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Abstract—Ingestion of data generated by high-performance
scientific applications continues to stress available storage re-
sources. Efficient range-based analyses on this data can be
enabled by reordering it on attributes of interest, but require
expensive post-processing sorts to realize the query benefits of
reordering. In-situ indexing techniques, while write-efficient, are
orders of magnitude slower at range queries than sorted indices.
Range queries are necessary for analyzing continuous physical
attributes and tracking phenomena such as energy bands and
wave fronts.

We present CARP, a scalable data partitioner for range queries
that reorders data in-situ as it is streamed to storage during
application I/O. Motivated by our findings that real application
distributions tend to be highly skewed and dynamic, CARP
dynamically discovers and adapts its data partitions to track
these characteristics. As a result, CARP can approximate the
query performance of a sort without any ingestion overhead,
making it 5× faster than prior work.

Index Terms—Data Analysis, Sorting, Overlay Networks, In-
situ Indexing

I. INTRODUCTION

Organization of data generated by high-performance ap-
plications continues to be a challenge due to storage band-
width constraints. Many high-performance applications con-
sist of distinct computation phases, often called epochs or
timesteps, that are periodically interrupted by checkpointing
I/O phases. Examples of such applications include particle-
in-cell frameworks [1], mesh-based codes [2–4], and machine
learning model training. Periodic I/O phases enable scientists
to perform queries with a temporal component, such as tracing
trajectories of high-energy particles, or tracking shock waves
in a fluid simulation. For efficient execution of such queries,
persisted data is typically indexed in a post-processing stage.
This post-processing requires additional time and resources,
increasing the time to discovery. It also increases with the
scale of the simulation, especially as computational bandwidth
growth outpaces that of storage bandwidth [5].

To reduce the time to discovery, in-situ approaches that
index data as it is written by the parallel application have been
proposed [6] as an alternative to post-processing. DeltaFS [7]
intercepts application writes and organizes them into hash-
based partitions. This enables point queries that retrieve indi-
vidual items by key, but it breaks key locality. Range queries
require key locality to efficiently find all items with keys in a
given range. Range queries are an important tool for scientists
interacting with continuous attributes such as temperature and

velocity. They can be used to filter data into ranges of relevant
values, such as isolating blast wave fronts or tracking energy
bands. However, existing solutions for range query indexing
force undesirable tradeoffs between write performance, query
performance, and resource utilization (§II).

To enable efficient range queries without post-processing,
it is necessary to develop reordering-based in-situ indexing
mechanisms. Reordering creates key locality in the data layout,
which enables range queries to be served efficiently via a
small number of contiguous writes. However, reordering of
on-disk data stresses write performance by requiring I/Os for
index maintenance. This leads to slower checkpointing and
idling of compute nodes. Enabling efficient querying without
adversely affecting write performance requires reordering data
in the network data plane, before writing to storage. Doing
so without requiring additional compute resources requires a
lightweight embedded reorganization mechanism with a low
memory footprint. These challenges are further compounded
by the nature of scientific key distributions — our analysis of
real-world codes (§III) shows that scientific key distributions
are highly skewed and vary over time. Reorganization mech-
anisms processing such data need to be adaptive to ensure
that load hotspots in the reordering pipeline do not slow down
application writes.

We present CARP (Continuous, Adaptive, Range Parti-
tioner), an adaptive in-situ indexing system that enables range
queries without requiring data post-processing. CARP requires
no changes to scientific applications and operates by intercept-
ing writes in flight to storage. User input on key distribution
characteristics is not required. Partitions are instead discovered
at runtime and adapted as the key distribution changes. CARP
is write-optimized and does not divert any storage bandwidth
from the application for reordering. Our evaluation shows that
CARP incurs no overhead on application runtime and can
achieve sub-second range query latency that is up to two orders
of magnitude faster than state-of-the-art auxiliary indexing
approaches. By partitioning data at runtime, CARP is up to
5× faster than post-processing approaches.

The contributions of this work are summarized as follows:

• After a brief discussion on background (§II), we charac-
terize workload distributions and their drifts in modern
scientific applications (§III) and demonstrate that static
partitioning is inadequate for such workloads (§VII-B).
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TABLE I: Range query indexing approaches.

Approach In-situ Efficient
Indexing

Efficient
Querying

Bulk Sorting (Clustered) × × ✓
Bulk Sorting (Auxiliary) × × ×

Bitmap Indexes (FastQuery) × × ×
DB Indexes (LSM-Tree, B-Tree) ✓ × ✓

DeltaFS ✓ ✓ ×

CARP (This paper) ✓ ✓ ✓

• We present CARP (§V), an in-situ data processing frame-
work guaranteeing data locality and load balancing at
scale. We identify requirements for a CARP storage
backend and present KoiDB (§V-D), a reference backend
implementation.

• We show that partial locality in data layout can be created
in a single pass without requiring any reorganization
and provide nearly-optimal range query performance
(§VII-A), followed by a discussion on adapting CARP
for different requirements (§VIII).

We have released the source code [8] for both the CARP
framework and the KoiDB backend.

II. BACKGROUND AND MOTIVATION

Data generated by many scientific applications consists of
simulated entities such as particles and mesh cells, each storing
several attributes (e.g. energy, velocity) into a record. This data
is written out at fixed intervals and not mutated once written,
making bulk indexing feasible. The data is then analyzed using
point queries (e.g., retrieving particles by ID) or range queries
(e.g., retrieving particles with energy in a certain range). Range
queries are needed for interacting with continuous attributes
and for filtering data using ranges of relevant values (e.g.
energy bands, temperature and blast wave fronts).

An efficient range-query index must locate ranges of values
quickly. Sorted indexes do this by creating indexed attribute
(henceforth referred to as key) locality in the data layout,
so that the keys for a range can be located in one or
few data partitions. Clustered indexes further improve query
performance by storing all records with their corresponding
keys. This allows for data for a query to be retrieved efficiently
via fewer, contiguous reads. In contrast, auxiliary indexes need
multiple random reads to retrieve all attributes of interest in the
range. In general, a database table can have only one clustered
index. The clustered index is typically reserved for the attribute
most commonly used in queries [9, 10].

Table I shows that no current approach enables both in-
situ efficient indexing and efficient querying for ranges. We
summarize the characteristics of the indexing approaches
below. We discuss their index construction performance and
break down their query performance into index lookup and
data retrieval.

