
Are You Sure You Want to Use MMAP in Your
Database Management System?

Andrew Crotty
Carnegie Mellon University

andrewcr@cs.cmu.edu

Viktor Leis
University of Erlangen-Nuremberg

viktor.leis@fau.de

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

ABSTRACT
Memory-mapped (mmap) file I/O is an OS-provided feature that
maps the contents of a file on secondary storage into a program’s
address space. The program then accesses pages via pointers as
if the file resided entirely in memory. The OS transparently loads
pages only when the program references them and automatically
evicts pages if memory fills up.

mmap’s perceived ease of use has seduced database management
system (DBMS) developers for decades as a viable alternative to
implementing a buffer pool. There are, however, severe correct-
ness and performance issues with mmap that are not immediately
apparent. Such problems make it difficult, if not impossible, to use
mmap correctly and efficiently in a modern DBMS. In fact, several
popular DBMSs initially used mmap to support larger-than-memory
databases but soon encountered these hidden perils, forcing them to
switch to managing file I/O themselves after significant engineering
costs. In this way, mmap and DBMSs are like coffee and spicy food:
an unfortunate combination that becomes obvious after the fact.

Since developers keep trying to use mmap in new DBMSs, we
wrote this paper to provide a warning to others that mmap is not a
suitable replacement for a traditional buffer pool. We discuss the
main shortcomings of mmap in detail, and our experimental analysis
demonstrates clear performance limitations. Based on these find-
ings, we conclude with a prescription for when DBMS developers
might consider using mmap for file I/O.

1 INTRODUCTION
An important feature of disk-based DBMSs is their ability to support
databases that are larger than the available physical memory. This
functionality allows a user to query a database as if it resides entirely
in memory, even if it does not fit all at once. DBMSs achieve this
illusion by reading pages of data from secondary storage (e.g., HDD,
SSD) into memory on demand. If there is not enough memory for a
new page, the DBMS will evict an existing page that is no longer
needed in order to make room.

Traditionally, DBMSs implement the movement of pages be-
tween secondary storage and memory in a buffer pool, which in-
teracts with secondary storage using system calls like read and
write. These file I/O mechanisms copy data to and from a buffer
in user space, with the DBMS maintaining complete control over
how and when it transfers pages.

Alternatively, the DBMS can relinquish the responsibility of data
movement to the OS, which maintains its own file mapping and

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

page cache. The POSIX mmap system call maps a file on secondary
storage into the virtual address space of the caller (i.e., the DBMS),
and the OS will then load pages lazily when the DBMS accesses
them. To the DBMS, the database appears to reside fully in memory,
but the OS handles all necessary paging behind the scenes rather
than the DBMS’s buffer pool.

On the surface, mmap seems like an attractive implementation
option for managing file I/O in a DBMS. The most notable benefits
are ease of use and low engineering cost. The DBMS no longer
needs to track which pages are in memory, nor does it need to track
how often pages are accessed or which pages are dirty. Instead,
the DBMS can simply access disk-resident data via pointers as if
it were accessing data in memory while leaving all low-level page
management to the OS. If the available memory fills up, then the
OS will free space for new pages by transparently evicting (ideally
unneeded) pages from the page cache.

From a performance perspective, mmap should also have much
lower overhead than a traditional buffer pool. Specifically, mmap
does not incur the cost of explicit system calls (i.e., read/write)
and avoids redundant copying to a buffer in user space because the
DBMS can access pages directly from the OS page cache.

Since the early 1980s, these supposed benefits have enticedDBMS
developers to forgo implementing a buffer pool and instead rely
on the OS to manage file I/O [36]. In fact, the developers of several
well-known DBMSs (see Section 2.3) have gone down this path,
with some even touting mmap as a key factor in achieving good
performance [20].

Unfortunately, mmap has a hidden dark side with many sordid
problems that make it undesirable for file I/O in a DBMS. As we
describe in this paper, these problems involve both data safety and
system performance concerns. We contend that the engineering
steps required to overcome them negate the purported simplicity
of working with mmap. For these reasons, we believe that mmap
adds too much complexity with no commensurate performance
benefit and strongly urge DBMS developers to avoid using mmap as
a replacement for a traditional buffer pool.

The remainder of this paper is organized as follows. We begin
with a short background on mmap (Section 2), followed by a discus-
sion of its main problems (Section 3) and our experimental analysis
(Section 4). We then discuss related work (Section 5) and conclude
with a summary of our guidance for when youmight consider using
mmap in your DBMS (Section 6).

2 BACKGROUND
This section provides the relevant background on mmap. We begin
with a high-level overview of memory-mapped file I/O and the
POSIX mmap API. Then, we discuss real-world implementations of
mmap-based systems.

CIDR’22, January 9-12, 2022, Chaminade, USA Andrew Crotty, Viktor Leis, and Andrew Pavlo

2

V
ir

tu
al

0x544b

P
h

ys
ic

al

V
ir

tu
al

0x544b

0x424d

P
h

ys
ic

al

4

5

Virtual Physical

0x544b 0x424d

P
ag

e
Ta

b
le

Virtual Physical

0x544b 0x424d

T
L

B

6

7

 ...

