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Abstract

DATA-INTENSIVE applications have become widespread in the years, especially in
cloud-like environments. Among them, Data Analytics (DA) and Machine Learn-
ing (ML) applications are particularly important categories that deeply impacted

business and science in the last decade, and are expected to have an even higher impact
in the upcoming years. In the latest years, we also saw hardware platforms evolving
along different directions to overcome the limitations of Dennard’s scaling and the end
of Moore’s law. While heterogeneity is coming into play for several applications, Central
Processing Units (CPUs) have also evolved towards a growing number of cores, special-
ized Single Instruction, Multiple Data (SIMD) units, high memory hierarchies and, in
general, a more complex and diverse set of features. On the other side, also data-intensive
applications became more complex, to the extent that a current ML model may com-
prise tens of diverse operators to compute a single prediction value, while taking in input
data of multiple types like text, number vectors and images. Oftentimes these applica-
tions are structured as “data pipelines” and go through many steps like input parsing, data
pre-processing, analysis and possibly loading the output to some “data sink” at the end.
Mastering this complexity to achieve the best implementation and deployment of an appli-
cation in a given setting (hardware platform, software stack, co-located applications, etc.)
is becoming a key issue to achieve best usage of the infrastructure and cost-effectiveness.
This problem is especially hard with heterogeneous platforms, whose hardware features
may not suit some parts of an application to be accelerated or may require a long redesign
effort. Here, where the inevitable complexity of applications determines the diversity of
operations, CPUs are still central, as they provide the flexibility and the maturity to effi-
ciently run most of these workloads with sufficient performance even for today’s needs,
while being easier to program than other architectures. Moreover, their general-purpose
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design naturally fits the diversity of data-intensive applications.
This work explores the performance headroom that lies unused in modern CPUs with

data-intensive applications. This headroom encompasses several dimensions, each one
with specific problems and solutions. A first problem to solve is the performance isolation
of co-located applications on the CPU, which has to take in account the sharing of the Last
Level Cache (LLC). Here, we propose and evaluate a mechanism for partitioning the LLC
that works on recent server-like CPUs and requires software-only modifications in the Op-
erating System (OS), thus not impacting hardware nor applications. This solution proves to
be effective with a diverse set of benchmarks and allows meeting Quality of Service (QoS)
goals even in a contentious, hardly predictable environment. The second problem is the
optimization of data-intensive applications, which can be composed of multiple, diverse
computational kernels. This work explores the limitations of current solutions, revolving
around a black-box approach: application kernels are individually optimized and run, dis-
regarding their characteristics and their sequence along the data path; indeed, a simple
case study shows that even a manual, naïve solution can achieve noticeable speedups with
respect to the current state of the art. Building on these findings, we generalize them into
a white-box approach for applications optimization: while applications should be written
as sequences of high-level operators, as current development frameworks already do, this
sequence should also be exposed to the system where these applications run. By looking
at this structure during the deployment of the application, the system can optimize it in
an end-to-end fashion, tailoring the implementation to the specific sequence of operators,
to the hardware characteristics and to the overall system characteristics, and running it
with the most appropriate settings; in this way the application can make the best use of
the CPU and provide higher QoS. Such a re-thinking of current systems and frameworks
towards a white-box also allows a cleaner support of heterogeneous accelerators. Indeed,
the high-level description that we advocate allows the system to transparently map some
operations to more specialized accelerators if need be. However, optimized solutions need
to keep a sufficient degree of flexibility to cover the diversity of computational kernels.
As an example, we explore a case study around Regular Expression (RE) matching, which
is a ubiquitous kernel in data-intensive applications with limited performance on CPUs,
and we propose an architecture that enhances previous work in terms of performance and
flexibility, making it a good candidate for the integration with existing frameworks.

Overall, this work proposes several solutions for the main issues around modern CPUs
and data-intensive applications, breaking some common abstractions and advocating for an
appropriate description level of those applications. The solutions proposed here leverage
this level of description that enables various optimizations, providing novel guidelines in
order to make the best use of the architecture. From this work, several research directions
arise, especially around extending these abstractions and the related solutions to work with
heterogeneous devices, whose usage for the masses calls for more automated optimization
strategies and prediction models.
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CHAPTER1
Introduction

In the era of Big Data , the availability of large data sources to harvest information from led
to an explosion of the demand for computing power 1 . This demand was met and sustained
with technological innovations along different directions. The first direction was already
well-known when Big Data applications started to appear in the beginning years of the
21st century, and was due to the steady growth of transistors density enabled by Moore’s
law, which enabled cramming more computing power inside a single chip. Similarly,
other advancements enabled by lithographic processes along the hardware stack (DRAM,
Flash, network, ...) fostered the scale-up trends of single servers. Since scale-up could
still not meet the demands, the research and the industry explored orthogonal scale-out
solutions by connecting commodity servers through high-bandwidth network technolo-
gies like multi-Gigabit Ethernet or InfiniBand. Unlike the long-lasting Moore’s law, these
solutions quickly showed their limits along multiple dimensions: reliability, energy con-
sumption, Total Cost of Ownership (TCO), complexity of programming, etc. Therefore,
further scale-out is very hard to achieve 2 , and also the scale-up trend of Moore’s law is -

1It is beyond the scope of this work to give or adopt a precise definition of “Big Data”, but we will use the common understanding
of this term: therefore, we will generally refer to Big Data to indicate the availability of large amounts of data that can be cheaply
retrieved for analysis, to extract useful information for business and science. For more precise definitions of this term, the reader can
refer to [172] and [52], while for its profound consequences on business and science at scale the reader can refer to [101] and [104].

2Solutions exist to further increase scale-out capabilities of some applications, but require rethinking the entire application and
sometimes even the algorithms at its basis, like the parameter server [152] architecture.
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now unsurprisingly - coming to an end [48, 149].
Part of the research is exploring disruptive solutions by increasing the heterogeneity of

computing resources, so that specialization via accelerators can fill the gap between the
quickly increasing demand and the slowly increasing offer [149, 99]. However, this path
challenges existing hardware/software abstractions and disrupts the programming models
we are accustomed to, with many research efforts still investigating how to ease design and
implementation of applications with heterogeneous devices for the masses. These efforts
span several hot applicative fields, proposing different solutions for each one: despite the
body of literature already available, what are the most promising directions is still not
clear.

This is true also for those specific fields that Big Data enabled and that currently at-
tract most of the attention of research and industry, like Data Analytics (DA) and Ma-
chine Learning (ML). Here, application patterns are more varied than in other fields (like
scientific computing, essentially based on algebraic kernels), which makes it difficult to
devise unified programming and optimization approaches even for these more restricted
domains and even if considering Central Processing Units (CPUs) only, as the multiplic-
ity of frameworks for ML programming shows. This diversity causes further complexity
when heterogeneity comes into play, as those applications may stress different parts of the
hardware architecture (storage, memory, floating-point units, control paths, ...) and it is
hard to design specialized accelerators while retaining coverage of many applicative pat-
terns. Therefore, many of these applications still run on CPUs, whose architectures have
been optimized along multiple dimensions (memory bandwidth, caches for locality, vec-
torized floating-point units, ...) over the course of the decades and are still “good enough”
for many of today’s needs. Thus, while heterogeneity is very lively in the research, opti-
mizing these applications to make best use of modern CPUs is an attractive alternative for
the present times, and an equally interesting research challenge. This chapter starts from
these observations to motivate the focus of this work and its goals.

1.1 The impact of Data Analytics and Machine Learning

The Big Data availability enabled several applicative trends. Among them is the so-called
DA, which is in general the “ability to extract useful information from large datasets”,
in order to provide insights to support the decision-making process of an organization.
Therefore, DA can be also seen as the set of business processes and techniques to achieve
this goal. Although techniques of information extraction for decision-making predate the
Big Data phenomenon, it is only with Big Data that the extracted information is statisti-
cally more reliable and oftentimes more insightful, as “hidden patterns” become visible
only when large amounts of data are involved, which in turn requires powerful hardware
and software tools.

However, these achievements cannot be obtained by looking at single datasets with
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classical statistical techniques, but by correlating information from multiple data sources
of different types ([101] shows some examples of this heterogeneity), some of them being
often semi-structured or un-structured. This is probably the biggest difference between
DA and previous statistical methods, which cannot cope with heterogeneous data sources.
This difference also explains why DA became a popular topic of discussion, research and
business right after the rise of the Big Data trend, and why DA is often referred to also
as “Big Data” Data Analytics (DA). In its report on the potential benefits of harvesting
information from Big Data sources [101], McKinsey estimates value gains in the order
of magnitude of hundreds of billions of US dollars in five important sectors (Healthcare,
Public Sector, Retail, Manufacturing, Telecommunications), coming from cost reductions
and performance improvements. Therefore, it is no wonder how the economical interests
and the research challenges of integrating heterogeneous data sources at scale stimulated
the research in DA.

Similarly, also ML was enabled by Big Data availability, which allows building statis-
tically reliable models to predict the value of unseen data instances 3 . The first difference
between DA and ML is the computational process of analyzing data, which for ML is
called training and is directed towards the maximization of a utility function on the basis
of statistical considerations [8, Chapter 1]. Therefore, this analysis is often computation-
ally more complex and typically requires even more computing power than DA algorithms
4 . In supervised learning [8, Chapter 1], the output of training is not even valuable per
se, but is used to predict the value of future unseen data 5 , thus being mathematically
modelled as a function: it is this function that, for each data instance it then sees, re-
turns the final information that is of interest to the user. Therefore, while DA has changed
the decision-making processes from a high-level perspective, ML has also changed the
business applications from the design to their implementation internals, and many of to-
day’s “intelligent”, popular, user-facing services like web search and speech recognition
are powered by ML models and thus require much more computing power than before to
run. Hence, these application patterns, here collectively referred to as data-intensive, are
now common “bricks” for business and science and have become fundamental to manage
information in our society 6 .

3Here, we refer mainly to supervised learning, and in particular to prediction and regression tasks, as they are the most common
usages of ML, especially at the business level. However, the scope this work is more general and encompasses all ML branches.

4The reader can think at the training of a linear classifier or of a Neural Network (NN).
5When the problem has a high dimensionality this output may even be little to no insightful, unlike DA results: the reader can again

think at the weights of a linear classifier or of a NN, whose interpretability is per se a research challenge [7, 29]
6We are deliberately excluding some categories of application that can be also described as data-intensive, like database workloads:

this category, indeed, already received a lot of attention over the decades and the research is very mature around it. Furthermore,
database workloads are mostly memory-bounded and less diverse than the applications we cover here, and thus stress only specific
parts of the architecture. The applications we cover here are inherently more complex and mixed.
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1.2 Trends of computing architectures for data-intensive applications

As from the introduction of this chapter, the growing demand of compute power was par-
tially met by the growth Moore’s law allowed. However, the failing of Dennard’s scaling
stopped the increase in frequency and limited the “raw” computing power a single core
can provide, causing the additional transistors to be employed for providing more cores
or more specialized units, like Single Instruction, Multiple Data (SIMD) units [69, 97].
These enhancements, unlike those in the first years of the 21st century (with CPU frequen-
cies steadily increasing), caused higher software development costs, which could only par-
tially be avoided by improving compilation techniques (like auto-vectorizing compilers)
and tooling in general.

Nowadays, applications willing to leverage the full power of the CPU they run on
should be designed for large multi-threading settings and should use specialized libraries
(an example is Intel MKL [67]) and be appropriately compiled and optimized 7 , taking in
account all the characteristics of the target CPU like the resources on the datapath and the
entire memory hierarchy. This makes optimization steps more complex, especially when
multiple computational kernels and patterns are used together in the same applications and
the performance bottlenecks do not depend on a single kernel but on multiple steps of the
compute chain. Data-intensive applications, which work with multiple heterogeneous data
sources at the same time, exhibit these issues more likely than previous applications, as in
different steps they may stress different hardware resources (memory bandwidth, caches,
datapath control, SIMD units, etc.) and thus need very different optimization techniques.
This work investigates these aspects and provides novel guidelines to lead and automate
the optimization phases of this class of applications.

Combined with the ubiquity of multi-core architectures, this diversity exacerbates com-
plexity and unpredictability issues: since several resources are shared within multi-cores,
uncontrolled contention often occurs among threads, especially among applications with
different characteristics, making attainable performance less predictable. Existing solu-
tions to these phenomena are only partial, further complicate the hardware interface and
deeply interact with software optimizations 8 . Therefore, for software optimizations to
be effective on multi-core CPU predictability and isolation are additional requirements to
guarantee, and very lively research problems. A major example of contended resources
are multi-cores shared caches like the Last Level Cache (LLC), for which a large body
of software optimizations exists (like the already mentioned [23]), which are yet unaware
of co-locations. These phenomena are particularly relevant where co-location patterns
are hardly predictable, and modern CPUs offer an increased number of cores with more

7An example of powerful optimizations for certain classes of kernel are polyhedral transformations [23], which are though very
application-specific and may heavily change the operation-per-loaded-byte ratio.

8For example, using Intel’s SIMD instructions on a core affects not only the core frequency but also the frequency of other cores
[176, 87].
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and more co-location possibilities. Furthermore, modern applications are usually hosted
in cloud computing environments [63], where the user typically has (and wants) little to
no control over the hardware resources and the co-locations. In particular, Platform-as-
a-Service (PaaS) cloud services abstract physical resources and let users focus solely on
the development and testing of the applications, managing the infrastructure automati-
cally: these services leverage co-location to be highly profitable for the provider, which
sometimes provides users Quality of Service (QoS) guarantees to make the service more
commercially appealing. In such a scenario, applications of different users may intertwine
in using the shared hardware resources and contentious patterns may arise and change over
time, as the users’ and applications’ mix changes; here, ensuring a given level of perfor-
mance and QoS may become impossible, or highly depend on the hardware platform (e.g.
the number of cores, the cache management strategies, etc.— all aspects out of the user’s
control). Therefore, modern infrastructures need some form of resource reservation at
least for important applications, with proper interfaces to interact with users giving details
about their requirements. Achieving this isolation is an orthogonal problem with respect
to the one discussed in the previous paragraph, and the second goal of this thesis.

Nevertheless, some kernels have performance requirements that CPUs are not able to
meet; the above-mentioned enhancements of CPUs of the recent years provided little to
no benefit to these kernels, which are hardly parallelizable and are not compute-heavy, but
rather control-heavy and data-dependant, thus insensitive to larger SIMD units or better
speculation. One noticeable example are Regular Expressions (REs), whose usage is very
common in data-intensive applications that work with textual data: both DA and ML ap-
plications often use REs to filter text inputs and search specific text patterns within them.
In such scenarios, where applications change with high frequency, flexibility is a key re-
quirement and is as important as performance for the applicability of the solution in the
cloud-like scenarios where data-intensive applications run 9. To meet the requirements, ac-
celerators may be used like Field Programmable Gate Arrays (FPGAs): these platforms,
among others, offer a high degree of flexibility and satisfiable performance for many use
cases, and fit very well the characteristics of RE kernels. Therefore, this thesis will also
explore the offloading of RE matching to a dedicated FPGA solution and how this can be
achieved while keeping highest flexibility to the workload changes.

Once mechanisms for optimizations and resource reservation are available, they can
be combined together to provide a higher degree of control over the final performance of
applications, both by making it leverage the hardware resources with highest efficiency
and by protecting it from unanticipated contention, combining the workload information
from developers with the performance goals of users and deciding the optimizations to

9As an anticipation of section 2.3 for the unfamiliar reader, some works embed the RE structure to be matched into hardware, e.g.
for network traffic analysis, where some data patterns are well known (IP addresses, sub-networks, packets headers, etc.); the resulting
circuit can be deployed as an Application-Specific Integrated Circuit (ASIC) into Intrusion Detection Systemss (IDSs) and firewalls for
maximum performance and energy efficiency. This inflexible solution does clearly not fit quickly changing workloads like those this
thesis deals with.
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perform and the degree of isolation to enforce.

1.3 Framework-as-a-Service, a playground for data-intensive applications

With applications steadily transitioning to the cloud, an increasing type of service offer is
Framework-as-a-Service (FaaS), sometimes referred to as serverless, which has common
elements with PaaS and Software-as-a-Service (SaaS). Like PaaS, FaaS services are highly
programmable and configurable, offering Application Programming Interfaces (APIs) for
the most used programming languages (like Java, Python, C#). Like SaaS, they hide all
the details about the underlying hardware/software architecture and take care of automat-
ically scaling and provisioning resources at a fine granularity, the reason why the APIs
they expose are very high-level. FaaS offers are usually billed with a fine-grained, pay-
per-use policy, and allow users to build quickly evolving and scalable applications for
a variety of scenarios. Common scenarios are the “classical” batch data analytics, for
example with Microsoft Azure Data Lake Analytics [15], event-driven, streaming data an-
alytics like Amazon Lambda [14] or more recent services for ML like Microsoft Azure
Machine Learning service [16]. Here, users can train and deploy ML with the most com-
mon tools and frameworks and the infrastructure takes care of provisioning the resources
for the phase at hand (for example, the Graphic Processing Units (GPUs) for training);
this automation allows the user to focus mostly on the training phase, where the model
is “designed and built” in an iterative fashion. These services, sometimes referred to as
Machine-Learning-as-a-Service (MLaaS), are spreading together with the usage of ML
models within commercial applications: in addition to the already cited Microsoft’s ser-
vice [16], also Google Cloud AutoML [54] and AWS SageMaker [10] can be cited.

They run multiple data-intensive applications simultaneously at a large scale, with the
possibility to provide users QoS guarantees to make the offer more appealing to the mar-
ket, as required by applications like real-time information services. Since they hide the
underlying infrastructure to the end users, on one side they can aggressively leverage co-
location to make the service profitable for the provider, but on the other side they have
to carefully provision resources to guarantee performance and QoS with little information
from users. Therefore, they need both high optimization capabilities for the applications
written against their APIs as well as predictability and isolation; in some cases, they can
also offer heterogeneous solutions to accelerate workloads to meet the highest users’ de-
mands 10 , but these capabilities should be properly abstracted away from the user under a
flexible, high-level APIs. For all these reasons, FaaS services face all the challenges dis-
cussed before, and are thus a reference platform for this work and for future developments.

10This is the case, for example, for Google Tensor Processing Unit (TPU), which are offered to users [55], or for the GPUs in the
main MLaaS offers listed before.
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1.4 Organization of this work

Following the topics introduced in the previous section, this thesis is organized as fol-
lows. Chapter 2 provides the necessary background, discussing the state-of-the-art works
around the topics introduced in section 1.2 and the unsolved technological and research
challenges, thus motivating the work in this thesis, and also shows the scenarios that can
mainly benefit from it. The following chapters detail the research efforts around the goals
in section 1.2, and provide more in-depth discussions over the specific problem each one
tackles, the related literature and the proposed solution. Chapter 3 discusses the isola-
tion of applications in the CPU LLC, showing an isolation mechanism that works on a
large variety of CPUs, including those in recent servers, without hardware changes, and
is completely integrated in the Operating System (OS). Instead, chapter 4 investigates
the performance of several ML applications and explores the potential room for perfor-
mance improvements by using both FPGAs and CPUs, underlining the main limitations
of current ML systems and insights for the following chapter. chapter 5 builds on these
observations to propose a more general optimization framework for ML workloads on
CPUs, which achieves noticeable performance benefits along several dimensions that can
help final users meet QoS requirements and decrease the TCO of the service, especially
in a cloud setting. The findings in this chapter can be generalized also to DA applications
and outline multiple research directions to embrace a broader class of applications and
more heterogeneous computing resources. From there, chapter 6 explores a solution to
accelerate some widely used functionalities like REs in order to satisfy performance goals
that CPUs cannot meet, and is a case study for those kernels that already need heteroge-
neous solutions while preserving flexibility. Finally, chapter 7 concludes this thesis with a
discussion of its achievements, limitations and of possible future work directions.
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CHAPTER2
Background and limitations of state-of-the-art

This chapter overviews the background concepts this work is based upon. Section 2.1
introduces the structure of modern CPUs and in particular the datapath and the cache hi-
erarchy, highlighting the main challenges in terms of programmability, performance and
efficiency. Building on these concepts, section 2.2 discusses how these challenges emerge
in the context of ML prediction systems, whose workloads exhibit peculiar characteris-
tics, higher diversity and complexity and faster evolution than “classical” DA. Finally,
section 2.3 explains the importance of REs as a very common kernel within a wide range
of DA and ML workloads, discussing how the limitations of CPUs pave the way to het-
erogeneous solutions, especially based on FPGAs.

2.1 Multi-core CPUs and their challenges

In the recent years, the advancements of the lithographic technology for multi-core archi-
tectures enabled a steady increase of the number of cores and in their complexity. Overall,
these changes greatly increased the complexity of the hardware, therefore impacting the
programmability and the possibility to achieve an efficient usage of the architecture, es-
pecially with memory-intensive applications. The issues due to these advancements are
along two orthogonal directions: the first issue is the contention arising from multiple
applications sharing the computational resources, while the second issue arises from the
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inherent complexity of the core and hampers achieving optimal performance with a broad
range of data-intensive applications. The following sections revise these directions and
highlight the main challenges and solutions the research proposed so far.

2.1.1 Co-location of data-intensive applications

Co-location of multiple applications on a single multi-core is common on almost every
modern platform, from smartphones to multi-socket servers. However, co-located appli-
cations contend for the multi-core shared resources, like the on-chip interconnection band-
width, the memory controller, I/O ports and, in particular, the LLC [49]. This last compo-
nent is particularly important to ensure the performance of applications, which contention
may severely degrade. The clusters powering modern cloud computing are particularly
subject to these issues, as the management policy generally tries to co-locate workloads
on the same multi-core, in order to pack the workload on a smaller number of servers.
Cloud applications served by these clusters are often bound to provide QoS guarantees
to customers, with penalties for the service provider in case of QoS violation. In these
environments, contention is a particularly important issue and performance unpredictabil-
ity has consequences at the business level. Therefore, the literature is particularly rich
of works addressing the LLC contention issue from multiple sides, and a comprehensive
review (which should span several decades of scientific literature) is beyond the scope of
this work, which will overview the recent, relevant solutions.

To understand the key challenges and properly categorize each work, we introduce two
aspects related to addressing contention, the policy and the mechanism. The policy is
the decisional process to mitigate or eliminate contention, which depends on information
about running applications (gathered from profiling, manual tagging of important appli-
cations or various performance metrics) and is implemented into an algorithm running in
hardware or in software: this algorithm starts from the input information about the current
status and properly computes the amount of hardware resources (CPU bandwidth, LLC
partitions sizes, etc.) to be assigned to each application. Once this resources assignment is
computed, the underlying mechanism applies it depending on the specific hardware/soft-
ware architecture: common mechanisms are those in the OS scheduler to change the CPU
bandwidth of applications, software-based approaches to partition the LLC (more in the
following paragraphs) rather than dedicated hardware interfaces to this aim [66]. There-
fore, all research works can be categorized by these two aspects, and we will abide by
this distinction in the remainder of this section and in chapter 3. Both aspects have been
extensively studied, and it suffices here to overview the main solutions to the challenges
current systems face.

To design policies to improve LLC sharing, a first way is modelling the LLC usage
characteristics of applications, typically using profiling information. This information
may come from stand-alone profiling and tracing of the locality characteristics like reuse

10



(or stack) distance [31, 178] or from more high level information like execution time or
job latency, like in [102, 179]. A second strategy to control contention is to detect sub-
optimal situations at runtime and react appropriately, usually by changing the resource
assignment via the scheduler [188] or by throttling batch applications in favor of latency-
sensitive applications [103]. Overall, the research around solutions to LLC contention is
still very lively, and even recent hardware enhancements like LLC monitoring and par-
titioning facilities [62] did not fully solve the problems and led to further developments
[128]. Indeed, LLC management policies depend on many environmental factors like the
type, recurrence, number and diversity of applications, the control over the software stack
(application/hypervisor/OS) and the underlying hardware, and the state-of-the-art is still
far from a generally applicable solution for all scenarios or, at least, for well-established
set of solutions known to work well for common scenarios.