Index Construction. Bulk parallel/distributed sorting [11–
13] approaches support range queries but require post-
processing. These can be used to build either clustered or
auxiliary sorted indexes. FastQuery [14], on the other hand,

builds auxiliary bitmap structures where keys are sorted and
stored separately with a pointer to their records. Clustered
indexes enable more efficient queries but require more I/O
to reorder and write the entire dataset. FastQuery does not
reorder data, but results in data scans, computing large bitmap
vectors, and writing auxiliary structures to disk.

To avoid expensive post-processing, techniques have been
proposed to intercept application writes and index them in-
situ before data is written to disk. DeltaFS [7] shuffles data
into hash-based partitions and requires no post-processing,
but it can only support point queries on the partitioned data.
Distributed databases maintain online indexes but offer lower
write efficiency as they periodically reorganize on-disk data
[15]. Databases are designed for mixed workloads with up-
dates, while lightweight indexes are better suited to scientific
data.

Index Lookup and Data Retrieval. Efficient range queries
require quickly finding matching records using the index and
retrieving the records from storage using large sequential
reads. Only sorted and clustered indexes provide both of these
properties. Auxiliary indexes can return the offsets at which
matching rows are present, but retrieving those records re-
quires multiple random reads. Additionally, FastQuery queries
require provisioning enough compute nodes to fit large index
structures in memory, and queries can only be processed once
these indexes are loaded.

With CARP, we aim to pair the query latency of a sorted
and clustered index with the reduced overhead of an in-situ
approach. We discuss the challenges of meeting these goals in
the next section.

III. RANGE QUERY CHALLENGES

Sorted, clustered indexes provide the lowest query latency
but require post-processing to reorder data. Sorting large on-
disk datasets is even more expensive than building auxiliary
indices, as it requires multiple read/write passes over the
data [13].

As an alternative to reordering via post-processing, data can
be partitioned into range-based partitions while in transit from
the application to storage. This accelerate queries, as only a
small number of relevant partitions need to be retrieved from
storage for each query. While range partitioning is a well-
known technique in distributed databases, adapting it to in-
situ partitioning of scientific data requires overcoming two key
challenges we describe next.

Write Rate. To organize data in a way that does not reduce
the application write throughput, it is not sufficient to partition
data online. The indexing pipeline must be designed to not
require any storage bandwidth for reordering or index mainte-
nance. Conventional databases use reordering to maintain their
partitions, which reduces effective storage bandwidth [16, 17].
As on-disk partitions grow beyond configured sizes, they are
split into smaller partitions and migrated across nodes.

The maximum achievable write rate is a function of the
average number of I/O operations performed for each applica-
tion write, also called the Write Amplification Factor (WAF).



A WAF of 10 will turn an I/O phase lasting 12 minutes
into 2 hours, which is wasteful for write-intensive large-scale
scientific applications. WAF for write-optimized single-node
database indexes has been measured at 19-37 [15] and is much
higher for B-tree indexes and distributed databases [18]. In-situ
strategies that have a high WAF would not outperform post-
processing approaches (WAF of 2-3×). To maximize gains
from an in-situ indexing approach, we constrain our design to
a WAF of 1×.

Adaptivity. Effective range-partitioning requires the key
space to be partitioned such that the generated data partitions
are relatively balanced. This is important for both write and
query performance. On the write path, this ensures that the
application is not slowed down by a straggler writing a
significantly larger partition than others. On the query path,
imbalanced partitions will lead to much slower performance
for queries corresponding to those partitions.

However, we find that keys in scientific data are often
skewed in unpredictable ways and change as the simulation
progresses. Specifically, we studied the energy distributions
of two applications — VPIC and Phoebus. VPIC is a plasma
physics code that simulates particle physics phenomena such
as magnetic reconnection [1]. Phoebus is a mesh-based hy-
drodynamics code that we run with a Sedov blast wave setup
[4]. We ran both codes at 512 ranks and studied the energy
distributions in the output data.

Fig. 1 shows the energy distributions of both the codes over
time. For VPIC (Fig. 1a), we find that the energy distributions
are highly skewed with most particles falling between 0 and
1 with long tails that get longer and heavier as the simulation
progresses. Towards the second half of the simulation, 20-
30% of the data is contained within the tail generating a
bimodal distribution with a second mode between 16 and 64.
For Phoebus (Fig. 1b), we also see a highly skewed distribution
with a tail. Initially, there is a high energy explosion but
most of the mesh has no energy. Over time, the energy from
the explosion dissipates into a bigger area and moves the
distribution into a medium energy band.

These findings highlight the challenges with partitioning
keys from scientific workloads. A highly precise reconstruc-
tion of the key distribution is necessary to divide the keyspace
into a large number of balanced partitions. It is also impractical
for any user-provided static range partitioning scheme to
accommodate such skewed and dynamic key distributions.
A distributed database would only be able to balance its
partitions after a series of splitting, rewriting, and merging
operations, incurring prohibitive index construction costs. An
ideal range query index would discover and adapt to workload
characteristics and reorder data without consuming excess
storage bandwidth.

IV. DESIGN PRINCIPLES OF CARP

We have designed a streaming in-situ partitioner for large
parallel applications, CARP, which intercepts writes from
applications, transforms them, and persists them in a range
query-friendly layout. A logical view of CARP’s partitioning
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Fig. 1: Energy distributions across 7 timesteps of VPIC (top) and
AMR (bottom) simulations. Distributions are shows as histograms
overlaid with line plots for interesting bands. Both VPIC and
AMR distributions are highly skewed and shift significantly over
time.

Query

Ti
m

e

72-103

79-103

75-100

55-72

52-79

50-75

28-55

23-52

25-50

0-28

0-23

0-25

Partition #1 Partition #2 Partition #3 Partition #4

………
0-52Query Range 

23-25

Retrieve overlapping 
SSTables

Merge Sort

23-25

Filter relevant 
data

SSTable 
(~10MB)

Partitioned data

CARP-augmented Parallel App
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coming data is partitioned and stored as SSTables, and partition
boundaries shift with key distribution changes. Queries retrieve
relevant SSTables and merge them.

process is shown in Fig. 2. CARP has no impact on applica-
tion runtime, as it uses spare CPU and network capacity to
transform data at a rate necessary to saturate storage. This
partitioned output requires no post-processing and can be
queried directly once the application terminates.

CARP augments conventional range partitioning with novel
techniques to achieve its write and query performance goals.
We build upon a simple insight — data does not need to be
fully sorted to achieve the performance benefits of a sorted,
clustered index. It is sufficient to partially order data in a way
that allows queries to be processed via a small number of
large reads. CARP exploits this relaxation to achieve its write
performance and adaptivity goals.

