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The notion of phase synchronization in time-delay systems, exhibiting highly non-phase-coherent
attractors, has not been realized yet even though it has been well studied in chaotic dynamical
systems without delay. We report the identification of phase synchronization in coupled nonidenti-
cal piecewise linear and in coupled Mackey–Glass time-delay systems with highly non-phase-
coherent regimes. We show that there is a transition from nonsynchronized behavior to phase and
then to generalized synchronization as a function of coupling strength. We have introduced a
transformation to capture the phase of the non-phase-coherent attractors, which works equally well
for both the time-delay systems. The instantaneous phases of the above coupled systems calculated
from the transformed attractors satisfy both the phase and mean frequency locking conditions.
These transitions are also characterized in terms of recurrence-based indices, namely generalized
autocorrelation function P�t�, correlation of probability of recurrence, joint probability of recur-
rence, and similarity of probability of recurrence. We have quantified the different synchronization
regimes in terms of these indices. The existence of phase synchronization is also characterized by
typical transitions in the Lyapunov exponents of the coupled time-delay systems. © 2008 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2911541�

Synchronization of chaotic oscillations is one of the most
fundamental phenomena exhibited by coupled chaotic os-
cillators. Since the identification of chaotic synchroniza-
tion in identical systems, several different kinds of syn-
chronizations such as generalized, phase, lag,
anticipatory, and intermittent synchronizations have
been identified and demonstrated. Among them, chaotic
phase synchronization (CPS) plays a crucial role in un-
derstanding a large class of weakly interacting nonlinear
dynamical systems. Even though the notion of CPS has
been well studied in several low-dimensional chaotic dy-
namical systems during the past decade, CPS in time-
delay systems (which are effectively infinite-dimensional)
has not yet been identified and reported. A main problem
here is to define even the notion of phase itself due to the
presence of intrinsic multiple characteristic time scales of
the chaotic attractors. Time-delay systems often exhibit
complicated non-phase-coherent attractors (which do not
have proper rotation around a fixed reference point) with
many positive Lyapunov exponents. Hence, the conven-
tional techniques available in the literature to define
phase and to identify CPS cannot be used in the case of
time-delay systems. In order to overcome this difficulty,
we have introduced a nonlinear transformation which
transforms the non-phase-coherent chaotic/hyperchaotic
attractors of specific time-delay systems into phase-
coherent attractors. The transformed attractors allow for

the use of conventional methods to identify phase and
CPS in time-delay systems. We have also confirmed the
onset of phase and the transition from desynchronized
state to phase synchronization and its subsequent transi-
tion to generalized synchronization as a function of cou-
pling strength using recurrence-based indices. These re-
sults are also corroborated by the changes in the
Lyapunov exponents of the coupled time-delay systems.

I. INTRODUCTION

Synchronization of chaotic oscillations is a fundamental
nonlinear phenomenon observed in diverse areas of science
and technology. Since the first identification of chaotic syn-
chronization, several types of synchronization have been
identified and demonstrated both theoretically and
experimentally.1–4 Complete �or identical�
synchronization,5–8 generalized synchronization,9,10 and
phase synchronization11–13 are the three main types of syn-
chronization that have been characterized by the difference
in the degree of correlation between the interacting chaotic
dynamical systems. Among these, chaotic phase synchroni-
zation �CPS� has become the focus of recent research as it
plays a crucial role in understanding the behavior of a large
class of weakly interacting dynamical systems in diverse
natural systems including circadian rhythm, cardiorespira-
tory systems, neural oscillators, population dynamics, etc.1,2,4

The definition of CPS is a direct extension of the classical
definition of synchronization of periodic oscillations and can
be referred to as entrainment between the phases of interact-
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ing chaotic systems, while the amplitudes remain chaotic
and, in general, noncorrelated14 �see also Appendix A�.

The notion of CPS has been investigated so far in oscil-
lators driven by external periodic force,15,16 chaotic oscilla-
tors with different natural frequencies and/or with parameter
mismatches,11,17–19 arrays of coupled chaotic oscillators,14,20

and also in essentially different chaotic systems.21,22 In addi-
tion, CPS has also been demonstrated experimentally in vari-
ous systems, such as electrical circuits,21,23–25 lasers,26,27

fluids,28 biological systems,29,30 climatology,31 etc. On the
other hand, CPS in nonlinear time-delay systems, which
form an important class of dynamical systems, has not yet
been identified and addressed. A main problem here is to
define even the notion of phase in time-delay systems due to
the intrinsic multiple characteristic time scales in these sys-
tems. Studying CPS in such chaotic time-delay systems is of
considerable importance in many fields, as in understanding
the behavior of nerve cells �neuroscience�, where memory
effects play a prominent role, in physiological studies, in
ecology, in lasers, etc.1,2,4,32–36

While studying CPS, one usually encounters the termi-
nologies phase-coherent and non-phase-coherent chaotic at-
tractors. If the flow of a dynamical system has a proper ro-
tation around a fixed reference point, then the corresponding
attractor is termed a phase-coherent attractor. In contrast, if
the flow does not have a proper rotation around a fixed ref-
erence point, then the corresponding attractor is called a non-
phase-coherent attractor. �More discussion on the distinction
between phase-coherent and non-phase-coherent chaotic at-
tractors along with an illustration is given below in Appendix
A.� While methods have been well established in the litera-
ture to identify phase and to study CPS in phase-coherent
chaotic attractors �see again Appendix A�, methods to iden-
tify the phase of non-phase-coherent chaotic attractors have
not yet been well established. Even the most promising ap-
proach based on the idea of curvature to calculate the phase
of non-phase-coherent attractors is limited to low-
dimensional systems, and unfortunately methods to identify
phase and to study CPS in time-delay systems which often
possess highly complicated hyperchaotic attractors have not
yet been identified and reported.

