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Abstract
An increasing demand for cross-cloud and cross-region data
access is bringing forth challenges related to high data trans-
fer costs and latency. In response, we introduce Macaron, an
auto-configuring cache system designed to minimize cost
for remote data access. A key insight behind Macaron is that
cloud cache size is tied to cost, not hardware limits, shifting
the way we think about cache design and eviction policies.
Macaron dynamically configures cache size and utilizes a mix
of cloud storage types, in order to adapt to workload changes
and reduce cloud costs. We demonstrate that Macaron can
reduce cross-cloud workload costs by 65% and cross-region
costs by 67%, mainly by reducing outgoing data transfer
and by leveraging object storage alongside DRAM to reduce
cache capacity cost.

1 Introduction
Demand for multi-cloud is surging [1–3], driven by factors
including: disparities among cloud provider features [4, 5],
the desire to avoid vendor lock-in [6–8], and evolving orga-
nizational structures, such as consolidations [9]. Similarly,
multi-region solutions (within a cloud provider) are becom-
ing more popular due to data sovereignty requirements [10–
12], service latency reduction [13, 14], and availability.

Despite many efforts to optimize resource use within a
cloud or region [15–23], achieving cost-efficiency across
clouds and regions remains a prominent challenge [24–28]
hindering the adoption of multi-cloud/region strategies. Cur-
rent cross-cloud/region data access solutions often lead to
substantial increases in overall costs. Organizations typically
resort to direct data access across clouds or regions [29–31],
which results in prohibitively high data egress cost for fre-
quently accessed data and high data access latency. While
many organizations address the latency issue through data
replication [32–36], the costs associated with maintaining
replicas and synchronization data egress remain substantial.
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(a) Macaron in multi-cloud (b) Costs for each approach

Figure 1.Multi-cloud/region workloads are challenging to
run cost-efficiently. Early industry adopters rely on accessing
all data remotely or replicating it locally, with some using an
existing in-memory caching cloud service (ECPC). Macaron
significantly reduces costs compared to these methods and
achieves costs comparable to offline optimal (Oracular). The
experiment details are provided in §7.2.

Public cloud providers and third parties offer caching ser-
vices that can be used to keep only hot data locally [37–42],
but those rely on manual configuration of the cache size.
We analyzed object storage traces from Uber, VMware,

and the IBM cloud [43], and derived three insights for cache
design. First, we find that manual selection of cache capac-
ity and storage type can lead to cost-inefficient decisions,
whereas strategies that support re-configuration of the cache
size and type can optimize cost and performance. Second,
the high data egress costs of workloads skewed toward lower
accesses per object highlight the need for large cache capac-
ities that are feasible only when cheap cloud storage types
are used. Third, diverse and dynamic access patterns within
and across traces make it essential to monitor workloads and
automatically reconfigure the cache when needed.
In response to these findings we introduceMacaron, an

auto-configuring cache system that monitors the workload,
dynamically adjusts cache capacity, and utilizes different
cloud storage types to minimize data access costs and la-
tency from remote data lakes (Fig. 1a). A key insight behind
Macaron is that cache sizes in the cloud are constrained by
cost rather than hardware constraints, causing us to rethink
cache design and eviction policy. Macaron analyzes the need
to add new objects to the cache and adjust cache capacity ac-
cordingly, while exploiting cheap storage types for caching,
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rather than solely relying on a cache replacement policy [44–
54] or efficient sharding of limited storage hardware among
applications [55–63].

Macaron leverages two storage types for caching. Object
storage capacity cost is considerably lower than the egress
cost incurred by cache misses, so Macaron uses it to mini-
mize the overall cost of accessing remote data. A distributed
DRAMcomponent is elastically adjusted to ensure acceptable
latency. The capacity of each tier is periodically assessed and
adjusted based on data access patterns, using a version of the
miniature simulation technique [64], modified to obtain byte
miss curves and average latency curves. We also explored
a variant of Macaron that adopts a cache policy using time-
to-live (TTL) for eviction, adjusting TTL instead of capacity.
Our results confirmed that both approaches achieve similar
cost savings. A serverless implementation allows Macaron to
achieve performance suitable for onlineminiature simulation
of very large cache capacities.
Fig. 1b shows that Macaron significantly improves upon

the cost of existing approaches. Each bar represents the total
cost of running the 19 cloud-based object storage workloads
analyzed in this paper (see §3.2) across clouds. Macaron
achieves 73% cost reduction compared to accessing all data
remotely by avoiding egress costs, and a 81% cost reduction
compared to replicating all data locally by reducing both
capacity and synchronization-driven egress costs. Macaron
also achieves 66% cost reduction compared to elastic cloud
provider caching (ECPC) services, which incur expensive
DRAM storage costs even when tuned intelligently. An orac-
ular approach with perfect knowledge of future accesses
only improves cost savings by an additional 9%, compared
to Macaron, without latency reduction.
We have evaluated Macaron with traces from IBM, Uber,

and VMware, and our results show the importance of adapt-
ing the cache size and configuration to workload changes and
that substantial cost savings can be achieved by combining
object storage and an elastic DRAM cache cluster.

Contributions. (1) We collected cloud storage workload
traces from Uber and VMware, and publicly released Uber
trace [65]. (2) We analyze real-world cloud storage work-
loads and derive design objectives for effectively caching
these workloads. (3) We describe the Macaron cache that is
adaptively auto-configured to minimize costs without com-
promising latency by leveraging object storage as a cache
storage type. (4) We experimentally demonstrate Macaron’s
ability to achieve 65% reduction on average in remote data
access costs compared to existing solutions. (5) Lastly, we
release the Macaron prototype [66] and simulator [67] code.

2 Motivation and Challenges
Cross-region data access within a cloud provider is gaining
prevalence for several reasons. First, computation and data
could end up separated due to resource unavailability within

Operation AWS Azure GCP
Egress to Internet (per GB) 9¢ 8.7¢ 11¢
Egress btw. regions (per GB) 2¢ 2¢ 2¢
Object storage (per GB-mo.) 2.3¢ 2.1¢ 2.3¢
DRAM (per GB-mo.) 700-1200¢
Object GET (per 1k requests) 0.04¢ 0.05¢ 0.04¢
Object PUT (per 1k requests) 0.5¢ 0.65¢ 0.5¢

Table 1. Cloud storage pricing1of three public cloud
providers is similar, with egress cost dwarfing other costs.

a region [68, 69], e.g., due to high demand for GPUs. Second,
new services are usually not available in all regions simul-
taneously, requiring applications to span regions in order
to adopt new technologies [70, 71]. Finally, data sharing via
cross-region data access is essential for international busi-
ness teams [72] and applications can be distributed across
multiple regions to provide lower latency to end-users [73].
Recent research [74, 75] has shown that distributing a

data pipeline across multiple clouds saves costs due to price
differences between providers, as demand for multi-cloud so-
lutions is rising. A recent survey [76] found that 55% of multi-
cloud users already deploy a single workload across multiple
clouds, which often requires cross-cloud data transfers. In
conversations with a major trading company we found that
during workload bursts, they utilize multiple cloud providers
to ensure trading performance scales with demand even
when resource availability becomes an issue for one cloud
provider [77]. Other companies have to split data to abide
by data residency rules preventing data movement [78].

While multi-region/cloud strategies have clear advantages,
we identify two important challenges: high data egress cost,
and increased data access latency.

Challenge 1: Prohibitive data egress cost.While trans-
ferring data into public clouds is often free, moving data out
incurs substantial charges based on the volume of data being
transferred (Table 1). For instance, one of the IBM traces
we have analyzed accesses 694TB in a week, resulting in
cross-cloud data transfer costs of $64K/week or $3.3M/year.
The same workload would incur $14K/week or $0.73M/year
if data was transferred across regions of the same cloud.
Despite being controlled by public cloud providers, data

egress costs have remained stable over time – GCP, AWS, and
Azure have maintained their egress costs unchanged for the
past 6 to 10 years. Moreover, egress costs have been consis-
tently identified as a barrier to cross-region/cloud adoption
in many surveys [76, 79]. Reducing the data egress cost is
crucial for embracing the multi-region/cloud era.

Challenge 2: High access latency. In latency-sensitive
workloads, like real-time analytics or streaming services, en-
countering consistently high latency is unacceptable [80, 81].

1Prices from N. Virginia region, <10 TB egress to the Internet, inter-region
transfers within N. America, and <50 TB storage capacity.



Operation % Data accessedTrace Put Get
Skewness
(Zipf factor)

Total
data size Put Get Remarks

IBM 9 N/A 100 0.22 6 TB 0 34 TB Short lifetime: last access - first access < 10min
IBM 12 1 99 0.97 5 TB 4 TB 603 TB High data access repetitiveness
IBM 18 2 98 0.64 4 TB 231 GB 14 TB High request rate, small object sizes
IBM 55 55 45 0.42 13 TB 12 TB 10 TB Strong diurnal access pattern
IBM 83 40 60 0.72 64 TB 37 TB 94 TB Low compulsory miss ratio (=0.12)
IBM 96 58 42 0.20 78 TB 46 TB 36 TB High compulsory miss ratio (=0.87)
Uber N/A 100 0.52 324 TB 0 941 TB Stable data access pattern

VMware N/A 100 0.47 215 GB 0 71 TB Small total data size, high request rate for testing
Table 2. We collected and analyzed new traces from Uber and VMware to understand how to efficiently cache cloud storage
workloads. The IBM traces represent diverse access patters among the busiest cloud object storage traces from IBM’s repository.

