contained array of data blocks
called arenas, analogous to blobs in our work. Our
simple fault-tolerant design is attributed to our self-
describing blobs, which in turn are inspired from Data
Domain containers and Venti arenas. Li et al. [9] iden-
tify the traffic overuse problem in the cloud storage con-
text by analyzing several cloud applications for their data
update efficiency. They provide a middleware solution
called update-batched delayed synchronization (UDS) to
batch updates before passing them to clients that perform
cloud synchronization. Although our work is ideologi-
cally similar to UDS and Venti, we focus on expediting
commodity cloud ingest rate while minimizing cost in

the data plane via packing.

BlueSky [15] is an enterprise level log-structured file
system backed by cloud storage. Vrable et al. iden-
tify the quickly escalating price of pushing small incre-
ments to the cloud (in their work, log appends) and build
larger transfer units of about 4MiB each for efficiently
uploading data to the cloud. We enlarge the transfer unit
size (by creating GiB-sized blobs) to ensure good band-
width utilization of today’s multi-GB networks. Unlike
BlueSky’s focus on WAN access to cloud storage, Paral-
lel NFS (pNFES) [13] exposes clients to local (i.e., on-
premise) cloud storage. Storage servers can export a
block interface, an object interface, or a file interface;
PNES clients transparently convert NFS requests to the
appropriate lower-level access format. Blizzard [11] is a
high-performance block store that exposes cloud storage
to cloud-oblivious POSIX and Win32 applications. It is
designed and implemented for single-machine applica-
tions to speed up random IO heavy workloads.

Cumulus [14] comes closest to our work with their ag-
gregation of small files to take cost aware file systems
backups in the cloud. The difference is in the intended
workload, deployment context and the design. Cumu-
lus is designed for backups in thin-clouds environments
that only support full-file operations. Moreover, Cumu-
lus primarily deals with static datasets to be uploaded
in the most efficient manner to the cloud. Our packing
solution is in-situ and meant for active file system envi-
ronments with streaming data and aggressive throughput
/ latency requirements.

5 Conclusion

Cloud file systems backed by cloud object stores should
aggressively pack files into cloud objects, at the client,
rather than simply mapping each file to a separate
cloud object. Cloud object stores apply significant per-
operation costs and operation/s rate limits, regardless of
the amount of data read or written per operation. In the
common case of mostly small files, packing can pro-
vide orders of magnitude improvements. For example,
our packing and indexing module for the Alluxio dis-
tributed file system provides up to 60x higher through-
put and 1/25000 of the original cost for bulk small file
creation on Amazon S3. We expect similar behavior for
other cloud object storage providers, making client-side
packing+indexing an important component of cloud file
systems.

6 Acknowledgements

We would like to thank our shepherd, John Wilkes, the
anonymous reviewers and Alluxio Inc. employees for
their feedback and guidance. We thank the members and
companies of the PDL Consortium (Alibaba, Broadcom,
Dell EMC, Facebook, Google, Hewlett-Packard Enter-

prise, Hitachi, Intel, IBM, Micron, Microsoft Research,
MongoDB, NetApp, Oracle, Salesforce, Samsung, Sea-
gate, Toshiba, Two Sigma, Veritas and Western Digital)
for their interest, insights, feedback, and support.

References

[1] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND
LORCH, J. R. A five-year study of file-system metadata. ACM
Transactions on Storage (TOS) (2007).

[2] AMAZON. Amazon S3 Request Rate Limiting.
http://docs.aws.amazon.com/AmazonS3/latest/dev/request-
rate-perf-considerations.html, 2018.

[3] BORTHAKUR, D., ET AL. HDFS architecture guide. Hadoop
Apache Project (2008).

[4] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems (TOCS)
(2008).

[S] DAVIDSON, A., AND OR, A. Optimizing shuffle performance in
spark. Tech. rep., University of California, Berkeley - Department
of Electrical Engineering and Computer Sciences, 2013.

[6] GHEMAWAT, S., AND DEAN, J. LevelDB.
https://github.com/google/leveldb, http://leveldb.org, 2011.

[71 GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In ACM Symposium on Operating Systems Principles
(SOSP) (2003).

[8] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND STO-
ICA, I. Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In ACM Symposium on Cloud Comput-
ing (2014).

[9] L1, Z., WILSON, C., JIANG, Z., L1u, Y., ZHAO, B. Y., JIN, C.,
ZHANG, Z.-L., AND DAL, Y. Efficient batched synchronization
in Dropbox-like cloud storage services. In ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and
Open Distributed Processing (2013).

[10] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A.,
TOMAS, A., AND VIVIER, L. The New Ext4 filesystem: Current
Status and Future Plans. In Ottawa Linux Symposium (2007).

[11] MICKENS, J. W., NIGHTINGALE, E. B., ELSON, J., GEHRING,
D., FAN, B., KADAV, A., CHIDAMBARAM, V., KHAN, O., AND
NAREDDY, K. Blizzard: Fast, Cloud-scale Block Storage for
Cloud-oblivious Applications. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI) (2014).

[12] QUINLAN, S., AND DORWARD, S. Venti: A New Approach
to Archival Storage. In USENIX File and Storage Technologies
(FAST) (2002).

[13] SHEPLER, S., EISLER, M., AND NOVECK, D. Network file
system (NFS) version 4 minor version 1 protocol. Tech. rep.,
NetApp, 2010.

[14] VRABLE, M., SAVAGE, S., AND VOELKER, G. M. Cumulus:
Filesystem backup to the cloud. ACM Transactions on Storage
(TOS) (2009).

[15] VRABLE, M., SAVAGE, S., AND VOELKER, G. M. BlueSky: A
cloud-backed file system for the enterprise. In USENIX File and
Storage Technologies (FAST) (2012).

[16] ZHu, B., L1, K., AND PATTERSON, R. H. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System. In
USENIX File and Storage Technologies (FAST) (2008).

