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“Não sou nada. Nunca serei nada. Não posso querer ser nada. À parte isso, tenho
em mim todos os sonhos do mundo.”

— F. Pessoa

“[...] nos esse quasi nanos gigantium humeris insidentes, ut possim plura eis et
remotiora videre, non utique proprii visus acumine aut eminentia corporis, sed
quia in altum subvehimur et extollimur magnitudine gigantea. ”

“[...] we are like dwarves perched on the shoulders of giants, and thus we are
able to see more and farther than the latter. And this is not at all because of the
acuteness of our sight or the stature of our body, but because we are carried aloft
and elevated by the magnitude of the giants”

— Bernardo de Chartres (in Giovanni di Salisbury, Metalogicon, III, 4)

“Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will
live its whole life believing that it is stupid.” — A. Einstein

Dedicated to my parents and to Marco.
Ai miei genitori e a Marco.
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The important thing is not to stop questioning.
Curiosity has its own reason for existing.

It is enough if one tries merely to comprehend a little of this mystery every day.
Never lose a holy curiosity.

— Einstein, 1879-1955

A C K N O W L E D G M E N T S

First of all my unconditional thank goes to mum and dad. Your years of love and
unwavering support shaped me into the person I am today. I cannot express in
words my gratitude for the sacrifices you made for me. Without you I would never
have been able to make it even nearly this far. Thanks to Marco and his re-shaping
and re-doing Marta, for taking me up when I was down and never let me fall again,
thanks, WE made it. Vedra, si anche tu sei parte del progetto e anche a te va il mio
grazie.

I’d like to thank Prof. Pedotti, for having granted the possibility of working
at TBM lab, and Prof. Signorini, for guiding us during the PhD program. None
of this work would have been possible without the unconditional support of my
advisor, Prof. Guido Baroni. I would like to thank you for, at times despite my best
efforts, keeping me focused and on track. Your enthusiasm and ideas have been
indispensable to me. Dr Sharp, Dr Seco, Prof. Golland, thank you for challenging
me and helping make these years the most interesting and stimulating time of
my life. At the same time, I want to thank Dr Riboldi and Dr Spadea for all the
passion, support, dedication and energy they spent in this 3-years (oh my, it is
really 3 years?) work. My thesis would have never be the same if they were not
there asking question, supporting, teaching and sometimes also making fun of me:
thank you for everything. A warm thank also to the Rocca Fundation for their
support in connecting me to MIT and to the people at IEO (Dr. Alterio, Dr. Comi
amongst others) , always trying to make my work clinically relevant and making
me believe someone *could* actually benefit from my work.

Thanks to all of those who did bet non me: you see, I made it :) You know who
you are, do not need to mention all the names.

Thanks to all of those who did NOT bet non me: you see, I made it :) you knew
I would have been stubborn enough to do it :)

Grazie alle nonne, valvola di sfogo per i miei genitori quando la strada di questi
tre anni s’è fatta dura. Thanks to aunties and uncles...thanks Gioanna, now it is
your turn for all this stuff about studying at the university.

Thanks to all the CART lab/TBM lab, because you know what it means to do
a PhD...Thanks to all the people I came across at MIT/Medical Computer Vision
Lab...Thanks to all the Rocca-people...you know the great people you are!

Thanks to all the friends and people who stumbled on my work and/or my-
self...to cite a few in random order... Delia, ChiaraP, PaoloZ, Lorenzo, Maryide,

vii



Elga, Alfonso, Daniele, Francesco, Erik il tonno Tonni, Giuseppe, Giulia, Tino-
Giacomo-capitano, Lady Elena, Antonella, Carlo, Simona, Matteo, Morgan-etto,
MarcoCobasIdealeAntonio e le sue apine, Antonio, Erika, Andrea, Costa che però
si chiama Fabrizio, Francesca, Ardian, Alan, Elena, Floriano, Chiara, Roberto, Fed-
erico, Chiara, Marco, Daniela, Alberto, Elisa, Ernesto, Elisa, Rossy, Ema, Fede, Mar-
tina...e tutti gli altri!

Alessandro Gig-nano, Giulia, you know...you know you have a special place in
this list. Thanks!

Thanks to “quelli del treno”, Teo (+Barbara+Adelaide), Corrado, Fabio, Stefano,
Samuela Samu Mu, Simone...Thanks to “quelli della piscina”, Giuseppe the coach,
Capitan-Gabri, Sonia, Silvia, Stefano, Stefano, Franco, Francesco, Francesca, Vale...per
una piacevole distrazione mentale con un pò di relax....

Thanks to Don Michele, Don Federico, gli edu e i miei fanciulli....siete troppi
non vi posso nominare tutti, ma voi sapete :)

Thanks to you who took the time to read this...I don’t know if you feel under/over-
mentioned, but be sure I’m thankful you stumble across my way and walk a short
path at my side, so please, even though I’m pushing you away, keep doing it!

uh, by the way...I’ll still be...

viii



C O N T E N T S

list of figures xi
list of tables xiii
acronyms xiv
abstract xvi

i standing on the shoulders of giants 1

1 introduction 2

2 image guided adaptive therapy 4

2.1 Conventional Radiation Therapy 4

2.2 Image Guided Radiation Therapy 8

2.2.1 Anatomical imaging in a radiation therapy clinic 9

2.3 Image Guided Adaptation of the therapy (of Head and Neck) 13

3 image registration in radiation therapy 19

3.1 An introduction into IR problem 19

3.2 Algorithms constitutive elements 20

3.2.1 Similarity measure 21

3.2.2 Rigid transformation models 23

3.2.3 Non-rigid transformation models 23

3.2.3.1 Parametric transformation models 24

3.2.3.2 Non-parametric transformation models 27

3.2.4 Optimization scheme and strategies 29

3.2.5 Push and Pull warping method 30

3.3 Validation and/or performance assessment of a registration method 32

ii we can see a little further 34

4 deformable registration : from theory to clinical practice 35

4.1 Comparison of a parametric and a non-parametric DIR algorithm 36

4.2 Ranking of Stopping Criteria for clinical DIR 39

4.2.1 Dataset 41

4.2.2 Experiments 44

4.2.3 Results 44

4.2.3.1 Convergence properties 44

4.2.3.2 Deformation recovery capability 47

4.2.4 Discussion and conclusion 51

4.3 Validation of a DIR algorithm 52

4.3.1 Classical validation indices 52

4.3.2 Landmark based validation 54

4.3.2.1 Scale Invariant Feature Transform Feature Detec-
tor 56

4.3.2.2 Validation: results and discussion 58

4.3.2.3 Conclusions 65

4.3.3 Guidelines for performance indices choice 66

5 clinical applications 68

ix



contents x

5.1 Multi-atlas based segmentation for Head and Neck Planning 68

5.1.1 Materials and methods 70

5.1.1.1 Algorithm outline 70

5.1.1.2 Selection strategy 70

5.1.1.3 Pairwise registrations 70

5.1.1.4 Label fusion 71

5.1.2 Results and Discussion 73

5.1.2.1 Gaussian Weighted voting parameters tuning 73

5.1.2.2 Pairwise registrations Quality 77

5.1.2.3 Selection strategies and label fusion performances 77

5.1.3 Conclusion 85

5.2 On-Line virtualCT in Head and Neck Adaptive Radiation Therapy 90

5.2.1 Methods 90

5.2.1.1 Dataset 90

5.2.1.2 Image pre-processing 91

5.2.1.3 virtualCT generation 92

5.2.1.4 Geometric validation 93

5.2.2 Results 94

5.2.3 Discussion 103

5.2.4 Conclusion 104

6 conclusions 105

bibliography 108



L I S T O F F I G U R E S

Figure 0.1 Image Guided Adaptive RT Workflow. xvii
Figure 0.2 Atlas based segmentation Workflow xxi
Figure 0.3 Workflow for virtualCT generation xxiv
Figure 2.1 Dose-depth relationship for X-rays and particles. 5

Figure 2.2 IMRT treatment planning on Varian Workstation 6

Figure 2.3 Outlined volumes for RT treatment planning 8

Figure 2.4 Image Guided RT Workflow. 13

Figure 2.5 Image Guided Adaptive RT Workflow. 15

Figure 3.1 Ambiguity in image registration 19

Figure 3.2 IR as an optimization problem 21

Figure 3.3 Joint probability histogram for different degrees of aligment 23

Figure 3.4 Strategies for B-Spline DIR acceleration 25

Figure 3.5 Warping methods in 1D 30

Figure 3.6 Domain of the warping method 31

Figure 4.1 Dice Similarity Coefficient after DIR for three different algo-
rithm 38

Figure 4.2 Center of Mass Difference after DIR for three different algo-
rithm 38

Figure 4.3 Mean Contour Distance after DIR for three different algo-
rithm 38

Figure 4.4 Mean of the modulus of three different residual deformation
fields 39

Figure 4.5 Stopping condition testing dataset 42

Figure 4.6 Synthetic Deformations applied to RANDO® Phantom 43

Figure 4.7 Median SCV values at each iteration for the phantom study 45

Figure 4.8 Median SCV values at each iteration for patient study 46

Figure 4.9 NMI values pre- and post- DIR registration 47

Figure 4.10 Residual errors on the vector field for phantom study 48

Figure 4.11 Residual errors on the vector field for patient study 49

Figure 4.12 Mean residual errors on the vector field for selected patient
study 49

Figure 4.13 Anscombe’s quartet 53

Figure 4.14 SIFT algorithm schematic illustration 57

Figure 4.15 SIFT example results 60

Figure 4.16 SIFT invariance to rigid transforms 61

Figure 4.17 SIFT invariance to roto-translation transforms 62

Figure 4.18 SIFT invariance to non-rigid transforms 62

Figure 4.19 Number of SIFT matches for tested rigid transforms 63

Figure 4.20 SIFT algorithm limitations 64

Figure 5.1 Multi-atlas based automatic segmentation workflow 69

Figure 5.2 Compensation of the differences in the field of view of refer-
ence and floating images. 71

xi



Figure 5.3 k scaling influence on the relationship between likelihood1
and likelihood0 73

Figure 5.4 Impact of ρ and σ on segmentation in terms of variation of
DSC 74

Figure 5.5 Impact of ρ and σ on segmentation in terms of variation of
DSC 75

Figure 5.6 Impact of ρ and σ on segmentation in terms of variation of
DSC 76

Figure 5.7 Impact of parameter k on GW multi-atlas automatic segmen-
tation 78

Figure 5.8 Impact of parameter k on GW multi-atlas automatic segmen-
tation 79

Figure 5.9 Impact of parameter k on GW multi-atlas automatic segmen-
tation 80

Figure 5.10 Pairwise registration example for multi-atlas automatic seg-
mentation 81

Figure 5.11 Overlay of automatic contours obtained with multi-atlas based
segmentation and manual structures used as ground-truth 82

Figure 5.12 NMI TH selection matrix for multi-atlas automatic segmen-
tation 82

Figure 5.13 Quantitative multi-atlas automatic segmentation for four dif-
ferent selections 84

Figure 5.14 likelihood1 and likelihood0on the example of the mandible
84

Figure 5.15 DSC values for varying thresholds and fusion rules 86

Figure 5.16 DSC values for varying thresholds and fusion rules 87

Figure 5.17 Initial versus pre-processed CBCT volumes 91

Figure 5.18 Hounsfield Units thresholding for contrast enhancement 92

Figure 5.19 Flowchart of the proposed strategy for virtualCT generatio 93

Figure 5.20 Checkerboard rendering of Patient 19a, with overlay between
manual and automatic contours 97

Figure 5.21 Checkerboard rendering for patient 6 and 7 virtualCT and
CBCT after DIR 98

Figure 5.22 Checkerboard rendering for patient 6 and 7 virtualCT and
CBCT after DIR 98

Figure 5.23 DSC and COM distance quantitative results about the ge-
ometrical alignment between CBCT surrogate contours and
structures propagated from CTsim 99

Figure 5.24 RMSE between points of the surrogate CBCT and virtualCT
contour 99

Figure 5.25 Checkerboard rendering for patient 6 and 7 virtualCT and
CBCT after DIR 101

xii



List of Tables xiii

Figure 5.26 Example of wrong SIFT correspondent features matching for
symmetric features. 102

L I S T O F TA B L E S

Table 0.1 Label Fusion Strategies xxii
Table 0.2 Median and interquartile ranges for virtualCT and surrogate

CBCT contours comparison with four different metrics (DSC,
COM and RMSE) xxiv

Table 0.3 Median and interquartile ranges of the distribution of accu-
racy of SIFT in terms of point-to-point distance between ex-
tracted on four couples of images (CTsim vs CBCT, CTsim_rig
vs CBCT, virtualCT vs CBCT, CTrepl vs CBCT) xxv

Table 0.4 Median synthetic non-rigid deformations xxv
Table 2.1 Inter- and Intra-fractional sources of errors 7

Table 3.1 Common image similarity measures for IR 22

Table 4.1 Current and previous SCV tested in terms of convergence
speed 41

Table 4.2 Parameters of the Gaussian distributions used to generate
five artificial deformation field 43

Table 4.3 SCVcritical at the iteration corresponding to desired accu-
racy level 48

Table 4.4 Number of extra iteration the algorithm needed to reach the
minimum of the SCVcritical. 50

Table 4.5 Number of extra iteration the algorithm needed to reach the
minimum of the SCVcritical. 50

Table 4.6 Rigid transform parameters for SIFT validation 58

Table 4.7 Median non-rigid transform for SIFT validation 59

Table 4.8 SIFT outliers in synthetic phantom cases 64

Table 5.1 Selection strategies studied in this work 70

Table 5.2 Tested σ and ρ values in GW multi-atlas segmentation 73

Table 5.3 Optimal values for σ and ρ values in GW multi-atlas auto-
matic segmentation 77

Table 5.4 Number of patients selected for any given FN value 83

Table 5.5 Comparison between literature and GW results when all the
atlases are selected 88

Table 5.6 Comparison between literature and AVG results when all the
atlases are selected 88

Table 5.7 Comparison between literature and MV results when all the
atlases are selected 89

Table 5.8 Comparison between literature and GW results when just
one atlas is selected 89

Table 5.9 Right and Left Parotids variation between CTsim and CTrepl 95

Table 5.10 Gross Tumor Volume (GTV) variation between CTsim and
CTrepl 96



Table 5.11 Median and variability for residual distance between corre-
spondent landmarks after SIFT features detection 100

Table 5.12 Medians of DSC, COM and RMSE between virtualCT and
CTrepl_rig for different structures. 100

A C R O N Y M S

RT Radiation Therapy

IGRT Image Guided Radiation Therapy

IGART Image Guided Adaptive Radiation Therapy

IMRT Intensity Modulated Radiation Therapy

EBRT External Beam Radiation Therapy

HN Head and Neck

HNCP Head and Neck Cancer Patient

GTV Gross Tumor Volume

PTV Planning Target Volume

CT Computed Tomography

CBCT Cone Beam Computed Tomography

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

CTsim Computed Tomography acquired at simulation

CTrepl Computed Tomography acquired at replanning

DIR Deformable Image Registration

BSDIR B-Spline Deformable Image Registration

LDDD Log Domain Diffeomorphic Demons DIR

SCV Stopping Condition Value

NMI Normalized Mutual Information

MSE Mean Squared Error

QU Quantity of Update

Jac Jacobian of the deformation

xiv



List of Tables xv

HE Harmonic Energy

DSC Dice Similarity Coefficient

COM Center Of Mass distance

RMSE Root Mean Squared Error

SIFT Scale Invariant Feature Transform

GW Gaussian Weighted fusion strategy

MV Majority Voting fusion strategy

AVG Averaging fusion strategy

FN Fixed Number selection strategy

TH THresholding selection strategy



A B S T R A C T

In the modern clinical practice of Radiation Therapy (RT), the main goal of achiev-
ing a high local selectivity implies the necessity of accurately locate and monitor
the lesion along the whole treatment. The concept of Image Guided Radiation Ther-
apy (IGRT) has been introduced to underline the central role played by the imaging
along the course of therapy. Both in the planning phase and in the delivery phase,
the support of images has become fundamental for individuation and targeting
of the tumor. Given the fractionated nature of the treatment, the basic idea is to
compare the internal or external anatomy, acquired at each fraction during patient
set-up routine, with images used in the planning phase. In case of discrepancies,
the treatment plan is upgraded taking the new information into account. This pro-
cedure is often referred as Image Guided Adaptive Radiation Therapy (IGART).

While the delivery phase has been deeply investigated and new optimized and
sophisticated techniques (e.g. Intensity Modulated Radiation Therapy, IMRT) have
been developed to minimize damages to normal tissues, the treatment (re)planning
phase still leaves some questions open. The whole burden of planning and up-
dating is left on physicians and physicist, soaking up the most of their clinical
time and, in certain cases, delaying treatment delivery. The motivation of my PhD
project stems directly from these consideration, combined with the growing inter-
est in non-rigid image registation techniques, progressively undisclosing its poten-
tial for RT applications.

The current strategy for adaptive External Beam Radiation Therapy (EBRT) is
illustrated in Figure 0.1. The whole scheme can be divided into offline and online
procedures. Offline phase includes initial images acquisition, structures of interest
delineation and irradiation scheme definition. This is characterized by manual in-
tervention as well as by time and computational resources uptake, lasting from one
week to one month, depending on the clinical workload. Online procedures instead
encompass one or more imaging sessions both for positioning and changes track-
ing prior to proper treatment delivery. Positioning modifications can be directly
addressed by means of counch shifts and tilts, whereas non-rigid alterations of tis-
sues geometry (e.g. tumor or organs at risk relative translation and shape changes)
cannot yet be coped for without replanning and reoptimizing the whole treatment.
These latter modifications are generally detected with a combination of macro-
scopic observations (e.g. immobilization devices not fitting anymore) and in-room
imaging, such as double X-ray projections and Cone Beam Computed Tomography
(CBCT). If changes are beyond an empirically established threshold, a completely
manual replanning is done on a new Computed Tomography (CT), acquired suf-
ficiently near the in-room imaging session. Therefore, in the classical strategy, no
online adaptation of the treatment is foreseen but rather an offline manual update,
mainly consisting of recontouring and dose reoptimization and/or recalculation.

My PhD project has been concentrating on automatization of the manual proce-
dures both in the offline and online phases, aiming at developing fast and accurate
automatic strategies for planning segmentation and virtual planning CT genera-

xvi



abstract xvii

Figure 0.1: Current Clinical Workflow for Image Guided Adaptive Radiation Therapy. Of-
fline phases include planning images acquisition as well as treatment (contours
and beam geometry) definition. Patient setup adjustment as well as non-rigid
changes detection happens online, right before daily fraction delivery. If sig-
nificant modifications are detected, the daily treatment is suspended, while
offline corrections are computed. This adaptation implies the acquisition of a
new Computed Tomography.

tion. We concentrated on Head and Neck tumors, working on a database of total
45 patients, treated at European Institute of Oncology (Milan, Italy). All the pa-
tient underwent IMRT with a planned dose of 60-70Gy delivered in 2-2.12Gy per
fraction, one fraction per day. Current protocol entails a simulation CT (CTsim, ac-
quired on a GE Medical System Light Speed, Fairfield, CT) with or without contrast
medium injection, verification CBCTs (On-Board Imager, OBI, Varian, CA) and re-
planning CTs (CTrepl) at 40Gy and 50Gy. CBCT and CTrepl are acquired generally
one day apart, with 3 days distance as the worst case. Patient position reproducibil-
ity during imaging and treatment phases is guaranteed by customized head-neck
and shoulders thermoplastic masks fixed onto the couch, bite block, and three ra-
diopaque markers attached to the mask for initial alignment. Main indication for
replanning is represented by the over dosage of OARs, as highlighted by Dose Vol-
ume Histograms on CTrepl, but no beam modification and/or plan re-optimization
was employed in our population. Image resolution (for CTsim, CTrepl and CBCT)
was 1mm in AP and LL on average and 3mm along SI direction. Brainstem, optical
nerves, eyes, mandible, parotids and spine cord were contoured on CTsim of all
the patients, whereas mandible, parotids and Gross Tumor Volumes (GTV) were
selected as representative structures subjected to change during therapy.

The technological brick at the basis of my work is non rigid or Deformable Image
Registration (DIR), thus the transformation of the different sets of image data into
one geometric coordinate system. IR is also often called data fusion, to underline its
capability of bringing a floating and a reference image not only into geometric align-



abstract xviii

ment, but also literally to make them match. The number of degree of freedom of
the transformation is defined a-priori and its parameters are calculated optimizing
a cost function defining the similarity between the images involved in the process.
The optimization problem in the case of non rigid registration becomes more com-
plicated with the increase of the flexibility of the transformation, which generally
speaking corresponds to an increase in the number of parameters. Transformation
models control, either at a global or at a local level, how image features can be
moved relative to another to improve the similarity and define interpolation rules
between features where there is no usable information. This strategy has the po-
tential to model deformations occurring at a different time points of the treatment
(intra-subject registration) or between different patients (inter-subject registration),
and is not restricted to same modality registration, but can be used to integrate
information coming from different types of images, such as anatomical CT with
functional Positron Emission Tomography (multi-modal registration).

A popular choice is an elastic non-parametric model, which deforms the image
according to forces derived from the similarity measure. The image is considered
just as an elastic solid and therefore it has an internal energy, which opposes to
the external matching force. The deformation is applied until internal and exter-
nal forces reach and equilibrium. As it is an elastic model, large and localized
deformation are not allowed. Hence, a viscous fluid models have been developed,
for example the demons algorithm. In this algorithm, the image is considered a
set of isointensity contours, which are then pushed in the normal direction with
a magnitude and direction derived from the instantaneous optical flow equation.
Another popular choice is a class of parametric transformations based on the us-
age of splines as regularized interpolators. In particular, quadratic B-splines can
be used to parameterize a vector field over the volume of interest. The B-spline
coefficients are defined on control points, which lie on a coarse grid that covers the
region and the deformation field is a smooth interpolation of the coefficient value.

During the course of my PhD program, Log-Domain Diffeomorphic Demons
(LDDD) performances were studied. LDDD energy is optimized in a symmetric
log domain by an efficient second-order minimization in which the deformation
field φ is represented with a smooth and stationary velocity field n. The relation-
ship between the two is defined as φ(x) = exp(ν)(x) which is a diffeomorphic
deformation, progressively filtered by Gaussian Kernels so that its smoothness is
conserved throughout the optimization. Main issue regarding this algorithm was
the stopping condition or escape criteria at convergence. The most basic stopping
condition is to terminate the algorithm after a predetermined number of iterations.
Although very simple, this criteria is only weakly related to the actual conver-
gence. To relate the stopping criteria with registration convergence, we analyze
conditions based on image intensities and the deformation or velocity field. Cri-
teria based on image intensities are generally aimed at observing the change in
similarity between floating and reference image at current iteration t with respect
to the previous time points t-n, whereas deformation or velocity field analysis
focuses more on guaranteeing continuity and smoothness between neighbouring
voxels. The study was carried out applying synthetic non-rigid deformation fields
to phantom and patient CT. Analyzed trends of stopping conditions included reg-
istration metric, harmonic energy (i.e. degree of smoothness), jacobian (i.e. num-
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ber of discontinuities) and quantity of update (i.e. speed of convergence) of the
velocity field, calculated at each iteration. A set of possible reference values, to
compare the current stopping condition value with, was also examined. Results
indicate the minimum (maximum) of the last three stopping condition values with
the minimum (maximum) of the three iterations before the current one as the best
performing reference values. This kind of analysis was not necessary for Jacobian,
which we already computed in the form of a percentage error. The four criteria
were than ranked in terms of speed of convergence and stability. Both for patient
and phantom, the most efficient condition is based on harmonic energy. Quantity
of update ranked second in the phantom study, but demonstrated to be sensitive
to image quality, while registration metric might be helped or obstacled by strong
anchor points in the images (such as metal artifacts). Jacobian does not seem to
robustly monitor the transformation evolution in a LDDD run. These results can
easily be extended to other registration methods, by just substituting velocity with
deformation field, in case the first is not easily accessible.

In addition, an efficient implementation of B-Splines Deformable Image Regis-
tration (BSDIR) algorithm was analyzed for use in a clinical environment. Using a
grid alignment scheme, Plastimatch (www.plastimatch.org) can significantly accel-
erate the B-Spline interpolation and gradient computation, thus speeding up the
registration process. BSDIR uses cubic B-spline curves to define a displacement
field that maps the voxels in the floating image to those in a reference image. Since
the vector field is defined in a parametric fashion (that is, in terms of coefficients
provided by a set of control points), a cost function that quantifies the similarity be-
tween the images can be specified and registration can be posed as an optimization
problem. The registration process then iteratively defines coefficients P, performs
B-spline interpolation, evaluates the cost function C, calculates its derivative for
each control point, and performs gradient-descent optimization to generate the
next set of coefficients. Aligning the B-Splines grid to voxel grid allows us to pre-
compute all relevant B-spline basis function products once instead of recomputing
the evaluation for each individual tile of the control grid. The improved efficiency
of the registration process is reported in terms of running time on a benchmark
dataset. It takes 0.4 ~ 5.7 minutes to register to a pair of 3D CT benchmark images
at full resolution. The method is accurate and certainly demonstrate the potential
of clinical applicability. However, as all employed evaluation metrics are not con-
clusive in terms of local registration error, visual inspection is still needed in the
clinical setting.

The performance of both LDDD and BSDIR were compared to one of the few
FDA approved deformable registration softwares on the market, underlining criti-
cal issues and advantages of both approaches. Confirming mathematical properties
and literature, BSDIR demonstrated to be more flexible, faster and less sensitive
to initialization than Demons algorithm. Nonethless, this approach resulted more
prone to discontinuous deformation field and the introduction of a regularization
term was necessary.

Having this powerful instrument at our disposal, the problem of generating a
robust segmentation of structures of interest of a planning CT was first addressed.
The standard clinical procedure right now relies completely on manual contouring,
which is a rather long and tedious operation, suffering also from a high degree of
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inter- and intra-operator variability. An automatic segmentation method would be
desirable to support and speed up clinical workflows.

Automatic segmentation can be coarsely divided into deformable or model-
based approaches, and atlas-based methods. The first ones mainly rely on rely
on local image features, such as edges and make use of the assumption that object
boundaries are distinct. In order to cope for failures in regions where this assump-
tion does not hold (e.g. soft tissues), prior information about the structures aspect
has been introduced, but needs to be balanced in order not to limit the accuracy.

Several strategies for atlas based segmentation have been studied, which can be
classified based on templates numerousness. In a single atlas strategy, the only
template in the database is warped onto the new subject. The selection of single
atlas can be done naively or rely on image quality, but can deeply affect the final
segmentation outcome. In fact, its reliability increases exponentially, if the selected
template is more similar to the new subject, as this would lower the ill-poseness
of the registration problem. A popular choice for this algorithm is the employ-
ment of anthropomorphic phantoms, whose segmentation is guaranteed to be op-
timal. Besides being computational advantageous, this strategy cannot represent
the anatomical variability to the fullest. A second possible strategy relies on the
construction of a database of atlases, amongst which the most similar to the new
patient is selected. In comparison to the previous approach, the main advantage
is the ability of maximizing the probability of the chosen subject to be similar to
the new patient, if the database is sufficiently varied. On the other side, the risk
of compromising the results because of the failure of image registration and of a
non sufficient rappresentation of the anatomical variability in the database are still
present. An approach involving the construction of an average atlas might over-
come this issue, despite a degradation of the information due to the co-registration
of diverse model cases, shown as diffuse blur, getting more intense at structures
borders.

In the present work, we developed a fully automatic multi-atlas based segmen-
tation algorithm (Figure 0.2), for Head and Neck (HN) CT datasets. We considered
the following structures: mandible, spine cord, eyes, optical nerves, parotid glands
and brainstem. Generally speaking, we define atlas a CT image with its corre-
spondent manual segmentation. Our standing point is to build a comprehensive
database of patients (i.e. atlases), without establishing restrictive inclusions rules,
but rather representing the general clinical variability. The database atlases are reg-
istered onto the patient to be segmented in a pairwise fashion and the resulting
transformation is used to warp manual contours. Since the warped structures are
all equally probable realizations of the anatomical structure of the new subject, we
need to develop an efficient and robust strategy for final labelling estimation.

The first problem addressed was how to robustly clustering the atlases to select
only the most appropriate for the segmentation of the test patient. The evaluated
strategies rely on the pre-alignment of database subjects with a reference image
(in my case an anthropomorphic phantom) by means of affine registration. The
pre-alignment can occurr offline at the moment of database construction, while, at
the moment of planning, just the new subject needs to be aligned to the common
reference. Similarities in terms of Normalized Mutual Information (NMI) shared
by each atlas and the CT scan to be segmented are than computed. Based on
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Figure 0.2: Atlas based segmentation workflow. A database of atlases (i.e. pre-segmented
patients) are clustered according to their similarity to the new patient to be
segmented after having aligned everything on a reference image. The selected
template subjects are warped onto the new patient, applying the deformation
field estimated by a non-rigid image registration. The anatomical variability is
accounted for by the choice of more than one subject as atlas, but error intro-
duced by deformable registration and label fusion should be carefully analyzed.

this ranking, the group of subjects to be actually used for image segmentation is
than selected in a fixed number or NMI thresholding fashion. Fixing the number
of subjects has the main advantage of providing the same anatomical variability
no matter how the new subject looks like, while NMI thresholding guarantees
the inclusion of just the most similar patients. Nonetheless, if the CT scan to be
segmented is not well represented in the database, the first strategy could select
sub-optimal patients, while the second method could choose just one atlas.

The selected atlases are than deformed onto the patient image by means of
LDDD deformable registration and the corresponding segmented structures are
propagated using the same deformation. The tentative segmentations are then
recombined according to three different strategies (mean, majority voting and
weighted fusion), summarized in Table 0.1, in order to select the most robust and
accurate for RT planning. The main difference between mean and majority voting
is to be found on the structures borders, where a clear majority may not be defined.
Weighted fusion instead is a framework that assigns to each voxel a probability
of being actually part of the labelled structure, combining a gaussian weighted
difference between patient to be segmented and registered atlas images with an
exponential distance transform map of the propagated labels. This method was
first developed for Magnetic Resonance scans, in which the transition between the
different structures is rather clear. In HN CT scans, instead, the Hounsfield Unit
distribution is rather homogeneous in soft tissues, while bony structures are gener-
ally well contrasted. For these reasons, we relaxed the original hypothesis accord-
ing to which the probability of belonging to the structures has to be strictly bigger
than the one of not being part of it at each voxel. The reason for this assumption
has to be found considering that on one side the low contrast in soft tissues causes
not only uncertainity in image registration but also higher variability in contouring
and on the other side over-segmentation is less critical than under-segmentation for
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Table 0.1: Label Fusion strategies

Strategy
Formula

Average
L (x) = round

(∑
s Ls(x)
S

)
Majority Voting

L (x) =

 1

0

if
∑
s Ls (x) >

S
2

in all other cases

Gaussian Weighted
L (x) = argmax

∑
p (L (x) = l |Ls, Fs)p (I (x) | Is,Fs)
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p (L (x) = l |Ls, Fs) =

1√
2πσ2

exp− 1

2σ2
(I(x)−Is(φs(x)))

2

p (I (x) | Is,Fs) ∝ expρD
l
s(φs(x))

the foreseen RT application. Therefore, a scaling factor k was introduced, accord-
ing to which likelihood1 > k · likelihood0, where likelihoodn is the probability
of the voxel of assuming a value 1 (i.e. belonging to the real segmented structure)
or 0 (i.e. not belonging to the real segmented structure) and k = [0; 1]. The factor
k is taking into account the uncertainities connected with manual segmentation of
the atlases in the database, as well as of deformable registration.

The full algorithm was tested with a leave-one-out strategy, which consists in
selecting one patient at a time amongst all thirty-one CTsim of the patients in our
database, thus serving as target patient, and use all the rest as atlases. Patients were
acquired according to the standard clinical protocol designed for their patology.
The automatic segmentation of each patient was than compared with the manual
contours of the target patients by means of Dice Coefficient, which evaluates the
percentage overlap between the volumes. We further compared the strategies by
means of Wilcoxon rank test.

The percentile based selection and the fusion strategy based on Gaussian Weighted
Fusion between all the propagated contours outperformed the other methods on
this group of patients. In addition, a reduction in segmentation accuracy can be
seen as the number of patients is reduced to selecting just the most similar one.
Nonetheless, using only half of the atlases instead of the entire database, the re-
sults do not show a significant reduction of automatic segmentation accuracy. The
algorithm accuracy is comparable to inter-observer variability for the considered
structure, thus allowing the procedure, once optimized, to be adopted for clinical
use.

Having generated a reliable segmentation of organ at risks, after the attending
physician and physicist review treatment volume, analyze dose-to-volume relation-
ships, checking for inhomogeneity and violation of the maximum and minimum
dose contraints, and decide fractionation scheme, the patient can start the treat-
ment. For HN cancer, chemotherapy is usually paired to irradiation, to maximize
tumor control and minimize normal tissue damages. Only Twenty of the HN pa-
tients were included in this study. For each patient, we selected one or more cases
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(CTsim, CBCT at 40Gy/50Gy and CTrepl at 40Gy/50Gy), raising the total num-
ber of cases to twenty-eight. Mandible, parotid glands and Gross Tumor Volumes
(GTV) were retrospectively drawn on CTrepl by a radiation oncologist. CBCT im-
ages are acquired to monitor tissue changes, but the acquisition of a replanning
CT (CTrepl) is still preferred, though some efforts have been dedicated to address
CBCT technological limitations. The purpose of this work was to develop and vali-
date an efficient and automatic strategy to generate on-line virtualCT scans for HN
ART cancer treatment on the basis of a new CBCT volume, thus dropping the need
of a new CTrepl.

To generate the virtualCT, a multistage B-Spline deformable registration between
CTsim and CBCT was performed following rigid registration (Figure 0.3). For the
rigid coarse alignment, we used the fast rigid registration routine based on mutual
information offered in Slicer3D. Non rigid registration was performed using Plas-
timatch (www.plastimatch.org). Our hypothesis was that deformable registration
ideally compensates for non-rigid modifications, detected by in-room CBCT scan-
ning and call for a treatment replanning, when overcoming a predefined clinical
threshold. We did use one combination of parameters for this study, to make our
approach independent from the tuning of the registration parameters and thus clin-
ically feasible. The contours propagated on CBCT from CTsim (i.e. virtual contours)
and from CTrepl (i.e. CBCT surrogates contours) were compared in terms of Dice
Coefficient (DSC), Center Of Mass (COM) distances and Root Mean Square Error
(RMSE) between contour points. Taking into account the resolution of the images,
a good registration is indicated by a residual of maximum 3mm. We estimated the
deformation between CTsim versus CTrepl in terms of structures volume changes
as well as COM shifts, whereas the absence of deformation between CBCT and
CTrepl was verified by performing an additional deformable registration to esti-
mate the residual vector field length distribution within contoured structures. Fi-
nally, we computed Spearman correlation coefficient R (p-value = 0.05) between
the residual and estimated deformation and RMSE values on the contours, look-
ing for inaccuracies in the validation method and polarization in the algorithm,
respectively.

