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Abstract
Memory-based storage currently offers the highest-performance
distributed storage, keeping the primary copy of all data
in DRAM. Recent advances in non-volatile main memory
(NVMM) technologies promise latency similar to DRAM
at reduced cost and energy, but will make providing high
availability more challenging. Previous approaches to failure
recovery involve maintaining multiple identical replicas or
relying on fast offline restoration of data from backup replicas
stored on SSD. Unfortunately, NVMM’s combination of lower
write throughput and increased storage density means that
offline restoration can no longer provide sufficiently fast recov-
ery, and maintaining multiple identical replicas is generally
cost prohibitive.

CANDStore is a strongly consistent, distributed, replicated
key-value store that uses a new fast crash recovery proto-
col. As a result, CANDStore can use NVMM and NVMe
SSD technology to provide low-latency distributed storage
that is cheaper and higher-availability than existing main
memory-based distributed storage. Our evaluation shows that
CANDStore’s recovery protocol enables the system to restore
performance and meet SLOs after the failure of a primary
node 4.5–10.5x faster than offline recovery.
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• Computer systems organization → Availability; Redun-
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1 Introduction
Distributed storage systems that provide high performance,
fault tolerance, and strong consistency are at the core of today’s
large-scale Internet services [11, 13, 15, 32]. Non-volatile
main memories (NVMMs) offer an enticing design option for
building these high performance storage systems. One might
hope that they could offer the performance of DRAM-based
systems such as RAMCloud [29] and FaRM [13], while pro-
viding durability and having lower total cost. Such hopes are
not fanciful: compared to DRAM, one can pack about 4x more
of Intel’s Optane [20], for example, into a single machine at
approximately 1/7th the cost and on average an order of mag-
nitude less energy [4] [5] [6]. Unfortunately, today’s NVMMs
come with drawbacks that complicate the design of failure
recovery in distributed storage systems. Overcoming these
drawbacks at the design level is the focus of this paper. The
combination of substantially lower write bandwidth (7x) [7]
and higher density (4x) compared to DRAM means that the
time to recover from a failed node is up to 28x longer than a
DRAM-based system with a similar number of total DIMMs.
Using traditional mechanisms that temporarily halt serving
requests during recovery, each machine failure would take 28x
longer to recover when using NVMM.

Our main contribution is enabling high availability when us-
ing NVMM, through our fast online recovery protocol, which
we demonstrate through CANDStore, a consistent, available,
non-volatile, distributed store, that leverages NVMM to pro-
vide low cost distributed key-value (KV) storage. We achieve
this by leveraging temporal locality in datacenter workloads
to enable online recovery. To implement online recovery
with strong consistency, we design a Raft-based protocol that
incorporates ideas from Cheap Paxos [23].

In CANDStore, we forego standard offline recovery ap-
proaches and focus on techniques to make online recovery
feasible and performant. We leverage two observations that
allow us to achieve this goal: first, real-world workloads have
skewed request distributions. This property allows CAND-
Store to guide the online recovery process in a manner that
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Storage type Cost per gigabyte (USD)
DRAM 35.16 [1]
Intel Optane NVMM 4.51 [1]
SSD 0.32 [7]

Figure 1: Cost of different types of storage.

enables the majority of requests to be served at near-peak
performance before all of the data is copied from a backup
node’s SSD to the new primary’s main memory.

Second, we observe that the availability of a distributed
storage system is defined by its ability to achieve performance
service level objectives (SLOs). This allows CANDStore to
tolerate some performance degradation as long as it meets
SLOs. We use this performance leeway to, with degraded
performance, serve requests for keys that are not yet populated
on the new primary via point queries to one of the backups in
the cluster, described in Section 5.3.

To provide consistency and fast failure recovery, CAND-
Store uses a decentralized distributed consistency protocol
based on a modified version of Raft [27]. This protocol ensures
that key-value updates are replicated consistently and durably,
and that stale or inconsistent reads are never returned to the
client. The protocol is designed to enable CANDStore to use
a heterogeneous layout of nodes, described in Section 3 and
Figure 2, including a backup that stores all keys and values
on NVMe SSD to reduce the cost of replication. We add
additional phases to the failure detection and leader election
parts of the protocol aimed at minimizing the performance
degradation experienced following primary failure, which we
describe in Section 4. We discuss the design of our protocol
for consistently handling non-primary failure in Section 6.

We evaluate the performance of our recovery protocol and
find that it is possible to recover from primary node failure
4.5–10.5x faster than offline recovery approaches running on
the same cluster configuration.

2 Background and challenges
CANDStore aims to provide low-cost, strongly-consistent
storage with high availability. In Section 2.1, we precisely
define availability in terms of meeting SLOs, and describe
how that can simplify the problem of achieving high availabil-
ity. Section 2.2 discusses how our system design and crash
recovery protocol compare to standard approaches, and what
advantages CANDStore provides. Finally, we describe our
assumptions about the workload (Section 2.3) and data model
(Section 2.4), and discuss how these characteristics enable
our system to achieve high availability at low cost.

2.1 Availability and SLOs
Two important metrics, mean time to failure (MTTF) and
mean time to repair (MTTR) [16, 31], help quantify a sys-
tem’s availability. MTTF measures how long, in expectation,
a system operates normally before experiencing downtime.
MTTR describes how long it takes to restore the system to
its previous level of operation after a failure. The availability
of the system is then MTTF

MTTF+MTTR . In our work, given that
time to failure (TTF) is determined primarily by events we
cannot control, such as unexpected hardware, OS, or software
crashes, we design our online recovery protocol to minimize
time to repair (TTR) in order to increase availability.