F
ile

 ...

F
ile

dat a = mmap(" ci dr . db") ;1 pr i nt (dat a[0]) ;3

Figure 1: Step-by-step illustration of how a program accesses a file using mmap.

DBMS MMAP Use Details

MonetDB 2002– [12, 21]
MongoDB 2009–2019 [14, 3]
LevelDB 2011– [5]
LMDB 2011– [20]
SQLite 2013– [7]

SingleStore 2013–2015 [32]
QuestDB 2014– [34]
RavenDB 2014– [4]
InfluxDB 2015–2020 [8, 1]

WiredTiger 2020– [17]

Table 1:Modern mmap-basedDBMSs.

2.1 MMAP Overview
Figure 1 shows a step-by-step overview of how to access a file
(“cidr.db”) with mmap. 1○ A program calls mmap and receives a
pointer to the memory-mapped file contents. 2○ The OS reserves
part of the program’s virtual address space but does not load any
part of the file. 3○ The program accesses the file’s contents using the
pointer. 4○ The OS attempts to retrieve the page. 5○ Since no valid
mapping exists for the specified virtual address, the OS triggers a
page fault to load the referenced part of the file from secondary
storage into a physical memory page. 6○ The OS adds an entry to
the page table that maps the virtual address to the new physical
address. 7○ The initiating CPU core also caches this entry in its local
translation lookaside buffer (TLB) to accelerate future accesses.

As the program accesses other pages, the OS will load them into
memory, evicting pages as needed if the page cache fills up. When
evicting pages, the OS also removes their mappings from both the
page table and each CPU core’s TLB. Flushing the local TLB of
the initiating core is straightforward, but the OS must ensure that
no stale entries remain in the TLBs of remote cores. Since current
CPUs do not provide coherence for remote TLBs, the OS has to
issue an expensive inter-processor interrupt to flush them, which is
called a TLB shootdown [11]. As our experiments show (Section 4),
TLB shootdowns can have a significant performance impact.

2.2 POSIX API
We now review the most important POSIX system calls for memory-
mapped file I/O and describe how a DBMS can use them in place of
a traditional buffer pool.

mmap: As previously explained, this call causes the OS to map a
file into the DBMS’s virtual address space. The DBMS can then
read or write file contents using ordinary memory operations. The
OS caches pages in memory and, when using the MAP_SHARED flag,
will (eventually) write any changes back to the underlying file.
Alternatively, the MAP_PRIVATE flag will create a copy-on-write
mapping that is only accessible to the caller (i.e., changes are not
persisted to the backing file).

madvise: This call allows the DBMS to provide hints to the OS about
expected data access patterns, either at the granularity of the entire
file or for specific page ranges. We focus on three common hints:
MADV_NORMAL, MADV_RANDOM, and MADV_SEQUENTIAL. When a page
fault occurs in Linux with the default MADV_NORMAL hint, the OSwill

fetch the accessed page, as well as the next 16 and previous 15 pages.
With 4 KB pages, MADV_NORMAL causes the OS to read 128 KB from
secondary storage, even though the caller only requested a single
page. Depending on the workload, this prefetching might help
or hurt the DBMS’s performance. For example, the MADV_RANDOM
mode, which reads only the necessary page, is a better choice for
larger-than-memory OLTP workloads, whereas MADV_SEQUENTIAL
is better for OLAP workloads with sequential scans.

mlock: This call allows the DBMS to pin pages in memory, ensuring
that the OS will never evict them. However, according to the POSIX
standard (and Linux’s implementation), the OS is permitted to flush
dirty pages to the backing file at any time, even if the page is
pinned. Therefore, the DBMS cannot use mlock to ensure that dirty
pages will never be written to secondary storage, which has serious
implications for transactional safety.

msync: Lastly, this call explicitly flushes the specified memory range
to secondary storage. Without msync, the DBMS has no other way
to guarantee that updates are persisted to the backing file.

2.3 MMAP Gone Wrong
The allure of the OS-managed buffer pool for DBMSs has existed
for decades [36], with QuickStore [40] and Dalí [22] being early
examples of mmap-based systems from the 1990s. Today, several
DBMSs continue to use mmap for file I/O, as shown in Table 1. For
instance, MonetDB stores individual columns as memory-mapped
files [12, 21], and SQLite provides an option to use mmap rather
than the default read/write system calls [7]. LMDB relies on mmap
exclusively, and the developers even cite it as a main contributing
factor to the system’s performance [20]. Other systems with mmap-
based storage engines include QuestDB [34] and RavenDB [4].

Despite these apparent success stories, many other DBMSs have
tried—and failed—to replace a traditional buffer pool with mmap-
based file I/O. In the following, we recount some cautionary tales
to illustrate how using mmap in your DBMS can go horribly wrong.