Recently, we pointed out briefly the identification of
CPS in unidirectionally coupled nonidentical time-delay sys-
tems exhibiting hyperchaos with highly non-phase-coherent
attractors.37 In this paper, we present our detailed results on
the identification and existence of CPS in coupled piecewise-
linear time-delay systems and in coupled Mackey–Glass
time-delay systems with parameter mismatches. We will
show the entrainment of phases of the coupled systems from
an asynchronous state and its subsequent transition to gener-
alized synchronization �GS� as a function of coupling
strength. Phases of these time-delay systems are calculated
using the Poincaré method after a newly introduced transfor-
mation of the corresponding attractors, which transforms the
original non-phase-coherent attractors of both the systems
into smeared limit-cycle-like attractors. Further, the exis-
tence of CPS and GS in both of the coupled systems is char-
acterized by recently proposed methods based on recurrence
quantification analysis and in terms of Lyapunov exponents

of the coupled time-delay systems. Thus, the main results of
our paper are as follows:

�1� Suitable nonlinear transformation involving delay time
can be introduced which transforms a chaotic/
hyperchaotic non-phase-coherent attractor to a phase-
coherent attractor. Then it is easier to find the onset of
CPS, GS, etc. using these transformed phase-coherent
attractors.

�2� Recurrence-based indices can be directly used to iden-
tify phase, CPS, and GS from the original non-phase-
coherent chaotic/hyperchaotic attractors.

�3� Lyapunov exponents also work as a good guide for the
synchronization transitions involving chaotic
/hyperchaotic non-phase-coherent attractors.

The plan of the paper is as follows. In Sec. II, a brief
discussion about the concept of CPS �the possibility of esti-
mation of the phase in chaotic systems is presented in detail
in Appendix A� and details of the time-delay systems,
namely the piecewise linear time-delay system and the
Mackey–Glass system under investigation, are presented. In
Sec. III, we point out the existence of CPS and GS in unidi-
rectionally coupled piecewise-linear time-delay systems us-
ing the Poincaré section technique �after the introduced
transformation�, recurrence quantification analysis, and
Lyapunov exponents of the coupled systems. We will also
discuss the existence of CPS and GS in unidirectionally
coupled Mackey–Glass time-delay systems in Sec. IV, using
the above three different approaches. Finally in Sec. V, we
summarize our results.

II. CPS AND TIME-DELAY SYSTEMS

CPS has been studied extensively during the past decade
in various nonlinear dynamical systems as discussed in the
Introduction. However, only a few methods have been avail-
able in the literature1,4 �for more details, see Appendix A� to
calculate the phase of chaotic attractors, but unfortunately
some of these measures are restricted to phase-coherent cha-
otic attractors, while the others to non-phase-coherent cha-
otic attractors of low-dimensional systems. It is to be noted
that these conventional methods available so far in the litera-
ture �as discussed briefly in the Appendix A� to identify
phase of the phase-coherent/non-phase-coherent attractors
cannot be used in the case of time-delay systems in general,
as such systems will very often exhibit more complicated
attractors with more than one positive Lyapunov exponent.
Correspondingly, methods to calculate the phase of non-
phase-coherent hyperchaotic attractors of time-delay systems
are not readily available. The most promising approach
available in the literature to calculate the phase of non-phase-
coherent attractors is based on the concept of curvature,38 but
this is often restricted to low-dimensional systems. However,
we find that this procedure does not work in the case of
nonlinear time-delay systems in general, where very often
the attractor is non-phase-coherent and high-dimensional.
Hence defining and estimating phase from the hyperchaotic
attractors of the time-delay systems itself is a challenging
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task, and so specialized techniques/tools have to be identified
to introduce the notion of phase in such systems.

It is to be noted that a variety of other nonlinear tech-
niques such as mutual information, recurrence analysis, pre-
dictability, etc. can be used to identify basic types of
synchronization.39 In particular, mutual information, predict-
ability, and their variants have been used for characterizing
the existence of complete synchronization, generalized syn-
chronization, and the interdependencies among the measured
time series of dynamical systems.1,40–42 Mutual information
can also be used to measure the degree of PS,43 see also Sec.
III A below, provided that phase is already defined. Recently,
recurrence-based indices are shown to be excellent
quantifiers39 of basic kinds of synchronization including CPS
in low-dimensional systems and even in the case of noisy,
nonstationary data. However, as far as we know, predictabil-
ity cannot be used either to define or to identify PS. In any
case, these measures have not been used so far to identify
phase or CPS in time-delay systems.

In order to define/estimate phase and CPS in time-delay
systems, in this paper we have introduced three different
approaches. First, we have introduced a nonlinear transfor-
mation involving time-delay variable that transforms the
non-phase-coherent attractors into phase-coherent attractors.
After this transformation of the original non-phase-coherent
attractor, the transformed attractor allows one to use the con-
ventional techniques. Next, we have used the recently intro-
duced recurrence-based indices for the first time in time-
delay systems to identify the onset of PS and subsequent
transition to GS. Finally, the transition is also confirmed by
the changes in the spectrum of Lyapunov exponents of the
coupled time-delay system. Further, we find that all three
approaches are in good agreement with the indication of the
onset of CPS.

As prototypical examples of nonlinear time-delay sys-
tems, we consider two specific models, namely �i� a piece-
wise linear time-delay system44–46 and �ii� the Mackey–Glass
time-delay system32,47 and investigate the existence of CPS
in the corresponding coupled systems.

A. Piecewise linear time-delay system

The following scalar first-order delay differential equa-
tion was introduced by Lu and He44 and discussed in detail
by Thangavel et al.,45

ẋ�t� = − ax�t� + bf�x�t − ��� , �1�

where a and b are parameters, � is the time delay, and f is an
odd piecewise linear function defined as

f�x� =�
0, x � − 4/3
− 1.5x − 2, − 4/3 � x � − 0.8

x , − 0.8 � x � 0.8

− 1.5x + 2, 0.8 � x � 4/3
0, x � 4/3.