We use Service Level Objectives (SLOs) to provide a
concrete and quantitative description of whether a system is
down or not. SLOs describe guarantees about the performance
of a storage system, which users depend on when building
applications on top of distributed storage. SLOs describe the
baseline performance that can be expected of the system, and
violating these SLOs means that the storage system can no
longer serve the function it was intended to – in other words, it
becomes functionally unavailable. A system can be considered
“down” if it is unable to meet its SLOs, and can be considered
“repaired” once it has restored its ability to serve its SLOs.
The TTR of a system is the duration of this downtime.

To provide high availability despite the various challenges
posed by CANDStore’s cost-saving design, which we describe
in Section 3, we design a primary crash recovery protocol
that focuses on restoring the system’s ability to meet SLOs
as quickly as possible. This is in contrast to typical crash
recovery protocols for high performance distributed storage
that instead aim to minimize the time needed to restore full
performance to the system [29].

2.2 Limitations of offline recovery
A common approach to providing high-throughput, low-
latency, and fault-tolerant KV storage is to use primary-backup
replication. Modern primary-backup systems typically involve
a single primary that replicates updates to one or more back-
ups. In the event of node failure, typically an external authority
(e.g., a configuration management system like Zookeeper [19])
alters the cluster’s configuration and instructs backup nodes
to undergo whatever steps are necessary to restore availability
to the system. This typically involves reconstructing a new
primary from the backups, or promoting one of the backups to
be the primary. Current state-of-the-art recovery for primary-
backup replication involves fast, parallel log ingest and replay
[28]. While this is feasible for recovering relatively small
datasets stored in DRAM, as we mentioned in Section 1, chal-
lenges introduced when using NVMM necessitate a different
approach to recovery.
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Primary-backup replication is appealing because it offers
high performance and simplicity, and as a result is used in
many distributed storage systems such as RAMCloud and
FaRM. RAMCloud uses primary backup with the primary
storing data on DRAM and backups storing data on SSD.
Leveraging DRAM in this way enables RAMCloud to achieve
high throughput and low latency distributed storage. Our
system uses a similar node layout to RAMCloud, with our
primary storing data on NVMM, and backups storing data on
SSDs.

FaRM, on the other hand, uses a homogeneous node layout
where primary nodes and backup nodes both store their data
in non-volatile DRAM. In FaRM, primary crash recovery
involves identifying and consistently executing transactions
which were interrupted by the primary crash, then shifting load
to one of the backups. This design enables FaRM to seamlessly
resume operations following the failure of a primary, but
carries with it the extra cost of maintaining backups that use
the same expensive high performance storage as the primary.

In contrast to primary backup, distributed consensus proto-
cols such as Paxos [22] and Raft [27] can provide consistency
without a centralized configuration coordinator.

The increased density and decreased write throughput of
NVMM means traditional offline approaches to crash recovery
that read logs from backups and write them to a new primary
can no longer provide a low TTR. Meanwhile, maintaining
multiple replicas with expensive high performance storage
can be prohibitively expensive. In CANDStore, we seek to
achieve the best of both worlds – low TTR and low cost. To
achieve this high availability without incurring extra cost in
an NVMM-based distributed key-value store, it is necessary
to rethink traditional approaches to primary crash recovery.

In our system, we design a protocol which allows for online
recovery of after primary failure, solving the problem of slow
offline recovery. We achieve this with lower resource use, and
consequently cost, compared to standard primary-backup style
approaches. One of the principal challenges in designing this
protocol was in meeting SLOs during the live recovery. Our
protocol ensures linearizability by leveraging properties of
the Raft protocol upon which our protocol is based.

2.3 Workload assumptions
Real world workloads often exhibit a high degree of temporal
(and spatial) locality. Recent work shows that even YCSB’s
zipf distribution, a commonly used distribution when gener-
ating workloads to benchmark systems, exhibits less spatial
locality than modern datacenter workloads [9]. We design
our system to target these skewed workloads to best mirror
the characteristics of real datacenter workloads. Section 5.1
describes how we take advantage of workload skew to enable
online recovery.

2.4 Data model
The data model we consider in this work is a simple KV
interface composed of single-key Gets and Puts. For a detailed
description of the KV operations supported, see Figure 5.
We believe that our techniques to improve crash recovery
can be extended to data models involving more complex KV
operations and transactions, but we leave the design of these
to future work.

In this paper, we use “keys” to refer to key-value pairs,
except in the context of witnesses (Figure 2) and popularity
sampling (Section 3.3).

3 Steady state operation
CANDStore is a distributed KV store designed to provide high
availability at low cost in the face of primary failure, despite
the infeasibility of fast offline recovery. In this section, we
introduce CANDStore and describe the steady state operation
of a single shard of a sharded datastore. The system builds
knowledge about workload skew during steady state operation,
as uses this to speed up the recovery process, detailed in
Section 3.2.

