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Abstract

IN current years we are assisting at a new era of computer architectures,
in which the need for energy-efficiency is pushing towards hardware
specialization and the adoption of heterogeneous systems. This trend

is reflected in the High Performance Computing (HPC) domain that, in
order to sustain the ever-increasing demand for performance and energy
efficiency, started to embrace heterogeneity and to consider hardware ac-
celerators such as Graphics Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs) and dedicated Application-Specific Integrated Cir-
cuits (ASICs). Among the available solutions, FPGAs, thanks to their
advancements, currently represent a very promising candidate, offering a
compelling trade-off between efficiency and flexibility that is arguably the
most beneficial. FPGA devices have also attained renewed interests in re-
cent years as hardware accelerators within the cloud domain. Tangible ex-
amples of this are the Amazon EC2 F1 instances, which are compute in-
stances equipped with Xilinx UltraScale+ FPGA boards. The possibility to
access FPGAs as on demand resources is a key step towards the democra-
tization of the technology and to expose it to a wide range of application
domains.

Despite the potential benefits given by embracing reconfigurable hard-
ware both in the HPC and cloud contexts, we notice that one of the main
limiting factor to the widespread adoption of FPGAs is complexity in pro-
grammability, as well as the effort required to port a pure software solution
to an efficient hardware-software implementation targeting reconfigurable
heterogeneous systems.
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The main objective of this dissertation is the development of CAD as
an Adaptive Open-platform Service (CAOS), a platform able to guide the
application developer in the implementation of efficient hardware-software
solutions for high performance reconfigurable systems. The platform aims
at assisting the designer starting from the high level analysis of the code, to-
wards the definition of the functionalities to be accelerated on the reconfig-
urable nodes. Furthermore, the platform guides the user in the selection of
a suitable architectural template for the FPGA devices and the final imple-
mentation of the system together with its runtime support. Finally, CAOS
has been designed to facilitate the integration of external contributions and
to foster research on the development of Computer Aided Design (CAD)
tools for accelerating software applications on FPGA-based systems.

II



i
i

“thesis” — 2019/1/21 — 12:19 — page III — #7 i
i

i
i

i
i

Sommario

NEGLI ultimi anni stiamo assistendo ad una nuova era nello sviluppo
delle architetture dei calcolatori, nella quale la necessità di soluzioni
energeticamente efficienti, sta stimolando la ricerca verso hardware

specializzato e l’utilizzo di sistemi eterogenei. Questo trend si riflette anche
nel dominio HPC che, dovendo sostenere una richiesta di prestazioni ed ef-
ficienza energetica in crescente aumento, ha iniziato a considerare l’uso di
sistemi eterogenei e di acceleratori hardware come GPU, FPGA ed ASIC.
Tra le diverse soluzioni disponibili, le FPGA, grazie ai recenti avanza-
menti tecnologici, rappresentano al momento un candidato molto promet-
tente, offrendo un bilanciamento competitivo tra efficienza e flessibilità.
Negli ultimi anni, i dispositivi FPGA hanno ottenuto una rinnovata atten-
zione nell’ambito cloud. Esempi tangibili sono le istanze Amazon EC2 F1,
ovvero istanze di computazione connesse con schede Xilinx UltraScale+.
La possibilità di accedere alle FPGA come risorse on demand rappresenta
un passo fondamentale verso la democratizzazione di questa tecnologia e
verso il suo utilizzo in un ampio insieme di domini applicativi.

Nonostante i potenziali benefici dati dall’utilizzo di hardware ricon-
figurabile sia nell’ambito HPC che in quello cloud, notiamo che uno dei
maggiori fattori limitanti alla diffusione delle FPGA è la loro complessità
nell’essere programmate e la difficoltà nello sfruttare la tecnologia per im-
plementare sistemi hardware-software efficienti partendo da una pura im-
plementazione software.

L’obiettivo principale di questa tesi è lo sviluppo di CAOS, una pi-
attaforma in grado di guidare lo sviluppatore verso l’implementazione di
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soluzioni hardware-software efficienti per sistemi riconfigurabili ad alte
prestazioni. La piattaforma mira ad assistere lo sviluppatore partendo dalla
analisi di alto livello del codice e guidandolo verso la definizione delle fun-
zionalità da accelerare sui nodi di computazione riconfigurabili. Infine,
supporta lo sviluppatore nella selezione di un template architetturale per
realizzare l’acceleratore e nell’implementazione del sistema insieme al sup-
porto runtime. Inoltre, il design di CAOS è stato realizzato con l’obiettivo
di facilitare l’integrazione di contributi esterni e di promuovere la ricerca
nello sviluppo di nuovi strumenti per l’accelerazione di applicazioni su sis-
temi basati su FPGA.
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CHAPTER1
Introduction

Over the last 40 years, software performance has benefited from the expo-
nential improvement of General Purpose Processors (GPPs) that resulted
from a combination of architectural and technological enhancements (Fig-
ure 1.1). In 1974, under some assumptions, Robert H. Dennard showed
that reducing the dimension of a MOSFET transistor by a factor k leads to
a power-delay product improvement of k3, which translates into the pos-
sibility to integrate a factor of k2 transistors on the same die area and to
scale the chip frequency k times without increasing the overall power con-
sumption [28]. Said in other words, given a fixed die area, it is possible to
double the number of transistors and increase the clock frequency by about
40% with the same power consumption. This result is referred as Dennard
scaling and paired with the well known Moore’s law [64], which states that
the number of transistors doubles roughly every 18 months, has been one of
the main source of performance improvement from the 1970s to the early
2000s. However, despite Dennard scaling served us well, around 2005 it
was no more possible to keep the k3 power-delay improvement due to is-
sues in reducing the threshold voltage [12]. Hence, a reduction of transistor
size by a factor of k settled to a more conservative k2 improvement in the
power-delay product. Furthermore, with the failure of Dennard scaling and
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Figure 1.1: 40 Years of processor performance improvement based on the SPECintCPU
benchmark. Image and data adapted from [46].

the continuous shrinkage of transistors, it was no more possible to scale fre-
quency due to the unmanageable power density to dissipate [101]. The phe-
nomenon is referred as the power wall and led the way to multiprocessors
design as an alternative approach to achieve higher performance. Despite
the technological and architectural achievements of GPP, the performance
measured on standard benchmarks in the last 3 years only improved at a
rate of about 3% per year [46]. After the failing of Dennard scaling, the
current diminishing performance improvements of GPP resides in the diffi-
culty to efficiently extract more fine-grained and coarse-grained parallelism
from software.