While the policy depends on environmental factors that are hardly generalizable, the
mechanism allowing the partitioning is usually tied to more controllable, lower levels of
the hardware/software stack, in particular the OS and the CPU architecture. Here, the
crucial points are essentially the tuning knobs the hardware exposes to the OS, with most
architectures allowing no external control on data placement within the LLC and some
architectures, either commercially available or from research works, offering some degree
of control. For example, the recent Intel Haswell CPU family introduced Cache Allo-
cation Technology [66], which exposes registers for a way partitioning [6] mechanism
1 entirely implemented in hardware. Although hardware solutions usually achieve lower
overhead over software solutions, limiting the cache ways accessible to an application also
limits the maximum associativity the application can leverage, which penalizes applica-
tions with good locality especially with increasing core counts and thus more partitions to
apply 2. Instead, set partitioning preserves the full associativity of the cache, but requires
working at the level of data memory addresses (LLCs usually employ physical addresses),
which affect the target set in cache placement algorithms. The classical way to achieve
set partitioning in the LLC is a technique called page coloring [24], which dates back
from the 1990 and essentially consists in selecting the physical pages to be allocated to
an application on the basis of the LLC partition the application should reside in; since
page allocation is performed within the OS without hardware intervention, page coloring
requires only software modifications and has extensively been used in research. Chapter 3
discusses this technique in more depth and reviews the relevant literature about page color-
ing and LLC partitioning mechanisms in general. However, starting from the Sandy Bridge
family (2009) up to the latest years, Intel achieved utter prevalence in the server market
where data-intensive applications run and introduced a hash function into the LLC set
selection algorithm, making “classical” page coloring ineffective. Hence, the challenge

1way partitioning consists in choosing on which LLC ways each core can place its data into
2note that in the latest years the core count has increased while the associativity has not, as it directly impacts the latency of the

critical path of the tag lookup and the hardware costs with more comparators required
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arose to adapt this technique to the new hardware powering datacenters, while keeping
the software overhead low and allowing scalability to the large memory sizes of modern
servers. All these challenges and the proposed solutions are addressed in chapter 3.

2.1.2 Optimizing data-intensive applications

The recent decade saw the addition of multiple features into the core design: the main
trends are increasing the speculation capabilities to saturate the memory bandwidth and
hide latencies and to add dedicated instructions for compute-intensive tasks. Speculation
features of CPUs increased, as the increasing density of components allowed incorporating
more effective predicting logic into a single core, both for data prefetching and for branch
prediction. On one hand, branch prediction logic, which is highly integrated within the
core pipeline and therefore highly tied to each vendor’s design, has evolved to the point
of using solutions based on NNs, like in the newest AMD processors [11]. On the other
hand, data prefetchers, initially based on detecting fixed data-access strides [51, 26], lately
became usually more effective in using the memory bandwidth [111], although several
DA workloads with sparse data access (for graph or algebraic applications) still exhibit
poor performance [19]. On the side of compute-intensive workloads, the most noticeable
changes revolve around newer SIMD features like AVX instructions on x86 CPUs [69],
whose width and complexity further increased and now have 512 bits operands and support
for low-precision arithmetic for neural operators [97].

Coupled with out-of-order execution of modern CPUs, which implement vendor-specific
evolutions of Tomasulo’s algorithm [162], all these features make performance complex to
predict and to achieve, forcing programmers to optimize their code through several phases
of profiling. For example, the state-of-the-art performance investigation techniques for
CPU extend the Roofline model with a Tomasulo-based simulator of the micro-architecture
internals that simulates instructions execution and computes the impact of each micro-
architectural feature on the execution time [27]; although very insightful, these techniques
still require manual work and are hardly automatable to a broad range of applications. To
avoid manual tuning, industry and research provided several solutions to leverage modern
CPUs capabilities. In particular, dedicated libraries like Intel MKL [67] and optimizing
compilers like Intel ICC and the open-source compiler GCC are the de-facto standard tools
for such tasks, but the research showed that even for well-known kernels these solutions
cannot explore the entire design space and produce the best solution. For example, [154]
partially explores the parameter space of a Fast Fourier Transform implementation and
finds the best implementation for given ranges of parameters, reaching or even exceeding
the performance of MKL and similar solutions. Similarly, [68] specializes the GEMM
implementation for the given parameters at runtime.

Higher level abstractions on hardware like managed languages face the same prob-
lems, but offer more solutions that fit in the higher software stack. While optimizing and
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vectorizing compilation capabilities are natively available with the runtime [73], some
approaches propose dedicated interfaces to allow programmers explore and offer custom
implementations of vectorized primitives [156]. Even with these solutions, problems re-
main when applications grow complex and have multiple, diverse computational steps,
like data pipelines typical of DA and ML: here, optimized implementations of the compu-
tational kernel classically remain separated into different function calls, with the need to
materialize intermediate results in memory. This materialization requires memory band-
width to write and read memory, a resource that has not scaled equally with the computa-
tional power of CPUs and of other platforms [100]. To overcome these issues, works like
Weld [126] propose a Domain-Specific Language (DSL) and a runtime for cross-libraries
optimizations, enabling fusion of kernels and removing result materialization steps, as in-
memory DataBase Management Systems (DBMSs) like MonetDB [65] already do from
nearly three decades, since they have full upfront knowledge of the kernels characteristics.
Recently, also specific fields like image processing and NNs saw end-to-end approaches
for optimizations like Halide [134] and TVM [33], which start from a custom representa-
tion of the computation (either with a DSL or with a Direct Acyclic Graph (DAG) of tensor
operations), perform end-to-end optimizations on the whole compute graph and generate
optimized code for various platforms.

Despite this growing body of research, only a few areas have been covered, and more
general solutions are missing. Furthermore, the usage of DSLs, though recently advocated
with Domain Specific Architectures [77], goes towards the opposite direction of further
specialization, and a proliferation of DSLs can force developers to learn multiple pro-
gramming abstractions and toolsets that change over time. An example of this issue is the
ML context, where multiple abstractions and toolsets exist for various types of NNs like
Convolutional Neural Network (CNN), Deep Neural Network (DNN), etc. or very specific
ML classes of models, while a general approach is missing that allows optimizing all ML
operators and all pre-processing steps along data-intensive ML pipelines, as the following
section explains.

2.2 Challenges of implementing Machine Learning Prediction-Serving sys-
tems on modern CPUs

The increased computing power of modern architectures allowed the growth of applica-
tions based on ML, which have a large variety of patterns to pre-process and transform data
into some kind of prediction. This variety of patterns is especially visible during inference
(also called scoring), where the input data “flow” through several operators to finally pro-
duce the output; in this phase, we experience the issues introduced in section 2.1.2. To
have an idea of the variety of patterns and transformations needed to perform ML infer-
ence, it suffices to think of the wide variety of applications and scenarios ML models are
employed in.
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Nowadays, several “intelligent" services such as Microsoft Cortana speech recognition,
Netflix movie recommender or Gmail spam detector depend on ML model inference capa-
bilities, and are currently experiencing a growing demand that in turn fosters the research
on their acceleration. In general, we can identify two typical scenarios with homogeneous
characteristics in terms of deployment strategies and requirements:

• in the web service scenario a user-facing application, typically distributed and web-
based, relies on an ML prediction to provide the output, as in the case of search or
recommendation engines; the performance of the application tightly depends on the
latency of the prediction

• in the batch scenario, the user runs periodic prediction tasks on large datasets, typi-
cally using multiple prediction algorithms with common pre-processing steps, as in
the case of market prediction workloads; throughput is the key performance metric
in these cases

While efforts exist that try to accelerate specific types of models - e.g., Brainwave [110]
for DNN - many models we actually see in production are often generic and composed of
several (tens of) different transformations.

Many workloads run in so-called prediction-serving systems, which are cloud services
that highly abstract physical resources, ease the maintenance burden and provide (semi-
)automated scaling capabilities. These systems are designed to be used by data science
experts, who train prediction models according to their specific workflows based on some
high-level framework and deploy them to such services; here, models are operationalized
and made available to web or batch applications requesting predictions. . Indeed, while
data scientists prefer to use high-level declarative tools such as Internal Machine Learning
Toolkit (IMLT) for better productivity, operationalized models require low latency, high
throughput, and highly predictable performance. By separating the platform where models
are authored (and trained) from the one where models are operationalized, we can make
simplifying assumptions on the latter:

• models are pre-trained and do not change during execution3;

• models from the same cloud user likely share several transformations, or, in case
such transformations are stateful (and immutable), they likely share part of the state;
in some cases (for example a tokenization process on a common English vocabulary)
the state sharing may hold even beyond single users

These assumptions together motivate the research of common patterns among multiple
models: indeed, computationally-heavy and similar transformations with immutable state
can be thoroughly optimized and even offloaded to dedicated hardware with only a one-
time, setup cost for setting the state. Once the most common sequences of transformations

3With the exception of online learning, here not discussed for simplicity.
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Figure 2.1: A Sentiment Analysis (SA) pipeline consisting of operators for featurization (ellipses), followed
by a ML model (diamond). Tokenizer extracts tokens (e.g., words) from the input string. Char and Word
Ngrams featurize input tokens by extracting n-grams. Concat generates a unique feature vector which is
then scored by a Logistic Regression predictor. This is a simplification: the actual DAG contains about

12 operators.

are identified in a workload, multiple prediction models can benefit from their accelera-
tion. Chapter 4 explores this approach by accelerating some ML models to both CPU and
FPGA, showing large room for improvements over current approaches.

Building on these findings, chapter 5 tackles the more general case: there, ML mod-
els are authored as pipelines of transformations, which are DAGs of operators compris-
ing data transformations and featurizers (e.g., string tokenization, hashing, etc.), and
ML models (e.g., decision trees, linear models, SVMs, etc.). Many ML frameworks
such as Google TensorFlow (TF) [158], Facebook Caffe2 [28], Scikit-learn [129], or
Microsoft ML.Net [112] allow data scientists to declaratively author these pipelines of
transformations to train models from large-scale input datasets. Figure 2.1 shows an ex-
ample pipeline for text analysis whereby input sentences are classified according to the
expressed sentiment. ML is usually conceptualized as a two-steps process: first, during
training model parameters are estimated from large datasets by running computationally-
intensive iterative algorithms (an example is the back-propagation algorithm [9, 175]);
successively, trained pipelines are used for inference to generate predictions through the
estimated model parameters.

When trained pipelines are served for inference, the full set of operators is deployed
altogether to pre-process and featurize the raw input data before ML model prediction
rendering. However, pipelines have different system characteristics based on the phase in
which they are employed: for instance, at training time ML models run complex algo-
rithms to scale over large datasets (e.g., linear models can use gradient descent in one of
its many flavors [140, 135, 148]), while, once trained, they behave as other regular featur-
izers and data transformations; furthermore, during inference pipelines are often surfaced
for direct users’ servicing and therefore require low latency, high throughput, and graceful
degradation of performance in case of load spikes. Therefore, we focus on the inference
phase, which shows all the challenges overviewed in section 2.1.2. During training, most
of the time is spent in actually finding the optimal parameters for the output model, which
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involves the exploration of large solution spaces usually via a gradient-descent algorithm:
here, the cost of pre-processing steps can be amortized via batching inputs, while most of
the training time is actually spent in the space exploration. Instead, in prediction-serving
latency requirements often prevent batching, and operators have to be run one at a time,
and possibly be optimized altogether to take full advantage of the CPUs they run on.

Existing prediction-serving systems, such as Clipper [clipper2, 40], TF Serving [159,
122], Rafiki [170], ML.Net [112] itself, and others [130, 137, 113, 115] focus mainly
on ease of deployment, where pipelines are considered as black boxes and deployed into
containers (e.g., Docker [46] in Clipper and Rafiki, servables in TF Serving). Under this
strategy, only “pipeline-agnostic” optimizations such as caching, batching and buffering
are available, while it is not possible to apply in-depth optimizations across operators. In-
deed, we found that black box approaches fell short on several aspects in addition to code
optimizations. For instance, current prediction services are profitable for ML-as-a-service
providers only when pipelines are accessed in batch or frequently enough, and may be
not when models are accessed sporadically (e.g., twice a day, a pattern we observed in
practice) or not uniformly. Also, increasing model density in machines, thus increasing
utilization, is not always possible for two reasons: first, higher model density increases the
pressure on the memory system, which is sometimes dangerous—we observed machines
swapping or blocking when too many models are loaded. As a second reason, co-location
of models may increase tail latency especially when seldom used models are swapped to
disk and later re-loaded to serve only a few users’ requests. And, even if kept in memory,
black-box data and task replication leads to higher runtime overhead, poor locality and un-
controlled co-location of tasks. Interestingly enough, model pipelines often share similar
structures and parameters inasmuch as A/B testing and customer personalization are often
used in practice in large scale “intelligent” services; operators could therefore be shared
between “similar” pipelines. Sharing among pipelines is further justified by how pipelines
are authored in practice: ML pipelines are often produced by fine tuning pre-existing or de-
fault pipelines and by editing parameters or adding/removing steps like featurization, etc.
In chapter 5 we will leverage these insights to go beyond a black-box approach and show
that a wide-box approach can allow models optimizations along multiple dimensions.

2.3 In-depth Data Analytics acceleration: the case study of Regular Ex-
pressions

Although a white-box approach can provide substantial benefits to accelerate data-intensive
applications, some widespread kernels are at the base of applications with ever-increasing
performance demands. A major example of them are REs, which are widely applied in a
number of fields that range from genome analysis to text analytics and IDSs, to name a
few. The requirements of these applications and the large amounts of data to be analysed
through REs make the performance of RE matching solutions crucial, and keep fostering
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the research on this problem. As an example, IDSs may require near-real-time analysis
of network packets at the network rate, which reaches several tens of Gb/s in bandwidth.
REs are also used in many business applications, from the pre-processing steps of some
ML pipelines to database queries. To sustain the demand of these applications, CPU-
based solutions are not enough, and even the availability of more cores with newer silicon
generations does not allow meeting the performance demands. Therefore, previous IDS
solutions employ specialized hardware [106] or use more flexible alternatives like GPUs
[166]. While the latter solutions retain good programmability and flexibility, they usually
come at the cost of low energy efficiency with respect to the former solutions. Indeed,
RE matching solutions in the literature in general have been struggling between perfor-
mance and energy efficiency on one side and flexibility on the other side. Here, we are
reviewing the main works in the literature of REs acceleration, to show the main directions
the research has taken and the various shortcomings that motivate our work in this field,
which demonstrates how dedicated accelerators, implemented in FPGA or even ASIC, are
necessary for some data-intensive applications.

A large body of applications and of literature around REs revolves around “classical”
packet inspection systems, which are at the base of security-oriented solutions for net-
worked systems and are still a very live research topic. These applications analyze network
traffic by inspecting the packet content at various levels of the ISO/OSI stack, from level 1
up to level 4 (traditionally called “packet analysis”) or even to level 7 (called “deep packet
inspection”). In the case of packet analysis, the patterns to match against are usually sim-
ple, being typically limited to part of the IP address (to match, for example, malicious
sub-networks) and to port numbers. Instead, deep packet inspection requires more time-
consuming pattern matching within the payload of packets, for example by looking for
REs that describe URLs to detect spam contents or security exploits. In order to address
the issues in this domain, many solutions have been developed, which historically make
up the bulk of literature in accelerating RE matching. Indeed, section 6.2 reviews the main
approaches of this corpus in the related chapter.

In recent years, RE matching found novel applications through genome analysis and
its derivations, where REs are used to find common patterns among genomic sequences
for a variety of goals. One large body of work, that has already emerged thanks to the
advancements in genomic sequencing, is finding patterns for classification purposes, e.g.
proteins [187] or generic genome sequences [125, 167]. Another fast-growing area that
exploits RE matching for genomic applications revolves around the study of diseases and
their treatment. Several works, for example, look for common patterns as genetic markers
that are correlated to health issues of various types (like [108, 30]). Pushing this approach
forward, so-called “personalized medicine” for, e.g., cancer treatment [71, 144] is gaining
momentum as a promising application for pattern matching, where genomic inputs directly
come from patients under treatment to diagnose possible diseases and find the best cure.
Recent successful breakouts of these techniques [34] showed very promising results, and
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suggest further developments of healthcare- and genomic- related applications that require
powerful matching solutions for genomic data.

Coming to the implementation of dedicated solutions, the literature shows a large body
of works using FPGAs and ASICs. In recent years, FPGAs have been employed in many
different fields thanks to their flexibility and proved to be best with respect to energy
efficiency in a wide variety of applications, to the extent that a large research body is
exploring heterogeneous architectures that combine different technologies such as CPU,
GPU and FPGA in the same system. Moreover, their reconfiguration capabilities make
FPGAs compelling for realizing high-performing and energy-efficient systems that also
need some degree of flexibility for deployment, trading off the best aspects of other ar-
chitectures (including ASICs) in those scenarios. In particular, matching RE is usually a
control-heavy activity where advanced speculative features and vector-wide extensions of
modern CPUs typically fall short: indeed, CPUs mainly rely on their high frequency and
on an increasing number of cores to achieve acceptable performance, at the cost of low
energy efficiency and high heating dissipation. Similarly, RE matching does not typically
fit GPU characteristics, which are not suited to control-heavy scenarios. Instead, FPGAs
often achieve good performance and energy efficiency with control-heavy applications, as
they allow embedding and thoroughly optimizing the control into the synthesizable logic.

Among others, a previous research work [127] explored how to use FPGAs for RE
matching while offering a higher degree of flexibility than previous works. Its basic idea
is to translate an RE into a set of dedicated instructions executed on a “dedicated CPU”
built into FPGA, highly optimized for this task and highly configurable to be adapted to
multiple scenarios. In chapter 6 we build on the approach to propose a more flexible and
performing solution for RE matching.
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CHAPTER3
Performance predictability through isolation in Last

Level Cache

This chapter describes our work on achieving performance isolation in the LLC of modern
CPUs. Section 3.1 describes the problem in more detail, showing the issues in the con-
text of modern CPUs. Section 3.2 provides the background technical knowledge of this
chapter, especially the base software techniques, while section 3.3 discusses the state-of-
the-art work in LLC isolation. Section 3.4 explains the impact of modern CPU architec-
tures on the state-of-the-art techniques and the approach we used to design the system,
while section 3.5 shows the evaluation. Finally, section 3.6 concludes the chapter with the
achievements and the future work deriving from them.

3.1 Introduction

Contention on the shared LLC can have a fundamental, negative impact on the perfor-
mance of applications executed on modern multi-cores. The increasing number of cores
and the variability of workloads running in modern environments further exacerbate con-
tention phenomena, hampering scalability and the fulfillment of QoS guarantees. Manu-
facturers of multi-cores tackled some of these issues with architectural changes. For exam-
ple, Intel tried to solve contention at the port level by deep changes to the LLC structure.
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With the Sandy Bridge family, Intel split the LLC in multiple parts, called slices, each one
with dedicated resources, that cores can access via a dedicated ring interconnection net-
work [90]. To prevent multiple cores from accessing the same slice simultaneously and to
avoid bottleneck effects, Sandy Bridge spreads accesses by means of a hash function com-
puted on the physical address of the data to be retrieved; instead, the access within a slice
leverages the physical address with the usual scheme. This deep change, however, does
not solve contention within sets. Cores can still access any slice uniformly, and co-located
applications are still likely to experience strong contention when accessing sets within a
slice. Intel, with the new Haswell platform, provides a solution based on way partitioning
[66], which comes at the cost of limiting the associativity available to each application. To
overcome this limitation, other approaches are possible to decrease contention within sets,
as discussed in section 3.3, but are currently confined to research and no well-established
solution exists.

A software-only approach to address LLC contention issues is based on page color-
ing, a technique that leverages the physical memory to control the mapping of data into
the LLC: by controlling physical addresses of data, page coloring can partition the LLC
among applications and increase the predictability of performance. The key assumption
of page coloring is that the cache is physically addressed, so that controlling the physical
memory of an application allows controlling also the cache space devoted to the applica-
tion. However, recent multi-core architectures (e.g., Intel Sandy Bridge and later) switched
from a physical addressing scheme to a more complex scheme that involves a hash func-
tion. Therefore, traditional page coloring is ineffective on these recent architectures, as
discussed in discussed in section 3.4.

Here, we extend page coloring to work on these recent architectures by proposing a
mechanism able to handle their hash-based LLC addressing scheme. Just as for tradi-
tional page coloring, the goal of this new mechanism is to deliver performance isolation
by avoiding contention on the LLC, thus enabling predictable performance. We imple-
ment this mechanism in the Linux kernel and we evaluate it using several benchmarks
from the SPEC CPU 2006 [61] and PARSEC 3.0 [20] suites, delivering performance iso-
lation to concurrently running applications by enforcing partitioning of a Sandy Bridge
LLC, which traditional page coloring techniques are not able to handle.

Overall, this work brings three main contributions.

1. We provide a methodology to reverse engineer the hash function of Sandy Bridge
CPUs. The proposed methodology leverages hardware performance counters avail-
able in modern architectures and is based on assumptions that previous work demon-
strated to be consistent across multiple families. Unlike previous methods, our method-
ology is robust to noise in input data and identifies the exact hash function. Moreover,
although experimented with only one CPU model, we believe it is general enough to
be applicable also to recent models by Intel.
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Figure 3.1: Bit fields of a physical memory address

2. Our solution uses the information on the hash to generalize page coloring to hash-
based caches, allowing the system administrator to choose the size and the position
of the LLC partition even in presence of hash-based addressing.

3. We generalize the notion of “page color” within the Linux memory allocator, thus
achieving scalability and efficiency with a more general design than previous works.

We implement our page coloring scheme in the Linux kernel and validate it on real hard-
ware with workloads from the SPEC CPU2006 and PARSEC 3.0 [20] benchmark suites.

3.2 Background

This section introduces the fundamental concepts for this work. Primarily, section 3.2.1 in-
troduces Page coloring, the state-of-the-art technique to partition CPU caches that requires
software-only modifications. These modifications mainly affect the physical memory al-
locator of the OS, which is the Buddy allocator in Linux and is introduced in section 3.2.2.

3.2.1 Page coloring

Well-known in the literature, page coloring [24] is the mechanism at the base of techniques
for software cache partitioning, and is based on how modern shared caches map data to
cache lines. These caches use the physical address to map data, and the allocation position
can thus be controlled via the physical memory allocator of the OS. Some bits used to
select the cache set are typically in common with the address of the physical page, and can
be controlled via the OS to reserve cache space for a given application.

For example, fig. 3.1 shows the parameters of a real CPU, namely an Intel Xeon E5
1410, where the LLC is the third layer of cache. There, bits 12 to 18 are in common
between the set number and the physical page number, and are called color bits, while a
configuration of them is called page color. In the example, 7 color bits are present, so that
the LLC can be split in at most 128 partitions. Nevertheless, fig. 3.3 shows that bits 12 to
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Figure 3.2: Data structure of the original Buddy algorithm, with one list of buddies per order

14 are used both as color bits and as set bits for Level 2 (L2) cache addressing. Using these
bits for LLC partitioning would also partition the per-core L2 caches of accessing cores,
which is undesirable. Therefore, only bits 15 to 18 are finally available for partitioning,
finally allowing 16 partitions.

To enforce the partitioning, the OS allocates pages on a per-application basis. Each
application is assigned a suitable number of colors, and the OS uses those colors only for
the application memory. Therefore, other co-located applications cannot interfere with the
data accesses of the target application, which is able to exploit the cache space reserved
with full associativity.

The main disadvantage of page coloring comes when re-partitioning (called “recolor-
ing”) occurs: in this case, memory pages must be copied to new locations of different
colors, with the consequence of a high overhead for data copy (in the order of 1us per
page). Hence, page coloring has mainly been investigated as a static “technique”, and the
works in the literature try to limit recoloring overhead by copying pages only when really
needed.