We employ a greedy approach to generate best-effort range



partitions in a single streaming pass so as to not require
expensive reorganization of written data. To generate balanced
partitions, CARP employs a novel primitive to construct and
monitor the global key distribution. This distribution is divided
into partitions with equal areas under the curve, and each
partition is assigned to a rank. In the common case, all ranks
shuffle data to corresponding partitions. As the workload’s
key distribution drifts, CARP recomputes partition boundaries
and continues shuffling. Shuffled data is written to disk via
a storage backend called KoiDB — KoiDB further optimizes
CARP output to improve range query performance. Next, we
describe how CARP achieves the design goals laid out in the
previous section.

Write Performance. To ingest data at storage layer
throughput, CARP is designed to not divert any storage
bandwidth for reorganization. Even when partitions need to be
recomputed, CARP does not touch previously written data —
it simply records a change in partition boundaries on each rank
and continues appending data. CARP also employs standard
storage optimization practices such as batching small writes
into large immutable units called SSTables and having its on-
disk layout be an append-only log.

Query Performance. Efficient queries in CARP are enabled
by 1) creating a highly partitioned layout, and 2) enabling
efficient retrieval via large sequential writes. CARP creates
one partition per application rank, automatically ensuring more
data partitions as application scale increases. A selective range
query only needs to retrieve a fraction of the total data from
overlapping partitions. In addition, data is written in large
SSTables, which can be read efficiently via large read requests.
CARP merges its partially ordered SSTs at query time via a
merge-sort operation, which is cheap compared to the I/O cost
of retrieving data.

Adaptivity. To adapt to skewed and dynamic key dis-
tributions, we recompute CARP partitions as the incoming
distribution changes. Unlike conventional databases, we do
not repartition data that has already been written to disk. We
simply record the change in partition boundaries and continue
appending new data. Over the lifetime of a run, the range
allocated to a CARP partition changes multiple times. As a
corollary, data belonging to one point in the range may end
up in different partitions at different times in the run. Instead
of incurring write amplification to consolidate this data, we
simply postpone this consolidation (also called compaction)
to query time.

V. DESIGN OF CARP

In this section we provide an overview of CARP’s architec-
ture. We describe the scalable way data is routed to ranks by
key (§V-A), the triggers that allow CARP to determine that
data needs to be repartitioned (§V-B), the protocol that allows
ranks to determine a new partitioning for the data (§V-C), and
a reference storage backend design for logging partition data
efficiently to storage (§V-D).
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A. Communication: Scalable data flow

Figure 3 shows the architecture of CARP using an example
parallel application with N ranks. Application data is inter-
cepted by CARP as a stream of records, one per each particle
or cell. Each application rank owns one partition and acts as
both a producer and a consumer of data. These records are
routed to the corresponding partition on the basis of the key via
an operation called shuffling. On the receiving end, the local
partition is managed via a local instance of a storage backend
called KoiDB (§V-D). This KoiDB instance is responsible
for collecting data and writing it out to a per-rank on-disk
log. For efficient shuffling, we leverage the scalable all-to-all
communication overlay from the DeltaFS project [7], as it has
been demonstrated to scale up to 131,072 ranks.

Due to the transmission delay introduced by shuffling, data
written through CARP is only available to query at the end of a
checkpointing epoch. At the end of each epoch, CARP flushes
all data to the disk. By doing so, it aligns its fault-tolerance
semantics with those of typical scientific applications.



B. Detection: Triggering repartitioning

CARP uses a triggering mechanism to determine if the
current partitioning of data is leading the system to a state
of load imbalance (i.e., routing more data to a subset of the
partitions). Imbalanced loads affect the write path by creating
stragglers and affect the query path when larger partitions are
traversed to return query data. Figure 4 shows the data flow
from the application to the shuffle sender layer. This is the
path that CARP monitors to determine whether to trigger data
repartitioning. We describe CARP’s control flow through the
three possible cases of data flow from the application to the
shuffle sender layer below.

Common Case. In the common case CARP shuffles data
as per the assigned partition ranges as described previously
in §V-A. Collectively these ranges form a partition table
that is replicated across all ranks. A distribution of keys
transmitted by each rank is stored locally and used when it
becomes necessary to participate in a global renegotiation of
the partition table (§V-C1).

Out-Of-Bounds. As simulations progress new keys are
generated. If a rank is asked to insert a key that is currently out
of the partition table bounds, then there is no valid destination
for the data. In this case CARP temporarily buffers the data in
an in-memory buffer on the sender called the Out-Of-Bounds
(OOB) Buffer. Once the OOB buffer reaches a predetermined
threshold, a renegotiation of the partition table is triggered.

Rebalancing Required. This trigger is only needed to adapt
to distribution changes within an epoch — for new epochs
CARP bootstraps partitions from scratch. To resolve intra-
epoch drift, a renegotiation should be triggered to compute
a new and more relevant partition table. Instead of using
background communication mechanisms to robustly detect
load outliers, we have found it simpler to assume that a
rebalancing is required at periodic intervals within an epoch.
Some applications such as AMR (Adaptive Mesh Refinement)
codes are aware of when they refine and can signal CARP for
more precise control over renegotiation. We explore the impact
of a fixed interval further in our evaluation.

C. Renegotiation: Determining new partitions

The goal of renegotiation is to rebalance the partition bound-
aries used by the shuffle layer to route data to its destination.
Renegotiation replaces the partition table stored in each rank
with a new more balanced one based on the latest statistics
of the global distribution of the keyspace. Renegotiation is
similar to distributed snapshotting algorithms such as Chandy-
Lamport [19] but is designed to trade off some accuracy
for scalability and performance. As a result, the computed
global distribution is not a perfect representation of the actual
distribution, but our evaluation shows that any estimation
errors result in negligible imbalance in partition load. Our
scalable implementation of renegotiation is described in §VI.
The steps involved in the renegotiation protocol are as follows:

1) A rank triggers a renegotiation round by notifying all
ranks to start the process. This pauses shuffling.
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2) Local distribution estimates are computed on all ranks
and then collected and merged on rank 0 to form an
estimate of the global distribution.

3) A new partition table is computed and broadcast.
4) All ranks switch to the new partition table and flush their

Out-Of-Bounds buffers according to the new partitions.
5) Ranks reset local distribution statistics, resume shuffling.
Local distribution estimates are computed and merged us-

ing summary statistics primitives. Renegotiation is initiated
by trigger that can fire on any rank. We describe CARP’s
summary statistics primitives and trigger design next.