We begin in Section 3.1 by describing how Gets and Puts
are handled and replicated in the context of a simplified three-
node cluster consisting of a primary node, a backup node, and
a witness node (Figure 2). The witness node behaves similarly
to an auxiliary node from Cheap Paxos [23], and also serves a
similar purpose to hot swap space in a RAMCloud cluster. It
is responsible for enabling consistency without paying the full
cost of a new primary or backup node, as well as serving as the
new primary in the event the primary fails. By including the
witness node in the consensus protocol, rather than allocating
it on-demand after primary failure, we can take advantage of
its knowledge about which local keys are up-to-date when
handling requests during live recovery (Section 5.3). However,
to realize this cost-effective heterogeneous node layout while
maintaining consistency, we needed to make several modifica-
tions to the Raft protocol, which we explain in Sections 3.1
and 4. In Section 3.2 we describe the optimizations we used
to improve the performance of the backup node. Finally, we
describe how our system identifies distribution skew in client
requests (Section 3.3) and how we took advantage of this skew
to improve the TTR of the system following primary failure
(Section 4).

3.1 Gets and Puts in steady state
We use a heterogeneous node layout in CANDStore to provide
cost savings compared to a homogeneous node layout like
traditional Raft/Paxos formulations and FaRM [13]. In this
section, we outline the modifications we made to the Raft
protocol to provide consistency when handling client requests
in the absence of failures.
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hash table
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Figure 2: Node types in CANDStore.

Client Get requests, shown in Figure 3, can be handled in 1
round trip by the primary using leases [26]. The client sends
Get(key) to the primary, and the primary responds with the
value corresponding to key.

Client Put requests, also shown in Figure 3, require the
primary to replicate the request to a quorum of nodes in
the cluster before committing and responding to the client.
Similarly to Raft, this replication is handled by AppendEntries
RPCs. However, because the witness nodes behave similarly
to Cheap Paxos and do not store values for committed updates,
we impose the additional constraint that the quorum for client
updates contains all voting backup nodes in the current cluster
configuration. In the event of a backup node failure, the system
must execute a viewchange to remove the failed node from
the cluster configuration and, by extension, the quorum.

Including all backup nodes in the quorum for configuration
change creates a situation where it is impossible to remove a
backup node from the configuration. We solve this problem
by using a mechanism similar to Cheap Paxos. If a backup
node crashes and must be removed from the configuration,
we allow witnesses to step in and facilitate the configuration
change by replicating and committing the new configuration
to stable storage.

Upon receiving an AppendEntries request, the backup
persists it to a small NVMM buffer, then responds to the
primary. These updates are batched and periodically written
out to SSD by a dedicated writeback thread. This design
has two main advantages: backup nodes can replicate keys
at NVMM latency (rather than SSD latency), and batching
writes to an SSD improves its throughput (Section 7.6).

A witness node receives only the key and a logical timestamp
composed of the Raft term and index, in a similar manner
to Cheap Paxos. This creates an issue during leader election
which we address in Section 4.2.

Each node commits updates in a different way. The primary
node commits updates by writing the key, value and logical
timestamp to its local NVMM-backed hash table. The backup
commits updates by serializing the key, value, and logical
timestamp to SSD, then updating its DRAM index to reflect
the location and timestamp of the latest update of the key.
The witness commits updates by writing the key and logical
timestamp to its underlying hashtable.

3.2 Improving backup performance
As we will discuss in Section 5, the performance of the
backup node is the most important factor in quickly restoring
the system to in-SLO operation. In this section, we discuss
the techniques we use to optimize the operation of the backup
node to facilitate faster crash recovery.

Figure 4 describes the internal design of a backup node. To
improve its throughput and latency, each backup node uses
multiple workers, each maintaining exclusive write access
to their own NVMM-resident buffers and SSD-resident logs.
Each worker maintains two sets of logically-separate NVMM
buffers and SSD log files, one for popular (i.e., “hot”) keys and
one for unpopular (i.e., “cold”) keys. We discuss the purpose
of separating hot and cold keys in Section 3.3. Each worker
has three threads, one to handle RPCs (not explicitly pictured
in Figure 4), one to write back batches of updates from the
NVMM buffer to the SSD log, and one to garbage-collect
(GC) outdated log entries.

Upon receiving a key update from the primary, the RPC
handler thread checks whether the key is in the hot or cold set,
then writes it to the appropriate NVMM buffer before sending
a success response to the primary.

The writeback thread sequentially iterates through all of
the updates written to the NVMM buffer, waiting for each
entry to be committed. Once enough entries on the NVMM
buffer have been committed to fill a batch, the batch is then
serialized out to SSD. Batching in this way enables the SSD
to achieve maximum write throughput. The writeback thread
also updates the shared DRAM index after writing a batch
to the SSD log, discards the NVMM-resident copy of the
batch, and updates the DRAM index to reflect the latest logical
timestamp for each batch entry. The DRAM index is only
updated if the entry has an equal or greater logical timestamp
to the timestamp stored in the index.

The garbage-collection thread periodically reads a batch
of entries from the tail of the log, discarding stale entries
and writing non-stale entries back onto the corresponding
“hot” or “cold” NVM buffer. The staleness determination
is handled by reading the latest logical timestamp from the
DRAM index, and the determination of which buffer the entry
should be written to is handled in the same way as the RPC
handler thread. This garbage collection process serves two
main purposes: First, it reduces the log’s footprint on SSD,
and second, it enables keys to move between the hot and cold
sections of the log even if they are never updated by the client.

3.3 Proactively identifying popular keys
To speed up the recovery process (detailed in section 4), we
separate the backup logs into two separate contiguous regions
on SSD: one region for the popular or hot keys, and one region
for less popular or cold keys. The placement of a key into one
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Client Primary Backup Witness

Get(key)

Put(key,value)
AppendEntries(...)