3.2.2 Buddy algorithm

The Buddy allocator [86] divides the physical memory into buddies, which are contiguous
memory areas of different size. A parameter called order characterizes each buddy, whose
size is 2order the size of a page. Buddies are aligned to a memory address that is a multiple
of their size, hence being aligned to order bits beyond the number of page bits (typically
12): therefore, a buddy of order 0 is aligned to a 12 bits boundary, a buddy of order 1 is
aligned to a 13 bits boundary, etc. This alignment constraint allows identifying each buddy
through the memory address of its first byte. Each buddy is strictly coupled to either the
previous or the following buddy of the same size, depending on the least significant non-
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Figure 3.3: Overlap of L2 set bits with color bits

aligned bit: indeed, to find the coupled buddy from a given one, it is sufficient to invert
this bit.

Figure 3.2 shows the data structure the algorithm uses to achieve efficiency, storing bud-
dies of different orders in different lists. Therefore, when subsystems of the OS request a
memory area of a certain size, the allocator rounds it by excess to the closest power-of-two
number of pages and returns the buddy of that size. In case no suitable buddy is present,
the Buddy algorithm splits a buddy of higher order in two parts, stores the second half to
the list of free buddies of lower order and returns the first half. Conversely, the algorithm
maintains scalability and efficiency by merging two contiguous free buddies, taking ad-
vantage of the “companion” of buddies. On every buddy being freed, the Buddy algorithm
checks whether the coupled buddy is also free and groups them in a single, higher-order
buddy that is inserted in the proper list, eventually iterating the merging procedure until
the maximum order is reached.

3.3 State of the Art

A wide literature is available addressing contention within the LLC, which proposes solu-
tions of very different nature. In summarizing the wide body of available literature, two
main aspects should be distinguished: techniques and policies. On one side, the techniques
are the mechanisms that allow controlling the cache. Many works, for example, propose
hardware techniques that affect the internals of the cache, often modifying the Least Re-
cently Used (LRU) priority assignment to cache lines. On the other side, the policy is the
algorithm and the metrics that drive the mechanism, deciding the actions to be applied
through the mechanism. For example, a partitioning policy may gather several metrics for
each core and decide the size of each cache partition according to predefined goals (like
fairness or user’s QoS requirements). Both the mechanism and the policy can be imple-
mented either in hardware or in software. This distinction is fundamental in this review,
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and the related literature can be classified by means of these two aspects.
In the following review, we cover hardware techniques (section 3.3.1) and software

techniques (section 3.3.2). Hardware techniques require modifications to the cache func-
tioning, and may implement in hardware both the mechanism and the policy. However, a
hardware technique can still offer interfaces to the software level in order to tune its be-
havior to high-level, software-defined goals. Instead, software techniques do not require
hardware modifications, and are all based on page coloring to control where applications
data are placed inside the cache. section 3.3.3 reviews the techniques to unveil the hash
function of Intel’s CPUs, from which we learned the assumptions that are at the base of
our reverse engineering technique.

3.3.1 Hardware techniques

Overall, hardware techniques are diverse: some change the implementation of the LRU
algorithm while others allow more explicit control over the data placement. A first mech-
anism for cache partitioning is called way partitioning, usually employing a bitmask to
indicate which ways each core can access inside the cache sets. In case of eviction, the
LRU policy works only on the cache lines assigned to the core causing the eviction, so
that each set is effectively partitioned among the cores. Some special-purpose architec-
tures like Octeon [121] or some prototype multi-cores [37] adopt this LLC partitioning
mechanism, which is also finding room in modern, commercial architectures. However,
way partitioning decreases the associativity available to a core, as it allows accessing only
a subset of the lines, offering a smaller set of candidates for eviction with respect to the
case with full associativity. Several policies have been proposed to compute the number
of ways for partitioning. Among them, Utility-based Cache Partitioning (UCP) [132] is
the base for several works in the literature: it defines the benefit each application can have
from receiving more ways based on the derivative of the miss rate curve. Works like [57]
allow way partitioning while increasing the spatial locality with aggressive prefetching,
based on samples from several sets.

Other works, instead, change the LRU policy to tackle phenomena like thrashing or
pollution. [150] consider multi-thread applications and focus on fairness among cores
by penalizing the core with highest Instructions Per Cycle (IPC) in favor of the others:
a modified LRU policy evicts a cache line of the high-performing core in case of miss
from another. Since LRU is an history-based policy, it is unable to predict the usage of
new cache lines. Therefore, low-reuse cache lines may evict high-reuse cache lines (cache
pollution), and high-reuse cache lines can continuously evict each other (cache thrashing).
[147] enhance the LRU policy with information about the frequency of recently evicted
lines, which is stored in a novel hardware structure and allows deciding whether to store the
incoming line or bypass it to the core. Other works attempt to predict the reuse of incoming
blocks to affect the replacement policy, for example by storing the history of incoming
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blocks [91] or with an address-mapped table of saturating counters [83]. Other works,
instead, choose at runtime a certain policy based on set dueling [133], which consists in
sampling the behavior of several cache sets where a fixed policy is applied [72]. Recently,
[82] proposed two replacement policies based on the observation that the LLC should
capture read-reuse patterns, while lines from write-only patterns can usually be evicted
safely. [82] partitions each LLC set in two regions, the clean and dirty regions, and uses
the clean region for read-only lines, while the dirty regions contains written lines and is
resized according to information from set dueling.

Vantage [142], instead, is a more disruptive approach based on the z-cache model [141].
A zcache maps the incoming data to a line by means of a hash function, achieving high
high associativity. Leveraging this feature, Vantage partitions the LLC by introducing two
regions that capture high-reuse and low-reuse lines respectively, and that can be resized
dynamically. [169] introduce the concept of futility, which describes the “uselessness”
of a cache line w.r.t. the others. A cache should always present a broad set of “futile”
candidates for eviction, even in the presence of partitioning, and [169] scales futility based
on the insertion and eviction rates of each application’s partition.

3.3.2 Software techniques

Many software techniques have been proposed to alleviate interference at the cache level.
Most of these techniques assume a usual LLC addressing scheme, without a hash function,
(like Intel’s Nehalem’s scheme).

Some works classify applications based on their sensitivity to co-located applications
and on the contention they cause to other applications, usually by a micro-benchmark that
exercises a tunable pressure in LLC and memory [43, 102]. In an initial learning phase
the pressure on the memory subsystem is varied to devise the application profile,which is
then used to classify the application and avoid dangerous co-locations. Pushing on this ap-
proach, [179] monitor latency-sensitive applications at runtime, continuously adapting the
co-location to the application phases. Instead, other techniques directly manage the LLC
and are all based on page coloring, but apply it for different goals and with different poli-
cies. For example, some tackle pollution by limiting the cache space I/O buffers can use,
either assigning a fixed number of colors [85] or identifying pages accessed sequentially
(typical of I/O buffers) and mapping them to few colors [45]. Other techniques, similarly,
find polluting memory pages through the miss rate and migrate them to a small number of
colors [153].

To precisely partition the LLC, some approaches perform application profiling, and
typically choose the number of colors for each application based in low-level metrics
such as miss rate and stall rate [157]. Other works like [186] or [95] profile the appli-
cations characteristics at runtime and perform several actions like recoloring hot pages
only. Nonetheless, this profiling can be heavy (for example, [186] hot page recognition
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requires traversing the OS page table). [93] evaluate several policies and metrics to guide
the partitioning and find similar results in term of overhead. [92] investigate how to iden-
tify application phases by means of miss rate curves and IPC curves, and apply recoloring
to adapt partitions to phases.

Several works employed a theoretical approach to model applications’ LLC characteris-
tics. [143] modeled the bandwidth usage and the performance variation due to co-location,
using profile data that capture applications’ characteristics and runtime phases across dif-
ferent time windows, validating their approach on an Intel Nehalem architecture. [25]
evaluate several policies of fairness with a static partitioning approach on an Ivy Bridge
architecture, and provide a theoretical framework to find the optimal LLC partitioning and
sharing scheme with respect to these policies. Thanks to this approach, the policies they
evaluate have general applicability.

Other works explore page coloring techniques on newer architectures. [84] focus on
real-time systems, developing a partitioning and sharing scheme that considers tasks with
given deadlines for completion. This work starts from profiling information about the
stand-alone worst case execution time with different LLC partitions and devises a scheme
for partitioning and sharing, and a time schedule that meets the applications’ deadlines.
To enforce the partitioning, [84] implements a page coloring technique on a Sandy Bridge
CPU, but does not deal with the of the hash function, thus leaving the LLC partitions
spread across all the slices. Furthermore, [84] employs all the bits from 12 to 17 as color
bits, thus also partitioning the L2 cache (as in fig. 3.4). [181] propose two novel re-
coloring policies that consider also time sharing of cores and QoS requirements, focusing
instead on server environments. The first policy recolors a number of pages proportional
to the memory footprint, but proves to be sub-optimal since it often recolors rarely used
pages. Instead, the second policy tracks page hotness by sampling the OS page tables and
remaps them to different colors to better distribute the accesses. [181] also validates the
proposed solutions on a low-end Sandy Bridge architecture. However, the presence of the
hash-based mapping is not considered in the design phase.

Finally, page coloring finds applicability also with Virtual Machiness (VMs): in this
scenario, the a priori knowledge of the memory footprint of VMs can be used as a hint for
the LLC partition size. [76] use page coloring within the Xen hypervisor to show that also
VMs benefit from LLC partitioning. Proceeding in this direction, [171] adds a dynamic
re-coloring mechanism that moves the most used pages, not to stop the VMs during page
copy.

3.3.3 Reverse engineering Intel’s hash function

Effort has been devoted to reconstruct the hash function of Intel Sandy Bridge processors,
mostly for security purposes: indeed, knowing the LLC hash function allows an attacker to
perform a side-channel attack, e.g. by probing hot code areas like cryptographic libraries

26



1731 16 6

hash slice set

1531 14 6

L2 tag L2 set

1231 11 6

page address page offset

color bits

Figure 3.4: Overlap of L2 set bits with color bits within Sandy Bridge

and checking the load time.

Disregarding the way they unveiled Intel’s hash functions, this body of research shows
that the hash is based on the XOR operator, and that it depends on the number of slices
of the LLC and not on the specific architecture: indeed, with 2n slices the hash function
consists of n different hashes that output a single bit, and that XOR certain bits. Hence,
reconstructing the hash function basically reduces to finding which bits are XORed in each
hash.

[64] discovered the hash function of an Intel Core i7-2600 multi-core, by finding con-
flicting addresses that map to the same LLC set. However, in [64] the authors manually
compare the conflicting memory addresses to find repeated patterns that may hint the hash
function. Instead, [70] adopt an analytic approach, solving a linear equation system in
order to find the possible hashes: in their formulation, each address is a constant matrix of
coefficients that multiplies a vector of unknowns, which represent the coefficients of the
hash function (1 for the bit being used, 0 otherwise). Since the final solution depends on
the unknown labels of the slices, [70] provides multiple solutions for each CPU, without
identifying the real solution for the CPU under test. Moreover, [70] handles noise by fil-
tering addresses with intermediate access latency, assuming that the remaining ones are
reliable and can thus be used for the linear system formulation. Doing so, however, re-
quires knowledge of the CPU latencies and depends on the specific model. Finally, [173]
also investigates the hash function of a 4 cores and a 6 cores Sandy Bridge CPUs, but does
not provide a mean to represent them as formulas or as algorithms, using instead mapping
tables of considerable size.
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3.4 Approach and design

With the introduction of a hash-based LLC addressing, page coloring becomes less effec-
tive in Sandy Bridge multi-cores. Figure 3.4 shows the typical memory layout for a Sandy
Bridge processor, and in particular how the physical address is used to map LLC, L2 and
physical memory. In fig. 3.4, “slice set” indicates the bits used to select the set within the
LLC slice, while the rest of the bits are used to compute the hash that selects the target
slice. As visible in fig. 3.4, the overlap between slice bits and L2 set bits leaves only 2
bits available for page coloring, thus with a granularity of only 4 partitions. Using also the
L2 set bits causes partitioning of the L2 cache, which is an undesirable performance bot-
tleneck since the L2 cache is per-core. Figure 3.5 shows the LLC miss rate (blue curve),
the slowdown with respect to the full-LLC execution (red line) and the L2 cache miss rate
(green line) of 8 applications from the SPEC CPU2006 suite [61]. In this scenario, we
used the bits 12-16 for partitioning, and varied the number of colors from 2 (correspond-
ing to 0.625MB of LLC and half L2 cache) up to 32 colors (full LLC and full L2). As a
special case, bzip needs at least 1.88MB of LLC, since its memory footprint corresponds
to 6 colors, thus using the whole L2 cache. In fig. 3.5, 5 out of 8 applications are sensitive
to the LLC (we exclude bzip from this count for the aforementioned reason), and their
slowdown is visibly correlated to the amount of L2 cache. For this reason, we chose not to
partition the L2 cache, renouncing to the L2 set bits of fig. 3.4. Furthermore, since the two
remaining color bits are within the slice bits and the hash function spreads accesses among
all the cores, a single partition spans across 4 slices. This is undesirable, as it prevents a
fine-grained control over the LLC placement and can increase the traffic on the on-chip
ring bus.

To achieve a deeper control over the hash-based LLC, the knowledge of the hash func-
tion is fundamental. Section 3.4.1 describes the assumptions and the steps to reconstruct
this information using the performance monitoring features available in modern architec-
tures, focusing in particular on Intel’s Sandy Bridge architecture. With the knowledge of
the hash function, section 3.4.2 redefines the notion of page color to adapt it to a hash-
based scheme, generalizes it to the memory areas of various sizes that the Buddy allocator
handles and leverages this notion to achieve an efficient and scalable implementation of a
color-aware memory allocation algorithm.

3.4.1 Reconstruction of the hash function

Despite the hash function of Sandy Bridge processors is undocumented, information is
available from previous work [64, 70, 173], whose limits are shown in section 3.3.3. For
the hash reconstruction we used a similar approach to [64], although using a more struc-
tured flow. In our reconstruction, we initially target an Intel Xeon E5 1410 CPU with 4
cores and 6GB of Random Access Memory (RAM). From the available literature, we can
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Figure 3.5: SPEC cache profiles when using bits 12-16 for partitioning
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confidently make the following assumptions over the hash function of our CPU:

1. since the CPU is a 64 bits CPU with four cores, the hash function has the form h() :
{0, 1}64 −→ {0, 1}2, and is hence composed of two distinct scalar hash functions:
h(a) = h2(a)h1(a), where a is the input memory address; two independent functions
allows designers to combine known hashes to evenly address all four slices

2. the scalar hash functions are computed by XORing certain bits of the memory ad-
dress: this implementation has minimum area and power overhead with current lithog-
raphy and incurs minimal latency, and shows very good evenness in practice

3. since our machine has 6GB of RAM, only bits 17 to 32 are used to compute the hash
(as from fig. 3.4); the assumption of bit 17 as the lowest bit is in accordance with the
literature, while the choice of bits 32 as highest bit is due to the amount of RAM

Although these assumptions are tailored to our specific CPU model, they can easily be
generalized to any model having a number of cores that is a power of 2, as also previous
works suggest. Instead, CPUs with a number of cores not being a power of 2 likely have
non-linear hash functions, and are left as future work.

The reconstruction consists in finding which bits each function XORs. To this aim, [64]
finds patterns from conflicting addresses that suggest which hash uses each bit, and then
finds the hash functions by manually looking at these patterns. Here, we employ a more
general approach that consists in using an Integer Linear Programming (ILP) model.

Collection of conflicting memory addresses To reconstruct h2 and h1, we collect memory ad-
dresses that collide with a given address a. Using the miss counter, the test accesses a
(called probe address) first and then a sequence of addresses with distance stride = 217B:
this stride ensures that the set the address is mapped to is the same of a, while the slice
can vary because of the unknown hash. For example, if a is mapped to set 0 of slice 1, the
accessed memory positions are all mapped to set 0 of an unknown slice. After traversing
l memory location (with l increasing from 1), the test reads address a and checks whether
the miss count has increased. If it is, the miss has been caused by the last address read,
which is recorded as a collider: this location has evicted a, and has therefore the same
hash. Otherwise, the test increases l and restarts reading the sequence of memory loca-
tion, plus the new one at the end of the traversal. With this procedure, we collected many
couples < probe address, colliders > in the form < a, {a1, a2, a3, ..., an} >. Overall, we
collected more than 2M colliding addresses distributed among 2K probe addresses.

Hash reconstruction as a clustering problem Thanks to assumption 1, the problem of recon-
structing the hash can be reduced to a clustering problem. In the hash function h the bits
are used in three possible configurations:
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1. bits used only in h1

2. bits used only in h2

3. bits used in both h1 and in h2

For each configuration, we have to find a corresponding cluster of bits. To find bits in
the same cluster, we look for colliders of the same probe having Hamming distance of 2.
Since these colliders have the same hash, we infer that the two changing bits do not change
the overall hash. Therefore, given the behavior of the XOR operator, these two bits must
be used in the same way (only in h1, only in h2 or in both), and therefore belong to the
same cluster (1, 2 or 3, respectively). For each couple of colliders at Hamming distance 2,
we found the two different bits i and j, and counted how many times such couple appears
across the whole dataset. This count represents the similarity si,j of bits i and j: a high
value of si,j means that i and j are likely to belong to the same cluster, and so to be in the
same configuration. Using only similarity, however, would make any clustering algorithm
to trivially fit all bits in the same cluster, thus maximizing the total similarity.

Hence, we need another parameter to indicate when two bits should be in separate clus-
ters. Like for similarity, we can estimate the dissimilarity di,j of any two bits i and j to be in
the same cluster. We can consider two couples probe-colliders < a, {a1, a2, a3, ..., an} >
and < b, {b1, b2, b3, ..., bn} > whose probes a and b have Hamming distance 1, thus with
different hashes. If any two colliders ak and bl have Hamming distance 2, the two differing
bits i and j must be in different clusters. Otherwise, they would cause the XOR chain of
the hash to “flip” twice, resulting in the same hash (which is impossible since they have
the same hash of their probes). The number of occurrences of each couple i, j is its dis-
similarity di,j . Ideally, for any two bits i, j with i 6= j, it should hold that si,j > 0 if and
only if di,j = 0. Nonetheless, the collected measures are affected by noise, which we at-
tribute due to the hardware performance counters not being designed for reporting a single
miss. For example, if the cache miss happens right after reading the collider ak, the miss
count might be updated with some unpredictable delay and the increased count be visible
only after reading address ak+l, which is mistakenly reported as a polluter. However, in
our measurements we notice the similarity and dissimilarity values to be distributed in two
groups of values: one group with high count values (thousands) and one with much lower
counts. We assumed this last group to be due to measurement noise, and we applied a
threshold to filter out these values. This is a key difference with respect to [70], which
handles noise by filtering input data on the base of architecture-dependent latency values.

Using similarity and dissimilarity values, we can compute the best clustering by means
of an ILP model. Introducing the binary variable xi,j that represents whether bits i and j
are in the same cluster, we can write the objective function as in eq. (3.1), maximizing the
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intra-cluster similarity and the inter-cluster dissimilarity.

maximize
31∑
i=17

32∑
j=i+1

[xi,j × si,j + (1− xi,j)× di,j] (3.1)

For the clustering to be meaningful, we also have to force the transitivity property of
clustering: if bits i is in the same cluster of bit j and j is in the same cluster of k, then bits i
and k must also be in the same cluster. Therefore, we add the constraints in Equation (3.2).

∀i, j, k | 17 ≤ i < j < k ≤ 32 :

xi,k ≥ xi,j + xj,k − 1, xi,j ≥ xi,k + xj,k − 1, xj,k ≥ xi,j + xi,k − 1
(3.2)

Using an ILP solver, we found as optimal solution the following three clusters of bits

c1 = 18, 25, 27, 30, 32

c2 = 17, 20, 22, 24, 26, 28

c3 = 19, 21, 23, 29, 31

These clusters are the same as those in [64] although the multi-core is different.

Configuration choice via LLC access latencies The next step is determining to which config-
uration a cluster corresponds to: for example, c1 can correspond to h1 (configuration 1),
c2 to h2 and c3 be the configuration of common bits; or any other combination, each one
corresponding to a different hash function. There are, hence, six possible hashes. To find
the one of our multi-core, we leveraged the different access latencies from cores to slice:
if a core (numbered from 0 to 3) accesses the slice of its same number, the latency must
be minimal, because each core is directly connected to its slice and does not pass through
the ring bus. To obtain this measurement, we wrote a simple test that accesses sequential
memory regions and measures the access latency. This measurement is possible by us-
ing a specific performance counter available on our multi-core that measures the memory
latency in case of L2 miss. Throughout the measurements, the minimum value (that ap-
peared consistently) was 18 cycles, which we assumed as the one indicating access to the
local LLC slice. Finally, we repeated the test on each core i with all the possible hashes,
and stored, for each core, the hashes that return i when the access latency is 18 cycles. At
the end, only the hash function in fig. 3.6 makes correct predictions for all the cores, and
is assumed to be the real hash function.

Results with another multi-core To validate our reconstruction methodology, we applied it to
a machine with an 8-cores Intel Xeon E5 E5-2690 with 256GB of RAM. After collecting
roughly 2.5M memory addresses, from the clustering phase we obtained the following 7
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Figure 3.6: Hash function of Intel Xeon E5 1410

clusters:

c1 = {24, 17, 20, 28, 33}, c2 = {31, 34, 19, 37, 23}, c3 = {32, 25, 18}, c4 = {26, 35, 22},
c5 = {27, 36, 30}, c6 = {21}, c7 = {29}

which correspond to the 7 possible cases (shared among all hashes, shared between any
two or exclusive). With these 7 cases, we should theoretically test the predictions for all
cores of 7! = 5040 possible hashes, corresponding to the permutations of the clusters.
However, we may observe that the clusters have different sizes, and the bigger clusters are
unlikely to be shared by all of the hashes. Indeed, this would limit the “entropy” among
hashes, potentially causing access bottlenecks to few slices. On the opposite side, c1 and
c2 are likely to be shared and not reserved for single hashes, since this would cause the
one hash to have different entropy from the two using c1 and c2. Hence, these clusters are
likely to be shared by couples. These assumptions limit the number of candidate hashes
to 432 (3 candidates for the cluster shared by all cores, 4 candidates for the cluster shared
by couples and 3 candidates for the reserved clusters), which makes the approach feasible
in a reasonable time. For CPUs with a higher number of cores, this approach can be very
time consuming, as it scales with the number of permutations of the clusters. However,
future many-core CPUs will probably not rely on a ring-based architecture, and will have
a completely different structure: therefore, we consider scalability issues to remain limited
to a reasonable scale. 1 After testing, c5 emerges as the shared cluster, and the three hash
functions of the processor are

h1 = c5 ⊕ c1 ⊕ c3 ⊕ c7, h2 = c5 ⊕ c1 ⊕ c2 ⊕ c6, h3 = c5 ⊕ c2 ⊕ c3 ⊕ c4

where we use the⊕ operator between clusters to indicate the XOR of all bits of the clusters.

3.4.2 Definition of color and structure of the color-aware Buddy allocator

With the knowledge of the hash function, we can redefine the color of a page by padding
the two original color bits with the two hash bits, so that the color of a page with address

1It is possible to use branch and bound or backtracking strategies to find the final hash, constraining the research space over and
over with missing addresses whose mapping slice is known (e.g. by checking the latency). However, this optimization is out of the
scope of this publication, and is left for future work.
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Figure 3.7: Bits of buddy addresses forced to 0 and overlapping with color bits.

a = a63...a0 becomes c(a) = h2(a)h1(a)a16a15. Due to this redefinition, the number of
available LLC partitions is 16, a sufficient granularity. To make the lookup for a page of
a specific color constant, we split the list of pages used by the Buddy algorithm into 16
sub-lists, one per color: in this way, the algorithm can select a sub-list in constant time,
and remove the first page from the list (still in constant time). However, the notion of
color is defined only for pages, while the Buddy algorithm manages physical memory in
chunks, called buddies, of different sizes.