Considering the shortcomings of GPP, in current years we are assist-
ing at a new era of computer architectures in which the need for energy-
efficiency is pushing towards hardware specialization and the adoption of
heterogeneous systems. This trend is also reflected in the High Performance
Computing (HPC) domain that, in order to sustain the ever-increasing de-
mand for performance and energy efficiency [22], started to embrace het-
erogeneity and to consider hardware accelerators such as Graphics Process-
ing Units (GPUs) [96], Field Programmable Gate Arrays (FPGAs) [76] and
dedicated Application-Specific Integrated Circuits (ASICs) [97] along with
standard CPU.

Albeit ASICs show the best performance and energy efficiency figure,
they are not cost-effective solutions due to the diverse and ever-evolving
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1.1. The FPGA programmability challenge

HPC workloads and the high complexity of their development and deploy-
ment, especially for HPC. Programmability is thus an essential feature that
accelerators deployed in datacenters have to enjoy, the two most common
representative being GPUs and FPGAs. Among the available solutions,
FPGAs, thanks to their advancements, currently represent the most promis-
ing candidate, offering a compelling trade-off between efficiency and flex-
ibility that is arguably the most beneficial. Indeed, FPGA are becoming
a valid HPC alternative to GPU, as they provide very high computational
performance with superior energy efficiency by employing customized dat-
apaths and thanks to hardware specialization.

FPGA devices have also attained renewed interests in recent years as
hardware accelerators within the cloud domain. Tangible examples of this
are the Amazon EC2 F1 instances, which are compute instances equipped
with Xilinx UltraScale+ FPGA boards, as well as the FPGA-accelerated
cloud servers from Huawei, Baidu, Tancent and the Alibaba Cloud and
Nimbix FPGA-based instances. The possibility to access FPGAs as on de-
mand resources is a key step towards the democratization of the technology
and to expose them to a wide range of potential domains, ranging from
computational chemistry [14], genomics [30], finance [72], image process-
ing [52] and machine learning [116] to cite a few.

Another distinguishing feature of FPGAs which has become common
in recent years, is their ability to support Partial Dynamic Reconfiguration
(PDR), which allows to reconfigure at runtime only a small portion of the
device while the rest of the system keep running. Such capability opens
up a new degree of freedom in developing FPGA-based system [95] and
enables the designer to overcome the resource constraints imposed by the
device by time-multiplexing the hardware resources when needed.

1.1 The FPGA programmability challenge

Despite the potential benefits given by embracing reconfigurable hardware
in both the HPC and cloud contexts, we notice that one of the main lim-
iting factor to the widespread adoption of FPGAs is complexity in pro-
grammability as well as the effort required to port a pure software solution
to an efficient hardware-software implementation targeting reconfigurable
heterogeneous systems [5]. During the past decade we have seen significant
progress in High-Level Synthesis (HLS) tools which partially mitigate this
issue by allowing to translate functions written in a high-level languages
such as C/C++ to an hardware description language suitable for hardware
synthesis. Nevertheless, current tools still require experienced users in or-
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der to achieve efficient implementations. In most cases indeed, the pro-
posed workflows require the user to learn the usage of specific optimization
directives, code rewriting techniques and, in other cases, to master domain
specific languages. In addition to this, most of the available solutions focus
on the acceleration of specific kernel functions and leave to the user the
responsibility to explore hardware/software partitioning as well as to iden-
tify the most time-consuming functions which might benefit the most from
hardware acceleration.

Furthermore, an additional degree of complexity is introduced when
PDR is employed for the target FPGA-based design. Indeed, PDR re-
quires the designer to partition the design on different Reconfigurable Re-
gions (RRs), define the floorplan of the RRs on the FPGA, and, finally,
decide how to schedule the execution of the module on the RRs in order to
minimize the reconfiguration overhead. All such decisions impact on the
quality and performance of the final design, despite current vendors tools
offer none or very small guidance on how to perform such tasks.

1.2 Contributions

The main objective of this research is the development of a platform able to
guide the application developer in the implementation of efficient hardware-
software solutions for high performance reconfigurable systems. The plat-
form aims at assisting the designer starting from the high level analysis of
the code, towards the definition of the functionalities to be accelerated on
the reconfigurable nodes, the selection of a suitable architectural template
for the FPGA devices and the final implementation of the system together
with its runtime support. Most of the work done in this thesis has been
developed in the context of the Exploiting eXascale Technology with Re-
configurable Architectures (EXTRA) project and shares with it the same
vision [83]. The following sections provides more details on the specific
contributions in the context of the proposed platform.

1.2.1 An open-research platform to democratize high performance
reconfigurable systems

The platform, dubbed as CAD as an Adaptive Open-platform Service (CAOS),
targets both application developers and researches while its design has been
conceived focusing on three key principles: usability, interactivity and mod-
ularity. From a usability perspective, the framework supports application
designers with low expertise on reconfigurable heterogeneous systems in
quickly optimizing their code, analyzing the potential performance gain
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and deploying the resulting application on the target reconfigurable archi-
tecture. Nevertheless, the platform does not aim to perform the analysis
and optimizations fully automatically, but instead interactively guides the
users towards the design flow, providing suggestion and error reports at
each stage of the process. Finally, CAOS is composed of a set of inde-
pendent modules accessed by the CAOS flow manager that orchestrates the
execution of the modules according to the current stage of the design flow.
Each module is required to implement a set of well-defined Application
Programming Interface (API) so that external researchers can easily in-
tegrate their implementations and compare them against the ones already
offered by CAOS.