Median DSC was around 0.8 for mandible and parotid glands, but only 0.58 for
GTV, due to the fairly homogeneous background and to its small volume. Median
COM distance and RMSE were comparable with image resolution. Critical issues
raised in some patients, such as 6 and 7, mainly because of either sub-optimal
registration performances induced by external features like immobilization mask
or to macroscopic modifications between CBCT and CTrepl (i.e. different jaw posi-
tion). Only patients 1b, 7, 12, 15 and 16a show a RMSE equal or greater than 3 mm,
localized at transition between bone and teeth, whereas the different mandible
positioning causes validation method failure for patient 7. In fact, the residual me-
dian deformation between CBCT and CTrepl was between 0.13 mm and 1.8 mm in
the mandible, for all the patients but patient 7. For this patient, the median defor-
mation measured 3.80 mm, due to jaw displacement in the CTrepl scan compared
to CTsim. For both parotid glands, median DSCs were 0.78 and 0.79 and median
COMs distances were lower than 1 mm along LL and AP direction, and lower
than 1.5 mm along SI direction. Looking at RMSE for both parotids, we notice very
few cases, in which the distance was above the 3 mm threshold. At first sight, the
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Figure 0.3: Workflow for generation of a virtualCT. B-Spline deformable registration was
performed between CTsim and CBCT and compared with CTrepl, after having
rigidly registered it on the same CBCT to compensate for coordinate system
differences. Geometric validation was performed in terms of volume overlap,
difference between center of masses and contour surfaces.

Table 0.2: Median and interquartile ranges for virtualCT and surrogate CBCT contours
comparison with four different metrics (DSC, COM and RMSE)

DSC [%] COM [mm] RMSE [mm]

Mandible 85 (5) 1.09 (1.71) 1.40 (0.67)

Left parotid 79 (6) 2.24 (2.23) 2.21 (0.52)

Right parotid 78 (6) 1.60 (2.34) 2.23 (0.40)

GTV 56 (16) 3.24 (3.30) 2.56 (1.35)

most critical structure appears to be GTV, for which median DSC was just 0.58

and RMSE violated the acceptance threshold in seven patients. Median results are
summarized in Table 0.2.

The expectation of the mandible having the best results among all the re-contoured
structures, because of its high contrast on the CT scan and the absence of non-
rigid deformations, was confirmed by the quantitative results. With our strategy,
we are able to compensate parotid glands shifts and shape differences, with ac-
curacy comparable to the image resolution, allowing for a constant plan update
between fractions, to avoid permanent side effects induced by irradiation, such
as reduced salivary flow rate. The maximum of difference (around 1 cm) can be
found at the frontal part of the parotids, where the separation between gland and
masseter is not clear in CBCT, and in the lateral part of the contour, where the
deformation is under-estimated because of errors induced by immobilization de-
vices. For those patients in which the GTV was clearly contrasted the RMSE and
COMs distances matched the axial voxel resolution of 1 mm (see for example pa-
tient 19) and DSC was greater than 0.7. Otherwise, deformable registration was
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Table 0.3: Median and interquartile ranges of the distribution of accuracy of SIFT in terms
of point-to-point distance between extracted on four couples of images (CTsim
vs CBCT, CTsim_rig vs CBCT, virtualCT vs CBCT, CTrepl vs CBCT)

median [mm] 50
th-25

th [mm] 75
th-50

th [mm]

CTsim vs CBCT 31.52 5.03 10.92

CTsim_rig vs CBCT 1.35 0.42 0.58

virtualCT vs CBCT 0.66 0.00 0.27

CTrepl vs CBCT 0.66 0.00 0.38

Table 0.4: Median synthetic non-rigid deformations for phantom study

Right-Left [mm] Anterior-Posterior [mm] Superior-Inferior [mm]

1 0.06 0.52 0.02

2 0.06 0.52 1.51

3 0.62 0.52 1.41

not able to compensate for different shapes of GTV. In fact, for seven patients, the
GTV was immerse in a rather uniform background, as it was already reported,
and also the contoured lesion was very small, thus augmenting the probability of
mis-positioning and of contouring differences as well as the negative correlation
between structures volume and DSC value. Local tissue contrast enhancement, pe-
nalizing the sharp transitions, and mask refinement would limit inaccuracies in
registration and further refine the deformation map. This latter can be used for
cumulative dose evaluation as well as for treatment plan fast update. Dosimetric
evaluation will be needed to compare virtualCT and CTrepl distributions and in-
troduction of virtualCT concept into the clinic. As for the computational efficiency,
the algorithm running times were on the order of 5 minutes with volumes of size
512x512x116 on a laptop mounting an Intel® Core™2 Duo 2.2GHz, with 2GB of
RAM.

An alternative approach to evaluate DR performance is to compare the position
of anatomic or external landmarks after registration has been performed. In clini-
cal practice, most applications are based on the manually identification of anatom-
ical landmarks, a time-consuming and operator-dependent procedure. Therefore,
several algorithms have been developed to perform automatic or semi-automatic
landmarks extraction and matching, with the goal of increasing the accuracy of de-
tection and decreasing the cost in terms of time. First operators for the automatic
extraction of points, such as Harris corner detectors, examined an image at a single
scale, thus implicitly reducing the accuracy and stability already at the detection
step. The invariance properties of a feature extraction method is very important, if
we want to find salient interest points in images subjected to inter- or intra-patient
variability. A method that can extract and match stable and trustworthy points at
different scales between two images, is Scale Invariant Features Transform (SIFT).
The features are detected as local extrema of a Difference Of Gaussian (DOG) pyra-
mid and subsequently low contrasted (i.e. noisy) landmarks as well as overcrowed
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edges descriptors are eliminated. To study the SIFT sensitivity to transformation,
a phantom study was conducted, by applying different rigid transformations and,
for the first time, non-rigid transformations. Finally, we apply SIFT to pairs of regis-
tered images of the replanned patients, with the goal of assessing DR performance.
Selected deformations are summarized in Table 0.4.

Applying a rigid transformation to the image, the median for all five cases is
below the voxel dimension, confirming the invariance of the method to this trans-
formation. There are few outliers around 3mm, due to a wrong association of the
keypoint in axial direction. In fact, the extraction of extrema from DoGs implies the
calculation of a finite difference derivative, which concentrates the voxel informa-
tion in its center. This implies uncertainty in the attribution of the axial coordinate
to the keypoint, that justifies outliers values. SIFT can also cope with deformable
vector field, without violating the upper bound on accuracy.

SIFT features extracted on original CBCT, CTsim rigidly registered on CBCT,
virtualCT and CTrepl, were compared with the corresponding CBCT landmarks
in terms of residual point distance and the accuracy of the associations is com-
pared with other indices proposed in literature based on contours (DSC, COM
and RMSE). The extracted features are located both on bony structures and in soft
tissues and therefore provide a great alternative to manual point clicking. Nonethe-
less, the classical algorithm implementation relies on a descriptor based feature
association, which does not consider any position relationship between the land-
marks. The descriptor in fact is an histogram describing not only the properties of
the voxel in which the feature is located, but also the neighbooring region. This
lack of geometrical relative relationship can result in a wrong localization of the
correspondencies between points. To overcome this limit, an hybrid SIFT - Iterative
Closest Point algorithm should be tested.

Although much work is still needed for the definitive validation of the tech-
niques developed during my PhD, we were able develop a robust and automatic
segmentation method for CTsim, and to generate a virtualCT with its associated
segmentation of OARs and GTV for ART purposes, based upon the information
gained from the in-room CBCT scan and the application of a deformable image reg-
istration algorithm. We aimed at producing a reliable initial segmentation of CTsim
and at sparing a CT scan (CTrepl) to the patient by modeling the inter-fractional
deformations, thus avoiding any delay in the therapy as well as reducing the clin-
ical workload. Computational time was reduced to the point that the strategies
can be defined clinically feasible. Moreover, the gaussian weighting label fusion
has the potential for becoming a competitive for robust CTsim structures planning.
virtualCT contours are a representation of patient GTVs, parotids and mandible
volumes at fixed treatment time points, as the calculated deformation is able to
capture shape and position changes with an accuracy comparable to image resolu-
tion.

The developed approaches could therefore be appropriate for a clinical ART
implementation, dropping the need of a CTrepl and improving the overall clinical
workflow.
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1
I N T R O D U C T I O N

The object of this thesis is Image Guided Adaptive Radiation and Hadron Therapy, i.e.
the development and optimization of clinically feasible strategies for the online up-
date of radiation therapy treatment. In particular, we worked on automatization of
the manual procedures both in the offline and online phases, aiming at developing
fast and accurate automatic strategies for planning segmentation and virtual plan-
ning CT generation. The motivation for this work is to be found in the nature of
the radiation therapy treatment itself, which involves multiple sessions and patient
repositioning over several days. In this scenario, it is obvious that changes might be
introduced that cannot be compensated for just by means of rigid transformations
(i.e. by acting on treatment couch degrees of freedom). An important instrument
becomes deformable registration, which is able to model all the non-rigid modifi-
cations. We will focus on Computed Tomography (CT) and Cone-Beam CT (CBCT)
datasets, which are the most used in the clinic because of the relationship between
tissue density (i.e. the information entailed into CT voxels) and beam energy de-
posit (i.e. dose delivery).

This dissertation is divided into five parts:

1. In chapter 2, we will introduce the base concept of modern radiation- and
hadron-therapy, looking at radiobiological effects of current clinical proto-
cols and at recently introduced technological innovations. We will describe
in particular the use of imaging as support for physicians decision and guid-
ance for beam planning and adaptation. The most widespread protocols for
head and neck image guided adaptive radiation therapy will be introduced,
using this as an example pathology for the main clinical need of technical in-
struments for treatment real-time monitoring and constant adaptation to the
modified patients. Finally, the main issue raising in current clinical practice
will be described, underlining the ones addressed in the present work.

2. In chapter 3, we will introduce the technological background of the present
work and review its main components. The clinical applicability and current
limitations of deformable registration will be discussed in details, tracing the
path for the technical motivation beyond this thesis. We will describe the
ill-poseness of the problem on the example of two main models of the non-
rigid transformations (B-Splines and Log Domain Diffeomorphic Demons)
and the issue raising when trying to assess the validity of the deformation
and quantifying algorithm performances.

3. In chapter 4, possibile solutions for the limitations introduced in chapter 3

will be introduced. Having as main goal the enhancement of clinical appli-
cability of deformable registration, we will study behaviour at convergence
and suggest possible robust escape conditions on the example of Log Do-
main Diffeomorphic Demons CT-to-CT non-rigid registration. We will than
propose an user-independent validation metric, studying its properties on
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the example of CT-to-CT and CT-to-CBCT B-Spline registration. We further
look into both Log Domain Diffeomorphic Demons and B-Splines, compar-
ing their relative strengths and weaknesses.

4. In chapter 5.2, we will illustrate possible strategies for automatic segmenta-
tion at planning and online treatment adaptation on the example of head and
neck district. The problem of generating a robust segmentation of structures
of interest of a planning CT is first addressed, in response to the clinical need
not only of less computational time, but also of generating a robust contour
not affected by inter- and intra-operator variability for mandible, spine cord,
eyes, optical nerves, parotid glands and brainstem. We developed a multi-
atlas automatic segmentation strategy, relying on a database of CT images
with its correspondent manual segmentation (i.e. atlases). Having generated
a reliable segmentation of organ at risks, the patient can start the treatment,
along which course image guided monitoring is foreseen to detect the modi-
fications between diverse sessions. Here we will illustrate the developed and
validated efficient and automatic strategy to generate on-line virtualCT scans
to be used for head and neck adaptive cancer treatment.

5. In chapter 6, we will sum up results obtained in chapter 4 and 5.2 both for
the technical components and clinical applications addressed in this work.
The proposed innovative strategies and future improvements will be also
reviewed.



2
I M A G E G U I D E D A D A P T I V E T H E R A P Y

Under the term Radiation Therapy (RT) we understand the delivery of medical
ionizing radiation for cancer cure. It can be used as single treatment strategy, or
after surgery and/or in combination with systemic therapies (i.e. chemotherapy).

The goal of RT is to achieve maximal therapeutic benefit, expressed in terms
of probability of local tumor control with minimal side effects to surrounding
structures. The radiation can be administered both placing sources into the patient
(e.g. Brachytherapy) or, more often, as External Beam Radiation Therapy (EBRT).
This second technique is used for about 60% of cancer patients and implies the
delivery from an external device, i.e. a linear accelerator for photons or a cyclotron
for particle therapy. In practice, this often equates to irradiate the tumor with a
higher dose to improve local control whilst maintaining an acceptably low dose to
other tissues, particularly those adjacent to the target.

Sparing of normal tissues can be accomplished into two ways:

• Geometric avoidance, by directing multiple beams at the target, thus deliver-
ing a high dose at beam intersection (i.e. target) and a relatively lower dose
outside of the intersection.

• Biological sparing, by fractionating the therapy over several weeks, irradiat-
ing daily. The tumor tissue lacks repair mechanisms to repair DNA damage
from the radiation, whilst normal tissues can repair minor DNA damage.
Therefore, by fractionating the treatment, normal tissues are provided time
to repair, thus biologically sparing the normal tissue.

2.1 conventional radiation therapy

For cancer treatment, both photons and charged particles (e.g. electrons, protons
or carbon ions) can be used. The main difference is given from the distribution
of dose with respect to tissue depth (Figure 2.1). By contrast with X-rays, which
show an exponential decrease in the radiation dose with increasing tissue depth,
charged particles do not deposit most energy at the body’s surface (Figure 2.1a),
but rather just before they come to rest in tissue (i.e. in correspondance of the so-
called Bragg Peak). The particles have very little energy beyond this peak, whose
position is proportional to the energy of the particle. Since the Bragg Peak is narrow
for particle at a given energy, to cover the whole tumor extent, a series of beams at
different energies need to be superimposed, thus producing a Spread Out Bragg
Peak (SOBP, Figure 2.1b). Variation in beam energy cause a shift in peak location,
i.e. in delivery depth. Hadrontherapy is nonetheless mainly indicated for cancer
inaccessible to surgery (e.g. eye, spine cord tumors) and/or are hard to treat with
conventional RT.

For photons, a dose conformality similar to the one of charged particles can be
achieved by irradiating the tissue from different directions, modulating beam in-
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(a) Comparison between dose-depth distributions for X-rays and
charged particles.

(b) Comparison between dose-depth distributions for X-rays and
SOBP.

Figure 2.1: Dose-depth relationship for X-rays and particles. The Bragg Peak can achieve
an almost punctual delivery of energy to the tissue in comparison to the X-
rays distributions, which have a larger decay at patient surface (Panel a). To
treat larger volumes, the Bragg Peak is enlarged by modulating energy in over-
lapping beams, generating the so-called SOBP (Panel b). The flatten plateau is
achieved correcting the dose profile according to the radiobiological effect. [1]
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(a) (b)

Figure 2.2: IMRT Treatment Planning on Varian Workstation. Panel (a) shows a Clinac
with 120 Multi Leaf Collimator sculpting the beam according to tumor volume
shape in the projection corresponding to the current angle of irradiation, while
in Panel (b) the workstation view of the planned beams is illustrated.

tensities to vary delivery depth, and maximize dose at beams intersection. Intensity
Modulated RT (IMRT) leads to excellent tumour control although a large volume
of healthy tissues can be exposed to radiation. IMRT can include several directions
individually shaped using a moving multileaf collimator, conforming the dose to
tumor volume, and it is delivered by a medical linear accelerator mounted on a
gantry and thus able to rotate around the patient (Figure 2.2).

Despite the extended time frame of fractionated radiotherapy (4–6 weeks), le-
sion and surrounding Organs At Risk (OAR) identification is carried out based on
anatomical information derived from a single 3D anatomical Computed Tomog-
raphy (CT) image data set acquired at the onset of treatment design and with
the patient immobilized in treatment position. Planning can be divided into two
different phases:

• Contouring phase, in which volumes are outlined on the CT scan by the
attending radiation oncology.

• Physics optimization phase, in which the appropriate beam type (electron or
photon), energy (e.g. 6 MeV, 12 MeV), geometry and collimation are selected.

Typical requirements of RT plan include homogeneity, conformity, avoidance, and
simplicity [2, 3]. A conformity requirement is used to achieve the prescribed tar-
get dose, while minimizing the damage to OARs or healthy normal structure (i.e.
avoidance requirement), evaluated by means of Dose-Volume Histograms (DVH),
and to have uniform dose distributions on the target so that no portion of an organ
is underdosed (i.e. cold spots) or overdosed (i.e. hot spot). These requirements can
be enforced using lower and upper bounds on the dose, or approximated using
penalization. Finally, simplicity requirements state that a treatment plan should be
as simple as possible, to reduce the treatment time as well as implementation error.

Besides ensuring immobilization with proper casts and cushions, the patient is
marked for repeated alignment with localization lasers in the treatment room to
ensure correct macroscopic positioning of the patient at different fractions. There
are two main sources of problems in the traditional system used for repositioning
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Table 2.1: Inter- and Intra-fractional sources of errors on delineation of OAR and tumor
volumes. [5]

Variations
Intra-fraction sources of

errors
Inter-fraction sources of

errors

Random Systematic Random Systematic

in size Physiological
Process (e.g.
breathing,
peristalsis)

Physiological
Process (e.g.
heart
beating,
breathing)

Physiological
Process (e.g.
bladder
filling,
bowel gas)

Tumor
reduction

or swelling

in
position
relative to
a fixed
point in
the
patient

Weight loss
or radiation

edema

in patient
position
relative to
treatment
beam

Patient
Movements

Daily set-up Technical
errors

in the clinical routine: on one side, the systems do not provide a fast and quan-
titative feedback to evaluate the quality of the positioning, and on the other side,
each system requires the operator to be fully trained and expert in order the pro-
cedure to be successful. If we assume to have been accurate in positioning, still we
would need to compensate for both rigid and non-rigid modifications, due both
to physiological and non-physiological phaenomena. Intra-fractional (during a sin-
gle treatment fraction) geometric change occurs during delivery due to breathing,
cardiac motion, rectal peristalsis and bladder filling. Inter-fractional (day-to-day)
geometric change occurs over the weeks of therapy, due to digestive processes,
change of breathing patterns, difference in patient setup, and treatment response
like growth or shrinkage of the tumor or nearby risk organs (e.g. parotids volume
in head and neck treatment). A brief overview of principal modifications is shown
in table 2.1. The sources of error can be divided into a systematic and random
component. The systematic component is built up from all those errors committed
in the preparation to the treatment, while the random component is mainly to be
ascribed to the execution. van Herk [4] describes the effect of the random errors
as blurring the dose distribution, whereas the systematic ones cause a shift in the
cumulative dose distribution relative to the target (i.e. the highest dose region is
moved to side from the target).

All of these changes are normally taken into account by population-based “un-
certainty” margins around the target area, which may be excessive or conservative
and are applied to the structures identified before the therapy begins, in order to
safely irradiate tumor and ensure sparing of OARs.
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Figure 2.3: The different volumes defined for radiation therapy planning and their relation
[3].

According to the International Commission on Radiation Units (ICRU) reports
no. 50 and 62 [2, 3], the following volumes have to be defined when planning a
treatment in any body district:

• GTV – Gross Target Volume: outlined on the planning scan/on medical im-
ages, it includes “the gross palpable or visible/ demonstrable extent and location of
malignant growth” [2].

• CTV – Clinical Target Volume: it includes the GTV, the sub-clinical micro-
scopic diseases and other areas (e. g. lymph nodes) that have to be eliminated
because considered at risk. This can be defined by simply adding a fixed or
variable margin to the GTV.

• ITV - Internal Target Volume: it includes CTV and an Internal Margin (IM).
IM is designed to take into account the variations in the size and position
of the CTV relative to the patient’s reference frame (usually defined by the
bony anatomy); that is, variations due to organ motions such as breathing
and bladder or rectal contents [3].

• PTV – Planning Target Volume: this volume is defined to select the appro-
priate beam arrangements, taking into account all the possible geometrical
variations [3] with IM. A Set-up Margin (SM) is also added to include the
possible set-up errors or misalignment of beams.

Reducing set-up errors and understanding organ motion is therefore essential for
shrinking the safety margins without compromising the tumor coverage. Both SM
and IM are generally derived from experience or using values reported in litera-
ture, thus meaning that margins are site and patient specific, as their definition at
the present mainly depend on motion magnitude.

2.2 image guided radiation therapy

Besides laser coarse alignment, patient in-room position is monitored and cor-
rected for at each fraction also with the use of X-rays projections and/or 3D image
volumes acquisition. The monitoring through images does not only allow to detect
global mis-positioning on treatment couch, but also modification induced by natu-
ral processes in the body and response of normal and target tissue to the treatment.
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Broadly stated, IGRT involves any use of image to aid decisions in the radiother-
apy process, such as what and how to treat, delineation of volumes, positioning,
verification and monitoring of treatment outcomes.

Clinical imaging techniques can be loosely classified into anatomic methods,
which measure the basic physical characteristics of tissue such as their density, and
biological imaging techniques, which measure functional characteristics such as
metabolism. Both of them are used to quantify and raise the accuracy of treatment
delivery, but anatomical imaging plays a bigger role in contouring and planning,
whether functional imaging is more popular for verification and follow-up of the
treatment. In both cases, we can further divide image modalities in offline and
in-room imaging, the latter grouping all those images that can be acquired while
the patient is immobilized onto the treatment couch, just before, during or after
the therapy. Biological imaging technique are generally offline techniques as they
require injection of contrast media.

2.2.1 Anatomical imaging in a radiation therapy clinic

Offline anatomical image modalities include:

• CT, which allows 3D contouring, beams definition and analysis of the dose
distribution decay, thanks to the linear relationship existing between tissue
density and image gray levels (coded in terms of Hounsfield Units). The main
advantages of CT are high spatial integrity and spatial resolution, very good
delineation of bony structures. However, CT scan as well as other imaging
modalities are subjected to artifacts due to breathing and other physiolog-
ical movements, such as peristalsis [6, 5]. New protocols for CT scan have
been developed in order to account and compensate for the presence of these
movements, such as gated scanning or respiratory correlated CT acquisitons
[7, 6].

• Magnetic Resonance Imaging (MRI), which has gained importance in partic-
ular in the treatments of Central Nervous System (CNS) and of the abdomen
and pelvis, because of its ability to discriminate soft tissues. Also MRI scan
is often fused with CT images to delineate the malignancy [8, 9]. Specialized
scans, such as diffusion and perfusion MRI or functional MRI, enable physi-
cians to make axonal and functional maps, which describe the structural
connectivity of the brain and may allow a better definition of brain tumors
and sparing of sensitive regions [10].

• Position Emission Tomography (PET), whose radioactive tracer comulation is
used for malignancies identification and contouring. PET has a lower spatial
resolution than CT images and contains no anatomical information about nor-
mal structures. The main weakness in this procedure is the usage of 18F-FGD
(fluorine-18-labeled deoxyglucose) as tracer, whose injection causes discom-
fort to the patient and whose consumption can result evident also in some
not pathological situations, such as brain or bladder. This problem was re-
cently addressed thanks to the development of tracers which correlates with
proliferation, rather than growth (e. g. FLT - fluorothymidine) . In addition, in
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order to easily interpret the data, PET scan often needs to be fused with the
correspondent CT images [11, 12]. The uncertainties of the fusion software
are partly eliminated by the introduction of a PET/CT scanner, as the two
scans are acquired one after the other, being the patient in the same position.

CT is and will be likely to remain the predominant volumetric imaging modality
for radiotherapy. The role of CT in simulation is to provide a faithful representa-
tion of the object. When simulating treatment, the alignment of the patient can rely
on skeletal alignment, often by means of a CT scout view, marking of the patient
isocenter with a tattoo and/or overlaying radioopaque marker prior to the scan.
An alternative approach is to identify the isocenter directly on the CT scan. In-
room identification occurs after repositioning with external lasers, optoelectronic
devices, and in-room imaging. For all approaches, careful attention to appropriate
patient immobilization and recording the patient pose for reproduction of the set-
up during treatment delivery are critical to accurate radiotherapy [13]. Eventual
discrepancies in patient positioning are corrected acting on couch degrees of free-
dom [14]. An interesting comparison between external optoelectronic localization
and kV in-room imaging is provided by Tagaste et al [15]. In dose calculations, after
appropriate calibration, CT allows an appropriate CT number-to-electron-density
conversion. 3D volume also forms the basis for the Digitally Reconstructed Radio-
graph (DRR), which is used as the template for verifying delivery using portal
imaging or in-room or gantry mounted 2D kV imaging.

MR utilises the changing mobility of water molecules to obtain a wide range
of manipulable image contrasts, complemented by an increasing range of contrast
agents. Spatial resolution tipically ranges from 0.5-2.0 mm, with a slice thickness
from 0.5-7.0 mm. MR often plays an important role in defining the location and
local extent of disease. It provides a primary role in CNS disease, and in some
diseases (e.g., prostate cancer [16] or head and neck cancer [17]). Recent develop-
ments in contrast agents and techniques may inform on tissue oxygenation [18].
MR simulation has been developed at a number of centres [19, 20], but still raises
issues concearning geometric distorsions (e.g. those induced by inhomogenities in
the magnetic field) and scarce informations about electron density in comparison
with CT. Diffusion provides a sensitive method of identifying disease and follow-
ing changes in cellularity, and it is showing promise in whole body surveys of
metastatic disease, involved lymph nodes and brain tracts identification [21], with
potential to better identify areas for treatment and sparing of critical functions, as
well as for early prediction of treatment response and toxicity. Both for functional
and anatomical MRIs, the most common approach is use image registration to
combine these modalities with a more conventional CT scan. In fact, image fusion
algorithms allow to combine together different imaging modalities with the aim of
more accurate planning and margin personalization, merging the advantages and
different insight provided by the diverse modalities.

PET is playing an increasing role in the radiation therapy treatment planning
process since the emergence in year 2000 of combination PET-CT scanners followed
by dedicated PET-CT simulators. There are three main areas of application of PET
in radiation therapy:

1. Standardization of tumor delineation in comparison to CT with the use of
18F-FDG-PET/CT for a number of cancers that are well-imaged on PET.
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2. Diffentiation of specific tumour biologic and microenvironmental features
relevant to the radiobiology of the cancer by means of appropriate ad-hoc
tracers. PET can provide prognostic information on the aggressiveness of the
cancer as well as information for a “dose painting” treatment [22], by using
such tracers (e.g., of hypoxia, angiogenesis, proliferation). Such application,
however, is not yet in routine clinical practice.

3. Evaluation of tumour response based on imaging signals associated with tu-
mour/tissue viability and metabolic changes, rather than anatomic changes
acquired from the CT component of the PET-CT exam. Prospective moni-
toring of tumour response during a course of radiation therapy is probably
neither practical nor useful given the confounds of radiation induced tumour
cell death and inflammatory response. However, FDG PET scans performed
at a consistent interval post-treatment may yield a reproducible measure of
tumour response [23].

One of the first in-room imaging were portal images to verify patient set-up with
respect to the radiation beam. Generally the position of the isocentre of the beams
relative to the patient’s anatomy, obtained from DRRs, is verified using either the
actual treatment fields or two additional orthogonal fields. If the treatment fields
are used, the portal image also provides information about the correct beam aper-
ture or positioning of the blocks. Portal films are applied to verify patient set-up
during treatment. A disadvantage of the use of the film technique is its off-line
character, which requires a certain amount of time before the result can be applied
clinically. For this reason on-line electronic portal imaging devices (EPIDs) have
been developed for acquiring megavoltage images during patient treatment. In or-
der to apply portal imaging in the clinic, local protocols have to be established
stating the frequency of portal imaging, the criteria for acceptability of observed
set-up deviations, and the responsibility for making decisions for changing the pa-
tient position. A detailed review on the clinical use of EPIDs for portal imaging
purposes has been given by Langmack [24] and Herman et al [25] .

There are five major imaging methods employed in the systems that are currently
available on the market:

• Ultrasound (US), in which conventional systems are employed in conjunction
with a tracking system (optical or robotic) to allow US images of internal
anatomy to be related to the isocentre of the treatment unit. These systems
have the advantages of low-cost, easy integration within the RT process, and
freedom from toxicity. Controversial points include the dependence of pre-
cision and accuracy on the skill and training of the operator, and the poten-
tial for errors arising from displacement of the relevant anatomy during the
placement of the US probe [26, 27].

• Megavoltage CT, which is mainly used in conjunction with tomotherapy treat-
ments and results in a loss in contrast-to-noise as compared to kilovoltage sys-
tems when equivalent doses are applied (~3 cGy to isocenter) [28, 29]. The ge-
ometric accuracy and quality of these images is high and should permit pre-
cise and accurate positioning of the patient. The use of the megavoltage beam
provides accurate electron density estimation and reduces the magnitude of
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artifacts associated with metal implants. The issues facing this technology in-
clude lower spatial resolution in the longitudinal direction (typically ~3 mm)
and limitations on the ability to monitor motion during treatment.

• kilovoltage 2D radiography, which offer high geometric targeting precision
and accuracy for high contrast surrogates of the target and normal tissues.
The low imaging dose and high level of integration make it possible to per-
form multiple localizations during the course of a single fraction to verify
correct and stable targeting of the treatment beam, despite its low contrast
and 2D nature. The potential for very frequent monitoring (~15 fps) is made
possible with the development of high-performance fluoroscopic modes, that
can be used to monitor also intra-fraction changes [30].

• Cone-Beam CT (both kilovoltage and megavoltage), in which the accelera-
tor itself is equipped with a source-detector couple. Provided that appropri-
ate mapping of the system geometry has been performed, it is possible to
employ filtered back-projection methods [31] to reconstruct an x-ray cross-
section map (effectively a 3-D, high resolution CT image) of the patient’s
internal anatomy while positioned on the couch of the treatment unit. This
allows the operator to detect, localize, and adjust the location of the internal
anatomy with respect to the treatment beam just before the start of irradia-
tion. These approaches have the advantage of soft-tissue detection and imag-
ing of the patient in the treatment position. The greatest issues facing these
systems arise from intra-acquisition motion, x-ray scatter on the detectors,
detector lag, and limited field of view of the x-ray detector. These lead to
variable image quality, inaccuracy of CT numbers, presence of shading, and
truncation artefacts.

• CT-on-rails, a conventional CT scanner which is located near the accelerator
used for EBRT, allowing to move the patient back and forth between acceler-
ator and CT scanner.

In addition, it is worth mentioning the development of in-room verification sys-
tems, such as in-room PET dosimetry [32, 33] or proton radiography [34, 35, 36].
The additional dose due to the imaging is a growing concern in the medical com-
munity and is considered in the selection of the imaging technique.

A general scheme for IGRT is shown in Figure 2.4. The first step relies upon the
acquisition of a CT scan in treatment position for planning. This is a joint work
of the attending physician and physicist, who define both geometrical constraints
(i.e. avoidance of OARs and target volumes) as well as dose and beams constraints
(i.e. max/min dose delivered to each structure, beam angles and intensities and
fractionation scheme). These two first phases can take up from one week to one
month, mainly depending on clinical workload and complexity of the region to
be irradiated. The next five phases constitute the real treatment. At each fraction,
the patient is positioned on the couch, using both external tracking systems (e.g.
lasers) and personalized immobilization devices. At all fractions or only at protocol
specified ones, in-room images of the patient as on treatment couch are acquired.
Agreement with planning CT is checked based on bony anatomy, soft tissues such
as OARs or tumor volume directly, and finally rigid (i.e. rotations and translations)
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Figure 2.4: Workflow of a classical RT treatment. After the acquisition of volumetric im-
ages, the attending physician and physicist individuate structures and plan
beams directions and parameters, in order to maximize the therapeutic benefit
and minimize side effects to organ at risk. The patient is than treated accord-
ing to institution and site specific fractionation schemes. At each session, the
patient is accurately repositioned exploting both customized immobilization
devices and in-room imaging. Rigid corrections are applied acting on the treat-
ment couch degrees of freedom, after manual evaluation of the discrepancies
between current situation and planned treatment.

corrections are computed. The couch position is subsequently updated and than
the treatment is executed. The process from patient immobilization on is repeated
at each fraction, until the prescribed total amount of dose is delivered.

2.3 image guided adaptation of the therapy (of head and neck)

The rapid development of IGRT and IMRT has provided tools for improving accu-
racy of patient positioning, target localization and conformality of dose distribu-
tion. Achieving a higher conformality does not necessarily imply better outcome,
but may decrease toxicity in the OARs, especially for Head and Neck (HN) pa-
tients, as demonstrated by clinical experience [37, 38, 39]. Standard clinical pro-
tocols are mainly one-plan-for-all-fraction approach, thus relying on a single 3D
snapshot of the patient anatomy at time of planning. In this phase, an accurate
target definition is crucial, both to fully exploit the IMRT potential, delivering the
highest prescribed dose to the highest tumor cell density (i.e. GTV volume), and
to minimize dose to normal surrounding anatomy. Correlation between irradiate
volumes, delivered dose and therapy induced side effects, such as, in HN patients,
salivary production modification [40, 41], dysphagia and aspiration [42, 43], has
been investigated.

The motivation for breaking out of conventional strategy comes from the viola-
tion of the assumption that the daily anatomy remains the same as initial planning,
as suggested from clinical evidence of both disease and normal anatomy being sig-
nificantly modified during a 6-7-week course of treatment, such as that of HN



2.3 image guided adaptation of the therapy (of head and neck) 14

patients. These changes include positive evolution of primary and nodal disease,
alterations in normal glands and mucosa, resolution of post-operative soft tissue
effects, and weight loss [44, 45]. Barker et al [44] reported median GTV and parotid
volume loss of 0.2cc per treatment day in 14 patients imaged with CT scans three
times a week during the whole therapy, as well as a median 7.1% weight loss from
first fraction. These data were confirmed also by a megavoltage CT study from
Lee et al [46], whereas Wang et al [47] reported an average volume loss of 20%
at parotid glands after 3-weeks treatment, correlating significantly with delivered
mean dose. Parotid glands volume loss and medial shift towards high doses areas
was recently demonstrated also by Ricchetti et al [48], whereas tumor volumes do
not generally follow predictable trajectories. There is also clinical evidence that
patients may benefit from treatment update before or around the 25th fraction
[49, 50], to avoid underdosing the target and/or overdosing the healthy tissues/or-
gans, which may translate into compromised tumor control and/or increased ad-
verse effects.

Image Guided Adaptive RT (IGART) is an approach to correct for daily tumor
and normal tissue variations through online or offline modification of original
IMRT target volumes and plans. An adaptive approach breaks the conventional
sequential procedure of RT simulation, treatment planning and dose delivery, thus
aiming at re-designing the approach from a one-plan-for-all-fractions to an anatomy-
of-the-day scenario. IGART can be divided into two distict phases: monitoring and
adaptation. The monitoring phase relies on the same technology used in standard
IGRT, with the three main goals:

• modelling organ motion and correction of patient setup.

• distribution of the dose delivered to changing patient geometry.

• on-line monitoring of tumor response and normal tissue acute damage.

A general trend in IGART is to image the patient at a frequency comparable with
or finer than the time scale of the anatomy changes thanks to the availability of
in-room equipment and to use the data for as an online/offline feedback, to better
direct the subsequent treatment. Daily in-room volumetric imaging is essential to
both IGRT and IGART. In fact, even though no adaptation is foreseen, Region Of
Interest (ROI) alignment on bony anatomy and only in exceptional cases on treat-
ment volume is conducted daily or at specific fractions identified from an institu-
tion specific protocol. Current standard clinical protocols do not foresee fraction
suspension, but rather new CT acquisition corresponding to in-room monitoring,
even though inter-fractional changes do not urge at replanning.