Indeed, each buddy is characterized by two parameters: the order, typically from 0 to
10, indicates its size, so that a buddy of order i is composed of 2i physically contiguous
pages; the address of the buddy is the address of the first memory page of the buddy, and
is always aligned to the size of the buddy (its lower i bits, from bit 12 to bit 12 + i − 1,
are 0). In case no pages of a desired color are present, the algorithm should split a buddy
of order 1 and check which page has the desired color. If, for example, the desired color
is c = 00112, the algorithm should split a 1-order buddy, whose bit 12 is forced to 0 due
to the memory alignment of buddies. Therefore, the color bits are not affected by the
alignment, and the algorithm should look for a 1-order buddy of color c. To make this
search constant, also the list of 1-order buddies should be split into 16 sub-lists, as for the
pages. As from fig. 3.7, this holds until order 3, as there is no overlap between color bits
and bits forced to 0 in the buddy address. In case the algorithm has to split a buddy of
order 4, bit 15 is forced to 0, and the color of the buddy to look for is 00102: then, the
algorithm should return the second half, whose bit 15 is 1. In this case, 8 configurations
of the color bits are possible, since bit 15 is 0; thus, the list of order 4 should be split into
8 sub-lists. For higher colors, the available configurations of color bits further decrease by
a factor of 2: 4 configurations for order 5, 2 for order 6 and 1 for orders 7 and higher.

To deal with the buddy lookup in a unique way, we generalize the notion of color to
buddies of any order through the definition of the mcolor. For our testbed multi-core, the
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Figure 3.8: Data structure of the color-aware Buddy algorithm

mcolor can be defined, in base 2, as

mcolor(a, i) =


h2(a)h1(a)a16a15 if 0 ≤ i ≤ 3
h2(a)h1(a)a16 if i = 4
h2(a)h1(a) if i = 5
(h2(a) XOR h1(a)) if i = 6
0 otherwise

This definition models our previous example and considers only the bits that can vary
at each order, so that it can be used to query in which sub-list to look in at each order.
It allows to compute the mcolor of each buddy, in order to insert it to the proper sub-list
when it is freed. In particular, order 6 represents a special case, as it defines the mcolor as
the negated equality between h1 and h2. This definition is due to the role of bit 17, which
is forced to 0 in buddies of order 6. Figure 3.6 shows that this bit is used in both hash
functions h1 and h2: therefore, if the hashes are equal, also the hashes of the two 5-order
sub-buddies will be equal, since bit 17 either flips both the hashes (if it is 1) or none (if
it is 0). Similarly, if the hashes are different, also the hashes of the sub-buddies will be
different. If, for example, the desired color is 10102, it is possible to select either a 6-order
buddy with hash 102 or one with hash 012 (both having different hashes): after the split,
the algorithm will choose in the former case the first sub-buddy (whose bit 17 is 0, hence
not flipping) and in the latter case the second sub-buddy, whose bit 17 being 1 will cause
both hashes to flip. Finally, for orders greater than 6, the buddy contains all the possible
colors, which map to 0.

Since the Buddy allocator receives requests of pages of specific colors, we need to
efficiently compute the mcolor from the color in order to perform a fast lookup. Similarly
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to the definition of the mcolor, we can map the requested color c = c3c2c1c0 to the mcolor
of a given order i by means of the following function:

mcolor_lookup(c, i) =


c3c2c1c0 if 0 ≤ i ≤ 3
c3c2c1 if i = 4
c3c2 if i = 5
(c3 XOR c2) if i = 6
0 otherwise

With these definitions, it is possible to design a color-aware allocation algorithm based on
the Buddy allocator that avoids lookup, maintaining efficiency and scalability.

Figure 3.8 sketches the structure of the modified Buddy algorithm. In place of a single
list of buddies for each order, we modified the data structure at the base of the Buddy
algorithm to have one list per mcolor for each order. Thus, at orders 0 to 3 there are 16
lists, order 4 has 8 lists, order 5 has 4, order 6 has 2 and orders from 7 on have a single
list. Using one list per mcolor allows the algorithm to select a buddy of the desired mcolor
in constant time. Consequently, also the procedures to select a colored page and to insert
one are modified. Algorithm 3.1 shows the procedure to select a page of a desired color:
if the page is present in the color list, it is returned immediately, otherwise a buddy of
higher order is split. The procedure SplitBuddy, indeed, computes the target mcolor (line
9), looks for the buddy of correct mcolor eventually splitting a higher order buddy via a
recursive call (lines 10-13), splits the buddy in two halves (line 15) and checks which half
has the target mcolor, adding the other free half to the list of free buddies (16-21).

Listing 3.1 Split and select procedures
1 globaldata: list_head buddies[MAX_ORDER][MAX_COLORS]
2

3 procedure SplitBuddy(order ord, mcolor mcol): buddy
4 buddy first, second, current
5 mcolor firstc, secondc, targetc
6

7 if ord == MAX_ORDER return nil
8

9 targetc = McolorLookup(mcol, ord)
10 if ListIsEmpty(buddies[ord][targetc])
11 current = SplitBuddy(ord+1, mcol)
12 if current == nil return nil
13 else current = RemoveHead(buddies[ord][targetc])
14

15 first,second = ComputeHalves(current)
16 first_color = Mcolor(first, ord)
17 second_color = Mcolor(second, ord)
18 if firstc != targetc
19 Swap(first, second)
20 Swap(first_color, second_color)
21 InsertHead(buddies[ord-1][second_color], second)
22 return first
23 end procedure
24

25 procedure SelectPage(color col): buddy
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26 if ListIsEmpty(buddies[0][col])
27 return SplitBuddy(1, mcol)
28 else
29 return RemoveHead(buddies[0][col])
30 end procedure

Similarly, the procedure to insert a freed buddy (algorithm 3.2) is based on the definition
of mcolor, which is computed according to the definition (line 7). Then the insertion
algorithm checks whether the “twin” buddy is also free: in case it is, it coalesces them in
a single buddy of higher order and recursively calls the insertion procedure (lines 11 - 13);
otherwise, it inserts the free buddy into the proper list (line 15).

Listing 3.2 Insertion procedure
1 globaldata: list_head buddies[MAX_ORDER][MAX_COLORS]
2

3 procedure InsertBuddy(buddy b, order ord)
4 buddy twin
5 mcolor mcol
6

7 mcol = Mcolor(b, ord)
8 twin = GetTwinBuddy(b, ord)
9 if ord < MAX_ORDER-1 AND BuddyIsFree(twin)

10 RemoveFromList(buddies[ord][Mcolor(twin, ord)])
11 b = CoalesceBuddy(b, twin, ord)
12 InsertBuddy(b, ord+1)
13 else
14 InsertHead(buddies[ord][mcol], b)
15 end procedure

Thanks to the definition of mcolor and, consequently, of the function mcolor_lookup, the
splitting and insertion procedures do not perform any lookup to find a requested color, but
execute in constant time independently from the number of buddies and, ultimately, from
the size of the physical memory, maintaining the scalability and efficiency of the original
algorithm.

The proposed allocator has been implemented in Linux 3.17, modifying the existing
implementation of the Buddy allocator, which requires also considering the hierarchical
memory distribution consisting of memory nodes and zones2, as well as other heuristics
to control memory fragmentation. For the purpose of a realistic implementation, we in-
tegrated our design into the existing codebase, modifying the routines that manage each
zone. On top of those routines, the algorithms that select the node and the zone work as
usual. To provide users with a suitable interface, a new cgroup [107] has been implemented
to expose the LLC partitioning capabilities. This interface allows users to manually create

2in Linux terminology, a node corresponds to a physical memory node, while a zone is a partition of a node from which kernel
subsystems allocate preferably: for example, the first B are the Direct Memory Accesses (DMA) zone, since old DMA controllers
handling physical address of 24 bits can manage buffers only in this zone.
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Table 3.1: Selected SPEC CPU2006 tests

Test Input

libquantum control
gcc g23

omnetpp omnetpp
leslie3d leslie3d

xalancbmk t5
sphinx ctlfile
astar rivers
bzip2 text

LLC partitions by specifying the colors of each partition and the applications that use the
partition.

3.5 Experimental results

This section discusses the experimental setup to evaluate the proposed solution in sec-
tion 3.5.1 and presents a first evaluation in section 3.5.2, showing how it is possible to
control the LLC usage of stand-alone single core applications by means of LLC partition-
ing. Discussing the behavior of the selected applications, the section also devises applica-
tion mixes to run in co-location, which are evaluated in section 3.5.2. Finally, section 3.5.4
evaluates the LLC partitioning of co-located multi-threaded benchmarks.

3.5.1 Methodology and testbed

To evaluate the effectiveness of the proposed solution, we selected 8 benchmarks from the
SPEC CPU2006 suite [61]. These benchmarks have been selected as they have diverse
profiles with respect to LLC usage and are mostly sensitive to the LLC size. They are also
include many representative of DA applications, like text processing, speech recognition,
and document parsing. Table 3.1 shows the selected applications along with their input
sets, which are those that cause the longest runs. In a first phase, each application is pro-
filed stand-alone, and the number of colors is varied from 1 to 16. Section 3.5.2 shows
the applications profiles, describing its behavior with LLC partitions of any size. For LLC
partitioning to be beneficial, these applications should ideally have the same profiles in
co-location with others. Indeed, section 3.5.3 defines several workloads, where a target
application is pinned to a core and isolated in LLC and 3 other applications are co-located
on the other cores and contend for the rest of the LLC, acting as polluters to the applica-
tion that benefits from isolation in LLC. Also with these setup, the target applications are
profiled with several partition sizes. The aim of a variable partition size is to allow the
final user to select the size that guarantees the requested QoS, which can be expressed, in
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the case of the SPEC benchmarks, as the maximum tolerated slowdown with respect to the
stand-alone execution.

The testbed machine has the following characteristics:

• Intel Xeon E5 1410, with 4 cores running at 2.80 GHz

• 6GB RAM DDR3 at 1333 MHz

• L1 instruction and data caches of 32KB each

• L2 unified cache of 256KB

• LLC of 10MB, composed of four slices

• Page size of 4KB

• 16 colors

To evaluate the benefits of LLC partitioning, we disabled advanced features that affect the
LLC performance such as TurboBoost, the prefetchers and the power saving features of
the kernel.

3.5.2 Application profiles

Figure 3.9 shows the profiles of the applications: the horizontal axis reports the size of the
LLC partition (each color corresponds to 0.625MB of LLC), while the vertical axis reports
the percentage of slowdown with respect to the execution with 10MB of LLC (red lines)
and the miss rate (blue lines). The plots for gcc and bzip2 start from 1.88MB of LLC,
due to their memory requirements: since partitioning the LLC limits the available physical
memory (due to assigning less colors), the input sets of these two applications do not fit in
less than 800MB, corresponding to a 1.88MB LLC partition.

Figure 3.9 also shows the behavior of applications with a “classical” page-coloring
scheme with dotted lines: in this scenario, the partitioning mechanism is unaware of hash-
ing (“w/o hash” in the legend) and uses bits 15-18 for partitioning, as in fig. 3.3 (where
we don’t use L2 partitioning bits). Figure 3.9 shows the effectiveness of our solution in
controlling the usage of the LLC, highlighting also which applications are more sensitive
to the amount of cache. The bars, which represent the standard error of the mean, in most
of the plots are barely visible, showing that applications with a regular memory access
pattern have a predictable behavior with varying LLC partition. In contrast, sphinx shows
considerable variability, which is due to its unfriendly access pattern (caused by a search
heuristic) and to the application itself repeatedly loading inputs (small speech samples).
The figure shows that hash-unaware partitioning always performs better than hash-aware
partitioning: in some cases, the hash-unaware miss rate at 1.25MB is comparable to the
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Figure 3.9: Applications profiles with different cache partitions, with slowdown (“sld”) and miss rate
(“missr”) hash-aware partitioning (“w/ hash”) and hash-unaware partitioning (“w/o hash”)
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Table 3.2: Classification of applications

Classification Applications

sensitive bzip2, omnetpp, xalancbmk, sphinx
insensitive libquantum, leslie, astar, gcc

Table 3.3: Test workloads

Workload Target Polluters

W1 bzip2 xalancbmk, leslie3d, gcc
W2 omnetpp sphinx, libquantum, astar
W3 xalancbmk omnetpp, libquantum, gcc
W4 sphinx bzip2, leslie3d, astar

hash-aware miss rate at 5MB or more. This phenomenon is due to the underlying func-
tioning of the LLC: although hash-unaware partitioning uses bits 15-18, only bits 15-16
are effective. Indeed, bits 17-18 are used in the hash, which varies depending also on the
higher bits that change from page to page. Therefore, when the allocator chooses a page
only on the base of bits 15-18, its hash is uniformly distributed on the whole range, re-
sulting in more LLC space allocated than the space requested. For example, setting only
color 0 keeps bits 15-16 to 0 while the slice varies, resulting in the allocation of a quarter
of each slice. Hence, hash-unaware curves in Figure 3.9 have larger plateaus than hash-
aware curves. Instead, based on hash-aware profiles, applications have been classified
according to their sensitivity to the partition size. Applications whose slowdown with the
least amount of cache is equal or greater than 30% are defined to be sensitive, while the
others are insensitive. Table 3.2 shows how the eight reference benchmarks are classified.

3.5.3 Co-location profiles

To evaluate isolation capabilities in co-location, we devised one workload for each sensi-
tive application, called target application, which runs co-located with three other applica-
tions chosen randomly, called polluters. To have a diverse mix, the first polluter is chosen
from the sensitive applications while the other two polluters are insensitive applications.
Table 3.3 shows the four workloads, with the target and the polluters. Throughout all the
tests we run the entire application with the biggest input, and we immediately restart the
polluters whenever they terminate.

Figure 3.10 presents the results from the workload runs: the continuous lines show
the slowdown (red) and the miss rate (blue) of the target application with hash-aware
partitioning, while the dotted lines show slowdown and miss rate with hash-unaware par-
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Figure 3.10: Profiles of the workloads in Table 3.3, with different cache partitions: continuous lines refer
to the target with hash-aware partitioning, dotted lines refer to the target with hash-unaware

partitioning and dashed lines refer to the polluters
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Table 3.4: Test workloads with limited I/O activity

Workload Target Polluters

X1 bzip2 xalancbmk, leslie3d, astar
X2 omnetpp sphinx, libquantum, xalancbmk
X3 xalancbmk omnetpp, libquantum, leslie3d
X4 sphinx bzip2, leslie3d, sphinx

titioning. Furthermore, the dashed black lines show the harmonic means of the polluters’
slowdowns with hash-aware partitioning. To avoid the polluters from swapping to disk,
the target applications receive at most 3.75GB of RAM, and the three polluters share the
remaining 2.25GB: because of the memory partition effect, 3.75GB of RAM corresponds
to the 6.25MB of LLC. The profiles show that hash-aware partitioning is more effective
in controlling the performance for a varying LLC partition, while with hash-unaware par-
titioning the targets suffer from higher contention in the LLC (as from the miss rate line).
Hash-unaware partitioning is more effective in the case with 1.88MB of LLC, since the
LLC space devoted to the target is higher than 1.88MB due to bits 17-18 not limiting the
LLC space. Instead, with higher amounts of LLC bits 15-16 can assume any value, so that
any set within any slice is possible, and this mechanism is ineffective.

Comparing fig. 3.10 to fig. 3.9, the targets show a less regular behavior with respect to
the stand-alone profiles. Instead, the polluters have, on average, less variations, since two
of them are cache-insensitive, but exercise a noticeable pressure on the LLC, affecting the
target performance. In particular, W1 has a small LLC footprint, and partitioning is able to
keep the application’s data in the LLC. W2, instead, has a larger memory footprint and a
cache-friendly access pattern, and benefits from having large LLC space. W3 and W4 have
irregularities that are due to the I/O activity of the polluters. Since the targets (xalancbmk
and sphinx) have higher duration than the polluters, which are immediately restarted, mul-
tiple I/O bursts occur during the execution of the target. During these bursts, the kernel
I/O subsystem employs page of any available color (kernel colors are always unrestricted
to prevent hotspots in the kernel execution), mapping buffers to the colors allocated to the
target. This phenomenon, exacerbated by the limited availability of memory, is well vis-
ible in W4, whose target (sphinx), has the longest execution time. Therefore, we devised
4 other workloads, reported in table 3.4, whose applications have similar execution times.
These workloads derive from those in table 3.3 by replacing the polluter having the least
duration with the highlighted one. For example, in the case of W4, all the polluters have
very different duration from the target sphinx, and the only possible replacement was an-
other instance of sphinx in lieu of astar. Figure 3.11 plots the resulting profiles similarly
to fig. 3.10 (continuous lines for the target with hash-aware partitioning, dotted lines for
the target with hash-unaware partitioning, dashed black lines for the polluters’ slowdown
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Figure 3.11: Profiles of the workloads in Table 3.4, with different cache partitions
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Table 3.5: PARSEC co-located workloads

Workload Target Polluter

P1 bodytrack swaptions
P2 ferret facesim
P3 freqmine raytrace
P4 vips blackscholes

with hash-aware partitioning), showing indeed more regular curves that are closer to the
stand-alone profiles.

3.5.4 Multi-threaded co-location profiles

To further evaluate the effectiveness of our hash-aware partitioning scheme, we perform a
similar evaluation with multi-threaded applications from the PARSEC 3.0 suite [20]. For
this evaluation, we co-locate two applications from the PARSEC suite: for each pair, the
first application is selected as target, while the second acts as polluter and contends the
LLC to the target. Both applications perform complete runs and have 4 threads each to
maximize contentiousness (with standard OS time-sharing of CPU cores), and are given
the PARSEC native input; to deal with different execution times, the polluter application
is immediately restarted as soon as it terminates. The application pairs, named from P1 to
P4, are shown in table 3.5. Figure 3.12 shows the profiles of the co-located pairs, where
the dotted lines represent the stand-alone execution (not present in fig. 3.9) and the con-
tinuous lines the execution in co-location. Here, while the miss rate values in co-location
are close to those stand-alone, the slowdown is significantly impacted by contention on
computational bandwidth and on memory access.

3.6 Conclusions and future work

This chapter proposed a technique for LLC partitioning based on page coloring that is able
to work also on modern hash-mapped caches and was recognized as state-of-the-art in the
scientific literature [146]. The proposed design aims at maintaining the scalability and
efficiency of the Linux Buddy allocator, while allowing the selection of a memory pages
of any given color. Our approach is based on the knowledge of the LLC hash function,
which is reconstructed by means of widely available performance counters. The technique
presented to reconstruct this information is based on assumptions that are reasonably valid
across multiple architectures. Therefore, the validation of our approach to more architec-
tures (lake the most recent Haswell and Skylake) is a possible future work, as well as the
evaluation of the allocator design on a broader range of configurations in order to test its
efficiency and scalability capabilities.
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Figure 3.12: Profiles of the workloads in Table 3.5, with different LLC partitions
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In the testbed environment, this technique was effective in controlling the usage of
the LLC of selected applications running, even if some limitations emerged. However,
while this technique is hindered by pollution due to OS buffers, orthogonal research [153]
provides solution that can be integrated to mitigate this issue.

As a completion of this work, a policy that drives our partitioning technique is the
most natural extension. This policy can, for example, also take in account the on-chip
traffic among slices and further enforce performance isolation, possibly using re-coloring
policies to adapt to a dynamic workload.

Finally, this solution needs a precise indication of the memory usage of the application.
Common applications and development environments do not take this aspect under thor-
ough control (e.g. many managed languages like Java automatically allocate large mem-
ory pools, which are increased and shrinked at runtime out of user’s control), and tend to
largely overbook capacity when pre-provisioning is necessary, as in PaaS or Infrastructure-
as-a-Service (IaaS) environments. These limitations can be overcome in FaaS environ-
ments, where the high-level of task description allows the underlying implementations to
be carefully designed to control and predict the memory capacity used, thus giving more
reliable insights to achieve effective isolation.
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CHAPTER4
Investigation of Machine Learning workloads

Among newer fields, ML is playing an increasingly important role in industry and in re-
search, which extensively focused on training accurate ML models. Once trained, these
models are deployed for inference, where they usually run in commodity servers equipped
with recent hardware, which may more and more often comprise accelerators based on
FPGAs in addition to multi-core CPUs. Like DA applications are often structured as
Embed, Transform, Load (ETL) pipelines, ML models are often composed by sequences
of transformations, also structured in pipelines or in a DAG. While this design makes it
easy to decompose and accelerate single model components at training time, predictions
requires low latency and high performance predictability whereby end-to-end runtime op-
timizations and acceleration is needed to meet such goals. These optimizations have to
take in account the characteristics of modern hardware to meet such requirements, while
at the same time using resources efficiently as needed for applications to scale and be
cost-effective. This chapter discusses the problem starting from a production-like model,
and showing how a redesign of the model pipelines for efficient execution over CPUs and
FPGAs can achieve performance improvements of several folds. Section 4.1 discusses the
problem in more detail and section 4.2 overviews the related works. Section 4.3 explains
the use case this work starts from and its characteristics, while section 4.4 shows the im-
plementation of this use case for both CPU and FPGA, evaluated in section 4.5. Finally,
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section 4.6 draws the final conclusions and highlights the key insights.

4.1 Introduction

While prior research focused on accelerating specific ML kernels [79, 94] or predictions
for complex neural networks models [110], to our knowledge no research exists on the
accelerating general ML prediction pipelines. Most of the input pre-processing, which is
often a computationally demanding phase, still occurs on standard CPUs, as it is consists
of very variegated steps. Therefore, to our knowledge there currently exists no end-to-
end acceleration approach for generic pipelines, neither for CPU nor for heterogeneous
devices like FPGAs, despite some of these initial steps (for example string tokenization
and hashing) have characteristics that make them amenable for acceleration. In particular,
the issues already known from DA applications and highlighted in section 2.1.2, such as
data materialization in intermediate steps, operations fusion for better optimizations, etc.,
are still unsolved in most branches of ML.

Training and prediction pipelines generally have different system characteristics, where
the latter are surfaced for direct users access and therefore require low latency, high
throughput and high predictability. Accelerating predictions often requires redesigning
these pipelines, either to allow CPU compilers better optimize the code or, with special-
ized hardware such as FPGA, to efficiently utilize the accelerator’s capabilities. This work
sheds some light on the problem, showing how some common operations of prediction
pipelines can benefit from redesign for both CPU optimizations and hardware accelera-
tion. To compose the ML pipelines, we will use an IMLT used in Microsoft for research
purposes, which is mainly written in C#. Although unreleased, this toolkit has tested,
production-quality performance and has an API that is similar in spirit to that of the main
ML frameworks.

Like increasingly many of the off-the-shelf ML libraries, IMLT expresses ML pipelines
as a DAG of transformations, which are mostly implemented in C# inside the toolkit itself.
Figure 4.1 shows an example of a model pipeline used for sentiment analysis (a more de-
tailed description of each single transformation composing the pipeline will be introduced
in section 4.3). IMLT employs a pull-based execution model that lazily materializes in-
put vectors, and tries to reuse existing data buffers for intermediate transformations. This
largely decreases the memory footprint and the pressure on garbage collection, and avoids
relying on external dependencies (like NumPY [120] for Scikit) for efficient memory man-
agement. Conversely, this design forces memory allocation along the data path, therefore
making model scoring time hard to predict. This in turn results in difficulties in providing
meaningful Service Level Agreements (SLAs) by MLaaS providers.

Starting from models authored using IMLT, we decouple the high-level user-facing API
of the tool from the physical (execution) plane, with the goal of keeping data materializa-
tion minimal. This decoupling allows us to:

50



Input OutputTokenizer

Word 
Ngram

Char
Ngram

Concat Linear
Regression

Figure 4.1: A model pipeline for sentiment analysis.