1) Summary Statistics: CARP ranks use summary statistics
primitives to construct the global distribution during renegotia-
tion. We use histogram-based sampling to track and aggregate
ranks’ local key distributions. Different quantile estimation
techniques can be plugged into CARP, but we have found
that histogram-based sampling is efficient to compute and
allows for control over trading compactness for accuracy.
CARP tracks rank-local key distributions using histograms.
Each rank’s histogram consists of one bin per application
rank (or partition). For each processed key the correspond-
ing bin counter is incremented. This histogram represents a
lightweight, lossy representation of the local key distribution.
When a renegotiation is invoked the global distribution is
constructed using two primitives: histogram sampling and
pivot union, as shown in Fig. 5.

When ranks are notified of a renegotiation round, they com-
pute pivots via the histogram sampling primitive. Pivots are a
compact and lossy representation of a distribution that can be
efficiently computed, communicated, and merged. Pivots are
a set of k points in the keyspace that divide the histogram
into k partitions of equal mass, i.e., bins containing the



same number of samples. Increasing k reduces representation
lossiness but requires more network communication for the
additional information. For skewed distributions, this results
in more pivots concentrated in histogram regions where bin
counts are high and vice versa. Pivots are calculated by linear
interpolation between bin boundaries. We also factor in the
keys in the local OOB buffer for pivot computation.

Pivots from all ranks are collected at a designated rank
(Rank 0) and aggregated to form pivots representing the global
distribution via the pivot union primitive. This operation uses
the information captured in rank-local pivots to construct a
global distribution. This global distribution is then resampled
to compute the new partition table that is broadcast to all ranks.

2) Triggers: Renegotiation triggers are evaluated at each
rank to determine when to renegotiate, as shown in Fig. 4.

The Out-of-Bounds trigger is used to extend partition
boundaries when many keys outside the partition table bound-
aries are encountered. We partition the known keyspace with-
out any gaps, so an invocation of this trigger strictly extends
the allocated keyspace. An in-memory Out-of-Bounds (OOB)
buffer is used on each rank to temporarily store keys that
are currently outside the bounds of the current partition table.
The OOB buffer has a predetermined size and when it fills
up a renegotiation is triggered. The contents of all ranks’
OOB buffers are factored into the new partition table so
that the newly computed table has destinations for those
keys. Keys in the OOB buffers are flushed to their respective
destinations once the renegotiation completes. We have found
OOB buffers with a capacity of 512–1024 items per rank
sufficiently effective.

This trigger is also used to bootstrap CARP at the beginning
of each epoch. As there is no partition table when an epoch
begins, all ranks collect writes into their OOB buffers, and
invoke a renegotiation to find the first partition table to start
shuffling with.

The Rebalancing trigger is used to account for key dis-
tribution drift over time causing partition load to become
imbalanced. In principle this trigger could be designed to
fire only when key distribution drift is detected, however
we have found that invoking it periodically is both simpler
and effective. We found frequent fixed-interval renegotiation
to provide effective partitioning without having a measurable
runtime overhead (§VII-C4).

D. Storage: Logging for efficiency

KoiDB is our reference implementation of CARP’s storage
backend. Its output is written to a parallel file system and can
be directly queried by a query client on a single node. As query
clients access files in read-only mode, multiple concurrent
query clients are automatically supported. KoiDB collects data
from the shuffle receiver and writes it to an append-only log
on shared storage. KoiDB instances are local to each rank and
operate independently of each other. We discuss using CARP
with other storage backends in §VIII.

Fig. 6 shows KoiDB’s on-disk log format. KoiDB produces
this output by first collecting shuffled records in a memory
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Fig. 6: KoiDB on-disk log format. Each log consists of SSTables
organized into contiguous key and value blocks. Each SST has
an entry in the manifest along with metadata.

buffer. When the buffer fills, KoiDB compacts the data into an
SSTable (or SST) that is then appended to the log. Compaction
operations include (optionally) sorting the contents by key,
serializing the keys and values into separate sub-blocks for
more efficient query-time parsing, and writing the serialized
SST to storage. A manifest entry containing the SST’s key
range and location is also written into a manifest block that is
used to find relevant SSTs for queries. Storing this manifest
results in a small space amplification (~.01%). KoiDB uses
double-buffering to allow compaction to run in the background
while shuffling continues in the foreground.

We now describe two additional optimizations KoiDB ap-
plies to SSTs for query performance:

Repartitioning to refine SSTs. CARP partitioning quality
can be degraded by stray keys created when CARP partition
tables are updated. These keys end up being misdelivered
because their correct shuffle destination changes between
dispatch and delivery due to renegotiation. Letting them be
written to the wrong partition reduces SST selectivity and
will increase query latency as more SSTs need to be read
for each query. One way to avoid stray keys is by flushing
the network before each renegotiation, but this increases
the cost of invoking the primitive. KoiDB mitigates this by
simultaneously maintaining multiple open SSTs and separating
stray keys into a different SST. As we show in §VII-C3, this
improves the selectivity of CARP partitions by up to 48×.

Subpartitioning to create smaller SSTs. To further reduce
the read amplification for highly selective queries, KoiDB can
subdivide a rank’s SSTs into smaller ranges before writing
them out. Smaller SSTs can be retrieved faster, but a large
number of subpartitions can also increase CARP’s CPU and
metadata overhead and adversely affect runtime.

VI. IMPLEMENTATION

In this section we describe CARP’s implementation and
its relationship to scalability, memory footprint, and runtime
overhead.



CARP [8] consists of ~10,000 lines of C/C++ code. Appli-
cation writes are intercepted using a dynamically preloaded
shared library. The CARP API can also be called directly
without using a preload library. CARP uses two instances
of the DeltaFS shuffle service [20] for communications: the
data instance batches messages into 32KB buffers for high
throughput, while the control instance is used for renegotiation
control messages and uses no batching for low latency. The
shuffle service is built using the Mochi [21] Mercury RPC
library [22]. We use RPCs as both shuffling and renegotiation
are asynchronous operations better suited to RPC semantics
(it also allows us to avoid complications with multiple con-
current MPI communicators). CARP creates its own threads
for network communication, RPC callbacks, and asynchronous
compaction in KoiDB. This setup allows straggler ranks to use
multiple cores and provides some tolerance for load imbalance.

Scalability. CARP is designed to scale by composing scal-
able operations — the shuffle service has been demonstrated
to scale to 131,072 ranks [7], and the renegotiation protocol
is designed as a reduction operation with a logarithmic scal-
ing factor (evaluated in §VII-C1). Each instance of CARP’s
storage backend (KoiDB) is an independent instance and can
scale trivially. By default, CARP creates one file per rank, but
at larger scales, the total number of files can be reduced (if
needed) by having a subset of ranks be shuffle receivers.