1.2.2 New methodologies for accelerating high-level applications through
FPGA devices

A general method for translating high-level functions into FPGA-accelerated
kernels has been proposed within CAOS. The core idea revolves on match-
ing a software function with an architectural template, which is a character-
ization of the accelerator both in terms of its computational model and the
communication with the off-chip memory. An architectural template con-
strains the architecture to be generated on the reconfigurable hardware and
poses restrictions on the application code that can be accelerated, so that the
number and types of optimizations available can be tailored for a specific
type of hardware implementation. Within this context, we have integrated
three architectural templates within CAOS:

• Master/Slave architectural template: it targets a relatively large set
of C/C++ codes and it is well suited for algorithms whose working set
that can be efficiently tiled so that the resulting accelerator operates on
a subset of the application data that is block-transferred to and from
the FPGA local memory. The Master/Slave architectural template ex-
plores a set of alternative hardware implementations by applying opti-
mization such as loop pipelining, loop unrolling, memory partitioning
and on-chip caching. The optimizations are tested through Xilinx Vi-
vado HLS, while the template supports Xilinx SDAccel and allows to
seamlessly implement the final system on Amazon F1 instances in the
cloud.

• Dataflow architectural template: it specifically targets dataflow-like
computations, which have proven to be very effective when imple-
mented on FPGA. Starting from a high level language supported by
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Low-Level Virtual Machine (LLVM), it generates a dataflow inter-
mediate representation of the target function and translates it into a
chosen target language suitable for hardware synthesis. The bitstream
generation is handled by a backend synthesis tool of choice which
supports the dataflow computational paradigm. By means of this tem-
plate, software developers with little to none experience in FPGA pro-
gramming were able to achieve in a about a day of work speedup
comparable to bespoke implementations.

• Streaming architectural template: it specifically targets stencil com-
putation written in C and leverages the Streaming Stencil Time-step
(SST) technology [16] for implementing the final accelerator on the
target reconfigurable system. Within this context, we proposed a de-
sign exploration algorithm that jointly maximizes the number of pro-
cessing elements that can be instantiated on the target FPGA and iden-
tifies a floorplan of the design that minimizes the inter-component
wire-length in order to allow implementing the system at a higher
clock frequency.

1.2.3 CAD algorithms for partially reconfigurable FPGA designs

The CAOS backend has been conceived in order to support floorplanning,
scheduling and mapping for PDR. In this dissertations we provide new
approaches to automatically perform such steps in order to facilitate the
integration of architectural templates that require the usage of PDR. More
specifically we present:

• A novel floorplanning automation framework, integrated in the Xilinx
toolchain, which is based on an explicit enumeration of the possible
placements of each region. Moreover, we propose a genetic algorithm,
enhanced with a local search strategy, to automate the floorplanning
activity on the defined direct problem representation. Experimental
results demonstrated the effectiveness of the proposed direct problem
representation and the superiority of the defined genetic algorithm en-
gine with respect to the other approaches in terms of exploration time
and identified solution.

• A new scheduling technique for partially-reconfigurable FPGA-based
systems that allows to achieve high quality results in terms of overall
application execution time. The proposed algorithm exploits the no-
tion of resource efficient task implementations in order to reduce the
overhead incurred by partial dynamic reconfiguration and increase the
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number of concurrent tasks that can be hosted on the reconfigurable
logic as hardware accelerators. We evaluated a fast deterministic ver-
sion of the scheduler that is able to find good quality solutions in a
small amount of time and a randomized version of the approach that
can be executed multiple times to improve the final result.

1.3 Sources

This dissertation refers to and possibly extends the following publications:

• Floorplanning Automation for Partial-Reconfigurable FPGAs via
Feasible Placements Generation, M. Rabozzi, G. C. Durelli, A. Miele,
J. Lillis and M. D. Santambrogio. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2016.

• Resource-efficient scheduling for partially-reconfigurable FPGA-
based systems, A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto, M. D.
Santambrogio. Appeared in the proceedings of Reconfigurable Archi-
tecture Workshop (RAW), 2016.

• Heterogeneous Exascale Supercomputing: The Role of CAD in
the exaFPGA Project, M. Rabozzi, G. Natale, E. Del Sozzo, A.
Scolari, L. Stornaiuolo and M. D. Santambrogio. Appeared in Pro-
ceedings of the Conference on Design, Automation & Test in Europe,
2017.

• A CAD Open Platform for high performance reconfigurable sys-
tems in the EXTRA project, M. Rabozzi, R. Brondolin, G. Natale,
E. Del Sozzo, M. Huebner, A. Brokalakis, C. Ciobanu, D. Stroobandt
and M. D. Santambrogio. Appeared in IEEE Computer Society An-
nual Symposium on VLSI (ISVLSI), 2017.

• Optimizing streaming stencil time-step designs via FPGA floor-
planning, M. Rabozzi, G. Natale, B. Festa, A. Miele, M. D. San-
tambrogio. Appeared in 27th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2017.

• The role of CAD frameworks in heterogeneous FPGA-based cloud
systems, L. Di Tucci, M. Rabozzi, L. Stornaiuolo and M. D. San-
tambrogio. Appeared in IEEE International Conference on Computer
Design (ICCD), 2017.

• OXiGen: A tool for automatic acceleration of C functions into
dataflow FPGA-based kernels, F. Peverelli, M. Rabozzi, E. Del Sozzo,
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M. D. Santambrogio. Appeared in the proceedings of Reconfigurable
Architecture Workshop (RAW), 2018.