Among all the technologies (see §2.2.1), CBCT stands as state-of-the-art in-room
imaging technology, which could be exploited also as basis for treatment plan real-
time adaptation. In contrast with the CT-based planning, CBCT is at its early stage
in radio– and proton-therapy application and it is not yet considered a reliable tool
for planning, mainly because of its HU inaccuracies [51, 52] due to larger contribu-
tion of scattered radiation and limited field of view [53]. CBCT has the advantage
of being an instant 3D image of the patient as on the treatment couch, of delivering
a lower dose to the patient and of being acquired in the same frame of reference of
the treatment beam. Nevertheless, due to its 3D volumetric ability, good soft tissue
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Figure 2.5: Image Guided Adaptive RT workflow. In comparison to the workflow in Figure
2.4, the adaptive procols foresee an active decision after the detection of changes
in the patient that cannot be addressed acting on the treatment couch degrees
of freedom, because they actually are non-rigid modifications. In the current
clinical practice, if the change is bigger than an institution specific threshold, a
second CT needs to be acquired and manually replanned. For HN district, the
image volume acquisition does not generally involve contrast medium injection,
thus limiting the physicians possibility of discriminating between different soft
tissue.

contrast and low patient dose, CBCT also offers potential in evaluating the deliv-
ered dose distribution, online modification of the treatment plan and even online
re-optimization. Jaffray et al [54] demonstrated that the system is capable of pro-
ducing images of soft tissue with excellent spatial resolution at acceptable imaging
doses, as well as the interfractional setup error reduction when using CBCT for
soft tissue alignment. Barney et al [55] showed the accuracy of CBCT-based IGRT
in comparison with kV fiducial imaging, despite the need of longer computational
time, whereas Shi el al [56] reported suboptimal performances for gray-valued
alignment against shifts calculated on fiducial markers alignment.

Aside from the full exploitation of the potential offered by the state-of-the-art
technology, reliable tools enabling a real-time and physically consistent plan up-
date, accounting also for those non-rigid shape modification which have occurred
before the treatment day and/or on the treatment couch (e.g. breathing) and can-
not be successfully compensated by shifts and/or rotation of the couch, are still
missing.
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A general IGART workflow is shown in Figure 2.5. With respect to Figure 2.4, a
feedback line is added, representing the adaptation of the plan, based on a new CT
acquisition, after the detection of non-rigid modifications of the patient. In theory,
ART can occur at three different timescales: offline between fractions, online prior
to a fraction and in real-time during treatment delivery. As such, the feedback
line along which the image volumes are brought back to the treatment planning
workstation, has to satisfy different time requirements. In addition, adaptation
often implies dose recalculation and rarely proper re-contouring, given the restric-
tive time constraints imposed by the clinical workflow. Technical components of
IGART strategies have been recently reviewed by Wu et al [57] and Schwartz et
al [58]. First attempt of IGART clinical implementation by Nijkamp et al [59] for
prostate patients demonstrate the potential effectiveness in reducing overdose to
organ at risk and high-dose regions. Replanning clinical benefit was also assessed
recently by Jensen et al [60] .

Given the hard constraints imposed by the clinical routine, a very popular strat-
egy is the offline adaptation of plan and dose between fractions, thus implying ei-
ther that the in-room image volume is not used until the next fraction of treatment
or that a brand new CT volume has to be acquired. Among others [61, 62, 63, 64],
Yan et al [65] developed a strategy to re-optimize treatment plan based on a target
volume built from the first several fractions of image data. Wu et al [66] looked at
possible margin customization and reduction as a conseguence of adaptation call,
whereas Wu et al [67] used treatment re-optimization for compensating cold spots,
i.e. underdosage area, in the volume from the next fraction. In addition, Woodford
et al [68] demonstrated, using megavoltage CT, the clinical benefit of treatment
plan adaptation if GTV volume decreases more than 30% during therapy course.

To overcome issues introduced from offline replanning, several researchers have
been concentrating on online or hybrid adaptive paradigms, this latter meaning
that the modifications occur at the same fraction in which the imaging is acquired
only if major changes are detected, whereas all patients undergo online reposi-
tioning. Court et al [69, 70] developed an efficient method for dose homogeneity
improvement based on the modification of MultiLeaf Collimator (MLC) positions
by means of 2D registration of corresponding slices in planning and daily CT. Alter-
native approaches were proposed by Mohan et al [71] and Fu et al [72] by means
of projecting anatomy in beams-eye-view and subsequently deforming intensity
maps based on the new geometrical constraints. Fluence map and direct aperture
modification on the basis of planning-to-daily non rigid deformation map was de-
signed by Wu et al [73] and Feng et al [74] respectively. Perhaps the algorithm
nearest to a clinically feasible implementation was proposed by Ahunbay et al [75]
and relies on the subsequent optimization of MLC segments and monitor units.

Online replanning implies not only an efficient beam re-optimization and dose
re-calculation but also a fast re-contouring method not subjected to intra- and
inter-observer variability [76], thus being the uncertainity associated with single
and multiple rater contouring respectively. In the head and neck area, treatment
planning is especially complex and can require hours of tedious manual contour-
ing work (2~4h). Fast and robust autosegmentation of structures of interest can be
than achieved propagating original planning contours by means of the calculated
transform with minimal manual input. In this kind of application, there is no a
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priori determined relationship between a voxel’s intensity value and the label that
should be assigned to it, as we are seeking to label anatomical structures rather
than tissue. Therefore, clustering methods, such as [77], cannot be employed, and
a neighborhood relationships needs to be included in the segmentation process. A
representation of these relationship is an atlas. Mathematically speaking, an atlas
A is a mapping A : Rn → Ψ from Rn, n-dimensional spatial coordinates to labels
from a set of classes Ψ and as such it is a special type of image, that is, a label
image. A typical realization of an atlas is a manually segmented image and/or a
computational phantom. Therefore, we typically have access not only to a spatial
map of labels, the actual atlas, but also to a corresponding realization using at least
one particular imaging modality. In order to segment a new image using an atlas
A, we need to compute an anatomically correct coordinate mapping between them.
When compared to other segmentation algorithms, such as level sets [78] or water-
sheds [79], this approach has a major advantage of having an a priori knowledge
about the shape and the distribution of the segmented structures, that can be used
to guide the segmentation.

In this context, image registration algorithms offer a huge potential to be ex-
ploited. Although details will be given in chapter 3, the main idea is to describe
the modification occurred between two datasets by means of a mathematical trans-
form with increasing number of degrees of freedom depending upon the complex-
ity of the physiological phaenomena to be described. The idea is that, given an
accurate coordinate mapping from the image to the atlas, the label for each image
voxel can be determined by looking up the structure at the corresponding location
in the warped atlas [80, 81].

Several strategies for atlas based segmentation have been developed, which can
be classified based on templates numerousness [82, 83, 84]. The basic idea is to
deform the structures manually outlined on one scan to predict the segmentation
of a new patient on the basis of a vector field estimated by means of Deformable
Registration (DR) [85]. This procedure suffers in first place from the fact that the
chosen atlas might not be representative of test subject anatomy and in second
place from DR inaccuracies. A popular choice for this algorithm is the employ-
ment of computational phantoms, whose segmentation is guaranteed to be opti-
mal [86, 87]. A second possible strategy relies on a database of atlases, amongst
which the most similar to the new patient is selected. Here, the main advantage
is the ability of maximizing the probability of the chosen subject to be similar to
the test patient, if the database is sufficiently varied. An approach involving the
construction of an average atlas may overcome this issue, despite a degradation of
the information due to the co-registration of diverse model cases, shown as diffuse
blur, getting more intense at structures borders [88, 86, 89, 90, 91]. Several studies
have demonstrated that label fusion outperforms the single-atlas approach, when
the anatomical variability is too high to be accurately captured by mean statistics
[92, 93, 94]. Therefore, the attention has been concentrating in constructing the so-
called probabilistic atlases [95, 96, 97] or in developing strategies in which each
subject in the database is registered to the target image independently and the re-
sulting segmentations are combined [93, 98, 99, 100]. Groupwise registration and
introduction of a prior into registration have also been recently explored, to boost
algorithms further [101, 102, 103, 104, 105]. Most of these algorithms were devel-
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oped for Magnetic Resonance Images segmentation, where boundaries between
structures are generally evident and well defined. This image modality, although
employed as support source of information, is generally not employed as in-room
imaging in offline/online radiation therapy adaptation.

Besides pure segmentation problems, a fundamental issue in IGART is to obtain
and guarantee geometrical alignment at re-planning. Wu et al [106] and Zhang et
al [107] focused on CT-CT registration and tested a full replanning approach on
a restricted set of patients. Nithiananthan et al [108] concentrated on Cone-Beam
Computed Tomography (CBCT) guided intervention, demonstrating its feasibil-
ity and ability to capture the 3D patient anatomy during treatment on a cadaver
phantom and patient study. Faggiano et al [109] and Hou et al [110] worked on
multi-modal image volumes and were able to predict parotid glands position on
mega voltage CT and soft tissue control points defined on CBCT respectively.

From this brief description of IGART, it is clear that one of the most critical
point is represented by DIR itself, that not only needs to be fast and accurate, but
also needs to reach convergence no matter which images and of which quality are
employed. Validation of a registration algorithm also represents a critical issue in a
clinical environment, in terms of possible metrics employable in a real clinical case.
These questions will be addressed in chapter 4.2 and 4.3. We then will illustrate and
validate a strategy for inter-patient multi-atlas segmentation of HN CT anatomical
structures applicable both at planning and adaptation stage in chapter 5.1. Finally,
we will present a strategy for generating a virtualCT volume to be exploited for
fast online and/or offline adaptation of the HN treatment in chapter 5.2, with
the double aim of dropping the need of a re-planning CT scan and to generate
reliable virtual scan with corresponding geometry on which to re-calculate dose
and re-optimize treatment.



3
I M A G E R E G I S T R AT I O N I N R A D I AT I O N T H E R A P Y

Within the current clinical setting, there is a increasing request of integrating all in-
formation gathered with imaging, in order to be able to formulate a more complete
profile of the patient. A key component of this process is Image Registration (IR),
which is the transformation of the different sets of image data into one geometric
coordinate system. IR is also often called data fusion, to underline its capability of
bringing images not only into geometric alignment, but also literally to make them
match.

3.1 an introduction into ir problem

Given a reference I(x,y, z) and a floating image J(x,y, z) , IR goal is to find a suitable
transformation φ such that the transformed floating becomes similar to the refer-
ence. In other words, given I(x,y, z) and J(x,y, z), we aim at optimizing φ so that
I(x,y, z) = J(φ(x,y, z)).

Though the IR problem is easy to state, it is generally hard to solve. As demon-
strated in [111], The problem is ill-posed and its solution may not be unique. In fact,
not only small changes of the input images or initialization can lead to completely
different registration results, but also we may find several equally optimal solu-
tions to fuse the input datasets. Suppose we want to register the two images in
Figure 3.1, allowing for similarity transformations only. We can find several equiv-
alent solutions (pure translation, a rotation followed by a translation, etc.), which
cannot be sorted out without additional knowledge. As testified by the still vivid
interest into algorithm developments and custom adaptation, each application has
its own demands with respect to the level of accuracy required by the problem, to
the definition of which kind of transformation model is allowed, and to constraints
in terms of computational resources and time.

(a) reference image (b) floating image

Figure 3.1: Ambiguity of IR problems. How many ways do you have to fuse floating (b)
and reference (a) image?

19
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In general, we can divide IR applications into four groups, according to the
relation between the datasets to be registered [112]:

1. Multiview analysis (images of the same scene taken from different view-
points), e.g. reconstruction of 3D coordinates of points from 2D camera views.

2. Multitemporal analysis (images of the same scene acquired in different times),
e.g. treatments follow-up, adaptive radiation therapy.

3. Multimodal analysis (images of the same scene acquired from different sen-
sors), e.g. CT/PET, MRI/CT integrations.

4. Scene to model registration, e.g. comparison of digital images and anatomical
atlas.

In addition to this classification, IR methods can be broadly clustered according
to the type of inputs or of employed algorithm [113]. The available input sources
include 2D and 3D images (e.g. portal and CT images) as well as 3D digitized
points obtained for example by means of laser scanning.

Roughly speaking, sources could be divided into geometric objects and intensity
data. Using sparse, accurately segmented, geometric data results in fast running
times, and intra- and inter-modal registration are not distinct cases. This method
has the advantage of being biologically valid, thus meaning that the result can
be interpreted in terms of the underlying anatomy. Intensity-based approaches
match intensity patterns using mathematical or statistical criteria, and thus do not
use pre-segmented data, but may not be biologically consistent. Therefore, hybrid
methods have been developed [114]. These algorithms mix together the geomet-
ric and model-based approaches with the intensity-based one, thus exploiting the
advantages of both techniques. Dimensionality classification would further define
IR as a mD-to-nD problem, where m and n are not necessarily correspondant (e.g.
2D-to-3D) [115].

The majority of commercially available registration methods include only rigid
motion, thus implying that the relative distances between different points of the
imaged object are not modified by the algorithm. From a strict mathematical point
of view, this results in the description of the transformation by means of only
translations and rotations. Rigid IR (RIR) concept is generally extended to affine
transformation too, where the scaling can be modeled by a single factor. In con-
trast, non-rigid (Deformable) Image Registration (DIR) implies some stretching of
the volume to be matched with the reference. DIR algorithms compute the defor-
mation at each voxel using specific transformation models, e.g. diffusion, elastic
or fluid. We can further divide the transformations into global and local. By def-
inition, a transformation it is called global if it applies to the entire image, and
local if subsections of the image each have their own transformations defined. Lo-
cal transformation are rarely used alone, because they might compromise the local
continuity and bijectiveness.

3.2 algorithms constitutive elements

An IR algorithm can be decomposed into four main elements [? ], which interact
as in Figure 3.2:
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Figure 3.2: Elements of IR and their interaction in an iterative optimization scheme.

• a similarity metric (i.e. cost function to be optimized)

• a transformation model φ

• an optimization scheme

• an interpolation scheme

First of all, it is necessary to define a cost function (similarity metric), which pro-
vides a fitness value of the match of transformed floating (i.e. warped) and refer-
ence image. The transformation model defines how an image can be deformed to
match another. They have two purposes: first, to control how image features can
be moved relative to another to improve the similarity; second, to interpolate be-
tween features where there is no usable information. The model is then optimized
with a specified optimization scheme. The output transformation estimated from
the optimizer is used to generate the warped image, after proper regularization (if
deemed necessary) and with the help interpolation scheme.

3.2.1 Similarity measure

The similarity measure describes how well the two images match. Ideally, this
would imply the definition of a continuous monotonic function, having a single
global minimum or maximum in correspondence of the optimal transformation
parameters. In practice, this requirement is relaxed to just have a local minimum
or maximum at some optimal parameters combination.

Geometric approaches build explicit models of conspicuous anatomical elements
in the images, e.g. curves, landmarks or surfaces. The features can be classified as
hard, i.e. fiducial markers which are positioned before imaging at certain spatial
positions on a patient, or soft, i.e. retrospective landmarks deduced from the im-
ages themselves. The spatial location of these “anatomical” landmarks requires ex-
pert knowledge and/or sophisticated image analysis tools for automatic detection.
The most distinctive element in these type of algorithms is definitely the definition
of correspondences, which can be established manually, using a distance measure
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Table 3.1: Common image similarity measures (from [? ]). N is the number of voxels, II (x)
is the intensity of an image at voxel x, IJ (φ (x)) is the intensity at corresponding
point given by the current estimation of transformation φ (x); HII , HIJ and HIIIJ
are respectively the Shannon entropies of image II and IJ and the joint entropies
of II and IJ.

Voxel similarity measure Formula

Sum of Squared Differences SSD = 1
N

∑
x (II (x) − IJ (φ(x)))

2

Correlation Coefficient CC =∑
x(II(x)−II)·(IJ(φ(x))−IJ)√∑

x(II(x)−II)
2·
∑
x(IJ(φ(x))−IJ)

2

Mutual Information MI (II, IJ) = HII +HIJ −HIIIJ ,
where H· = −

∑
i (pi · log (pi))

or evaluating some image properties and deeply affects the final result. Such al-
gorithms optimize measures such as the average distance (L2 norm) between each
landmark and its closest counterpart, or iterated minimal landmark distances (e.g.
Iterative Closest Point algorithm [116], Head and Hat algorithm [117, 118]). Curves
and/or surfaces appear in literature under the form of snakes or active contours,
whereas 3-D deformable models are sometimes referred to as nets.

The most frequently used similarity measures are summarized in Table 3.1. The
sum of squared differences supposes that intensities of corresponding voxels of
registered images differ only by Gaussian noise and therefore this measure is only
appropriate for mono-modal registrations. Another possibility for single mode reg-
istration is to compute the cross-correlation coefficient, based on the assumption
that registered images have linear intensity relationship and objects of interest are
in the field of view of both images. Mutual information assumes, instead, only a
probabilistic relationship between the intensities. It is based on the computation
of the entropies of the intensities distribution and can be used also in multimodal
registration [119, 120, 115] . This metric reaches its maximum when the two im-
ages are aligned, but it requires normalization to exclude dependence from initial
alignment. Pluim et al [121] proposed the Normalized Mutual Information (NMI)
as

NMI (II, IJ) =
H (II) +H (IJ)

H (II, IJ)

where H (II) and H (IJ) are the Shannon entropies of the reference and floating im-
ages respectively and H (II, IJ) is the joint entropy of the two input volumes. A
drawback is that MI is not a least-squares criterion and the calculation of derivative
information is not straightforward. To get a rough feeling of what these quantities
mean, in Figure 3.3, we show a famous example by Pluim et al [122]. From left to
right, the joint entropy distribution spread is increasing. The corresponding joint
entropy values are (a) 3.82; (b) 6.79; (c) 6.98; and (d) 7.15. If they would have com-
puted the corresponding value of MI, (a) would have the maximum value, while
(d) the minimum.



3.2 algorithms constitutive elements 23

Figure 3.3: Joint gray value histograms of a Magnetic Resonance Image with itself. (a) His-
togram shows the situation when the images are registered. Because the images
are identical, all gray value correspondences lie on the diagonal. (b), (c), and
(d) show the resulting histograms when one MR image is rotated with respect
to the other by angles of 2, 5, and 10, respectively. [121]

3.2.2 Rigid transformation models

An image coordinate transformation is called rigid, when only translations and
rotations are allowed. Rigid transformations are a subset of the broader class of
affine transformations. An affine 3-D transformation can be described using a sin-
gle constant matrix equation, such as y = Ax+b, where x is a vector of the original
coordinates and y is the output point. Therefore, the affine model is described as a
linear transform followed by a translation (b). Matrix A describes the linear trans-
form, that can include rotations, scaling, shear, reflection. If we restrict to rigid
models, the only allowed transformations are rotations and translation and there-
fore, the matrix A is orthogonal (i.e. its columns form an orthogonal basis, with
determinant equal to 1). In homogeneous coordinates, the transform matrix for a
3D registration problem can than be written as:

−→pR = R ∗ −→pI +
−→
t

where R is a 3x3 rotation matrix, t is the translation vector and −→pI and −→pR are
the original and rototranslated point.

Rigid registration has increasingly become a clinical standard, to calculate rota-
tions and translations to be applied to the couch to cope for differences in patient
positioning. In this case, the problem can still be seen as an optimization problem
with nsix of freedom.

3.2.3 Non-rigid transformation models

Models used in medical image registration to describe an elastic deformation can
be divided into parametric and non-parametric transformations. The parametric
methods can be generally described by a quite limited number of parameters,
whereas non-parametric methods typically feature a transformation function that
is based on a vector per voxel describing the displacement of the point represented
by this voxel. We will describe one model of parametric and non-parametric regis-
tration, whose performances will be discussed in chapter 4.
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3.2.3.1 Parametric transformation models

The transformation between reference and floating image can be seen as a deforma-
tion field defined by a linear combination of a class of basis functions. A typical
example is the use of Thin Plate Splines (TPS) [123], which can intuitively be under-
stood thinking of a thin metal plate being bent by point constraints. This plate will
arrange itself in a configuration in which the bending is smoothly distributed. The
point contraints are landmarks individuated manually or automatically both on
the reference image and on the floating image and voxel intensity are not explicitly
used. The deformation field in this case is basically an interpolation function, that
satisfies the condition

−→
φ (
−→
ik) =

−→
jk

where
−→
ik and

−→
jkare corresponding sets of points defined on reference image I(x,y, z)

and floating image J(x,y, z) respectively. The displacement field is calculated as

−→
φ (
−→
ik) =

N∑
k=1

−→ckM(d) +A
−→
ik + b

where A
−→
ik +b is an affine transformation, N is the number of control points, M(d)

and −→ck are the chosen basis function depending on the Euclidean distance between
points d =

∣∣∣−→ik −−→jk ∣∣∣and its coefficients respectively. Intuitively, −→ck is the bending
force applied at each control point. For TPS,MTPS(d) = d. This type of registration
is also called landmark based registration and the most influent paramenter, is defi-
nitely the distribution of the control points. In fact, its dispersion deeply influences
the vector field shape and the degree of localization of the displacements.

Another approach is to base the transformation on a number of control points
arranged in a regular grid. An often used technique is cubic B-splines, which have
the advantage of local support [124, 125, 126]. In this type of model, a change of
a parameter only affects the transformation in a spatially limited neighborhood
while other parts of the deformation remain unchanged. Hence, with respect to
image deformation, only the relevant part of the image has to be resampled, which
significantly improves the computational performance.

A B-spline is a piecewise polynomial with a uniform spacing between the control
points nxnynz, which is extended to higher dimensions by a tensor product, thus
in 3D:

φx (x,y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

βl (u)βm (v)βn (w)Px (i+ l, j+m,k+n)

where Px is the spline coefficient defining the x component of the displacement
vector for one of the control points that influence the voxel. The basis function
βl(u) is defined as follows (and similarly βm(v) and βn(w)):
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x

y

voxel (2,7) at offset (2,3) of tile (0,1)

voxel grid

B-spline grid

voxel (7,7) at offset (2,3) of tile (1,1)
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Figure 3.4: (a) Overlay between 2D image and a 5 × 4 control-point grid. The latter is
aligned to the voxel grid. Marked and grayed voxel have the same relative offset
within their respective tiles, and therefore they will use the same βl (u)βm (v)

value. (b) For aligned grids, lookup tables can accelerate the registration process
by eliminating redundant computations. (from [127])

βl(u) =



β0 =
(1−u)3

6

β1 =
3u3−6u2+4

6

β2 =
−3u3+3u2+3u+1

6

β3 =
u3

6

One efficient method to model the deformation field and to achieve reasonable
computational cost, was developed by Wu et al [126] and succesively GPU acceler-
ated [124, 128] and validated [127, 129, 130]. It is distributed in the form of open
source multi-platform package under the name Plastimatch (www.plastimatch.org).
It consists in aligning the B-spline control point grid to the voxel grid, thus parti-
tioning into many equal-sized tiles of dimensions NxxNyxNz, where Nx, Ny, and
Nz denote the distance between control points, in terms of voxels, in the x, y, and
z directions, respectively (Figure 3.4a). Basically, each voxel in the tile is influenced
by the 64 control points in the neighbouring tiles, while the values of the basis
functions depends only on the local coordinates within the tile.

Therefore, the coordinates of the tile, in which the voxel (x,y, z)falls, are:

i =

⌊
x

Nx

⌋
− 1 j =

⌊
y

Ny

⌋
− 1 k =

⌊
z

Nz

⌋
− 1

The coordinates in the tile, normalized in [0,1], instead:

u =
x

Nx
−

⌊
x

Nx

⌋
v =

y

Ny
−

⌊
y

Ny

⌋
w =

y

Nz
−

⌊
z

Nz

⌋
This approach allows to pre-compute all relevant B-spline basis function products
once, instead of recomputing the evaluation for each individual tile, because two
voxels in two different tiles having the same offset in the tile results in the same
basis functions product (Figure 3.4a).
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In order to further speed up the computation, a complex data structure was
developed (Figure 3.4b), further exploiting the symmetries derived from the align-
ment. The strategy relies on two LookUp Tables (LUT), called Index and Multiplier
LUT respectively. The set of control point indices influencing each tile in the vol-
ume are stored in the Index LUT, while Multiplier LUT contain β (u)β (v)β (w)

products, which are the same for all valid normalized coordinate combinations.
Therefore, for each voxel, the absolute (x,y,z) coordinates are used to calculate the
tile it falls within as well as its relative coordinates in the tile. The Index LUT is
than queried to derive the value of the 64 control points that influence that voxel,
while from the Multiplier LUT, appropriate β (u)β (v)β (w) products are derived.
In comparison to the classical methods, this strategy reduces necessary computa-
tion to 64 queries and multiplications plus final accumulation for each voxel and
vector field component, against 192 computations of the cubic polynomial B-Spline
basis function and multiplications plus 63 additions for each voxel.

Once the displacement vector field is generated, the moving image is deformed
and compared to the static image by means of the chosen registration metric. For
example if we assume Mean Squared Error (MSE) as metric, the cost function
becomes

S(II, IJ ◦φ) =
1

N

∑
x

∑
y

∑
z

(I (x,y, z) − J (x+φx,y+φy, z+φz))
2

The optimization of this cost function, requires the computation of the derivatives
at each control point coefficient value, thus

∂S

∂P
=
∑

(x,y,z)

∂S

∂φ(x,y, z)
∂φ(x,y, z)

∂P

where the first term does depend just on the cost function S and as such is not
depending on the B-Spline parametrization employed. For example, for MSE case,
the equation becomes ∂S

∂φ(x,y,z) = [I (x,y, z) − J (x+φx,y+φy, z+φz)]∇J (x,y, z),
which depends on intensity values in the reference image I(x,y, z) and floating im-
age J(x,y, z) as well as on the current vector field estimate u. As the deformation
field is updated at each iteration, ∂S/∂φ(x,y,z) needs to be computed at every itera-
tion. The second term instead depends just on B-Spline parameterization and thus
remaining constant over the optimization process, such that

∂φ(x,y, z)
∂P

=

3∑
l=0

3∑
m=0

3∑
n=0

βl(u)βm(v)βn(w)

Furthermore, given the built data structure, the values needed for ∂φ(x,y,z)/∂P are
already pre-calculated in the Multiplier LUT.

Since the displacement of the control points is not constrained during optimiza-
tion, a folding of the points may occur resulting in an inconsistent topology of
the deformation field. To overcome this difficulty, several techniques for regular-
ization are proposed such as adding an energy term to the similarity measure or
using multi-level B-Spline approximation techniques [131, 125]. The strategy cho-
sen by Plastimatch developers relies on a second derivative regularization term,
which can be computed either analytically or numerically. The regularization term
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is added to the similarity term directly into the cost function and its amount can
be directly controlled by the user via the parameter λ. Therefore the general form
of the regularizated cost function c becomes:

c = S(II, IJ ◦φ) + λcRM

where S(II, IJ ◦ φ) is the intensity metric term, which penalizes images that do
not match well, and cRM is the regularization term, which penalizes non-smooth
transformation. Typical values of λ range between 0.005 and 0.1. We define cRM as
the square of the vector field second derivative, thus:

cRM =

∫
Ω

(
cRM,x + cRM,y + cRM,z

)
where cRM,x =

(
∂φ2x
∂x2

)2
+
(
∂φ2x
∂y2

)2
+
(
∂φ2x
∂z2

)2
+
(
∂φ2x
∂x∂y

)2
+
(
∂φ2x
∂x∂z

)2
+
(
∂φ2x
∂y∂z

)2
,

φ = (φx,φy,φz) is the vector field and Ω is the domain of the fixed image. In the
analytical approach, the regularization is computed directly from the 192 control
points of the B-Spline at each tile, which are formed into a vector v = (vx, vy, vz).
The smoothness is computed using a 64x64 matrix K, as a quadratic form:

cRM = v ′xKvx + v
′
yKvy + v

′
zKvz

The matrix K is precomputed, and can be reused for each tile. The results are than
numerically integrated tile-by-tile over the fixed image. In the numerical approach
instead, finite differencing is used to compute the derivatives, which are than inte-
grated over all voxels.

3.2.3.2 Non-parametric transformation models

Non-parametric transformations rely on physical properties and functions to guide
the registration process. In this case the deformation is represented by means of a
dense vector field (up to one vector per voxel) and needs to be subjected to regu-
larization constraints. Generally, constraints are defined using an energy function
computed from the deformation field. The DIR problem becomes the one of find-
ing an equilibrium between external forces applied to the elastic continuum and
internal forces that arise from elastic properties being modeled. The external forces
are derived based on local similarity of voxels in the images. The internal elastic
forces are based on the model itself.

Linear elastic energy is one of the most commonly used. Since the linear elas-
ticity assumption is only valid for small deformations it is hard to recover large
image differences with these techniques. Replacing the elastic model by a viscous
fluid model allows large and highly localized deformations. The higher flexibility
increases the opportunity for misregistration, generally implying growth of one
region instead of distorting another [132]. For viscous models, the DIR solves the
following Navier equation, which is a partial differential equation implicitly regu-
larising the registration and limiting the types of deformation field allowed:

µ∇2v(x, t) + (λ+ µ)∇
(
∇T · v(x, t)

)
+
−→
F
(−→x , t

)
= 0
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where v is the velocity field, F is the force on the object at x that depends on
t, and m and l are Lames coefficients, determined from Young’s Modulus (E) and
Poisson’s ratio (u), through the equations

E =
µ(3λ+2µ)
λ+µ υ = λ

2(λ+µ)

Demons algorithm solves this PDE and was introduced by Thirion in [133]. It
uses optical flow1 to find a driving force at each point based on the intensity gradi-
ent of the image. The allowed transformations are described using a velocity field
where each voxel has an associated deformation vector describing which voxel has
to be pulled to the reference image. To regularise the flow a Gaussian filter is used.

An interesting and mathematically robust variation of the classical demons schema
has been proposed by Vercauteren et al in 2009 [134]. The Log-Domain Diffeo-
morphic Demons (LDDD) combines the advantage of optimizing a diffeomorphic
transformation with a computationally efficient framework, in which the optimiza-
tion of the cost function happens in two different steps.

In order to cast the demons algorithm into a minimization of a well posed crite-
rion, a hidden variable was introduced in the registration process: correspondences.
The idea is to consider the regularization criterion as a prior on the smoothness
of the transformation F. Instead of requiring that point correspondences between
image pixels, a non-parametric spatial transformation s, be exact realizations of the
spatial transformation F, one allows some error at each image point. The algorithm
minimizes the cost function:

E(φ, s; II, IJ) =
1

(σ2i )
S(II, IJ ◦φ) +

1

(σ2c)
dist(φ, s) +

1

(σ2T )
cRM(s)

Where S(II, IJ ◦φ) = ||II, IJ ◦φ||2 is the image disparity measure, dist(φ, s) =
||φ − s||2 quantifies the similarity between the deformations F and s, cRM(s)

is the degree of smoothness of the deformation and σ2i ,σ2c,σ2T balance the contri-
bution of the three terms of the cost function. The introduced auxiliary variable
allows to decouple the complex minimization into two separate steps: the first step
solves for 1/σ2iS(II, IJ ◦φ) + 1/σ2cdist(φ, s) (i.e. correspondences) with respect to c
and with s being given, while the second step solves 1/σ2cdist(φ, s) + 1/σ2TcRM(s),
with respect to s and with c being given. The symmetric log domain is introduced
by an efficient second-order minimization in which the warp F is represented with
a smooth and stationary velocity field v. The relationship between the two is de-
fined as φ (x) = exp (v) (x) which is a diffeomorphic deformation, with inverse
φ−1 (x) = exp (−v) (x). At each iteration, an update velocity field u is computed
minimizing:

Ediff (φ, s; II, IJ) = S (II, IJ ◦φ ◦ exp (u)) + ‖u‖2

Therefore, the algorithm proceeds as follows:

1. Compute uforward and ubackward that minimize Ediff.

2. Smooth with a Gaussian kernel K so that u = 1
2K ? (uforward − ubackward)

.

1 Optical flow is by definition the appearent motion from brightness patterns.
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3. Update v = v + u + 1
2 [u, v] , where [u, v] = |Jacv(x)| · u(x) − |Jacv(x)| · v(x)

and |Jacv(x)| is the determinant of the Jacobian of the velocity field.

The update rule can be described in several different ways. At each voxel x, we
compute [134, 135]:

u(x) =
II(x) − (IJ ◦ exp (v)) (x)

‖G (x)‖2 + σ2i (x)

σ2c

G (x)

where σi(x) is estimated from image noise, σc controls the maximum step length
and G (x) = −12 (∇xII +∇x (IJ ◦ exp (v))) is the symmetric gradient evaluated
usign both images.

Optical flow methods ( and therefore the demons too) rely onto two basic as-
sumptions:

1. Brightness constancy, according to which in the local neighboorhood the in-
tensities of the two images do not change over time, thus f (x+ u, t+ δt) =

f(x, t). For small displacements, using first order Taylor expansion, his as-
sumption leads to an optical flow constraint ∇f · u = 0, with ∇f are the
partial derivatives of the images.

2. Small motion

To satify these two constraints, histogram matching and pyramidal approach is
often applied.

3.2.4 Optimization scheme and strategies

To find the best transformation, we seek parameters that minimize an appropriate
cost function. The optimization problem in the case of non rigid registration be-
comes more complicated with the increase of the flexibility of the transformation.
This means that there are more parameters to choose from compared to the rigid
case. Moreover, in some cases, the algorithm converges to a solution, but this is not
physically meaningful. Seeking the optimization of a parameter set is a problem
solvable with standard methods, such as Steepest Gradient Descent, Conjugate
Gradient Method, Levenberg – Marquart method or Limited-memory Broyden –
Fletcher – Goldfarb – Shanno (L-BFGS) .

The Steepest Gradient Descent Method is an optimization strategy, where one
takes steps proportional to the negative of the gradient of the function at the cur-
rent point. The Conjugate Gradient Method is an algorithm for the numerical so-
lution of particular systems of linear equations, which have to be symmetric and
positive definite. The conjugate gradient method is an iterative method and it can
be applied to sparse systems which are too large to be handled by direct methods.
It is often applied for solving partial different equation but it can be used also to
solve unconstrained optimization problems. Levenberg – Marquart algorithm is a
numerical method used to find a solution to non linear least squares problems. It
is particularly used for curve fitting and non linear programming. Compared with
the Gauss-Newton Algorithm (GNA), it is more robust, thus meaning that even if
starting off from very far off the minimum, it finds a solution. If instead the initial
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Figure 3.5: (a) The intensities are pushed to the target, located according to the deforma-
tion field. (b) The intensities are pulled to the origin of the displacement vector
from the box individuated by its tip.

condition are reasonable and the function is well-behaved, it tends to be slower
than GNA. L-BFGS instead is an efficient Newton optimization method applica-
ble to bound-constrained optimizations. No matter what is the optimizer chosen,
a robust and efficient stopping rule shall be defined. We address this problem in
chapter 4.2.