Even in less latency-sensitive workloads, high data access la-
tency can increase costs by increasing runtimes and causing
workloads to use compute resources for longer periods [24].

Cross-region data access causes higher latency compared
to single-region access. We measured object retrieval times
at a public cloud and found that retrieving a 1KB object from
local object storage in one U.S. region showed significantly
lower latency, taking 10s of milliseconds, than fetching the
same object from another U.S. region or Europe, which took
100s of milliseconds. Real-world workloads we evaluated
experienced 2− 5× higher average latency with cross-region
data access. High data access latency to remote data should be
mitigated for both performance and cost.

3 Macaron Design Drivers
In this section, we analyze existing approaches for cross-
cloud/region data access, and real-world cloud object stor-
age workloads from three large companies. We derive three
design objectives that have inspired the design of Macaron.

3.1 Limitations of Current Approaches
The simplest approach to accessing data across clouds or re-
gions is remote access, requiring no additional synchroniza-
tion efforts. However, in scenarios with repetitive data access
patterns, as observed in various storage workloads [54, 82–
84], egress costs are repeatedly incurred for the same objects,
alongside latency issues.
One effective approach to reduce latency is to replicate

all data and access them from local object storage, which
eliminates recurring data egress costs as well. However, it
does not solve the cost problem entirely, as the transfer cost
to synchronize dark data [85–87] (i.e., data that is written
once but never accessed) inflates the egress cost. Recent
surveys [88–91] have indicated that the percentage of dark
data can range from 40% to as high as 95% across different
organizations. Even worse, maintaining a large capacity of
replicated data lake is also expensive.
We view the above two patterns as endpoints of a spec-

trum, with caching solutions providing a middle ground.

While using existing cloud caching services appears straight-
forward, no service currently offers cost optimization solu-
tions for addressing high egress costs associated with remote
data access. Users must manually configure cache settings,
such as cache capacity and storage type, a task that can
be challenging even for experienced cache experts. More-
over, most existing services prioritize using DRAM or block
storage for caching, primarily focusing on single-region data
access performance, but our evaluation confirms that such ap-
proaches remain costly due to expensive capacity expenses.

Design objective 1:We need caching strategies that bridge
the gap between all-remote data access and full data replication.
These strategies should support auto-configuration of the cache
to optimize both cost and performance.

3.2 Cloud Object Storage Workload Characteristics
To better understand how cloud object storage workloads
should be cached, we analyzed IBM cloud object storage
traces [43], along with traces we collected from Uber and
VMware. These traces are collected from systems operating
within a single region. The Uber and VMware traces rep-
resent workload accesses that are not expected to change
substantially when moved to an architecture that spans re-
gions or clouds. Additionally, we evaluated diverse workload
patterns using IBM traces to broaden our evaluation, extrap-
olating these workloads to the cross-region and cross-cloud
scenarios described in §2. More details about how we col-
lected traces are in Appendix A.1.

IBM traces. These are anonymized object access logs from
IBM cloud’s object storage over a 7-day period. We identified
15 traces 2 with the most traffic, together making up 95% of
all data accessed across all 98 IBM traces. While we have
studied all 15 traces, for brevity we present detailed results
for 6 traces that are representative of all unique workload
characteristics that appear in the trace collection (Table 2).

Uber trace.We collected object access logs generated from
Uber’s Presto production deployment, primarily used for
processing and analyzing large-scale real-time event data

2IBM traces with IDs 4, 9, 11, 12, 18, 27, 34, 45, 55, 58, 66, 75, 80, 83, 96.



streams, and querying data streamed through Apache Kafka
to provide real-time data insights [92]. Our logs span three
Presto engines and over 18 days. Over 70% of the accesses
are generated by periodic jobs.
VMware trace. We collected AWS S3 requests generated

by AWS Athena queries from VMware’s test infrastructure,
spanning an 8-day period. These analytics queries, compris-
ing a mix of ad-hoc and scheduled jobs, analyze security
data and resemble queries in the production system but are
smaller in scale as part of testing before deployment in pro-
duction [93]. This workload exhibits a high data request rate
despite its relatively small dataset size.

Our analysis of these workloads helped us derive two
design objectives for caching cloud object storage workloads.
Large objects and higher spread of accesses. Data ac-

cesses often follow the Zipf distribution [83, 84, 94–96], and
we have confirmed that to be a good fit for our cloud ob-
ject storage traces as well. Zipf’s exponent 𝛼 [97] represents
the skewness in data access frequency per object. Higher
𝛼 values indicate fewer objects receiving most accesses, so
smaller cache capacities suffice for these workloads.
We find that cloud object storage workloads generally

have lower 𝛼 than those of KV-store or block I/O traces.
Over 78% of IBM workloads and both Uber and VMware
workloads have 𝛼 < 0.6, while more than half of Twitter
KV-store traces [84] have 𝛼 > 1.1. Thus, while previously
studied workloads achieve acceptable cache miss ratios with
small cache sizes relative to the overall dataset, cloud object
storage workloads need to cache a significant portion of data
to mitigate bytes missed, which directly affects egress costs.

Many objects in cloud object storage workloads are large.
For example, the IBM traces’ median object is 10-100KB,
while for Twitter it is 20-30B, orders of magnitude smaller.
Given that data access frequency being skewed towards few
accesses per object, this suggests that reducing egress costs
through caching requires a large cache capacity.

Design objective 2: Cloud object storage workloads are
skewed towards low accesses per object, so to reduce high data
egress cost we need large cache capacities, which are feasible
by leveraging cheap storage types.

Diverse and dynamic data access patterns.Cloud object
storage serves as backend storage for a variety of workloads
including machine learning [98–101], ETL [102, 103], SQL
queries [104–106], and file serving [107–109], resulting in
diverse data access patterns. Understanding the unique char-
acteristics of each trace in Table 2 is vital for establishing a
cost-efficient cache configuration. For instance, while IBM
96 is larger than IBM 83, the difference in data access skew-
ness necessitates larger cache capacities for IBM 83, which
are cost-efficient only using cheaper cloud storage. IBM 9,

despite having low data access skewness, does not bene-
fit from large cache capacity due to its short-lived objects,
necessitating a different approach for cost-efficiency.

Despite thorough observation and understanding of work-
load characteristics, a cost-efficient cache configuration varies
over time. For traces with more dynamicity, like IBM 80,
dynamically adjust cache size results in 85% cost reduction
compared to a statically configured cache. But even for traces
with stable, periodic data access patterns, like Uber, a dynam-
ically configured cache can result in a 15% cost reduction.

Design objective 3: Cache re-configuration based on work-
loadmonitoring is necessary to accommodate diverse and evolv-
ing data access patterns.

4 Macaron Design
Macaron is an auto-configured cache system designed tomin-
imize the cost of remotely accessing data stored across clouds
or regions, while ensuring acceptable latency. Macaron in-
telligently configures the cache storage type and adaptively
adjusts cache size by periodically analyzing data access pat-
terns. We elaborate on the key characteristics guiding Mac-
aron’s design (§4.1) addressing the design objectives from
Section 3, then describe Macaron’s architecture (§4.2).

4.1 Macaron Design Characteristics
Adopting object storage for cache storage type. While
object storage is typically used for data lake storage [101,
110, 111], Macaron uses it as a second-level cache storage
type. Cloud-based object storage workloads, as detailed in
§3.2, are often cache-unfriendly [112–114], necessitating a
large cache capacity to mitigate costly egress expenses. By
leveraging the remarkably low object storage capacity cost
(300× cheaper than DRAM), Macaron can provision exten-
sive cache capacity cost-effectively, and still reduce overall
costs through lower egress transfer costs.
With DRAM-based caches, however, neither opting for

a large cache size nor settling for a smaller one presents a
satisfactory solution to minimize costs; the former incurs
prohibitively high capacity costs, while the latter results in a
significant total miss penalty (i.e., egress costs). Therefore, as
a first-level cache, Macaron uses the smallest DRAM cache
cluster size that meets performance requirements.
While flash caching is often used as an inexpensive stor-

age type [115–117], we leave exploring other options for
future work, as object storage remains significantly cheaper
and its inherent elasticity aligns better with adaptive cache
reconfiguration. Otherwise, Macaron would need to manage
a virtual storage cluster for flash caching. By default, Mac-
aron uses standard object storage types like S3 Standard or
Azure Blob Storage Hot Tier for caching, with support for
other types by adjusting the cost policy.
Adaptive cache reconfiguration. Macaron periodically

analyzes data access patterns and adjusts capacity of each



Figure 2.Macaron Overview: an Object Storage Cache (OSC)
manages data egress costs, Cache nodes leverage DRAM to
improve latency, and the Macaron controller is responsible
for cache auto-configuration.

cache level, assuming patterns will repeat in the future, sim-
ilar to prior work [55, 118, 119]. Macaron determines a cost-
efficient object storage cache capacity that minimizes overall
remote data access costs and a DRAM cluster size that meets
acceptable average latency. Our evaluation confirms that
frequent optimization (every 15 minutes) leads to more cost-
efficient solutions (§7.3), enabled by cloud resource elasticity
and Macaron’s rapid workload analysis. To achieve the latter,
we extend miniature simulation techniques [64] and imple-
ment them in serverless functions. Achieving highly accurate
workload prediction [120, 121] falls beyond the scope of our
work, yet our evaluation demonstrates Macaron’s robustness
in handling real-world workloads, even when unobserved
workload patterns emerge (§7.2).