� �2�

Recently, we reported46 that systems of the form �1� ex-
hibit hyperchaotic behavior for suitable parametric values.
For our present study, we find that for the choice of the

parameters a=1.0, b=1.2, and �=15.0 with the initial condi-
tion x�t�=0.9, t� �−15,0�, Eq. �1� exhibits hyperchaos. De-
tailed linear stability analysis, bifurcation analysis, and tran-
sient effects have been studied in Ref. 46. The corresponding
pseudoattractor is shown in Fig. 1�a�. The hyperchaotic na-
ture of Eq. �1� is confirmed by the existence of multiple
positive Lyapunov exponents. The first ten maximal
Lyapunov exponents for the above choice of parameters as a
function of delay time �� �2,29� are shown in Fig. 2�a� �the
spectrum of Lyapunov exponents in this paper are calculated
using the procedure suggested by Farmer47�.

Studying synchronization in coupled systems of the form
�1� is particularly appealing because of the facts that �i� sys-
tem �1� exhibits a hyperchaotic attractor even for very small
values of the delay time � for appropriate values of the sys-
tem parameters �the spectrum of Lyapunov exponents as a
function of delay time � is shown in Fig. 2�a�� and �ii� it is

FIG. 1. �a� The non-phase-coherent hyperchaotic attractor of the drive �Eq.
�4a��, and �b� the non-phase-coherent hyperchaotic attractor of the un-
coupled response �4b�

FIG. 2. The first ten maximal Lyapunov exponents �max of �a� the scalar
time-delay system �1� and �2� or Eq. �4a� for the parameter values a=1.0,
b1=1.2, �� �2,29� and �b� the scalar time-delay system �4b� for the param-
eter values a=1.0, b1=1.1 in the same range of delay time in the absence of
the coupling b3.
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easily experimentally realizable as the piecewise linear func-
tion can be constructed readily and only low values of delay
time are required for construction of a hyperchaotic attractor.

B. Mackey–Glass system

The second model we have used for the investigation of
CPS is a model of blood production due to Mackey and
Glass.32 It is represented again by Eq. �1� but with the fol-
lowing functional form for f�x�:

f�x� = x�t − ��/�1.0 + x�t − ��10� . �3�

Here, x�t� represents the concentration of blood at time t,
when it is produced, and x�t−�� is the concentration when
the “request” for more blood is made. In patients with leu-
kemia, the time � may become excessively large, and the
concentration of blood will oscillate, or if � is even larger,
the concentration can vary chaotically, as demonstrated by
Mackey and Glass.32,47 This is a prototype model for delay
systems exhibiting highly non-phase-coherent chaotic attrac-
tors and even hyperchaotic attractors for large value of delay
time ���28�. The pseudochaotic attractor of the Mackey–
Glass system �1� and �3� for the standard parameter values
a=0.1, b=0.2, and �=20 with the initial condition x�t�
=0.8, t� �−20,0� is shown in Fig. 10�a� in Sec. IV below.
The spectrum of Lyapunov exponents as a function of delay
time �� �14,37� is shown in Fig. 9�a� �see Sec. IV below�.

III. CPS IN COUPLED PIECEWISE-LINEAR
TIME-DELAY SYSTEMS

We first consider the following unidirectionally coupled
drive x1�t� and response x2�t� systems, which we have re-
cently studied in detail in Refs. 48 and 49,

ẋ1�t� = − ax1�t� + b1f�x1�t − ��� , �4a�

ẋ2�t� = − ax2�t� + b2f�x2�t − ��� + b3f�x1�t − ��� , �4b�

where b1, b2, and b3 are constants, a�0, � is the delay time,
and f�x� is the piecewise linear function of the form �2�.

We have chosen the values of parameters as �same val-
ues as studied in Ref. 37� a=1.0, b1=1.2, b2=1.1, and �
=15. For this parametric choice, in the absence of coupling,
the drive x1�t� and the response x2�t� systems evolve inde-
pendently. Further in this case, both the drive x1�t� and the
response x2�t� systems exhibit hyperchaotic attractors with
five positive Lyapunov exponents and four positive
Lyapunov exponents, respectively, i.e., both subsystems are
qualitatively different �due to b1�b2�. The corresponding
attractors are shown in Figs. 1�a� and 1�b�, respectively,
which clearly show the non-phase-coherent nature. The Ka-
plan and Yorke47,50 dimension for the above attractors turns
out to be 8.40 and 7.01, respectively, obtained by using the
formula

DL = j +
�i=1

j �i

�� j+1�
, �5�

where j is the largest integer for which �1+ . . . +� j �0. The
parameter b3 is the coupling strength of the unidirectional
nonlinear coupling �4b�, while the parameters

b1 and b2 play the role of parameter mismatch resulting
in nonidentical coupled time-delay systems. The spectrum of
the first ten largest Lyapunov exponents of the uncoupled
system �4a� for the values of the parameters a=1.0 and b1

=1.2 in the range of time delay �� �2,29� is shown in Fig.
2�a� and that of the system �4b� for the parameter value b2

=1.1 in the same range of delay time is also shown in Fig.
2�b�.

Now the task is to identify and to characterize the exis-
tence of CPS in the coupled time-delay systems �4�, possess-
ing highly non-phase-coherent hyperchaotic attractors, when
the coupling is introduced �b3�0�. In the following, we
present three different approaches to study CPS in coupled
piecewise-linear time-delay systems �4�.