1. optimize how transformations are executed, for instance by compiling several trans-
formations together into one efficient execution unit;

2. distribute different parts of the computation to heterogeneous devices such as CPU
and FPGA (and, in the future, possibly to different machines) while optimizing the
execution for each target device.

Using a production-like model we show that, compared to IMLT, our design improves
the latency by several orders of magnitude on CPU and that generic ML prediction pipelines
can also benefit from acceleration via FPGA. Interestingly, we find that a tuned CPU im-
plementation outperformed the FPGA implementation; to fully exploit hardware accelera-
tion, a redesign of prediction pipelines is not enough inasmuch as more hardware-friendly
operations are not used at training, with proper redesign at the system level to adapt to
FPGA characteristics.

4.2 Related Work

Two systems for managing ML prediction-serving have been introduced recently in the
academia and the industry: Clipper [40] and TF Serving [160]. Clipper targets high per-
formance online ML prediction while making model deployment easy. Clipper does not
consider models as composed by complex DAG of transformations, but instead runs each
pipeline as a single functional call in a separate container process and routes prediction
requests via Remote Procedure Call (RPC) to the appropriate container. Users can deploy
models learned by different frameworks, but this flexibility comes at the cost of losing the
control over the execution inside the pipeline which instead relies on the target framework
to run the model. Clipper’s optimizations thereby focus on models as black boxes: Clipper
caches results for popular queries and controls the batch size adaptively to achieve high
throughput while achieving low latency SLA. Hence, those optimizations lose the chance
to utilize hardware acceleration.

TensorFlow (TF) Serving is a library for serving ML models in TF framework. TF
Serving supports models that are trained by TF and users can also define custom models
or operations as Servable, which is the unit of scheduling and lifecycle management. TF
Serving batches multiple prediction requests as Clipper, but the execution of pipelines is
more flexible, allowing users to define custom Servable for the part of pipelines. While
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Figure 4.2: Execution breakdown of the example model

Servables enable the use of hardware accelerators and make execution faster, there is no
framework-level support for fine-grained control over the pipeline execution, as we aim
instead.

4.3 Case Study for Accelerating Prediction Pipelines

To make our claims more concrete, throughout this work we will use a Sentiment Analysis
(SA) prediction model as a motivating example, which starts from raw sentences and pre-
dicts a classification label for each sentence. The model approximately works as follow:
the input sentences (strings) are tokenized into words and chars after an initial normal-
ization step. Then two feature vectors are generated as bag-of-words composed by the
n-ngrams extracted from word and chars, respectively. The two vectors are then normal-
ized and concatenated into a unique feature vector which is then run through a simple
linear regression model. Figure 4.1 contains the DAG of transformations composing the
sentiment analysis example. It contains several common transformations, namely:

1. text normalization, like de-capitalization

2. tokenization: the text is split in words and in characters

3. n-gram extraction by grouping words, or characters, together

4. bag-of-words, to featurize the ngrams

5. concatenation of the features from words and the characters

6. normalization

7. linear regression prediction using the features from the words and the characters

Figure 4.2 shows the execution breakdown of this model when scored in IMLT, where
the prediction (the LinReg transformation) takes a very small amount of time compared
to other components (0.3% of the execution time). Instead, the n-gram transformations
take up almost 60% of the execution time, while another 33% is spent in concatenating
the feature vectors, which essentially consists in allocating memory and copying data.
In summary, most of the execution time is lost in preparing the data for scoring, not in
computing the prediction according to the regression ML operator ‘Ã t the heart” of this
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model. In our workloads, we observed that this situation is common to many models,
because many tasks employ simple prediction models like linear regression functions, both
because of their prediction latency and because of their simplicity and understandability.
In these scenarios, we can conclude that the acceleration of an ML pipeline cannot focus
solely on specific transformations, as in the case of neural networks where the bulk of
computation is spent in scoring, but needs a more systematic approach that considers the
model as a whole.

4.4 Considerations and System Implementation

Following the observations of section 4.3, we argue that acceleration of generic ML pre-
diction pipelines is possible if we optimize models end-to-end instead of single transfor-
mations: while data scientist should focus on high-level “logical” transformations, the
system for the operationalization of the model for scoring (ideally, the runtime within the
FaaS infrastructure) should focus on execution units making optimal decisions on how
data is processed through model pipelines. We call such execution units stages, borrowing
this term from the database and system communities. In our context, a stage is a sequence
of one or more transformations that are executed together on a device (either a CPU or an
FPGA, in this work), and represents the “atomic” unit of the computation. No data move-
ment from a computing device to another occurs within a stage, while communication
may occur between two stages running on different devices, like the PCIe communication
when offloading to FPGA. Within a stage, multiple optimizations are possible, from high-
level optimizations (like fusing operators together through data pipelining) to low-level,
hardware-related ones (like vectorization for CPUs or task pipelining for FPGAs). The
notion of stage is particularly important with regards to FPGA acceleration because it al-
lows accounting for the cost of communication: grouping multiple transformations into a
single stage allows trading off the data movement overhead, and makes it possible to de-
vise models of the communication and the execution to be used for scheduling. Moreover,
as we observe that certain sequences of transformations appear very frequently,they can
be accelerated together and offloaded to dedicated hardware.

In the example of fig. 4.2 we distinguish three stages:

• In the first stage the input is tokenized and the number of occurrence of the char n-
grams found in the sentence is returned as a sparse vector together with its cartesian
norm.

• In the second stage, another feature vector is computed out of the bag-of-words rep-
resentation of the input tokens (coming from the previous stage).

• In the third stage, weighting and normalization occur, and finally the exponentiation
is computed; within this stage, it is possible to vectorize the weighting operation and
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Figure 4.3: Stages for the sentiment analysis example pipeline

to change the representation of the vector (from sparse to dense) if this makes the
computation more efficient

We optimized these three stages both for CPU execution and for FPGA execution, and give
more details on the specific implementations in section 4.4.1 and section 4.4.2, respec-
tively. The model DAG with related stage subdivision is pictorially described in fig. 4.3.

4.4.1 CPU Implementation

As a framework written in C# language, IMLT heavily depends on reflection, virtual
buffers, and virtual function calls. Users do not need to worry about data types, memory
layout, and how the virtual functions are implemented. In this way, users can build their
custom pipelines easily, however, we observed that IMLT has to sacrifice performance at
scoring time in order to provide such level of generality.

We ran an experiment where the model described in the previous section is first loaded
in memory and then scored multiple times. Even when using the same input record, we
noticed that large variability in the execution time exists: the first scoring is regularly
around 540 times slower than the remaining executions. We refer to each case as cold and
hot, respectively. Although the Just In Time (JIT) compiler makes subsequent requests run
faster, one cannot in general guarantee the target SLA, especially with the multiple sources
of unpredictability that lie in the hardware/software stack. Nonetheless, our optimization
goal is then to make the prediction time faster and more predictable, to explore possible
solutions for the more general use-cases.

In both the hot and the cold scenario, we identified that major bottlenecks were created
by

1. the JIT compiler;

2. the module inferring data type with reflection;

3. virtual function calls;

4. allocation of memory buffers on demand.
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To address the first two problems, in the CPU implementation we removed those overheads
by rewriting the pipeline code: since the model pipelines are pre-trained, all the type in-
formation and data path information can be resolved at compile time. This removes the
overhead of dynamic type binding and code compilation. Moreover, we pre-compiled the
pipeline into bytecode, which reduces the cost of reflection and virtual function call. Fur-
thermore, we created a native image of the pre-compiled code and its dependencies. In this
way we avoided all unpredictable performance due to just-in-time compilation. Finally,
we can benefit from information extracted at training time to improve memory manage-
ment at scoring time: since the data types in the pipelines are fixed after training, we can
estimate the amount of required memory before execution, and create pools of memory
buffer which are then accessed when stages are executed. This information not only help
the runtime optimize memory allocations, but also helps it compute a more precise esti-
mation of the needed memory, which is a fundamental information for environment that
leverage co-location to improve TCO and can also be used to improve isolation via the
mechanisms discussed in chapter 3.

4.4.2 FPGA Implementation

In the FPGA implementation, the first stage can greatly benefit from the hardware char-
acteristics. Indeed, the whole stage can be easily parallelized and its sub-phases can be
pipelined with each other. In particular, the text normalization can be done immediately
before the tokenization in a pipelined fashion, and the tokenization of a long string can
be split into multiple parallel tokenizations by allowing some overlap of input characters
between consecutive tokenizer units. A tokenizer unit should recognize common punctua-
tion marks, the beginning and end of words, the occurrence of English contracted negations
(like “don’t”) and emit a corresponding Murmur hash [114] for each token. To achieve an
efficient implementation, we devised a Finite State Machine (FSM) recognizer automaton
that is able to take in input one character per clock cycle, recognize the tokens observed
and record the corresponding hashes. The design of the tokenizer allows trading between
performance and area: if area is limited, a tokenizer can run over more characters and
record more tokens at the expense of a higher latency; otherwise, it is possible to limit this
latency by using many tokenizers in parallel, with at most one tokenizer per character that
can emit at most one hash. To perform efficient tokenization on FPGA, we limited the
maximum number of characters per word to a fixed threshold, chosen here as 28 charac-
ters. This value allows to recognize all the common words of the English language (and
of other languages)

Once the hashes are available (output of stage 1), stage 2 associates each word to a
unique number for n-gram extraction, with a dictionary lookup that goes to the off-chip
memory. Although this operation is expensive, we argue it is no more expensive than on
CPU because of the similar hardware for off-chip RAM memory access, and because of the
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low locality of this transformation that makes caches ineffective. To make this operation as
efficient as possible, we increased the number of buckets of the model dictionary in order
to limit collisions (which are handled by serializing the data in the buffer) to a pre-defined
number, so that the FPGA logic can fetch a fixed amount of data in a burst fashion for every
lookup. In pipelines with dictionary lookup, we insert each n-gram identifier in an array,
with a parallel lookup to avoid double insertions and increment the counts. This whole
phase could be simplified and sped up by using the hash itself as the n-gram identifier
and allowing collisions, but this requires retraining the model; as from the assumptions
in section 4.3, we assume the model is fixed and we have no control on it, and leave this
work for the future.

Regarding the FPGA implementation of the third stage, for the weights lookup we used
the n-gram identifier to access the value in the off-chip memory, again at the cost of an
off-chip memory access. This is due to the size of the weights vector, which cannot fit in
the on-chip memory. As before, the sparsity of this computation requires memory accesses
on both the FPGA and the CPU.

4.5 Experimental Evaluation

In this section we experimentally evaluate the performance gain of our implementations
described in section 4.4 with respect to the baseline IMLT. For the CPU implementa-
tion, the experiments were run over a Windows 10 Pro machine with an Intel Xeon CPU
E5-2620 with 2 processors at 2.10GHz, and 32 GB of RAM. Regarding the FPGA im-
plementation, we used the SDAccel prototyping platform by Xilinx, which abstracts the
communication, and we used Xilinx’ High Level Synthesis (HLS) tools to generate the
accelerator logic. As a device, we used an ADM-PCIE-KU3 board by Alpha Data, with
2 DDR3 memory channels and PCIe x8 connection to the CPU. While the area did not
cause major limitations to the design, the number of RAM channels limited the number
of parallel dictionary and weights lookups, despite still providing comparable bandwidth
compared to a CPU for reading the input sentence and for the dictionary bursts. fig. 4.4
shows the results of our experiments over the sentiment analysis model of section 4.3 in
terms of performance, reporting the scoring latency of IMLT, of the CPU implementation
and of the FPGA implementation. We report the speedup over the prediction latency on
both the hot and cold scenarios for the CPU implementation. For the cold scenario we
scored one single record, while for the hot scenario we first use one record to worm up
the model and then we average the scoring latency of a batch of 9 records. We repeated
the experiment 5 times and we report the average speedup. All the results have been
normalized with respect to the IMLT prediction latency in the hot scenario, which is our
baseline. Figure 4.4 shows that our CPU implementation achieves 3.3 times improvement
over IMLT in the hot scenario, while in the cold scenario it is still 20 times slower, but with
an improvement of 87.5x over IMLT cold. These improvements are due to the up-front
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Figure 4.4: Performance improvement achieved by CPU and FPGA implementations

memory allocation and to the more optimized code, which avoids memory copy and data
conversions among transformations within the same stage. Instead, the FPGA implemen-
tation (which does not suffer from warm-up delays and is thus shown in a single scenario)
achieves a 1.48x speedup over IMLT hot but a 2.3x slowdown over the CPU implementa-
tion in the hot case. This result is due to the high penalty of off-chip RAM access, which
is higher due the lower operating frequency and to design delays between memory bursts
(due to HLS scheduling).

4.6 Conclusions and directions to harvest untapped performance

By exploring guidelines for the acceleration of generic ML prediction pipelines, this chap-
ter showed that it is fundamental to avoid the large runtime overheads associated to man-
aged environments and to high-level, single-operation models descriptions to achieve orders-
of-magnitude speedups and “untapped” performance levels. To better devise hardware-
specific optimizations, we introduced the notion of stages, observing that ML transforma-
tions usually occur in common sequences that can be organized into atomic execution and
scheduling units. Based on this, we implemented a case study in CPU and FPGA, showing
noticeable speedups over the initial baseline, thus paves the way to more research in opti-
mizing ML prediction pipelines. This work was published in an international conference
[145], and serves as the basis for the design principles adopted in chapter 5.

The identification and generation of stages is a very challenging work direction. In
the FPGA case, operations fusions and optimizations techniques can be explored and ap-
plied, possibly with the aid of HLS tools. While a careful design space exploration is
fundamental to identify appropriate performance/area trade-offs, higher gains come from
appropriately setting the transformations at training time, for example by avoiding the
dictionary lookup and allowing the hash conflicts; similarly, caching the model weights
on the on-chip memory can enable low-latency, parallel lookups. Modeling these charac-
teristics and properly sizing those stages in order to match a common throughput allows
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maximizing the final performance.
For CPU implementations, a given pipeline can be generated automatically starting

from the code of its transformations and from training time statistics, to accurately predict
the resources usage. In our vision, a cost model is essential to perform the stage identi-
fication and thus to drive the optimization process. Despite compiler optimizations are a
widely studied and mature field, they are usually limited by the complexity of the code
base at hand: instead, the stage division limits the scope of the compiler, which can be
more effective. Furthermore, once code-generated, stages can be pre-compiled and linked
into a native binary, avoiding the cost of JIT compilation.

All these capabilities, once properly generalized, will enable a runtime living in a FaaS
(or more specifically MLaaS) environment to effectively optimize ML and DA applications
written as pipelines, provision resources appropriately and co-locate them while enforcing
isolation in order to guarantee QoS
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CHAPTER5
Improving Machine Learning applications in the

Cloud

While chapter 4 discusses in-depth an example ML application accelerated for CPU and
FPGA, this section broadens the spectrum of target applications to generic ML pipelines
in a cloud settings, supporting a large class of optimizations that target commodity servers
with modern CPUs. ML models design, based on pipelines of transformations, allows to
efficiently execute single model components at training-time; however, prediction-serving
(introduced in section 2.2) has different requirements such as low latency, high through-
put and graceful performance degradation under heavy load. Current prediction-serving
systems consider models as black boxes, whereby prediction-time-specific optimizations
are ignored in favor of ease of deployment, as chapter 4 suggested. This section presents
PRETZEL, a prediction serving system introducing a novel white box architecture enabling
both end-to-end and multi-model optimizations. Using production-like model pipelines,
our experiments show that PRETZEL is able to introduce performance improvements over
different dimensions; compared to state-of-the-art approaches PRETZEL is on average able
to reduce 99th percentile latency by 5.5× while reducing memory footprint by 25×, and
increasing throughput by 4.7×.

The remainder of the chapter is organized as follows: section 5.1 identifies a set of
limitations affecting current black box model serving approaches; the outcome of the dis-
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cussed limitations is a set of design principles for white box model serving, described
in 5.2. Section 5.3 introduces the PRETZEL system as an implementation of the above
principles, validated in section 5.4 with a set of experiments, while section 5.5 lists the
limitations of current PRETZEL implementation and future work. To better compare the
advancements of PRETZEL in light of its results, section 5.6 overviews the related work,
while section 5.7 finally concludes the chapter.

5.1 Model Serving: State-of-the-Art and Limitations

Nowadays “intelligent” services depend more and more on ML scoring capabilities and
are currently experiencing a growing demand [39], fostering the research in prediction-
serving systems for cloud settings [clipper2, 159, 122, 40], where trained models from
data science experts are operationalized.

Data scientists prefer to use high-level declarative tools such as ML.Net, Keras [81]
or Scikit-learn for better productivity and easy operationalization. These tools provide
dozens of pre-defined operators and ML algorithms, which data scientists compose into
sequences of operators (called pipelines) using high-level APIs (e.g., in Python). ML.Net
[112], the ML toolkit used in this chapter, is a C# library that runs on a managed run-
time with garbage collection and JIT compilation, and derives from the IMLT used in the
previous chapter. Unmanaged C/C++ code can also be employed to speed up processing
when possible. Internally, ML.Net operators consume data vectors as input and produce
one (or more) vectors as output 1 . Vectors are immutable whereby multiple downstream
operators can safely consume the same input without triggering any re-execution. Upon
pipeline initialization, operators composing the model DAG are analyzed and arranged to
form a chain of function calls which, at execution time, are JIT-compiled to form a unique
function executing the whole DAG on a single call. Although ML.Net supports NN mod-
els, in this work we only focus on pipelines composed by featurizers and classical ML
models (e.g., trees, logistic regression, etc.).

Pipelines are first trained using large datasets to estimate models’ parameters. ML.Net
models are exported as compressed files containing several directories, one per pipeline
operator, where each directory stores operator parameters in either binary or plain text
files (the latter to ease human inspection). ML.Net, as most systems, aims to minimize
the overhead of deploying trained pipelines in production by serving them into black box
containers, where the same code is used for both training and inference. Figure 5.1 depicts
a set of black box models where the invocation of the function chain (e.g., predict())
on a pipeline returns the result of the prediction: throughout this execution chain, inputs
are pulled through each operator to produce intermediate results that are input to the fol-
lowing operators, similarly to the well-known Volcano-style iterator model of databases

1Note that this is a simplification. ML.Net in fact support several data types. We refer readers to [4] for more details.
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Figure 5.1: A representation of how existing systems handle prediction requests. Each pipeline is surfaced
externally as a black box function. When a prediction request is issued (predict()), a thread is

dispatched to execute the chain as a single function call.

[56]. To optimize the performance, ML.Net (and systems such as Clipper [40] among
others) applies techniques such as handling multiple requests in batches and caching the
results of the inference if some predictions are frequently issued for the same pipeline.
However, these techniques assume no knowledge and no control over the pipeline, and
are unaware of its internal structure. Despite being regarded as a good practice [189], the
black box, container-based design hides the structure of each served model and prevents
the system from controlling and optimizing the pipeline execution and from knowing its
resource consumption in a fine-grained manner. Therefore, under this approach, there is
no principled way neither for sharing optimizations between pipelines, nor to improve the
end-to-end execution of individual pipelines. More concretely, we observed the following
limitations in current state-of-the-art prediction serving systems.
Memory Waste: Containerization of pipelines disallows any sharing of resources and
runtimes 2 between pipelines, therefore only a few (tens of) models can be deployed per
machine. Conversely, ML frameworks such as ML.Net have a known set of operators to
start with, and featurizers or models trained over similar datasets have a high likelihood of
sharing parameters. For example, transfer learning, A/B testing, and personalized models
are common in practice; additionally, tools like ML.Net suggest default training config-
urations to users given a task and a dataset, which leads to many pipelines with similar
structure and common objects and parameters. To better illustrate this scenario, we pick a
Sentiment Analysis (SA) task with 250 different versions of the pipeline of fig. 2.1 trained
by data scientists at Microsoft.

Figure 5.2 shows how many different (parameterized) operators are used, and how of-
ten they are used within the 250 pipelines. While some operators like linear regression
(whose weights fit in ~15MB) are unique to each pipeline, and thus not shown in fig. 5.2,
many other operators can be shared among pipelines, therefore allowing more aggres-
sive packing of models: Tokenize and Concat are used with the same parameters in all

2One instance of model pipeline in production easily occupies 100s of MB of main memory.
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Figure 5.3: Cumulative Distribution Function (CDF) of latency of prediction requests of 250 DAGs. We
denote the first prediction as cold; the hot line is reported as average over 100 predictions after a
warm-up period of 10 predictions. We present the 99th percentile and worst case latency values.

pipelines; Ngram operators have only a handful of versions, where most pipelines use
the same version of the operators. This suggests that the resource utilization of current
black box approaches can be largely improved. Prediction Initialization: ML.Net em-
ploys a pull-based execution model that lazily materializes input feature vectors, and tries
to reuse existing vectors between intermediate transformations. This largely decreases the
memory footprint and the pressure on garbage collection at training time. Conversely,
this design forces memory allocation along the data path, thus making latency of predic-
tions sub-optimal and hard to predict. Furthermore, since DAGs are typically authored
in a high-level language with generics, at prediction time ML.Net deploys pipelines as
in the training phase, which requires initialization of function chain call, reflection for
type inference and JIT compilation. While this composability conveniently hides com-
plexities and allows changing implementations during training, it is of little use during
inference, when a model has a defined structure and its operators are fixed. In general, the
above problems result in difficulties in providing strong tail latency guarantees by ML-
as-a-service providers. Figure 5.3 describes this situation, where the performance of hot
predictions over the 250 sentiment analysis pipelines with memory already allocated and
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Figure 5.4: Latency breakdown of a SA pipeline: each frame represents the relative wall clock time spent
on an operator.

JIT-compiled code is more than two orders of magnitude faster than the worst cold case
version for the same pipelines.

To drill down more into the problem, we found that 57.4% of the total execution time
for a single cold prediction is spent in pipeline analysis and initialization of the function
chain, 36.5% in JIT compilation and the remaining is actual computation time.

Infrequent Accesses: In order to meet milliseconds-level latencies [182], model pipelines
have to reside in main memory (possibly already warmed-up), since they can have MBs
to GBs (compressed) size on disk, with loading and initialization times easily exceeding
several seconds. A common practice in production settings is to unload a pipeline if not ac-
cessed after a certain period of time (e.g., a few hours). Once evicted, successive accesses
will incur a model loading penalty and warming-up, therefore violating SLA. Operator-
at-a-time Model: As previously described, predictions over ML.Net pipelines are com-
puted by pulling records through a sequence of operators, each of them operating over the
input vector(s) and producing one or more new vectors. While (as is common practice for
in-memory data-intensive systems [117, 168, 12]) some interpretation overheads are elim-
inated via JIT compilation, operators in ML.Net (and in other tools) are “logical” entities
(e.g., linear regression, tokenizer, one-hot encoder, etc.) with diverse performance char-
acteristics. Figure 5.4 shows the latency breakdown of one execution of the SA pipeline
of fig. 2.1, where the only ML operator (linear regression) takes two orders of magnitude
less time with respect to the slowest operator (WordNgram). It is common practice for
in-memory data-intensive systems to pipeline operators in order to minimize memory ac-
cesses for memory-intensive workloads, and to vectorize compute intensive operators in
order to minimize the number of instructions per data item [42, 190]. ML.Net operator-at-
a-time model [190] (as other libraries missing an optimization layer, such as Scikit-learn)
is therefore sub-optimal in that computation is organized around logical operators, ignor-
ing how those operators behave together: in the example of the sentiment analysis pipeline
at hand, linear regression is commutative and associative (e.g., dot product between vec-
tors) and can be pipelined with Char and WordNgram, eliminating the need for the Concat
operation and the related buffers for intermediate results. As we will see in the following
sections, PRETZEL’s optimizer is able to detect this situation and generate an execution
plan that is several times faster than the ML.Net version of the pipeline.
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Coarse Grained Scheduling: Scheduling CPU resources carefully is essential to serve
highly concurrent requests and run machines to maximum utilization. Under the black
box approach:

1. a thread pool is used to serve multiple concurrent requests to the same model pipeline;

2. for each request, one thread handles the execution of a full pipeline sequentially 3 ,
where one operator is active at each point in time;

3. shared operators/parameters are instantiated and evaluated multiple times (one per
container) independently;

4. thread allocation is managed by the OS;

5. (5) load balancing is achieved “externally” by replicating containers when perfor-
mance degradation is observed.