Given the ill-posiness of the problem, generally people never start off directly
with a DIR registration, but the vector field is rather modeled in first instance by
means of a rigid or affine registration, thus adjusting for global location and scale.
This also helps preventing folding and vortices in the final deformation, which
make it non-physical. A very popular approach, for increasing accuracy of regis-
tration and at the same time reduce computational cost, is to use a coarse-to-fine
approach. The idea is to build a pyramid of resampled images and to let the algo-
rithm rely on new features as the resampling rate approaches 1, thus as the reso-
lution approaches the initial voxel size. Therefore the deformation approximated
at a coarser stage is than used as input for finer stages, thus reducing the risk of
being stuck in local minima at the highest resolutions. Often the downsampling
of images is combined with an image filter like a Gaussian filter, to enhance even
more the differences in the features at the diverse scales[131].

Detecting convergence and guaranteeing that the chosen DIR stopping condition
is always optimal for the considered images is a fundamental but rather compli-
cated in translating these algorithms into the clinical practice. We analyze, compare
and propose a series of stopping conditions and method to compare those objec-
tively in chapter 4.2.

3.2.5 Push and Pull warping method

Once the deformation has been computed, it is applied to the image. There are two
possible warping methods (Figure 3.5):

1. Push method

2. Pull method

In (1), the voxel intensities are moved to the target pixel, individuated by the coordi-
nates in the vector field. If we look at a 1D example as in Figure 3.5(a), representing
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Figure 3.6: The registration problem in Plastimatch and in ITK (from [136]) This compu-
tation involves taking the coordinates of the pixel in the image grid, mapping
them into the physical space of the fixed image (transform T1), mapping those
physical coordinates into the physical space of the moving image (transform
to be optimized), then mapping the physical coordinates of the moving image
in to the coordinates of the discrete grid of the moving image (transform T2),
where the value of the pixel intensity will be computed by interpolation.

a non rigid deformation, the numbers in the box stand for the displacement to be
applied and the different colors for the intensities. Let us consider the case of light
blue, green and blue boxes. The light blue one will be pushed one, the green two
and the blue three to the right. As in the original image the green box is the third
and in the warped needs to be the fifth, we have no information to fill the fourth
box, which is therefore called hole. On the contrary, the blue box has to become
the seventh in the final image, exactly as the greyish one. In this case, we have an
overlap and again no mean to decide whether the last box has to be blue or greyish.
The pull method (ii) solves the issues generated by the holes and the overlap, be-
cause the intensities are pulled to the voxel on which the vector is applied. In other
words, the application of (ii) implies that if we are standing on the first box on the
right in (b), the first box on its right will be pulled onto it, while the yellow will be
attracted on the third one. In this way, there will be neither holes nor overlaps in
the output image. After the warping procedure, the voxel left empty on one side
of the image, will be filled with a default value.

Obviously, the whole estimation of the transform and warping happen in the
world coordinates, i.e. physical coordinates, not in the voxel space. In summary,
the computation of the transformed intensity involves (Figure 3.6) [136]:

1. Taking the coordinates of the pixel in the fixed image grid, usually called
the “(i,j)” coordinates, and mapping them into the physical space of the fixed
image (transform T1).
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2. Mapping the physical coordinates from step 1 into the physical space of the
moving image (transform to be optimized).

3. Mapping the physical coordinates of the moving image into the coordinates
of the discrete grid of the moving image (transform T2 in the figure), where
the value of the pixel intensity will be computed by interpolation (generally
linear or nearest neighboor).

3.3 validation and/or performance assessment of a registration

method

Several flavours of registrations, cost function, optimization algorithm and valida-
tion metrics have been tested, according to the different input datasets [137, 138?
, 139, 115, 140, 141, 142, 143]. The open question is how to make this approach
sufficiently robust and fast to be plunged into the clinical routine.

Besides ensuring optimal convergence in any run (see chapter 4.2), DIR results
need to be quantified and the algorithms itself need to be validated. Finding a com-
prehensive metric that could classify registration results is of primary importance.

Validation does not only mean measuring the accuracy or error in a specific
portion of the image, but should also refer to the analysis of the following features
[115]:

• Robustness or stability, thus the request that small variations in the inputs
should result in small output variations.

• Repeatability, thus having the same behaviour for the different clinical cases.

• Complexity, thus the need of charachterizing its computational cost, which
has to comply clinical requirements in terms of time and resources.

• Clinical usability and relevance.

• Precision, thus the error associated with an ideal input.

The validation of a DIR algorithm tipically occurs at multiple levels. First of all,
a series of synthetic experiments is conducted to study the properties in a con-
trolled environment, in which a gold standard is available. Phantoms applications
and pre-clinical studies on cadavers are key elements to the second step towards
real applications in which no gold standard is generally provided, but landmarks
points are tipically provided. Finally, the algorithms are tested on real clinical pa-
tient datasets in retrospective and prospective studies.

The validation and performance quantification metrics can be classified into
point-, surface-, intensity- and volume-based methods [144]. Point-based meth-
ods mainly imply the computation of 3D residual error on chosen landmarks
[145, 146, 147]. In clinical practice, most applications are based on the manually
identification of anatomical landmarks, a time-consuming and operator-dependent
procedure. Therefore, several algorithms have been developed to perform auto-
matic or semi-automatic landmarks extraction and matching, with the goal of
increasing the accuracy of detection and decreasing the cost in terms of time
[148, 149, 150, 151, 152, 153]. These methods will be described in chapter 4.3.
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Each metric presents its own advantages and disadvantages and can be more
or less suitable depending upon the assigned task [154, 155, 156, 157]. As all the
metrics analyze different aspects of the registration problem, generally a pool of
metric is employed to assess quality of the results. Recently, Rohlfing [158] demon-
strated on a paradigmatic case how classical validation indices are not reliable for
validation and accuracy estimation. In chapter 4.3, we will illustrate a method for
extraction of salient features from medical images relying on gaussian filtering and
compare it to classical performance indices.
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4
D E F O R M A B L E R E G I S T R AT I O N : F R O M T H E O RY T O C L I N I C A L
P R A C T I C E

Adaptive Radiotherapy (ART) is a possible strategy to compensate for changes and
improve delivery, where patients are re-imaged and re-planned several times dur-
ing the entire treatment time (see §2.3). It mainly relies on DIR, which has become
a fundamental tool to analyze target motion and measure physiological changes
by fusing imaging diverse modalitites or time series volumetric imaging. Several
algorithms have been developed for DIR [159, 8, 132, 114, 111, 112, 160, 113, 115,
119, 120, 142, 161, 147], but the lack of a gold standard in clinical practice still
compromises their validation. We previously discussed possible strategies for DIR
(see chapter 3), describing in particular one parametric and one non-parametric
model of DIR. Here we will try to evaluate the performance of two popular imple-
mentation on the example of HN CT-to-CT DIR, at the same time comparing both
approaches to a commercial DIR (see §4.1).

Despite the rapidly growing interest in DIR and the increasing number of works
illustrating its clinical feasibility and relevance, yet DIR is not a standard clinical
practice. In fact, clinically feasible DIR algorithm must ensure accuracy (i.e. the
resulting deformation should exactly reproduce the real patient one), flexibility
(i.e. sufficiently robust for all the patients), ease of use (i.e. tool learning curve
should be fairly steep) and a reasonable computational cost, both in terms of time
and memory.

One of the main limitation to the clinical use of DIR is the need for reasonable
computational time and a robust parameter set. Several efforts have been made
towards the first objective [162, 163], thanks in part to the introduction of powerful
and affordable GPUs [164, 128]. Besides the most advanced technologies and the
most complex algorithm, a good stopping condition that prevents extra optimizer
iterations when convergence is reached would decrease the computational effort,
at the same time not introducing complex pre-calculations and not requiring extra
dedicated hardware. The choice of what should be employed as escape condition
and how it should be computed with respect to previous values is, however, not
obvious given the complexity of the problem. We worked on development of a
robust stopping condition on the example of a non-parametric method developed
by Vercauteren et al [134, 135], i.e. LDDD Registration. In this chapter we will
review the results and try to provide operative guidelines for clinical usage (see
§4.2).

The second limitation to systematic deployment is the lack of precise guidelines
for performance evaluation in the clinical practice. Given the absence of a ground
truth deformation field describing the transformation between two input dataset,
the validation or performance assesment is confined to evaluation of the quality of
reproduction of image charachteristics, features and/or anatomical structures. In
the third part of this chapter, we will therefore concentrate on reviewing classical
indices used in literature and propose an alternative approach based on automatic

35
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salient features extraction. Finally, we will trace guidelines for choosing a metric
appropriated to specific DIR tasks.

4.1 comparison of a parametric and a non-parametric dir algo-
rithm

From modeling and compensation of setup uncertainties, the focus of research
has gradually moved to deformations induced both from anatomic and physio-
logical motion (e.g. bladder deformation, respiratory motion) and from therapy
response (e.g. tumor growth or regression) for the implementation of adaptive
radiotherapy. In addition, inter-subject probabilistic segmentation of anatomical
volumes has become more important, with the end goal of supporting physician
contouring. Each of these applications depends on Deformable Image Registra-
tion (DIR). Amongst these, two of the most popular algorithm are B-Spline based
methods (also called free-form methods) and the demons algorithm, introduced
by Thirion (see §3.2.3.2 and [133]). We analyzed an efficient implementation of
B-Spline registration by Sharp et al [127, 129, 124, 126, 128] contained in Plasti-
match (www.plastimatch.org), an open-source cross-platform suite for IR in radi-
ation therapy, and one of the several flavours of demons algorithm, called LDDD
by Vercauteren et al [135].

The testing dataset is composed by twenty patients, treated at European Insti-
tute of Oncology (Milan, Italy) for local HN malignancy (mostly rhino- and oro-
pharynx). The patients were imaged at planning (CTsim) and after 40 Gy (CTrepl_a)
and 50 Gy (CTrepl_b) according to the institution specific IGART protocol. CT-
sim was acquired after contrast medium injection and mostly during the concomi-
tant chemotherapy treatment. Contrast medium was not used for CTrepl_a and
CTrepl_b. The total number of cases analyzed is 28. We performed DIR between
CTsim and each of the CTrepl for each patient using Plastimatch, LDDD and a
commercial DIR algorithm MIMvista (MIMsoftware, Cleveland, Ohio, USA) im-
plemented in a clinical workstation . Manual segmentation of mandible, parotid
glands and GTV from attending physician were associated with the correspond-
ing CT scan and were used as main mean of performance assessment. Therefore,
we apply the computed deformation to binary rendered CTsim contours, obtain-
ing sets of warped structures, which we compare with the corresponding man-
ual segmentation on CTrepl, in terms of Dice Similarity Coefficient (DSC) [165],
Mean Surface Distance (MSD) and 3D residual vector length between Center Of
Masses (3DCOM) of warped and reference image volumes. Dice Similarity Coeffi-
cient (DSC) is defined in particular as:

DSC =
2 |A∩B|
|A|+ |B|

where A and B are the two structure volumes to be compared. Its value goes from
0 to 1, the latter indicating the perfect overlap between the considered labels. MSD
is instead calculated as median of the distance calculated via Danielsson Distance
Map at each voxel, while 3DCOM is simply the modulus of the vector defined by
means of coordinate-wise subtraction between the COM positions in the warped
and reference image. Statistical comparison between the three methods was carried
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out for each structure according to each index by means of Bonferroni corrected
Friedman test at 5% confidence level.

Plastimatch B-Spline were regularized with λ = 0.03, but a single set of param-
eters were used for all the patients. These parameters were experimentally deter-
mined on the basis of residual Mutual Information between output warped and
reference image. LDDD required the implementation of a compensation algorithm
as the length of patient scans might not be the same between planning and replan-
ning phase, but no patient specific tuning is foreseen. LDDD stopping condition
was based on harmonic energy variation analysis throughout the iterations.

The results are presented in Figure 4.1, 4.2 and 4.3, in form of median and per-
centile of the overall distribution for the 20 patients. The mean volume overlap
described from DSC provides a global indication of performance, but is not able to
accurately describe finer local errors. In fact, if we look at Figure 4.1, we note that
all algorithms were able to recover the deformation between CTsim and CTrepl,
and few or small differences are present. Statistical difference between the methods
was reported in the case of GTV and parotid glands, whereas the small variations
in mandible DSC value were not significative. In particular, LDDD performance
was significantly different in all soft tissues structures, whereas Plastimatch was
significantly different from commercial software only for the case of GTV. We also
report a larger variability, expressed in terms of difference between the 75

th and
25

th percentile, for LDDD on most structures. If we look at Figure 4.2 and 4.3,
we notice that here diversity between the three methods are more evident than
for DSC. Friedman test confirmed that LDDD might be slightly less favourable
than Plastimatch B-Splines implementation and its performances are further from
the commercial algorithm. Generally better results are obtained for bony struc-
tures, where open-source algorithms are fully comparable with commercial ones
and both demons- and B-Splines-based registrations can recover mispositioning.
The performances of the other structures mainly depend on relative tissue con-
trast, which for istance definitively influences GTV propagation. Contrast enhance-
ment as well as histogram matching would prevent LDDD failures and serve as
anchor features for vector field determination in all implementations. COM dis-
tances are very influenced from singlThe clinical protocol foresees the acquisition
of a CT_repl only if modification bigger than 5 mm are detected on in-room imag-
ing by means of visual inspection. Therefore, te voxel difference and therefore their
quantitative evaluation should be compared to other indices, such as MSD. All al-
gorithms however, reached a reasonable level of accuracy for all patients (i.e. less or
around 3 mm of error and DSC comparable with inter-rater variabilities reported
in literature [94, 109, 166, 167]).

This study served mainly as validation of both approaches, and did underline
the feasibility of both approaches. One main disadvantage of LDDD is that, al-
though regularized, it provides no stopping condition criteria at convergence and
has few parameters to modify its behaviour. B-Splines instead are more flexible,
but may also benefit of a more robust stopping criteria than just looking at ab-
sence of improvement in the metric value in the last ten iterations. We therefore
moved on in studying behaviour and robustness of diverse escape conditions.
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Figure 4.1: DSC at GTV, mandible and parotid glands for the three analyzed implementa-
tions (B-Spline Plastimatch, LDDD and MIMvista). Regularized B-Spline DSCs
are statistically equivalent to MIMvista results, whereas LDDD performed
slightly worse than the other two implementation. Only for GTV, also Plasti-
match demonstrated to be less accurate than MIMvista.

Figure 4.2: COM difference at GTV, mandible and parotid glands for the three analyzed
implementations (B-Spline Plastimatch, LDDD and MIMvista). Regularized B-
Spline outperformed both MIMvista and LDDD in all structures but GTV. The
results achieved on GTV are anyhow around resolution level and as such ac-
ceptable. LDDD fails to map GTV and parotids correctly, whereas mandible
contour differences in MIMvista translate in a higher COM mispositioning.

Figure 4.3: MSD difference at GTV, mandible and parotid glands for the three analyzed
implementations (B-Spline Plastimatch, LDDD and MIMvista). The most of the
differences can be found on the GTV, which definitely is the most difficult struc-
ture to discriminate because of its poor constrast with respect to surrounding
soft tissues.
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Figure 4.4: Mean of the modulus of the residual deformation field difference as a function
of iteration number in a coarse stage of DIR. The initial mean deformation
can be seen in the first iteration. We note that for all the three deformations,
the trend of convergence is similar, but at each iteration the residual value is
different depending upon the initial value of deformaiton.

4.2 ranking of stopping criteria for clinical dir

The most basic stopping condition is to terminate the algorithm after a predeter-
mined number of iterations. Although very simple, this criteria is only weakly
related to the actual convergence and relies rather on user level of expertise, as
well as on task and image quality. What can actually happen is that the number
of iterations that seem to be optimal for one patient scan, it is actually beyond or
much before optimal number of iterations needed to reach the convergence. For
example, in Figure 4.4, we show a typical convergence graph for recovery of three
different synthetic deformation applied to the same image. We note that the be-
haviour of the graph are similar, but at any given number of iteration the mean of
the modulus of the residual deformation field is different, thus confirming that the
solely number of iterations is not robustly ensuring convergence.

To relate the stopping criteria with registration convergence, we compare four
different stopping rules for DIR, each focusing on a different aspect of the regis-
tration algorithm. One of the possible metric is using similarity measure as escape
condition [168], without taking into account how this is related to the vector field.
In [169], a metric based on updates to the deformation field is used, which we
now extend to the velocity field. Also in [134], the authors used the harmonic
energy and the number of vector field voxels with negative Jacobian elements to
assess algorithm performance. Here we propose to use these as an escape condi-
tion. Experimental evaluation of these stopping criteria were performed with five
synthetic non-rigid deformations applied to clinical quality CT image volumes of
a dosimetry phantom and three HN patients.

Criteria based on image intensities are generally aimed at observing changes in
similarity between reference image I(x,y, z) and floating image J(x,y, z) at current
iteration t with respect to the previous iteration. Using Mean Square Error (MSE)
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of image intensity as the image similarity measure, we define a threshold ε such
that

MSEcurrent −MSEprevious
MSEprevious

< εMSE

Here, εMSE is an user-controlled parameter, which quantifies the percentual
error reduction between iterations. If the registration is converging (i.e. the warped
image at t is more similar to I(x,y, z) than the one at some previous iteration), the
ratio would be negative, while it goes to zero if the algorithm has plateaued or
converged. The ratio will be positive if the chosen step direction is suboptimal, but
the registration can be allowed to continue if the degree of non-convergence stays
below the user acceptance threshold εMSE.

We next consider convergence based on the Harmonic Energy (HE) of the defor-
mation field. HE is defined as the average over all voxels of the squared Frobenius
norm of the Jacobian of the vector field. As with MSE, we compute:

HEcurrent −HEprevious
HEprevious

> εHE

HE is expected to increase with convergence, and therefore the ratio should be
always positive unless the optimization is diverging. εHEis again the measure of
relaxation allowed by the user, quantified as percentual increment.

The third quantity we consider is the use of the Jacobian of the update field as
stopping criteria. Because the Jacobian matrix of an unstable deformation vector
field is negative, we compute the ratio between the number of voxels with Jaco-
bian below a slightly positive threshold to the total number of patient voxels. This
quantity is than compared with a user defined threshold, thus

# (Jac (x) < τ)
N

< εJAC

where τ = 10−3for our purposes and εJAC is set by the user.
Finally, we analyze the Quantity of Update (QU) between iterations. QU is de-

fined as:

QUt =

∑
|dvt|∑
|vt−1|

where t is the iteration identifier, vt−1 is the velocity field at a previous iteration
and dvt is the update field at current iteration. QUt decreases with convergence
and therefore we can compute

QUcurrent −QUprevious
QUprevious

< εINCR

At convergence, QUt → 0 and as a consequence, the ratio decreases below the
allowed percentage, thus stopping the iteration process.

Each of the metrics, besides the Jacobian, requires the comparison with a previ-
ous Stopping Condition Value (SCV), i.e. of what we called •previous. Its choice is
of critical importance, as SCVpreviouscan be considered the actual descriptor of the
shape of the convergence curve. Table 4.1 summarizes the methods we analyzed
in terms of convergence speed.



4.2 ranking of stopping criteria for clinical dir 41

Table 4.1: Current and previous Stopping Condition Value (SCV) tested in terms of con-
vergence speed. These formulations are used in the final computation of the
chosen stopping criteria. For conditions from D to F and stopping criteria HE,
the minimum shall be substituted with a maximum, given HE definition.

Current Value Previous Value

A SCVt SCVt−1

B SCVt SCVt−3

C SCVt SCVt−5

D SCVt min (SCVt−α) with α = [1; 6]

E min (SCVt−α) with α = 0, 1, 2 min (SCVt−α) with α = [1; 6]

F min (SCVt−α) with α = 0, 1, 2 min (SCVt−α) with α = [3; 6]

4.2.1 Dataset

We first tested our approaches on an image of a RANDO® dosimetric phantom
acquired on a clinical CT scanner, using supine setup and clinical acquisition pro-
tocols. The volume acquired is 512*512*123 voxels and [0.94, 0.94, 3] mm element
spacing. After the phantom study, we analyzed three head and neck patients ac-
quired with the same CT scanner and image resolution of the phantom. An ex-
ample slice per patient and of RANDO® is presented in Figure 4.5. We chose two
patients with few image artifacts (patient 1), one with a moderate degree of arti-
facts in the dental region (patient 3) and one where the dental capsules severely
compromised the Hounsfield Units accuracy (patient 2). On patient 1 scan in addi-
tion, the chemotherapy tube is still in place (red circle in Figure 4.5).

Five artificial non-rigid vector fields were used as ground truth deformations.
Each of the deformation field was obtained simulating the distribution of left-
right, anterior-posterior and inferior-superior components with a smooth, local-
ized Gaussian. The chosen Gaussians are centered at different voxels in a matrix of
size 128x128x128 and have diverse standard deviation and amplitude, as reported
in Table 4.2.

After re-sampling the Gaussian deformations on the image grid, they are super-
imposed to define a continuous and smooth vector field, that we aim to recover
by means of LDDD registration (see §3.2.3.2). We applied the same deformations
both to original phantoms (Jph) and patients (Jpa) image volumes, obtaining their
warped correspondent volume (Iph and Iparespectively). The five warped phan-
toms (Iphi) are shown in Figure 4.6, to get a rough idea of the applied deformations.
The apparent swapping of floating and reference images is motivated by the warp-
ing strategy used to generate Iph and Ipa. In fact, this happens according the Pull
method (see §3.2.5) and as such, applying the synthetic vector field to the original
volumes, it is as if these were the floating images of a previous registration, while
the warped scans become the reference images.
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Figure 4.5: An example slice per patient. Panel (1) shows one slice of RANDO®, in which
we notice distinctly the several layers it is composed of. In the red circle,
chemotherapy tube for patient 1. Note the presence of metal artifacts in patient
2 and 3.
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Table 4.2: Parameters of the Gaussian distribution used to generate five artificial non-rigid
128*128*128 vector fields. Besides dislocating the centers and changing the stan-
dard deviation, we further weighted the distributions by a scaling factor to en-
hance either one of the components (Relative Weight).

Test
num-
ber

Application
voxel

Radius
[# voxels]

Relative
Weight

Standard
Deviation
[# voxels]

1

x [30 30 30] 15 5 12

y [50 50 50] 30 5 18

z [80 80 80] 10 100 36

2

x [60 60 60] 25 1 12

y [50 50 60] 30 1 18

z [60 60 55] 45 100 36

3

x [60 60 60] 25 10 12

y [50 50 60] 30 10 18

z [60 60 55] 45 1000 36

4

x [60 60 30] 40 0.15 10

y [30 30 60] 20 0.15 15

z [60 60 90] 30 0.15 22

5

x [60 60 90] 30 0.1 22

y [60 60 90] 30 0.1 22

z [60 60 90] 30 0.1 22

Figure 4.6: Overlay of warped (green) and original (red) phantom. The same deformation
were used to warp the patient images.
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4.2.2 Experiments

We register Jph and Jpa to each of their five warped volumes ( Iphi and Ipai )
aiming at reproducing the same deformation vector fields we simulated. We run
500 iterations at one-eighth of the image resolution (i.e. a coarse registration stage).

We looked at the Normalized Mutual Information (NMI) before and after reg-
istration between the images to detect any possible failure in the registration pro-
cedure, based on the fact that the NMI between two registered images should be
bigger than the NMI between two misaligned datasets.

To compute the convergence values, we exclude background (air) voxels from
the computation, because, on one side, we are only interested in patient volumes
and, on the other side, nothing can be said from deformation calculated in homo-
geneous areas. At each iteration, the algorithm computes the deformation vector
field and we compute the stopping condition values described in Table 4.1.

To rank the stopping condition performance, we compute the vector length of the
residual deformation at each iteration, by means of component-wise subtraction of
the ground-truth displacements from the demons vector field. Given the image
resolution, we set the threshold on the vector length residual error to 1.875 mm
(i.e. 2 voxels at full resolution, or half a voxel at one-eigth resolution), and assess
the number of iteration required to obtain the desired level of accuracy (trequired).
We combine this information with the SCV at threshold iteration and we call it
SCVcriticali with i=[1;N] (N=5 in this case). Ideally, if a given escape condition is
optimal for the problem, SCVcriticali would match trequired for all experiments.
We then rank the performance of the stopping criteria in terms of number of extra
iterations needed for all experiments to reach the best SCVcriticali . In addition,
we rank the SCV calculation strategies in terms of convergence speed and stability.

4.2.3 Results

4.2.3.1 Convergence properties

Figure 4.7 illustrates the median of MSE, HE and QU values over the five warped
phantoms at each iteration and for each of the computational strategies described
in Table 4.1. To compare with phantom study, Figure 4.8 shows the median of the
median value of the stopping condition over the five different deformations for
the three patients included in this study. As the values are medians of medians,
the slight instabilities are smoothed out. We notice that all of the strategies are
potentially good for the assigned registration problem, but some of them are not
as computational efficient as the others. For example, strategies B, C and F are sub-
optimal, as they require more iteration than e.g. E. Moreover, B and D require a
longer initialization (respectively 3 and 5 iterations) to achieve a reasonable metric
value, thus possibly leading to unnecessary iterations. Strategy A might be unde-
sirable, because it monitors just the immediately previous iteration. Strategy D is
a good candidate for MSE (Figure 4.7 and 4.8, Panels 1) and QU (Figure 4.7 and
4.8, Panels 3) but it is unstable for HE (4.7 and 4.8, Panels 2). Strategy E seems to
capture the best tradeoff between speed of convergence and stability, in particular
if we look at the HE case and we analyze the patient median values separately.
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Figure 4.7: Median SCV values at each iteration for the phantom study over the five de-
formation for MSE, HE and QU. What should be noted here is the steepnees
of the initial part of the curve. Better performances of a SCV are identified by
fewer iterations used to reach convergence.
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Figure 4.8: Median SCV values at each iteration for the patient study over the five deforma-
tion for MSE, HE and QU. With respect to phantom study, we notice that values
are less smoothed out than in the previous case, likely because of the presence
of artifacts. Better performances of a SCV are identified by fewer iterations used
to reach convergence.
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Figure 4.9: NMI values pre- (red) and post- (blue) DIR registration. Note that for all the
registrations, NMI increased after DIR alignment.

4.2.3.2 Deformation recovery capability

We report the results about NMI pre and post deformable registration in Figure
4.9. As expected, the NMI increased, thus testifying that the two datasets have been
correctly aligned. Figure 4.10 and 4.11 shows the plot of the median, 25th and 75th
percentile for the residual of the displacement field of the five phantom and three
patient cases respectively. It is evident that more iterations do not necessarily imply
better convergence, which reinforces the need for a stopping condition. The chosen
threshold should stop the algorithm near the minimum residual. Figure 4.10 and
4.11 also show how the slope of the initial part of the recovery changes slightly
between phantom and patient cases. To illustrate this better, we show a direct
comparison between phantom and patients deformed by the fifth displacement
field in Figure 4.12: residual error reaches 2 mm in 35 iterations and 15 iterations
respectively.

For the phantom study, we report the results on the metric performances. Table
4.3 illustrates the SCVcritical at trequired (1.875 mm). The chosen SCVcritical is
shown in bold. We then compute the number of extra iterations required to reach
the SCVcritical at trequired (Table 4.4). For example, considering MSE, we look
at the SCVcritical for last two phantoms in the other simulations. The best per-
formance algorithms are HE and MSE, while QU tends to need more iterations at
a given threshold value. We than repeated the same procedure for the three pa-
tients. Out of the fifteen tested registrations, two did not reach the desired level
of accuracy (i.e. median residual than 1.875 mm). In addition, out of the remain-
ing registrations, in five cases the Jacobian was not evaluable. The final results are
presented in Table 4.5. Again the HE outperformed MSE in terms of capability to
detect the stopping iteration to be used, while QU demonstrated to be not suffi-
ciently robust to changed image quality. In fact, it was greatly outperformed by
MSE and HE in patient 2, which presented the most severe image artifacts.
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Figure 4.10: Residual errors on the vector field for phantom study. Graph shows median,
25

th and 75
th percentile for each analyzed deformations (from a to e). From

the images, it is evident that more iterations do not always imply better con-
vergency level, evidenciating the importance of a robust stopping condition
stopping DIR at the minimum residual.

Table 4.3: SCVcritical at the iteration corresponding to the chosen threshold (1.875 mm)

Test
num-
ber

trequired MSE HE QU Jac

1 3 -0.373 0.027 -0.243 6.53e−04

2 10 -0.033 0 -0.022 0.002

3 14 -0.019 0 -0.014 3.64e−04

4 295 0 -0.002 -2.38e−05 0.004

5 71 0 -0.003 -0.001 0.002
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Figure 4.11: Median residual errors on the vector field for patient study. Graph shows
median, 25

th and 75
th percentile for each analyzed deformations (from a to

e). Besides the definition of an appropriate threshold, it should be noted that
residual trend is equivalent to the patient’s one.

Figure 4.12: Mean residual errors on the vector field for selected patient study after 15 DIR
iterations. Speed of convergence is different between the two graphs: in fact
the level of 2 mm is found only after 35 iteration for patients, while that’s
reached after 15 iterations in phantom study.
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Table 4.4: Number of extra iteration the algorithm needed to reach the minimum of the
SCVcritical. *In this case we were not able to find the desired SCVcritical in
three cases out of five

Test
num-
ber

MSE HE QU Jac

1 19 2 197 4

2 11 0 99 —

3 8 0 216 0

4 0 2 0 —

5 0 1 96 —

Total 38 5 608 4*

Table 4.5: Number of extra iteration the algorithm needed to reach the minimum of the
SCVcritical. The Jacobian was not evaluable in two cases for patient 1 (£), two
for patient 2 ($) and one for patient 3 (&).

Patient
number

# of
registration
converged

MSE HE QU Jac

1 5 171 135 288 10
£

2 4 25 9 93 0
$

3 4 65 30 68 7
&

Total 13 261 174 449 17
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4.2.4 Discussion and conclusion

We implemented and compared four different stopping conditions strategies for a
deformable registration algorithm and tested them on LDDD. Our aim is to pro-
vide non expert users with an easy and immediate tool that would require the set-
ting of an allowed degree of error for the algorithm and at the same time guarantee
the optimal convergence of the registration. So far, most algorithms employ max-
imum number of iterations as escape condition, which, not only is non-intuitive,
but also is not robust with respect to image quality and patient specific issues.
Our testing dataset is composed by five synthetic deformations obtained by simu-
lating the entity of displacement at each coordinate with a Gaussian distribution,
centered at a different voxel of the image grid (see Table 4.2). One anthropomor-
phic dosimetric phantom and three patient scans were warped with the generated
synthetic deformations.

The problem of finding a robust stopping condition is first of all influenced by
the way in which the condition itself is calculated. Aiming at requiring just a per-
centage error from the user and having no target value in mind, it is hard to define
with which value the current stopping condition value should be compared to. We
tested six different strategies (Table 4.1), in terms of speed of convergency and
stability. For our dataset, the winning strategy is the one that combines the min-
imum of the last three iterations including the current one and the minimum of
the three iterations before last. The minimum shall be substituted with the maxi-
mum for the case of HE, which by definition is increasing during registration. The
worst performing strategies in terms of convergence speed are those relying on
the subtraction between the current and some previous value, which suffer from a
long initialization time. The longer initialization time would definitely have greater
impact in the finer stages of a multi-resolution registration strategy, thus leading
either to registration errors and/or to longer computational times. On the other
end, although fast, just looking at the previous iteration might induce the algo-
rithm to stop in a local minimum or into a plateau, thus subsequently leading to
registration errors.

We studied MSE, HE, QU and Jacobian in terms of speed of convergence and
of deformation recovery capability. Each of the strategy used captures different
aspects of the DIR problem. While MSE monitors just the evolution of the differ-
ence between intensities, HE can indeed be related to the smoothness of the field,
which is correlated both to the physical meaningfulness of the transform and to
the degree of convergence. Together with HE, QU quantifies how much forces are
pulling the transformation and is computed on the velocity field, which is actually
driving the deformation in a demons based strategy. If the relative update in the
pulling force goes to zero, the algorithm shall move to a finer registration stage
or stop. By computing the Jacobian of the update field, we intended to detect any
possible discontinuity leading to a non-physical result. The ratio between the num-
ber of elements below a positive e and the total number of voxels just requires just
to be compared with a user threshold, making this metric a favorable candidate
as easy stopping criteria. However, analyzing the metric evolution, we notice its
instability and irreproducibility between patients, as showed by the high number
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of cases, in which either the convergence or the desired critical value were never
reached.

Comparing phantom and patients results, we notice that the number of extra iter-
ations needed increases for patients and in particular when the image quality was
severely compromised by artifacts in the image. In addition, we had some cases
in which the deformation was not recovered to the desired accuracy (residual <
1.875mm). This seems to be correlated with image quality. In both datasets, though,
the winning metric seems to be HE, which outperformed both QU and MSE. QU
is also sensitive to image artifacts, which might induce abrupt changes in the up-
date field. These changes have a limited impact on HE, because of the Gaussian
smoothing filter applied from the algorithm prior to the calculation of the iteration
deformation field. MSE does not monitor the deformation field throughout the
computation and takes advantage of the sharp differences due to artifacts.

The concept used here can be easily extended to any transformation type, but
according to the employed model, it might need tuning and features extension.
Furthermore, this initial work needs to be extended to real deformation cases, in
which the ground truth deformation is either unknown or derived from a non-
image based DIR strategy, such as for example thin plate spline registration.

4.3 validation of a dir algorithm

4.3.1 Classical validation indices

Popular intensity based methods include voxel-by-voxel difference and correlation
indices, which can be global or restricted to a portion of the image around a land-
mark [147, 146, 145]. Typical example is the Correlation Coefficient R2, where R is
defined as:

R =
cov (A,B)
σAσB

with cov (A,B) and σA, σB are the covariance and the standard deviation of the two
images A and B respectively. The value of R2 is such that 0 6 R2 6 1 and gives the
proportion of the variance ofA that is predictable from the B, denoting the strength
of their linear association. For example, if R = 0.922 , then R2 = 0.850 , which means
that 85% of the total variation in B can be explained by the linear relationship
between A and B (as described by the regression equation). The other 15% of the
total variation in B remains unexplained. A famous example from Anscombe [170]
demonstrated the ambiguity of linear correlation and therefore the limit of the
correlation coefficient. Figure 4.13 illustrate four different sets of points all having
the same statistical properties, but very different graphical aspect. The case in
which correlation coefficient returns meaningful results is the one illustrated on
the top left graph.

To overcome this issue, often MI or NMI (see Table 3.1 for their definition) are
employed as descriptors, looking in particular to the spread of the joint entropy
graph, which is increasing with images disalignment (see Figure 3.3). It shall be
noted that, in contrast to other indices, it is not possible to quantify a maximum
and minum value for MI or NMI. Therefore, people prefer to compute relative
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Figure 4.13: Anscombe’s quartet. We plot four different datasets that have identical statis-
tical properties, whose graphs appear very different. [170]

increase or decrease and/or they refer everything to the theoretical maximum,
thus being the MI or NMI of an image with itself.

Volume based metrics require the accurate segmentation of structures of inter-
est on all images to be compared and/or the propagation of previously outlined
structures on all the scans involved in the analysis. Manual delineation is often
preferred for this purposes, despite being affected from intra- and inter-rater vari-
ability [144, 171, 172, 173, 174, 175]. Amongst volume-based metrics, we count the
Jaccard and Dice Similarity Coefficient [165], which express the mean overlap be-
tween two structures, besides the classical volume estimation. Perhaphs the most
popular is the DSC, whose value varies between 0 and 1, i.e. from no overlap to
complete overlap, but depends on the total structure volume, i.e. the largest the
structure the nearest to 1 the value of DSC is, even though the overlap is the same.