MongoDB is arguably the most well-known DBMS to have used
mmap for file I/O. Our understanding from the developers is that
they chose to base the original storage engine (MMAPv1) on mmap
out of expediency as an early-stage startup. However, the design
had a number of drawbacks, including an overly complex copying
scheme to ensure correctness and the inability to perform any com-
pression for data on secondary storage. For the latter, since the OS

MMAP = CIDR’22, January 9-12, 2022, Chaminade, USA

managed the file mapping, the in-memory data layout needed to
match the physical representation on secondary storage, leading to
wasted space and reduced I/O throughput. With the introduction of
WiredTiger as the default storage engine in 2015, MongoDB depre-
cated MMAPv1 and then completely removed it in 2019 [3]. In 2020,
though, MongoDB reintroduced mmap as an option in WiredTiger,
but it is used in a limited fashion to avoid boundary-crossing penal-
ties between user space and the OS [17].

InfluxDB is a time series DBMS that used mmap for file I/O in
earlier releases [8]. However, the developers replaced mmap after ob-
serving I/O spikes for writes when a database grew larger than a few
GB in size, likely due to the overheads associated with page eviction
(Section 3.4). They also faced other issues when running in con-
tainerized environments or on machines without direct-attached
storage (e.g., cloud deployments), which further precluded the use
of mmap in their new IOx storage engine [1].

SingleStore removed mmap-based file I/O after encountering poor
performance on simple sequential scan queries [32]. The DBMS’s
calls to mmap were taking 10–20 ms per query, which accounted for
nearly half of the overall query runtime. Upon further investigation,
the developers identified the source of the problem as contention
on a shared mmap write lock. By switching to read system calls, the
queries became fully CPU-bound.

A number of other systems ruled out mmap early in their de-
velopment. For example, Facebook created RocksDB as a fork of
Google’s LevelDB partly due to performance bottlenecks for reads
caused by the latter’s use of mmap [5]. TileDB found that mmap was
more expensive than read system calls for SSDs [27], which we
also observed in our experimental analysis (Section 4). Scylla, a
distributed NoSQL DBMS, evaluated several alternatives for file I/O
and rejected mmap due to loss of fine-grained control, both in terms
of the page eviction strategy and I/O operation scheduling [23]. The
time series DBMS VictoriaMetrics identified problems with mmap’s
blocking I/O for page faults [37]. RDF-3X abandoned its original
mmap-based engine due to incompatibility between the Windows
and POSIX implementations of memory-mapped file I/O [26].

3 PROBLEMS WITH MMAP
Ostensibly, mmap seems like a great idea—the DBMS no longer needs
to manage its own buffer pool, as it cedes this responsibility to the
OS. By removing the components that deal with explicit file I/O,
DBMS developers are free to focus on other aspects of the system.
However, transparent paging actually introduces several serious
problems for DBMSs, which we discuss in the following.

3.1 Problem #1: Transactional Safety
The challenges inherent with guaranteeing transactional safety of
modified pages in mmap-based DBMSs are well-known [22, 18]. The
core issue is that, due to transparent paging, the OS can flush a
dirty page to secondary storage at any time, irrespective of whether
the writing transaction has committed. The DBMS cannot prevent
these flushes and receives no warning when they occur.

mmap-based DBMSs must therefore employ complicated proto-
cols to ensure that transparent paging does not violate transactional
safety guarantees. We classify methods for handling updates into
three categories: (1) OS copy-on-write, (2) user space copy-on-write,

and (3) shadow paging. To simplify our explanations, we assume
that the DBMS stores the database in a single file.

OS Copy-On-Write: The idea behind this approach is to create
two copies of the database file with mmap, both of which will initially
point to the same physical pages. The first serves as the primary
copy, while the second acts as a private workspace where transac-
tions can stage updates. Importantly, the DBMS creates the private
workspace using mmap’s MAP_PRIVATE flag to enable the OS’s copy-
on-write feature for pages. To the best of our knowledge, only
MongoDB’s MMAPv1 storage engine used this method.

To perform an update, the DBMS modifies the affected pages in
the private workspace. The OS will transparently copy the contents
to new physical pages, remap the virtual memory addresses to
these copies, and then apply the changes. The primary copy does
not see these changes, and the OS will not persist them to the
database file. Therefore, to provide durability, the DBMS must use
a write-ahead log (WAL) to record changes. When a transaction
commits, the DBMS flushes the corresponding WAL records to
secondary storage and uses a separate background thread to apply
the committed changes to the primary copy.

Maintaining separate copies of updated pages causes two main
problems. First, the DBMS must ensure that the latest updates from
committed transactions have propagated to the primary copy before
allowing conflicting transactions to run, which requires additional
bookkeeping to track pages with pending updates. Second, the
private workspace will continue to grow as more updates occur,
and the DBMS may eventually end up with two full copies of the
database in memory. To solve this second problem, the DBMS can
periodically shrink the private workspace using the mremap system
call. However, the DBMSmust again ensure that all pending updates
have propagated to the primary copy before destroying the private
workspace. Moreover, to avoid losing updates during mremap, the
DBMS needs to block pending changes until the OS completes the
compaction of the private workspace.