A. CPS from Poincaré section of the transformed
attractor †Fig. 3„b…‡

We introduce a transformation to successfully capture
the phase in the present problem. It transforms the non-phase
coherent attractor �Fig. 3�a�� into a smeared limit cycle-like
form with well-defined rotations around one center �Fig.
3�b��. This transformation is performed by introducing the
new state variable

z�t + �� = z�t + �, �̂� = x1�t�x1�t + �̂�/x1�t + �� , �6�

where �̂ is the optimal value of delay time to be chosen �so as
to rescale the original non-phase-coherent attractor into a
smeared limit cycle-like form�, and then we plot the above
attractor �Fig. 3�a�� in the �x1�t+�� ,z�t+��� phase space. The
functional form of this transformation �along with a delay
time �̂� has been identified by generalizing the transforma-
tion used in the case of chaotic attractors in the Lorenz
system,4 so as to unfold the original non-phase-coherent at-
tractor �Fig. 3�a�� into a phase-coherent attractor. We find the
optimal value of �̂ for the attractor �Fig. 3�a�� of the piece-
wise linear time-delay system to be 1.6. It is to be noted that
on closer examination of the transformed attractor �Fig. 3�b��
in the vicinity of the common center, it does not have any
closed loop �unlike the case of the original attractor �Fig.
3�a��� even though the trajectories show sharp turns in some
regime of the phase space. If it is so, such closed loops will
lead to phase mismatch, and one cannot obtain exact match-
ing of phases of both the drive and response systems as
shown in Fig. 4 and discussed below. Now the attractor �Fig.
3�b�� looks indeed like a smeared limit cycle with nearly
well-defined rotations around a fixed center.

FIG. 3. �a� The non-phase-coherent hyperchaotic attractor of the uncoupled
drive �4a� and �b� transformed attractor in the x1�t+�� and z�t+�� space.
Here the Poincaré points are represented as open circles.
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It is to be noted that the above transformation �6� can be
applied to the non-phase-coherent attractors of any time-
delay system in general, except for the fact that the optimal
value of �̂ should be chosen for each system appropriately
through trial and error by requiring the geometrical structure
of the transformed attractor to have a fixed center of rotation.
We have adopted here a geometric approach for the selection
of �̂ and look for an optimum transform that leads to a phase-
coherent structure. This is indeed demonstrated for the at-
tractor of the Mackey–Glass system in the next section. The
motivation behind this transformation came from the trans-
formation �A6�, which is well known in the case of the Lo-
renz attractor discussed in the Appendix A. The main point
that we want to stress here is that even for highly non-phase-
coherent hyperchaotic attractors of time-delay systems, there
is every possibility to identify suitable transformations of the
type �6� to unfold the attractor and to identify phase as dem-
onstrated in the above two typical cases of time-delay sys-
tems. One may ask a pertinent question here as to whether
there exists a deeper underlying mathematical structure re-
garding such a transform. We do not have an answer to this
question at present, and this remains an open problem.

Therefore, the phase of the transformed attractor can
now be defined based on an appropriate Poincaré section
which is transversally crossed by all trajectories using Eq.
�A4� given in Appendix A. Open circles in Fig. 3�b� corre-
spond to the Poincaré points of the smeared limit-cycle-like
attractor. Phases, �1

z�t� and �2
z�t�, of the drive x1�t� and the

response x2�t� systems, respectively, are calculated from the
state variables z1�t+�� and z2�t+�� according to Eq. �6�. The
existence of 1:1 CPS between the systems �4� is character-
ized by the phase-locking condition

��1
z�t� − �2

z�t�� � const. �7�

The phase differences ���=�1
z�t�−�2

z�t�� between the sys-
tems �4a� and �4b� are shown in Fig. 4 for different values of
the coupling strength b3. The phase difference �� between
the systems �4a� and �4b� for b3=0.0 �uncoupled� increases
monotonically as a function of time, confirming that both
systems are in an asynchronous state �also nonidentical� in

the absence of coupling between them. For the values of
b3=1.0 and 1.3, the phase slips in the corresponding phase
difference �� show that the systems are in a transition state.
The strong boundedness of the phase difference specified by
Eq. �7� is obtained for b3�1.382 and it becomes zero for the
value of the coupling strength b3=1.5, showing a high-
quality CPS.

The mean frequency of the chaotic oscillations is defined
as14,22

	1,2 = 	d�1,2
z �t�/dt
 = lim

T→


1

T
�

0

T

�̇1,2�t�dt , �8�

and the 1:1 CPS between the drive x1�t� and the response
x2�t� systems can also be characterized by a weaker condi-
tion of frequency locking, that is, the equality of their mean
frequencies 	1=	2. The mean frequency ratio 	2 /	1 and
its difference �	=	2−	1 are shown in Fig. 5�a� as a func-
tion of the coupling strength b3� �0,3�. It is also evident
from this figure that the mean frequency locking criterion �8�
is satisfied for b3�1.382 from which both the frequency
ratio 	2 /	1 and their difference �	 show substantial satu-
ration in their values confirming the strong boundedness in
the phases of both the systems.

The above results can be further strengthened by mea-
suring the degree of PS quantitatively through the concept of
mutual information between the cyclic phases,43

FIG. 4. Phase differences ���=�1
z�t�−�2

z�t�� between the systems �4a� and
�4b� for different values of the coupling strength b3=0.0, 1.0, 1.3, 1.4,
and 1.5.

FIG. 5. �Color online� �a� Mean frequency ratio 	2 /	1 and their difference
�	=	2−	1 as a function of the coupling strength b3� �0,3� and �b� mu-
tual information M as a function of coupling strength b3.
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M = �
i,j

p�i, j�ln
p�i, j�

p1�i�p2�j�
, �9�

where p1�i� and p2�j� are the probabilities when the phases
�1 and �2 are in the ith and jth bins, respectively, and p�i , j�
is the joint probability that �1 is in the ith bin and �2 in the
jth bin. However, it is to be noted that mutual information
between the phases can be used only to characterize the de-
gree of PS provided phase has already been defined/known.
Hence mutual information can be used only as an additional
quantifier for measuring the degree of phase synchronization.
Mutual information M as a function of coupling strength
b3� �0,3� is shown in Fig. 5�b�, which clearly indicates the
high degree of PS for b3�1.382 in good agreement with the
frequency ratio 	2 /	1 and their difference �	 shown in
Fig. 5�a�.

B. CPS from recurrence quantification analysis

The complex synchronization phenomena in the coupled
time-delay systems �4� can also be analyzed by means of the
very recently proposed methods based on recurrence
plots.39,51 These methods help to identify and quantify CPS
�particularly in non-phase-coherent attractors� and GS.