Different authors have also come up with several solutions to compute Surface
Distances (SD) [176, 177, 178, 179, 180, 181]. To evaluate the local surface distances,
after triangulation of the contour points, one idea is to compute the Root Mean
Square Error (RMSE) as

RMSE =
‖d‖
N

where ‖d‖ is the norm of the vector of the shortest Euclidean distance between all
the N correspondent closest points in the datasets without any further refinement.
The correspondence between points is defined as in [116].

Other possible measures of SD include both Mean SD (MSD) and Hausdorff
SD (HSD), thus both an average and a maximum measure of distance between
the analyzed surfaces. Given that no a priori knowledge of the reference contour
can be assumed, a bidirectional calculation of the shortest distance between an
arbitrary voxel and the contours by means of a Distance Map is often performed.
A distance map indicates, for each pixel in the objects (or the background) of a
binary picture, the shortest distance to the nearest pixel in the background (or the
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objects) [182]. In this way, the problem of finding correspondences between points
is directly overcome. MSD and HSD are defined as follows:

MSD (A,B) =
1

|Ψ (A)|+ |Ψ (B)|

 ∑
ψA∈Ψ(A)

d (ψA,Ψ (B)) +
∑

ψB∈Ψ(B)

d (ψB,Ψ (A))



HSD (A,B) = max
{

max
ψA∈Ψ(A)

d (ψA,Ψ (B)) , max
ψB∈Ψ(B)

d (ψB,Ψ (A))

}
where Ψ (A) and Ψ (B) indicate the subset of ψ voxel in a structure belonging to
the contour and

∑
ψA∈Ψ(A) d (ψA,Ψ (B)) and

∑
ψB∈Ψ(B) d (ψB,Ψ (A)) are the sum

of the shortest distances of the voxels ψA ∈ Ψ(A) from the contour Ψ (B) and
vice-versa.

In addition, from clinician perspective, volume differences and distance between
Center Of Masses (COM) are still the most immediate and clear. In all cases, the
desired level of accuracy (i.e. metric value) is determined by image resolution. For
example, if the voxel of one image is 1x1x3 mm, the acceptable RMSE value is
given by the

√
12 + 12 + 32 =

√
11 ' 3.32 mm (i.e. it is the diagonal of the voxel).

For simplicity, often this upper boundary for accuracy is approximated with the
largest value of the three voxel dimensions, i.e. in the previous example 3 mm.

4.3.2 Landmark based validation

Another approach is to compare the position of anatomic or external landmarks
after registration has been performed. The manual individuation of landmarks is
affected by inter- and intra-observer variability. Therefore, in order to purge the
variability, the centroid of a series of repeated localization from different raters
could be assumed as stable landmark. This is obviously not possible in a clini-
cal application, both because of the time consuming procedure and of the need
of a sufficiently numerous group of independent observers. The availability of a
robust and automatic feature extraction method would introduce an independent
verification tool both during validation of new algorithms and in clinical use, not
relying on visual inspection but rather directly derived from image features, and
the deployment of point-based registration methods such as the ones described in
§3.2.3.1 and in [123]. The landmarks located on medical images can be classified
as anatomical, if they describe relevant anatomical features (e.g. pulmonary bifur-
cations), or as geometrical, such as angles or extrema. They can be further divided
into extrinsic, if they located on external solid objects located in the image volume,
and intrinsic, thus based only on image information [115].

According to Forstner et al [183, 184], requirements for extracted features in-
clude:

• Distinctiveness, i.e. distinguishable from their neighbors.

• Invariance, i.e. not influenced by geometrical distorsions as these are directly
influencing accuracy and repeatability of the extraction.

• Stability, i.e. noise robustness.
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• Rarity, i.e. guaranteeing global separability, whereas distinctiveness ensures
the local one.

• Interpretability, i.e. extracted points should be meaningful for the operators.

Commercially available features extraction methods individuate points by means
of cross-correlation between a template and the image volume. An example is
provided by Castillo et al [185] for lung bifurcation extraction. The limit of this
kind of approaches is definitely the need of an apriori knowledge on the shape of
the neighborhood of the feature, as well as the rotation, scale, illumination and 3D
position invariance of the object.

One of the first differential operators for automatic features extraction was de-
veloped by Kitchen and Rosenfeld [148] and is based on the calculation of first and
second order derivatives of the 2D image g (x,y). Corners are identified as local
extrema of the operator

KR (x,y) =
(∇g)T Hg∇g

|∇g|2

with ∇g =
(
gx
gy

)
and Hg =

(
gxx gxy

gyx gyy

)
are the gradient (i.e. first derivatives

matrix) and Hessian (i.e. second order derivatives matrix) of g (x,y). The opera-
tor is calculated at pixel level and only those lower than a certain threshold are
considered salient.

Forstner et al [183, 184], instead, proposed to detect features maximizing the
following equation:

F (x,y) =
detCg

trCg

where Cg is the covariance matrix in an elliptical neighborhood of the voxel. Sim-
ilarly Rohr et al [186] defined the features thresholding the determinant of the
covariance matrix. All of these operators were subsequently extended to 3D vol-
umes and used for medical imaging applications [187].

The Harris corner detector [188, 150] is defined from the auto-correlation matrix
centered on the point. If the image intensities are approximatevely constrant in
a region, the matrix eigenvalues are small, whereas corners are represented as
large eigenvalues (i.e. the auto-correlation function has significant variations in
all directions). An edge is individuated when the autocorrelation has a spike and
eigenvalues are of different order of magnitude. The main limit of this algorithm
is the scale invariance, as the method works on a single scale. Crowly and Praker
[189] developed a graph representation to locate peaks at different scales, so that
the features can be matched also at different scales.

A method that can extract and match stable and trustworthy points at different
scales between two images, is Scale Invariant Features Transform (SIFT). D. Lowe
[151, 152] initially designed it for 2D images, and Cheung & Hamarneh extended
it to nD images [153]. The aforementioned method has already been used for DR
and contour propagation based on Thin Plate Spline [190, 191, 192].

We present an application of SIFT to volumetric medical images with anisotropic
voxels to validate DR. The invariance properties of a feature extraction method are
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especially important, if we want to find salient points in images acquired with
different modalities, or scans of different patients, or, as in our case, temporal
series of the same patient. For this purpose, we test SIFT invariance properties
on a phantom, by applying different rigid transformations and, for the first time,
non-rigid transformations. Finally, we apply SIFT to pairs of registered images of
twenty head and neck patients, with the aim of providing a new index for assessing
DR performance.

4.3.2.1 Scale Invariant Feature Transform Feature Detector

scale-space extrema detection To prevent aliasing due to noise, we firstly
pre-smoothed the input image I(x,y, z) with a Gaussian kernel with σ = 0.5.
Then the image is represented as a family of smoothed images, i.e. a scale space,
parametrized by the smoothing kernel dimension. In practice this results in con-
volving I (x,y, z) with a Gaussian kernel G (x,y, z,σ):

L (x,y, z,kσ) = G (x,y, z,σ) ∗ I (x,y, z) =
1(√
2πσ

)3 e(x2+y2+z2)2σ2 ∗ I (x,y, z)

The output is a stack (or octave) of blurred Gaussian Images L (x,y, z,kσ) sepa-
rated by a constant multiplicative factor k = 2

1
s , with s = 3 number of intervals.

The value of the Gaussian kernel sigma is updated moving from a scale to another,
exploiting the fact that sequential filtering of independent variables corresponds
to a single filter with variance equal to the sum of variances.

Once a complete octave has been processed, the Gaussian image that has twice
the initial value of σ is subsampled by a factor of 2, serving as source image for
the next octave. Finally, Difference of Gaussian Images (DoGs) are obtained by
subtracting each Gaussian Image from the adjacent image in each octave, thus

DoG
(
x,y, z,kiσ

)
=
[
G
(
x,y, z,ki+1σ

)
−G

(
x,y, z,kiσ

)]
∗ I(x,y, z)

and therefore

DoG
(
x,y, z,kiσ

)
= L

(
x,y, z,ki+1σ

)
− L

(
x,y, z,kiσ

)
The choice of DoG images is motivated both from the possibility of calculating

them efficiently and from the fact that they are an approimation of the Laplacian
of Gaussians σ2∇2G, which allow the detection of more stable features than for
example gradient or Harris corner detector [193, 194]. A scheme for this strategy
is shown in Figure 4.14.

The candidate keypoints are detected as local extrema by comparing a voxel
to its 80 neighbors in 3x3x3 regions at the current DoG and adjacent DoGs. This
comparison implies that s+ 2 DoGs are required, i.e. s+ 3 Gaussian Images. In this
work, we generated 5 DoGs per 3 octaves.

keypoint localization We defined a point as stable, if it is well contrasted
and if it is not located on plate-like or tubular structures. Therefore, a simple thresh-
olding on contrast is implemented, such that, assuming the image values to be in
the range [0, 1], each candidate landmark x̂ have |DoG (x̂)| > tcon.
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Figure 4.14: Schematic illustration of the SIFT algorithm. From top to bottom, generated
gaussian images (Gauss-m-n) and corresponding Difference of Gaussian (DoG-
m-n), being used by SIFT for features detection. In the notation, m indicates
the octave and n the number of the considered Gaussian Image, thus between
Gauss-0-n and Gauss-1-n there exist a resampling factor of 2, while Gauss-0-0
and Gauss-0-1 are filtered with σ which differ by a factor k = 2

1
3 in our case.
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Table 4.6: Tested rigid transform for validation

Transform Parameters

Translation (x,y,z) [0,1,2,3,4,5,6] mm

Translation (x,y) [0,1,2,3,4,5,6] mm

Rotation (z) [0,1,2,3,4,5]°

Scaling (x,y,z) [0.8,0.9,1.1,1.2]

Among well contrasted features, we selected those in which principal curvatures
have the same sign and same order of magnitude. The condition on the sign is

guaranteed if tr (H)det (H) > 0 and
∑
detP2 (H) > 0, whereas tr(H)3

det(H) <
(2tcurv+1)

3

(tcurv)
2

controls the order of magnitude. In the equations, H is the Hessian of the image,
tr (H) its trace, det (H) its determinant and

∑
detP2 (H) the sum of the second order

minors of H. tcurv instead is a threshold quantifying the maximum ratio between
the biggest and the smallest eigenvalue of H.

orientation assignment and matching After detecting candidate fea-
tures, we computed gradient magnitude and orientations of the first Gaussian
Images L(x,y,z,sv) in each octave, thus describing each voxel of the gradient image
with three spherical coordinates. The descriptor is defined as a vector containing
the values of all orientation of a region around the keypoint weighted by a Gaus-
sian filter. We calculated the Euclidean distance between the descriptor of feature
point n of one image and that of a potential association n ′ of another image as

Sn,n ′ =

√√√√ k∑
α=1

|(∇In)α − (∇In ′)α|
2

where (∇In)α and (∇In ′)α are orientation histograms of the two input images and
α is the bin index.

After Sn,n ′ is calculated for all points n, the two closest points n ′1 and n ′2 are

identified. If the ratio
Sn,n ′

1

Sn,n ′
2

is less than a previously established threshold tass, the

point having the lowest Sn,n ′ value is chosen as the correspondence of landmark n.
Otherwise, no association is made for the point. To further increase the accuracy
of feature point association, the bidirectionality of each landmark association is
verified.

4.3.2.2 Validation: results and discussion

We tested our approaches on an image of RANDO® phantom acquired on a clini-
cal CT scanner, using supine setup and clinical acquisition protocols. The volume
acquired is 512*512*123 voxels and [0.94, 0.94, 3] mm element spacing. We applied
rigid and non-rigid transformations on RANDO® creating a synthetic image of the
phantom , thus simulating the stages of a possible ART registration process, while
testing SIFT invariance properties.
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Table 4.7: Median non-rigid transform for SIFT validation

Right-Left [mm] Anterior-Posterior [mm] Superior-Inferior [mm]

vf1 0.06 0.51 0.01

vf2 0.06 0.51 1.51

vf3 0.62 0.52 1.41

method To study algorithm properties, we simulated and applied to RANDO®
rigid and non-rigid transforms, which we sum up in Table 4.6 and 4.7 respectively.
Non-rigid deformations are generated as in chapter 4.2. From application of these
deformation fields, we obtained RANDO® warped. In both cases, we applied the
transformation to the points individuated on the original RANDO® scan, and com-
pared these with those obtained from SIFT in the synthetic image. Because of the
definition of the warping method and consequently of the deformation field (see
§3.2.5 ), in the non-rigid case, the warping same way as in the rigid case. The
comparison was performed by computing the accuracy in terms of points distance
along the three dimensions.

results and discussion Before proceeding with proper validation, we ex-
perimentally tuned the parameters σ, tcon, tcurv and tass. We determined σ = 1.5,
tcon = 0.03 and tcurv = 20, confirming Allaire et al [192] with respect to contrast,
but being more permissive on the curvature, thus allowing the identification of
points on the skull. Lowering tcurv, results in purging more points on the edges,
while tass is a measure of the degree of separation between the points. In fact,

the stronger the association between the features, the lower
S
n,n
′
1

S
n,n
′
2

is, because the

second-closest neighbor has greater S
n,n ′2

, i.e. n and n
′
2 are further apart. For ex-

ample, bones are well defined structures and therefore tass can be lowered even
to 50%, thus avoiding false matches. For other structures, like soft tissues, whose
features are not clearly defined on the image, a higher tassallows to increase the
number of identified matches to an acceptable value. tass needs to be higher also
for the case of low quality images, where feature disambiguation is compromised
by noise. Here we used tass of 80%, but ideally one should proceed with a organ
specific threshold [191].

To compute the descriptor, a 16x16x16 region is defined around the keypoint
location and divided into 4x4x4 sub-regions. A circular Gaussian with σ equal to
one half the width of the region is used to assign a weight to the magnitude of
the voxels in the region. This avoids sudden changes in the descriptor and gives
less emphasis to gradients that are far from the keypoint. For each of the 4x4x4

sub-region, the orientation histogram is built, describing 8x8 orientations of the
gradient.

In Figure 4.15, we show three examples of successful individuation of corre-
sponding features in the original and warped image (respectively left and right
in Panel). In Panel (a), note also that warped points for translation are found at
exactly two slices from the original ones (i.e. exactly 6 mm), thus reinforcing the
hypothesis of robustness of the algorithm.
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Figure 4.15: Three examples of successful corresponding features detection in the original
(right) and synthetically warped (left) image. Reds codes for a feature detected
as minimum of the DoG, while blue for a maximum.
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Figure 4.16: Median and percentile landmark errors for rigid transformations. In Panel (a),
we report errors associated with translations, while Panel (b) and (c) show the
results for rotations and scaling. We note that in all case, the error stay below
3 mm, with a negligible number of outliers. Note that for translation multiple
of the prevalent image resolution (i.e. SI slice thickness, 3 mm), the error is
largerly reduced. This is due to the fact that the resampling after non-multiple
translations equates in voxel information integration between different slices.

Figure 4.16, 4.17 and4.18 shows boxplots of the points accuracy distribution at
different transformations. We notice that, for rotation (Figure 4.16, Panel b), the
median for all five cases is below the voxel dimension, confirming the invariance
of the method to this transformation. There are few outliers around 3mm, due to
a wrong association of the keypoint in axial direction. Scaling (Figure 4.16, Panel
c) and rototranslation (Figure 4.17 ) demonstrated the same invariance properties.
Also for growing deformations (Figure 4.18), we notice that the median accuracy is
below the voxel dimension, although the variability it is bigger than for rigid trans-
forms. Higher outliers are due to wrong matching between two features, which is
likely if the images have symmetrical features (such as for example the mastoids
in the head and neck).

For translations along the three dimensions (Figure 4.16, Panel a), we see a wors-
ening of accuracy for values that are not multiple of the axial voxel dimension
(i.e. 3mm). If the image content is translated along anterior-posterior and left-right
directions, the accuracy stays below 1mm, with a little increase in accuracy value
depending on having tested not exact multiples of the voxel dimension in these
directions (i.e. 0.94mm). As shown in Figure 4.19, also the number of matches de-
creases in case of translations non multiple of the image resolution, while it is
constant for any degree of rotation and scaling, besides for case of no scaling (i.e.
scaling factor equal to one). For scaling, the reduced number of features is due
to the differences in the DoGs at full scale or after transformation. We further ana-
lyzed the number ouf outliers against the number of corresponding stable features,
which was neglectable in comparison to the total number of points. Results are re-
ported in Table 4.8, in the form of total number of outliers for a given transform
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Figure 4.17: Residual errors after rototranslations. From Panel (a) to (c), we study SIFT
performances at varying SI-rotation degrees and translations. We note that
translation component is the most influencing one in all cases.

Figure 4.18: SIFT invariance to non-rigid transforms. Although few more outliers were
detected, the most of them stay below the accuracy level of 3mm and therefore,
the method can be considered invariant to deformation type.



4.3 validation of a dir algorithm 63

Figure 4.19: We report the number of matching features individuated on the two images
(reference and floating). We note that while rotation is constant, the presence
of a non-multiple translation and of scaling results in a sensible reduction in
the number of mached features.

versus total number of keypoints. We note that SIFT is rather sensitive to scaling as
testified by the reduced number of features identified. We clustered the rototrans-
lation cases on the basis of the translation being multiple or non-multiple of the
voxel greater dimension.

Looking at the results we can distinguish two main sources of error at keypoint
detection:

1. in-voxel association: the finite difference derivative approach used in this
algorithm implies that features are always associated with voxel center and
as such an error of up to half of the diagonal of the voxel might be introduced
(in our case around 1.64 mm)

2. between-voxel association.

The second type of error requires a more precise explanation and an example.
Let us consider two different translations applied to an image whose pixelation
is represented in blue in Figure 4.20. After the application of the transform, we
obtain the pixelation in red. Let us further suppose to have detected keypoint K1in
voxel i, that would be associated to the center of voxel C1, as explained at point
1. As translation is a rigid transform, the relative position of K1 and C1 would be
the same in the warped image, thus K2 and C2 are corresponding to K1 and C1.
Given the entity of the translation considered in Panel A, C2 is still in voxel i and
therefore K2 would always be associated to the same voxel. The error would still
be the difference between the real keypoint location and the center of the voxel
and be due to the resampling of the transformed image in the initial pixel grid. Let
us now consider the transformation in Panel B. In this case, K2 still falls in voxel
i, but, as C2 would be associated to i+ 1 because of resampling, the keypoint is
instead associated with C3. This intrinsic limit of the association raises the error
to up to the maximum between the voxels dimensions (i.e. in our case 3 mm) plus
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Table 4.8: Total and median number of outliers for all analyzed cases versus total and
median number of keypoints

# cases #outliers /
#keypoints

Median #outliers
/ median #
keypoints

Translation 6 22 / 752 3 / 103

Rotations 5 31 / 1071 6 / 213

Rototranslations
(non multiple
translations)

6 16 / 506 2 / 84

Rototranslations
(multiple

translations)

3 20 / 622 6 / 205

Scaling 4 8 / 335 2 / 89

non-rigid
deformations

3 31 / 536 13 / 152

Figure 4.20: Example of inaccuracy introduced by SIFT algorithm. Let us consider Panel
(a), where in blue we represent the original image, while in red there is the
sinthetically translated volume. Detected feaure K1is identified with the voxel
center C1and becomes K2 in the translated image. This time it will be associ-
ated with the wrong slice because of the resampling after warping. In Panel (b)
instead what should happen is shown. In this case K1 is correctly associated
with K3, as this falls in the next slice.
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the distance between C2 and K2. Obviously, this issue is solved if the transform is
a multiple of the voxel dimension, where no integration of information occurs.

4.3.2.3 Conclusions

We studied an algorithm for automatic feature extraction and keypoint matching.
The algorithm relies on progressive Gaussian filtering and calculation of image
derivatives for the individuation of stable landmarks on medical images.

We classify the performances and limits illustrated in §4.3.2.2 according to the
scheme of Förstner et al [184, 183]. The threshold on contrast and curvature allows
to purge not only the less salient features (i.e. less stable), but also to disambiguate
keypoints located on the edges which would violate the first requirement of dis-
tinctiveness. The main limit here are the experimental thresholds, which, not only
are defined on a normalized version of the volume, but also are rather dataset and
image quality dependent. In fact, the normalization favours the individuation of
bony keypoints with respect to soft tissue, which correspont to a smaller sets of
normalized units towards zero.

In addition, SIFT establishes matching points just looking at the descriptor, which
is based on the histogram of a portion of image around the located features. Al-
though this is an advantage in certain conditions, it could introduce false positive
matches especially if the keypoints are defined on symmetrical objects, as for ex-
ample the mastoid in head and neck patients. This limit could be simply addressed
by introducing a regional search at the matching stage and/or using an Iterative-
Closest-Point like approach, in a similar fashion as what was recently done by
Lemuz-López and Arias-Estrada [195] in 2D images. We studied the invariance fea-
tures of SIFT applying a set of known transformation to a phantom image. From
the study, we verified the invarance to rotation and scaling, and looked at the de-
crease in the individuated features. We demonstrate a median level of accuracy
in mm lower than the image resolution, with few outliers due to either wrong
voxel association or to matching errors. The wrong association can be ascribed
mainly either to the concentration of the information in the center of voxel or to re-
sampling issues. Finally, while distinctiveness guarantees local separability of the
points, rarity ensures that features are globally separable, which is of most impor-
tance in medical images. In fact a feaure could be repeated in more than one slice,
compromising the validity of the approach. This is prevented at the detection step
when considering not only the current but also the neighboring slices and DoGs.
The interpretability of the extracted feaures is summing up all the previously de-
scribed requirements. In fact, rare and distinct points provide a easier scenario for
the medical user, which would be compromised if the algorithm would not be in-
variant to transforms. Saliency requirement further guarantees that located points
are the most representative in the image. Therefore, SIFT algorithm, once refined,
would be an accurate and operator-independent metric for deformable registration
validation and preformance assessment, in comparison to more classical indices.
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4.3.3 Guidelines for performance indices choice

Despite its immediacy and very low computational cost, the usage of a pure vol-
ume difference estimation brings along the loss of information on spatial misalign-
ment. Therefore it might be preferable to combine this index with one describing
the position. The combination with the center of mass is so far the most widespread
strategy, although it should be done carefully as this metric suffers more than oth-
ers under the inter-rater variability.

The main advantage of DSC instead is that it accounts for global misalignment,
although it shall not be forgotten its mean nature, which implies that, no matter
which structure is considered as reference, its value will not change. DSC will
therefore detect misalignment, but might not be sufficiently sensitive to regional
variation and not provide an indication of the location of the discrepancy (e.g. slice
number). In addition, also in our results, we saw its dependence from structure
volume. A smaller structure will result in a lower DSC while a bigger volume in
a higher, because the inclusion or exclusion of one voxel has a different outcome
depending on the total number of voxels in the structure (compare for example
DSC of parotids and of GTV).

The definition of the reference volume and the individuation of intersection are
fundamental for mesh distance calculation, which has the desirable property of
being sensitive to both global and regional misalignment. On the down side, the
construction of mesh from manually drawn points might result into non-regular
and/or highly smoothed surface. Both irregularity and smoothing, together with
absence of correspondence between two meshes may severely compromise the dis-
tance calculus. The probability that any of the three occurs, increases inversely with
the resolution of the images, especially when the cranio-caudal resolution lowers
in comparison to the in-plane one, and with the structure volume. Even though
most software allow to exclude smoothing, the interpolation of the highly resolute
points between two consecutive slices might be severe and affect the final mesh.
In addition, the computational cost increases considerably when considering big-
ger structures. It is also arguable whether mesh distance is a good metrics choice
for verification of registration in radiation therapy, where the main concern is the
conservation of volumes and position. In addition, whether the volume differences
and DSC coefficient reflect the combination of rasterization and contouring errors,
meshes would need to build a triangularized surface on top of a rasterized vol-
ume, which is already affected by inter- and intra-operator variability. Moreover
the whole distance distribution of the distances should be considered when ana-
lyzing the results. Popular quantity as the Hausdorff distance (i.e. the maximum of
the calculated distances) may provide just a limited view on the actual discrepan-
cies between the surfaces, and/or not be able to correctly account for the presence
of concavities as well as irregularities in the structures.

RMSE between triangulated points and modified SIFT for automatic landmark
extraction are affected from interpolation and extraction or matching error respec-
tively, are the most descriptive metrics and demostrate the ability of quantifying
both global and localized errors. RMSE is anyhow affected by the intra- and inter-
rater variability, depends on the definition of correspondent points and of contours
on the image. SIFT shows larger improvements margins, especially with respect to
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the sensitivity to transformation non multiple of the voxel resolution and to the
definition of a descriptor including location information, but has the advantage of
being operator-independent.



5
C L I N I C A L A P P L I C AT I O N S

Intensity modulated radiation therapy (IMRT) allows greater control over dose
distribution, which leads to a decrease in radiation related toxicity. However, it
requires precise and accurate delineation of the Organs At Risk (OARs) and tar-
get volumes on a Computed Tomography (CT). In the head and neck area, treat-
ment planning is especially complex and can require hours of tedious manual
contouring work (2~4h). The final segmentation suffers from greater inter- and
intra-observer variability, thus motivating the investigation of automatic segmenta-
tion algorithm, with the double goal of increasing robustness and reducing compu-
tational costs. Having a powerful instrument like DIR at our disposal, the problem
of generating a robust segmentation of structures of interest of a planning CT was
first addressed (§5.1).

As we underlined previously (see chapter 2), it has been proved that target and
OARs are subject to significant changes during the course of treatment and there
is evidence that HN patients may benefit from replanning [60, 49, 59]. Specifically,
patient weight loss and reduction of parotid volumes were observed in HN pa-
tients, along with shrinkage of tumor volume [48, 44, 38, 47, 58]. The effect on
parotid glands is particularly important for patients with oro- and rhino-pharynx
tumors, in which the medial shift of the parotid center of mass corresponds to a
shift towards the high dose coverage region [58, 48]. Here we propose a clinically
feasible implementation of IGART for HN patients, relying on DIR for generation
of a virtualCT (§5.2).

5.1 multi-atlas based segmentation for head and neck planning

Automatic segmentation can be coarsely divided into deformable or model-based
approaches, and atlas-based methods. The first ones mainly rely on rely on local
image features, such as edges and make use of the assumption that object bound-
aries are distinct. In order to cope for failures in regions where this assumption
does not hold (e.g. soft tissues), prior information about the structures aspect has
been introduced, but needs to be balanced in order not to limit the accuracy.

In this work, a multi-atlas strategy is developed (Figure 5.1). Generally speaking,
we define atlas a CT image with its correspondent manual segmentation. After
rigid pre-alignment on a common reference, we extract the most similar subjects
to the current test patient. With the help of DIR, the selected atlases are registered
onto the CT to be segmented and the resulting transformation is used to warp the
associated manual contours. Since the warped structures are all equally probable
realizations of the anatomical structure of the new subject, we develop an efficient
and robust strategy for label recombination. Finally we validated our approach
by comparing the automatic segmentation to the manual one in terms of Dice
coefficient.

68
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Figure 5.1: Algorithm workflow. After an initial alignment of all the atlases in a common
reference frame, the chosen selection strategy extracts a subset of suitable at-
lases, which are registered onto the test patient awaiting segmentations. The
last part is dedicated to generate the final segmentation from a series of equally
probable propagated labels, by means of a chosen fusion rule.
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Table 5.1: Parameters of the selection strategies studied in this work

Strategy Tested Values

TH NMI > [0.9:0.01:0.99]

FN 0, [50:5:100] %

5.1.1 Materials and methods

5.1.1.1 Algorithm outline

Figure 5.1 illustrates the proposed algorithm workflow. We first construct a database,
including a total of thirty-one patients CTs, acquired at European Institute of On-
cology (Milan, Italy) on GE Medical System Light Speed (Fairfield, CT). No de-
mographic or pathology pre-selection is foreseen. A contrast enhanced CT was
performed for the treatment planning (CTsim). Brainstem, optical nerves, eyes,
mandible, parotids and spinal cord were contoured by expert radiation oncolo-
gists on CTsim, serving as Ground Truth (GT) for algorithm performance evalu-
ation. The algorithm is divided into three separate stages: selection of the most
similar subset of the database, pairwise deformable registration and finally label
fusion (Figure 5.1).

5.1.1.2 Selection strategy

We developed a method for complexity reduction and templates sorting depending
on the similarity to test patient. The database volumes were pre-aligned by means
of affine registration to a common reference. In our case, we chose RANDO® (The
phantom laboratory, Salem, NY) , an anthropomorphic phantom commonly used
in the clinic for dosimetry quality assurance. The affine alignment is done offline
each time a new atlas is added to the database.

Once the test patient is also aligned to RANDO®, similarities in terms of Normal-
ized Mutual Information (NMI) shared by each atlas and the CT to be segmented
are computed. We further normalized the NMI dividing it by the maximum value
and rank the atlases in the database. Based on this ranking, the group of subjects
to be actually used for image segmentation is than selected in a Fixed Number
(FN) or Thresholding (TH) fashion. FN implies the selection of a percentile of the
database and has the main advantage of providing the same anatomical variability
for each test patient. TH looks directly at NMI values and guarantees the inclusion
of just the most similar atlases. Nonetheless, if the CT scan to be segmented is not
well represented in the database, the first strategy could select sub-optimal atlases,
while the second method could choose just one atlas. Table 5.1 sums up the values
tested in this work.

5.1.1.3 Pairwise registrations

Once the most similar subject have been selected, we registered each atlas to the
test patient using LDDD[135, 134], which has been described in §3.2.3.2. We also
previously illustrated a modification of the algorithm relying on robust stopping
condition (§ 4.2 and [196]).
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Figure 5.2: Compensation of the differences in the field of view of reference and floating
images. What happens if we try to register images in Panel (a), being (a.1)
the floating and (a.2) the reference volume? Possible results obtained with B-
Splines and LDDD standard implementation are shown in Panels (b.1) and
(b.2) respectively.

Here we also introduce an automatic compensation for different field of view
of the patient scans, in order to prevent the transform being non-physical and
deforming Hounsfield Unit, while trying to reproduce non existing structures. For
example, let us consider the images in Figure 5.2 Panel (a), and let us assume
we would register Panel (a.1) on (a.2), the latter being the reference image. The
main issue to be prevented is the algorithm reproducing the upper part of the
skull, which is not present in the floating image. Examples of possible resulting
warped images obtained with B-Spline based registration and LDDD are shown
in Panel (b.1) and (b.2), respectively. As B-splines are more flexible, the resulting
volume seems to be more anatomically consistent than LDDD, which need a good
initial alignment for obtaining a reasonable registration. To address this issue, in
the computational step only, we canceled out those slices in the test patient that
were not covered by any voxel of the atlas after an affine registration. This pre-
processing step does not have an impact on the total computational time, as an
affine registration is anyhow foreseen before pairwise DIR.

5.1.1.4 Label fusion

We propagate GT structures of the selected atlases by means of the deformation
field obtained from pairwise registration. One approach for tentative segmenta-
tions recombination is averaging (AVG), thus, defining Ls as the label on atlas s
amongst the S selected subjects

L̂ (x) = round

(∑
s=1,..,S Ls (x)

S

)
A second possible approach is majority voting (MV) that is ruled by the following
equation
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L̂ (x) =

 1

0

if
∑
s Ls (x) >

S
2

in all other cases

The main difference between these two comparison strategies is to be found on the
structures borders, where a clear majority may not be defined.

A more refined strategy uses a probabilistic framework called Gaussian Weighted
(GW) fusion. It assigns to each voxel a probability of being actually part of the
labeled structure, combining a Gaussian weighted image difference between pa-
tient to be segmented and registered atlas images with an exponential distance
transform map of the propagated labels. The method was originally proposed by
Sabuncu et al [197], for Magnetic Resonance Images, and we now extend it for CT
application, where borders between structures are less well defined. We assumed
the voxels to be independent realizations, thus reducing Sabuncu’s model to

L̂ (x) = arg max
l∈1,...,L

S∑
s=1

p (L (x) = l, I (x) |Ls,Φs) · p (I (x) |Is,Φs)

where p (I (x) |Is,Φs) is the Gaussian image likelihood and p (L (x) = l, I (x) |Ls,Φs)
is the label likelihood. The first is defined as:

p (I (x) |Is,Φs) =
1√
2πσ2

e
− 1

2σ2
(I(x)−Is(Φs(x)))

2

which is a gaussian weighting of the difference between warped floating and
reference image. The label likelihood is assumed proportional to the signed Maurer
distance map Dls, thus

p (L (x) = l, I (x) |Ls,Φs) ∝ eρD
l
s(Φs(x))

In our case, only one label can be assigned to a single voxel, thus identifying
belonging (likelihood1) or not belonging to the voxel (likelihood0). As soft tissues
are particularly not well contrasted, we relax the hypothesis that likelihood1 has to
be strictly greater than likelihood0 for the voxel to be included in the contour. The
relationship between the two probabilities becomes likelihood1 > k · likelihood0
with k being a constant between [0; 1]. The relationship between the two likelihoods
is described graphically as in Figure 5.3, for varying k values.

We experimentally tuned k together with σ (variance of the Gaussian weight on
image similarity) and ρ (scaling on the distance map) on five patients out of thirty-
one, evaluating the different performances in terms of DSC variations. Given k = 1,
we first of all evaluated possible contours for each of the five subject recombining
the propagated labels according to different values of σ and ρ (Table 5.2). Once
σ and ρ have been set, we tune k, testing values in the interval [0.1; 1]. For this
purposes, we did not select the database, but rather used all the atlas as source
images.

The agreement between GT and the Final Segmentation (FS) was quantified in
terms of DSC, whose properties were previously described (§4.3), both for tun-
ing parameters and for final segmentation evaluation. The statistical differences
between the selection strategies as well as between the label fusion methods were
evaluated by means of Bonferroni corrected Friedman test at 5% confidence level.
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Figure 5.3: k scaling influences on the relationship between likelihood1 and
likelihood0varying the crossing value, i.e. lowering the probability required
for assigning the voxel to the target structures.

Table 5.2: Tested σ and ρ values for each of the analyzed structures

Parameter

σ [1; 5; 10; 30; 50; 100; 200; 500; 1000; 2000]

ρ [0.1; 0.5; 1; 1.5; 3; 10]

5.1.2 Results and Discussion

5.1.2.1 Gaussian Weighted voting parameters tuning

Obtained results show that it is necessary to use a different combination of σ and
ρ for each of the analyzed structures. Analyzed values are summed up in Table 5.3,
while the corresponding results in terms of DSC are shown in Figure 5.4, 5.5 and
5.6.