We found this design sub-optimal, especially in heavily skewed scenarios where a small
amount of popular models are scored more frequently then others: indeed, in this setting
the popular models will be replicated (linearly increasing the resources used) whereas
containers of less popular pipelines will run underutilized, therefore decreasing the total
resource utilization. The above problem is currently out-of-scope for black box, container-
based prediction serving systems because they lack visibility into pipelines execution, and
they do not allow models to properly share computational resources. These considerations
lead us to the conclusion that in order to achieve better throughput and resources utiliza-
tion, better scheduling decisions have to be implemented at the (shared) operator level
instead of at the DAG level.

After highlighting the major inefficiencies of current black box prediction serving sys-
tems, we discuss a set of design principles for white box prediction serving.

5.2 White Box Prediction Serving: Design Principles

The limitations discussed in section 2.2 and section 5.1 of existing black box systems in-
spired us for developing PRETZEL, a system for serving predictions over trained pipelines
(originally authored in ML.Net) that borrows ideas from the Database and System re-
search. Recalling the observations in section 2.2, trained pipelines often share operators
and parameters, such as weights and dictionaries used within operators, especially during
featurization [185]. To optimize these workloads, we propose a white box approach for
model serving whereby end-to-end and multi-pipeline optimization techniques are applied
to reduce resource utilization while improving performance. Specifically, in PRETZEL

3Certain pipelines allow multi-threaded execution, but here we evaluate only single-threaded ones to estimate the per-thread effi-
ciency.
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deployment and serving of model pipelines follow a two-phase process. During an off-
line phase, statistics from training and state-of-the-art techniques from in-memory data-
intensive systems [42, 190, 22, 80, 117] are used in concert to optimize and compile
operators into model plans. Model plans are white box representations of input pipelines
such that PRETZEL is able to store and re-use parameters and computation among simi-
lar plans. In the on-line phase, memory (data vectors) and CPU (thread-based execution
units) resources are pooled among plans. When an inference request for a plan is received,
an event-based scheduling [174] is used to bind computation to execution units.

In particular, a white box approach allows to optimize the execution of predictions both
horizontally end-to-end and vertically among multiple model pipelines.
White Box Prediction Serving: Model containerization disallows any sharing of opti-
mizations, resources, and costs between pipelines. By choosing a white box architecture,
pipelines can co-exist on the same runtime; unpopular pipelines can be maintained up and
warm, while popular pipelines pay the bills. Thorough scheduling of pipelines’ compo-
nents can be managed within the runtime so that optimal allocation decisions can be made
for running machines to high utilization. Nevertheless, if a pipeline requires exclusive ac-
cess to computational or memory resources, a proper reservation-based allocation strategy
can be enforced by the scheduler so that container-based execution can be emulated.
End-to-end Optimizations: The operationalization of models for prediction should focus
on computation units making optimal decisions on how data are processed and results are
computed, to keep low latency and gracefully degrade with load increase. Such computa-
tion units should:

1. avoid memory allocation on the data path;

2. avoid creating separate routines per operator when possible, which are sensitive to
branch mis-prediction and poor data locality [117];

3. avoid reflection and JIT compilation at prediction time.

Optimal computation units can be compiled Ahead-Of-Time (AOT) since pipeline and
operator characteristics are known upfront, and often statistics from training are available.
The only decision to make at runtime is where to allocate computation units based on
available resources and constraints.
Multi-model Optimizations: To take full advantage of the fact that pipelines often use
similar operators and parameters (fig. 5.2), shareable components have to be uniquely
stored in memory and reused as much as possible to achieve optimal memory usage. Sim-
ilarly, execution units should be shared at runtime and resources properly pooled and man-
aged, so that multiple prediction requests can be evaluated concurrently. Partial results, for
example outputs of featurization steps, can be saved and re-used among multiple similar
pipelines.
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5.3 The Pretzel System Design

Following the above guidelines, we implemented PRETZEL, a novel white box system for
cloud-based inference of model pipelines. PRETZEL views models as database queries
and employs database techniques to optimize DAGs and improve end-to-end performance
(section 5.3.1). The problem of optimizing co-located pipelines is casted as a multi-query
optimization and techniques such as view materialization (section 5.3.3) are employed
to speed up pipeline execution. Memory and CPU resources are shared in the form of
vector and thread pools, such that overheads for instantiating memory and threads are paid
upfront at initialization time.

PRETZEL is organized in several components. A data-flow-style language integrated
API called Flour (section 5.3.1) with related compiler and optimizer called Oven (sec-
tion 5.3.1) are used in concert to convert ML.Net pipelines into model plans. An Object
Store (section 5.3.1) saves and shares parameters among plans. A Runtime (section 5.3.2)
manages compiled plans and their execution, while a Scheduler (section 5.3.2) manages
the dynamic decisions on how to schedule plans based on machine workload. Finally, a
FrontEnd is used to submit prediction requests to the system.

In PRETZEL, deployment and serving of model pipelines follow a two-phase process.
During the off-line phase (section 5.3.1), ML.Net’s pre-trained pipelines are translated into
Flour transformations. Oven optimizer re-arranges and fuses transformations into model
plans composed of parameterized logical units called stages. Each logical stage is then
AOT-compiled into physical computation units where memory resources and threads are
pooled at runtime. Model plans are registered for prediction serving in the Runtime where
physical stages and parameters are shared between pipelines with similar model plans.
In the on-line phase (section 5.3.2), when an inference request for a registered model
plan is received, physical stages are parameterized dynamically with the proper values
maintained in the Object Store. The Scheduler is in charge of binding physical stages to
shared execution units.

Figure 5.5 and fig. 5.6 pictorially summarize the above descriptions; note that only
the on-line phase is executed at inference time, whereas the model plans are generated
completely off-line. Next, we will describe each layer composing the PRETZEL prediction
system.

5.3.1 Off-line Phase

Flour

The goal of Flour is to provide an intermediate representation between ML frameworks
(currently only ML.Net) and PRETZEL, that is both easy to target and amenable to opti-
mizations. Once a pipeline is ported into Flour, it can be optimized and compiled (sec-
tion 5.3.1) into a model plan before getting fed into PRETZEL Runtime for on-line scoring.
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Flour is a language-integrated API similar to KeystoneML [155], RDDs [184] or LINQ
[105] where sequences of transformations are chained into DAGs and lazily compiled for
execution.

Algorithm 5.1 shows how the SA pipeline of fig. 2.1 can be expressed in Flour. Flour
programs are composed by transformations where a one-to-many mapping exists between
ML.Net operators and Flour transformations (i.e., one operator in ML.Net can be mapped
to many transformations in Flour). Each Flour program starts from a FlourContext
object wrapping the Object Store. Subsequent method calls define a DAG of transforma-
tions, which will end with a call to Plan to instantiate the model plan before feeding it into
PRETZEL Runtime. For example, in lines 2 and 3 of algorithm 5.1 the CSV.FromText
call is used to specify that the target DAG accepts as input text in CSV format where fields
are comma separated. Line 4 specifies the schema for the input data, where TextReview
is a class whose parameters specify the schema fields names, types, and order. The follow-
ing call to Select in line 5 is used to pick the Text column among all the fields, while
the call to Tokenize in line 6 is used to split the input fields into tokens. Lines 8 and 9
contain the two branches defining the char-level and word-level n-gram transformations,
which are then merged with the Concat transform in lines 10/11 before the linear binary
classifier of line 12. Both char and word n-gram transformations are parameterized by
the number of n-grams and maps translating n-grams into numerical format (not shown
in the Listing). Additionally, each Flour transformation accepts as input an optional set
of statistics gathered from training. These statistics are used by the compiler to generate
physical plans more efficiently tailored to the model characteristics. Example statistics are
max vector size (to define the minimum size of vectors to fetch from the pool at prediction
time, as in section 5.3.2), dense/sparse representations, etc.

We have instrumented the ML.Net library to collect statistics from training and with
the related bindings to the Object Store and Flour to automatically extract Flour programs
from pipelines once trained.

Listing 5.1 Flour program for the SA pipeline. Parameters are extracted from the original ML.Net pipeline.
1 var fContext = new FlourContext(objectStore, ...)
2 var tTokenizer = fContext.
3 CSV
4 .
5 FromText(’,’)
6 .
7 WithSchema<TextReview>()
8 .
9 Select("Text")

10 .
11 Tokenize();
12

13 var tCNgram = tTokenizer.
14 CharNgram(numCNgrms, ...);
15 var tWNgram = tTokenizer.
16 WordNgram(numWNgrms, ...);

67



Logical Stages

(1) Flour 
Transforms

S1 S2 S3

Params Stats

Physical Stages
S1 S2 S3

(3) Compilation

(2) Optimization

Model

Stats

Params
Logical 
Stages

Physical
Stages

Model Plan

var fContext = ...;

var Tokenizer = ...;

return fPrgm.Plan();

1: [x]

2: [y,z]

3: …

int[100]

float[200]

…

Figure 5.5: Model optimization and compilation in PRETZEL. In (1), a model is translated into a Flour
program. (2) Oven Optimizer generates a DAG of logical stages from the program. Additionally,
parameters and statistics are extracted. (3) A DAG of physical stages is generated by the Oven

Compiler using logical stages, parameters, and statistics. A model plan is the union of all the elements.

17 var fPrgrm = tCNgram
18 .
19 Concat(tWNgram)
20 .
21 ClassifierBinaryLinear(cParams);
22

23 return fPrgrm.
24 Plan();

Oven

With Oven, our goal is to bring query compilation and optimization techniques into ML.Net.

Optimizer: When Plan is called on a Flour transformation’s reference (e.g., fPrgrm in
line 14 of algorithm 5.1), all transformations leading to it are wrapped and analyzed. Oven
follows the typical rule-based database optimizer design where operator graphs (query
plans) are transformed by a set of rules until a fix-point is reached (i.e., the graph does
not change after the application of any rule). The goal of Oven Optimizer is to transform
an input graph of Flour transformations into a stage graph, where each stage contains one
or more transformations. To group transformations into stages we used the Tupleware’s
hybrid approach [42]: memory-intensive transformations (such as most featurizers) are
pipelined together in a single pass over the data. This strategy achieves best data local-
ity because records are likely to reside in CPU L1 caches [80, 117]. Compute-intensive
transformations (e.g., vector or matrix multiplications) are executed one-at-a-time so that
SIMD vectorization can be exploited, therefore optimizing the number of instructions per
record [190, 22]. Transformation classes are annotated (e.g., 1-to-1, 1-to-n, memory-
bound, compute-bound, commutative and associative) to ease the optimization process:
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no dynamic compilation [42] is necessary since the set of operators is fixed and manual
annotation is sufficient to generate properly optimized plans 4 .

Stages are generated by traversing the Flour transformations graph repeatedly and ap-
plying rules when matching conditions are satisfied. Oven Optimizer consists of an ex-
tensible number of rewriting steps, each of which in turn is composed of a set of rules
performing some modification on the input graph: each rule is generally composed by a
matching condition and graph rewriting logic. Each rewriting step is executed sequen-
tially: within each step, the optimizer iterates over its full set of rules until an iteration
exists such that the graph is not modified after all rules are evaluated. When a rule is ac-
tive, the graph is traversed (either top-down, or bottom up, based on rule internal behavior;
Oven provides graph traversal utilities for both cases) and the rewriting logic is applied if
the matching condition is satisfied over the current node.

In its current implementation, the Oven Optimizer is composed of 4 rewriting steps:

InputGraphValidatorStep: This step comprises three rules, performing schema propaga-
tion, schema validation and graph validation. Specifically, the rules propagate schema
information from the input to the final transformation in the graph, and validate that

1. each transformation’s input schema matches with the transformation semantics (e.g.,
a WordNgram has a string type as input schema, or a linear learner has a vector of
floats as input);

2. the transformation graph is well-formed (e.g., a final predictor exists).

StageGraphBuilderStep: It contains two rules that rewrite the graph of (now schematized)
Flour transformations into a stage graph. Starting with a valid transformation graph, the
rules in this step traverse the graph until a pipeline-breaking transformation is found, i.e.,
a Concat or an n-to-1 transformation such as an aggregate used for normalization (e.g.,
L2). These transformations, in fact, require data to be fully scanned or materialized in
memory before the next transformation can be executed. For example, operations fol-
lowing a Concat require the full feature vector to be available, or a Normalizer requires
the L2 norm of the complete vector. The output of the StageGraphBuilderStep is
therefore a stage graph, where each stage internally contains one or more transformations.
Dependencies between stages are created as aggregation of the dependencies between the
internal transformations. By leveraging the stage graph, PRETZEL is able to considerably
decrease the number of vectors (and as a consequence the memory usage) with respect to
the operator-at-a-time strategy of ML.Net.

StageGraphOptimizerStep: This step involves nine rules that rewrite the graph in order to
produce an optimal (logical) plan. The most important rules in this step rewrite the stage
graph by

4Note that ML.Net does provide a second order operator accepting arbitrary code requiring dynamic compilation. However, this is
not supported in our current version of PRETZEL.
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1. removing unnecessary branches (similar to common sub-expression elimination);

2. merging stages containing equal transformations (often generated by traversing graphs
with branches);

3. inlining stages that contain only one transform;

4. pushing linear models through Concat operations;

5. removal of unnecessary stages (e.g., when linear models are pushed through Concat
operations, the latter stage can be removed if not containing any other additional
transformation).

OutputGraphValidatorStep: This last step is composed of six rules. These rules are used
to generate each stage’s schema out of the schemas of the single internal transformations.
Stage schema information will be used at runtime to request properly typed vectors. Ad-
ditionally, some training statistics are applied at this step: transformations are labeled as
sparse or dense, and dense compute-bound operations are labeled as vectorizable. A final
validation check is run to ensure that the stage graph is well-formed.

In the example sentiment analysis pipeline of fig. 2.1, Oven is able to recognize that
the Linear Regression can be pushed into CharNgram and WordNgram, therefore bypass-
ing the execution of Concat. Additionally, Tokenizer can be reused between CharNgram
and WordNgram, therefore it will be pipelined with CharNgram (in one stage) and a de-
pendency between CharNgram and WordNgram (in another stage) will be created. The
final plan will therefore be composed of two stages, versus the initial four operators (and
vectors) of ML.Net.
Model Plan Compiler: Model plans have two DAGs: a DAG of logical stages, and a DAG
of physical stages. Logical stages are an abstraction of the results of the Oven Optimizer;
physical stages contain the actual code that will be executed by the PRETZEL runtime. For
each given DAG, there is a 1-to-n mapping between logical to physical stages so that a
logical stage can represent the execution code of different physical implementations. A
physical implementation is selected based on the parameters characterizing a logical stage
and available statistics.

Plan compilation is a two step process. After the stage DAG is generated by the Oven
Optimizer, the Model Plan Compiler (MPC) maps each stage into its logical representation
containing all the parameters for the transformations composing the original stage gener-
ated by the optimizer. Parameters are saved for reuse in the Object Store (section 5.3.1).
Once the logical plan is generated, MPC traverses the DAG in topological order and maps
each logical stage into a physical implementation. Physical implementations are AOT-
compiled, parameterized, lock-free computation units. Each physical stage can be seen
as a parametric function which will be dynamically fed at runtime with the proper data
vectors and pipeline-specific parameters. This design allows PRETZEL runtime to share
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Figure 5.6: (1) When a prediction request is issued, (2) the Runtime determines whether to serve the
prediction using (3) the request/response engine or (4) the batch engine. In the latter case, the

Scheduler takes care of properly allocating stages over the Executors running concurrently on CPU
cores. (5) The FrontEnd returns the result to the Client once all stages are complete.

the same physical implementation between multiple pipelines and no memory allocation
occurs on the prediction path (more details in section 5.3.2). Logical plans maintain the
mapping between the pipeline-specific parameters saved in the Object Store and the phys-
ical stages executing on the Runtime as well as statistics such as maximum vector size
(which will be used at runtime to request the proper amount of memory from the pool).
Figure 5.5 summarizes the process of generating model plans out of ML.Net pipelines.

Object Store

The motivation behind Object Store is based on the insights of fig. 5.2: since many DAGs
have similar structures, sharing operators’ state (parameters) can considerably improve
memory footprint, and consequently the number of predictions served per machine. An
example is language dictionaries used for input text featurization, which are often in com-
mon among many models and are relatively large. The Object Store is populated off-line
by MPC: when a Flour program is submitted for planning, new parameters are kept in the
Object Store, while parameters that already exist are ignored and the stage information is
rewritten to reuse the previously loaded one. Parameters equality is computed by looking
at the checksum of the serialized version of the objects.

5.3.2 On-line Phase

Runtime

Initialization: Model plans generated by MPC are registered in the PRETZEL Runtime.
Upon registration, a unique pipeline ID is generated, and physical stages composing a
plan are loaded into a system catalog. If two plans use the same physical stage, this is
loaded only once in the catalog so that similar plans may share the same physical stages
during execution. When the Runtime starts, a set of vectors and long-running thread pools
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(called Executors) are initialized. Vector pools are allocated per Executor to improve lo-
cality [Gamsa:1999:T\gls {ml}:296806.296814]; Executors are instead managed by the
Scheduler to execute physical stages (section 5.3.2) or used to manage incoming prediction
requests by the FrontEnd. Allocations of vector and thread pools are managed by config-
uration parameters, and allow PRETZEL to decrease the time spent in allocating memory
and threads during prediction time.
Execution: Inference requests for the pipelines registered into the system can be submitted
through the FrontEnd by specifying the pipeline ID, and a set of input records. fig. 5.6
depicts the process of on-line inference. PRETZEL comes with a request-response engine
and a batch engine. The request-response engine is used by single predictions for which
latency is the major concern whereby context-switching and scheduling overheads can be
costly. Conversely, the batch engine is used when a request contains a batch of records, or
when the prediction time is such that scheduling overheads can be considered as negligible
(e.g., few hundreds of microseconds). The request-response engine inlines the execution
of the prediction within the thread handling the request: the pipeline physical plan is
JIT-compiled into a unique function call and scored. Instead, by using the batch engine
requests are forwarded to the Scheduler that decides where to allocate physical stages
based on the current runtime and resource status. Currently, whether to use the request-
response or batch engine is set through a configuration parameter passed when registering
a plan. In the future we plan to adaptively switch between the two.

Scheduler

In PRETZEL, model plans share resources, thus scheduling plans appropriately is essential
to ensure scalability and optimal machine utilization while guaranteeing the performance
requirements. Since model inference is latency sensitive, the Scheduler is optimized to-
wards local memory access, and attempts to run the stages according to where the input
data reside, e.g. by running all the stages to serve a single prediction request on the same
core.

The Scheduler coordinates the execution of multiple stages via a late-binding event-
based scheduling mechanism similar to task scheduling in distributed systems [124, 184,
174]: each core runs an Executor instance whereby all Executors pull work from a shared
pair of queues: one low priority queue for newly submitted plans, and one high priority
queue for already started stages. At runtime, a scheduling event is generated for each stage
with related set of input/output vectors, and routed over a queue (low priority if the stage
is the head of a pipeline, high priority otherwise). Two queues with different priorities
are necessary because of memory requirements. Vectors are in fact requested per pipeline
(not per stage) and lazily fulfilled when a pipeline’s first stage is being evaluated on an
Executor. Vectors are then utilized and not re-added to the pool for the full execution
of the pipeline. Two priority queues allow started pipelines to be scheduled earlier and
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therefore return memory quickly.
Reservation-based Scheduling: Upon model plan registration, PRETZEL offers the op-
tion to reserve memory or computation resources for exclusive use. Such resources reside
on different, pipeline-specific pools, and are not shared among plans, therefore enabling
container-like provision of resources. Note however that parameters and physical stage ob-
jects remain shared between pipelines even if reservation-based scheduling is requested.

5.3.3 Additional Optimizations

Sub-plan Materialization: Similarly to materialized views in database multi-query op-
timization [59, 35], results of installed physical stages can be reused between different
model plans. When plans are loaded in the runtime, PRETZEL keeps track of physical
stages and enables caching of results when a stage with the same parameters is shared by
many model plans. Hashing of the input is used to decide whether a result is already avail-
able for that stage or not. We implemented a simple LRU strategy on top of the Object
Store to evict results when a given memory threshold is met.

Note that sub-plan materialization is different than the result caching implemented in
other systems such as Clipper: result caching is a single-pipeline optimization by which
the results of predictions are saved and re-used in case the same prediction for the same
input is requested; sub-plan caching is instead a multi-pipeline optimization by which
partial results are stored and re-used in case the same input is employed to score different
(but similar) models.
External Optimizations: While the techniques described so far focus mostly on improve-
ments that other prediction serving systems are not able to achieve due to their black box
nature, PRETZEL FrontEnd also supports “external” optimizations such as the one pro-
vided in Clipper and Rafiki. Specifically, the FrontEnd currently implements prediction
results caching (with LRU eviction policy) and delayed batching whereby inference re-
quests are buffered for a user-specified amount of time and then submitted in batch to the
Runtime. These external optimizations are orthogonal to PRETZEL’s techniques, so both
are applicable in a complementary manner.

5.4 Evaluation

PRETZEL implementation is a mix of C# and C++. In its current version, the system
comprises 12.6K lines of code (11.3K in C#, 1.3K in C++) and supports about two dozens
of ML.Net operators, among which linear models (e.g., linear/logistic/Poisson regression),
tree-based models, clustering models (e.g., K-Means), Principal Components Analysis
(PCA), and several featurizers.
Scenarios: The goals of our experimental evaluation are to evaluate how the white box
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approach performs compared to black box.

• memory: in the first scenario, we want to show how much memory saving PRETZEL’s
white box approach is able to provide with respect to regular ML.Net and ML.Net
boxed into Docker containers managed by Clipper.

• latency: this experiment mimics a request/response pattern (like that in [138]) such
as a personalized web-application requiring minimal latency. In this scenario, we run
two different configurations:

1. a micro-benchmark measuring the time required by a system to render a predic-
tion;

2. an experiment measuring the total end-to-end latency observed by a client sub-
mitting a request.

• throughput: this scenario simulates a batch pattern (like in [18]) and we use it to
assess the throughput of PRETZEL compared to ML.Net.

• heavy-load: we finally mix the above experiments and show PRETZEL’s ability to
maintain high throughput and graceful degradation of latency, as load increases. To
be realistic, in this scenario we generate skewed load across different pipelines. As
for the latency experiment, we report first the PRETZEL’s performance using a micro-
benchmark, and then we compare it against the containerized version of ML.Net in
an end-to-end setting.

Configuration: All the experiments reported in the work were carried out on a Windows
10 machine with 2 × 8-core Intel Xeon CPU E5-2620 v4 processors at 2.10GHz with
HyperThreading disabled, and 32GB of RAM.