4.2 Macaron Architecture
Macaron consists of four components: a Macaron client, a
cache engine, an object storage cache manager, and the Mac-
aron controller (Fig. 2). Macaron uses two-level caching. As
the first-level cache, a cache engine and DRAM cache scale
together across cache nodes that make up a cache cluster.
An object storage cache (OSC), the second-level cache of
Macaron, is controlled by the OSC manager. Macaron uses
inclusive caching, where data in the cache cluster is also
stored in the OSC.
The Macaron client is the primary interface for appli-

cations, facilitating a connection to Macaron and the trans-
mission of data requests, such as put, get, and delete oper-
ations to a remote data lake. It employs consistent hashing
for message routing to the cache cluster that is auto-scaled.
The Macaron client maintains up-to-date cache cluster infor-
mation by communicating with the Macaron controller to
determine which node to access.
Upon receiving requests from the Macaron client, the

Cache Engine cluster interacts with both cache layers and

Figure 3. End-to-end pipelining of cache capacity optimiza-
tion and reconfiguration. Macaron executes processes in
parallel wherever feasible for fast reconfiguration.

the remote data lake. Macaron uses a write-through and in-
clusive policy by default, so the cache engines are responsible
for cache promotion.When Macaron targets solely minimiz-
ing the cost, the cache cluster is not deployed, and the cache
engine is co-located in the same node as the Macaron client.

While the DRAM cache is self-managed, Macaron deploys
an OSC manager to manage metadata and cache eviction
from the OSC. To reduce operational costs of OSC, Macaron
uses object packing that combines small objects into packing
blocks when writing cache items into the OSC. OSC man-
ager’s metadata manager provides the mapping of cache
objects to the corresponding packing block. Macaron lazily
evicts cache items from the OSC using the Eviction Manager.
We use the LRU eviction policy for both the OSC and DRAM
cache, but alternative policies can be easily incorporated.
Finally, theMacaron controller is responsible for adap-

tive cache management. Its optimizer determines the sizes of
both the OSC and the cache cluster to minimize cost while
striving to enhance performance based on past data access
patterns. Then it scales both cache layers accordingly. The
Macaron controller gains insights into data access patterns
through the Workload Analyzer that periodically collects
and analyzes data access logs.

Supported operations. The Put operation synchronously
writes data to the packing block being constructed, theDRAM
cache (if present), and the remote data lake, before returning
to the client. The packing block is asynchronously flushed to
the OSC in the background. This ensures data durability for
the remote data lake. The Get operation attempts to retrieve
data from the DRAM cache, the OSC, and the remote data
lake in sequence, returning it immediately upon success. The
Delete operation removes data fromMacaron’s DRAM cache,
OSC, and the remote data lake before returning.

4.3 Consistency model
Macaron is designed to guarantee the same consistency
model as using the remote data lake alone. To do so, Mac-
aron assumes data is immutable, a paradigm prevalent in data
lakes such as Meta and Alibaba data warehouses [122, 123],
AWS S3 lakeFS [124], and in cloud database formats like
Apache Parquet and Apache Iceberg. With its write-through
policy, Macaron ensures consistency equivalent to using the
remote data lake alone. Applications requiring mutable data
must handle it, potentially by using TTL for each item or



(a) Expected cost curve (b) Expected avg. latency curve

Figure 4. Example curves (Trace 55) utilized to optimize
OSC and the cache cluster capacities.

functions like S3 Object Lambda to detect and invalidate
stale data.

5 Cache Auto-configuration Pipeline
We introduce the workflow used by Macaron to adaptively
optimize the capacity of each cache level by analyzing data
access patterns for both cost and performance.

Workflow.Macaron triggers the reconfiguration process
at fixed intervals, set to 15 minutes by default. When recon-
figuration is triggered (Fig. 3): the Macaron controller first
collects data access logs from cache engines, then the Work-
load Analyzer (§5.2) generates key metrics on the recent data
access pattern (e.g., miss ratio curve, byte miss curve), and
the OSC manager updates the LRU cache item list. Based on
these metrics, the Macaron controller determines the most
cost-efficient capacity and reconfigures the OSC and cache
cluster accordingly (§5.1).

5.1 Capacity optimizer
OSC capacity.Macaron determines the OSC capacity that
minimizes the overall cost of accessing remote data across
clouds or regions. The capacity optimizer generates an ex-
pected cost curve based on past data access patterns, predict-
ing the expected cost for different OSC capacities during
the next time window and selects the size that minimizes
the expected cost (Fig. 4a). The expected cost for a cache
capacity (C) is computed as:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 (𝐶) = 𝑂𝑆𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡 (𝐶 +𝐺𝑎𝑟𝑏𝑎𝑔𝑒𝑆𝑖𝑧𝑒)
+ 𝐸𝑔𝑟𝑒𝑠𝑠𝐶𝑜𝑠𝑡 (𝐶) +𝑂𝑝𝐶𝑜𝑠𝑡 (𝐶)

𝐸𝑔𝑟𝑒𝑠𝑠𝐶𝑜𝑠𝑡 (𝐶) = 𝐸𝑔𝑟𝑒𝑠𝑠𝑃𝑟𝑖𝑐𝑒 × 𝐵𝑦𝑡𝑒𝑀𝑖𝑠𝑠𝐶𝑢𝑟𝑣𝑒 (𝐶)
𝑂𝑝𝐶𝑜𝑠𝑡 (𝐶) = 𝑃𝑢𝑡𝑃𝑟𝑖𝑐𝑒×(

#𝑊𝑟𝑖𝑡𝑒𝑠 + #𝑅𝑒𝑎𝑑𝑠 ×𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑟𝑣𝑒 (𝐶)
#𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 𝑝𝑒𝑟 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐵𝑙𝑜𝑐𝑘

)
In summary, the expected total cost consists of the ob-

ject storage capacity cost, egress cost, and operation cost
of object storage. Capacity cost is based on OSC size and
garbage size, a side effect of object packing, tracked by the
OSC manager, which monitors total data stored in OSC and
its determined capacity. Egress cost is proportional to the
bytes missed from the OSC. Operational costs for storing
cache items to OSC are proportional to the number of Put

operations and cache admissions, divided by the number
of packed objects, since admitted objects are written to the
OSC as a block. The costs unaffected by changing the OSC
capacity are omitted in this formula, including the VM cost
for Macaron controller, data transfer costs incurred by write
operations (due to the write-through policy). As capacity
increases, capacity cost increases while operation cost and
egress cost decrease, attributed to the reduction in miss ratio
and byte miss in OSC.
Cache cluster capacity.Macaron aims to configure the

minimal cache cluster capacity needed to achieve better aver-
age latency than the replication approach. Macaron utilizes
the average latency curve (Fig. 4b) to select the minimum
cache cluster capacity that meets the desired latency thresh-
old. However, in traces with high cold miss ratios, achieving
this objective may not always be feasible. In such cases, the
Macaron controller uses a maximum curvature method [125]
to identify the knee-point. It connects the latency-cache size
curve’s two endpoints and locates the farthest point between
the curve and this line, beyond which further expansion of
the cluster size yields no latency improvement.

TTL cache for OSC. Given that there is no capacity limit
in object storage, implementing a TTL cache on the object
storage is another viable option. To assess whether Mac-
aron’s techniques can be applied to adaptive TTL-based
object storage caching, we implemented Macaron-TTL, a
variant of Macaron that uses a TTL cache and automatically
determines a TTL that minimizes the total cost of access-
ing remote data. This variant employs the same Workload
Analyzer to generate necessary metrics for computing the
expected cost for TTL instead of cache size, considering a
similar trade-offs: a TTL that is too short increases cache
misses and egress costs, while one that is too long raises
storage expenses. Our evaluation, as shown in §7.8, confirms
that cost savings achieved by Macaron-TTL are nearly iden-
tical to those from optimizing OSC capacity. Further details
of Macaron-TTL algorithm are available in Appendix B.

5.2 Workload Analyzer
Macaron uses a short optimization window, set to 15 min-
utes, to leverage the cost benefits of frequent reconfigura-
tions, which requires fast yet accurate workload analysis.
The Workload Analyzer adopts and extends the miniature
simulation technique [64] to derive three key metrics repre-
senting the recent access pattern: miss ratio curve (MRC),
byte miss curve (BMC), and average latency curve (ALC).
Then, using accumulated metrics from historical access pat-
terns, Macaron generates aggregated metrics for capacity
optimization. For Macaron-TTL, the same curves are used
but with TTL on the X-axis instead of cache size.