The differences are connected to the relationship of σ and ρ with the organ
shape and location. Change in σ discriminate between soft and boney tissue, while
larger ρ values would sharpen the transition between inside and outside voxels.
For example, the mandible is a well contrasted structure, generally easy to contour.
In this case, we can impose a large Gaussian variance but no extra weight on
the distance map is needed, as contouring is a-priori a well posed problem. For
the parotid glands, instead, the border between inside and outside needs to be
disambiguated from background (i.e. lower σ, but larger ρ). Although there were
some differences in chosen values for symmetrical structures (e.g. left and right
eye in Figure 5.5), we decided to chose same values for corresponding structures.
In fact, these might be due to different image quality in the different hemispheres
and therefore are non significant. We report the final chosen values in Table 5.3.
Furthermore, we analyzed how k influenced the final DSC value (Figure 5.7-5.9),
comparing GW trends with the Average and Majority Voting for corresponding
number of patients. We notice better performance for k between 0.5 and 0.7, that
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Figure 5.4: Impact of ρ and σ on segmentation in terms of variation of DSC for brainstem,
mandible and spinal cord. Well contrasted structures (e.g. mandible) will need
large σ, but no extra ρ.
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Figure 5.5: Impact of ρ and σ on segmentation in terms of variation of DSC for eyes and
optical nerves. We note that there are some differences between left and right
structures, likely due to differences in image quality.
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Figure 5.6: Impact of ρ and σ on segmentation in terms of variation of DSC for parotid
glands. Since the border of these structures is not well defined, larger ρ will be
needed.
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Table 5.3: Optimal values for σ and ρ values for each of the analyzed structures

Structure σ ρ

Mandible 200 1

Spinal Cord 5 0.5

Brainstem 1000 1

Optical Nerves 5 1.5

Eyes 30 1.5

Parotids 50 3

we further considered in the analysis. The only structure not complying with this
rule is the brainstem, for which DSC increases as a function of k (Figure 5.7).

5.1.2.2 Pairwise registrations Quality

Before evaluating contouring results, we looked at the pairwise registrations and
at the effectiveness of the introduced field of view compensation. An example is
reported in Figure 5.10. Panel (a) shows overlay of patient 3 (red) and patient
26 (green) just centered in the same space, but before any registration is done.
It should be noted the difference in the acquisition field of view between the two
patients. Panel (b) and (c) illustrate the results of affine and deformable registration
of the same two patients. This case was chosen because patient 26 has a very
reduced field of view, that is particularly critical for multi-atlas based segmentation
and in general for any non-rigid registration algorithm. In fact, the modelling of the
deformation might be so pushed that it tries to reproduce also body districts that
were not scanned in the floating image. If our compensation wouldn’t have been
effective, we would have had a final warped image similar to those illustrated in
the example in Figure 5.2.

5.1.2.3 Selection strategies and label fusion performances

Figure 5.11 illustrate an obtained GW segmentation (solid blue) for one represen-
tative patient versus the manual outline (green) from the attending physician. It
can be seen how the developed method is able to predict structure position for the
test patient using a set of atlases, but refinement should be introduced both for
smoothing contour irregularities and prevent holes (see for example optical nerves
in Panel (d) and spinal cord in Panel (b)). Another approach to address this issue
would be to add continuity constraints to the fusion rules to avoid local disconti-
nuities. Note the very good prediction of the shape of the brainstem and of the
parotid glands, which are two of the most critical structures in the HN treatments,
and very influenced by the inter-rater variability.

We also report the matrix of selected patients for TH and FN in Figure 5.12 and
Table 5.4 respectively. Note that for TH the number of selected atlases varies with
the analyzed test patient, whereas in FN different atlases are selected based on
NMI ranking, but their number is constant. For some patients (e.g. 1, 10, 11, 29)
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Figure 5.7: We studied the impact of parameter k on GW multi-atlas automatic segmen-
tation in terms of DSC for brainstem, mandible and spinal cord in five pa-
tients. We compare GW DSC with AVG and MV approaches, and notice that
k = (0.5; 0.7) returned the best results, besides for the brainstem. It might be
necessary to switch to an ogran specific tuning of k.
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Figure 5.8: We studied the impact of parameter k on GW multi-atlas automatic segmenta-
tion in terms of DSC for eyes and optical nerves in five patients. Also in this
case, k = (0.5; 0.7) returned the best results.
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Figure 5.9: k = (0.5; 0.7) returned the best results for GW multi-atlas automatic segmenta-
tion in terms of DSC for parotid glands.
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Figure 5.10: An example of pairwise registration between two patients for multi-atlas
based segmentation. In red we show the test patient in this example (Patient
3) and in green the current atlas (Patient 26), from left to right axial, sagit-
tal and coronal views. Panels (a) illustrates the initial centering of the two
patients, while in Panel (b) and (c) fusion after affine and deformable regis-
tration respectively are presented. For this case, the algorithm automatically
compensate for the field of view difference in the two patients, preventing
unrealistic results.
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Figure 5.11: Overlay of an automatic segmentation obtained with GW multi-atlas segmen-
tation method (solid blue) and manual outline (green) from the attending
physician. Panel (a) shows the results for parotid glands, while Panel (b) the
mandible and spinal cord. Panels (c) and (d) illustrate brainstem and eyes
with optical nerves respectively. We note that the most difficult structures to
segment are the tubular ones (i.e. spinal cord and optical nerves), which may
benefit from a final stage of refinement to purge holes and border discontinu-
ities.

Figure 5.12: Number of patients at varying NMI thresholds. Color codes for the number
of patient selected at a given patient (ordinate) for a given threshold value
(abscissa).
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Table 5.4: Number of patients selected for any given FN value. Note that this method does
not depend on the test patient.

TH Number of patients

0.04 30

0.50 16

0.55 14

0.60 12

0.65 11

0.70 9

0.75 8

0.80 6

0.85 5

0.90 3

0.95 2

1.00 1

just one atlas can be selected even at lower thresholds, because of the different
neck positioning increasing the natural anatomical variability.

Figure 5.13 illustrates quantitative results for four selected cases. Each of the
panels shows the median and percentiles of DSC values for FN and TH cases, while
each column of the histograms represents one different fusion strategy. The cases
in Panel (a) and (c) correspond to full database selection, while Panel (b) and (d)
correspond to half of the atlas selection. Obviously, for (c) and (d), this affirmation
is just approximate, as the actual subset is chosen based directly on NMI values. It
shall not be forgotten that DSC values for tubular and small structures generally
tends to be lower, because starting and ending voxel may differ and the metric
depends on absolute volume (i.e. larger structures tends to have larger DSC).

DSC values for k equal to 0.5 and 0.7 were significantly different, both using FN
and TH, with k = 0.5 performing better than k = 0.7. This is directly correlated
to the relative ratio of likelihood0 and likelihood1, after normalization (Figure
5.14). We note a large region in which likelihood1 is well below 0.5, partially due
to registration errors, but also to GT contours variability.

We further looked at significant differences between tested TH and FN values.
On the example of FN strategy, we report the median of the DSC distribution
over the selected patients in Figure 5.15 and 5.16. Panels (a) to (b) illustrate the
behaviour of all the structures at the different FN threshold according to GW in
5.15 or mean and majority voting in 5.16 . The significant degradation of DSC
with decreasing number of chosen subjects discourages single-atlas approach. No
significant change in segmentation performance was instead seen when selecting
more than 10 atlases. If less atlases are selected, the reduction in anatomical vari-
ability and the impact of a sub-performing registration is significant. Nonetheless,
the choice of a smaller subset results in a significant decrease in algorithm running
time, thus making the strategy applicable in the clinic. For some structures, like



5.1 multi-atlas based segmentation for head and neck planning 84

Figure 5.13: DSC values for four different selection strategies and all three fusion methods.
Panels (a) and (b) show FN results for full and half database selection, whereas
Panels (c) and (d) illustrates DSC results for TH value selecting approximately
full and half atlases in the database. Given DSC dependence on total volume,
note that it is lower for smaller structures (e.g. optical nerves). Columns indi-
cate the different fusion strategy, i.e. GW with k = 0.7 and k = 0.5, AVG and
MV.

Figure 5.14: likelihood1(right) and likelihood0(left) for the case of a mandible. We note
that a good amount of voxels probability do not exceed 0.4 after normalization.
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eyes and optical nerves, these general rules do not hold and just the selection of
the most similar patient might result in a reasonable DSC (see last entry versus all
other entries in the histograms in Figure 5.15 and 5.16 ), because of the reduced
anatomical variability at that site. The influence of the number of atlases onto the
fusion rule behaviour is the same for GW with k = 0.5 and k = 0.7, the difference
between the two being just the inclusion or exclusion of some voxels from the final
segmented structure. The same kind of reasoning can be applied to distinguish
between AVG and MV, but for a different reason. If we look at their equation, we
notice that, for our database of 30 patients, AVG and MV differ only if 15 rater
included the considered voxel in the structures and 15 did not. In this case, for
AVG the voxel will be part of the contour, but not for MV. Also, if we look at the
last entry of the histograms of all the recombination strategies, for which just the
most similar atlas has been selected, we notice that GW DSC are lower than AVG
and MV ones. This is due to the weighting connected to image similarity after reg-
istration multiplied to the label similarity in the GW strategy and is not present in
AVG and MV.

Friedman test indicates that the difference in DSC value between corresponding
FN and TH results for brainstem, mandible and parotids is significant no matter
which fusion rule is used. Further analysis of the ranks suggests that FN might be
the slightly favourable strategy. Despite both strategies being potentially good, FN
maintains an higher variability for each test patient, whilst failed or suboptimal
DIR have larger impact on TH.

We further compared the recombination rules when all subjects in the database
serve as atlases (i.e. FN =0 and TH=0.90). Results show that spinal cord and optical
nerve may benefit from computing an average contour rather than looking at the
singular voxel contribution. Besides these two structures, GW equates or beats
performance of AVG and MV, suggesting its applicability.

We report a detailed comparison between GW with k = 0.5, AVG and MV with
inter-rater variability reported in literature [94, 167, 166, 109] in Tables 5.5, 5.6 and
5.7 respectively. We can see how the multi-atlas approach is successfully reaching
the inter-rater variability no matter which is the strategy used. Instead considering
Table 5.8 for GW, the single atlas approach performance is not as good as the multi-
atlas one. We did not report numerical results for AVG and MV, because there was
no statistical difference for single atlas choice between the three approaches. The
results in Tables 5.5, 5.6 and 5.7 were comparable in terms computational efficiency.

5.1.3 Conclusion

We developed an efficient algorithm for atlas based segmentation of RT planning
CT volumes, based on demons DIR and Gaussian Weighting. The absence of pre-
selection on atlases introduces an extra challenge besides different positioning, but
also makes the results closer to real clinical application. FN selection of database
atlases is foreseen to increase computational efficiency. Obtained results testify the
applicability in a clinical environment, decreasing considerably the manual work-
load. Further work will include DR speed up, GW fusion improvement by means
of a vector field discontinuity weighting term and post-processing refinement.
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Figure 5.15: DSC for all the structures at different FN threshold according to GW fusion
rules are illustrated in Panels (a) and (b). The significant degradation of DSC
with decreasing number of chosen subjects discourages single-atlas approach.
No significant change in segmentation performance was instead seen when
selecting more than 10 atlases.



5.1 multi-atlas based segmentation for head and neck planning 87

Figure 5.16: DSC for all the structures at different FN threshold according to mean and
majority voting fusion rules are illustrated in Panels (a) and (b). Also in this
case, single-atlas approach is the worst performing, whereas no significant
difference was found when selecting more than 10 atlases.
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Table 5.5: Comparison between literature inter-rater variability and GW results when all
the atlases are selected and k = 0.5

Structure FN = 0 TH = 0.9 Inter-rater variability

Mandible 0.85 (0.07) 0.86 (0.04)
0.85− 0.90 [94]

0.78± 0.06 [167]

Spinal Cord 0.81 (0.10) 0.81 (0.10) 0.70− 0.80 [94]

Brainstem 0.76 (0.10) 0.77 (0.11)
0.825± 0.099 [166]

0.58± 0.2 [167]

Right Optical Nerve 0.50 (0.12) 0.50 (0.10) 0.499± 0.174 [166]

Left Optical Nerve 0.52 (0.13) 0.52 (0.11) 0.499± 0.174 [166]

Right Eye 0.80 (0.12) 0.80 (0.12) 0.831± 0.094 [166]

Left Eye 0.80 (0.09) 0.80 (0.06) 0.831± 0.094 [166]

Right Parotid 0.67 (0.12) 0.69 (0.12)
0.853 [109]

0.66± 0.1 [167]

Left Parotid 0.69 (0.16) 0.70 (0.14)
0.853 [109]

0.66± 0.1 [167]

Table 5.6: Comparison between literature inter-rater variability and AVG results when all
the atlases are selected

Structure FN = 0 TH = 0.9 Inter-rater variability

Mandible 0.83 (0.08) 0.85 (0.08)
0.85− 0.90 [94]

0.78± 0.06 [167]

Spinal Cord 0.83 (0.06) 0.83 (0.08) 0.70− 0.80 [94]

Brainstem 0.79 (0.11) 0.80 (0.12)
0.825± 0.099 [166]

0.58± 0.2 [167]

Right Optical Nerve 0.54 (0.23) 0.52 (0.23) 0.499± 0.174 [166]

Left Optical Nerve 0.60 (0.21) 0.57 (0.16) 0.499± 0.174 [166]

Right Eye 0.80 (0.11) 0.80 (0.11) 0.831± 0.094 [166]

Left Eye 0.81 (0.08) 0.81 (0.05) 0.831± 0.094 [166]

Right Parotid 0.66 (0.14) 0.66 (0.12)
0.853 [109]

0.66± 0.1 [167]

Left Parotid 0.67 (0.16) 0.68 (0.15)
0.853 [109]

0.66± 0.1 [167]
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Table 5.7: Comparison between literature inter-rater variability and MV results when all
the atlases are selected

Structure FN = 0 TH = 0.9 Inter-rater variability

Mandible 0.82 (0.08) 0.84 (0.09)
0.85− 0.90 [94]

0.78± 0.06 [167]

Spinal Cord 0.81 (0.06) 0.82 (0.07) 0.70− 0.80 [94]

Brainstem 0.79 (0.11) 0.80 (0.11)
0.825± 0.099 [166]

0.58± 0.2 [167]

Right Optical Nerve 0.52 (0.22) 0.52 (0.21) 0.499± 0.174 [166]

Left Optical Nerve 0.60 (0.18) 0.57 (0.16) 0.499± 0.174 [166]

Right Eye 0.77 (0.11) 0.77 (0.09) 0.831± 0.094 [166]

Left Eye 0.81 (0.08) 0.80 (0.06) 0.831± 0.094 [166]

Right Parotid 0.63 (0.16) 0.66 (0.12)
0.853 [109]

0.66± 0.1 [167]

Left Parotid 0.64 (0.16) 0.66 (0.15)
0.853 [109]

0.66± 0.1 [167]

Table 5.8: Comparison between literature inter-rater variability and GW results when just
one atlas is selected

Structure FN = 0.99 TH = 1.0 Inter-rater variability

Mandible 0.78 (0.06) 0.78 (0.06)
0.85− 0.90 [94]

0.78± 0.06 [167]

Spinal Cord 0.73 (0.14) 0.73 (0.15) 0.70− 0.80 [94]

Brainstem 0.68 (0.14) 0.68 (0.15)
0.825± 0.099 [166]

0.58± 0.2 [167]

Right Optical Nerve 0.51 (0.22) 0.54 (0.16) 0.499± 0.174 [166]

Left Optical Nerve 0.51 (0.19) 0.51 (0.19) 0.499± 0.174 [166]

Right Eye 0.76 (0.30) 0.76 (0.33) 0.831± 0.094 [166]

Left Eye 0.76 (0.09) 0.76 (0.17) 0.831± 0.094 [166]

Right Parotid 0.61 (0.17) 0.60 (0.14)
0.853 [109]

0.66± 0.1 [167]

Left Parotid 0.63 (0.16) 0.59 (0.16)
0.853 [109]

0.66± 0.1 [167]
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5.2 on-line virtualct in head and neck adaptive radiation therapy

Daily setup variations, internal organ motion and deformation have long been
a concern for external beam radiation therapy treatments. The selectivity onto the
target and the sparing of surrounding structures requires accurate localization and
monitoring of the patient throughout the treatment course. While optimized and
sophisticated techniques (e.g. Intensity Modulated Radiation Therapy, IMRT) have
been developed to enhance the dose distribution conformity around the target vol-
umes, the actual delivery of the intended treatment is still an open issue. In ART,
anatomical structures, imaged during daily patient set-up routine, are compared
with those of the planning phase, for individuation and targeting of the tumor
and OARs sparing. In most of the clinical workflows, the adaptation of the plan
occurs on a replanning CT on the basis of relevant dosimetric discrepancies, while
in-room imaging is mainly used for patient setup. Therefore, current clinical pro-
tocols require an expert physician to re-draw all of the structures, and to check
carefully the dose volume histograms. As such, ART is still mostly an offline time-
consuming procedure (see §2.3 ), which offers the potential to be, at least partially,
automated. Deformable registration algorithms (see §3) stand as state of the art
tools to adapt OARs and target contours, as well as to evaluate the actual deliv-
ered dose, on the basis of a displacement field obtained by image co-registration.
Several DIR algorithms have been proposed, but so far no complete experimental
validation of CT to CBCT registration has been provided. Nonetheless, the employ-
ment of such vector fields could lead to non-consistent (i.e. not deliverable) plans.
In most of the current clinical HN protocols, CBCT images are acquired to monitor
tissue changes, but the acquisition of a replanning CT (CTrepl) is still preferred.

Here, we implemented an on-line procedure to generate a virtualCT from the
CBCT scan used for patient setup, thus dropping the need of a new replanning CT
(CTrepl). We demonstrate its robustness and feasibility in a retrospective study on
twenty patients treated at the European Institute of Oncology with IMRT in a con-
ventional ART protocol. The core element of our proposed method is a deformable
registration algorithm that is employed to compensate the non-rigid changes oc-
curred between the treatment planning simulation CT (CTsim) and the control
CBCTs. We assessed the equivalence between virtualCT and CTrepl by comput-
ing residual deformation, and ART strategy performance according to multiple
metrics.

5.2.1 Methods

5.2.1.1 Dataset

The study was retrospectively performed on twenty HNCP treated at European In-
stitute of Oncology (Milan, Italy). All the patient underwent IMRT with a planned
dose of 60-70Gy delivered in 2-2.12Gy per fraction, one fraction per day. Current
protocol entails a planning CT (GE Medical System Light Speed, Fairfield, CT)
with or without contrast medium injection, verification CBCTs (On-Board Imager,
OBI, Varian, CA) and replanning CTs at 40Gy and 50Gy. CBCT and CTrepl are
acquired generally one day apart, with 3 days distance as the worst case. Image
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Figure 5.17: Initial CBCT volume (left) with fixes and ring effect versus pre-processed im-
age (right). We can clearly note the contrast enhancement, as well as the re-
moved tube and couch.

resolution was 1x1x3 mm in AP-LL-SI directions, on average. Patient position re-
producibility during imaging and treatment phases is guaranteed by customized
head-neck and shoulders thermoplastic masks fixed onto the couch, bite block,
and three radiopaque markers attached to the mask for initial alignment. Main in-
dication for replanning is represented by the over dosage of OARs, as highlighted
by Dose Volume Histograms on CTrepl, but no beam modification and/or plan re-
optimization was employed in our population. Offline adjustment of the structures
of interest and dose re-calculation was performed on the CTrepl. For each patient,
we selected one or more triplets (CTsim, CBCT40Gy/50Gy and CTrepl40Gy/50Gy),
raising the total number of cases to twenty-eight. Mandible, parotid glands, nodal
Gross Tumor Volumes (nGTV) were retrospectively drawn on CTrepl by a radia-
tion oncologist. In seven patients, it was not possible to contour nGTV, as these
were either post-operative or post responsive induction chemotherapy patients.

5.2.1.2 Image pre-processing

The pre-processing was necessary to prevent the DIR algorithm to be stacked
into local minima and/or not to converge. CTsim, CBCT and CTrepl were pre-
processed, in order to remove most of tube, treatment couch, immobilization mask
and, for the CBCT, ring artifacts. Given that both fixes and treatment couch were in
the same HU range of the patient, thresholding or region growing methods were
not effective. CT scans were masked with the body contour drawn in the treatment
planning phase. The 3D scattered points describing patient body were rendered to
a binary mask, which was subsequently applied onto the original image. The out-
side of the patient was filled with a conventional value, chosen to be outside of the
HU range (i.e. -1200 HU). The same approach could not be used for CBCT scans,
which were not contoured. To mask out non-patient areas, we rigidly align the
CTsim body contour to the CBCT scan and then dilate it to take into account any
possible failure of the registration and/or differences in the patient. Morphological
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Figure 5.18: Modified HU relationship to enhance soft tissue contrast. In abscissa we report
HUs of the input image, which are converted to output HUs by means of a
piecewise linear relationship. Basically, we mapped any given HU value in the
input image to another HU value, so that the HU range for the soft tissues is
enlarged in the output pre-processed volume.

operations were then applied to further refine the contours. An example of initial
versus pre-processed images is shown in Figure 5.17.

Further pre-processing includes a piecewise linear histogram modification to
enlarge the HU range assigned to soft tissues. The injection of contrast media at
CTsim and the presence of dental artifacts in the CBCT increased the differences
between volumes as well as the histograms. The latter were filtered out by clipping
the histogram to the 99.9 percentile and modifying the HU graph so that the soft
tissues can be assigned more HUs (Figure 5.18).

Finally we performed an histogram matching using Slicer3D implementation
[198], with 256 bins and 30 control points, between CT and CBCT volumes and
histogram clipping to the 99.9 percentile to compensate for dental artifacts and
differences introduced by contrast media injection between CT and CBCT volumes.
The final evaluations as well as the virtualCT are nonetheless generated from the
original images, thus avoiding pre-processing influence on the final image and on
dose calculations on the virtualCT, but helping the registration to achieve more
reasonable results.

5.2.1.3 virtualCT generation

To generate the virtualCT, a multistage B-Spline deformable registration (see §
3.2.3.1) between CTsim and CBCT was performed following rigid registration (Fig-
ure 5.19). For the rigid coarse alignment, we used the fast rigid registration routine
based on mutual information offered in Slicer3D [198]. Non rigid registration was
performed using Plastimatch [127, 129, 126, 124, 128], under the hypothesis that
this ideally compensates for non-rigid modifications as detected by in-room CBCT
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Figure 5.19: Flowchart of the proposed strategy for virtualCT generation. First of all we pre-
process CTsim, CBCT and CTrepl, masking out all the structures outside the
patient. CTsim is then deformed on CBCT volume and virtual CT is generated.
CTrepl is rigidly aligned with CBCT, serving as validation dataset.

scanning. We did use one combination of parameters for this study, to make our
approach independent from the tuning of the registration parameters and thus
clinically feasible.

5.2.1.4 Geometric validation

Given the absence of a manual segmentation on CBCT, we performed a rigid reg-
istration between CTrepl and CBCT, to compensate for patient re-positioning oc-
curred between the two scans. Only those structures whose contours were adjusted
by the physicians in the replanning phase were evaluated. The contours propa-
gated on CBCT from CTsim (i.e. virtual contours) and from CTrepl (i.e. CBCT
surrogates contours) were compared in terms of Dice Coefficient (DSC), Center Of
Mass (COM) distances and Surface Distances (SD). DSC is defined as in [165]:

DSC =
2 |A∩B|
|A|+ |B|

where A and B are the two structure volumes to be compared. Taking into ac-
count the resolution of our images, a residual absolute coordinate-wise COMs
distances lower than 1 mm in LL and AP and lower than 3 mm in SI direction is
indicating a good registration. To evaluate the local surface distances, after trian-
gulation of the contour points, we computed the Root Mean Square Error (RMSE)
as

RMSE =
‖d‖
N

where ‖d‖ is the norm of the vector of the shortest Euclidean distance between all
the N correspondent closest points in the datasets without any further refinement.
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The correspondence between points is defined as in [116]. For RMSE the desired
level of accuracy is 3 mm.

We estimated the deformation between CTsim versus CTrepl in terms of struc-
tures volume changes as well as COM shifts, whereas the absence of deformation
between CBCT and CTrepl was verified by performing an additional deformable
registration to estimate the residual vector field length distribution within con-
toured structures. Finally, we computed Spearman correlation coefficient R (p-
value = 0.05) between the residual and estimated deformation and RMSE values
on the contours, looking for inaccuracies in the validation method and polarization
in the algorithm, respectively.

To verify registration quality on operator-independent points, we applied Scale
Invariant Feature Transform (SIFT) method illustrated in chapter 4.3. First of all,
we evaluated the entity of deformation comparing CTsim with CBCT, after solely
centering and resampling in the same voxel space. Than we compared virtualCT
and CBCT, CTrepl with CBCT (CTrepl_rig) and finally CTsim rigidly registered
onto CBCT (CTsim_rig) with CBCT. Theoretically, if all registration methods were
equally good, the accuracy value of these last three couples would be exactly the
same. We computed accuracy as the median of the residuals displacements located
points on the first and on the second image.

5.2.2 Results

First of all, we analyzed variations in volume and COM position for nGTVs and
parotid glands between CTsim and CTrepl (Table 5.9 and 5.10), without any reg-
istration. Negative variation indicates volume shrink, while positive differences in
COMs to shift to the right of the patient in LL, anterior in AP and cranial in SI
respectively. For parotid glands, manual contours confirm the results by Ricchetti
et al [48] of volume loss and COM medial shift, while GTV volume shrinkage gives
an indication of therapy response, though its direction is non-predictable.

In Figure 5.20, we present a checkerboard rendering of patient 19, demonstrating
the visual agreement of virtualCT with CBCT images and contours (in solid blue
and yellow respectively). To better highlight the difference between clinical practice
and our method, we also overlaid the contour that would have been obtained by
rigid registration between CTsim and CBCT (green). Critical issues raised in some
patients, such as 6 and 7 (Figure 5.22a and 5.22b respectively). These were mainly
due to either sub-optimal registration performances induced by external features
like immobilization mask (Figure 5.22a.1) or to macroscopic modifications between
CBCT and CTrepl (i.e. different jaw position, Figure 5.22b.2).

The residual median deformation between CBCT and CTrepl was between 0.13

mm and 1.8 mm in the mandible, for all the patients but patient 7. For this patient,
the median deformation measured 3.80 mm, due to jaw displacement in the CTrepl
scan compared to CTsim (see Figure 5.22). Also for the parotid glands and nGTV,
we reported the same behavior, though the residual could step up and occasion-
ally exceed one voxel. For nGTV, median was 0.96 mm, with maximum of 75th
percentile at 3.43 mm. Median residual deformation was 0.59 mm and 0.68 mm,
whereas the maximum of 75th percentile reached 2.15 mm and 1.71 mm for right
and left parotid, respectively. When correlating the RMSE contour distance with
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Table 5.9: Right and Left Parotids variation between CTsim and CTrepl at 40Gy (case a) and
50Gy (case b) of treatment. Negative ΔVol and ΔLL/ΔAP/ΔSI indicate volume
reduction and medial shift, respectively.

Right Parotid Left Parotid

∆Vol[
cm3

] ∆LL

[cm]

∆AP

[cm]

∆SI

[cm]

∆Vol[
cm3

] ∆LL

[cm]

∆AP

[cm]

∆SI

[cm]

1a −2.54 0.14 0.04 −6.75 −1.88 0.07 0.28 −6.61

1b −1.63 0.20 −1.46 −7.28 −1.56 0.06 1.32 7.29

2 −9.18 0.01 0.48 0.84 −1.84 0.09 0.70 1.22

3a −4.33 −0.10 −0.17 −2.38 −0.46 0.08 0.26 2.58

3b −8.31 0.03 −0.31 −2.09 −1.76 0.14 0.42 2.29

4 −14.51 0.33 5.75 −0.41 −9.03 0.29 5.69 0.35

5a −12.61 0.34 2.04 −4.16 −5.99 0.03 1.96 3.77

5b −12.82 0.53 2.07 −3.89 −10.40 0.02 1.94 3.73

6a −14.18 0.39 1.13 −4.06 −12.91 0.08 1.00 4.15

6b −11.92 0.02 0.81 −4.06 −11.39 0.22 0.87 4.34

7 −10.49 0.31 2.93 −0.86 −8.41 0.09 2.81 0.53

8 −7.57 −0.23 2.88 −2.18 −10.42 0.39 3.12 1.93

9 −4.54 0.46 3.58 −1.18 −4.56 0.39 3.21 1.09

10a −3.13 0.20 −1.43 −6.49 −4.42 0.14 1.31 6.32

10b −6.56 0.04 −3.02 −6.84 −5.91 0.15 2.94 6.64

11 −13.27 −0.03 0.92 6.56 −8.24 0.22 0.88 6.36

12 −0.47 0.15 1.67 −4.46 −4.76 0.02 1.21 3.97

13 −6.58 0.78 −2.91 3.02 −7.26 0.09 3.04 3.54

14 −10.18 −0.74 −4.45 −0.36 −10.35 1.10 4.40 0.22

15 −4.89 0.33 0.84 −6.05 −5.71 0.13 0.66 6.13

16a −7.75 0.15 0.00 −4.10 −0.44 0.23 0.05 3.68

16b −7.23 −0.08 −0.08 −3.54 −6.00 0.06 0.00 3.36

17a −−− −−− −−− −−− −11.97 0.47 1.93 5.62

17b −−− −−− −−− −−− −16.93 0.54 2.00 5.42

18 −0.17 0.03 2.95 −1.25 −0.55 0.14 2.66 0.86

19 −2.79 0.24 3.58 −7.93 −4.79 0.35 3.51 7.57

20a −9.12 0.02 2.78 −4.01 −4.24 0.51 2.64 4.26

20b −5.02 0.10 2.91 −4.35 −2.32 0.17 2.56 4.23
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Table 5.10: Gross Tumor Volume (GTV) variation between CTsim and CTrepl at 40Gy (case
a) and 50Gy (case b) of treatment. If more than one GTV was present, both are
displayed in the same row. NegativeΔVol andΔLL/ΔAP/ΔSI indicate volume
reduction and medial shift, respectively.

∆Vol
[
cm3

]
∆LL[cm] ∆AP[cm] ∆SI[cm]

1a −0.11 0.20 0.11 −6.90

1b −0.34 0.01 −1.41 −7.08

2 −2.70 0.02 0.76 0.95

3a
−0.45 0.30 −0.26 −2.37

−0.52 −0.01 0.43 −1.73

3b
−0.64 0.55 −0.58 −2.37

−0.66 0.42 0.11 −2.08

6a −0.70 0.21 1.20 −4.07

6b −0.76 −0.30 1.03 −4.26

7 −0.77 0.03 2.99 −1.07

9 −6.28 0.89 3.39 −1.13

11 −0.27 −0.13 1.04 6.35

12 −0.18 −0.13 1.52 −3.90

13 −6.37 0.26 −2.66 3.26

14 −0.09 −0.92 −4.89 0.19

15 −15.58 0.27 0.98 −6.10

16a 2.23 0.23 0.45 −3.49

16b 2.53 0.02 0.27 −3.38

18 −12.28 −0.85 2.58 −0.64

19 −9.92 −0.80 3.86 −10.95

20a −7.46 −0.04 2.28 −4.21

20b −8.48 0.13 2.56 −4.41
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Figure 5.20: Checkerboard rendering of three axial slices of patient 19a, comparing virtu-
alCT and CBCT scans. Manually outlined (red) and automatic (blue) mandible,
nGTV and parotids are presented in panels (a), (b) and (c) respectively. In
green, we report the contour that would have been obtained by rigid reg-
istration of CTsim on CBCT. nGTV contour highlights the variability of the
obtained results.

the estimated CTrepl/CBCT non-rigid transform, the most evident trend can be
seen for the mandible, for which we can clearly classify patient 7 as an outlier of
the distribution. Three other outliers were detected, as having a higher RMSE (> 3

mm), despite the low residual deformation, as results of registration errors mainly
due to metal artifacts and contouring variability. The corresponding Spearman co-
efficient is significant, but the correlation is rather weak (R=0.67).

In Figure 5.23, we report median, 25th and 75th percentile of DSC, COMs dis-
tance, and in Figure 5.24 RMSE between the virtualCT and the CBCT surrogate
contours. For the mandible, we report a median DSC of 0.85 and COMs distance
around 0.6 mm in all directions. Only patients 1b, 7, 12, 15 and 16a show a RMSE
equal or greater than 3 mm (Figure 5.24), localized at transition between bone and
teeth. As underlined by Figure 5.22 and the residual deformation estimation, the
different mandible positioning causes validation method failure for patient 7. In
fact, if we perform non-rigid registration between CTrepl and CBCT, DSC steps up
to 0.84 and COM difference goes down to less than 0.5 mm along each dimension.
For both parotid glands, median DSCs were 0.78 and 0.79 and median COMs dis-
tances were lower than 1 mm along LL and AP direction, and lower than 1.5 mm
along SI direction. Looking at RMSE for both parotids, we notice very few cases,
in which the distance was above the 3 mm threshold. At first sight, the most crit-
ical structure appears to be GTV, for which median DSC was just 0.58 and RMSE
violated the acceptance threshold in seven patients.

We then looked at linear dependency between RMSE and volume difference or
COM shift (Figure 5.25). In all cases, but for nGTV, RMSE versus volume difference,
R was non-significant. Although significant, the low R value for nGTV RMSE ver-
sus volume difference confirms the difficulty to reproduce nodal volume position
when subjected to large deformations, besides the variability in the results. The
absence of a significant trend between RMSE results and the deformation between
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Figure 5.21: Distribution of results obtained with our strategy in terms of RMSE contour
distance and CTrepl/CBCT residual deformation. The trend can be seen for
mandible, where we can clearly classify patient 7 as an outlier of the distribu-
tion (red arrow). Other outliers can be ascribed to registration errors mainly
due to metal artifacts and contouring variability. For GTV and parotid glands
the behavior looked very similar, though more variability can be seen from
analysis of GTV – residual deformation relationship.

Figure 5.22: Checkerboard rendering for patient 6a and 7 virtualCT and CBCT after de-
formable registration are presented in panels (a.1) and (b.1) respectively, while
panels (a.2) and (b.2) shows the comparison between CTrepl and CBCT after
rigid correction. In the image overlay (a.3, b.3), red codes for CBCT and green
for rigidly registered CTrepl. Note the effect of a sub-optimal masking of CBCT
in the red circles in panel (a.1): we clearly see how the deformable registration
does not detect the mask (green arrows) as external structure, because the im-
mobilization is in the same HU of patient tissue. For patient 7, we could not
use the proposed validation method, because of the different jaw position in
CTrepl and CBCT (blue squares).
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Figure 5.23: Quantitative results about the geometrical alignment between CBCT surrogate
contours and structures propagated from CTsim with the same deformation
used to generate virtualCT. Besides GTV, deformable registration reached a
median DSC of 0.8. DSC inverse correlation with structure volume and low
contrast are at the basis of a lower score for GTV. COM distances were in
median in agreement with the prescribed accuracy.

Figure 5.24: RMSE between points of the surrogate CBCT and virtualCT contours was used
to quantify local residual surface distances. Each patient is analyzed sepa-
rately, being 3 mm the acceptance threshold for this metric.
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Table 5.11: Medians and variability (computed as difference between 75
th and 25

th per-
centiles) for all patients at different cases obtained with SIFT.

median [mm] inter-quartile range [mm]

CTsim/CBCT 31.52 15.953

CTsim_rig/CBCT 1.35 0.9958

virtualCT/CBCT 0.66 0.2744

CTrepl_rig/CBCT 0.66 0.3848

Table 5.12: Medians of DSC, COM and RMSE between virtualCT and CTrepl_rig for differ-
ent structures.

Mandible Right
Parotid

Left
Parotid

GTV

DSC 0.85 0.78 0.79 0.56

COM [mm] 1.09 2.24 1.60 3.24

RMSE [mm] 1.4 2.21 2.23 2.55

CTsim and CTrepl implicates that our strategy is able to compensate deformation
in a clinical range, as represented by our patient database.