User Space Copy-On-Write: Unlike OS copy-on-write, this ap-
proach involves manually copying the affected pages from mmap-
backed memory to a separately maintained buffer in user space.
SQLite, MonetDB, and RavenDB all use some variant of this method.

To perform updates, the DBMS applies the changes only to the
copies and creates the corresponding WAL records. The DBMS can
commit these changes by writing the WAL to secondary storage,
at which point it can then safely copy the modified pages back to
the mmap-backed memory. Since copying an entire page is wasteful
for small changes, some DBMSs support applying WAL records
directly to the mmap-backed memory.

Shadow Paging: LMDB is the most prominent proponent of this
approach, which is based on System R’s shadow paging design [13].
With shadow paging, the DBMS maintains separate primary and
shadow copies of the database, both of which are backed by mmap.
To perform an update, the DBMS first copies the affected pages
from the primary to the shadow copy, where it then applies the
necessary changes. Committing the changes involves flushing the
modified shadow pages to secondary storage with msync, followed
by updating a pointer to install the shadow copy as the new primary.
The original primary then serves as the new shadow copy.

CIDR’22, January 9-12, 2022, Chaminade, USA Andrew Crotty, Viktor Leis, and Andrew Pavlo

Although this approach is seemingly uncomplicated to imple-
ment, the DBMS must ensure that transactions do not conflict or
see partial updates. For example, LMDB solves this problem by
allowing only a single writer.

3.2 Problem #2: I/O Stalls
With a traditional buffer pool, a DBMS can use asynchronous I/O
(e.g., libaio, io_uring) to avoid blocking threads during query
execution. For instance, consider a common access pattern like a
leaf node scan in a B+tree. The DBMS could asynchronously issue
the read requests for these potentially non-contiguous pages to
mask latency, but mmap does not support asynchronous reads.

Furthermore, since the OS can transparently evict pages to sec-
ondary storage, read-only queries can unknowingly trigger block-
ing page faults if they attempt to access evicted pages. In other
words, accessing any page could result in an unexpected I/O stall
because the DBMS cannot know whether the page is in memory.

To avoid these problems, the DBMS developers could implement
a workaround using the system calls described in Section 2.2. The
most obvious option is to use mlock to pin pages that the DBMS
expects to access again in the near future. Unfortunately, the OS
usually restricts the amount of memory that an individual process
can lock, since pinning too many pages can cause problems for
concurrently running processes and even the OS itself. The DBMS
would also need to carefully track and unpin pages that are no
longer being used so that the OS can evict them.

Another potential solution is to use madvise to provide hints to
the OS about the expected access patterns of queries. For example,
a DBMS that needs to execute a sequential scan could supply the
MADV_SEQUENTIAL flag to madvise, which tells the OS to evict pages
after they have been read and prefetch subsequent contiguous pages
that will be accessed next. This approach is much less involved than
using mlock, but it also offers significantly less control, since the
flags are merely hints that the OS is free to ignore. Additionally, pro-
viding the OS with the wrong hint (e.g., MADV_SEQUENTIAL when
the access pattern is random) can have dire implications for perfor-
mance, as we show in our experiments (Section 4).

Yet another possibility is to spawn additional threads to prefetch
(i.e., attempt to access) pages so that they will block in the event of
a page fault rather than the main thread. However, although these
solutions may (partially) resolve some issues, they all introduce
significant additional complexity, which defeats the purpose of
using mmap in the first place.

3.3 Problem #3: Error Handling
One core responsibility of a DBMS is to ensure data integrity, so
error handling is of paramount importance. For example, some
DBMSs (e.g., SQL Server [6]) maintain page-level checksums to
detect data corruption during file I/O. When reading a page from
secondary storage, the DBMS validates the page contents against
the checksum stored in the header. However, with mmap, the DBMS
would need to validate the checksum on every page access, as the
OS may have transparently evicted the page at some point since
the previous access.

Similarly, many DBMSs (including several mentioned in Sec-
tion 2.3) are written in memory-unsafe languages, which means

that pointer errors might corrupt pages in memory. A defensively
coded buffer pool implementation could check these pages for er-
rors before writing them to secondary storage, but mmapwill silently
persist corrupted pages to the backing file.

Lastly, gracefully handling I/O errors becomes much more dif-
ficult when working with mmap. Whereas a traditional buffer pool
would allow developers to contain I/O error handlingwithin a single
module, any code that interacts with mmap-backed memory can now
produce a SIGBUS that the DBMS must deal with via cumbersome
signal handlers.

3.4 Problem #4: Performance Issues
The largest and most significant drawback of mmap’s transparent
paging relates to performance. Although DBMS developers could
conceivably overcome the other issues through careful implemen-
tation, we believe that mmap has serious bottlenecks that cannot be
avoided without an OS-level redesign.