For this purpose, the generalized autocorrelation func-
tion P�t� has been introduced in Refs. 39 and 51 as

P�t� =
1

N − t
�
i=1

N−t

��� − �Xi − Xi+t�� , �10�

where � is the Heaviside function, Xi is the ith data corre-
sponding to either the drive variable x1 or the response vari-
able x2 specified by Eqs. �4�, and � is a predefined threshold.
�·� is the Euclidean norm and N is the number of data points.
P�t� can be considered as a statistical measure of how often
� has increased by 2
 or multiples of 2
 within the time t in
the original space. If two systems are in CPS, their phases
increase on average by K.2
, where K is a natural number,
within the same time interval t. The value of K corresponds
to the number of cycles when �X�t+T�−X�t��
0, or equiva-
lently when �X�t+T�−X�t����, where T is the period of the
system. Hence, looking at the coincidence of the positions of
the maxima of P�t� for both systems, one can qualitatively
identify CPS.

A criterion to quantify CPS is the cross-correlation coef-
ficient between the drive, P1�t�, and the response, P2�t�,
which can be defined as the Correlation of Probability of
Recurrence �CPR�

CPR = 	P1�t�P2�t�
/�1�2, �11�

where P̄1,2 means that the mean value has been subtracted
and �1,2 are the standard deviations of P1�t� and P2�t�, re-
spectively. If both systems are in CPS, the probability of
recurrence is maximal at the same time t and CPR�1. If
they are not in CPS, the maxima do not occur simultaneously
and hence one can expect a drift in both the probability of
recurrences and low values of CPR.

When the systems �4� are in generalized synchroniza-
tion, two close states in the phase space of the drive variable
correspond to that of the response. Hence the neighborhood

identity is preserved in phase space. Since the recurrence
plots are merely a record of the neighborhood of each point
in the phase space, one can expect that their respective re-
currence plots are almost identical. Based on these facts, two
indices are defined to quantify GS.

First, the authors of Ref. 51 proposed the Joint Probabil-
ity of Recurrences �JPR�,

JPR =

1

N2�
i,j

N

���x − �Xi − Xj�����y − �Yi − Y j�� − RR

1 − RR
, �12�

where RR is the rate of recurrence, �x and �y are thresholds
corresponding to the drive and response systems, respec-
tively, and Xi is the ith data corresponding to the drive vari-
able x1 and Yi is the ith data corresponding to the response
variable x2 specified by Eqs. �4�. RR measures the density of
recurrence points and it is fixed as 0.02.51 JPR is close to 1
for systems in GS and is small when they are not in GS. The
second index depends on the coincidence of the probability
of recurrence, which is defined as the Similarity of Probabil-
ity of Recurrence �SPR�,

SPR = 1 − 	�P1�t� − P2�t��2
/�1�2. �13�

SPR is of order 1 if both systems are in GS and approxi-
mately zero or negative if they evolve independently.

Now, we will apply these concepts to the original �non-
transformed� attractor �Fig. 3�a��. We estimate these
recurrence-based measures from 5000 data points after suf-
ficient transients with the integration step h=0.01 and sam-
pling rate �t=100. The generalized autocorrelation functions
P1�t� and P2�t� �Fig. 6�a�� for the coupling b3=0.6 show that
the maxima of both systems do not occur simultaneously and
there exists a drift between them, so there is no synchroni-
zation at all. This is also reflected in the rather low value of
CPR=0.381. For b3� �0.78,1.381�, from Fig. 7 we observe
the first substantial increase of recurrence reaching CPR
�0.5–0.6. Looking into the details of the generalized corre-
lation functions P�t�, we find that now the main oscillatory
dynamics becomes locked, i.e., the main maxima of P1 and
P2 coincide. For b3� �1.382,2.2�, CPR reaches almost 1 as
seen in Fig. 7, while now the positions of all maxima of P1

and P2 are also in agreement and this is in accordance with
the strongly bounded nature of phase differences. This is a
strong indication for CPS. Note, however, that the heights of
the peaks are clearly different �Fig. 6�b��. The differences in
the peak heights indicate that there is no strong interrelation
in the amplitudes. Further increase of the coupling �here b3

=2.21� leads to the coincidence of both the positions and the
heights of the peaks �Fig. 6�c�� referring to GS in systems
�4�. This is also confirmed from the maximal values of the
indices JPR=1 and SPR=1, which is due to the strong cor-
relation in the amplitudes of both systems. It is clear from
the construction of SPR that it measures the similarity be-
tween the generalized autocorrelation functions P1�t� and
P2�t�. In the regimes of CPS, as the generalized autocorrela-
tion functions coincide in almost all the regimes except for
the height of its maxima, it is also quantified by larger values
of SPR. The index SPR in Fig. 7 also shows the onset of CPS
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and it fluctuates around the value 1 in the regime of CPS
�b3� �1.382,2.2�� before reaching saturation, confirming the
strong correlation in the amplitudes of both the systems,
thereby quantifying the existence of GS. The transition from

nonsynchronized state via CPS to GS is characterized by the
maximal values of CPR, SPR, and JPR �Fig. 7�. As expected
from the construction of these functions, CPR refers mainly
to the onset of CPS, whereas JPR quantifies clearly the onset
of GS, and SPR indicates both the onset of CPS and GS. In
this connection, we have also confirmed the onset and exis-
tence of GS by using the auxiliary system approach52 intro-
duced by Abarbanel et al. for the range of the coupling
strength b3�2.2.