The application of SIFT to the pair CTsim/CBCT shows largest values in accu-
racy, thus reflecting the presence of macroscopic anatomical changes. To check
whether a deformable registration is actually needed to compensate for these
changes, we compare SIFT landmarks detected on CTsim_rig and virtualCT on
CBCT respectively. The improved accuracy in the mapping of virtualCT features
with CBCT ones, with respect to the rigid case, confirms the better performances
reached by non-rigid registration. We further verified if virtualCT could actually
be a well enough replacement for CTrepl, comparing virtualCT and CBCT and
CTrepl_rig and CBCT accuracies. The Friedman test demonstrates the statistical
difference of CTrepl_rig and CBCT and virtualCT and CBCT from CTsim_rig and
CBCT. In Table 5.11, we report the median and the variability of the median accu-
racy for all patients for the different cases. Finally, by comparing results obtained
from SIFT (Table 5.11) and those obtained from classical indices (Table 5.12) be-
tween virtualCT and CTrepl_rig for all patients, we see that SIFT is an accurate
method, providing an index which expresses the accuracy in mm, in contrast with
DSC, and is not bound to the sources of error related to the contours (for example
manual identification), such as COM and RMSE are. Further work shall be dedi-
cated to eliminate the normalization of the initial image, which results in a lower
identification probability of soft tissues in favor of bony structures.

SIFT outliers are due to an incorrect slice attribution and to the fact that features
matching is based just on image content (i.e. descriptor similarity), without further
distinguishing or clustering the landmarks for example on image relative location.
An example of wrong association is reported in Figure 5.26, where obviously the
discriptor is not distinguishing between the mastoid in the left and right emisphere.
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Figure 5.25: The relationship between RMSE results (y axis) presented in the manuscript
and estimated deformation between CTsim and CTrepl (x axis). This latter
is quantified in terms of COM vector length (panel a) or volume difference
(panel b) of contoured volumes. Each structure is presented separately, but no
trend can be noted.
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Figure 5.26: Example of wrong SIFT correspondent features matching for symmetric fea-
tures (mastoid). The descriptor distance fails in correctly matching CTsim, CT-
sim_rig and CTrepl_rig features, whereas in Panel (c), for virtualCT the fea-
tures are correctly associated.
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As for the computational efficiency, the algorithm running times were on the
order of 5 minutes with volumes of size 512x512x116 on a laptop mounting an
Intel® Core™2 Duo 2.2GHz, with 2GB of RAM.

5.2.3 Discussion

In this work, we proposed a method to generate a virtualCT that could guide both
contouring and dose adaptation in a reasonable computational time. This would
boost the clinical feasibility of ART decisively, while sparing the patient CTrepl
scan and preventing treatment delay. The whole concept relies on a deformable
registration strategy that warps image and structures from the planning CT to the
daily CBCT. Our dataset is composed by 28 triplets of CTsim, CBCT and CTrepl,
which were re-contoured by an expert physician. The intra-observer variability
may not be ignored in this case, but we tried to limit it by allowing only one ses-
sion of volumes re-contouring per patient. Despite our efforts in masking out the
ring effect and immobilization mask, residual influence was caused by compara-
ble density range with respect to the patient body, thus hindering the successful
application of threshold- or region-growing-like refinement and of the whole reg-
istration process.

The validation method we propose relies on the acquisition of CTrepl sufficiently
near in time to the considered CBCT (at last within three days). In fact, if only rigid
modifications occur, it is possible to define CBCT surrogates volumes from CTrepl,
to be used as golden standard comparison with virtualCT structures. Otherwise,
the involved structures need to be excluded from the study. For instance, patient
7 mandible drawn on CTrepl could not be used as verification tool, because of the
different jaw position in the corresponding CBCT volume (Figure 5.22).

We obtained results that are comparable with previous work on monomodal
registration for RT (Figure 5.23 and 5.24). Zhang et al. [107] applied deformable
image registration to CT volumes, obtaining distances between manual and au-
tomatic contours below 3 mm in each patient included in the study. Shekhar et
al. [199] reported an accuracy of approximately 2 mm in the thorax and 3 mm in
the abdomen for a fully automated FFD-based deformable registration of 4D CT
phases, while Nithiananthan et al. [169] reported a Target Registration Error (TRE)
of (1.6 ± 0.9) mm in CBCT/CBCT demons deformable registration. A multimodal
image registration study was recently performed by Faggiano et al. [109], who
applied B-Spline based warping of head and neck between CT and Mega-Voltage
CT, where the variability of manual contouring is significant. They reported an
average DSC of 0.77, average surface distance of 1.66 mm and maximum surface
distance of 9.47 mm. Hou et al. [110] quantified the discrepancies in terms of TRE
on 9 anatomical points, showing residual mean TRE of 2.4±0.2 mm for bony tar-
gets and of 2.8±0.2 mm for soft tissue landmarks, after symmetric forces demons
registration of CTsim and CBCT.

The expectation of the mandible having the best results among all the re-contoured
structures, because of its high contrast on the CT scan and the absence of non-rigid
deformations, was confirmed by the quantitative results. With our strategy, we are
able to compensate parotid glands shifts and shape differences, as predicted in
[48], with accuracy comparable to the image resolution, allowing for a constant
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plan update between fractions, to avoid permanent side effects induced by irradi-
ation, such as reduced salivary flow rate. The maximum of difference (around 1

cm) can be found at the frontal part of the parotids, where the separation between
gland and masseter is not clear in CBCT, and in the lateral part of the contour,
where the deformation is under-estimated because of errors induced by masking.
For those patients in which the GTV was clearly contrasted the RMSE and COMs
distances matched the axial voxel resolution of 1 mm (see for example patient 19,
Figure 2) and DSC was greater than 0.7. Otherwise, deformable registration was
not able to compensate for different shapes of GTV. In fact, for seven patients, the
GTV was immerse in a rather uniform soft tissue, as it was already reported from
Zhang et al. [107], and also the contoured lesion was very small, thus enhacing the
probability of mis-positioning and of contouring differences as well as the negative
correlation between structures volume and DSC value.

Our approach could be used to quickly generate a dataset of modified contours
on the daily imaging. A quick dose re-calculation could be performed, based on
which the current plan could be verified quantitatively, relying on either the mea-
sured deformation or the calculated DVHs. All these factors would allow a more
robust identification of replanning indication according to a clinic specific protocol.
Moreover, this work may provide an insight into the larger objective of validating
CT to CBCT DIR. Local tissue contrast enhancement, penalizing the sharp tran-
sitions, and mask refinement would limit inaccuracies in registration and further
refine the deformation map. This latter can be used for cumulative dose evaluation
as well as for treatment plan fast update. Dosimetric evaluation will be needed to
compare virtualCT and CTrepl distributions and introduce virtualCT concept into
the clinic.

5.2.4 Conclusion

We were able to generate a virtualCT and the associated segmentation of OARs
and nGTV for ART purposes, based upon the information gained from the in-room
CBCT scan and the application of a deformable image registration algorithm. We
aimed at sparing a CT scan (CTrepl) to the patient by modeling the inter-fractional
deformations, thus avoiding any delay in the therapy as well as reducing the clin-
ical workload. Computational time was reduced to the point that the strategy can
be defined clinically feasible. Further work will anyhow be needed to improve
nGTV localization. Our approach could therefore be appropriate for a clinical ART
implementation, dropping the need of a CTrepl and improving the overall clinical
workflow.
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C O N C L U S I O N S

The aim of this work was the automatization of manual offline and online phases of
a Radiation- or Hadron-Therapy treatment. We analyzed both technological issues
connected with DIR applicability and clinical feasibility of innovative protocols
for multi-atlas segmentation and virtualCT generation for Image Guided Adaptive
Radiation- and Hadron-Therapy.

We studied the performaces of two of the most popular approaches, i.e. B-Spline
or free-form registration and Log Domain Diffeomorphic Demons, in a clinical
case of same patient CT-to-CT registration. The two CT scans were acquired at
different time points along the treatment, in correspondance of physicians obser-
vation of macroscopic non-rigid changes in the patients. We compared the perfor-
mances of these two algorithms with the ones of a commercial algorithm, devel-
oped by MIMvista (MIMsoftware, Cleveland, Ohio, USA) and currently clinically
approved. Both implemented strategy demonstrated to be comparable to the com-
mercial one, but B-Splines was slightly better and presented no significant differ-
ence with the MIMvista algorithm. The quantitative evaluation of these algorithms
was performed evaluating contour mean overlap (i.e. Dice Similarity Coefficient)
between manual and automatic contours obtained applying the computed defor-
mation field to the manual outlines on the floating scans.

We then analyzed technological aspects connected with the problem of compen-
sating the non-rigid deformations occurring throughout the treatment course. The
key component here is intensity-based DIR, which aims at fusing two or more
image datasets, while modelling the occurred transformation. This class of algo-
rithms has gained popularity, but yet it is not validated for clinical applications.
We addressed the problem of both ensuring full convergence of the iterative opti-
mization and of providing a robust independent indicator of performances to the
clinical user. The first question was solved studying different metrics properties on
the example of Log Domain Diffeomorphic Demons algorithm. The best perform-
ing stopping condition is looking at the minimum of a set of previous iterations
and it is based on the calculation of the harmonic energy of the transform, rather
than just looking at the evolution of the intesity difference. Providing a final de-
formation field free of discontinuities and with limited amount of irregularities
is primary indicator of a physically meaningful transformation and, as such, is
of primary importance in a clinical context. In addition, the independence of the
chosen criteria from image intensities makes it more robust to artifacts, but at the
same time reliable and accurate. The study of this type of conditions is still lim-
ited to synthetic deformations applied to phantom data and/or to patients, so a
patient dataset specific tuning of the acceptance threshold should be foreseen. This
study was conducted on the example of Log Domain Diffeomorphic Demons, but
could be easily applied to any type of registration algorithm. Attention should be
dedicated also to the improvement of computational efficiency, especially for calcu-
lations on the displacement field. For B-Spline based methods and more generally
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for all the parametric methods, a step forward could be to study the relationship
between harmonic energy and all the other convergence criteria with the coeffi-
cients of the final transformation, so that the iteration of the cost function can be
restricted onto the deformation coefficients rather than working on all the voxels
in one image volume.

For technological developments, we further studied the properties of classical
evaluation indices (i.e. validation and performance cost functions) and propose a
new independent metric based on the extraction of salient features from the im-
age volume itself. Although much could still be done to improve Scale Invariant
Feature Transform computational efficiency, the invariance properties of the devel-
oped algorithm to translation, rotation, scaling and non-rigid deformation suggest
its applicability to a clinical environment for an objective validation and assess-
ment of DIR. This would overcome both the limits of visual inspection with its
subjective judgements and of classical indices like contour or intensity based ones,
which are not able to provide critical evaluation of the registration in a single num-
ber. An accurate validation and development of alternative approaches to matching
of detected feature, such as adding spatial information on features locations in the
image volume and/or using Iterative Closest Point algorithm, would overcome
issues introduced by the descriptor solely based on features neighbooring voxel
intensities and image gradients and disambiguate symmetric features.

With a reliable DIR at our disposal, we worked on the automatization of the ini-
tial planning segmentation, which in the current clinical practice is relying just on
manual contouring and/or thresholding and region-growing methods. Although
these are definitely feasible approaches for well contrasted structures, such as spine
cord and/or mandible, they fail when facing more complex problem such as brain-
stem and/or parotid glands outline. We developed a flexible and robust multi-atlas
based approach relying on DIR and on an efficient strategy for selecting the patient
to be used as atlas for the current patient.The algorithm can be seen as a sequence
of three steps:

1. Individuation of the suitable atlases for the current test patient, after its pre-
alignment in a common reference frame.

2. Pairwise deformable registration and contour propagation of the selected
atlases and test patient.

3. Fusion of the tentative segmentation to obtain the final contours for the test
patient.

We analyzed the performance of different selection strategies and gave guidelines
for the number of included atlases, underlining the insufficient performance of a
single-subject approach. We furthermore developed an efficient and robust work-
flow to automatic compensate for field of view difference between the current test
patient and each atlas in the database, in order to prevent the calculation of phys-
ically non meaningful deformations during the pairwise deformable registration.
The developed strategy proves to be reliable and not adding further burden to the
already computationally demanding registration step, while limiting user interac-
tion to parameter tuning in the recombination step. Finally the performances of
three different fusion rules were analyzed at the same time adapting the algorithm
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to the need of a radiation oncology clinic and to the peculiarities of radiation plan-
ning CT volumes. We demonstrated the applicability of the method in the clinical
reality achieving results comparable to clinical inter-rater variability on a database
of thirty-one patients. Future work will imply the introduction of a refinement
step for preventing holes and irregularities in the contouring. From clinical point
of view an enlarged validation of the method is foreseen together with dosimetric
evaluation, to ensure the clinical applicability and robustness.

Finally, we were able to generate a virtualCT and the associated segmentation
of Organ At Risks and Gross Tumor Volumes (GTVs) for Image Guided Adaptive
Radiation Therapy (IGART) purposes, based upon the information gained from
the in-room CBCT scan and the application of a deformable image registration
algorithm. We aimed at sparing a CT scan (CTrepl) to the patient by modeling
the inter-fractional deformations, thus avoiding any delay in the therapy as well
as reducing the clinical workload. Computational time was reduced to the point
that the strategy can be defined clinically feasible. We showed that virtualCT con-
tours are a representation of patient GTVs, parotids and mandible volumes at fixed
treatment time points, as the calculated deformation is able to capture shape and
position changes with an accuracy comparable to image resolution. Our approach
could therefore be appropriate for a clinical IGART implementation, dropping the
need of a CTrepl and improving the overall clinical workflow. The causes of failure
individuated for the proposed strategy (e.g. GTV larger error due to reduced con-
trast) could be addressed by means of landmark-based image registration localized
around tumoral lesion. Further improvements will include the use of regulariza-
tion term and the study of dosimetric changes in the updated plan. The proposed
strategy is nonetheless already clinically feasible. Besides the technological inno-
vation introduced in this work, the patient undergoing head and neck Intensity
Modulated Radiotherapy Treatment would have great benefit in terms of reduced
damages to parotid glands (i.e. less swallowing and preservation of normal func-
tion) and of neoplastic lesion local control.

All the work of the present dissertation represent a step forward not only to the
introduction of deformable registration into the clinical practice, but also to the
development of a feasible strategy for online head and neck treatment adaptation,
aiming at improving patient therapy outcome as well as quality of life.



B I B L I O G R A P H Y

[1] M. Durante and J. S. Loeffler, “Charged particles in radiation oncology,” Na-
ture Reviews Clinical Oncology, vol. 7, no. 1, pp. 37–43, 2009.

[2] “Report 50. prescribing, recording and reporting photon beam therapy.” In-
ternational Commission on Radiation Units and Measurements (ICRU), Tech.
Rep. 50, 1993.

[3] “Report 62. prescribing, recording and reporting photon beam therapy (sup-
plement to ICRU Report 50),” International Commission on Radiation Units
and Measurements (ICRU), Tech. Rep. 62, 1999.

[4] M. van Herk, “Errors and margins in radiotherapy,” Seminars in radiation
oncology, vol. 14, no. 1, pp. 52–64, 1 2004.

[5] P. Keall, G. Mageras, J. Balter, R. Emery, K. Forster, S. Jiang, J. Kapatoes,
D. Low, M. Murphy, B. Murray, C. Ramsey, M. V. Herk, S. Vedam, J. Wong,
and E. Yorke, “The management of respiratory motion in radiation oncology
report of AAPM task group 76,” Medical physics, vol. 33, no. 10, p. 3874, 2006.

[6] P. M. Evans, “Anatomical imaging for radiotherapy,” Physics in Medicine and
Biology, vol. 53, no. 12, p. R151, 2008.

[7] E. Rietzel, T. Pan, and G. Chen, “Four-dimensional computed tomography:
Image formation and clinical protocol,” Medical physics, vol. 32, no. 4, pp.
874–889, April 2005 2005.

[8] X. Wang, L. Li, C. Hu, J. Qiu, Z. Xu, and Y. Feng, “A comparative study
of three CT and MRI registration algorithms in nasopharyngeal carcinoma,”
Journal of Applied Clinical Medical Physics, vol. 10, no. 2, 2009.

[9] T. Veninga, H. Huisman, R. W. M. Van Der Maazen, and H. Huizenga, “Clini-
cal validation of the normalized mutual information method for registration
of CT and MR images in radiotherapy of brain tumors.” Journal of applied clin-
ical medical physics American College of Medical Physics, vol. 5, no. 3, pp. 66–79,
2004.

[10] R. Jena, S. Price, C. Baker, S. Jefferies, J. Pickard, J. Gillard, and N. Burnet,
“Diffusion tensor imaging: Possible implications for radiotherapy treatment
planning of patients with high-grade glioma,” Clinical Oncology, vol. 17, no. 8,
pp. 581 – 590, 2005.

[11] V. Gregoire, K. Haustermans, X. Geets, S. Roels, and M. Lonneux, “PET-
based treatment planning in radiotherapy: a new standard?” Journal of Nu-
clear Medicine, vol. 48 Suppl 1, no. 1, pp. 68S–77S, 2007.

108



bibliography 109

[12] G. Lucignani, B. Jereczek-Fossa, and R. Orecchia, “The role of molecular
imaging in precision radiation therapy for target definition, treatment plan-
ning optimisation and quality control.” European Journal of Nuclear Medicine
and Molecular Imaging, vol. 31, no. 8, pp. 1059–1063, 2004.

[13] G. Baroni, C. Garibaldi, M. Scabini, M. Riboldi, G. Catalano, G. Tosi, R. Orec-
chia, and A. Pedotti, “Dosimetric effects within target and organs at risk of
interfractional patient mispositioning in left breast cancer radiotherapy,” In-
ternational Journal of Radiation Oncology*Biology*Physics, vol. 59, no. 3, pp. 861

– 871, 2004.

[14] M. F. Spadea, G. Baroni, M. Riboldi, B. Tagaste, C. Garibaldi, R. Orecchia, and
A. Pedotti, “Patient set-up verification by infrared optical localization and
body surface sensing in breast radiation therapy,” Radiotherapy and Oncology,
vol. 79, no. 2, pp. 170 – 178, 2006.

[15] B. Tagaste, M. Riboldi, M. F. Spadea, S. Bellante, G. Baroni, R. Cambria,
C. Garibaldi, M. Ciocca, G. Catalano, D. Alterio, and R. Orecchia, “Com-
parison Between Infrared Optical and Stereoscopic X-ray Technologies for
Patient Setup in Image Guided Stereotactic Radiotherapy,” International Jour-
nal of Radiation Oncology*Biology*Physics, no. 0, pp. –, 2011.

[16] V. Khoo, A. Padhani, S. Tanner, D. Finnigan, M. Leach, and D. Dearnaley,
“Comparison of MRI with CT for the radiotherapy planning of prostate can-
cer: a feasibility study,” British Journal of Radiology, vol. 72, no. 858, p. 590,
1999.

[17] K. Newbold, M. Partridge, G. Cook, S. Sohaib, E. Charles-Edwards, P. Rhys-
Evans, K. Harrington, and C. Nutting, “Advanced imaging applied to radio-
therapy planning in head and neck cancer: a clinical review,” British Journal
of Radiology, vol. 79, no. 943, p. 554, 2006.

[18] A. Padhani, K. Krohn, J. Lewis, and M. Alber, “Imaging oxygenation of hu-
man tumors.” European Radiology, vol. 17, no. 4, pp. 525–872, 6/1 2007.

[19] J. Jonsson, M. Karlsson, M. Karlsson, and T. Nyholm, “Treatment planning
using MRI data: an analysis of the dose calculation accuracy for different
treatment regions,” Radiotherapy and oncology, vol. 5, p. 62, 2010.

[20] A. Beavis, P. Gibbs, R. Dealey, and V. Whitton, “Radiotherapy treatment plan-
ning of brain tumours using MRI alone,” British Journal of Radiology, vol. 71,
no. 845, p. 544, 1998.

[21] P. Nucifora, R. Verma, S. Lee, and E. Melhem, “Diffusion-Tensor MR Imaging
and Tractography: Exploring Brain Microstructure and Connectivity,” Radi-
ology, vol. 245, no. 2, p. 367, 2007.

[22] C. Ling and X. Li, “Over the next decade the success of radiation treatment
planning will be judged by the immediate biological response of tumor cells
rather than by surrogate measures such as dose maximization and unifor-
mity,” Medical physics, vol. 32, no. 7, p. 2189, 2005.



bibliography 110

[23] A. V. Baardwijk, B. Baumert, G. Bosmans, M. van Kroonenburgh,
S. Stroobants, V. Gregoire, P. Lambin, and D. D. Ruysscher, “The current
status of FDG-PET in tumour volume definition in radiotherapy treatment
planning,” Cancer treatment reviews, vol. 32, no. 4, p. 245, 2006.

[24] K. A. Langmack, “Portal imaging,” British Journal of Radiology, vol. 74, no.
885, p. 789, 2001.

[25] M. Herman, J. Balter, D. Jaffray, K. McGee, P. Munro, S. Shalev, M. V. Herk,
and J. Wong, “Clinical use of electronic portal imaging: report of AAPM
radiation therapy committee task group 58,” Medical Physics, vol. 28, no. 5,
pp. 712–737, 5 2001.

[26] X. Artignan, M. Smitsmans, J. Lebesque, D. Jaffray, M. van Herk, and
H. Bartelink, “Online ultrasound image guidance for radiotherapy of
prostate cancer: impact of image acquisition on prostate displacement,” In-
ternational Journal of Radiation Oncology*Biology*Physics, vol. 59, no. 2, p. 595,
2004.

[27] F. V. den Heuvel, T. Powell, E. Seppi, P. Littrupp, M. Khan, Y. Wang, and
J. Forman, “Independent verification of ultrasound based image-guided ra-
diation treatment, using electronic portal imaging and implanted gold mark-
ers,” Medical physics, vol. 30, no. 11, p. 2878, 2003.

[28] T. Mackie, “History of tomotherapy,” Physics in Medicine and Biology, vol. 51,
no. 13, p. R427, 2006.

[29] K. Ruchala, G. Olivera, E. Schloesser, and T. Mackie, “Megavoltage CT on a
tomotherapy system,” Physics in Medicine and Biology, vol. 44, no. 10, p. 2597,
1999.

[30] M. Murphy, J. Balter, S. Balter, J. J. BenComo, I. Das, S. Jiang, C. Ma, G. Oliv-
era, R. Rodebaugh, K. Ruchala, H. Shirato, and F. Yin, “The management of
imaging dose during image-guided radiotherapy: Report of the AAPM task
group 75,” Medical physics, vol. 34, no. 10, p. 4041, 2007.

[31] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” Journal
of the Optical Society of America.A, Optics, image science, and vision, vol. 1, no. 6,
p. 612, 1984.

[32] X. Zhu, S. E. na, J. Daartz, N. Liebsch, J. Ouyang, H. Paganetti, T. Bortfeld,
and G. E. Fakhri, “Monitoring proton radiation therapy with in-room PET
imaging,” Physics in Medicine and Biology, vol. 56, no. 13, p. 4041, 2011.

[33] G. Shakirin, H. Braess, F. Fiedler, D. Kunath, K. Laube, K. Parodi, M. Prieg-
nitz, and W. Enghardt, “Implementation and workflow for PET monitoring
of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line
techniques,” Physics in Medicine and Biology, vol. 56, no. 5, p. 1281, 2011.

[34] N. Depauw and J. Seco, “Sensitivity study of proton radiography and com-
parison with kV and MV X-ray imaging using GEANT4 Monte Carlo simu-
lations,” Physics in Medicine and Biology, vol. 56, no. 8, p. 2407, 2011.



bibliography 111

[35] J. Seco and N. Depauw, “Proof of principle study of the use of a CMOS active
pixel sensor for proton radiography,” Medical physics, vol. 38, no. 2, p. 622,
2011.

[36] U. Schneider and E. Pedroni, “Multiple coulomb scattering and spatial reso-
lution in proton radiography,” Medical physics, vol. 21, no. 11, p. 1657, 1994.

[37] K. Chao, N. Majhail, C. Huang, J. Simpson, C. Perez, B. Haughey, and
G. Spector, “Intensity-modulated radiation therapy reduces late salivary tox-
icity without compromising tumor control in patients with oropharyngeal
carcinoma: a comparison with conventional techniques,” Radiotherapy and on-
cology, vol. 61, no. 3, p. 275, 2001.

[38] N. Lee, P. Xia, J. Quivey, K. Sultanem, I.Poon, C. Akazawa, P. Akazawa,
V. Weinberg, and K. Fu, “Intensity-modulated radiotherapy in the treatment
of nasopharyngeal carcinoma: an update of the UCSF experience,” Interna-
tional Journal of Radiation Oncology*Biology*Physics, vol. 53, no. 1, pp. 12–22,
5/1 2002.

[39] A. Eisbruch, J. Harris, A. Garden, C. Chao, W. Straube, P. Harari, G. San-
guineti, C. Jones, W. Bosch, and K. Ang, “Multi-institutional trial of acceler-
ated hypofractionated intensity-modulated radiation therapy for early-stage
oropharyngeal cancer (RTOG 00-22),” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 76, no. 5, p. 1333, 2010.

[40] K. Chao, J. Deasy, J. Markman, J. Haynie, C. Perez, J. Purdy, and D. Low,
“A prospective study of salivary function sparing in patients with head-
and-neck cancers receiving intensity-modulated or three-dimensional ra-
diation therapy: initial results,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 49, no. 4, p. 907, 2001.

[41] A. Eisbruch, R. Haken, H. Kim, L. Marsh, and J. Ship, “Dose, volume, and
function relationships in parotid salivary glands following conformal and
intensity-modulated irradiation of head and neck cancer,” International Jour-
nal of Radiation Oncology*Biology*Physics, vol. 45, no. 3, pp. 577–587, 10 1999.

[42] F. Feng, H. Kim, T. Lyden, M. Haxer, M. Feng, F. Worden, D. Chepeha, and
A. Eisbruch, “Intensity-modulated radiotherapy of head and neck cancer
aiming to reduce dysphagia: Early dose-effect relationships for the swal-
lowing structures,” International Journal of Radiation Oncology*Biology*Physics,
vol. 68, no. 5, pp. 1289–1298, 8/1 2007.

[43] D. Schwartz, K.Hutcheson, D.Barringer, S. Tucker, M. Kies, F. Holsinger,
K. Ang, W. Morrison, D. Rosenthal, A. Garden, L. Dong, and J. Lewin,
“Candidate dosimetric predictors of long-term swallowing dysfunction af-
ter oropharyngeal intensity-modulated radiotherapy,” International Journal of
Radiation Oncology*Biology*Physics, vol. 78, no. 5, pp. 1356–1365, 12/1 2010.

[44] J. L. Barker, A. Garden, K. Ang, J. O’Daniel, H. Wang, L. Court, W. Morrison,
D. Rosenthal, K. Chao, S. Tucker, R. Mohan, and L. Dong, “Quantification of



bibliography 112

volumetric and geometric changes occurring during fractionated radiother-
apy for head-and-neck cancer using an integrated CT/linear accelerator sys-
tem,” International Journal of Radiation Oncology*Biology*Physics, vol. 59, no. 4,
p. 960, 2004.

[45] H. Suit and A. Walker, “Assessment of the response of tumours to radiation:
clinical and experimental studies.” British journal of cancer, vol. 4, p. 1, 1980.

[46] C. Lee, K. M. Langen, W. Lu, J. Haimerl, E. Schnarr, K. Ruchala, G. Oliv-
era, S. Meeks, P. Kupelian, T. Shellenberger, and R. Manon, “Assessment
of parotid gland dose changes during head and neck cancer radiotherapy
using daily megavoltage computed tomography and deformable image reg-
istration,” International Journal of Radiation Oncology*Biology*Physics, vol. 71,
no. 5, pp. 1563–1571, 8/1 2008.

[47] Z. Wang, C. Yan, Z. Zhang, C. Zhang, H. Hu, J. Kirwan, and W. Mendenhall,
“Radiation-induced volume changes in parotid and submandibular glands
in patients with head and neck cancer receiving postoperative radiotherapy:
A longitudinal study,” The Laryngoscope, vol. 119, no. 10, p. 1966, 2009.

[48] F. Ricchetti, B. Wu, T. McNutt, J. Wong, A. Forastiere, S. Marur, H. Starmer,
and G. Sanguineti, “Volumetric change of selected organs at risk during
IMRT for oropharyngeal cancer,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 80, no. 1, pp. 161–168, 5/1 2011.

[49] W. Wang, H. Yang, W. Hu, G. Shan, W. Ding, C. Yu, B. Wang, X. Wang,
and Q. Xu, “Clinical study of the necessity of replanning before the 25th
fraction during the course of intensity-modulated radiotherapy for patients
with nasopharyngeal carcinoma,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 77, no. 2, pp. 617–621, 6/1 2010.

[50] P. Ahn, C. Chen, A. Ahn, L. Hong, P. Scripes, J. Shen, C. Lee, E. Miller,
S. Kalnicki, and M. Garg, “Adaptive planning in intensity-modulated
radiation therapy for head and neck cancers: Single-institution experi-
ence and clinical implications,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 80, no. 3, pp. 677–685, 7/1 2011.

[51] K. Seet, A. Barghi, S. Yartsev, and J. V. Dyk, “The effects of field-of-view and
patient size on CT numbers from cone-beam computed tomography,” Physics
in Medicine and Biology, vol. 54, no. 20, p. 6251, 2009.

[52] Y. Yang, E. Schreibmann, T. Li, C. Wang, and L. Xing, “Evaluation of on-
board kV Cone Beam CT (CBCT)-based dose calculation,” Physics in Medicine
and Biology, vol. 52, no. 3, p. 685, 2007.

[53] G. X. Ding, D. Duggan, C. Coffey, M. Deeley, D. Hallahan, A. Cmelak, and
A. Malcolm, “A study on adaptive IMRT treatment planning using kV cone-
beam CT,” Radiotherapy and oncology, vol. 85, no. 1, p. 116, 2007.

[54] D. Jaffray, J. Siewerdsen, J. Wong, and A. Martinez, “Flat-panel cone-beam
computed tomography for image-guided radiation therapy,” International
Journal of Radiation Oncology*Biology*Physics, vol. 53, no. 5, p. 1337, 2002.



bibliography 113

[55] B. Barney, R. Lee, D. Handrahan, K. Welsh, J. Cook, and W. Sause, “Image-
guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of
fiducial markers with cone beam computed tomography (CBCT),” Interna-
tional Journal of Radiation Oncology*Biology*Physics, vol. 80, no. 1, p. 301, 2011.

[56] W. Shi, J. Li, R. Zlotecki, A. Yeung, H. Newlin, J. Palta, C. Liu, A. Chvetsov,
and K. Olivier, “Evaluation of kV cone-beam CT performance for prostate
IGRT: a comparison of automatic grey-value alignment to implanted fiducial-
marker alignment,” American journal of clinical oncology, vol. 34, no. 1, p. 16,
2011.

[57] Q. Wu, T. Li, Q. Wu, and F. Yin, “Adaptive radiation therapy: technical com-
ponents and clinical applications,” The cancer journal, vol. 17, no. 3, p. 182,
2011.

[58] D. Schwartz and L. Dong, “Adaptive radiation therapy for head and neck
cancer - can an old goal evolve into a new standard?” Journal of Oncology, vol.
2011, p. 1, 2011.

[59] J. Nijkamp, F. Pos, T. Nuver, R. de Jong, P. Remeijer, J. Sonke, and J. Lebesque,
“Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam com-
puted tomography: first clinical results,” International Journal of Radiation On-
cology*Biology*Physics, vol. 70, no. 1, p. 75, 2008.

[60] A. Jensen, S. Nill, P. Huber, R. Bendl, J. Debus, and M. Münter, “A clin-
ical concept for interfractional adaptive radiation therapy in the treat-
ment of head and neck cancer,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 82, no. 2, pp. 590 – 596, 2012.

[61] A. de la Zerda, B. Armbruster, and L. Xing, “Formulating adaptive radiation
therapy (ART) treatment planning into a closed-loop control framework,”
Physics in Medicine and Biology, vol. 52, no. 14, p. 4137, 2007.

[62] M. Birkner, D. Yan, M. Alber, J. Liang, and F. Nüsslin, “Adapting inverse
planning to patient and organ geometrical variation: algorithm and imple-
mentation,” Medical physics, vol. 30, no. 10, p. 2822, 2003.

[63] C. Wu, R. Jeraj, W. Lu, and T. Mackie, “Fast treatment plan modification with
an over-relaxed Cimmino algorithm,” Medical physics, vol. 31, no. 2, p. 191,
2004.

[64] T. Nuver, M. Hoogeman, P. Remeijer, M. van Herk, and J. Lebesque, “An
adaptive off-line procedure for radiotherapy of prostate cancer,” International
Journal of Radiation Oncology*Biology*Physics, vol. 67, no. 5, pp. 1559–1567, 4/1

2007.

[65] D. Yan, D. Lockman, D. Brabbins, L. Tyburski, and A. Martinez, “An off-line
strategy for constructing a patient-specific planning target volume in adap-
tive treatment process for prostate cancer,” International Journal of Radiation
Oncology*Biology*Physics, vol. 48, no. 1, pp. 289–302, 8/1 2000.



bibliography 114

[66] Q. Wu, J. Liang, and D. Yan, “Application of dose compensation in image-
guided radiotherapy of prostate cancer,” Physics in Medicine and Biology,
vol. 51, no. 6, p. 1405, 2006.

[67] C. Wu, R. Jeraj, G. Olivera, and T. Mackie, “Re-optimization in adaptive ra-
diotherapy,” Physics in Medicine and Biology, vol. 47, no. 17, p. 3181, 2002.

[68] C. Woodford, S. Yartsev, A. Dar, G. Bauman, and J. V. Dyk, “Adaptive radio-
therapy planning on decreasing gross tumor volumes as seen on megavolt-
age computed tomography images,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 69, no. 4, pp. 1316–1322, 11/15 2007.

[69] L. Court, L. Dong, A. Lee, R. Cheung, M. Bonnen, J. O’Daniel, H. Wang,
R. Mohan, and D. Kuban, “An automatic CT-guided adaptive radiation ther-
apy technique by online modification of multileaf collimator leaf positions
for prostate cancer,” International Journal of Radiation Oncology*Biology*Physics,
vol. 62, no. 1, pp. 154–163, 5/1 2005.

[70] L. Court, R. Tishler, J. Petit, R. Cormack, and L. Chin, “Automatic online
adaptive radiation therapy techniques for targets with significant shape
change: a feasibility study,” Physics in Medicine and Biology, vol. 51, no. 10,
p. 2493, 2006.

[71] R. Mohan, X. Zhang, H. Wang, Y. Kang, X. Wang, H. Liu, K. Ang, D. Kuban,
and L. Dong, “Use of deformed intensity distributions for on-line modifica-
tion of image-guided IMRT to account for interfractional anatomic changes,”
International Journal of Radiation Oncology*Biology*Physics, vol. 61, no. 4, p.
1258, 2005.

[72] W. Fu, Y. Yang, N. Yue, D. Heron, and M. Huq, “A cone beam CT-guided on-
line plan modification technique to correct interfractional anatomic changes
for prostate cancer IMRT treatment,” Physics in Medicine and Biology, vol. 54,
no. 6, p. 1691, 2009.