The conventional wisdom [28, 23, 29, 16, 17, 30] holds that mmap
should outperform traditional file I/O because it avoids two major
sources of overhead. First, mmap circumvents the cost of explicit
read/write system calls because the OS handles file mappings and
page faults behind the scenes. Second, mmap can return pointers to
pages stored in the OS page cache, thereby avoiding an extra copy
into a buffer allocated in user space. As an added bonus, mmap-based
file I/O also results in lower total memory consumption, as the data
is not unnecessarily duplicated in user space.

Given these advantages, one would expect that the performance
gap between mmap and traditional file I/O methods should continue
to widen with the emerging availability of better flash storage (e.g.,
PCIe 5.0 NVMe) that will provide bandwidth comparable to mem-
ory [19]. Surprisingly, we have found that the OS’s page eviction
mechanisms cannot scale beyond a few threads for larger-than-
memory DBMS workloads on high-bandwidth secondary storage
devices. We believe that one of the main reasons these performance
issues have gone largely unnoticed is due to historically limited file
I/O bandwidth.

Specifically, we have identified three key bottlenecks that plague
mmap-based file I/O: (1) page table contention, (2) single-threaded
page eviction, and (3) TLB shootdowns. Relatively straightforward
adjustments to the OS could partially mitigate the first two issues,
but TLB shootdowns present a much trickier problem.

Recall from Section 2.1 that TLB shootdowns occur during page
eviction when a core needs to invalidate mappings in a remote
TLB. Whereas flushing the local TLB is inexpensive, issuing inter-
processor interrupts to synchronize remote TLBs can take thou-
sands of cycles [39]. Workarounds to this problem involve either
proposed microarchitectural changes [39] or extensive modification
of OS internals [15, 9, 10].

4 EXPERIMENTAL ANALYSIS
As the previous section explained, some of mmap’s problems can be
overcome through careful implementation, but we argue that its
inherent performance limitations cannot be resolved without signif-
icant OS-level rewrites. In this section, we present our experimental
analysis that empirically demonstrates these issues.

MMAP = CIDR’22, January 9-12, 2022, Chaminade, USA

0

250K

500K

750K

1M

0 20 40 60

time [s]

re
a

d
s

p
e

r
s fio O_DIRECT pread

mmap MADV_NORMAL

mmap MADV_RND

mmap MADV_SEQ

(a) Bandwidth

0

0.5M

1.0M

1.5M

2.0M

0 20 40 60

time [s]

T
L

B
 s

h
o

o
td

o
w

n
s

p
e

r
s

fio O_DIRECT pread

mmap MADV_NORMAL

mmap MADV_RND

mmap MADV_SEQ

(b) TLB Shootdowns

Figure 2: Random Reads – 1 SSD (100 threads)

We ran all experiments on a single-socket machine with an
AMD EPYC 7713 processor (64 cores, 128 hardware threads) and
512 GB RAM, of which 100 GB was available to Linux (v5.11) for
its page cache. For persistent storage, the machine had 10 × 3.8 TB
Samsung PM1733 SSDs (rated with 7000 MB/s read and 3800 MB/s
write throughput). We accessed the SSDs as block devices to avoid
potential file system overhead [19].

As a baseline, we used the fio [2] storage benchmarking tool
(v3.25) with direct I/O (O_DIRECT) to bypass the OS page cache.
Our analysis focused exclusively on read-only workloads, which
represent the best-case scenario for mmap-based DBMSs; otherwise,
they would need to implement complex update protections (Sec-
tion 3.1) that incur substantial additional overhead [30]. Specifically,
we evaluated two common access patterns: (1) random reads and
(2) sequential scan.

4.1 Random Reads
For the first experiment, we used a random access pattern over a
2 TB SSD range to simulate a larger-than-memory OLTP workload.
Since the page cache had only 100 GB of memory, 95% of all accesses
resulted in page faults (i.e., the workload was I/O-bound).

Figure 2a shows the number of random reads per second with
100 threads. Our fio baseline exhibited stable performance and
achieved close to 900K reads per second, which is in line with
the expected performance from 100 outstanding I/O operations
and NVMe latency of roughly 100 𝜇s. In other words, this result
demonstrates that fio can fully saturate the NVMe SSD.

mmap, on the other hand, performed significantly worse, even
when using a hint that matched the workload’s access pattern. We
observed three distinct phases for MADV_RANDOM in our experiment.
mmap was initially similar to fio during the first 27 seconds, then
dropped to nearly zero for about five seconds, and finally recovered
to approximately half of fio’s performance. This sudden drop in
performance occurred when the page cache filled up, forcing the
OS to begin evicting pages from memory. Unsurprisingly, the other
access pattern hints exhibited much worse performance.