1.4 Outline

The context, motivations and the design of the proposed CAOS platform are
described in Chapter 2. After having introduced the core of the CAOS plat-
form, Chapters 3 to 5 delve into the Master/Slave, Dataflow and Streaming
architectural templates that have been integrated in CAOS. Each architec-
tural template provides support for different types of input codes and the
generated hardware accelerator is dependent upon the specific architectural
template. In the second part of the dissertation, we focus on algorithms and
methods to support FPGA designs that require PDR. More specifically,
Chapter 6 discuss the proposed novel floorplanning methodology for par-
tially reconfigurable designs, while Chapter 7 presents a new scheduling
technique for Directed Acyclic Graph (DAG) of compute tasks on a set of
partially reconfigurable regions. Both approaches can be leveraged within
the CAOS backend to support future architectural templates that make use
of PDR. Finally, Chapter 8 draws the conclusions and discusses future re-
search directions.

1.5 How to read this thesis

The order of the chapters in this dissertation has been conceived to facil-
itate the reader in understanding the overall CAOS platform starting from
its main design and principles discussed in Chapter 2, moving then to the
supported architectural templates described in Chapters 3 to 5, and, finally,
discussing new approaches and algorithms in Chapters 6 and 7 to enable
the support for partially-reconfigurable designs within CAOS. Neverthe-
less, most of the chapters can also be read independently. If the reader is
interested in a specific architectural template and not in the entire CAOS
platform, he/she can directly refer to one of Chapters 3 to 5 and skip the
corresponding section discussing the template integration within CAOS.
However, if the reader is also interested in learning how the specific archi-
tectural template can be used through CAOS, we encourage the reader to
read Chapter 2 first. Similarly, the reader interested in the floorplanning
and scheduling techniques presented in Chapter 6 and Chapter 7, can refer
directly to the corresponding chapter or start with Chapter 2 first if he/she
is also interested in their potential applications within the CAOS platform.
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CHAPTER2
The CAOS platform

This chapter sets the context in which the proposed CAOS platform has
been devised and presents its design flow and peculiarities. The platform
aims at providing a fully integrated solution for automating and assisting
all the steps for accelerating applications on High Performance Comput-
ing (HPC) and cloud systems featuring FPGA devices. CAOS also provides
practical interfaces to enable extensions and enhancements of its function-
alities and promote contribution from the community, ultimately pushing
the adoption of reconfigurable hardware in the HPC and cloud domains.
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Chapter 2. The CAOS platform

2.1 Background and motivations

This section reviews the background material at the base of CAOS, high-
lighting limitations and open challenges that motivate this work. Despite
the plethora of High-Level Synthesis (HLS) tools that have emerged both in
the academia in industry in the last years [68], the platforms, frameworks
and design flows that targets the full software stack for the implementa-
tion of high-level applications onto a target FPGA-based system are only a
handful [36, 45, 50, 60, 78, 94, 103, 109].

Since HPC and cloud systems comprise multiple nodes, the descrip-
tion of nodes’ interconnection and resources can be formalized through the
concept of template, which describes the system organization at a certain
granularity. We can distinguish three main templates: a system template
describes how the nodes are interconnected, a node template describes the
computational resources each node contains and an architectural template
describes the computational kernels deployed on the Field Programmable
Gate Array (FPGA). Throughout this section we will use these three cate-
gories to review the relevant work around CAOS.

2.1.1 Existing workflows for FPGA development

Due to the diversity of domains and vendors, different development prac-
tices and tool suites have established to aid developers, yet at the cost of a
strong lock-in. As an example, Xilinx provides different tool sets and flows
like the Vivado Suite, SDAccel [109] and SDSoC [50], while Altera pro-
vides “Quartus Prime”, “FPGA SDK for OpenCL” and others for the same
domains. For instance, the Vivado Suite is used for custom FPGA devel-
opment and leaves the user in control of the whole design process, allow-
ing free choice of the templates (system, node, architectural) but exposing
most of the complexity of this process. To help System-on-Chip (SoC) de-
signers, Xilinx’s MPSoC simplifies profiling, HLS and hardware/software
interfacing, greatly reducing engineering time and effort; yet, it is appli-
cable only to SoC development and assumes fixed templates at all system
levels. Finally, SDAccel allows developing FPGA-based applications at
a higher level of abstraction than Vivado, targeting PCIe-attached accel-
erators. SDAccel eases acceleration by assisting the user during the HLS
process and automatizing the subsequent phases, including the generation
of hardware/software interfaces and runtime management, but leaves no
control over the templates and the system parameters. Another workflow is
Dyplo by Topic [103], which targets embedded applications and focuses on
simplifying the development of partially reconfigurable solutions, assum-
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ing a single-node system with CPU+FPGA; Dyplo uses a fixed architec-
tural template based on a central ring bus for communication, which sim-
plifies runtime reconfiguration. Based on the dataflow model [29], Maxeler
Technologies [60] provides integrated solutions for distributed applications
with cluster-shared accelerators or tightly coupled CPU+FPGA nodes. The
Maxeler tools are based on a custom java-based language (named MaxJ),
which automates the synthesis phase and hides many implementation de-
tails, fixing the node and system templates on the basis of the workflow
initially chosen.

On the academic side, several works also attempt to establish design
methodologies [36, 45, 78, 94], but fall short of the freedom of templates
choice and of flexibility. The FASTER project [94] had a key role in defin-
ing new ways to support reconfigurability both at granular and modular
level while establishing a methodology for exploring HW/SW partitioning
end tasks scheduling. However, it does not explicitly consider the con-
cept of architectural template in order to distinguish among the different
accelerator implementations to efficiently target specific codes, as well as
not specifically providing ways to integrate external modules and contribu-
tions within the platform. Indeed, we think that the latter consideration is
fundamental in order to stimulate continuous research on Computer Aided
Design (CAD) tools for FPGA.