[73] Q. Wu, D. Thongphiew, Z. Wang, B. Mathayomchan, V. Chankong, S. Yoo,
W. Lee, and F. Yin, “On-line re-optimization of prostate IMRT plans for adap-
tive radiation therapy,” Physics in Medicine and Biology, vol. 53, no. 3, p. 673,
2008.

[74] Y. Feng, C. Castro-Pareja, R. Shekhar, and C. Yu, “Direct aperture defor-
mation: An interfraction image guidance strategy,” Medical physics, vol. 33,
no. 12, p. 4490, 2006.

[75] E. Ahunbay, C. Peng, S. Holmes, A. Godley, C. Lawton, and X. Li, “Online
adaptive replanning method for prostate radiotherapy,” International Journal
of Radiation Oncology*Biology*Physics, vol. 77, no. 5, pp. 1561–1572, 8/1 2010.

[76] X. Geets, J. Daisne, S. Arcangeli, E. Coche, M. D. Poel, T. Duprez, G. Nardella,
and V. Gregoire, “Inter-observer variability in the delineation of pharyngo-
laryngeal tumor, parotid glands and cervical spinal cord: comparison be-
tween CT-scan and MRI,” Radiotherapy and oncology, vol. 77, no. 1, p. 25,
2005.



bibliography 115

[77] N. Kovacevic, N. Lobaugh, M. Bronskill, B. Levine, A. Feinstein, and S. Black,
“A robust method for extraction and automatic segmentation of brain im-
ages,” NeuroImage, vol. 17, no. 3, p. 1087, 2002.

[78] J. Sethian, “Level set methods and fast marching methods,” Journal of com-
puting and information technology, vol. 11, no. 1, p. 1, 2003.

[79] S. Beucher and F. Meyer, “The morphological approach to segmentation: The
watershed transformation,” Optical Engineering, vol. 34, p. 433, 1992.

[80] A. Tsai, W. Wells, C. Tempany, E. Grimson, and A. Willsky, “Mutual informa-
tion in coupled multi-shape model for medical image segmentation,” Medical
image analysis, vol. 8, no. 4, pp. 429–445, 12 2004.

[81] J. Yang, L. Staib, and J. Duncan, “Neighbor-constrained segmentation with
3D deformable models,” in Proceeding of the International Conference on Infor-
mation Processing in Medical Imaging (IPMI,2003), vol. 2732, 2003, p. 198.

[82] T. Rohlfing, R. Brandt, R. Menzel, D. Russakoff, and C. J. Maurer, Quo vadis,
atlas-based segmentation? Kluwer Academic / Plenum Publishers, New York,
NY, 2005.

[83] T. Rohlfing, R. Brandt, R. Menzel, and C. J. Maurer, “Evaluation of atlas
selection strategies for atlas-based image segmentation with application to
confocal microscopy images of bee brains,” NeuroImage, vol. 21, no. 4, p. 1428,
2004.

[84] P. Aljabar, R. Heckemann, A. Hammers, H. J.V., and R. D., “Multi-atlas based
segmentation of brain images: Atlas selection and its effect on accuracy,”
NeuroImage, vol. 46, no. 3, p. 726, 2009.

[85] R. Kikinis, M. Shenton, D. Iosifescu, R. McCarley, P. Saiviroonporn,
H. Hokama, A. Robatino, D. Metcalf, C. Wible, C. Portas, R. Donnino, and
F. Jolesz, “A digital brain atlas for surgical planning, model-driven segmenta-
tion, and teaching,” IEEE Transactions on Visualization and Computer Graphics,
vol. 2, no. 3, p. 232, 1996.

[86] D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani, C. Holmes, and
A. Evanss, “Design and construction of a realistic digital brain phantom,”
Medical Imaging, IEEE Transactions on, vol. 17, no. 3, p. 463, 1998.

[87] P. Bondiau, G. Malandain, S. Chanalet, P. Marcy, J. Habrand, F. Fauchon,
P. Paquis, A. Courdi, O. Commowick, I. Rutten, and N. Ayache, “Atlas-
based automatic segmentation of MR images: validation study on the
brainstem in radiotherapy context,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 61, no. 1, p. 289, 2005.

[88] “Online: http://www.bic.mni.mcgill.ca/brainweb/.”

[89] A. Rao, G. I. Sanchez-Ortiz, R. Chandrashekara, M. Lorenzo-Valdes, R. Mo-
hiaddin, and D. Rueckert, “Construction of a cardiac motion atlas from MR
using non-rigid registration,” in Proceedings of the 2nd international conference



bibliography 116

on Functional imaging and modeling of the heart (FIMH’03), vol. 2674, 2003, p.
141.

[90] B. Li, G. Christensen, E. Hoffman, G. McLennan, and J. Reinhardt, “Estab-
lishing a normative atlas of the human lung: intersubject warping and reg-
istration of volumetric CT images,” Academic Radiology, vol. 10, no. 3, p. 255,
2003.

[91] H. Jia, G. Wu, Q. Wang, and D. Shen, “ABSORB: Atlas Building by Self-
Organized Registration and Bundling,” NeuroImage, vol. 51, no. 3, p. 2785,
2010.

[92] P. Thompson and A. Toga, “Detection, visualization and animation of abnor-
mal anatomic structure with a deformable probabilistic brain atlas based on
random vector field transformations,” Medical image analysis, vol. 1, no. 4, p.
271, 1997.

[93] M. Depa, M. Sabuncu, G. Holmvang, R. Nezafat, E. Schmidt, and P. Golland.,
“Robust atlas-based segmentation of highly variable anatomy: left atrium
segmentation,” in Proceedings of the 13th international conference on Medical
image computing and computer-assisted intervention (MICCAI 2010), vol. 6364,
2010, p. 85.

[94] X. Han, M. Hoogeman, P. Levendag, L. Hibbard, D. Teguh, P. Voet, A. Cowen,
and T. Wolf, “Atlas-based auto-segmentation of head and neck CT images,”
in 11th Intl. Conf. Medical Image Computing and Computer Assisted Intervention
(MICCAI 2008), vol. 5242, 2008, p. 434.

[95] H. Park, P. Bland, and C. Meyer, “Construction of an abdominal probabilistic
atlas and its application in segmentation,” Medical Imaging, IEEE Transactions
on, vol. 22, no. 4, p. 483, 2003.

[96] M. Valdes, G. Sanchez-Ortiz, A. Elkington, R. Mohiaddin, and D. Rueckert,
“Segmentation of 4D cardiac MR images using a probabilistic atlas and the
EM algorithm,” Medical image analysis, vol. 8, no. 3, p. 255, 2004.

[97] C. Svarer, K. Madsen, S. Hasselbalch, L. Pinborg, S. Haugbol, V. Frokjaer,
S. Holm, O. Paulson, and G. Knudsen, “MR-based automatic delineation of
volumes of interest in human brain PET images using probability maps,”
NeuroImage, vol. 24, no. 4, p. 969, 2005.

[98] I. Isgum, M. Staring, A. Rutten, M. Prokop, M. Viergever, and B. van Gin-
neken, “Multi-atlas-based segmentation with local decision fusion - applica-
tion to cardiac and aortic segmentation in CT scans,” Medical Imaging, IEEE
Transactions on, vol. 28, no. 7, p. 1000, 2009.

[99] L. Ramus, O. Commowick, and G. Malandain, “Construction of patient spe-
cific atlases from locally most similar anatomical pieces,” in Proceedings of the
13th International conference on Medical image computing and computer-assisted
intervention (MICCAI 2010), vol. 6363, 2010, p. 155.



bibliography 117

[100] E. van Rikxoort, I. Isgum, Y. Arzhaeva, M. Staring, S. Klein, M. Viergever,
J. Pluim, and B. van Ginneken, “Adaptive local multi-atlas segmentation:
Application to the heart and the caudate nucleus,” Medical image analysis,
vol. 14, no. 1, p. 39, 2010.

[101] H. Jia, P. Y. PT, and D. Shen, “Iterative multi-atlas-based multi-image seg-
mentation with tree-based registration,” NeuroImage, 2011.

[102] R. Wolz, P. A. J. Hajnal, A. Hammers, D. Rueckert, and A. D. N. Initiative,
“LEAP: Learning embeddings for atlas propagation,” NeuroImage, vol. 49,
no. 2, p. 1316, 2010.

[103] A. Ribbens, J. Hermans, F. Maes, D. Vandermeulen, and P. Suetens, “SPARC:
Unified framework for automatic segmentation, probabilistic atlas construc-
tion, registration and clustering of brain MR images,” in Biomedical Imaging:
From Nano to Macro, 2010 IEEE International Symposium on, 2010, pp. 856–859.

[104] K. Bhatia, J. V. Hajnal, B. K. Puri, A. D. Edwards, and D. Rueckert, “Con-
sistent groupwise non-rigid registration for atlas construction,” in Biomedical
Imaging: Nano to Macro, 2004. IEEE International Symposium on, 2004, pp. 908–
911 Vol. 1, iD: 1.

[105] R. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. Hajnal, A. Ham-
mers, and A. D. N. Initiative, “Improving intersubject image registration us-
ing tissue-class information benefits robustness and accuracy of multi-atlas
based anatomical segmentation,” NeuroImage, vol. 51, no. 1, p. 221, 2010.

[106] Q. Wu, Y. Chi, P. Chen, D. Krauss, D. Yan, and A. Martinez, “Adaptive re-
planning strategies accounting for shrinkage in head and neck IMRT,” In-
ternational Journal of Radiation Oncology*Biology*Physics, vol. 75, no. 3, p. 924,
2009.

[107] T. Zhang, Y. Chi, E. Meldolesi, and D. Yan, “Automatic delineation of on-line
head-and-neck computed tomography images: toward on-line adaptive ra-
diotherapy,” International Journal of Radiation Oncology*Biology*Physics, vol. 68,
no. 2, p. 522, 2007.

[108] S. Nithiananthan, K. Brock, M. Daly, H. Chan, J. Irish, and J. Siewerdsen,
“Demons deformable registration for CBCT-guided procedures in the head
and neck: Convergence and accuracy,” Medical physics, vol. 36, no. 10, p. 4755,
2009.

[109] E. Faggiano, C. Fiorino, E. Scalco, S. Broggi, M. Cattaneo, E. Maggiulli,
I. Dell’Oca, N. D. Muzio, R. Calandrino, and G. Rizzo, “An automatic con-
tour propagation method to follow parotid gland deformation during head-
and-neck cancer tomotherapy,” Physics in Medicine and Biology, vol. 56, no. 3,
p. 775, 2011.

[110] J. Hou, M. Guerrero, W. Chen, and W. D’Souza, “Deformable planning CT to
cone-beam CT image registration in head-and-neck cancer,” Medical physics,
vol. 38, no. 4, p. 2088, 2011.



bibliography 118

[111] B. Fischer and J. Modersitzki, “Ill-posed medicine - an introduction to image
registration,” Inverse Problems, vol. 24, no. 3, p. 034008, 2008.

[112] B. Zitova, “Image registration methods: a survey,” Image and Vision Comput-
ing, vol. 21, no. 11, pp. 977–1000, 2003.

[113] Z. Yaniv, Rigid Registration, ser. Image-Guided Interventions Technology and
Applications. Springer-Verlag, 2008, ch. 6.

[114] T. Liu, D. Shen, and C. Davatzikos, “Deformable registration of cortical struc-
tures via hybrid volumetric and surface warping.” NeuroImage, vol. 22, no. 4,
pp. 1790–801, 2004.

[115] J. B. Maintz and M. A. Viergever, “A survey of medical image registration.”
Medical image analysis, vol. 2, no. 1, pp. 1–36, 1998.

[116] P. J. Besl and H. D. McKay, “A method for registration of 3-d shapes,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 14, no. 2, p. 239,
feb 1992.

[117] C. A. Pelizzari, G. T. Chen, D. R. Spelbring, R. R. Weichselbaum, and C. T.
Chen, “Accurate three-dimensional registration of CT, PET, and/or MR im-
ages of the brain,” Journal of computer assisted tomography, vol. 13, no. 1, pp.
20–26, Jan-Feb 1989.

[118] D. Levin, C. A. Pelizzari, G. T. Chen, C. T. Chen, and M. D. Cooper, “Retro-
spective geometric correlation of MR, CT, and PET images.” Radiology, vol.
169, no. 3, pp. 817–823, 1988.

[119] W. M. W. III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-modal
volume registration by maximization of mutual information,” Medical image
analysis, vol. 1, no. 1, p. 35, 1996.

[120] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, “Non-
rigid multimodality image registration,” in Proceedings of SPIE, M. Sonka and
K. M. Hanson, Eds., vol. 4322, 2001, pp. 1609–1620.

[121] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Interpolation artefacts
in mutual information-based image registration,” Computer Vision and Image
Understanding, vol. 77, no. 2, p. 211, 2000.

[122] ——, “Mutual-information-based registration of medical images: a survey,”
Medical Imaging, IEEE Transactions on, vol. 22, no. 8, p. 986, aug. 2003.

[123] F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition
of deformations,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 11, no. 6, pp. 567–585, 1989.

[124] J. A. Shackleford, N. Kandasamy, and G. C. Sharp, “On developing b-spline
registration algorithms for multi-core processors,” Physics in Medicine and
Biology, vol. 55, no. 21, p. 6329, 2010.



bibliography 119

[125] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.
Hawkes, “Nonrigid registration using free-form deformations: application
to breast mr images,” Medical Imaging, IEEE Transactions on, vol. 18, no. 8, p.
712, aug. 1999.

[126] Z. Wu, E. Rietzel, V. Boldea, D. Sarrut, and G. C. Sharp, “Evaluation of de-
formable registration of patient lung 4DCT with subanatomical region seg-
mentations,” Medical physics, vol. 35, no. 2, pp. 775–781, 2008.

[127] G. C. Sharp, M. Peroni, R. Li, J. Shackleford, and N. Kandasamy, “Evaluation
of plastimatch B-Spline registration on the EMPIRE10 dataset,” in Workshop
Proceedings of the 13th international conference on Medical image computing and
computer-assisted intervention, ser. Medical Image Analysis for the Clinic: A
Grand Challenge, 2010, pp. 99–108.

[128] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based stream-
ing architectures for fast cone-beam CT image reconstruction and demons
deformable registration,” Physics in Medicine and Biology, vol. 52, no. 19, p.
5771, 2007.

[129] G. C. Sharp, R. Li, J. Wolfgang, G. T. Y. Chen, M. Peroni, M. F. Spadea, S. Mori,
J. Zhang, J. Shackleford, and N. Kandasamy, “Plastimatch - An Open Source
Software Suite for Radiotherapy Image Processing,” in Proceedings of the XVI
International Conference on the Use of Computers in Radiation Therapy, 2009.

[130] K. K. Brock and Deformable Registration Accuracy Consortium, “Results of
a multi-institution deformable registration accuracy study (midras),” Interna-
tional Journal of Radiation Oncology*Biology*Physics, vol. 76, no. 2, p. 583, 2010.

[131] D. Paquin, D. Levy, E. Schreibmann, and L. Xing, “Multiscale image registra-
tion.” Mathematical biosciences and engineering MBE, vol. 3, no. 2, pp. 389–418,
2006.

[132] H. Lester, “A survey of hierarchical non-linear medical image registration,”
Pattern Recognition, vol. 32, no. 1, pp. 129–149, 1999.

[133] J. Thirion, “Image matching as a diffusion process: an analogy with
maxwell’s demons,” Medical image analysis, vol. 2, no. 3, p. 243, 1998.

[134] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic
demons: efficient non-parametric image registration.” NeuroImage, vol. 45,
no. 1 Suppl, pp. S61–S72, 2009.

[135] F. Dru, P. Fillard, and T. Vercauteren, “An itk implementation of the sym-
metric log-domain diffeomorphic demons algorithm,” The Insight Journal, 09

2010.

[136] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide, 2nd ed.
Kitware, Inc. ISBN 1-930934-15-7, 2005.

[137] K. K. Brock, M. B. Sharpe, L. A. Dawson, S. M. Kim, and D. A. Jaffray, “Accu-
racy of finite element model-based multi-organ deformable image registra-
tion,” Medical physics, vol. 32, no. 6, pp. 1647–1659, 2005.



bibliography 120

[138] M. Chao, Y. Xie, and L. Xing, “Auto-propagation of contours for adaptive
prostate radiation therapy,” Physics in Medicine and Biology, vol. 53, no. 17, p.
4533, 2008.

[139] T. Liu, D. Shen, and C. s. Davatzikos, “Deformable registration of cortical
structures via hybrid volumetric and surface warping.” NeuroImage, vol. 22,
no. 4, pp. 1790–1801, 2004.

[140] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, “PET-
CT image registration in the chest using free-form deformations,” Medical
Imaging, IEEE Transactions on, vol. 22, no. 1, p. 120, jan. 2003.

[141] T.-N. Nguyen, J. L. Moseley, L. A. Dawson, D. A. Jaffray, and K. K. Brock,
“Adapting population liver motion models for individualized online image-
guided therapy,” in Engineering in Medicine and Biology Society, 2008. EMBS
2008. 30th Annual International Conference of the IEEE, aug. 2008, p. 3945.

[142] E. Schreibmann and L. Xing, “Image registration with auto-mapped control
volumes,” Medical physics, vol. 33, no. 4, pp. 1165–1179, 2006.

[143] R. W. van der Put, E. M. Kerkhof, B. W. Raaymakers, I. M. Jürgenliemk-
Schulz, and J. J. W. Lagendijk, “Contour propagation in MRI-guided radio-
therapy treatment of cervical cancer: the accuracy of rigid, non-rigid and
semi-automatic registrations,” Physics in Medicine and Biology, vol. 54, no. 23,
p. 7135, 2009.

[144] M. Beauchemin and K. P. B. Thomson, “The evaluation of segmentation re-
sults and the overlapping area matrix,” International Journal of Remote Sensing,
vol. 18, no. 18, pp. 3895–3899, 1997.

[145] S. Kabus, T. Klinder, K. Murphy, B. van Ginneken, C. Lorenz, and J. Pluim,
Evaluation of 4D-CT Lung Registration, ser. Proceedings of the 12th interna-
tional conference on Medical image computing and computer-assisted inter-
vention (MICCAI 2009). Springer Berlin / Heidelberg, 2009, vol. 5761, pp.
747–754.

[146] K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. J. de Hoop, M. A.
Viergever, and J. P. W. Pluim, “Semi-automatic construction of reference stan-
dards for evaluation of image registration,” Medical image analysis, vol. 15,
no. 1, p. 71, 2011.

[147] K. Murphy, B. van Ginneken, J. Reinhardt, S. Kabus, K. Ding, X. Deng,
K. Cao, K. Du, G. Christensen, V. Garcia, T. Vercauteren, N. Ayache, O. Com-
mowick, G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gorbunova,
J. Sporring, M. de Bruijne, X. Han, M. Heinrich, J. Schnabel, M. Jenkinson,
C. Lorenz, M. Modat, J. McClelland, S. Ourselin, S. Muenzing, M. Viergever,
D. De Nigris, D. Collins, T. Arbel, M. Peroni, R. Li, G. Sharp, A. Schmidt-
Richberg, J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. Tustison,
B. Avants, J. Gee, M. Staring, S. Klein, B. Stoel, M. Urschler, M. Werlberger,
J. Vandemeulebroucke, S. Rit, D. Sarrut, and J. Pluim, “Evaluation of regis-
tration methods on thoracic CT: The EMPIRE10 challenge,” Medical Imaging,
IEEE Transactions on, vol. 30, no. 11, pp. 1901 –1920, nov. 2011.



bibliography 121

[148] L. Kitchen and A. Rosenfeld, “Gray-level corner detection,” Pattern Recogni-
tion Letters, vol. 1, no. 2, p. 95, 1982.

[149] W. Förstner and E. Gülch, “A fast operator for detection and precise loca-
tion of distinct points, corners and centres of circular features,” ser. ISPRS
Intercommission Workshop Interlaken, 1987, pp. 281–305.

[150] C. Harris and M. Stephens, A combined corner and edge detector, ser. Alvey
vision conference. Manchester, UK, 1988, vol. 15, ch. Manchester, pp. 147–
151.

[151] D. G. Lowe, “Object recognition from local scale-invariant features,” in Com-
puter Vision, 1999. The Proceedings of the Seventh IEEE International Conference
on, vol. 2, 1999, p. 1150.

[152] ——, “Distinctive image features from scale-invariant keypoints,” 2003.

[153] W. Cheung and G. Hamarneh, “N-SIFT: N-dimensional scale invariant fea-
ture transform for matching medical images,” in Biomedical Imaging: From
Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, april
2007, p. 720.

[154] G. Christensen, J. Kuhl, T. Grabowski, I. Pirwani, M. Vannier, J. Allen, and
H. Damasio, “Introduction to the non-rigid image registration evaluation
project (nirep),” in Proceedings of SPIE, 2006, pp. 128–135.

[155] W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap measures
for evaluation and validation in medical image analysis,” Medical Imaging,
IEEE Transactions on, vol. 25, no. 11, p. 1451, nov. 2006.

[156] G. Gerig, M. Jomier, and M. Chakos, “Valmet: A new validation tool for
assessing and improving 3D object segmentation,” Computer, vol. 2208, no.
2208, pp. 516–523, 2001.

[157] P. Rogelj, S. Kovacic, and J. C. Gee, “Validation of a nonrigid registration
algorithm for multimodal data,” in Proceedings of SPIE, M. Sonka and J. M.
Fitzpatrick, Eds., vol. 4684, 2002, pp. 299–307.

[158] T. Rohlfing, “Image similarity and tissue overlaps as surrogates for image
registration accuracy: Widely used but unreliable,” Medical Imaging, IEEE
Transactions on, vol. 31, no. 2, pp. 153 –163, feb. 2012.

[159] W. Crum, T. Hartkens, and D. Hill, “Non-rigid image registration: theory
and practice,” British Journal of Radiology, vol. 77, no. 2, pp. S140–S153, 2004.

[160] P. Castadot, J. A. Lee, A. Parraga, X. Geets, B. Macq, and V. Gregoire, “Com-
parison of 12 deformable registration strategies in adaptive radiation therapy
for the treatment of head and neck tumors,” Radiotherapy and oncology, vol. 89,
no. 1, pp. 1–12, Oct 2008.

[161] A. Klein, J. Andersson, B. Ardekani, J. Ashburner, B. Avants, M. Chiang,
G. Christensen, D. Collins, J. Gee, P. Hellier, J. Song, M. Jenkinson, C. Lepage,



bibliography 122

D. Rueckert, P. Thompson, T. Vercauteren, R. Woods, J. Mann, and R. Parsey,
“Evaluation of 14 nonlinear deformation algorithms applied to human brain
MRI registration,” NeuroImage, vol. 46, no. 3, p. 786, 2009.

[162] D. Yang, H. Li, D. Low, J. Deasy, and I. El Naqa, “A fast inverse consistent
deformable image registration method based on symmetric optical flow com-
putation,” Physics in Medicine and Biology, vol. 53, no. 21, p. 6143, 2008.

[163] M. Holden, “A review of geometric transformations for nonrigid body reg-
istration,” Medical Imaging, IEEE Transactions on, vol. 27, no. 1, pp. 111 –128,
jan. 2008.

[164] X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, A. Ma-
jumdar, T. Guerrero, and S. Jiang, “Implementation and evaluation of vari-
ous demons deformable image registration algorithms on a gpu,” Physics in
Medicine and Biology, vol. 55, no. 1, p. 207, 2010.

[165] L. R. Dice, “Measures of the Amount of Ecologic Association Between
Species,” Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945.

[166] M. A. Deeley, A. Chen, R. Datteri, J. H. Noble, A. J. Cmelak, E. F. Donnelly,
A. W. Malcolm, L. Moretti, J. Jaboin, K. Niermann, E. S. Yang, D. S. Yu,
F. Yei, T. Koyama, G. X. Ding, and B. M. Dawant, “Comparison of manual
and automatic segmentation methods for brain structures in the presence
of space-occupying lesions: a multi-expert study,” Physics in Medicine and
Biology, vol. 56, no. 14, p. 4557, 2011.

[167] R. Sims, A. Isambert, V. Gregoire, F. Bidault, L. Fresco, J. Sage, J. Mills,
J. Bourhis, D. Lefkopoulos, O. Commowick, M. Benkebil, and G. Malandain,
“A pre-clinical assessment of an atlas-based automatic segmentation tool for
the head and neck,” Radiotherapy and Oncology, vol. 93, no. 3, pp. 474 – 478,
2009.

[168] A. Schmidt-Richtberg, J. Ehrhardt, R. Werner, and H. Handels, Diffeomorphic
Diffusion Registration of Lung CT Images, ser. Workshop Proceedings of the
13th international conference on Medical image computing and computer-
assisted intervention, 2010.

[169] S. Nithiananthan, K. K. Brock, M. J. Daly, H. Chan, J. C. Irish, and J. H.
Siewerdsen, “Demons deformable registration for CBCT-guided procedures
in the head and neck: Convergence and accuracy,” Medical Physics, vol. 36,
no. 10, pp. 4755–4764, 2009.

[170] F. J. Anscombe, “Graphs in statistical analysis,” The American Statistician,
vol. 27, no. 1, pp. pp. 17–21, 1973.

[171] C. Caldwell, K. Mah, Y. Ung, C. Danjoux, J. Balogh, S. Ganguli, and L. Ehrlich,
“Observer variation in contouring gross tumor volume in patients with
poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-
hybrid PET fusion,” International Journal of Radiation Oncology*Biology*Physics,
vol. 51, no. 4, pp. 923 – 931, 2001.



bibliography 123

[172] M. Eliasziw, S. L. Young, M. G. Woodbury, and K. Fryday-Field, “Statistical
methodology for the concurrent assessment of interrater and intrarater re-
liability: using goniometric measurements as an example.” Physical Therapy,
vol. 74, no. 8, pp. 777–788, 1994.

[173] X. Geets, J. Daisne, S. Arcangeli, E. Coche, M. D. Poel, T. Duprez, G. Nardella,
and V. Gregoire, “Inter-observer variability in the delineation of pharyngo-
laryngeal tumor, parotid glands and cervical spinal cord: Comparison be-
tween CT-scan and MRI,” Radiotherapy and Oncology, vol. 77, no. 1, pp. 25 –
31, 2005.

[174] M. Murphy, Z. Wei, M. Fatyga, J. Williamson, M. Anscher, T. Wallace, and
E. Weiss, “How does CT image noise affect 3D deformable image registration
for image-guided radiotherapy planning?” Medical Physics, vol. 35, no. 3, pp.
1145–1153, 2008.

[175] P. Remeijer, C. Rasch, J. Lebesque, and M. van Herk, “A general methodol-
ogy for three-dimensional analysis of variation in target volume delineation,”
Medical Physics, vol. 26, no. 6, pp. 931–940, 1999.

[176] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “MESH: measuring errors be-
tween surfaces using the hausdorff distance,” in Multimedia and Expo, 2002.
ICME ’02. Proceedings. 2002 IEEE International Conference on, vol. 1, 2002, pp.
705 – 708 vol.1.

[177] C. Bert, K. Metheany, K. Doppke, A. Taghian, S. N. Powell, and G. Chen,
“Clinical experience with a 3D surface patient setup system for alignment
of partial-breast irradiation patients,” International Journal of Radiation Oncol-
ogy*Biology*Physics, vol. 64, no. 4, pp. 1265 – 1274, 2006.

[178] C. Bert, K. G. Metheany, K. Doppke, and G. T. Y. Chen, “A phantom eval-
uation of a stereo-vision surface imaging system for radiotherapy patient
setup,” Medical Physics, vol. 32, no. 9, pp. 2753–2762, 2005.

[179] K. Jankauskas and A. Noreika, “Measuring error between similar surfaces.”
Information Technology And Control, Kaunas, Technologija, vol. 37, no. 8, pp. 198–
204, 2008.

[180] B. Rodriguez-Vila, F. Gaya, F. Garcia-Vicente, and E. J. Gomez, “Three-
dimensional quantitative evaluation method of nonrigid registration algo-
rithms for adaptive radiotherapy,” Medical Physics, vol. 37, no. 3, pp. 1137–
1145, 2010.

[181] V. Chalana and Y. Kim, “A methodology for evaluation of boundary detec-
tion algorithms on medical images,” Medical Imaging, IEEE Transactions on,
vol. 16, no. 5, pp. 642 –652, oct. 1997.

[182] P. Danielsson, “Euclidean distance mapping,” Computer Graphics and Image
Processing, vol. 14, pp. 227–248, 1980.

[183] M. A. Föstner and E. Gülch, “A Fast Operator for Detection and Precise
Location of Distinct Points, Corners and Centers of Circular Features,” in
ISPRS Intercommission Workshop, 1987.



bibliography 124

[184] W. Förstner, “A feature based correspondence algorithm for image match-
ing,” Archives of Photogrammetry and Remote Sensing, vol. 26, no. 3, pp. 150–
166, 1986.

[185] R.Castillo, E. Castillo, R. Guerra, V. E. Johnson, T. McPhail, A. Garg, and
T. Guerrero, “A framework for evaluation of deformable image registration
spatial accuracy using large landmark point sets,” Physics in Medicine and
Biology, vol. 54, no. 7, p. 1849, 2009.

[186] K. Rohr, H. S. Stiehl, S. Frantz, and T. Hartkens, “Performance characteri-
zation of landmark operators,” in Proceedings of the Theoretical Foundations of
Computer Vision, TFCV on Performance Characterization in Computer Vision. De-
venter, The Netherlands, The Netherlands: Kluwer, B.V., 2000, pp. 285–297.

[187] R. Pielot, M. Scholz, K. Obermayer, E. Gundelfinger, and A. Hess, “3D edge
detection to define landmarks for point-based warping in brain imaging,” in
Image Processing, 2001. Proceedings. 2001 International Conference on, vol. 2, oct
2001, pp. 343 –346 vol.2.

[188] K. G. Derpanis. (2004) The Harris Corner Detector.

[189] J. L. Crowley and A. C. Parker, “A representation for shape based on peaks
and ridges in the difference of low-pass transform,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. PAMI-6, no. 2, pp. 156 –170, march
1984.

[190] Y. Xie, M. Chao, P. Lee, and L. Xing, “Feature-based rectal contour propaga-
tion from planning CT to cone beam CT,” Medical Physics, vol. 35, no. 10, pp.
4450–4459, 2008.

[191] M. Chao, Y. Xie, E. G. Moros, Q.-T. Le, and L. Xing, “Image-based modeling
of tumor shrinkage in head and neck radiation therapy,” Medical Physics,
vol. 37, no. 5, pp. 2351–2358, 2010.

[192] S. Allaire, J. Kim, S. Breen, D. Jaffray, and V. Pekar, “Full orientation invari-
ance and improved feature selectivity of 3D SIFT with application to medical
image analysis,” in Computer Vision and Pattern Recognition Workshops, 2008.
CVPRW ’08. IEEE Computer Society Conference on, june 2008, pp. 1 –8.

[193] K. Mikolajczyk, “Detection of local features invariant to affines transforma-
tions,” Ph.D. dissertation, INPG, Grenoble, juillet 2002.

[194] K. Mikolajczyk and C. Schmid, “An affine invariant interest point detector,”
in Proceedings of the 7th European Conference on Computer Vision-Part I, ser.
ECCV ’02. London, UK, UK: Springer-Verlag, 2002, pp. 128–142.

[195] R. Lemuz-Lopez and M. Arias-Estrada, “Iterative closest SIFT formulation
for robust feature matching.” in ISVC’06 Proceedings of the Second international
conference on Advances in Visual Computing - Volume Part II, ser. Lecture Notes
in Computer Science, vol. 4292. Springer, 2006, pp. 502–513.



bibliography 125

[196] M. Peroni, P. Golland, G. Sharp, and G. Baroni, “Ranking of stopping criteria
for log domain diffeomorphic demons application in clinical radiation ther-
apy,” in EMBC 2011. Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, 2011, sept. 2011.

[197] M. Sabuncu, B. Yeo, K. Van Leemput, B. Fischl, and P. Golland, “A generative
model for image segmentation based on label fusion,” Medical Imaging, IEEE
Transactions on, vol. 29, no. 10, pp. 1714 –1729, oct. 2010.

[198] S. Pieper, B. Lorensen, W. Schroeder, and R. Kikinis, “The NA-MIC Kit: ITK,
VTK, pipelines, grids and 3DSlicer as an open platform for the medical image
computing community,” in Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE
International Symposium on, april 2006, pp. 698 –701.

[199] R. Shekhar, P. Lei, C. Castro-Pareja, W. Plishker, and W. D’Souza, “Automatic
segmentation of phase-correlated CT scans through nonrigid image registra-
tion using geometrically regularized free-form deformation,” Medical Physics,
vol. 34, no. 7, pp. 3054–3066, 2007.




	Dedication
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Standing on the shoulders of Giants
	1 Introduction
	2 Image Guided Adaptive Therapy 
	2.1 Conventional Radiation Therapy
	2.2 Image Guided Radiation Therapy
	2.2.1 Anatomical imaging in a radiation therapy clinic

	2.3 Image Guided Adaptation of the therapy (of Head and Neck)

	3 Image Registration in Radiation Therapy
	3.1 An introduction into IR problem
	3.2 Algorithms constitutive elements
	3.2.1 Similarity measure
	3.2.2 Rigid transformation models
	3.2.3 Non-rigid transformation models
	3.2.3.1 Parametric transformation models 
	3.2.3.2 Non-parametric transformation models

	3.2.4 Optimization scheme and strategies
	3.2.5 Push and Pull warping method

	3.3 Validation and/or performance assessment of a registration method


	We can see a little further
	4 Deformable Registration: from theory to clinical practice
	4.1 Comparison of a parametric and a non-parametric DIR algorithm
	4.2 Ranking of Stopping Criteria for clinical DIR
	4.2.1 Dataset
	4.2.2 Experiments
	4.2.3 Results
	4.2.3.1 Convergence properties 
	4.2.3.2 Deformation recovery capability 

	4.2.4 Discussion and conclusion

	4.3 Validation of a DIR algorithm
	4.3.1 Classical validation indices
	4.3.2 Landmark based validation
	4.3.2.1 Scale Invariant Feature Transform Feature Detector
	4.3.2.2 Validation: results and discussion
	4.3.2.3 Conclusions

	4.3.3 Guidelines for performance indices choice


	5 Clinical Applications
	5.1 Multi-atlas based segmentation for Head and Neck Planning
	5.1.1 Materials and methods
	5.1.1.1 Algorithm outline
	5.1.1.2 Selection strategy
	5.1.1.3 Pairwise registrations
	5.1.1.4 Label fusion

	5.1.2 Results and Discussion
	5.1.2.1 Gaussian Weighted voting parameters tuning
	5.1.2.2 Pairwise registrations Quality
	5.1.2.3 Selection strategies and label fusion performances

	5.1.3 Conclusion

	5.2 On-Line virtualCT in Head and Neck Adaptive Radiation Therapy
	5.2.1 Methods
	5.2.1.1 Dataset
	5.2.1.2 Image pre-processing 
	5.2.1.3 virtualCT generation 
	5.2.1.4 Geometric validation 

	5.2.2 Results
	5.2.3 Discussion
	5.2.4 Conclusion


	6 Conclusions
	Bibliography