C. CPS from the spectrum of Lyapunov exponents

The transition from nonsynchronization to CPS is also
characterized by changes in the Lyapunov exponents of the
coupled time-delay systems �4�. The spectrum of the eight
largest Lyapunov exponents of the coupled systems is shown
in Fig. 8. From this figure, one can find that all the positive
Lyapunov exponents, except the largest one ��max

�2� �, corre-
sponding to the response system suddenly become negative
at the value of the coupling strength b3=0.78, which is an
indication of the onset of transition regime. One may also
note that at this value of b3, already one of the Lyapunov
exponents of the response system attains negative saturation
while the another one reaches negative saturation slightly
above b3=0.78. This is a strong indication that in this rather
complex attractor, the amplitudes become somewhat interre-
lated already at the transition to CPS �as in the funnel
attractor38 of the Rössler system�. Also the third positive
Lyapunov exponent of the response system gradually be-
comes more negative from b3=0.78 and reaches its satura-
tion value at b3=1.381, confirming the onset of CPS �which
is also indicated by the transition of the indices of CPR and
SPR in Fig. 7 in the range of b3� �0.78,1.381��. It is inter-
esting to note that the Lyapunov exponents of the response
system �i

�2� �other than �max
�2� � are changing already at the

early stage of CPS �b3� �0.78,1.381��, where the complete
CPS is not yet attained. This has also been observed for the
onset of CPS in phase-coherent and non-phase-coherent os-
cillators without time -delay.11,22,54

IV. CPS IN COUPLED MACKEY–GLASS SYSTEMS

In this section, we will bring out the existence of CPS in
coupled Mackey–Glass systems of the form

FIG. 6. �Color online� Generalized autocorrelation functions of both the
drive P1�t� and the response P2�t� systems. �a� Non-phase-synchronization
for b3=0.6, �b� phase synchronization for b3=1.5, and �c� generalized syn-
chronization for b3=2.3.

FIG. 7. �Color online� Indices CPR, JPR, and SPR as a function of coupling
strength b3� �0,3�.

FIG. 8. Spectrum of the first eight largest Lyapunov exponents of the
coupled systems �4� as a function of coupling strength b3� �0,3�.
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ẋ1�t� = − ax1�t� + b1x1�t − ��/�1.0 + x1�t − ��10� , �14a�

ẋ2�t� = − ax2�t� + b2x2�t − ��/�1.0 + x2�t − ��10� + b3x1�t − ��/

�1.0 + x1�t − ��10� , �14b�

where a ,b1 ,b2 are constants, b3 is the coupling parameter,
and � is the delay time.

We have chosen the parameter values �cf. Refs. 32 and
47� as a=0.1, b1=0.2, b2=0.205, �=20, and we varied the
coupling strength b3. The non-phase-coherent chaotic attrac-
tor of the system x1�t�, Eq. �14a�, for the above choice of
parameters is shown in Fig. 10�a� and it possesses one posi-
tive and one zero Lyapunov exponent. Similarly, the second
system x2�t�, Eq. �14b�, also exhibits a non-phase-coherent
chaotic attractor with one positive and one zero Lyapunov
exponent for the chosen parametric values in the absence of
the coupling strength b3. The parameters b1 and b2 contribute
to the parameter mismatch between the systems x1�t� and
x2�t�. The spectrum of the first four maximal Lyapunov ex-
ponents of both systems �14a� and �14b� is shown in Figs.
9�a� and 9�b�, respectively, as a function of delay time �
� �14,37� when b3=0. The Kaplan and Yorke47,50 dimension
calculated using Eq. �5� for the present systems �Eqs. �14a�
and �14b�� works out to be 2.279 69 and 2.210 96, respec-
tively. Now, the existence of CPS as a function of the cou-
pling strength in the coupled Mackey–Glass systems �14�
will be discussed using the above three approaches used for
identifying CPS in coupled piecewise-linear time-delay sys-
tems �4�.

A. CPS from Poincaré section of the transformed
attractor †Fig. 10„b…‡

The non-phase-coherent chaotic attractor �Fig. 10�a�� of
the Mackey-Glass system is transformed into a smeared limit
cycle-like attractor �Fig. 10�b�� using the same transforma-
tion �6� as used for the piecewise-linear time-delay systems.
For the attractor �Fig. 10�a�� of the Mackey–Glass system,
the optimal value of the delay time �̂ in Eq. �6� is found to be
8.0. The Poincaré points are shown as open circles in Fig.
10�b�, from which the instantaneous phase �1

z�t� is calculated
using Eq. �A4�. The existence of CPS in the coupled
Mackey–Glass systems �14� is also characterized by the
phase-locking condition �7� as shown in Fig. 11. The phase
differences ��=�1

z�t�−�2
z�t� between the systems �14a� and

�14b� for the values of the coupling strength b3=0.04, 0.08,
0.11, 0.12, and 0.3 are shown in Fig. 11. For the value of the
coupling strength b3=0.3, there exists a strong boundedness
in the phase difference showing high-quality CPS. The mean
frequency ratio 	2 /	1 calculated from Eq. �8� along with
the mean frequency difference �	 is shown in Fig. 12�a�.
The value of mean frequency ratio 	2 /	1�1 in the range of
b3� �0.12,0.23� corresponding to the transition regime
�which is also to be confirmed from the indices CPR and JPR
in the next subsection�; see the inset of Fig. 12�a�. Similarly,
the mean frequency difference is also �	�0, confirming the
transition regime. For the value of b3�0.23, both quantities
	2 /	1 and �	 acquire the complete saturation in their val-
ues confirming the existence of CPS. Further, the mutual

FIG. 9. The first four maximal Lyapunov exponents �max of �a� the Mackey–
Glass time-delay system �14a� for the parameter values a=0.1, b1=0.2, �
� �14,37� and �b� time-delay system �14b� for the parameter values a=0.1,
b1=0.205 in the same range of delay time in the absence of the coupling b3.

FIG. 10. �a� The non-phase-coherent chaotic attractor of the uncoupled
drive �14a� and �b� transformed attractor in the x1�t+�� and z�t+�� space
along with the Poincaré points represented as open circles.

FIG. 11. Phase differences ���=�1
z�t�−�2

z�t�� between the systems �14a�
and �14b� for different values of the coupling strength b3=0.04, 0.08, 0.11,
0.12, and 0.3.
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information calculated using Eq. �9� clearly indicates the in-
crease in the degree of PS for the value of coupling strength
b3�0.23 as shown in Fig. 12�b�, which is also in agreement
with the frequency ratio 	2 /	1 and the mean frequency dif-
ference �	 shown in Fig. 12�b�.