In [78], the authors focus on multi-fpga systems as well as on partial dy-
namic reconfiguration and propose a methodology to partition a design onto
the target system in order to fit within the resource constraints of the recon-
figurable logic. Despite the flow targets the final implementation of the
system, it does so starting from a Hardware Description Language (HDL)
definition of the application and does not explicitly support high-level lan-
guages. On the other side, LegUp is a popular open-source HLS tool that
also provides means to profile the application in order to help the user
in identifying portions of the code would benefit from hardware acceler-
ation [36]. Furthermore, it also transparently generates the required inter-
faces and host code to implement the final application. Nevertheless, the
approach currently lacks an automatic design space exploration to optimize
the implementation of the kernels while it is still up to the user to define
the functions to accelerate. On the opposite side, more recent efforts like
Darkroom [45] propose a workflow for image and video processing kernels
that is based on a Domain Specific Language (DSL), in order to automatize
the port of such kernels to FPGA. However, a DSL is too restrictive for the
plurality of HPC and cloud applications, which have much more complex
algorithmic patterns.
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2.1.2 Unsolved issues and motivations behind CAOS

As the research is still struggling with the complexity of accelerating ap-
plications on FPGA-based systems and the quest for automated solutions,
practitioners still resort to full-custom designs in order to achieve high
performance, and the learning curve remains very steep. The exploration
of solutions, practices and architectural paradigms for FPGAs is likely to
continue, and possibly broaden, in the coming years [4, 100, 102], rising
two main needs. The first need is to devise a general enough workflow
for FPGA acceleration taking into account the complexity of HPC and
cloud systems, whose organization is typically hierarchical. This workflow
should allow the designer to choose the organization of the system at the
various levels, corresponding to the three templates introduced at the be-
ginning of this section, while guiding the user towards the different design
choices. The second need is to have a common platform for implementing
the solutions the research proposes over time, ensuring “pluggability” of
components. For example, users willing to showcase profiling techniques
or resource estimation algorithms should easily plug into the system and
compare their work with others.

2.2 A bird’s eye view on CAOS

The entire CAOS platform has been designed around the following princi-
ples, which are independent of the technology used to build it:

• [Usability] Usually the skills needed to take advantage of the hard-
ware architectures to accelerate applications are very high. The mod-
ern HLS and hardware design tools aim at facilitating some steps of
this process, but they still require a specialized knowledge of the target
architecture. Also, the user need to manually analyze the application
to figure out what are the techniques to use to obtain the desired re-
sult. One of the objectives of the CAOS platform is to allow users with
low expertise on reconfigurable heterogeneous systems to quickly op-
timize their applications, analyze the potential performance gain and
deploy the final design on the target architecture. This is possible
thanks to the automation of certain procedures that are able to move
along the different branches of the flow and through the various opti-
mizations and implementations in hardware of the application. More-
over, each operation performed by the platform will be illustrated and
explained to the user so that he can improve his experience and the
results with each use.
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• [Interactivity] As mentioned, the Usability feature of the CAOS plat-
form is intended to provide guidance to novice users through the op-
timization flow with automatic procedures. Since this might be a con-
straint for more experienced users, who may want to apply their own
techniques and knowledge to accelerate their applications and exploit
the target architecture, all processes have been made semi-automatic.
This means that, in addition to offering suggestions and reporting pos-
sible errors, each phase of the flow allows the user to specify or change
the solutions provided by the platform and the way in which they are
obtained. In this way users can customize the stage where they have
more experience and be guided by the platform in the others. All
the options proposed by the semi-automatic system are customizable
and the user can skip the actions of each step replacing them with
their own. It is also possible to go back and forward along the phases
and modify the previous options knowing the results of the following
steps.

• [Modularity] One of the strongest points of the CAOS platform is to
implement a flow that has been divided into modules, each of which
implements its own function. This allows to better manage the Us-
ability and the Interactivity by defining and examining the inputs and
the outputs of each step, and ensures separation of concerns among
the components of the platform, which can be used separately from
each other. Moreover, each module provides a set of well defined
Application Programming Interfaces (APIs) to allow seamless inte-
gration of different versions of the analysis tools, design exploration
algorithms and performance models leveraged within the flow. In this
way the entire platform is scalable, extensible and upgradeable by ex-
perienced users who can improve the modules with their skills and
knowledge.

• [Well Defined Interfaces] Modularity allows to generalize the flow of
process that accelerates software applications by exploiting the FPGA
architecture. To do that, it is necessary to define interfaces that ensure
isolation and integrity between the modules. The goal is to generalize
the inputs and the outputs of each module to define interfaces that
guarantee its replaceability. To replace a module means that an expert
user or company can build its own implementations of modules with
the only constraint that they have to respect the defined interfaces.

The platform expects the application designer to provide the applica-
tion code written in a high level language such as C / C++, one or mul-
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tiple datasets to be used for code profiling and a description of the target
reconfigurable system. In order to narrow down and simplify the set of
possible optimizations and analysis that can be performed on a specific al-
gorithm, CAOS allows the user to accelerate its application using one of
the available architectural templates. An architectural template is a charac-
terization of the accelerator both in terms of its computational model and
the communication with the off-chip memory. As a consequence, an ar-
chitectural template constrains the architecture to be implemented on the
reconfigurable hardware and poses restrictions on the application code that
can be accelerated, so that the number and types of optimizations available
can be tailored for a specific type of implementation. Furthermore, CAOS
is meant to be orthogonal and build on top of tools that perform high level
synthesis, place and route and bitstream generation. Code transformations
and optimizations are performed at the source code level while each archi-
tectural template has its own requirements in terms of high level synthesis
and hardware synthesis tools to use.