AppendEntries(...)
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Figure 3: Steady state RPC behavior.
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Figure 4: Layout of a single backup worker.

of these regions is decided by the writeback threads, and is
based on a continuous sampling of the client requests by the
primary.

The sampling mechanism we use is similar to that applied by
cache admission policies [8]. Upon receiving a client request,
the primary, with some low probability (i.e., 0.001), keeps
track of the key for that particular request. Periodically, the
list of keys that were tracked by the primary is sent to the
replica, which maintains a fixed-size list of the most popular
keys (using an LRU eviction policy). This list of popular keys
is then used by the write-back threads to make a placement
decision when updates are committed to the on-SSD log.

CANDStore’s garbage collection mechanism, as described
in the preceeding subsection, ensures that “cold” keys which

were, by chance, placed into the “hot” log will eventually be
written to the “cold” log, and vice versa.

The simplicity of the garbage collection mechanism does
result in some degree of write amplification, potentially affect-
ing the lifespan of the SSDs. Smarter policies for determining
when garbage collection should be executed would reduce this
problem: for example, only garbage-collecting batches with a
large percentage of invalid entries, or reducing the frequency
of garbage collection during periods when the hot/cold sets
remain stable.

3.4 Steady state overhead
During steady state operation, the majority of protocol-related
messages are piggybacked on client requests. Heartbeats
are implicitly piggybacked on AppendEntries RPCs when
replicating client Puts, and in the absence of client Puts, the
primary sends heartbeats to every other node in the cluster at
a rate that does not burden the network.

The CANDStore protocol does incur overhead in the key
popularity propagation, where the primary periodically noti-
fies the backups about frequently read keys. However, this is
not a significant overhead, as we expect to send these updates
infrequently, perhaps once every few seconds.

The largest overhead incurred by the CANDStore protocol
are the additional messages that must be sent to the witness
nodes when replicating client Puts, with𝑁 additional messages
required for each Put where 𝑁 is the number of witnesses.
In cases where the value is comparable in size to the key,
this overhead can be up to 33% increase in communication
overhead for Put-only workloads. In cases where the value is
larger than the key, this overhead is lower since CANDStore
does not transmit values to the witness during steady state
operation.
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Figure 5: CANDStore RPCs
RPC type Sender Recipient Contents Response contents
AppendEntries primary backup, witness term, leaderid, prevlogindex, term, success

prevlogterm, entries
RequestVote primary, witness backup, witness term, candidateId, term, lastLogIdx

lastLogIndex, lastLogTerm voteGranted
Get client primary key value
Put client primary key, value success
BatchPull witness, primary backup lastLogTerm large batch of entries
PriorityPull primary backup key 4k batch of entries
RequestLog witness backup term, index entry

4 Handling failures
In the event of primary failure, there are four differences
between our protocol and the standard Raft protocol. In
this section, we explain these differences and prove that our
protocol maintains both consistency and liveness. A timeline
of our recovery protocol is shown in Figure 6.

4.1 Leader election
The leader election process in CANDStore is similar to that
of Raft, with the additional constraint that only witness and
primary nodes can send RequestVote RPCs. This means that
Backup nodes cannot become the new leader of the cluster —
this design decision ensures that the new primary (i.e., recovery
primary) is not coincident with a backup node. The benefit
of this is that the backup, which is the most performance-
sensitive node in the recovery process, does not experience
any contention for resources.

Because the witnesses and primary node constitute at least
𝐹 + 1 nodes in the cluster, our failure assumption guarantees
that there is always at least one live witness or primary. Similar
to Cheap Paxos, it is possible for the system to lose liveness if
the set of non-faulty nodes shifts too quickly. However, unlike
Cheap Paxos, which only allows non-witnesses to become the
leader, our system only allows voting witnesses to become
the leader. We explain in Section 5 how a witness transitions
from not having complete information about committed KV
updates into becoming a fully functioning primary.

Additionally, it is possible for all voting witnesses to be
unaware of a committable or committed update, as the quorum
for KV updates need only contain the primary and all backups
in the current view.

To fix this problem, we modify the leader election pro-
tocol in the following ways. First, we include the most re-
cent log index in the RequestVote response. If a witness
receives a RequestVote response from one of the replicas with
voteGranted = 0, then it saves its locallastLogIndex
as lastLogIndexOld and updates its lastLogIndex

to the index received in the RequestVote response. This guaran-
tees that leader election will eventually terminate and choose
a new leader.

Upon election, the new leader first compares its
lastLogIndex with lastLogIndexOld. If they are
equal, then leader election is complete. However, if they are
not equal, then the new leader enters the Reconciliation phase,
described in the next section.

4.2 Log reconciliation
The purpose of the log reconciliation phase is to allow the
new primary to fast forward itself to a sufficiently up-to-date
state such that it is possible to handle client Puts. We call the
primary during this phase the “provisional leader” of the Raft
cluster. During the reconciliation phase, the primary node
cannot commit any new log entries. However, it is still able
to serve client Get requests using the mechanisms outlined in
Section 5.3.

The provisional leader must first bring itself up to date by
querying the backup(s) for the log entries from
lastLogIndexOld to lastLogIndex. It achieves this
by sending a RequestLog RPC to the backup(s) for each log
that it suspects it is missing. Because of the Cheap Paxos–style
quorum, it is acceptable to issue these requests in parallel to
different backups.