B. CPS from recurrence quantification analysis

The existence of CPS from the original non-phase-
coherent chaotic attractors of the systems �14� is analyzed in
this section using the recurrence quantification measures de-
fined in Sec. II B. We have estimated these measures again
using a set of 5000 data points, and the same integration step
and the sampling rate as used in the case of coupled
piecewise-linear time-delay systems �4�. The maxima of gen-
eralized autocorrelations of both the drive P1�t� and the re-
sponse P2�t� systems �Fig. 13�a�� do not occur simulta-
neously for b3=0.1, which indicates the independent
evolution of both the systems without any correlation, and
this is also reflected in the rather low value of CPR=0.4. For
b3=0.3, the maxima of both P1�t� and P2�t� are in good
agreement �Fig. 13�b�� and this shows the strongly bounded
phase difference. It is to be noted that even though both of
the maxima coincide, the heights of the peaks are clearly of
different magnitudes contributing to the fact that there is no
strong correlation in the amplitudes of both the systems in-
dicating CPS. Both the positions and the peaks are in coin-
cidence �Fig. 13�c�� for the value of coupling strength b3

=0.9 in accordance with the strong correlation in the ampli-
tudes of both the systems �14� corresponding to GS. This is
also reflected in the maximal values of both JPR=1 and

SPR=1. The spectra of CPR, JPR, and SPR are shown in
Fig. 14. The onset of CPS is shown by the first substantial
increase of the index CPR at b3=0.11 and the transition re-
gime is shown by the successive plateaus of CPR in the

FIG. 12. �Color online� �a� Mean frequency ratio 	2 /	1 and their difference
�	=	2−	1 as a function of the coupling strength b3� �0,1� and �b� mu-
tual information M as a function of coupling strength b3.

FIG. 13. �Color online� Generalized autocorrelation functions of both the
drive system �14a�, P1�t�, and the response system �14b�, P2�t�. �a� Non-
phase-synchronization for b3=0.1, �b� phase synchronization for b3=0.3,
and �c� generalized synchronization for b3=0.9.

FIG. 14. �Color online� Indices CPR, JPR, and SPR as a function of cou-
pling strength b3� �0,1�.
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range b3� �0.12,0.23�. The maximal values of CPR for b3

�0.23 indeed confirm the existence of high-quality CPS.
The existence of GS is also confirmed from both the indices
JPR and SPR.

C. CPS from the spectrum of Lyapunov exponents

The onset of CPS is also characterized by the changes in
the spectrum of Lyapunov exponents of the coupled
Mackey–Glass systems �14�. The spectrum of the first four
largest Lyapunov exponents of the coupled systems �14� is
shown in Fig. 15. The zero Lyapunov exponent of the re-
sponse system x2�t� already becomes negative as soon as the
coupling is introduced and the onset of CPS is indicated by
the negative saturation of the zero Lyapunov exponent at
b3=0.11. The positive Lyapunov exponent of the response
system becomes gradually negative in the transition regime
�b3� �0.12,0.23�� and it reaches its negative saturation at
b3=0.23, at which high-quality CPS exists. The transition of
the positive Lyapunov exponent to negativity in this rather
complex attractor is again a firm indication of some degree
of correlation in the amplitudes of both systems even before
the onset of CPS. As noted earlier, this behavior of negative
transition of the positive Lyapunov exponent of the response
system before CPS has also been observed in Refs. 11, 22,
53, and 54.

V. SUMMARY AND CONCLUSION

We have identified and characterized the existence of
CPS in both the coupled piecewise-linear time-delay systems
and in the coupled Mackey–Glass systems possessing highly
non-phase-coherent chaotic attractors. We have shown that
there is a typical transition from a nonsynchronized state to
CPS and subsequently to GS as a function of the coupling
strength in both systems. Similar results are obtained for dif-
ferent sampling intervals �t and for various values of delay
time �.

We have introduced a suitable transformation, which
works equally well for both the systems possessing charac-
teristically distinct attractors �hyperchaotic attractor in the
piecewise linear time-delay system and chaotic attractor in
the Mackey–Glass system�, to capture the phase of the un-
derling non-phase-coherent attractor. Both the phase- and the
frequency-locking criteria are satisfied by the instantaneous

phases calculated from the transformed attractors in both the
piecewise-linear and the Mackey–Glass time-delay systems.
The frequency ratio and its difference as a function of cou-
pling strength clearly show the onset of CPS in both cases.
We have also characterized the existence of CPS and GS in
terms of recurrence-based indices, namely generalized auto-
correlation function P�t�, CPR, JPR, and SPR, and we quan-
tified the different synchronization regimes in terms of them.
The onset of CPS and GS is also clearly shown by the spec-
tra of CPR, JPR, and SPR. The above transition is also con-
firmed by the changes in the spectrum of Lyapunov expo-
nents. The recurrence-based technique as well as the new
transformation are also appropriate for the analysis of experi-
mental data, and we are now investigating the experimental
verification of these findings in nonlinear electronic circuits
and in biological systems. Also, the recurrence-based indices
are found to be more appropriate for identifying the exis-
tence and analysis of synchronizations, in particular CPS,
and their onset in the case of nonlinear time-delay systems in
general, where very often the attractor is non-phase-coherent
and high-dimensional. It should also be emphasized that the
recurrence-based measures are more efficient than other non-
linear techniques39 such as mutual information, predictabil-
ity, etc. These measures have a high potential for applica-
tions, and we are also investigating the possibility of
extending these techniques to complex networks.
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APPENDIX A: CPS IN CHAOTIC SYSTEMS:
PHASE-COHERENT AND NON-PHASE-COHERENT
ATTRACTORS