CAOS currently support three different architectural templates: the Master-
Slave, the Dataflow and the Streaming architectural templates. The Stream-
ing architectural template targets stencil codes written in C and leverages
the Streaming Stencil Time-step (SST) architecture proposed by [17] for
its implementation. Within this context, CAOS offers a design exploration
algorithm [87] that jointly maximizes the number of SST processors that
can be instantiated on the target FPGA and identifies a floorplan of the
design that minimizes the inter-component wire-length in order to allow
implementing the system at a higher frequency. On the other hand, the
Master-Slave architectural template [31] poses less restrictions on the final
accelerator and source code, it requires that the C / C++ algorithm can be
efficiently tiled so that the resulting accelerator operates on a subset of the
application data that is block-transferred to and from the FPGA local mem-
ory. Finally, the Dataflow architectural template [79] targets dataflow ap-
plications and exploits the MaxCompiler within the backend to efficiently
implement the application as a Maxeler DFE (Dataflow Engine).

2.3 CAOS design flow

As shown in Figure 2.1, the overall CAOS design flow is subdivided into
three main flows: the frontend flow, the function optimization flow and the
backend flow. The main goal of the frontend is to analyze the application
provided by the user, match the application against one or more architec-
tural templates available within the platform, profile the user application
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CAOS platform

Frontend flow
IR generation, architectural templates applicability check, 

code profiling, HW/SW partitioning

Backend flow
functions mapping and scheduling, runtime generation, 

high level synthesis, floorplanning, system implementation

Functions optimization flow
static code analysis, hardware resources estimation, 

performance estimation, code optimization

profiling
dataset

Architectural 
templates

SST 

HW description:
+ node definition
+ system definition

.exe 
Application 
runtime

FPGA 
bitstreams

.bit
Result generated by the 
platform
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by the user

Application
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Dataflow

Figure 2.1: High level overview of the CAOS platform. The overall design flow can be
divided in three main parts: the frontend, the functions optimization and the backend
flow. The application code, datasets to profile the application and an HW description
constitute the input data provided by the designer. The final outputs generated by the
platform are the bitstreams, that the user can use to configure the boards, and the
application runtime, needed to run the optimized version of his/her application.

against the user specified datasets and, finally, guide the user through the
hardware/software partitioning of the application to define the functions of
the application that should be implemented on the reconfigurable hardware.
The function optimization flow performs a static analysis and a hardware
resource estimation of the functionalities to be accelerated on the FPGA.
Such analyses are dependent upon the considered architectural template
and the derived information are used to estimate the performance of the
hardware functions and to derive the optimizations to apply (such as loop
pipelining, loop tiling and loop unrolling). After one or more iterations
of the function optimization flow, the resulting functions are given to the
backend flow in which the desired architectural template for implementing
the system is selected and the required high level synthesis and hardware
synthesis tools are leveraged to generate the final FPGA bitstreams. Within
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Frontend flow

Application profiling
datasetHW description

List of functions in the form: < f, i0, p, t >
Initial implementation i0 in software (p=SW) or hardware 
(p=HW) for function f using architectural template t

1.2. Architectural templates 
applicability check 1.3. Code profiling

1.4. HW / SW partitioning

1.1. IR generation

< >

Figure 2.2: Presentation of the CAOS platform frontend flow that, starting from the user
inputs, produces an intermediate description of the application functions. The frontend
consists in the following phases: 1.1. IR generation that provides an Intermediate
Representation (IR) of the application; 1.2. architectural templates applicability check
that analyzes the code to verify which functions fit a specific architectural template;
1.3. code profiling that hands the measured times, in terms of relative and absolute
execution time of each function; 1.4. HW / SW partitioning that filters the candidate
functions for hardware acceleration, by considering also the profiling data.

the backend, CAOS takes care of generating the host code for running the
FPGA accelerators and optionally guides the place and route tools by floor-
planning the system components.

2.3.1 Frontend

The main phases of the frontend flow are depicted in Figure 2.2. This flow
represents the first part of the entire design flow and takes as input the
code of the user application, the datasets to profile it and a user-selected
HW description, which will determine also all the subsequent stages. After
completion, the frontend flow outputs a list of decorated functions defined
by the tuples < f, i0, p, t >, where f is the function identifier, i0 is its
initial implementation, p specifies the implementation type (either HW or
SW) and t identifies the target architectural template. For each function f
in the original application, multiple tuples with different target architectural
templates t can be generated.
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2.3. CAOS design flow

Listing 2.1: Example of a program description JSON file. The corresponding code is in
C language and both gcc and llvm compiler are supported. The "-O3" flag should be
used for building the executable with both compilers.

{
" l a n g u a g e " : "C" ,
" s u p p o r t e d C o m p i l e r s " :
[

{
" c o m p i l e r " : " gcc " ,
" a rgumen t s " : "−O3"

} ,
{

" c o m p i l e r " : " l lvm " ,
" a rgumen t s " : "−O3"

}
]

}

In the following subsections we provide a detailed description of the
phases and corresponding modules within the CAOS frontend.

IR Generation

When a new CAOS project is created, the design starts from the IR genera-
tion phase, where the user is requested to provide an archive containing the
source files of their application written in a high level language such as C /
C++. Aside from the code archive, the user also needs to provide a properly
formatted JSON file that describes essential informations on the applica-
tion. As show in Listing 2.1, the file specifies the source code language, the
list of support compilers as well as their compiler flags that should be used
for building the application.

Once the code and the program description file are uploaded, the user
can start the CAOS design flow by running the IR generation module. After
execution, the module provides the list of functions within the application,
the static callgraph describing the caller / callee relations as well as the
Low-Level Virtual Machine (LLVM) IR generated from the source code.
Such data is leveraged in all the subsequent phases. CAOS indeed works
at function granularity in order to perform hardware / software partitioning
and to optimize the candidate kernels for hardware acceleration.