Miniature Simulation. Waldspurger et al. [64] intro-
duced a technique for generating MRCs that emulates caches



of any specified size by proportionally scaling down the ac-
tual cache size and using spatial sampling to sample data
accesses. Among MRC generation studies [95, 126–130], we
chose this method for its efficiency in generating MRCs on-
line and its adaptability in computing additional metrics
utilized by Macaron, such as missed bytes or average latency.
We follow the original miniature simulation approach to

obtain the MRC, and monitor cache miss bytes from the mini-
caches, dividing them by the sampling ratio to approximate
miss bytes of the original cache sizes, thereby generating
the BMC. This process deviates only slightly from a full
simulation, with a mean absolute error of 0.0023 for the
MRC and a mean average percentage error of 0.015 for the
BMC, evaluating all 19 traces.
Symbiosis [55] uses miniature simulation to generate a

MRC and produces an ALC based on the MRC to auto-tune
application and kernel cache sizes. It uses access latency
measured at the beginning and hit ratiosmeasured at runtime
of each cache layer to calculate average latency. However,
Macaron considers two more factors, workload change and
false positive hits, improving accuracy further.
First, Symbiosis assumes cache and disk latency do not

change, but we observe that the access latency distribution
to object storage varies over time since it depends on the
object size distribution, which varies over time. Second, when
uncached data are consecutively accessed within a very short
time (before a remote access completes), Macaron’s cache
engine delays subsequent accesses until the first request
completes to reduce redundant egress costs, causing them
to experience remote access latency. However, in simulation,
subsequent accesses after the first one are classified as hits,
underestimating latency by using the cache cluster latency
and generating an ALC with lower latency values.
To resolve these issues, Macaron directly computes av-

erage latency for each access during miniature simulation
and aggregates them afterward, and we added the request
delay in the simulation used by Macaron. Moreover, we ran
two-level mini-caches that depict the cache cluster and OSC,
using the same sampling and scaling logic. The cache cluster
capacity serves as the independent variable for ALC, while
OSC’s cache capacity works as input to ALC optimization,
since it is decided by the Macaron controller.
Fig. 5a illustrates the accuracy of Macaron factoring in

workload changes compared to Symbiosis that uses the un-
changed measured latencies for 7 days. In this case, the work-
load changes from accessing large objects to small objects,
thus Symbiosis yields inaccurately higher latency (black).
Symbiosis behaves much better once we force it to recali-
brate every 15 minutes, but still worse than Macaron. Fig. 5b
demonstrates the effect of false positive hits, where Symbio-
sis reports inaccurately lower average latency.

MetricAggregation.After analyzing the local data access
pattern, the Workload Analyzer stores the results for future

(a) ALC of IBM 55 (b) ALC of IBM 12
Figure 5.Macaron’s ALC achieves high accuracy by comput-
ing the latency at runtime and incorporating proper request
delaying, closely matching the exact average latency.

reference. It aggregates those saved local metrics according
to the optimization goal.
To optimize costs, retaining historical data access pat-

terns is crucial due to the high data egress cost, which aligns
with the cost incurred for storing the same object in ob-
ject storage over extended periods, specifically 116 days for
cross-cloud and 26 days for cross-region accesses. Therefore,
conservatively including old data access patterns is a key
for cost-efficiency. To achieve this goal and adapt to work-
load changes, we use an exponential decay mechanism by
multiplying metrics by a decay factor 𝛾𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒 , which
diminishes the influence of older metrics. This is simple yet
yields effective results (§7.3). Additionally, we also multiply
weights proportional to the number of requests per reconfig-
uration window.This prevents metrics derived from a small
number of requests from misrepresenting the overall data
access pattern.

To optimize performance, however, only the latest access
pattern is important as Macaron needs to quickly scale-in
the cache cluster when the large cache cluster capacity is
ineffective. Thus, Macaron uses the latest ALC to configure
the cache cluster capacity.

5.3 Policy during observation period
Macaron starts to trigger optimization after the cache is
warmed up and stable data access patterns are observed,
using the first day as the observation period. During the
observation period, Macaron can either cache all accessed
data or none at all. We find that storing all accessed data led
to a significant reduction in the cost of remote data access,
averaging at 37% compared to not storing any data. The main
reason for this is twofold: (1) object storage cache is cheap, so
storing all data for 24 hours does not incur significant over-
head, and (2) on the first day, if no data is cached, the egress
cost for repetitively accessed data is very high. Comparing
to the use of optimal cache capacity during the observation
period did not yield significant cost savings either.

5.4 Offline optimal algorithm
To assess Macaron’s cost-efficiency, we compare it with the
optimal solution, Oracular, which has complete knowledge



Figure 6. Overview of how OSC manager manages object
packing, lazy eviction, and garbage collection.

of trace requests. While the Belady algorithm [131] is known
to be the optimal eviction algorithm, OSC differs in two main
ways: (1) its elastic nature, eliminating the need for forced
evictions, and (2) its focus on overall cost rather than just
miss ratio. Given these differences, Oracular determines for
each cache item access whether the cost to store data in the
OSC until the next access is less than the data transfer cost.
If higher, the item might be evicted or not stored.
For our comparison, we assume zero operation cost for

Oracular, suggesting optimal packing and minimal opera-
tion costs. Also, we take the end of the trace length as the
end of the workload for Oracular, but real-world workloads
continue beyond trace lengths. Hence, Oracular stands as
an idealized benchmark that Macaron aims to approach, even
if it may not be reachable.

6 Implementation
We implemented the Macaron prototype in 8k LoC of C++,
and we explain the important implementation details that
influence performance and cost.

6.1 Object storage cache implementation
Object packing. Object storage write operations are 12.5-
13× more expensive than reads. However, Macaron has to
perform frequent writes for cache admissions, driven by the
low skewness of object storage traces. Macaron mitigates
this issue through object packing [21], bundling small ob-
jects into larger blocks before writing them to object storage.
Macaron’s Cache Engine (Fig. 6 1○- 4○) combines objects that
need to be written in OSC into blocks, then full blocks are
written to OSC, and OSC manager metadata is updated to
map blocks to objects. The Cache Engine uses byte-range
fetches to retrieve objects from blocks.
By default, Macaron sets a packing threshold of up to 40

objects and a block size of 16MB. The workloads we studied
break data in up to 4MB objects for caching, for which ob-
ject packing can achieve 4× operation cost reduction, while
smaller objects see reductions up to 40×. Larger block sizes
reduce request costs but increase memory consumption on
the cache nodes, which store data at block granularity.

Lazy eviction and garbage collection. Traditional caches
evict items when reaching physical capacity. Macaron ex-
ploits object storage elasticity, delaying evictions and batch
processing them to reduce operational costs. When eviction

is triggered (Fig. 6 5○- 8○), the OSC manager leverages ac-
cess logs to update its state of OSC objects to Evicted. Lazy
evictions are followed by garbage collection for blocks with
over 50% Evicted or Deleted objects, where a block is read
and a new block is written out to OSC containing only active
objects. Note that Macaron does not traverse all blocks for
garbage collection. Instead, when a Delete or Evict occurs,
it computes the percentage of valid items in each affected
block. If the percentage falls below a threshold, the block ID
is added to the GCList for tracking. Only the blocks in this
list are targeted during garbage collection.
Lazy evictions resolve performance issues related to up-

dating cache replacement policy metadata [43, 132, 133], by
removing it from the critical path of requests.

6.2 Cache cluster implementation
DRAM cache priming. The speed at which Macaron can
warm up new cache capacity following an auto-scaling event
is crucial for efficiently utilizing new cache nodes.
We observe that many object storage workloads, espe-

cially IBM traces, have lower object request rates than the
other key-value or block I/O workloads. For example, while
average data request rates of Twitter [84] and Enterprise
VDI storage traces [134] are 7k and 33k RPS, IBM traces do
not exceed 344 RPS. This disparity is likely due to the high
latency and monetary costs associated with retrieving data
from cloud object storage, prompting users to maximize the
use of fetched data. Hence, new cache capacity will get pop-
ulated slowly, reducing our ability to mitigate latency spikes
through existing methods like a Gradual algorithm [135].
To address this, Macaron incorporates cache priming for

newly launched cache nodes. During this process, the OSC
manager scans the LRU order of cache items and preloads
data into new cache nodes until they are full.

6.3 Macaron controller implementation
Miniature simulation. Using spatial sampling at a ratio of
5%, we ran at most 200 mini-caches (ghost caches), with the
largest covering the total data size of each workload3. Mac-
aron deploys each mini-cache as a serverless function, run-
ning 200 simulations in parallel for rapid analysis (§7.7). To
avoid replaying all accumulated traces in each optimization,
Macaron stores the states of each mini-cache in Amazon EFS
after simulation, loads the states back for subsequent simula-
tion, and updates them during simulation execution. Metrics
like miss ratio, bytes missed, and average latency, generated
by each mini-cache during each optimization window, are
also stored in EFS for use by the Macaron controller’s capac-
ity decision. As detailed in §5.2, Macaron runs two types of
miniature simulation: one to generate MRC and BMC in a
single run, and another to produce the ALC.