We used .Net Core version 2.0, ML.Net version 0.4, and Clipper version 0.2. For
ML.Net, we use two black box configurations: a non-containerized one (one ML.Net in-
stance for all models), and a containerized one (one ML.Net instance for each model)
where ML.Net is deployed as Docker containers running on Windows Subsystem for
Linux (WSL) and orchestrated by Clipper. We commonly label the former as just ML.Net;
the latter as ML.Net + Clipper. For PRETZEL we AOT-compile stages using CrossGen
[1]. For the end-to-end experiments comparing PRETZEL and ML.Net + Clipper, we use
an ASP.Net FrontEnd for PRETZEL, and the Redis front-end for Clipper. We run each
experiment three times and report the median.
Pipelines: Table 5.1 describes the two types of model pipelines we use in the experiments:
250 unique versions of SA pipeline, and 250 different pipelines implementing AC: a re-
gression task used internally to predict how many attendees will join an event. Pipelines
within a category are similar: in particular, pipelines in the SA category benefit from sub-
plan materialization, while those in the AC category are more diverse and do not benefit
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Table 5.1: Characteristics of pipelines in experiments

Type Sentiment Analysis (SA) Attendee Count (Attendee Count (AC))

Characteristic Memory-bound CPU-bound
Input Plain Text (variable length) Structured Text (40 dimensions)
Size 50MB - 100MB (Mean: 70MB) 10KB - 20MB (Mean: 9MB)
Featurizers N-gram with dictionaries (∼1M entries) PCA, KMeans, Ensemble of multiple models
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Figure 5.7: Cumulative memory usage (log-scaled) of the pipelines in PRETZEL, ML.Net and ML.Net +
Clipper. The horizontal line represents the machine’s physical memory (32GB). Only PRETZEL is able
to load all SA pipelines within the memory limit. For AC, PRETZEL uses one order of magnitude less
memory than ML.Net and ML.Net + Clipper. The memory usage of PRETZEL without Object Store is

almost on par with ML.Net.

from it. These latter pipelines comprise several ML models forming an ensemble: in the
most complex version, we have a dimensionality reduction step executed concurrently
with a KMeans clustering, a TreeFeaturizer, and multi-class tree-based classifier, all fed
into a final tree (or forest) rendering the prediction. SA pipelines are trained and scored
over Amazon Review dataset [60]; AC ones are trained and scored over an internal record
of events.

5.4.1 Memory

In this experiment, we load all models and report the total memory consumption (model
+ runtime) per model category. SA pipelines are large and therefore we expect memory
consumption (and loading time) to improve considerably within this class, proving that
PRETZEL’s Object Store allows to avoid the cost of loading duplicate objects. Less gains
are instead expected for the AC pipelines because of their small size. Figure 5.7 shows
the memory usage for loading all the 250 model pipelines in memory, for both categories.
For SA, only PRETZEL with Object Store enabled can load all pipelines 5 . For AC, all
configurations are able to load the entire working set, however PRETZEL occupies only
164MBs: about 25× less memory than ML.Net and 62× less than ML.Net + Clipper.
Given the nature of AC models (i.e., small in size), from fig. 5.7 we can additionally notice

5Note that for ML.Net, ML.Net + Clipper and PRETZEL without Object Store configurations we can load more models and go
beyond the 32GB limit. However, models are swapped to disk and the whole system becomes unstable.
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Figure 5.8: Latency comparison between ML.Net and PRETZEL. The accompanying blue lines represent
the cold latency (first execution of the pipelines). On top are the P99 latency values: the hot case is

above the horizontal line and the cold case is annotated with an arrow.

the overhead (around 2.5×) of using a container-based black box approach vs regular
ML.Net.

Keeping track of pipelines’ parameters also helps reducing the time to load models:
PRETZEL takes around 2.8 seconds to load 250 AC pipelines while ML.Net takes around
270 seconds. For SA pipelines, PRETZEL takes 37.3 seconds to load all 250 pipelines,
while ML.Net fills up the entire memory (32GB) and begins to swap objects after loading
75 pipelines in around 9 minutes.

5.4.2 Latency

In this experiment we study the latency behavior of PRETZEL in two settings. First, we run
a micro-benchmark directly measuring the latency of rendering a prediction in PRETZEL.
Additionally, we show how PRETZEL’s optimizations can improve the latency. Secondly,
we report the end-to-end latency observed by a remote client submitting a request through
HTTP.

Micro-benchmark

Inference requests are submitted sequentially and in isolation for one model at a time.
For PRETZEL we use the request-response engine over one single core. The comparison
between PRETZEL and ML.Net for the SA and AC pipelines is reported in fig. 5.8. We start
with studying hot and cold cases while comparing PRETZEL and ML.Net. Specifically, we
label as cold the first prediction requested for a model; the successive 10 predictions are
then discarded and we report hot numbers as the average of the following 100 predictions.

If we directly compare PRETZEL with ML.Net, PRETZEL is 3.2× and 3.1× faster than
ML.Net in the 99th percentile latency in hot case (denoted by P99hot), and about 9.8× and
5.7× in the P99cold case, for SA and AC pipelines, respectively. If instead we look at the
difference between cold and hot cases relative to each system, PRETZEL again provides
improvements over ML.Net. The P99cold is about 13.3× and 4.6× the P99hot in ML.Net,
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Figure 5.9: Latency of PRETZEL to run SA models with and without sub-plan materialization. Around 80%
of SA pipelines show more than 2× speedup. Sub-plan materialization does not apply for AC pipelines.

whereas in PRETZEL P99cold is around 4.2× and 2.5× from the P99hot case. Furthermore,
PRETZEL is able to mitigate the long tail latency (worst case) of cold scoring. In SA
pipelines, the worst case latency is 460.6× off the P99hot in ML.Net, whereas PRETZEL
shows a 33.3× difference. Similarly, in AC pipelines the worst case is 21.2× P99hot for
ML.Net, and 7.5× for PRETZEL. The gap between two categories is due to the pipelines’
characteristics: SA pipelines are memory-intensive and more likely to benefit caching
objects. AC pipelines are compute-intensive, so the optimizations have less effect in the
worst case.

To better understand the effect of PRETZEL’s optimizations on latency, we turn on and
off some optimizations and compare the performance.
AOT compilation: This options allows PRETZEL to pre-load all stage code into cache,
removing the overhead of JIT compilation in the cold cases. Without AOT compilation, la-
tencies of cold predictions increase on average by 1.6× and 4.2× for SA and AC pipelines,
respectively.
Vector Pooling: By creating pools of pre-allocated vectors, PRETZEL can minimize the
overhead of memory allocation at prediction time. When we do not pool vectors, latencies
increase in average by 47.1% for hot and 24.7% for cold, respectively.
Sub-plan Materialization: If different pipelines have common featurizers (e.g., SA as
shown in fig. 5.2), we can further apply sub-plan materialization to reduce the latency.
Figure 5.9 depicts the effect of sub-plan materialization over prediction latency for hot
requests. In general, for the SA pipelines in which sub-plan materialization applies, we can
see an average improvement of 2.0×, while no pipeline shows performance deterioration.

End-to-end

In this experiment we measure the end-to-end latency from a client submitting a prediction
request. For PRETZEL, we use the ASP.Net FrontEnd, and we compare against ML.Net +
Clipper. We use the Clipper’s default front-end that is built on Redis [136]. The end-to-
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The overhead of client-server communication compared to the actual prediction is similar in both

PRETZEL and ML.Net: the end-to-end latency compared to the just prediction latency is 9× slower in
SA and 2.5× in AC, respectively.

end latency considers both the prediction latency (i.e., fig. 5.8) as well as any additional
overhead due to client-server communication. As shown in fig. 5.10, the latter overhead
in both PRETZEL and ML.Net + Clipper is in the milliseconds range (around 4ms for the
former, and 9 for the latter). Specifically, with PRETZEL, clients observe a latency of
4.3ms at P99 for SA models (vs. 0.56ms P99 latency of just rendering a prediction) and
a latency of 7.3ms for AC models (vs. 3.5ms). In contrast, in ML.Net + Clipper, clients
observe 9.3ms latency at P99 for SA models, and 18.0ms at P99 for AC models.

5.4.3 Throughput

In this experiment, we run a micro-benchmark assuming a batch scenario where all 500
models are scored several times. We use an API provided by both PRETZEL and ML.Net,
where we can execute prediction queries in batches: in this experiment we fixed the batch
size at 1000 queries. We allocate from 2 up to 13 CPU cores to serve requests, while 3
cores are reserved to generate them. The main goal is to measure the maximum number
of requests PRETZEL and ML.Net can serve per second.

Figure 5.11 shows that PRETZEL’s throughput (queries per second) is up to 2.6× higher
than ML.Net for SA models, 10× for AC models. PRETZEL’s throughput scales on par
with the expected ideal scaling. Instead, ML.Net suffers from higher latency in rendering
predictions and from lower scalability when the number of CPU cores increases. This
is because each thread has its own internal copy of models whereby cache lines are not
shared, thus increasing the pressure on the memory subsystem: indeed, even if the param-
eters are the same, the model objects are allocated to different memory areas.

5.4.4 Heavy Load

In this experiment, we show how the performance changes as we change the load. To
generate a realistic load, we submit requests to models by following the Zipf distribution
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Figure 5.12: Throughput and latency of PRETZEL under the heavy load scenario. We maintain all 500
models in-memory within a PRETZEL instance, and we increase the load by submitting more requests

per second. We report latency measurements from latency-sensitive pipelines, and the total system
throughput.

(α = 2) 6 . As in section 5.4.2, we first run a micro-benchmark, followed by an end-to-end
comparison.

Micro-benchmark

We load all 500 models in one PRETZEL instance. Among all models, we assume 50% to
be “latency-sensitive" and therefore we set a batch size of 1. The remaining 50% models
will be requested with 100 queries in a batch. As in the throughput experiment, we use
the batch engine with 13 cores to serve requests and 3 cores to generate load. Figure 5.12
reports the average latency of latency-sensitive models and the total system throughput
under different load configurations. As we increase the number of requests, PRETZEL’s
throughput increases linearly until it stabilizes at about 25k queries per second. Similarly,
the average latency of latency-sensitive pipelines gracefully increases linearly with the
load.
Reservation Scheduling: If we want to guarantee that the performance of latency-critical
pipelines is not degrading excessively even under high load, we can enable reservation
scheduling. If we run the previous experiment reserving one core (and related vectors)
for one model, this does not encounter any degradation in latency (max improvement of 3

6The number of requests to the ith most popular models is proportional to i−α, where α is the parameter of the distribution.
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Figure 5.13: Throughput and latency of PRETZEL and ML.Net + Clipper under the end-to-end heavy load
scenario. We use 250 AC pipelines to allow both systems to have all pipelines in memory.

orders of magnitude) as the load increases, while maintaining similar system throughput.

End-to-end

In this setup, we periodically send prediction requests to PRETZEL with the ASP.Net
FrontEnd and ML.Net + Clipper. We assume all pipelines to be latency-sensitive, thus
we set a batch of 1 for each request. As we can see in fig. 5.13, PRETZEL’s throughput
keeps increasing up to around 300 requests per second. If the load exceeds that point,
the throughput and the latency begin to fluctuate. On the other hand, the throughput of
ML.Net + Clipper is considerably lower than PRETZEL’s and does not scale as the load
increases. Also the latency of ML.Net + Clipper is several folds higher than with PRET-
ZEL. The difference is due to the overhead of maintaining hundreds of Docker containers;
too many context switches occur across/within containers.

5.5 Limitations and Future Work

Although the results achieved in section 5.4 are promising, PRETZEL has several limita-
tions, in both the off-line and the on-line phases.
Off-line Phase: PRETZEL has two limitations regarding Flour and Oven design. First,
PRETZEL currently has several logical and physical stages classes, one per possible im-
plementation, which make the system difficult to maintain in the long run. Additionally,
different back-ends (e.g., PRETZEL currently supports operators implemented in C# and
C++) require all specific operator implementations. We are however confident that this
limitation will be overcome once code generation of stages will be added, also targeting
heterogeneous hardware, e.g., with hardware-specific templates [88]. Secondly, Flour and
Oven are currently limited to pipelines authored in ML.Net, and porting models from dif-
ferent frameworks to the white box approach may require non-trivial work. On the long
run our goal is, however, to target unified formats such as ONNX [123]; this will allow us
to apply the discussed techniques to models from other ML frameworks as well.
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On-line Phase: PRETZEL’s fine-grained, stage-based scheduling may introduce addi-
tional overheads in contrasts to coarse-grained whole pipeline scheduling due to additional
buffering and context switching. However, such overheads are related to the system load
and therefore controllable by the scheduler. Additionally, we found Garbage Collection
(GC) overheads to introduce spikes in latency. Although our implementation tries to mini-
mize the number of objects created at runtime, in practice we found that long tail latencies
are common. On white box architectures, failures happening during the execution of a
model may jeopardize the whole system. We are currently working on isolating model fail-
ures over the target Executor. Finally, PRETZEL runtime currently runs on a single-node
and is unaware of the hardware topology; an experimental scheduler adds Non Uniform
Memory Access (NUMA)-awareness to scheduling policies. We expect this scheduler to
bring benefits for models served from large instances (e.g., [47]). We expect in the future
to be able to scale the approach over distributed machines, with automatic scale up/out
capabilities.

5.6 Related Work

Prediction Serving: As from the Introduction, current ML prediction systems [40, 122,
130, 41, 137, 113, 170, 115] aim to minimize the cost of deployment and maximize code
re-use between training and inference phases [189]. Conversely, PRETZEL casts predic-
tion serving as a database problem and applies end-to-end and multi-query optimizations
to maximize performance and resource utilization. Clipper and Rafiki deploy pipelines
as Docker containers connected through RPC to a front-end. Both systems apply exter-
nal model-agnostic techniques to achieve better latency, throughput, and accuracy. While
we employed similar techniques in the FrontEnd, in PRETZEL we have not yet explored
“best effort” techniques such as ensembles, straggler mitigation, and model selection. As
from section 4.2, TF Serving deploys pipelines as Servables, which are units of execution
scheduling and version management. One Servable is executed as a black box, although
users are allowed to split model pipelines and surface them into different Servables, sim-
ilarly to PRETZEL’s stage-based execution. Such optimization is however not automatic.
LASER [2] enables large scale training and inference of logistic regression models, apply-
ing specific system optimizations to the problem at hand (i.e., advertising where multiple
ad campaigns are run on each user) such as caching of partial results and graceful degrada-
tion of accuracy. Finally, runtimes such as CoreML [38] and Windows ML [177] provide
on-device inference engines and accelerators. To our knowledge, only single operator
optimizations are enforced (e.g., using target mathematical libraries or hardware), while
neither end-to-end nor multi-model optimizations are used. As PRETZEL, TVM [163, 33]
provides a set of logical operators and related physical implementations, backed by an op-
timizer based on the Halide language [134]. TVM is specialized on neural network models
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and does not support featurizers nor “classical” models.

5.6.1 Optimization of ML Pipelines:

There is a recent interest in the ML community in building languages and optimizations to
improve the execution of ML workloads [163, 116, 32, 161, 78]. However, most of them
exclusively target NNs and heterogeneous hardware. Nevertheless, we are investigating
the possibility to substitute Flour with a custom extension of Tensor Comprehension [165]
to express featurization pipelines. This will enable the support for Neural Network featur-
izers such as word embeddings, as well as code generation capabilities (for heterogeneous
devices). We are confident that the set of optimizations implemented in Oven generalizes
over different intermediate representations.

Uber’s Michelangelo [109] has a Scala DSL that can be compiled into bytecode which
is then shipped with the whole model as a zip file for prediction. Similarly, H2O [58] com-
piles models into Java classes for serving: this is exactly how ML.Net currently works.
Conversely, similar to database query optimizers, PRETZEL rewrites model pipelines both
at the logical and at the physical level. KeystoneML [155] provides a high-level API
for composing pipelines of operators similarly to Flour, and also features a query opti-
mizer similar to Oven, albeit focused on distributed training. KeystoneML’s cost-based
optimizer selects the best physical implementation based on runtime statistics (gathered
via sampling), while no logical level optimizations is provided. Instead, PRETZEL pro-
vides end-to-end optimizations by analyzing logical plans [42, 80, 117, 22], while logical-
to-physical mappings are decided based on stage parameters and statistics from training.
Similarly to the SOFA optimizer [139], we annotate transformations based on logical char-
acteristics. MauveDB [44] uses regression and interpolation models as database views and
optimizes them as such. MauveDB models are tightly integrated into the database, thus
only a limited class of declaratively definable models is efficiently supported. As PRET-
ZEL, KeystoneML and MauveDB provide sub-plan materialization.

5.6.2 Scheduling:

Both Clipper [40, 36] and Rafiki [170] schedule inference requests based on latency targets
and provide adaptive algorithms to maximize throughput and accuracy while minimizing
stragglers, for which they both use ensemble models. These techniques are external and
orthogonal to the ones provided in PRETZEL. To our knowledge, no model serving sys-
tem explored the problem of scheduling requests while sharing resource between models,
a problem that PRETZEL addresses with techniques similar to distributed scheduling in
cloud computing [124, 183]. Scheduling in white box prediction serving share similarities
with operators scheduling in stream processing systems [17, 164] and web services [174].
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5.7 Conclusion

Inspired by the growth of ML applications and MLaaS platforms, we identified how ex-
isting systems fall short in key requirements for ML prediction-serving, disregarding the
optimization of model execution in favor of ease of deployment. Conversely, this work
casts the problem of serving inference as a database problem where end-to-end and multi-
query optimization strategies are applied to ML pipelines. To decrease latency, we have
developed an optimizer and compiler framework generating efficient model plans end-to-
end. To decrease memory footprint and increase resource utilization and throughput, we
allow pipelines to share parameters and physical operators, and defer the problem of in-
ference execution to a scheduler that allows running multiple predictions concurrently on
shared resources.

Experiments with production-like pipelines show the validity of our approach in achiev-
ing an optimized execution: PRETZEL delivers order-of-magnitude improvements on pre-
vious approaches and over different performance metrics. These results were accepted in
the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI)
[131].

As an immediate future work, we are considering to expand the Scheduling layer with
runtime decision capabilities to achieve higher automation. For example, we can consider
the size of each pipeline and the number of requests arriving to each pipeline to schedule
their execution, controlling at runtime the resources available to each stage according to
the current requirements. Furthermore, we can assign differentiated resources at the stage
level, since some common stages may be shared among many DAGs and thus receive many
more incoming requests than others. This mechanism will likely allow higher throughput
than the base OS scheduler, which is unaware of the shared stages and of their different
requirements.

To target FPGA-based systems with PRETZEL, as in chapter 4, the Scheduling layer can
be augmented with FPGA control and decide to schedule some stages on such resources,
taking in account the programming cost (in the order of hundreds of milliseconds) and the
data-movement costs.

PRETZEL is a step forward towards the vision in section 1.3, and is designed to be the
runtime powering an MLaaS infrastructure: since PRETZEL can control all aspects of the
application execution, it is able to also predict and control the amount of resources needed,
allowing the lower layers (like an OS modified as in chapter 3) to enforce isolation.
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CHAPTER6
The case study of RegEx acceleration on FPGA

As from section 2.3, REs are widely used to find patterns among data, like in genomic
markers research for DNA analysis, deep packet inspection or signature-based detection
for network intrusion detection system. They are also widely employed within DA and ML
pre-processing phases, and therefore are first candidates to be accelerated. An accelerated
implementation can then be exposed to applications, or can be chosen by a FaaS runtime
like the one in chapter 5 to transparently offload some operations (or stages, in PRETZEL’s
design). Due to the diversity of applications, such an accelerator must retain flexibility in
order to cover a wide range of usages.

This chapter investigates a novel and efficient RE matching architecture for FPGAs,
based on the concept of matching core proposed in [127]. To detail the work, this chapter
starts from the background introduced in section 2.3 to motivate the importance of efficient
RE matching as discussed in section 6.1. Then, section 6.2 reviews the state of the art over
RE matching techniques, and section 6.3 goes into details about the proposed solution,
showing its design principles and the novelties with respect to previous approaches. Then,
section 6.4 evaluates the proposed design on the target platforms, and projects those results
to larger systems in order to investigate other applicative scenarios and to compare against
other works. Finally, section 6.5 draws final conclusions over the proposed work and
highlights potential future works in the same direction.
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6.1 Approach and achievements

As from [127], RE can be software-compiled into sequences of basic matching instructions
that a matching core runs on input data, and can be replaced to change the RE to be
matched. Building on this approach, we investigate how accelerate REs while retaining
programming flexibility, in order to cover a broad range of workloads. To achieve this
goal, we build on [127] and overcome its shortcomings by expanding the capabilities of
the matching core and by exploring the design of a multi-core architecture.

With respect to [127], this work makes two major improvements towards bringing ac-
celeration capabilities to data-intensive applications with RE matching:

• we devised a better pre-processing mechanism for the execution of RE and a renewed
design of the single-core with respect to [127].

• we designed a scalable multi-core architecture that is able to perform RE matching,
achieving over 100x speedup with 16 cores over a software RE matcher compiled
from GNU Flex [50] while running at 130MHz.

• we realized a prototype with a cross-platform design easily embeddable within het-
erogeneous architectures. By implementing an 8-core architecture running at 70MHz
on a PYNQ-Z1 board we reached a maximum speedup of 37.1x with respect to the
same software solution.

The system can easily be deployed to different platforms, like a Xilinx VC707 board
for server-like scenarios and a Xilinx PYNQ-Z1 embedded platform, obtaining relevant
results in terms of throughput and low area utilization on both of them, while making no
changes to the architecture of the single-core. The proposed architecture scales up with
the available resources and is customizable to multiple usage scenarios: our experiments,
compared to a state-of-the-art software solution, reach speedups over 100x, while running
at 130MHz, over a Flex-based matching application [50] running on an Intel i7 CPU at
2.8GHz.

6.2 Related work

Scientific literature addressed the RE matching problem in several ways, also leveraging
different technologies based on CPUs, GPUs, FPGAs and ASICs. The vast majority of
research works on pattern recognition are based on Deterministic Finite Automata, which
encode in a fixed data structure the transitions between accepted characters. This simplic-
ity comes at the cost of a memory usage that grows with the size and complexity of the RE,
and - in the basic implementation - allows fetching only one character at a time. Research
works that addressed the space issue are generally based on more efficient representations
of the transitions.
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For example, works like [89] and [96] find large room to group state transitions to-
gether, either by identifying common transitions between states or by grouping them ac-
cording to the cluster of states they lead to. Similarly, [75] clusters states and groups
transitions according to the final target cluster, and employs the clustering information to
improve the locality of transitions accessing on an FPGA prototype. Some works focus
on optimizing the DFAs representation to specifically target ASIC technologies. As an
example, [98] encodes state transitions as rules, which group together similar transitions
into a rule that defines a set of conditions for the current state and input values in order se-
lect the state, thereby compressing the DFA representation. Then, by mapping these rules
into Static Random-Access Memory (SRAM) memory by means of proper hash functions,
[98] achieved a very short and predictable memory lookup latency, and a relatively small
logic footprint. With a radically different approach, [53] implements in ASIC a solution
based on the Aho-Corasick string matching algorithm [5], overcoming its high memory
requirements by splitting each character input in single bits. Therefore, each bit has only
two possible transitions, which are easily stored in a lookup memory and evaluated in par-
allel. The matching strings that result from these lookups are then disjointed in a tree-like
fashion, which is easily implementable in hardware.

To address the performance limitation of analyzing only one character at a time, the
research also proposed several works that tackle this issue in multiple ways. Among DFA-
based solutions, [180] parallelizes character processing by first computing all the possible
transitions of input characters in parallel, and then by merging them in successive steps, all
in a pipelined fashion. This parallelization scheme is independent from the DFA encoding,
and [180] evaluates its approach with ClusterFA [74] DFA compression, achieving over
an order of magnitude speedup on FPGA. In [106], the authors propose a solution based
on Ternary Content Addressable Memorys (TCAMs), which encodes the transitions of the
DFA to improve the lookup process.

Another body of work is still based on DFA, but leverages hardware parallelism to
increase the matching performance, without however changing the DFA representation
with respect to standard approaches. As an example, [13] uses Non-deterministic Finite
Automaton (NFA) to tackle one of the main performance limitation of DFA approaches.
Since the initial position of a matching string within a larger string is known only when
the match occurs, conventional DFA-based solutions have to either repeat the matching
process for each possible initial character or to save an unbounded number of possible
initial positions, until a match occurs. To overcome these shortcomings, [13] activates
a new DFA for a given RE whenever an initial character is found, finally selecting the
first DFA advertising a match. While this solution greatly improves performance through
parallelism, it does not scale well to complex REs with Kleene operators nor to a workload
composed on multiple REs to match against. Instead, [166] leverages the characteristics
of GPUs to match multiple REs in parallel, encoding each RE as a separate DFA.