In Section 3.4, we enumerated three key sources of page eviction
overhead. The first issue is TLB shootdowns, which we measured
using /proc/interrupt and show in Figure 2b. As mentioned, TLB
shootdowns are expensive (i.e., thousands of cycles [39]), as they
involve sending an inter-processor interrupt to flush the TLB of
every core. Second, the OS uses only a single process (kswapd) for
page eviction, which was CPU-bound in our experiments. Finally,
the OS must synchronize the page table, which becomes highly
contended with many concurrent threads.

0

2

4

6

0 20 40 60

time [s]

b
a

n
d

w
id

th
 [

G
B

/s
]

fio O_DIRECT libaio

mmap MADV_NORMAL

mmap MADV_RND

mmap MADV_SEQ

Figure 3: Sequential Scan – 1 SSD (mmap: 20 threads; fio: libaio,
1 thread, iodepth 256)

0

20

40

60

0 20 40 60

time [s]

b
a

n
d

w
id

th
 [

G
B

/s
]

fio O_DIRECT libaio

mmap MADV_NORMAL

mmap MADV_RND

mmap MADV_SEQ

Figure 4: Sequential Scan – 10 SSDs (mmap: 20 threads; fio: libaio,
4 threads, iodepth 256)

4.2 Sequential Scan
Sequential scans are another common access pattern for DBMSs,
particularly in OLAP workloads. Therefore, we also compared the
scan performance of fio and mmap over a 2 TB SSD range. We first
ran our experiments using only a single SSD, and then we reran
the same workload using 10 SSDs with software RAID 0 (md).

The results in Figure 3 show that fio can utilize the full band-
width of one SSD while maintaining stable performance. Like in the
previous experiment, mmap’s performance was initially similar to
fio, but we again observed a precipitous drop in performance once
the page cache filled up after about 17 seconds. Additionally, as ex-
pected for this workload, the MADV_NORMAL and MADV_SEQUENTIAL
flags performed better than MADV_RANDOM.

Figure 4, which shows the results of repeating the sequential
scan experiment with 10 SSDs, further accentuates the gap between
what modern flash storage can theoretically provide versus what
mmap can achieve. We observed a roughly 20× performance dif-
ference between fio and mmap, with mmap showing virtually no
improvement over the results from using one SSD.

In summary, we found that mmap performs well only on a single
SSD during the initial loading phase. Once page eviction begins or
when using multiple SSDs, mmap is 2–20×worse than fio. With the
imminent release of PCIe 5.0 NVMe, which is expected to double

CIDR’22, January 9-12, 2022, Chaminade, USA Andrew Crotty, Viktor Leis, and Andrew Pavlo

bandwidth per SSD, our results show that mmap cannot match the
performance of traditional file I/O for sequential scans.

5 RELATEDWORK
To the best of our knowledge, there has been no thorough study of
the issues related to using mmap-based file I/O in a modern DBMS.
In the following, we describe some of the prior research work that
has examined different aspects of mmap.

Given the problems with ensuring transactional safety when
using mmap, one line of work introduced a new failure-atomic msync
system call [31, 38]. Normally, if the system crashes during a call
to msync, the DBMS has no way of knowing which pages were
successfully written to secondary storage. Failure-atomic msync
offers the same API as msync but ensures that all pages involved are
written atomically. As a side effect of the implementation, failure-
atomic msync disables the OS’s ability to transparently evict pages,
which eliminates the need for many of the safety mechanisms we
described in Section 3.1.

Tucana [28] and Kreon [29] are experimental key-value DBMSs
built around mmap-based file I/O. However, they both note several
core issues with mmap (e.g., loss of fine-grained control over I/O
scheduling), which prompted Kreon to implement its own custom
system call (kmmap). These systems also had to incorporate complex
copy-on-write schemes to ensure transactional consistency.

Other research projects have creatively used mmap in ways be-
yond a buffer pool replacement. For instance, one project leveraged
the OS’s virtual paging mechanism via mmap as a low-overhead way
to migrate cold data to secondary storage [35]. RUMA utilized mmap
for “rewiring” page mappings to perform various operations (e.g.,
sorting) without physically copying data [33].

Lastly, rather than relying on mmap to avoid page mapping over-
head, several recent approaches [18, 24, 25] have instead advocated
for pointer swizzling. As we have argued throughout this paper,
we believe that these lightweight buffer management techniques
are the right approach because they can offer similar performance
to mmap with none of the downsides.

6 CONCLUSION
This paper made the case against the use of mmap for file I/O in a
DBMS. Despite the apparent benefits, we have presented the main
drawbacks of mmap, and our experimental analysis confirms our
findings related to performance limitations. To conclude, we offer
DBMS developers the following advice.

When you should not use mmap in your DBMS:
• You need to perform updates in a transactionally safe fashion.
• You want to handle page faults without blocking on slow I/O
or need explicit control over what data is in memory.

• You care about error handling and need to return correct results.
• You require high throughput on fast persistent storage devices.

When you shouldmaybe use mmap in your DBMS:
• Your working set (or the entire database) fits in memory and
the workload is read-only.

• You need to rush a product to the market and do not care about
data consistency or long-term engineering headaches.

• Otherwise, never.