We call CARP’s scalable implementation of renegotiation
the Tree-based Renegotiation Protocol (TRP). A naive im-
plementation of renegotiation, as described in §V-C, would
require directly collecting all ranks’ pivots on one rank before
computing the new partition table. Such an implementation
will have limited scalability, as its memory and network
communication footprint will scale linearly with ranks. Our
TRP implementation, on the other hand, uses a reduction tree-
based design [23, 24] which scales logarithmically.

TRP is built on the observation that pivot unions (§V-C1),
being associative and commutative have all the properties of
a lossy reduction operation. Pivots represent distributions and
can be merged in any order, but the pivots lose some informa-
tion in the process. To limit the impact of this lossiness, TRP
employs a shallow tree hierarchy with a large fan-out (depth
of 3, fan-out of up to 64). The tree’s leaf layer consists of
all CARP ranks, while intermediate layers consist of equally
spaced ranks. Subsets of pivots are reduced on intermediate
layers, and a final reduction happens at the root.

Memory Footprint. As CARP runs in application pro-
cesses, it needs to have a low memory footprint to avoid
competing with the application for memory. CARP achieves
this by streaming application data directly to the shuffle
pipeline. The primary source of memory overhead is due to
buffers used to batch I/O for network and storage efficiency.
To illustrate this overhead, we use a run with 4096 ranks and
default CARP parameters that results in 27MB per rank1. This

1Each rank uses 2MB for shuffle RPC buffers [7], 24MB for two KoiDB
memtables, 16KB for 4096*4B partition table entries, 16KB for partition
shuffle counts, and 32KB for 512-entry OOB buffer with 64B records.

is less than 1% of the per-core memory budget on the LANL
Trinity supercomputer [25].

Runtime Overhead. CARP only runs during application
I/O, so it does not impact the compute phase. Data shuffling
and triggered renegotiations are potential sources of additional
runtime overhead. Shuffle bandwidth increases with the num-
ber of writes and quickly outstrips storage bandwidth in our
experiments. Thus, the shuffle service itself does not have
any runtime overhead. CARP could underutilize storage by
pausing I/O for renegotiation, but our experiments show that
shuffle receivers buffer enough outstanding writes to keep
storage busy and mask this overhead. If needed, CARP can
continue routing data using the old partition table while a
renegotiation is underway, however we have not found this
necessary in our experiments.

VII. EVALUATION

Baselines. We use DeltaFS [7], FastQuery [14], and Tri-
tonSort [13] as baselines representing the state of the art
from different research communities. DeltaFS represents the
state of the art for write-efficient online hash-partitioning,
FastQuery employs auxiliary indices, and TritonSort performs
data reordering.

Benchmark workloads. We evaluate the performance of
CARP using traces collected from a 512-rank VPIC simulation
[1], a popular particle simulation code described in §III, and
YCSB [26], a standard benchmark suite with varying key-
value workloads. To eliminate variability across simulation
runs and ensure reproducibility, we replay traces captured from
VPIC rather than using it as a streaming workload. We use the
computational plasma trace described in section III for all our
experiments. We index VPIC traces using energy as the key.
This results in a 4 byte floating-point key and a 56 byte record
for the rest of the particle data.

Experimental setup. We use a 32-node compute cluster with
each node having two 8-core Intel Xeon E5-2670 CPUs and
64GB DRAM. The nodes are connected via 40Gbps Infiniband
QDR. Simulation output is written to a shared Lustre storage
cluster consisting of 20 nodes identical to those in the compute
cluster, each having a 240GiB SSD. DeltaFS, FastQuery, and
CARP experiments use the compute cluster, while TritonSort
runs directly on the Lustre nodes. TritonSort has identical
storage resources as other approaches and is able to achieve
higher throughput out of storage by not incurring the overhead
of Lustre’s coordination. While TritonSort appears to have
lower compute resources, all applications are bottlenecked
by the storage bandwidth and their runtime is dictated by
their write amplification. FastQuery provides a number of
tunable parameters, and we report the numbers from the best
performing parameters on our cluster.

The rest of this section is organized as follows: In §VII-A
we evaluate CARP’s query performance. We evaluate CARP’s
runtime overhead and compare it with existing approaches
in §VII-B. Finally, in §VII-C, we show selected results of
a sensitivity analysis aimed at understanding the impact of
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Fig. 7: (Left) CARP matches the query latency of TritonSort’s fully-sorted data layout and outperforms both FastQuery by 100×.
(Right) CARP incurs no overhead over unpartitioned I/O and is 3-5× faster than post-processing.

tunable parameters and optimizations on CARP’s runtime
overhead, load balancing effectiveness, and index quality.

A. Query Performance

In this subsection we evaluate CARP’s partitioned output
using two aspects: query latency and read amplification. Query
latency is a function of how much data the index needs to read
and how efficient the storage layout is in serving that data.
For CARP, minimum effective query selectivity is capped by
the size of one CARP partition — 0.18% (or 1

512 ) for 512
ranks. This percentage decreases with scale as the number of
partitions increases and when subpartitioning is enabled. We
now discuss CARP’s query performance over two query suites:
one constructed by us, and a YCSB query suite.

Observation 1: CARP can serve most queries as efficiently
as a fully sorted layout and 1-2 orders of magnitude faster
than state of the art auxiliary indexing approaches.

Query Suite. For query latency experiments we index 12
timesteps from the simulation. Each timestep is 188GB of
data, and the total simulation data is 2.2TB. Query latencies
for eight queries with different selectivity are shown in Fig. 7a
(each query is repeated 3 times and averaged). We compare the
query latency for CARP’s partitioned ordered output with that
of FastQuery and a sorted, clustered index. We also provide
numbers for a full scan over unindexed data for reference.
The sorted output uses 12MB SSTs and a manifest with
one entry per SST, a format similar to KoiDB. We refer to
the sorted, clustered index as TritonSort for convenience, but
all sorts generate identical outputs. Queries for both CARP
and TritonSort are processed by the same query client. The
manifest is read first to find corresponding SSTs and then
key blocks of corresponding SSTs are read in parallel. CARP
SSTs overlap and must be merge-sorted for ordered range
query semantics. The latency numbers for CARP include this
sorting cost. The query client for CARP and TritonSort is run
on a single compute node with access to the Lustre filesystem.
FastQuery numbers are measured using its own query client
reading from its natively supported HDF5 format. All query
latency numbers include the time taken to fetch keys matching

a query from a storage cluster to a query client and the
compute time to subsequently process/filter the data fetched.