Log reconciliation ends when one of two conditions is met:
First, if the primary receives a response for each log entry
that it is missing, then it can temporarily treat these logs
as uncommitted and resume accepting client Put requests,
replicating and committing these log entries based on the
normal operation of the Raft protocol. Second, in the event
that one of the backups returns a null entry for index 𝑖, then it is
acceptable to discard responses for log entries corresponding
to index 𝑖 and above. The modified quorum ensures that any
log entries that are not present on all voting backups cannot
have been committed.
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Figure 6: Recovery timeline.

Proof of modified quorum correctness Suppose that there
exists a voting backup 𝐵 which does not have knowledge of a
committed update 𝑈 . This backup must have been admitted
to the cluster as a non-voting node by some log entry 𝐿0
and admitted to the cluster as a voting node by some log
entry 𝐿1. By the Raft log prefix invariant and the CANDStore
modified quorum, 𝑈 must have been committed after 𝐿1.
This is because after 𝐿0 is committed, all updates must be
replicated to 𝐵 before being committed, as part of Raft’s joint
consensus state, so if 𝐵 is a voting node, then 𝐿1 must have

been committed, which implies that 𝐵 has knowledge of 𝐿1.
However, due to CANDStore’s modified quorum, any updates
which are committed after 𝐿1 must be replicated to a quorum
including all backups in the current view. Therefore, 𝑈 must
have been replicated to 𝐵 before being committed.

5 Primary failure
In this section, we describe how our system handles the failure
of a primary. We discuss the recovery protocol, and describe
how the system serves client requests during the period of
degraded performance while the system is repairing. We
briefly discuss how the system handles witness and backup
failures in Section 6.

5.1 Proactive recovery
In CANDStore, we begin the recovery process with what
we call “proactive” recovery. This phase is called “proactive”
because we begin the process before primary failure is detected,
whenever we suspect that there may be a problem with the
primary. This phase of recovery involves preemptively copying
popular KVs to a witness, in anticipation of that witness
becoming the new primary.

In addition to standard heartbeats (“hard” timeouts), we
introduce a more aggressive (i.e., earlier) “soft” timeout. This
soft timeout triggers the first phase of CANDStore’s recovery
protocol, which we call proactive recovery. Soft timeouts
act as a failure detector with a moderate false positive rate;
CANDStore aborts the proactive recovery if it receives a
heartbeat before the hard timeout elapses.

During proactive recovery, the witness node sends Batch-
Pull RPCs to the backup. Upon receiving a BatchPull request,
the backup pauses its garbage collection threads, begins pro-
cessing its “hot” log and sends the contents to the witness one
batch at a time. If at any point during this process the witness
receives a heartbeat from the primary, then the witness sends a
BatchPull RPC to the backup with the invalidlastLogTerm
value of 0, which causes the replica to stop iterating through its
log and resume garbage collection. Additionally, if the witness
sending BatchPull RPCs is removed from the configuration
or becomes part of 𝐶𝑜𝑙𝑑 in Raft’s joint configuration state,
the replica stops iterating its log, resumes garbage collection,
and rejects BatchPull requests until the witness is restored to
voting status and the configuration of the system returns to
a non-joint configuration. Informally, if the cluster appears
to be reconfiguring to exclude the witness, then the backup
ignores RPCs from that witness and returns to steady state
operation.

5.2 Setting timeouts
Setting the soft timeout to be too short can reduce steady
state performance, as false positives incur network, disk, and
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compute costs. Setting the soft timeout and hard timeout too
close together effectively eliminates the proactive recovery
stage entirely, thus reducing the efficacy of CANDStore’s
recovery protocol. The longer the interval between soft and
hard timeout, the longer the proactive recovery stage is able
to cache hot keys on the recovery primary.

The optimal timeouts depend on the network topology,
workload, and failure detector used in the actual deployment.
One principled way to set the timeouts is by using the Φ
accrual failure detector [18] and choosing values of Φ for the
soft and hard timeouts such that they fit the desired detection
interval and false-positive rate, illustrated in Figures 8 and 9
of Hayashibara et al. [18].

5.3 Live recovery
After the hard timeout elapses, the system begins leader
election, as described in Section 4.1. Immediately following
the election of a new primary, which we refer to as the recovery
primary, we enter the live recovery portion of CANDStore’s
recovery protocol.

During live recovery, the recovery primary continues to send
BatchPull RPCs to the backup node, which, after completing
its iteration of the hot log, begins iterating through the cold
log and sending cold keys back to the recovery primary. At
the same time, the recovery primary begins handling client
requests. One key difference between steady state operation
and live recovery is that tasks such as popularity sampling and
garbage collection are temporarily paused to reduce resource
use (especially SSD bandwidth) on the backup.

Client Put requests are still handled in the same way as
during normal operation of the system. The recovery primary
may not be aware of the values for all of the preceding updates,
but has still “committed” those updates and is able to commit
new client Put requests.

Client Get requests are handled in one of two ways: If the
key is present locally on the recovery primary, then it can be
served directly, identically to the non-failure case. However,
if the key is not present locally, then the recovery primary
issues a point query for that key to the backup (Figure 7). We
call these point queries PriorityPulls, a name taken from a
similar mechanism in Rocksteady [21]. The backup uses its
DRAM index to determine the SSD page(s) containing the
most up-to-date value corresponding to the requested key, and
sends the value, along with any other keys stored on the same
page, to the primary. In our implementation, this was done
to take advantage of bytes read from the SSD regardless of
whether we wanted or not, but for certain workloads with
spatial locality (e.g., clicking one button to add a set of 5 items
to the cart), this design could take advantage of that spatial
locality. Recent research from Facebook indicates that this
sort of spatial locality may be quite common [9].