ACKNOWLEDGMENTS
This paper is the culmination of an unhealthy, years-long obsession
with the idea of developers incorrectly using mmap in their DBMSs.
The authors would like to thank everyone who contributed and
provided helpful feedback: Chenyao Lou (PKU), David “Greasy”
Andersen (CMU), Michael Kaminsky (BrdgAI), Thomas Neumann
(TUM), Christian Dietrich (TUHH), Todd Lipcon (lipcon.org), and
Sasha Fedorova (UBC).

This work was supported (in part) by the NSF (IIS-1846158, III-
1423210, DGE-1252522), research grants fromGoogle and Snowflake,
and the Alfred P. Sloan Research Fellowship program.

REFERENCES
[1] Announcing InfluxDB IOx - The Future Core of InfluxDB Built with Rust and

Arrow. https://www.influxdata.com/blog/announcing-influxdb-iox/.
[2] fio: Flexible I/O Tester. https://github.com/axboe/fio.
[3] MongoDB MMAPv1 Storage Engine. https://docs.mongodb.com/v4.0/core/

mmapv1/.
[4] RavenDB Storage Engine. https://ravendb.net/docs/article-page/4.0/csharp/

server/storage/storage-engine.
[5] RocksDB FAQ. https://rocksdb.org/docs/support/faq.html.
[6] SQL Server technical documentation. https://docs.microsoft.com/en-

us/sql/relational-databases/policy-based-management/set-the-page-verify-
database-option-to-checksum?view=sql-server-ver15.

[7] SQLite Memory-Mapped I/O. https://www.sqlite.org/mmap.html.
[8] The InfluxDB storage engine and the Time-Structured Merge Tree. https://docs.

influxdata.com/influxdb/v1.8/concepts/storage_engine/.
[9] N. Amit. Optimizing the TLB Shootdown Algorithm with Page Access Tracking.

In USENIX ATC, pages 27–39, 2017.
[10] N. Amit, A. Tai, and M. Wei. Don’t shoot down TLB shootdowns! In EuroSys,

pages 35:1–35:14, 2020.
[11] D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill, and R. V. Baron. Translation

Lookaside Buffer Consistency: A Software Approach. In ASPLOS, pages 113–122,
1989.

[12] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Commun. ACM, 51(12):77–85, 2008.

[13] D. D. Chamberlin, M.M. Astrahan,M.W. Blasgen, J. Gray,W. F. K. III, B. G. Lindsay,
R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu, P. G. Selinger, M. Schkolnick,
D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost. A History and Evaluation of
System R. Commun. ACM, 24(10):632–646, 1981.

[14] K. Chodorow. How MongoDB’s Journaling Works. https://www.mongodb.com/
blog/post/how-mongodbs-journaling-works, 2012.

[15] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM: Scalable address
spaces for multithreaded applications. In EuroSys, pages 211–224, 2013.

[16] A. Fedorova. Why mmap is faster than system calls. https://sasha-f.medium.com/
why-mmap-is-faster-than-system-calls-24718e75ab37, 2019.

[17] A. Fedorova. Getting storage engines ready for fast storage devices.
https://engineering.mongodb.com/post/getting-storage-engines-ready-
for-fast-storage-devices, 2020.

[18] G. Graefe, H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillibridge, and A. C.
Veitch. In-Memory Performance for Big Data. PVLDB, 8(1):37–48, 2014.

[19] G. Haas, M. Haubenschild, and V. Leis. Exploiting Directly-AttachedNVMeArrays
in DBMS. In CIDR, 2020.

[20] G. Henry. Howard Chu on Lightning Memory-Mapped Database. IEEE Softw.,
36(6):83–87, 2019.

[21] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten.
MonetDB: Two Decades of Research in Column-oriented Database Architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[22] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. Dalí:
A High Performance Main Memory Storage Manager. In VLDB, pages 48–59,
1994.

[23] A. Kivity. Different I/O Access Methods for Linux, What We Chose for Scylla, and
Why. https://www.scylladb.com/2017/10/05/io-access-methods-scylla/, 2017.

[24] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann. LeanStore: In-Memory
Data Management beyond Main Memory. In ICDE, pages 185–196, 2018.

[25] T. Neumann and M. J. Freitag. Umbra: A Disk-Based System with In-Memory
Performance. In CIDR, 2020.

[26] T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for RDF. PVLDB,
1(1):647–659, 2008.