For both CARP and TritonSort, query latency appears to
be linearly proportional to the amount of data read. Despite
incurring an additional sorting cost, CARP’s total query la-
tency is similar to TritonSort. CARP is slower for highly
selective queries (177ms vs 22ms for a query with 0.01%
selectivity) because it is forced to read full partitions, but it
is able to match (and even outperform) TritonSort for larger
query ranges with selectivity > 0.05%. FastQuery is much
slower than either of the two approaches. This is partially due
to it needing to read large bitmap indices, but largely due to
it being an auxiliary index, requiring small, random reads.

Observation 2: Despite incurring extra sorting overhead,
CARP matches TritonSort’s query latency performance for all
except extremely selective queries (< 0.05% selectivity).

YCSB Benchmark Suite. To thoroughly evaluate the query
performance of CARP’s approximate partitioning we use
Workload E from YCSB (Fig. 8). Workload E consists of short
range queries and inserts in a 19:1 ratio. The range queries
consist of up to 100 keys generated from a Zipfian distribution
and are reordered by a random hash function. We drop inserts
from our benchmark suite as CARP and TritonSort are not
online stores but are instead transient services with different
insert and query pathways. We define the workload’s ranges
in terms of fully ordered SSTs. We interpret YCSB query
ranges as SST numbers in TritonSort’s output and translate
them into equivalent key ranges that we use for both CARP
and TritonSort. The range SST# (251, 350) would therefore
query the key range stored in TritonSort SSTs numbered 251
to 350. Since KoiDB SSTs are smaller and more fragmented,
the same query with CARP would result in more SSTs read.

We construct 4 query batches of different fixed widths (5,
20, 50, and 100 SSTs) corresponding to query selectivity
of 0.03%–0.6%. The starting index is drawn from YCSB’s
Zipfian distribution in the range SST# (0, 18266), where 18266
is the number of SSTs in each timestep. We use 16 I/O threads
to fetch SSTs for each query in parallel. For each width, we
construct a batch of 1000 queries per timestep with the order
randomized by YCSB’s hash function (fnvhash). Fig. 8
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Fig. 8: Time taken for a YCSB query suite, demonstrating similar
trends to the left-hand figure. CARP is slower for highly selective
queries but comparable/better for larger queries despite the
sorting overhead.

compares the total time taken by a batch of queries for two
different timesteps and 4 query widths for each timestep, and it
reaffirms the trends from Fig. 7a. CARP’s median selectivity of
0.07% (with 4-way KoiDB subpartitioning enabled) enables
us to be competitive for queries with a width of 20 SSTs
and greater. For larger queries, the cost of sorting starts to
become a greater proportion of CARP’s query latency, but the
aggregate latency is still close.

A surprising takeaway from these latency experiments is
that CARP’s partial ordering seems to result in the most
efficient storage layout. CARP reads are faster than the fully
sorted layout, and query performance is similar despite us
incurring the extra overhead of merging SSTs. We attribute
this to our layout being amenable to parallel reads from
different storage nodes of a parallel filesystem — it has enough
contiguity to be read efficiently vs small random I/Os, but is
distributed enough to allow for parallel processing of a query.

B. Write Path

Observation 3: CARP is 2.8–4.9× faster than post-
processing approaches with no overhead on application per-
formance.

Fig. 7b measures the effective I/O throughput of four
different index building approaches ingesting 188 GB of VPIC
data (corresponding to 3.5B particles or one timestep at 512
ranks). The effective I/O throughput is computed by dividing
the application data volume by the total runtime. For in-
situ approaches, their runtime overhead is included in the
application runtime, while for post-processing approaches, it
is obtained by adding the post-processing time. Each run is
repeated 9 times and averaged.

To measure I/O throughput, we keep the total amount of
data generated constant across different scales as the write
performance of SSDs decreases as they fill up. Allowing
the amount of data written to scale up with the number of
ranks results in higher scales unfairly getting a lower storage
throughput. The achievable storage bandwidth from our cluster
(Storage Bound in Fig. 7b) increases with the number of
application ranks: from 1.6 GB/s at 32 ranks to saturating
the storage with 3 GB/s at 512 ranks. At 1024 ranks, the
increased contention from a large number of parallel writers

causes a small dip in achievable throughput. For 1024 ranks,
we divide the 512-rank trace into two halves to keep the total
data constant.

We compare CARP with DeltaFS, FastQuery, and Triton-
Sort. CARP and DeltaFS are embedded within the application
and hence are evaluated at different scales. FastQuery and
TritonSort are post-processing approaches and are run after
VPIC completes. For the post-processing approaches, effective
throughput is obtained by dividing the total data written by the
total time taken (VPIC time and post-processing time). For
the in-situ approaches VPIC time includes the online index
building time.

FastQuery and TritonSort. As shown in Fig. 7b, the ad-
ditional time taken by post-processing approaches (FastQuery
and TritonSort) significantly reduces the effective application
bandwidth from 3GB/s to ~1 GB/s and ~0.6 GB/s respectively.
This represents a slowdown of 2.8× for FastQuery, and 4.9×
for TritonSort. TritonSort incurs a much larger slowdown as
it creates a clustered index, which requires four passes over
all data for out-of-core sorts. FastQuery scans the data once,
creates index structures, and writes them to storage, but takes
an additional 24% space to store indexes for a single attribute.

DeltaFS. As discussed in §II, DeltaFS embeds with VPIC
and reorganizes data via an all-to-all shuffle while it is in
transit from the application to storage. DeltaFS uses the same
3-hop shuffle used by CARP (§V-A). DeltaFS uses a hash of
the particle ID to partition incoming data. At smaller scales,
DeltaFS is bound by the available shuffle throughput (Network
Bound in Fig. 7b). As the aggregate shuffle throughput in-
creases with scale, DeltaFS is able to fully saturate the storage
layer, incurring no overhead over raw VPIC throughput.

CARP. We measure CARP network overhead
(CARP/ShuffleOnly) and end-to-end performance (CARP)
separately in Fig. 7b. For CARP/ShuffleOnly, we drop data
once it is received at a shuffle receiver so as to not be bound
by storage performance. We see that CARP/ShuffleOnly
scales with the available shuffle bandwidth, incurring a
small overhead for renegotiation rounds and the residual
load imbalance. However, this overhead does not matter
for the end-to-end performance as CARP quickly becomes
bound by the available storage bandwidth. When the network
bandwidth exceeds storage bandwidth, CARP has no impact
on end-to-end performance. By avoiding post-processing,
CARP enables indexes to be built 2.8–4.9× faster.