Different approaches do not rely on the use of Finite State Automata but focus on
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Figure 6.1: High level of the single-core architecture

achieving an efficient lookup process. For example, [3] proposes a hash-based encoding
scheme for text patterns (not specifically REs) that generates a dictionary matching engine.
Instead, [118] employs bitmap index structures to encode the strings to match against,
which is very efficient on FPGA logic and allows looking up multiple characters at a time.

The approach that we are going to adopt has been developed in [127] and the idea is
to treat REs as programs that are composed by instruction sequences executed on a cus-
tomized processor over a stream of data. REs are compiled mich like a programming
language, producing a sequence of instructions that will drive a dedicated CPU. This solu-
tion does not build on an FSA as most solutions present in the literature, but allows quick
“reconfiguration” of the matching core by simply changing the instruction sequence, with-
out changing the configuration of the FPGA fabric: indeed, instructions are stored in a
dedicated on-chip Block Random Access Memory (BRAM), whose content can easily be
written by the system’s CPU.

6.3 Design Methodology

This section shows the design of the proposed architecture and how it can be deployed as
single core and as multi-core. Section 6.3.1 shows the overall components of the system
and how they interact to run the matching program, whose extensions with respect to [127]
are highlighted in section 6.3.2. Section 6.3.3 shows the internal design of the single core
and highlights the differences with respect to [127], and, finally, section 6.3.4 explains
the multi-core implementation, computing the expected throughput as the number of cores
scales.
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Table 6.1: Opcode encoding of the instructions.

opcode RE Description

000000 NOP No Operation
100000 ( enter subroutine
010000 AND and of cluster matches
001000 OR or of cluster matches
011000 . match any character
000001 )* match any number of sub-RE
000010 )+ match one or more sub-RE
000011 )| match previous sub-RE or next one
000100 ) end of subroutine
000101 OKP Open Kleene Parenthesis
000111 JIM Jump If Match

6.3.1 RE matching flow and system components

The first step of the matching process is the compilation of the RE to match via a software
compiler, whose output is the “program” that TiReX runs to match over the input string.
Section 6.3.2 explains the format of the instructions of this program, which are highly cus-
tomized for the RE matching scenario. This program is loaded in the Instruction Memorys
(IMs) shown in fig. 6.1, from which the Fetch and Decode Units (FDUs) loads the single
instructions to decode them, propagating the control signals and the instruction operands
to the Execution Units (EUs) and the Control Paths (CPs). The EUs loads the input char-
acters from the Data Buffer and searches for patterns in these data according to the signals
received from the FDUs, emitting a match signal to the CPs in case the current input
characters match the pattern encoded in the current instruction. Finally, the CPs exposes
signals to indicate completion of the matching process and the presence of a match.

6.3.2 Instruction set extensions

Table 6.1 shows the TiReX instructions set, which is composed of the basic operators for
RE matching and of parenthesis operators to optimize sub-procedures that match an inner
RE. The opcode field, represented in table 6.1, is made of 6 bits, while 32 following bits
allow to encode for reference characters as operands of the instruction; as from [127], the
references are the characters to be matched with the instruction, and their number deter-
mines how many characters can be matched in parallel (for example, an OR matches if
any of its four operands matches while an AND matches if all its four operands matches).
As an improvement over [127], we introduced two main modifications to improve the
matching performance by avoiding stall cycles or FDUs re-alignment delays in case of
match of complex REs. The first modification is the addition of the Open Kleene Paren-
thesis OKP instruction: in case of an RE ending with a Kleene operator “*” or “+”, the
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compiler translates the opening parenthesis as a nested sub-RE delimited by the new OKP
instruction and the final “)*” or “)*+” instruction. The OKP operator instructs the pipeline
that the sub-match to be executed can be repeated when the instruction “)*” is reached,
thus hinting the internal prefetching logic of the core (described in section 6.3.3) that a
jump in the instruction flow may occur to the instruction following the OKP. Similarly
to the OKP instruction, the JIM instruction (standing for Jump IF Match) instructs the
architecture to jump ahead in case of match of a sub-RE chained in OR with other REs
(like “(RE1)|(RE2)|(RE3)”). Indeed, in case a match occurs the following sub-REs can
be ignored, and the core logic can directly jump to the instruction following the sequence
of ORed REs. The OKP instruction uses the reference field to encode the address of the
instruction to jump to in case of match.

These modifications have been inspired by the dominant applications RE matching
is important for. Indeed, applicative fields like genome analysis and packet inspections
typically look for repeated patterns in input data (Kleene operator) or for the occurrence
of one among many patterns (chain of ORed REs). In these scenarios, where the sub-
REs can be complex and long, we found large room for improvement over the previous
approach, potentially saving many cycles of execution time.

6.3.3 Single-Core Architecture

The customized processor, completely designed in VHSIC Hardware Description Lan-
guage (VHDL), is shown in fig. 6.2 and has a two stage pipeline architecture with an
instruction memory and a data buffer, as in Figure 6.1, allowing to load instructions and
data at the same clock cycle. The Fetch and Decode stage fetches the instructions from
the instruction memory and decodes them, producing three output signals . The first is the
opcode, that drives the computation of the following stage by instructing it over the pattern
to match (like ANDed or ORed characters). The second output is the reference, which is
the set of characters the input should be matched against. The third output is the valid ref-
erence, that is whether each character is valid or not in the instruction reference. Indeed,
the instruction set allows leaving some characters as blank, for example to match an OR
of only two characters (the default reference set being composed of four characters).

By instantiating three different, specialized FDUss (marked A to C in fig. 6.2), which
work on different instructions, the core is able to avoid cycle losses in case of no match
or in case of special instructions such as the JIM. The first FDUs keeps a copy of the very
first program instruction and of its control signals, and is essential in case of mismatch; in
such a case, the pipeline should restart the program execution, wasting one cycle to fetch
and decode the initial instruction again. This unit is particularly important in case of long
sequences of characters that do not match the RE: in this case, the pipeline would restart
the execution very often, wasting a large percentage of cycles in stalling to restart the
program execution. The second FDUs is dedicated to continuously prefetching the next
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Figure 6.2: Details of the core logic, with the pipeline components
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instruction, which is essential in case a match is found. Finally, the third FDUs leverages
the compiler hints for prefetching, working on the instruction after the sequence of ORed
REs (in case of JIM) or on the initial instruction of a sub-RE (in case of OKP).

The Execute stage takes as inputs the signals from the previous stage and a portion of
data from the data buffer. The outputs of this component are the match signal and the
data offset of the matched character sequence. The EUs performs the basic logic opera-
tions like AND or OR between the input data and the reference, according to the opcode
and to the reference validity. To increase the number of characters processed in a single
clock cycle, four cluster of comparators are present (numbered 1 to 4 in fig. 6.2), each
one composed by four comparators. Since the EUs contains most of the combinational
components of our design, properly sizing is crucial to the trade off between number of
characters processed per clock cycle and the length of the synthesis critical paths, which
both contribute to the overall performance. We found out that the adoption of four clus-
ters of four comparators each yields good performance while keeping the critical path low
enough to achieve frequencies in the order of 100MHz or more.

As a complement to the Execution logic, the data buffer is augmented with six output
registers that store all the possible portions of data that can be requested by the Execu-
tion stage. Indeed, depending on the result of an instruction (match/not match) and on
the number of characters the instruction is matching (from 1 to 4), different inputs can be
necessary. In particular, the number of characters instruction i matches determines how
many characters should be fetched for instruction i+1 (these numbers being equal). How-
ever, the logic to fetch a variable number of characters impacts on the critical path, and is
avoided by using 5 different registers storing the possible inputs for instruction i+1 (the
same 4 characters of instruction i in case of not match, one new character in case of one
character matched, 2 new characters in case of 2 characters matching and so on). Finally,
one more register is present in case the match fails and the RE is restarted.

On top of all the components, the CPs is responsible to control the overall matching
process. It requests the instructions from the instruction memory, determines the right
FDUs output for the current clock cycle, arbitrates the data buffer registers and fetches
new data from an external data memory (implemented with a BRAMs) to refill the data
buffer.

6.3.4 Multi-Core Architecture

In order to parallelize the RE recognition we decide to adopt a multi-core architecture.
Depending on the application at hand, the matching process can be performed in two
different modes:

1. each core is provided with the same set of instructions but with different portions of
the input data; this is useful in scenarios like genome matching, where the amount of
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data can largely exceed the number of interesting sequences and potential overlaps
can easily be found in a following stage

2. the input data are the same for each core but the sets of instructions are different; this
is useful in scenarios like malware detection, where the number of patterns to look
for is potentially much larger than the input data

The design consists in multiple instantiations of the core and its data BRAM, resulting in
a single private memory multi-core architecture.

In the first operational mode, the compiler splits the input data according to an heuristic
that tries to ensure the absence of a matching string in the cut between two consequent
chunks of data. The hypothesis behind this heuristic relies on a user-specified threshold
that indicates the maximum length of a match, which can be set according to the different
use cases of the system. Based on this parameter, the compiler splits the data in portions
with overlapping regions whose length is determined by the threshold, and assigns each
portion to a core. Equations 6.1, 6.2 and 6.3 formalize the adopted heuristic:

Bsize =
Sdata
Ntc

(6.1)

∀i EoDi = Bsize · (i+ 1) + Tr (6.2)

∀i SoDi = EoDi−1 − Tr (6.3)

whereBsize is the batch size to be loaded into the private memory of each core, Sdata is the
size of the data to be analysed and Ntc is the number of cores instantiated in the system.
EoDi refers to the End of Data of the i-th core and Tr is the user defined threshold of
maximum match length. SoDi instead is the Start of Data for the i-th core and is based
on the EoD of the previous core. The only exception is of course the SoD of the first core
which will be at the beginning of data.

Based on the approach we used, it is possible to obtain theoretical results in terms of
throughput of our architecture. Although the performances are highly data dependent, the
main parameter is affecting the minimum and maximum throughput values is the number
many characters that can be compared for each clock cycle. Our design envisages three
different time metrics depending on the state of the FSM:

Tnm =
1/F

NCluster
(6.4)

Tmc =
1/F

ClusterWidth
(6.5)

Tmu =
1

F
(6.6)
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Table 6.2: Performance of the 16-core implementation on the VC707 compared to Flex

Regular Expression
Flex

(Intel i7 2.8GHz)
16-core

(130 MHz) Speedup

ACCGTGGA 271 µs 2.07 µs 130.9x

(TTTT)+CT 121 µs 4.54 µs 26.65x
(CAGT)|(GGGG)
|(TTGG)TGCA(C|G)+ 263 µs 3.36 µs 78.27x

Table 6.3: Area Utilization of a single-core implementation on VC707

VC707 Board Slice LUTs Slice Reg. F7 Muxes

Used 1921 1775 261
Percentage 0.63% 0.29% 0.17%

Where F is the system frequency, Tnm ( ns
char

) is the throughput reached whenever the data
is not matching the RE, Tmc represents the situation in which the core is in a matching
state and the current instruction is a concatenation and Tmu is the last case for which the
state is still in the matching state and the instruction is a chain of ORs.

6.4 Experimental Results

The architecture described in section 6.3 has been implemented on two different boards by
Xilinx. The first platform is a VC707 board powered by a Virtex-7 FPGAs and the second
platform is a Digilent PYNQ-Z1 board powered by a ZYNQ System on Chip comprising
an ARM CPUs and a Xilinx FPGAs. On both platforms we used Xilinx Vivado 2016.4
for synthesis and implementation. The design of the VC707 includes a Microblaze soft
processing unit, which serves as an interface to our core and feeds it with instructions and
data. Instead, on the PYNQ platform the FPGAs is directly attached to and controlled
from the ARM processor on the same die.

As a first result, the area utilization of a single-core of the architecture is very small.
Indeed, on the VC707 section 6.3.4 shows that a single core uses less than 1% of the
resources, while on the PYNQ section 6.4 shows an area utilization of less than 4% of
them. Moreover, in both cases the bottleneck resource is the amount of LUTs, which are
increasingly available in recent FPGAss thanks to the advancements of lithography. This
bottleneck is due to the control-bounded nature of REs matching, which requires mostly
logic to control the REs matching process.

We performed tests with multiple cores in order to use a significant portion of the
available FPGAs area. Tables 6.2 and 6.4 show the results in terms of speedup with respect
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Table 6.4: Performance of the 8-core implementation on the PYNQ compared to Flex

Regular Expression
Flex

(Intel i7 2.8GHz)
8-core

(70 MHz) Speedup

ACCGTGGA 271 µs 7.2 µs 37.63x

(TTTT)+CT 121 µs 8.21 µs 14.73x
(CAGT)|(GGGG)
|(TTGG)TGCA(C|G)+ 263 µs 30.3 µs 8.67x

Table 6.5: Area Utilization of a single-core implementation on PYNQ

PYNQ Board Slice LUTs Slice Reg. F7 Muxes

Used 1845 1775 261
Percentage 3.46% 1.66% 0.98%

to Flex [50] for the VC707 platform and the PYNQ platform, respectively. Flex is a
tool that encodes an input REs to be matched into a full-fledged C program, which is
based on an optimized Finite State Machine specifically tailored to the input REs. The
program obtained from Flex was compiled with best optimizations and run on an Intel
i7 CPUs with a peak frequency of 2.8 GHz. The input REss are shown in the leftmost
column of table 6.2 and of table 6.4, and are inspired to DNA-matching applications of
increasing complexity: they are are an example of recent DA workload that is is gaining
increasing interest and market. As input text we used the first 16KB of the Homo Sapiens
chromosome [21], which contains at most 3 matches for each REs. This small number of
matches represents a worst-case scenario for REs matching applications, as the matching
engine has to examine long input sequences which do not match, and has to frequently
restart the matching process with new incoming characters, therefore stressing the control
capabilities of the architecture. To leverage the available area, we deployed multiple cores
on each platform, in order to parallelize the matching process for the same string: each
core matches against the same REs and receives a portion of the input string, and the
result from the first matching core is returned. To balance the overhead of distributing
REs instructions and data to the cores and the input string, we synthesized 16 cores on the
VC707 platform reaching a frequency of 130MHz. Similarly, we ran the same tests on a
Digilent PYNQ-Z1 board. Since PYNQ has fewer resources than the VC707, we could
instantiate up to 8 cores on PYNQ, reaching a frequency of 70MHz, and we ran the same
tests we performed on the VC707 with the results in table 6.4. The VC707 16-core system
at 130MHz achieved 16.64 Gb/s as worst throughput and 66.56 Gb/s in the best case, while
the 8-core implementation on the PYNQ at 70MHz resulted in bitrates ranging from 4.48
Gb/s - 17.92 Gb/s.
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Table 6.6: Bitrate comparisons with the state-of-the-art

Solution Clock Frequency [MHz] Bitrate [Gb/s]

VC707 16-core 130 16.64 - 66.54
PYNQ 8-core 70 4.48 - 17.92

[127] 318.47 10.19 - 18.18
[180] - 3.39 - 29.59
[75] 150 230 - 430

[106] - 10 - 19
[98] 2300 20 - 40

[53] (FPGA) 100 3.2
[53] (ASIC) 1000 256

[13] 250 1 - 16
[3] 250 12.16

[118] 100 11.98
[166] - 16

Finally, table 6.6 includes the bitrates and the working frequencies (where available)
of the main works reviewed in section 6.2 together with the results achieved by our work,
which compare favourably against most of the works reviewed in terms of pure perfor-
mance. In the cases where the results were not directly comparable, we computed the
achievable bitrate from the time to match a character (extracted from the cited paper) and
from the number of cores, which we assumed to be 8. In this way, we are implicitly as-
suming that the matching performance of reviewed works scale linearly with the number
of cores, which is a reasonable assumption if the proposed solutions can do parallel match-
ing on slices of the input (as we did). To compare against the PYNQ, we assumed 8 cores
to be deployed.

Bx =
1

Tx
· 8 · 109 ·Ntc (6.7)

Comparing the reviewed works against ours, we can note that the works that outperform
ours are based on better hardware implementations, typically because they have higher
operating frequencies (and are mostly ASIC) and they embed the REs into the control
logic, thus renouncing to the flexibility our work retains.

6.5 Conclusions

This work presented a multi-core architecture tailored to pattern matching, implemented
on a high-level FPGA and an System On Chip (SoC). Thanks to the approach adopted,
the system achieved remarkable results both in terms of resource utilization and in terms
of performance. The implementation on the PYNQ platform demonstrated the possibility
to easily integrate the design in SoCs and Heterogeneous architectures. This work was
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published and presented in the 25th edition of Reconfigurable Architectures Workshop
(RAW).

Future works on improvements move along several directions. The first direction to
work on to directly improve performance is to increase the frequency of the entire system,
so as to get a proportional performance increase. With such an increase in throughput and
broader applicative scenarios, the system should sustain an appropriate data rate to feed in-
put characters to the matching engine, which will possibly require exploring new memory
organizations, like data prefetchers or caches. Similarly, as many applications need match-
ing multiple REs in parallel, a multi-core system requires an appropriate interconnection
to feed the cores with data and collect match results: in this direction, Network-on-Chip
solutions look a viable solution to explore in order to balance the performance with the
area occupation and the routing issues. Finally, to expose the accelerators to users’ ap-
plications, a standard interface is required, like a PCIe interface that applications can talk
to; the integration with a PCIe subsystem would allow the deployment of our solution to
environments like AWS F1 FPGA-based solutions, which are based on Xilinx SDAccel
toolchain and are designed for cloud-like scenarios. This would be the starting point for
embracing RE acceleration within a FaaS infrastructure and transparently offload some of
the heaviest pre-processing stages of DA and ML applications.
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CHAPTER7
Conclusions and Future Work

This chapter concludes this thesis by reviewing its achievements in section 7.1 and by
discussing limitations and future work in section 7.2.

7.1 Achievements

This work addressed the main limitations of data-intensive applications, especially for DA
and ML, focusing the analysis on the recent CPUs and on cloud-like settings. It tackled the
two main issues of this kind applications while running on modern hardware platforms:
the co-location and resource sharing issue and the optimization of users’ application in
a transparent way. Chapter 3 addressed the first issue by introducing a general-purpose
mechanism for LLC partitioning that requires software-only modifications. The following
chapters chapter 4 and chapter 5 investigated the main issues of optimizing ML appli-
cations on modern hardware and proposed insights and solutions that are applicable to a
large set of data-intensive applications, implementing the novel solutions in a prototype
like PRETZEL. Then, chapter 6 explored a promising enhancement to PRETZEL by inves-
tigating an FPGA-based solution for RE matching to that can be deployed in cloud-like
scenarios like FaaS and MLaaS; since it is based on an architecture that achieves the re-
quired performance while retaining large flexibility, the solution proposed in chapter 6 is
thus suitable for a large class of applications.
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In our vision, this works provides the foundations to build more efficient FaaS systems
for data-intensive applications that can make most efficient use of CPUs, guarantee isola-
tion and thus QoS and also flexibly scale to heterogeneous solutions for higher levels of
performance. The key insight, from chapter 4, is the necessity of a white-box approach
for this class of application, due to their structure composed of multiple diverse opera-
tions with different performance characteristics, as from section 2.1.2. Since the DAG of
operations can be arbitrarily complex and diverse within data-intensive applications, only
a white-box, deep visibility over the application internals can ensure that an automatic
optimization approach is effective and general, while the internals being expressed with
the granularity of high-level operators also ensures portability to different hardware and
software platforms, like offloading to FPGA accelerators. Therefore, we envision this ap-
proach and these abstractions to become fundamental guidelines for future FaaS systems
for data-intensive applications.

7.2 Limitations and future works

To realistically move towards the goal of a FaaS system for data-intensive applications that
is able to meet SLAs employing the solutions this work proposes, the white-box approach
and the operator-level of abstraction are the starting point. Indeed, operators characteris-
tics are known upfront and can be modelled within an appropriate analytical framework,
building on the considerations already discussed at the end of chapter 5: from here, op-
erators’ information can be combined together and extended, for example with locality
information to devise the amount of LLC needed. Although this thesis laid the founda-
tions for this future endeavour, combining the proposed solutions into a single system,
further augmented to cover the large class of data-intensive applications, still requires a lot
of research effort. The literature only partially covers some relevant aspects.

Works like Halide [134] already use operators’ information to schedule the computation
on multiple cores of a CPU and on multiple nodes of a cluster: a similar approach is
needed for the broader class of data-intensive applications, as Halide is designed only
for image processing. Therefore, and end-to-end optimization and implementation flow,
embodied in a runtime system that is generic enough to cover data-intensive applications
and heterogeneous resources is still ahead. In particular, the next step that is missing is
an optimizer that covers all the relevant ML and DA operations. In our opinion, the Oven
optimizer introduced in section 5.3 is the starting point, but needs more generalization.
Indeed, so far it covers only a subset of very common operators in ML.Net; furthermore,
the ever-expanding and ever-changing implementations of today’s frameworks for ML and
DA suggest optimizations strategies to have a solid theoretical and analytical base, as hand-
written rules would not keep up with the developments of these fields. The most promising
future direction is thus to take further inspiration from the Database community, as from
PRETZEL’s design guidelines, and explore porting more and more of their solutions to this
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larger field. A possible difference lies in the higher diversity of data-intensive kernels:
while SQL operators are limited in number and can be naturally described in terms of
Relational Algebra, ML and DA operations are much more variegated. As a promising
approach, we argue that many such operations can be described in terms of Tensor Algebra,
as some works like [33] already do, despite limited to NNs. In our opinion, this research
direction is very promising and can lead to a large body of work.

A second aspect this work shed limited light on is on how to leverage heterogeneity,
enhancing the envisioned system to also consider very diverse implementations. The liter-
ature shows possible solutions that move towards different directions.

The first direction is a thorough modelling of the hardware behavior thanks to a deep
knowledge of the platform, for example via the Extended Roofline Model [27], which
can guide backend compilers towards the best implementation and predict the final per-
formance also in presence of GPUs [119]. This would allow computing the resource and
runtime costs of each implementation and use this information for scheduling and mapping
inside evolutions of PRETZEL’s Oven optimizer and Scheduler. However, especially FP-
GAs make the prediction very complex, as the Roofline model needs to explore a larger so-
lutions space that is not known a priori [151]. While further efforts are needed to improve
prediction capabilities on this specific front, the problem can be alleviated with Domain-
Specific Architectures (DSAs), whose known architecture reduces the exploration space
to the architecture parameters. Although DSAs are a promising solution for future hetero-
geneous platforms 1 , they are still a quickly evolving research field with no established
guidelines nor tools: thus, predictions on possible research paths towards this direction are
— in our opinion — very premature at the moment of writing.

The second direction is the one [33] takes, and relies on the prediction capabilities
of ML models to select the best implementation based on previous experience. Indeed,
universal approximators like NNs can be effective in predicting the non-linear behavior of
complex hardware configurations (taking in account computing units, memory hierarchy,
interconnection topology, bandwidth, etc.) starting from an input application, and the
initial results of [33] are promising. This black-box approach can perhaps apply to those
platform with a very complex, and sometimes not analytically describable, solution space
to explore, where analytical models like the Roofline have limited effectiveness.

Since both the black box approaches to optimization and implementations and the an-
alytical approach (possibly limited via DSAs-based templates) are still very hot research
topics, it is not possible to identify the most promising research direction. The road to-
wards efficient, heterogeneous systems for data-intensive applications is large and excit-
ing.

1Hennessy and Patterson, in their lecture for the Turing award at ISCA2018 [77], also advocate for higher levels of abstraction to
allow using DSAs for offloading to accelerators. The reader can note that the TiReX architecture of chapter 6 is essentially a DSA for
REs.
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