Architectural template applicability check

Within the subsequent phase of the CAOS flow, the user is requested to
provide a JSON file describing the architecture being targeted by the appli-
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Chapter 2. The CAOS platform

cation. An example of architecture description file is shown in Listing 2.2.
The architecture description is a two-level specification consisting of a node
definition and a system definition. The node definition portion of the spec-
ification defines the set of devices comprising a node, which can be either
software cores, accelerators or FPGA boards. The specification allows also
to define how the different components within a node are interconnected to-
gether. Similarly, the system level specification describe how many nodes
are available within the system and how they are interconnected together.
Given the architecture description and the result from the IR generation
phase, the architectural template applicability check verifies which archi-
tectural template, among the ones supported by CAOS, is compatible with
the given architecture description. Furthermore, depending on the architec-
tural template, the phase also verifies which are the functions that can be
accelerated in hardware using the supported architectural templates. If the
applicability check module determines that a given function can be acceler-
ated in hardware, it also assumes that all the functions called, either directly
or transitively, can be accelerated as well together with the function. The
output of the module also provides diagnostic information to allow the user
to identify why a given function cannot be accelerated in hardware with a
given architectural template. The user can decide to modify the code and
repeat the design flow up to this phase in order to enlarge the set of func-
tions that CAOS is able to support for hardware acceleration. It is worth
noting that the type of checks performed by this module are very depen-
dent on the architectural template being verified. In Chapters 3 to 5, within
the corresponding CAOS integration sections, we provide more details on
the specific source code constraints taken into account.

Profiling

The profiling phase allows the designer to profile the application execu-
tion on one or more datasets in order to identify the functions in which the
highest amount of time is spent. Such information is then leveraged by the
subsequent phase of the platform in order to provide a suitable hardware
/ software partitioning of the application that maximizes performance. In
order to perform the profiling, the user is asked to provide, for each dataset,
an archive containing the input files needed by the application, as well as
the arguments needed to invoke the application. CAOS then launches the
profiling module on the given datasets and reports the relative percentage of
time spent in each function for each dataset. Currently, the default module
available in CAOS leverages on the Linux perf profiler [62], nevertheless,
as will be discussed in the next sections, external researchers are allowed
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Listing 2.2: Example of an architecture description JSON file that specifies a system com-
posed of a single Amazon EC2 F1 instance equipped with a Xilinx XCVU9P FPGA.

{
" n o d e D e f i n i t i o n " : {

" d e v i c e T y p e s " : {
" f1−f pga " : {

" t y p e " : " boa rd " ,
" vendor " : " X i l i n x " ,
" par tNumber " : "XCVU9P−FLGB2104−2−I "

} ,
" i n t e l−v c o r e " : {

" t y p e " : " cpu " ,
" vendor " : " i n t e l " ,
" par tNumber " : "−"

}
} ,
" d e v i c e s " : {

" f1−fpga−i n s t a n c e " : {
" t y p e " : " f1−f pga "

} ,
" cpu " : {

" t y p e " : " i n t e l−v c o r e " ,
" h o s t " : t r u e

}
} ,
" c o n n e c t i o n T y p e s " : {

" p c i e _ g e n 3 " : {
" s t a n d a r d " : " PCIe " ,
" bandwid th " : " 15 .75 GB/ s " ,
" d up l e x " : " f u l l " ,
" v e r s i o n " : " 3 . 0 "

}
} ,
" c o n n e c t i o n s " : [

{
" s o u r c e " : " f1−f p g a _ i n s t a n c e " ,
" t a r g e t " : " cpu " ,
" t y p e " : " p c i e _ g e n 3 "

}
]

} ,
" sys tem " : {

" nodes " : [ " f1−fpga_node " ] ,
" c o n n e c t i o n T y p e s " : {} ,
" c o n n e c t i o n s " : [ ]

}
}
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Chapter 2. The CAOS platform

to implement their own profiling module.

HW/SW partitioning

The partitioning phase of CAOS relies on the information provided in the
previous frontend phases in order to determine which functions to acceler-
ate on the available reconfigurable hardware. More specifically, the corre-
sponding hardware / software partitioning module searches for the subtree
of the static callgraph that takes the highest percentage of the overall exe-
cution time and that, at the same time, consists of functions which are all
amenable for hardware acceleration. At the current state, the CAOS flow
is optimized for accelerating a single function subtree from the static call-
graph, nevertheless, the CAOS interfaces allow to support modules that op-
erate on multiple function subtrees. Once the module is executed, the user
can also modify the suggested partitioning from the CAOS user interface in
case he or she desire a different solution.

2.3.2 Functions optimizations

The function list generated by the frontend is given as input to the CAOS
functions optimization flow detailed in Figure 2.3. The function optimiza-
tion flow operates on the functions that are selected for hardware acceler-
ation from the frontend and its goal is to improve their initial implemen-
tations by applying one or more optimizations and code transformations.
The flow can be repeated multiple times in order to optimize the candidate
hardware functions. After each iteration, the initial implementation i0 of
a function is updated with its optimized implementation ij . The optimiza-
tion cycle then repeats from phases 2.1 and 2.2 until no more optimizations
are identified or the required goal (e.g., performance or area) is achieved.
The updated tuples < f, ij, p, t > are then passed to the architectural tem-
plate selection phase (3.1), which is the first phase of the backend flow. It
is worth noting that the code is kept to its high-level form, this allows the
user to easily keep track of the changes applied to the code. Furthermore,
optimizations that cannot be directly applied as code transformations are
annotated in the form of pragmas and optimization directives that are taken
into account for the analysis performed within the CAOS modules. The
details of the phases and corresponding modules within the CAOS function
optimization flow are described next.
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Functions optimization flow

Initial list of functions: 
< f, i0, p, t >

2.3. Performance 
estimation

2.2. HW resources 
estimation

2.4. Code 
optimization

2.1. Static code 
analysis

< >

Stopping criteria

< > Optimized list of functions: 
< f, ij, p, t >

HW description

Figure 2.3: Representation of the CAOS functions optimization flow. The list of functions
produced by the frontend are analyzed and optimized by means of the following phases:
2.1 static code analysis that performs a static analysis of the code to derive a set of
metrics; 2.2 HW resources estimation that estimates the resource requirements on the
reconfigurable hardware for the candidate functions; 2.3 performance estimation that
estimates the final performance of the function and determines the set of optimizations
that can be applied to the code; 2.4 code optimization that let the user decide which
optimization to apply among the identified ones.