3We used uniform intervals between mini-cache sizes, with the smallest
mini-cache size to cover at least 50GB cache simulation.



The pay-as-you-go pricing model offers cost and perfor-
mance benefits for running miniature simulations on server-
less functions instead of the master node. With serverless
functions, costs are incurred only during active periods of ex-
ecution. Serverless functions run 31 seconds (average across
traces) for each 15 minutes optimization window. This makes
them more cost-efficient than dedicated instances, due to the
memory usage required by miniature simulation, even with
sampling. Also, running 200 simulations quickly within a
short optimization window requires high parallelism, and
provisioning a large dedicated instance that is used only for
short intervals would incur higher costs. We evaluate the
cost and performance overheads in §7.7.

Scaling caches. To scale the OSC, the Macaron controller
leverages the elasticity of object storage by storing more
cache items to the OSC or deleting objects as needed. For
scaling the cache cluster, the Macaron controller tracks the
number of cache nodes, deploying new ones or terminating
existing ones when the cluster size changes. It then commu-
nicates with Macaron clients to update their cache cluster
information for consistent hashing-based message routing.
For improved load balancing, availability, and scalability, ad-
vanced shard managers like Google’s Slicer [136] or Meta’s
Shard Manager [137] could be employed.

7 Evaluation
We evaluate Macaron using real-world object storage work-
loads to assess the following aspects: its cost-efficiency com-
pared to existing approaches (§7.2), its adaptability to work-
load changes (§7.3), cost-breakdown of Macaron’s optimiza-
tion techniques (§7.4), its ability to utilize the cache cluster
cost-efficiently to achieve the desired performance (§7.5),
its robustness under varying cloud conditions through sen-
sitivity analysis (§7.6), simulation accuracy and prototype
reconfiguration overhead (§7.7), and its TTL-based variant’s
cost-efficiency (§7.8).

7.1 Experimental setup
Traces. We evaluate Macaron with 15 IBM traces, 3 Uber
traces, and 1 VMware trace. For brevity, we provide de-
tailed analysis of results obtained from 6 IBM, 1 Uber, and 1
VMware trace (Table 2). We use the first day of each trace as
the observation period, with optimizations triggered every
15 minutes after the first day. Each evaluation reports the
remote data access cost and latency for the remaining days.
For the IBM traces, as in the original paper [43], large

objects are divided into 4MB blocks, with each smaller object
treated as a separate cache item. We use the same policy
for the VMware traces, while for Uber we use 1MB blocks,
which is their default policy.
Configurations. Unless stated otherwise, experiments as-
sume workloads running on a different cloud provider than
the one hosting the remote data lake, with accesses incurring

cross-cloud egress charges. Workloads are located in the N.
Virginia region, while the remote data lake is in N. California,
but we did perform a sensitivy analysis considering different
configurations (§7.6). We use AWS’s pricing model, but note
that cloud providers have similar pricing models.
Baselines and costs.We compare Macaron to three base-
lines mirroring approaches used today (§3.1): accessing all
data from a Remote cloud, having all data Replicated lo-
cally, and using existing in-memory caching solutions (ECPC)
like AWS ElastiCache. Since ECPC products rely on users to
provide scaling policies, we use Macaron’s optimizer to effi-
ciently auto-scale the cache. Finally, we evaluate Macaron
against the Oracular caching solution (§5.4).

At a high-level, Remote incurs egress and operation costs
for all data accesses, while Replicated is plagued by syn-
chronization costs. Egress and capacity costs for Replicated
are computed based on the rate of increase in total data size,
using a 90-day data retention period and 70% dark data, but
different portions of dark data are explored too (§7.6). We
exclude operation costs for Oracular’s object storage cache
(§6). All others incur infrastructure costs for OSC manager
and/orMacaron controller, withMacaron and ECPC incurring
additional serverless function expenses.
Macaron Simulator. Replaying all traces once in a real

cloud would cost over $1.5 million (Fig. 1b). Thus, we devel-
oped a simulator that allows us to assess Macaron across
various configurations and constraints. The simulator mod-
els key components, replicating their functionalities (§4) and
interactions. The simulator manages message exchanges be-
tween components, including data and control requests for
reconfiguration and eviction, ensuring messages are gener-
ated in the same way as by our prototype implementation.
To simulate message latencies accurately, we measured

data access latencies on AWS for various object sizes ac-
cessed from a remote data lake, OSC, and the cache cluster,
and fit a Gamma distribution to the collected data. Cloud
resource types and cache software we used for evaluation are
detailed in Appendix A.2 and detailed latency generator val-
idation is in Appendix A.5 and §7.7. We have open-sourced
the simulator code [67].

7.2 Cost-efficiency Analysis
Observation 1: For individual traces, Macaron reduces cross-
cloud data access costs by 65% and 75% on average compared
to Remote and Replicated, respectively.

Macaron aims to minimize costs when accessing cross-
cloud/region data. We compare remote data access costs of
Macaron with those of our baselines. Fig.7 shows results for
two representative IBM traces for brevity, with a discussion
of the overall results provided below. See Appendix A.3 for
the individual results of all traces and additional case studies.
Overall results. Across 19 traces, Macaron achieves a cost
reduction of 2.4% to 99.3% (avg. 65%) compared to Remote,



and 24.9% to 82.9% (avg. 75%) compared to Replicated in
cross-cloud scenarios (Fig.7b). In cross-region scenarios, for
the 16 traces that have lower than 20% compulsory miss ra-
tios, Macaron provides cost reductions of 28.2% to 98.5% (avg.
67.4%) and 18.1% to 91.1% (avg. 78.4%) compared to Remote
and Replicated, respectively (Fig.7a). In cross-region sce-
narios, for the IBM 27, 66, and 96 traces that have high com-
pulsory miss ratios (57%, 79%, 87%), Macaron incurs 24%,
5.8%, and 1.5% higher costs compared to Remote, respec-
tively, because the savings achieved are less than the cost of
running a single VM to operate Macaron controller and OSC
manager. Since cross-cloud egress cost (9¢/GB) is higher than
cross-region (2¢/GB), Macaron selects a larger cache capacity
for cross-cloud scenarios, allowing for further reduction of
egress costs.
Comparison with ECPC.When caching in object storage,
the Macaron optimizer exploits its low capacity cost and
mitigates egress costs by provisioning high capacities. When
caching in DRAM, however, cache capacity costs increase
rapidly, leading to a much smaller capacity point for cost op-
timization. ECPC, using DRAM, incurs higher capacity costs
even with small capacities, along with increased egress costs
compared to Macaron. As a result, across 19 traces, Macaron
reduces overall costs by 3.5–89.1% (avg. 46%) compared to
ECPC for cross-cloud data accesses.
Remote vs. Replicated. Fig. 7 shows that neither Remote
nor Replicated consistently outperforms the other. For
cross-cloud scenarios, 6 traces are cheaper to manage with
Remote, the remaining 13 show cost savingswith Replicated,
and Macaron outperforms both across all traces.
Comparison with Oracular. Oracular leverages future
knowledge for optimal caching decisions, while Macaron
relies on past access patterns to predict the future. Still, this
results in Oracular accessing cross-cloud data at 0.4%-18.3%
lower cost (avg. 6.8%) than Macaron across all traces.
In IBM 12, Oracular’s cost is 18% lower than that of

Macaron due to misprediction of workload behavior for
cross-cloud scenario. For days 1-5, the workload consistently
accesses half of the previous day’s data, adding an equal
amount of new data. On day 6, it accesses data from day 2,
causing unexpected cache evictions and remote re-fetching
accesses, incurring egress costs.

Despite uncertain workload behaviors, Macaron remains
more cost-efficient than the baselines. Monitoring longer-
term data access patterns might reduce this uncertainty.

Observation 2: Macaron’s cost reduction stems from ag-
gressively reducing data egress costs by exploiting cheap stor-
age to build large caches, while finding the cache size that
minimizes capacity costs.

We provide a detailed case study for each workload shown
in Figure 7b. Additional case studies are in Appendix A.3.

The VMware workload involves running numerous tests
periodically on the test dataset, leading to a high frequency

(a) Cross-region data access

(b) Cross-cloud data access
Figure 7. Detailed analysis on four workloads representing
diverse data access patterns.
of repetitive accesses. Thus, there is a 96% cost reduction com-
pared to Remote, and 25% reduction compared to Replicated.
The Uber workload has the largest data size among 19

traces, and Macaron achieves 81% cost reduction compared
to Replicated. Macaron finds a cache capacity of 180TB
(56% of total data) yields benefit by avoiding egress transfers.

The IBM 9 workload exhibits a periodic burst for 15 min-
utes every hour, during which new data retrieval is followed
by repeated access. The Workload Analyzer identifies this
pattern, provisioning only 1% of the total data size to cache all
the data accessed during each burst. This results in 79% cost
reduction compared to Remote, managing repetitive accesses
from OSC, and 82% reduction compared to Replicated due
to the small cache capacity used.