Client Primary Backup

Get(key)
PriorityPull(key)

PriorityPu
llResp(

entries[])
GetResp(va

lue)

Get(key)

Figure 7: Remote Get.

Once the backup has determined that it has sent all of its
local records to the recovery primary, it notifies the recovery
primary via a BatchPull response with 0 entries. Similarly
to tracking the progress of migrating tuples in Squall [14],
the backup determines when all local records have been
successfully transferred to the recovery primary. The recovery
primary can then transition into steady state operation as a
normal primary.

5.4 Recovery scaling
When scaling CANDStore, it is important to take into ac-
count that the primary bottleneck during recovery is the
load-sensitive SSD. As such, increasing the replication factor
or sharding backups across multiple physical servers/SSDs
in a manner similar to RAMCloud creates opportunities for
SSD load balancing. The fewer PriorityPulls issued against a
given SSD, the better the tail latency for reads from that SSD,
which will result in better recovery performance as the cluster
gets larger.

However, a larger cluster can result in more communication
overhead during critical operations, such as leader election
or log reconciliation. CANDStore’s proactive recovery masks
these delays, enabling the system to continue to execute bulk-
recovery despite the absence of a leader.

CANDStore does incur overheads from its use of horizontal
Paxos rather than vertical Paxos, particularly during configura-
tion change and leader election. Compared to primary-backup
systems that rely on a global configuration master, and 𝐾
nodes in the view, CANDStore requires𝐾 messages compared
to 1 message to complete leader election (in the best case for
both), and 2𝐾 messages compared to 𝐾 messages to complete
configuration change.

6 Other failure modes
Section 4 discussed what happens in the case of primary
failure in a CANDStore shard, which is the most complex
type of failure. In this section, we discuss the behavior of the
system in the event of backup or witness failure. We discuss
this in the context of 𝑁 backup nodes and 𝑁 witness nodes,
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where 𝑁 is tuned by the operator based on the degree of
replication desired and the rate of failure of the servers in
the cluster. We believe 𝑁 = 2 (triplication) is a reasonable
configuration.

6.1 Backup failure
In the event of backup failure, it is necessary for the system to
undergo a configuration change to exclude this backup from
the cluster and, by extension, the write quorum. However,
in-flight updates that have been replicated to some subset of
the backup nodes effectively “block” this configuration change
from being committed.

We solve this by temporarily changing the write quorum to
exclude the suspected “failed” node, and to include a single
witness node in its place. This idea is taken from Cheap
Paxos [23], where a witness node is able to help commit log
updates and execute a view change in the event of a main
processor failure.

It may be desirable to add an additional backup to the
cluster to restore the desired level of fault tolerance. This can
be done easily and without interruption of availability, despite
the constraint of the write quorum including all voting backup
nodes. The node can be added to the cluster using first as
a non-voting node, and only after it is up to date will it be
promoted to a voting node and join the write quorum.

6.2 Witness failure
If a witness fails, it is not necessary for the system to remove
the failed witness from the cluster before making additional
progress. To restore the desired level of failure tolerance, it
may be desirable to allocate and add a new witness node to
the cluster.

7 Evaluation
This section describes how we evaluated CANDStore’s crash
recovery mechanism compared to the baseline approach of
copying the entire set of keys/values from the replica to the
recovery primary. We show that our approach achieves higher
availability than traditional primary-backup style approaches
while maintaining cost efficiency and high performance.

Due to constraints on available hardware, we did not shard
the recovery primary or backups. However, the techniques
we use and the resulting relative improvements in availability
are still applicable, and our system design benefits from the
parallelism afforded by optimizations such as sharded backups
and multiple/striped SSDs. In particular, our recovery protocol
benefits greatly from spreading load across multiple SSDs, as
the main cause of SLO violations during online recovery is
high SSD load.

7.1 Testbed setup
Our evaluation testbed is a 3-node cluster. Each machine
has two Intel Cascade Lake processors with 24 physical
cores clocked at 2.2 GHz with hyper-threading enabled. The
platform has 192 GB of DDR4-2666 DRAM and 768 GB of
NVMM (Intel Optane DC 2666 Mhz QS [20]) per socket for
a total of 384 GB of DRAM (12 × 32 GB) and 1.5 TB of
NVMM (12 × 128 GB) per server. One 375 GB Intel P4800X
NVMe SSD [2] was installed on each server. Each node also
had a 1-port Mellanox ConnectX-3 NIC [25], and the servers
were interconnected by a 56 Gb/s InfiniBand switch.

For all experiments, we set up a single region consisting of
the 768 GB of NVMM located on NUMA node 0 in AppDirect
mode. We format the region into an ext4 filesystem and use
libpmem [3] to facilitate reading and persistently writing to
NVMM.

We were unable to test a configuration with multiple back-
ups or multiple SSDs to exploit parallelism during the recovery
process, as we did not have access to more than 3 servers and
1 SSD per server. As a result, we compare our performance
against a baseline of how offline recovery would perform on
our testbed configuration. Our performance would be at least
proportionally improved by the use of cluster-level parallelism
or multiple SSDs on the backup. In particular, tail latency
during the live recovery phase would be improved by having
multiple SSDs per backup node, thus reducing the per-SSD
load and driving down tail latency.

7.2 Client design
In our evaluation, we used a closed-loop client with largely
independent threads. Each thread sends one or more streams
of requests to each server thread, and the next request in the
stream is not sent until a response is received for the preceding
request.