[27] S. Papadopoulos, K. Datta, S. Madden, and T. G. Mattson. The TileDB Array Data
Storage Manager. PVLDB, 10(4):349–360, 2016.

https://lcy.im/
https://en.wikipedia.org/wiki/File:David_Andersen_-_Professor_Street_Urchin.jpg
https://en.wikipedia.org/wiki/File:David_Andersen_-_Professor_Street_Urchin.jpg
https://www.cs.cmu.edu/~kaminsky/
https://db.in.tum.de/~neumann/
https://osg.tuhh.de/People/dietrich/
https://www.linkedin.com/in/toddlipcon/
https://lipcon.org/
https://people.ece.ubc.ca/sasha/
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1423210
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1423210
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1252522
https://sloan.org/grant-detail/8638
https://www.influxdata.com/blog/announcing-influxdb-iox/
https://github.com/axboe/fio
https://docs.mongodb.com/v4.0/core/mmapv1/
https://docs.mongodb.com/v4.0/core/mmapv1/
https://ravendb.net/docs/article-page/4.0/csharp/server/storage/storage-engine
https://ravendb.net/docs/article-page/4.0/csharp/server/storage/storage-engine
https://rocksdb.org/docs/support/faq.html
https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/set-the-page-verify-database-option-to-checksum?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/set-the-page-verify-database-option-to-checksum?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/policy-based-management/set-the-page-verify-database-option-to-checksum?view=sql-server-ver15
https://www.sqlite.org/mmap.html
https://docs.influxdata.com/influxdb/v1.8/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.8/concepts/storage_engine/
https://www.mongodb.com/blog/post/how-mongodbs-journaling-works
https://www.mongodb.com/blog/post/how-mongodbs-journaling-works
https://sasha-f.medium.com/why-mmap-is-faster-than-system-calls-24718e75ab37
https://sasha-f.medium.com/why-mmap-is-faster-than-system-calls-24718e75ab37
https://engineering.mongodb.com/post/getting-storage-engines-ready-for-fast-storage-devices
https://engineering.mongodb.com/post/getting-storage-engines-ready-for-fast-storage-devices
https://www.scylladb.com/2017/10/05/io-access-methods-scylla/

MMAP = CIDR’22, January 9-12, 2022, Chaminade, USA

[28] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas. Tucana: Design
and Implementation of a Fast and Efficient Scale-up Key-value Store. In USENIX
ATC, pages 537–550, 2016.

[29] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas. An Efficient
Memory-Mapped Key-Value Store for Flash Storage. In SoCC, pages 490–502,
2018.

[30] A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis, and A. Bilas. Opti-
mizing Memory-mapped I/O for Fast Storage Devices. In USENIX ATC, pages
813–827, 2020.

[31] S. Park, T. Kelly, and K. Shen. Failure-Atomic msync(): A Simple and Efficient
Mechanism for Preserving the Integrity of Durable Data. In EuroSys, pages 225–
238, 2013.

[32] A. Reece. Investigating Linux Performance with Off-CPU Flame Graphs. https:
//www.singlestore.com/blog/linux-off-cpu-investigation/, 2016.

[33] F. M. Schuhknecht, J. Dittrich, and A. Sharma. RUMA has it: Rewired User-space
Memory Access is Possible! PVLDB, 9(10):768–779, 2016.

[34] D. G. Simmons. Re-examining our approach to memory mapping. https://questdb.
io/blog/2020/08/19/memory-mapping-deep-dive/, 2020.

[35] R. Stoica and A. Ailamaki. Enabling Efficient OS Paging for Main-Memory OLTP
Databases. In DaMoN, 2013.

[36] M. Stonebraker. Operating System Support for Database Management. Commun.
ACM, 24(7):412–418, 1981.

[37] A. Valialkin. mmap may slow down your Go app. https://valyala.medium.com/
mmap-in-go-considered-harmful-d92a25cb161d, 2018.

[38] R. Verma, A. A. Mendez, S. Park, S. S. Mannarswamy, T. Kelly, and C. B. M. III.
Failure-Atomic Updates of Application Data in a Linux File System. In FAST,
pages 203–211, 2015.

[39] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramírez, A. Mendelson,
N. Navarro, A. Cristal, and O. S. Unsal. DiDi: Mitigating the Performance Impact
of TLB Shootdowns Using a Shared TLB Directory. In PACT, pages 340–349, 2011.

[40] S. J. White and D. J. DeWitt. QuickStore: A High Performance Mapped Object
Store. In SIGMOD, pages 395–406, 1994.

https://www.singlestore.com/blog/linux-off-cpu-investigation/
https://www.singlestore.com/blog/linux-off-cpu-investigation/
https://questdb.io/blog/2020/08/19/memory-mapping-deep-dive/
https://questdb.io/blog/2020/08/19/memory-mapping-deep-dive/
https://valyala.medium.com/mmap-in-go-considered-harmful-d92a25cb161d
https://valyala.medium.com/mmap-in-go-considered-harmful-d92a25cb161d

	Abstract
	1 Introduction
	2 Background
	2.1 MMAP Overview
	2.2 POSIX API
	2.3 MMAP Gone Wrong

	3 Problems with MMAP
	3.1 Problem #1: Transactional Safety
	3.2 Problem #2: I/O Stalls
	3.3 Problem #3: Error Handling
	3.4 Problem #4: Performance Issues

	4 Experimental Analysis
	4.1 Random Reads
	4.2 Sequential Scan

	5 Related Work
	6 Conclusion
	Acknowledgments