For the IBM 12 workload, Macaron achieves 98.9% reduc-
tion in data egress costs compared to Remote, due to strong
cache locality. Over 50% of objects are accessedmore than 100
times, making caching highly effective. Using Replicated is
still expensive due to the 101× higher storage cost compared
to caching only hot data identified by Macaron.

7.3 Impact of Adaptivity Mechanisms
Observation 3: Macaron’s adaptive reconfiguration reduces
costs by 12% compared to static configurations. When work-
loads change, Macaron decays its knowledge leading to an
additional 5% cost reduction compared to no decaying.

Macaron optimizes configurations every 15 minutes to
match the latest data access patterns. Here, we quantify
the benefits of this frequent reconfiguration, and Macaron’s
mechanism for decaying older learned access patterns.
Reconfiguration window. We evaluate the benefit of Mac-
aron’s frequent reconfiguration, by comparing it to a static
configuration that is fixed to the optimal capacity obtained
from the first day of the trace. For cross-cloud scenarios,



(a) No decaying leading to high
egress cost.

(b) No decaying leading to high
capacity cost.

Figure 8. TestingMacaron’s adaptivity to a workload change
(vertical red line), with and without knowledge decaying.

Macaron achieves cost reduction 0-85% (avg. 12%) across 19
traces, while for cross-region, it is 0-78% (avg. 8%). When
Macaron’s reconfiguration window is reduced from 24 hours
to 15 minutes, cost is reduced by 0-41% (avg. 4%) for cross-
cloud and 0-25% (avg. 3%) for cross-region scenarios.
Exponential decay. By default, Macaron uses a decay factor
of 0.2 (i.e., 𝛾1𝑑𝑎𝑦 = 0.2) to phase out learned patterns. We
assess Macaron’s cost-efficiency under varying decay fac-
tors – 1.0 (NoDecay), 0.2 (Default), 0.1 (SmallDecay) – using
15 IBM traces. Specifically, we evaluate its performance (1)
within a single trace, and (2) when concatenating two differ-
ent traces to simulate abrupt changes in data access patterns
often observed in real-world workloads [138–141].
For a single trace, the IBM and VMware workloads span

one week, and 18 days for Uber, and exhibit fairly consistent
data access patterns. This benefits knowledge accumulated
over time. Specifically, our traces show insignificant differ-
ences of ±1% with and without knowledge decaying.

To assess Macaron’s adaptivity during workload changes
we created 30 new concatenated workloads by combining the
6 selected IBM traces and assessed evaluated costs during
the second trace’s execution to see how Macaron adapts
to changes in data access patterns. For 25 concatenated
workloads, Default and SmallDecay reduce costs by 0-30%
(avg. 5.2%) and 0-34% (avg.6.1%), respectively, compared to
NoDecay, which continues to rely on past traces and hampers
quick adaptation. For example, combining IBM 55 and IBM
83 in Fig 8 results in NoDecay facing high egress costs when
executing IBM 83 after IBM 55 due to slow scaling out, while
changing the order leads to expensive capacity costs because
of slow scaling in. However, Default and SmallDecay can
adapt rapidly to such changes.

We observed that for five concatenatedworkloads4, NoDecay
incurred lower overall costs. This was due to the fortuitous
alignment of the workloads’ unpredictable access patterns
with NoDecay’s lack of adaptability, preventing it from slowly
reducing capacity and retaining unnecessary cache items.

7.4 Effects of Macaron Optimizations
Macaron’s cost savings are primarily attributed to two key
optimizations: (1) determining the cost-efficient OSC size
4These concatenated traces are 9→18, 18→12, 55→12, 55→18, and 96→12

and (2) packing small objects when caching them in the OSC.
Next, we assess the effectiveness of these optimizations.

Observation 4: While the cost-efficient cache size varies
significantly for each workload, Macaron identifies efficient
setups by analyzing each access pattern. Making a less optimal
choice can lead to increased costs.

OSC size optimization. Figure 9 depicts the OSC capacity
changes over the last six days (after observation period)
across 15 IBM traces, with the total data size. The ratio of
OSC capacity to data size varies across workloads, ranging
1-98%, highlighting that there is no single ratio ensuring a
cost-efficient cache size, and the need for a tool like Macaron.

For IBM 18, Macaron aligns cache capacity with the total
data size, suggesting a very large cache can mitigate overall
costs by minimizing data egress fees. Unlike conventional
caching studies, which favor compact, frequently-accessed
data caches, the prohibitively expensive egress costs in cross-
cloud, cross-region settings advocate for larger caches.

We found that all traces except one among the 19 evaluated
workloads adjusted the cost-efficient OSC capacity at least
once, with a standard deviation in the changing OSC size
to total data size ratio ranging 0-0.28. The average standard
deviation value is 0.1, suggesting that the ratio changed 10%
per day, emphasizing the importance of Macaron’s adaptivity.
This capacity ratio typically increases from day 1 to 7.

Fig. 10 demonstrates that erroneous OSC capacity allo-
cations can notably affect cost. Using the same 14% cost-
efficient capacity ratio from IBM 55 on IBM 83 causes a 1.5×
uptick in expected cost relative to Macaron’s selection.

Observation 5: Object packing, especially for workloads
with small objects and high request rates, can yield significant
savings, with up to a 36% cost reduction.

Object packing. In our evaluation, IBM 18 and IBM 45
realized cost reductions of 36% and 5%, respectively, due
to object packing. Traces with smaller objects and higher
request rates, like these two, tend to benefit the most. Similar
to Amdahl’s law, the higher the contribution of operational
costs to the total costs, the greater the potential savings,
as object packing impacts only operational costs. Though
operational costs average 4% of total costs in cross-cloud
scenarios due to high egress expenses (resulting in 3% cost
savings), factoring in cross-region egress prices increases
operational costs to 8% and savings to 7%.

7.5 Macaron with low latency

Observation 6: Macaron achieves 61% lower latency and 64%
cost savings than Replicated with its dynamic cache cluster.

We evaluate whether Macaron can combine performance
and cost-efficiency, without compromising on performance.
By dynamically adjusting its cache cluster, Macaron cuts
remote data access latency by 61% compared to Replicated,



Figure 9. Macaron’s average OSC
capacity (red dot) is 0.8-75.1% of
the accessed data size. Error bars
show the range over 6 days.

Figure 10. Expected cost curves
generated by Macaron controller.
Sub-optimal OSC size choices can
result in higher expenses.

Figure 11. Violin plots of latency for each method. By
dynamically adjusting cache cluster (Macaron+CC),
Macaron reduces latency by 62% and cost by 58%
compared to Replicated. The starmarks the average.

and still saves 64% costs across 10 traces that showed lower
average latency than Replicated. This is achieved by serv-
ing hot data from cache cluster and smartly scaling the clus-
ter during inactive periods or when smaller capacities suf-
fice. Macaron without cache cluster exhibits, on average,
10% higher latency compared to Replicated. This increase is
because Macaron ’s latency is lower bounded by the latency
of object storage, which is the same as that experienced by
Replicated. However, using 30% more costs for the cache
cluster (still significantly cheaper than Replicated), Mac-
aron substantially improves latency.
For 6 remaining IBM traces and Uber traces with high

compulsory miss ratios, only full replication achieves low
latency, albeit at the previously discussed high cost in §7.2.
Our rough estimates indicate that if the compulsory miss
ratio surpasses 10-20% (depending on workload object size),
achieving lower average latency than local object storage
becomes challenging, even with all other requests retrieve
data from the cache cluster, which matches with our results.

Fig. 11 shows the violin graphs that illustrate the latency
distributions of four traces, all showing similar character-
istics. Interestingly, despite ECPC being DRAM-centric so-
lution, it often shows higher latency than Macaron with a
cache cluster (Macaron+CC) or even without a cache cluster
(IBM 11 and 55 in Fig. 11), as not enough DRAM cache server
is allocated by prioritizing cost-efficiency, thus resulting in
high latency. Specifically, in Fig. 11, Macaron+CC demon-
strates cost savings of 0.3%, 9%, 37%, and 16% for the VMware,
IBM 9, 11, and 55 traces, respectively, while also reducing
latency by 3%, 1%, 76%, and 70% compared to ECPC.

The plot also showsMacaron’s tail latency without a cache
cluster resembling Remote, while its low latency mirrors
Replicated. With a cache cluster, Macaron’s low latency
distribution matches cache cluster latency, substantially low-
ering average latency.
Our percentile latency analysis further validates these

observations. For example, in IBM 9 with a 21% compulsory

(a) Cost comparison across pric-
ing models.

(b) Effect of dark data on cost of
Replicated relative to Macaron.

Figure 12. Analysis of the efficiency of Macaron under vary-
ing pricing models and with changing dark data portions.

miss ratio, Macaron’s p90 and p99 latencies using DRAM
cache are from remote data accesses, but are 27% and 15%
lower than Remote’s p90 and p99, indicating the impact of
serving many requests from OSC. In IBM 55, where the
compulsory miss ratio is below 0.1%, Macaron’s p90 and
p99 latencies from OSC using DRAM cache are even 15% and
6% lower than Replicated’s p90 and p99, showcasing the
efficiency of serving from the cache cluster.