Definition of CPS in coupled chaotic systems is derived
from the classical definition of phase synchronization in pe-
riodic oscillators. Interacting chaotic systems are said to be
in a phase-synchronized state when there exists entrainment
between phases of the systems, while their amplitudes may
remain chaotic and uncorrelated. In other words, CPS exists
when their respective frequencies and phases are locked.1,4,14

To study CPS, one has to identify a well-defined phase vari-
able in both coupled systems. If the flow of the chaotic os-
cillators has a proper rotation around a certain reference
point, the phase can be defined in a straightforward way. In
this case, the corresponding attractor is referred to as a
phase-coherent attractor in the literature1,4,14,17,37,38 and the
phase can be introduced straightforwardly as1,4

��t� = arctan�y�t�/x�t�� . �A1�

A more general approach to define the phase in chaotic
oscillators is the analytic signal approach1,4 introduced in
Ref. 55. The analytic signal ��t� is given by

FIG. 15. Spectrum of the first four largest Lyapunov exponents of the
coupled systems �14� as a function of coupling strength b3� �0,1�.
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��t� = s�t� + is̃�t� = A�t�expi��t�, �A2�

where s̃�t� denotes the Hilbert transform of the observed sca-
lar time series s�t�,

s̃�t� =
1



P.V.�

−



 s�t��
t − t�

dt�, �A3�

where P.V. stands for the Cauchy principle value of the inte-
gral, and this method is especially useful for experimental
applications.1,4

The phase of a chaotic attractor can also be defined
based on an appropriate Poincaré section which the chaotic
trajectory crosses once for each rotation. Each crossing of the
orbit with the Poincaré section corresponds to an increment
of 2
 of the phase, and the phase in between two crosses is
linearly interpolated,1,4

��t� = 2
k + 2

t − tk

tk+1 − tk
, �tk � t � tk+1� , �A4�

where tk is the time of kth crossing of the flow with the
Poincaré section. For the phase-coherent chaotic oscillators,
that is, for flows that have a proper rotation around a certain
reference point, the phases calculated by these three different
ways are in good agreement.1,4

As a typical example, consider the Rössler system,

ẋ = − y − z , �A5a�

ẏ = x + ay , �A5b�

ż = 0.2 + z�x − 8.5� . �A5c�

The topology of the attractor of the Rössler system is deter-
mined by the parameter a. For a=0.15, a phase-coherent
attractor �see Fig. 16�a�� is observed with rather simple to-
pological properties56,57 �where the projection of the chaotic
attractor on the �x ,y� plane looks like a smeared limit cycle
with the phase point always rotated around a fixed origin
with monotonically increasing phase� and hence the phase
can be calculated straightforwardly as discussed above.

However, in chaotic dynamics one often encounters non-
phase-coherent attractors where the flows are without a
proper rotation around a fixed reference point �with the ori-
gin coinciding with the center of rotation�, in which case a
single characteristic time scale does not exist in general. In
such circumstances, it is difficult or impossible to find a
proper center of rotation and it is also intricate to find a
Poincaré section that is crossed transversally by all trajecto-

ries of the chaotic attractor. As a consequence, such a non-
phase-coherent chaotic attractor is not characterized by a
monotonically increasing phase. Hence the phase of such a
non-phase-coherent attractor cannot be defined straightfor-
wardly as in the case of phase-coherent attractor. Therefore,
the above definitions of phase are no longer applicable for
non-phase-coherent chaotic attractors. So specialized
techniques/tools have to be identified to introduce phase in
non-phase-coherent attractors.

It has also been demonstrated that certain non-phase-
coherent chaotic attractors can be transformed into smeared
limit-cycle-like attractors by introducing a suitable transfor-
mation of the original variables. For example, in the case of
a Lorenz attractor, a transformation of the form

u�t� = �x2 + y2 �A6�

is introduced1 and the projected trajectory in the plane �u ,z�
resembles that of the Rössler attractor. Now phase of the
respective attractor is introduced using the above approaches
for phase-coherent attractors.

However, such a transformation does not always exist or
can be found in the case of non-phase-coherent attractors in
general. Again, as a typical example consider the Rössler
system specified by Eq. �A5�. The topology of the Rössler
attractor changes dramatically if the parameter a exceeds
0.21 and the phase in this case is not well defined. The funnel
�non-phase-coherent� attractor for the value a=0.25 is shown
in Fig. 16�b�. There are large and small loops �see Fig. 16�b��
on the �x ,y� plane and it is not evident which phase gain
should be attributed to these loops and hence phase cannot
be calculated simply as in the case of a phase-coherent cha-
otic attractor �Fig. 16�a�� or through simple transformations.
Therefore, recently another definition of the phase based on
the general idea of the curvature has been proposed by Osi-
pov et al.38 For any two-dimensional curve r= �u ,v� the
angle velocity at each point is

� = �ds/dt�/R ,

where ds /dt=�u̇2+ v̇2 is the speed along the curve and R
= �u̇2+ v̇2�3/2 / �v̇ü− v̈u̇� is the radius of the curvature. If R
�0 at each point, then

� =
d�

dt
=

v̇ü − v̈u̇

u̇2 + v̇2

is always positive and hence the variable

� =� �dt = arctan
v̇

u̇
�A7�

is a monotonically increasing function of time and can be
considered as the phase of the oscillator. These definitions of
frequency and phase are general for any dynamical system if
the projection of the phase trajectory on some plane is a
curve with a positive curvature. Now for the non-phase-
coherent Rössler attractor in the funnel regime, the projec-
tions of chaotic trajectories on the plane �ẋ , ẏ� always rotate
around the origin, and the phase can be defined as �
=arctan�ẏ / ẋ�.38 However, it is not clear whether an appropri-
ate plane can always be found on which the projected trajec-

FIG. 16. Phase-coherent and funnel �non-phase-coherent� Rössler attractors
with parameters �a� a=0.15 and �b� a=0.25.
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tories rotate around the origin for higher-dimensional chaotic
systems, as such systems will very often exhibit more com-
plicated attractors with more than one positive Lyapunov ex-
ponent as in the case of typical time-delay systems discussed
in the main part of this paper.
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