Observation 4: Static partitioning can quickly devolve to
reading orders of magnitude more data than CARP by not
adapting to key distribution drift.

Fig. 9 is a study of how frequently partition tables need
to be recomputed for our VPIC trace to generate balanced
partitions. We construct partitions from a perfect knowledge
of different simulation timesteps and measure how well they fit
subsequent timesteps. The green line simulates a static parti-
tioning approach where partitions are computed from a perfect
knowledge of the first timestep but are not changed afterwards.
The load balance of a static partition scheme worsens as the
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Fig. 9: Simulated performance of different static partitioning
schemes in generating balanced partitions (lower load std-dev
implies better partition balance). Reusing a partition table from
the first timestep results in the worst load-balance. Tables from
the previous timestep fare better, but perform poorly when the
simulation is the most active. Tables from the current timestep
fit the best (true by definition).

key distribution drifts over time. Next, we measure how well
a partition table from the previous timesteps fits the current
timestep. This works better but still demonstrates a significant
load imbalance around timestep 3800 when simulation entropy
is high. As the simulation converges and the entropy between
adjacent timesteps reduces, reusing older partition tables fares
better. Finally, we see that partition tables obtained from
the current timestep fit that timestep very well. This is true
by definition, and the minor load imbalance arises from the
lossiness of the histogram approach to capture distributions.

We conclude that any partitioning approach should recom-
pute its tables at least once every timestep, more if there is
intra-timestep entropy. We emphasize that the purple line in
Fig. 9 represents an upper bound on CARP’s load balance, as
the partitions used for this benchmark are oracle partitions.
Since CARP partitions data as it arrives, it does not have the
required information to compute these.

C. Sensitivity Analyses and Microbenchmarks

1) Renegotiation Protocol Scalability: Fig. 10a shows the
time taken by a single renegotiation round across different
scales and pivot counts. As described in §VI, we implement
renegotiation using a reduction tree and hence expect it to scale
logarithmically. Fig. 10a shows the logarithmic scalability of
our implementation from 16 to 2048 ranks for 6 different
values of the pivot count parameter. Increasing the number of
pivots computed increases the size of the messages exchanged.
This results in proportionally higher round latency. 512 piv-
ots are sufficient for CARP to accurately track distributions
(discussed below), and the latency of a single round is only
150ms even at 2048 ranks.

The absolute values of renegotiation latency are handi-
capped by us using an emulated network stack (IPoIB) for
a fair comparison with baseline approaches that use sockets.
We expect these numbers to be much lower if run natively on
a modern interconnect.

2) Impact of Pivot Count: Fig. 10b shows the results
from a micro-benchmark that tests the lossiness of our pivot
calculation scheme. Pivots are an approximate representation
of a distribution. The higher the pivot count, the better the
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Fig. 10: (Top) Renegotiation scales logarithmically with the
number of ranks and takes longer if more pivots are exchanged.
(Center) 512 pivots enable reasonably accurate reconstruction for
even highly skewed distributions, with diminishing returns after.
(Bottom) Both median and tail RAFs are significantly lowered by
KoiDB partitioning, from 16-64× to 1-2×, across all timesteps.

approximation. We compute oracle pivots from a full key
distribution of each of the 12 different timesteps for different
pivot counts and check how well the partition table calculated
from those pivots fits that timestep’s keys. We use standard
deviation in partition load (std-dev) as a proxy for the
lossiness of the pivot calculation. A lossless scheme would
result in perfect partitions, resulting in zero std-dev. Higher
std-dev implies more lossiness.

In Fig. 10b we see that higher pivot counts lead to lower
load imbalance with diminishing returns beyond 256 pivots.
We also see that the last two timesteps are harder to reconstruct
than the others. This is because of the extremely skewed
nature of those timesteps’ distributions (Fig. 1). All VPIC
timesteps have long tails, but when they become extremely
long (towards the end of the simulation) more pivots are
required to accurately capture those distributions.

3) Impact of KoiDB: We now summarize how KoiDB
(§V-D) improves partition quality. We introduce a measure
called Read Amplification (RA) to measure CARP partition
quality. We define read amplification as the ratio of the size
of actual CARP partitions vs (hypothetical) perfectly balanced
partitions. An RA of 1× for all partitions is ideal, as balanced
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Fig. 11: (Top) Renegotiating multiple times within a timestep is
necessary for load-balance, but provides marginal benefit beyond
a point. More pivot counts produce a better load balance, with
diminishing returns. (Bottom) Up to 1024 pivots, increasing the
pivot count leads marginal improvement in runtime. Renegotiat-
ing frequently does not penalize runtime — the cost of frequent
renegotiations is made up by the gains in load balance.

partitions are better on both the write and the query paths.
It is also unachievable as CARP tries to predict future key
distributions and partition in a single pass, which is inevitably
an imperfect operation.

We find that repartitioning, by separating out stray keys,
reduces the average RA by up to 48× (Fig. 10c). For subparti-
tioning, we find that 2-way and 4-way subpartitioning improve
average latencies for highly selective queries by 28% and 43%
respectively with no observable runtime overhead. We omit
detailed results for subpartitioning as we have observed its
impact to be largely predictable, as described in §V-D.

4) Tuning CARP: We now summarize key takeaways on the
performance impact of CARP’s two main tunable parameters:
renegotiation frequency and pivot counts (Fig. 11). We vary
renegotiation frequencies between 2×/epoch to 26×/epoch
and pivot count from 64 to 2048. We then measure CARP’s
partition load balance and application runtime performance.
Note that it is important to optimize partition imbalance even
if it does not affect runtime to provide more predictable and
uniform query performance.

We find that these parameters have a noticeable impact on
partition load balance but not on CARP’s shuffling runtime.
At the lowest values of these parameters (64 pivots and 2×
renegotiations per epoch), CARP partitions have a normalized
standard deviation of 14%. At the highest values (2048 epochs
and 26×/epoch) this drops down to 2%. More pivots provide
noticeable load balance improvement up to 512 pivots and
then returns diminish. It is beneficial to increase the rene-
gotiation intervals from 2×/epoch to 6×/epoch, but we get
minimal gains beyond that interval. Surprisingly, none of these
parameters seem to impact runtime in any measurable way. We
attribute this to CARP’s imbalance-tolerant implementation

(idle ranks can cede CPU time to straggling ranks, §VI).
Tuning Conclusion. While CARP can be tuned for incre-

mental performance benefits, it provides stable performance
across a wide range of parameters. Even with the worst per-
forming parameters, CARP partitions only deviate by 14% on
average. CARP will still provide excellent query performance
for queries not reading from larger partitions. A moderate
number of pivots (~512) can represent even extremely skewed
distributions with long tails, and renegotiation frequency has
marginal impact on partition quality as it only addresses intra-
epoch drift.