7.6 Sensitivity analysis
We assess Macaron under varying experimental settings,
specifically latency, egress cost, and dark data portions.
Different egress costs. We tested Macaron with three

alternative egress cost models to ensure its effectiveness
across different pricing: 22% (cross-region egress cost), 10%
(0.9¢/GB), and 1% (0.09¢/GB) of the standard cross-cloud
rate of 9¢/GB. Macaron consistently surpasses the baselines
across different pricing models, achieving substantial cost
reductions as depicted in Fig. 12a, even when egress costs
are as low as 1% of the cross-cloud rate.

Different latency.We evaluate Macaron’s cost-efficiency
with varying latency distributions by switching the inter-
region setting from US N. Virginia and US N. California to
US N. Virginia and Europe Frankfurt. In this new scenario,
higher inter-continent latency makes it harder to achieve



local object storage access latency with Macaron. Conse-
quently, one less trace outperforming Replicated for both
cost and latency compared to the intra-continent scenario,
achieving a 71% lower average cost while paying 62% less.
Different dark data percentage. We evaluated Mac-

aron’s efficiency against Replicated across varying dark
data portions, previously set at 70%. Fig. 12b shows that with
a 0% dark data portion, which means the working set size
of the trace is equal to the entire data size, Macaron is 37.5%
cheaper than Replicated. At 99% dark data, Replicated is
158.9× costlier than Macaron.

7.7 Simulation accuracy & Reconfiguration overhead

Observation 7: Simulator closely mimics Macaron with min-
imal gaps in cost and latency, up to 0.17% and 7.6%. Reconfig-
uration time comprises less than 9% of the total runtime, while
the cost overhead remains low at 0.6% of the total cost.

We evaluate Macaron simulator’s accuracy by comparing
its cost and latency results with those obtained from running
our prototype implementation on AWS. Due to budget con-
straints, we selected three IBM traces: IBM 9, 55, and 58, rep-
resenting read-only, read/write mixed, and read/write/delete
mixed scenarios, respectively. Overall, the cost gap between
the simulator and prototype was minimal, ranging from
0.08% to 0.17%. Similarly, the average latency gap was 4-7.6%.
Additionally, we validated the number of Get operations hit
at each cache level match. More detailed results are provided
in Appendix A.4.
Next, we evaluate reconfiguration overhead. Across the

three traces we evaluated, end-to-end reconfiguration took 6
to 418 seconds (avg. 71sec). When there is no change in cache
cluster configuration, it takes only 7 seconds on average, but
if there is a change, especially when scaling out, it takes
274 seconds on average. Since reconfiguration occurs only
when optimization results in configuration changes, the total
reconfiguration time across three traces amounts to 1.6 hours,
representing just 9% of the total runtime of 18 hours. During
reconfiguration, requests continue to be served without any
downtime, and the cost of the resources required to carry it
out are factored into Macaron’s savings.
Further breakdown reveals that the largest portion of re-

configuration time is spent on miniature simulation and
cache cluster reconfiguration. Miniature simulation time is
proportional to the request count in the optimization win-
dow, taking 0.3–44 seconds (avg. 31sec across all optimiza-
tion windows of 19 traces). Cache cluster reconfiguration,
including VM initialization and cache priming, took 132–387
seconds (avg. 256sec). Finally, the cost overhead of running
miniature simulation on AWS Lambda is negligible, account-
ing for only 0.003–4% (avg. 0.6%) of the total cost of running
each trace end-to-end across 19 traces.

Figure 13.Comparison ofMacaron against static TTL caches
and Macaron-TTL shows that dynamic cache adjustments of
Macaron’s variants result in cost savings compared to static
TTL caches.

7.8 Size-based and TTL-based Macaron variants
Observation 8:Macaron and Macaron-TTL demonstrate sim-
ilar cost-efficiency, successfully identifying cost-efficient cache
sizes and TTLs.

We evaluated the effects of optimizing TTL (Macaron-TTL)
rather than cache size (Macaron) in cross-cloud scenarios.
Across 18 traces, Macaron-TTL’s cost ranges from -0.8% to
3.3% compared to Macaron, indicating similar performance.
In IBM 80, Macaron-TTL was 17% more expensive due to
its TTL=24hr selected based on the past data access pattern,
which led to all data being forcibly evicted during a two-day
no-access period, whereas Macaron saves more in egress
costs by avoiding evictions.
We assessed Macaron-TTL ’s ability to identify the most

cost-efficient TTL for each trace. Through exhaustive search,
we tested various static TTL caches throughout each traces5,
and pinpointed those that minimized costs. In the IBM traces,
we observed that the optimal TTLs varied widely, ranging
from 1 to 168 hours, with an average of 72 hours and a stan-
dard deviation of 56 hours. Despite this variability, Macaron-
TTL accurately identified the optimal TTLs for 16 traces. For
IBM 34, 45, and 58, although Macaron-TTL selected TTLs
of 144, 132, and 84 hours – differing from the optimal TTLs
of 72, 108, and 24 hours – the cost gaps between the static
TTL policies using TTLs chosen by Macaron-TTL and the
optimal TTLs were negligible, all under 0.7%. This is because
OSC capacity costs are significantly lower than egress costs,
so the additional capacity cost has minimal impact.
Fig. 13 illustrates a cost comparison between Macaron

and Macaron-TTL against static TTL policies. Across 19
evaluated traces, Macaron achieved average cost reductions
of 22%, 13%, and 9%, with maximum reductions of up to 74%,
69%, and 63% compared to static TTL policies set at 1, 12,
and 24 hours, respectively. This highlights the importance
of dynamic cache adjustments for enhancing cost-efficiency.

8 Related work
Cache auto-configuration. Priorworks have focused on en-
hancing performance by reallocating a fixed-capacity shared

5For this exhaustive search, TTL intervals of 1 hour, 6 hours, and then every
12 hours up to the full trace length were used (e.g., 1, 6, 12, 24, 36, 48, . . . ).



memory between application runtime needs and caching.
Robinhood [142] redistributes cache resources across back-
end services to reduce latency variability and tail latency.
LAMA [143] adjusts Memcached’s memory partitioning to
improve miss ratios and response times. Memshare [144]
reallocates memory among applications to maximize hit
rates using idle CPU and memory bandwidth. Sundarrajan et
al. [145] enhance CDN cache provisioning using footprint de-
scriptors. D3N [146] adjusts cache sizes to improve big-data
job performance and reduce network traffic.While they focus
on dynamic reallocation of fixed memory, Macaron assumes
total cache capacity is elastic at a cost, and utilizes object
storage to reduce that cost. While some studies [135, 147–
149] explore dynamic cache provisioning, they mainly focus
on using DRAM or Flash as cache storage medium, and do
not account for expensive data transfer costs as part of the
miss penalty, which plays a significant role for Macaron.
Optimizing cloud resource costs. With the growing

trend ofmigratingworkloads to public clouds, priorwork [15–
18] has explored methods for cost-efficiently provisioning
cloud storage for various applications. InfiniCache [19] has
focuses on cost-effectively utilizing serverless functions for
caching data, and there are studies [20, 21] optimizing the
use of object storage for file systems and backup solutions,
and our packing strategy is based on them. Others [22, 23]
have leveraged spot instances ] to reduce VM costs by uti-
lizing the affordability of ephemeral VMs, and some of their
ideas could be applied to Macaron when dynamically scaling
DRAM cache servers. Skyplane [24] aims to optimize egress
network resources in public clouds. However, they primarily
focus on methods for cost-efficient one-time transfers of bulk
data. Macaron’s emphasizes optimizing data access costs for
long-running workloads with repetitive data access patterns.

Multi-cloud data management. Previous works [25–28,
150–153] explored optimizing data placement across clouds
or regions for fault tolerance, latency, and cost-efficiency,
allowing free data migration or replication across regions. In
contrast, Macaron addresses scenarios where data placement
is already determined and data cannot be freely migrated
due to cost, proximity to users or sources of data generation.
In such cases, we need to run applications across regions
or clouds as use cases described in §2. In these contexts,
an auto-configuring caching solution is more suitable than
data placement optimization. We believe both approaches
are orthogonal and complementary.

Cache replacement policy. Prior work [44–54] focuses
on cache replacement policies to enhance miss ratio or la-
tency. However, in the unique context of multi-cloud, multi-
region environments, where high egress costs serve as a sig-
nificant miss penalty and cache capacity cost is very cheap
and elastic, even if replacement policy is not optimal, Mac-
aron can extend cache capacity accordingly with minimal
costs, making determining the cost-efficient cache capac-
ity more crucial than refining cache replacement policies.