7.3 Workloads
We evaluate our system using YCSB [10] workloads B (95%
GET, 5% UPDATE) and C (100% GET) using YCSB’s zip-
fian request distribution. In addition to using YCSB’s default
parameterization of the zipf distribution (𝜃 = 0.99), we also ex-
plore less-skewed and more-skewed workloads (𝜃 ∈ {0.9, 1.1}).
We omit workload A (update heavy) due to issues outlined in
the next section.

Due to resource constraints, we benchmark the system with
a 128 GB shard. We believe that shards of real distributed
storage systems using NVMM will be larger, but the relative
benefits of our recovery approach will still apply.

7.4 Steady state performance
As the focus of this project was on improving performance
during recovery, we did not do a comprehensive evaluation



SoCC ’20, October 19–21, 2020, Virtual Event, USA Thomas Kim, Daniel Lin-Kit Wong, Gregory R. Ganger, Michael Kaminsky, and David G. Andersen

of the steady state performance of our system. For YCSB
workload C with the default zipfian distribution and 512 B
key-value pairs (16 B key, 496 B value), and a latency-sensitive
configuration of 8 server threads handling requests from 8
client threads with each client thread sending a single request
at a time, our system can serve at a throughput of 1.5 GB/s
while maintaining a median latency of 7 𝜇s and a 99%ile tail
latency of 51 𝜇s. For the equivalent setup running on YCSB
workload B, our system achieves 1.0 GB/s with a median
latency of 7 𝜇s and a 99%ile tail latency of about 73 𝜇s.

When run in a throughput-oriented configuration of 8 client
threads requesting a window of 64 concurrent requests to 8
server threads, we can achieve approximately 4.5 GB/s in
workload C and 3.9 GB/s in workload B.

The decreased performance on workload B is a result of
our system being poorly optimized for Puts. During live
recovery, the behavior of Puts does not change, but Gets can
incur in an additional RTT for a PriorityPull. As a result,
we focused mainly on optimizing Gets, but we believe that
with additional optimizations and larger NVMe SSDs (large
enough to comfortably pre-allocate spare log space without
filling up the SSD) the performance of Puts in our system will
increase.

Our goal is to have engineered enough of the system such
that our evaluation of the recovery protocol is informative; as
such, this performance is reasonable — it achieves 65% the
throughput of its InfiniBand link, and has a median latency of
7 𝜇s which is comparable to the 4.7𝜇s read latency that RAM-
Cloud achieved in its original evaluation environment [30].

7.5 Metrics
We compare the time to repair (TTR) of our approach with
traditional log-replay style crash recovery protocols. We mea-
sure the time elapsed between primary failure and when the
system achieves and maintains a particular latency SLO. For
each workload type and distribution, we measure the TTR for
a range of SLOs.

We also measure the penalty our approach incurs with
regard to the amount of time it takes to fully copy the entire
key space from the replica to the primary. This is the primary
tradeoff of using CANDStore, as it is necessary to slow down
the rate of BatchPulls to avoid increasing the latency of
PriorityPulls, i.e. we trade increased total recovery time for
the ability to do online recovery.

In all of our experiments, tail/median latency is measured
on a 100 ms non-overlapping sliding window, and TTR is
calculated to be the end of the first window that achieves
latency within the SLO such that all following windows do
not have latency higher than the SLO.

Block Read Write
size (KB) tput (KB/s) tput (KB/s)

0.5 132,647 16,703
1 286,196 38,715
2 614,236 110,490
4 1,668,613 1,627,756
8 2,625,276 2,148,087

16 2,647,880 2,204,804
32 2,651,732 2,212,097
64 2,652,257 2,212,228

128 2,652,623 2,211,742

Figure 8: Block size vs SSD throughput.

7.6 SSD block size effects throughput
SSDs can achieve higher throughput when the block size for
IO requests is sufficiently large. We verify this is the case for
our SSD, and determined the optimal block size for reading
and writing, shown in Figure 8. We find that for our disk, a
block size of 32 KB maximizes throughput for both sequential
reads and sequential writes. The throughput at a block size of
32 k matches the advertised throughput of this drive [2]. We
use this optimal block size to determine the batch size used
for reading and writing to the log (to maximize throughput).

7.7 Tail latency
We evaluate the availability of our system in terms of median
and 99.9%ile tail latency of client requests. These experiments
were run in a latency-sensitive configuration of 8 client threads,
each sending one stream of requests to one of 8 server threads.
The backup uses 2 threads to ingest the log.

To provide a fair point of comparison against an equivalent
offline recovery approach, we calculated the minimum time
necessary to read the entire shard (128 GB) from SSD at
the maximum read throughput of the SSD (as measured in
Section 7.6). For our drive and a 128 GB shard, the baseline
for offline recovery is 50.6 seconds.

For our tail latency–sensitive configuration, it takes 201 sec-
onds (4x longer) to completely copy all data from the backup
to the new primary due to rate-limited BatchPulls.

In Figures 9 and 10, the TTR for each SLO shown is the
median of 3 trials. Figure 9 shows the TTR of our system
compared with the baseline offline recovery approach. This
figure is organized into 3 blocks of 6 graphs each, each
corresponding to a different key-value pair size indicated by
the label below the block. Within each block, there are 2 rows
and 3 columns; each row corresponds to a different YCSB
workload, indicated by the label to the right of the row, and
each column corresponds to a different request distribution
skew, indicated by the label at the top of each column. For
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Figure 9: TTR for 99.9% tail latency SLO (lower is better).

example, the top left graph of each block corresponds to an
experiment run with YCSB workload B with a skew of 𝜃 = 0.9.