VIII. DISCUSSION

In this section, we discuss how CARP can be adapted
for different query types, analyses, and architectures. We
also describe how CARP can interoperate with other storage
formats and indexing techniques.

Multi-attribute Queries. In this paper, we focus on using
CARP to build a sorted, clustered index on a preferred
attribute. For applications such as VPIC, indexing on a single
attribute is sufficient to identify and retrieve points of interest
(high-energy particles), and apply subsequent transformations
in memory. However, CARP can be extended to build sorted,
auxiliary attributes on additional attributes. This would require
CARP to track distributions of all configured attributes and use
a two-stage shuffling pipeline as described below:

• First, the entire row is shuffled using the primary at-
tribute as usual. The receiver serializes all rows, assigns
them a unique row_id, and writes them to the local
storage backend. Each receiver then computes a (key,
partition_id, row_id) tuple for each additional
indexed attribute and shuffles it via the same pipeline.

• Each receiver of the auxiliary attribute tuples writes them
to separate storage backend instances, where each row
points to the full row on the primary key partition.

The additional attributes will not have the query perfor-
mance of the primary attribute but will still benefit from
the space efficiency and index lookup performance of sorted
indices (vs bitmap indexes).

Applications and architectures. CARP can be used to
ingest data from any parallel application where storage band-
width is the bottleneck. The assumptions we make are typical
of such analysis workflows:

1) Data is not modified once ingested.
2) Spare network bandwidth is available for shuffling. This

is true by definition for any storage-bound workflow and
holds for most HPC clusters. The Aurora cluster [27] at
ANL, for example, has a bisection bandwidth of 690
TB/s, more than 20× the storage bandwidth (31 TB/s).

3) Write performance is paramount, and the goal is to
provide acceptable query performance without compro-
mising write performance. Where the goal is optimal
query performance (as with a web service), a distributed
database is more appropriate.

Storage Formats. Developing our own storage backend
allowed us to identify the most important properties for



an efficient storage backend and on-disk format. CARP-
partitioned output can be directly written to columnar formats
like Parquet. This would automatically accelerate queries, as
Parquet maintains statistics (min/max etc.) on each rowgroup,
and CARP-partitioned rowgroups would have a tighter range
and require less I/O at query time.

However, as we show in §VII-C, repartitioning on shuffle
receivers significantly improves partition quality. A writer that
can receive repartitioning hints from CARP and use them
to further optimize data before writing to Parquet or other
storage formats can improve query latencies by 1-2 orders of
magnitude.

Indexing Techniques. As an alternative to auxiliary CARP
indices as described above, it is also possible to combine
CARP with other indexing techniques. This also requires query
engines that can generate efficient query plans by leveraging
the strengths of different indexing techniques. We provide
some examples below:

1) Different auxiliary index structures (such as bitmap
indexes) can be built either in-situ on auxiliary nodes,
or as a post-processing stage.

2) On the query path, raw-data indexing approaches can
further improve index quality incrementally, in response
to user queries.

3) CARP’s approximately sorted output can be incremen-
tally converted into a fully sorted layout on the query
path by writing back the merged SSTs that are computed
for user queries.

To leverage the full potential of different indexing tech-
niques, it is necessary to develop end-to-end analysis engines
that can understand user analysis requirements and generate
an appropriate combination of in-situ embedded, in-situ auxil-
iary, and (if necessary) post-processing transformations using
different techniques.

IX. RELATED WORK

Data structures such as LSM-Trees [28], B+ Trees [29],
and their variants [15, 30] are employed by online databases
to order data. These data structures heavily reorganize data
internally and are more inefficient at writes than bulk post-
processing approaches [18]. Multiple in-situ analysis frame-
works have been proposed including PreDatA [31], GLEAN
[32, 33], NESSIE [34], DataSpaces [35], and ADIOS [36].
These systems are designed such that auxiliary nodes are used
to perform analysis tasks. ADIOS supports in-situ generation
of range query indices using FastBit [37] (the same bitmap
index used by FastQuery) using auxiliary nodes. In-situ gen-
eration of bitmap indices would be faster than post-processing
via FastQuery, but at the cost of dedicated resources, and the
space overhead and query performance limitations of bitmap
indices would still remain.

Usher et al. [38] describes an in-situ indexing system
that aggregates application data into spatial locality-preserving
data layouts. Their approach requires provisioning dedicated
aggregator nodes which collect spatially-partitioned particle
data from the application, add a bitmap index to the data,

and write it to storage. Particle codes already have spatial
partitions because of how they decompose the problem. This
system only preserves these pre-existing partitions. CARP is
able to create partitioning along arbitrary dimensions using
all-to-all shuffling. Further, CARP does not require dedicated
resources, introduces more powerful distribution monitoring
constructs, overlaps indexing and I/O for extremely high
storage utilization, and confers maximum benefits of an in-
situ partitioning approach. Since CARP does not require any
dedicated resources, these two approaches can be composed
together for richer partitioning capabilities.

Slalom [39] and VETI [40] describe raw-data indexing
approaches. Raw data indexing works on the query path
to exploit pre-existing order in data and adaptively reorder
data in response to query patterns. Scalable variants of these
techniques can complement approximate indexes on the write-
path to further optimize query performance for exploratory
queries, but they are not a substitute for in-situ indexing on the
write path. WiscKey [41] introduces the notion of separating
keys and values in LSM-Trees for lower write amplification,
similar to our discussion on clustered vs auxiliary indexes.
SuRF [42] can help reduce redundant reads for range queries
with sparse keyspaces but can not help speed up queries for
data with no keyspace gaps.

X. CONCLUSION

CARP demonstrates that a sorted, clustered layout for
range queries over a parallel application can be generated in
a single streaming pass without any impact on application
runtime. This accelerates subsequent analyses regardless of
the workflow employed — it can provide highly efficient
queries by itself, or accelerate a query plan with auxiliary
indices, or provide tighter partitions for columnar storage
formats to exploit. Due to its low memory footprint, CARP
can co-exist with other in-situ approaches running on the same
system. End-to-end analysis stacks that produce an optimal
combination of in-situ and post-hoc indexes for a given set of
query requirements remain future work.
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