Our evaluation, comparing Macaron to Oracular, supports
this notion. While Oracular represents an optimal solution
for both cache replacement and capacity determination, our
results demonstrate that solely achieving the right cache
capacity without exploring replacement policies can yield
results close to those of Oracular.
Existing approaches.Major cloud providers like AWS,

Azure, and GCP already support cross-region data replica-
tion [32–34], and companies such as Snowflake [35] and
Juicedata [36] have recently introduced cross-cloud data
replication capabilities [154]. There are existing caching ser-
vices [37–39] provided by cloud providers that are built on
distributed in-memory stores [155, 156]. The third-party ser-
vices like Alluxio [40], MinIO [41], and Avere [42] support
cloud-native cache solutions using memory or flash devices.
However, their primary goal is achieving high performance
for accessing local data and are not optimized for cross-cloud
or cross-region data access costs. Our ECPC baseline mimics
these approaches but is enhanced by intelligent auto-scaling,
yet Macaron remains more cost-efficient.

9 Conclusion
Macaron addresses the high data transfer and latency costs
associated with cross-cloud or cross-region data access. It
dynamically auto-configures the size and storage types of
cache space for remote data, reducing cross-cloud dollar cost
by 65% for a collection of real workload traces.
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A Supplementary Evaluation Details
(not peer-reviewed)

We provide detailed information on trace collection, the
cloud resources used for prototype evaluation, and additional
evaluation results.

A.1 Trace collection details
Uber trace. We collected object access logs generated from
Uber’s Presto workload in their production system. To ensure
no impact on production, we collected logswith a spatial sam-
pling with a sampling ratio at 1% from three Presto engines
over 18 days. To confirm that 1% sampling retains workload
characteristics, we collected a two-hour trace without sam-
pling and performed the same sampling method, where we
observed small differences of 7%, 2%, and 8% in request count,
accessed data size, and object size, respectively. Therefore,
in our evaluation, we scaled the sampled traces by 100× and
presented detailed results of one of the three traces where
we confirmed that they share very similar data access char-
acteristics. Due to the fact that over 70% of the accesses are
generated by periodic jobs, the workload exhibits a stable
data access pattern during the collection period.

VMware trace. VMware trace involves AWS S3 requests
generated by AWS Athena queries from VMware’s test in-
frastructure, spanning an 8-day period. We collected logs by
enabling Amazon S3 server access logging service to catch
data access requests sent to S3 buckets.

A.2 Cloud resource types used for evaluation
For the cache cluster, we used Redis as a distributed in-
memory cache solution as it is well-supported, performant,
and effectively handles large objects, unlike Memcached.
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(a) Cross-region data access

(b) Cross-cloud data access
Figure 14. Detailed cost analysis for all 19 traces.

For both simulator and prototype evaluations, we used the
same VM types for consistency. We used an r5.xlarge in-
stance for the master node on AWS, which we confirmed had
sufficient resources. Since the Macaron controller’s workload
analysis, a computation-heavy task, ran on AWS Lambda,

the CPU power of the r5.xlarge instance was adequate.
Cache nodes also used the r5.xlarge type, which provides
32 GiB of memory. However, our observations showed that
the Redis server typically utilized around 26 GiB, aligning
with the cache.r5.xlarge specification of ElastiCache. As



Trace
Total

costs ($)
Get hits at
each level

Avg. lat
(s)

Sim Pro Sim Pro Sim Pro
IBM 9 5.86 5.87 45:35:20 46:34:20 0.24 0.26
IBM 55 11.83 11.82 50:5:45 47:9:44 0.30 0.28
IBM 58 2.61 2.60 40:0:60 39:1:60 0.47 0.49

Table 3. Detailed results of the accuracy evaluation between
the simulator and prototype, with simulator results on the
left and prototype results on the right. The comparison in-
cludes total costs, the number of Get hits at each level (cache
cluster:OSC:remote data lake), and the average latency after
running the trace.

a result, we assumed 26 GiB of memory for the cache nodes
in the simulator as well. Additionally, we used AWS Lambda
functions with 8 GiB of memory, which provided sufficient
resources to run the miniature simulations quickly and cost-
effectively.

A.3 Cost-efficiency analysis across all traces
Fig. 14 presents the cost comparison results of all the traces
we evaluated and we explain two more case studies.

In IBM 83 (similar to IBM 55), ranking second in total data
size accessed among 15 IBM traces, Macaron achieves 86%
cost reduction compared to Replicated. Using an average
cache capacity of 52 TB (81% of the total data size) and given
the low price of object storage, Macaron prioritizes overall
cost-efficiency over minimizing capacity costs and incurring
higher data egress expenses associated with Replicated.

Despite similar total data sizes for IBM 96 and 83, Macaron
allocates only 7% of the total data size as cache capacity for
IBM 96 due to low data access skewness (Zipfian 𝛼=0.2) and
a high cold miss ratio. Larger caches don’t effectively reduce
egress costs for such workloads, yet Macaron remains 1.4%
and 81.7% cheaper than baselines for IBM 96.

A.4 Details of simulator accuracy evaluation
We carefully designed experiments to validate whether the
simulator and prototype yield consistent results, both in
terms of cost and performance, across different scenarios:
one where Macaron utilizes a cache cluster for performance,
and another where it solely relies on OSC to minimize costs.
To reduce cost of running experiments without compromis-
ing the validity of results, we implemented the following
approach.

For Macaron without cache cluster, we ensured both pro-
totype and simulator execute the same reconfiguration for
each optimization window and validated the total costs are
the same by executing traces end-to-end. We sampled the
requests with spatial sampling at 1% and accelerated exe-
cution by 10× to reduce costs and speed up experiments.
Reconfiguration occurred every 3 minutes after a 3-hour

observation period to make both simulator and prototype
to run as many optimizations as possible and show the re-
sults are still matching each other. These adjustments do not
compromise the validity of cost comparisons.

For Macaron with cache cluster, we focused on comparing
average latency results between the prototype and simula-
tor. In this experiment, rather than sampling the trace, we
truncated the trace to the first 6 hours and commenced op-
timization after 30 minutes, with 15-minute optimization
windows, maintaining the original request rate to compare
latency correctly.

Table 3 shows the detailed data of the results we presented
in §7.7.

A.5 Latency generator evaluation
As outlined in §7.1, Macaron simulator’s latency generator
fits a Gamma distribution to the latency measurements taken
from the cloud. This distribution is then used to simulate
latencies between each component in the system. Here, we
verify the accuracy of the latency generator in reproducing
a latency distribution similar to the real measurements.
Fig. 15a illustrates the cloud-measured latency distribu-

tion alongside the distribution generated by the simulator’s
latency generator for each object size, between the cache
engine and each data source (cache cluster, OSC, and remote
data lake). Across the average latencies for different object
sizes, the mean absolute percentage error was low at 2%.
Fig. 15b depicts the end-to-end latency distribution for

retrieving data from each source. We further confirmed the
simulator’s fidelity to the measured latency by showing a
mean absolute percentage error of 1.5% between the average
latencies.

B Macaron-TTL Details (not peer-reviewed)
We extended Macaron ’s optimization technique to develop
Macaron-TTL.While the core optimization workflow of Mac-
aron, described in §5, remains unchanged, the expected cost
curve explained in §5.1 now uses TTL as its parameter instead
of cache size:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 (𝑇𝑇𝐿) = 𝑂𝑆𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡 (𝑇𝑇𝐿,𝐺𝑎𝑟𝑏𝑎𝑔𝑒𝑆𝑖𝑧𝑒)
+ 𝐸𝑔𝑟𝑒𝑠𝑠𝐶𝑜𝑠𝑡 (𝑇𝑇𝐿) +𝑂𝑝𝐶𝑜𝑠𝑡 (𝑇𝑇𝐿)

𝐸𝑔𝑟𝑒𝑠𝑠𝐶𝑜𝑠𝑡 (𝐶) = 𝐸𝑔𝑟𝑒𝑠𝑠𝑃𝑟𝑖𝑐𝑒 ∗ 𝐵𝑦𝑡𝑒𝑀𝑖𝑠𝑠𝐶𝑢𝑟𝑣𝑒 (𝑇𝑇𝐿)

𝑂𝑝𝐶𝑜𝑠𝑡 (𝐶) = 𝑃𝑢𝑡𝑃𝑟𝑖𝑐𝑒×(
#𝑊𝑟𝑖𝑡𝑒𝑠 + #𝑅𝑒𝑎𝑑𝑠 ×𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑟𝑣𝑒 (𝑇𝑇𝐿)

#𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 𝑝𝑒𝑟 𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝐵𝑙𝑜𝑐𝑘

)
To calculate this, we adapted the miniature simulation to

use TTL as the X-axis for the miss ratio curves and bytes
miss curves. While OSC capacity was straightforward to
calculate when using capacity as the parameter, we now



(a) Cache engine to data source latency

(b) End-to-end data access latency
Figure 15. Comparison of latency distributions generated by Macaron simulator’s latency generator and measured ones. Each
graph shows latency distributions for each object size we measured.

need to compute OSC capacity for each TTL during the
simulation, producing an OSC Capacity Curve.
For the miniature simulation, we continue using spatial

sampling for data access requests. However, we no longer
reduce the cache size for simulating mini-caches since cache
size does not affect cache eviction under TTL cache. After the

simulation, the measured miss ratios from each mini-cache
are used as is. Bytes missed are divided by the sampling ratio,
similar to Macaron, and OSC capacity is also divided by the
sampling ratio to reconstruct the original workload’s MRC,
BMC, and OSC Capacity Curve before sampling.
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