Each graph shows the TTR (y-axis) for a particular latency
SLO (x-axis). Lower TTR is better, and larger SLOs have
lower TTR. For example, looking at the top left graph, the TTR
for a 99.9%ile tail latency SLO of 250 𝜇s is 7.8 s (labeled),
and the 99.9%ile tail latency for an SLO of 300 𝜇s is 2.9 s
(not labeled).

As the tail latency SLO approaches (left on the x-axis) the
steady state tail latency of the system, the TTR of our online
recovery approach increases, getting worse. As we mentioned
in Section 1, our recovery approach is built with the assumption
that there will be some performance leeway in the system,
with a gap between the steady state performance of the system
and the SLO. As the tail latency SLO decreases, the degree
of performance leeway decreases, and at a certain point it is
better to do offline recovery. However, tail latency–sensitive
storage systems will often have resources overprovisioned
[12], creating the headroom necessary for our approach to be
effective.

For the standard YCSB zipfian distribution skew of𝜃 = 0.99,
our results show that with a 99.9%ile tail latency SLO of
250 𝜇s, CANDStore achieves a TTR of 4.8–11.1 s, which is
4.5–10.5x lower than the baseline offline approach.

7.8 Median latency
Figure 10 shows how long it takes our system to restore a
certain level of median latency. It takes only 0.6–2.4 seconds
to restore the system to 5 𝜇s median latency (steady state
latency) for workloads with a skew of 0.99.

8 Related work
We briefly explore related work on high performance storage
systems.

KVell [24] describes the design of a fast, persistent KV store
leveraging NVMe SSDs. The simple design of an unstructured
SSD-resident log paired with an in-memory index is similar to
the design of our backup node. KVell shows that it is possible
to get sub-millisecond latency for random reads on modern
NVMe SSDs, but that too many simultaneous requests can
result in much higher latency. We leverage this in conjunction
with workload skew to enable PriorityPulls to be served at
low latency.

Unlike CANDStore, KVell handles crash recovery only in
the context of recovering local state from persistent storage
after a crash, rather than failing over to a replica.

Rocksteady and Squall (H-store) Rocksteady [21] and
Squall [14] are both systems that enable reconfiguration of in-
memory datastores. Both focus on reconfiguring in a way that
minimizes the performance impact during the reconfiguration
process.
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Figure 10: TTR for median tail latency SLO (lower is
better).

Both Squall and Rocksteady solve some similar problems
to CANDStore, but in the context of database reconfigura-
tion, copying tuples from an in-memory primary partition to
another in-memory primary partition using a combination
of large asynchronous batched copying and fine-granularity
on-demand fetching. In database reconfiguration, there is
flexibility in the rate at which the tuples are migrated — this
contrasts with primary crash recovery where restoring in-SLO
performance is time-critical. Unlike main memory, increas-
ing queue depth for I/O operations to SSD quickly increases
latency. In CANDStore, we solve the problem of primary
crash recovery, with source tuples stored on SSD, meaning
more pressure to copy tuples quickly, and less performance
headroom to do so without affecting latency. In CANDStore,
this necessitated design choices such as hot/cold tiering of the
backup, and aggressive timeouts for proactive recovery.

RAMCloud As discussed in Section 2.2, our system closely
resembles RAMCloud [28], with primary nodes serving KVs
using fast main-memory based storage, and backups stor-
ing updates on SSD in log format. However, in our system,
to maintain high performance and availability when using
NVMM instead of DRAM we use a different crash recovery
protocol, described in Section 4.

FaRM [13] is another high performance in-memory datas-
tore, which uses capacitor-backed DRAM to provide persis-
tence. FaRM provides much richer transactional semantics and
much higher performance, particularly for writes. However,
FaRM maintains multiple copies of the dataset in DRAM,
incurring a much larger cost compared to CANDStore, which
stores backups on SSD.

FaRM includes a phase of primary crash recovery which
involves identifying tuples involved in transactions which
were interrupted by the primary failure. We drew inspiration
from this design, identifying log updates which were “inter-
rupted” before they could be replicated to the witness node in
our modified leader election and log reconciliation phase of
recovery (Sections 4.1 & 4.2).

Gemini [17] is a system for fast crash recovery of persis-
tent caches. The focus of Gemini is to enable a recovering
primary to immediately serve client reads and writes at high
performance without violating consistency. Similar to CAN-
DStore, Gemini prioritizes copying popular cache entries to
ensure that a large proportion of requests can be served by a
recovering cache server.

Unlike our system, the primary concern when recovering a
primary is load balancing, as tuples can be offloaded to other
servers in the system immediately following primary failure.
Gemini is a cache, so it only provides RAW consistency for
single keys, rather than linearizability.
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9 Conclusion
This paper introduces a new approach to primary crash recov-
ery for replicated key value stores in NVMM. To overcome the
challenges in implementing high performance distributed stor-
age in NVMM rather than DRAM, we present a crash recovery
protocol that takes advantage of workload characteristics and
modern NVMe SSD technology to enable online crash recov-
ery. We show that traditional offline recovery approaches are
insufficient to take advantage of new cost-effective NVMM
technologies, and how online recovery can be used to reduce
time to repair after primary failure by up to 4.5–10.5x. Our
system, CANDStore, shows that it is possible to achieve high
performance, high availability, consistency, and low cost using
NVMM-based distributed storage.
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