Static code analysis

The static code analysis phase represents the first step of the CAOS func-
tion optimization flow which starts after having performed the hardware /
software partitioning of the application. The static code analysis module
extracts useful information from the source code that can be leveraged to
predict performance or to explore possible optimizations in the subsequent
phases. Depending on the specific architectural template that is considered
for the current function, the static code analysis module returns different
types of metrics. Examples of metrics include: the operational intensity of
the code, the identification of input and output parameters, bounds on the
data size per function invocation or ideal throughput, the estimated number
of cycles needed to compute the function after HLS synthesis, the set of
local arrays together with their sizes, the iteration counts at different loop
nest levels and so on.
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Chapter 2. The CAOS platform

Hardware resources estimation

The second step of the function optimization flow performs an estimation
of the hardware resources that are needed in order implement the current
version of the function on the target reconfigurable hardware. Even in this
case, the method used to carry out the estimation can be dependent on the
architectural template being considered. Currently, the Dataflow architec-
tural template relies on the LLVM representation of the function and as-
sumes that each operation is performed by a dedicated hardware module,
since this is in general highly efficient for a pure dataflow implementa-
tion. Leveraging this information and assumption the module is then able
to quickly derive a good estimation of the used resources. On the other
hand, for the Master/Slave architectural template, the current default im-
plementation of the module leverages on Vivado HLS due to more complex
nature of functions supported by such template. Finally, for the Streaming
architectural template, the module leverages a combination of Vivado HLS
estimates and analytical formulas that depends on the number of processing
elements being instantiated within the final design.

Performance estimation

The performance estimation phase leverages the data generated within the
static code analysis and the hardware resource estimation phases. The cor-
responding CAOS module performs two different tasks. First, it estimates
the achievable performance of the current implementation of the function
and, second, it performs a design space exploration to identify possible op-
timization opportunities to improve the current implementation. For each
optimization, the module also provides an estimation of the hardware re-
sources and performance associated with it. The architectural template ab-
straction is especially useful for this phase as it narrows down the search
space, since each architectural template poses constraints both on the types
of supported input code and the corresponding hardware accelerator being
implemented. Again, more details on the specific tasks performed at this
stage are detailed in Chapters 3 to 5.

Code optimization

The last phase of the functions optimization flow is code optimization. Such
phase is tightly coupled with the previous phase since it allows the user to
select one of the optimizations suggested by the performance estimation.
The module takes as input the optimization selected by the user as well as
its parameters and modifies the code accordingly and / or updates the opti-
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2.3. CAOS design flow

mizations directives. Once the optimization is applied to the code, the user
can either repeat the function optimization flow to search for further opti-
mizations or move to the final implementation phase. After having applied
a given optimization, CAOS rerun the IR generation phase on the current
version of the code in order to keep it in sync with the applied changes.
This is needed so that further iterations of the code optimization flow, or
modules within the CAOS backend, can safely rely on the information of
the CAOS IR. The reason why we let the user select the desired optimiza-
tion instead of doing the choice automatically, is to provide more control
over the design process. Furthermore, different optimizations might lead to
different pareto-optimal solutions in terms of resource consumption and es-
timated performance that the designer might be willing to exploit. It is also
worth noting that while CAOS allows to repeat the optimization process
multiple times, a researcher willing to integrate its own architectural tem-
plate and/or modules can in principle show the user a single optimization
opportunity as a result of the best solution found from the design space ex-
ploration. This is currently the case for the streaming architectural template
discussed in Chapter 5, while the Master/Slave architectural template and
the dataflow architectural template discussed in Chapter 3 and Chapter 4
follow the described iterative approach.

2.3.3 Backend

The flow of the CAOS backend is presented in Figure 2.4. The backend
receives the functions list generated by the functions optimization flow
and the hardware description given by the user. In case multiple archi-
tectural templates are considered, the first step of the backend guides the
selection of the architectural template for the final system implementation
(phase 3.1). Indeed, in order to simplify the backend flow, CAOS currently
limits the implementation of the system to a single architectural template.
Nevertheless, such limitation might be removed in future versions of the
platform. Then, functions mapping and scheduling (phase 3.2), maps and
schedules the execution of the HW functions on the reconfigurable logic,
possibly consisting of multiple FPGAs. Depending on the selected archi-
tectural template, the mapping and scheduling algorithm can also take into
account Partial Dynamic Reconfiguration (PDR) [23]. The results of phase
3.2 and the HW description are then used in runtime generation (phase 3.4)
to generate the runtime for the system. Simultaneously, the hardware func-
tions are further processed to obtain the final FGPA bitstreams. The HW
functions synthesis (phase 3.3) performs HLS and hardware synthesis to
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Backend flow

3.3. HW functions synthesis

3.2. Functions mapping and scheduling

3.5. Floorplanning

3.1. Architectural template selection

< > Optimized list of functions: 
< f, ij, p, t >

3.6. Implementation and bitstream generation

3.4. 
Runtime 

generation

.exe 
Application 
runtime

FPGA 
bitstreams

.bit

HW description

Figure 2.4: Description of the CAOS backend that produces the final system implementa-
tion and the application runtime. The backend consists in the following phases: 3.1.
architectural template selection that guides the selection of the architectural template
for the final system implementation; 3.2. functions mapping and scheduling that maps
and schedules the execution of the HW functions on the reconfigurable logic; 3.3. HW
functions synthesis that performs HLS and hardware synthesis to generate the func-
tions’ netlists; 3.4. runtime generation that generates the runtime and host code for
the system; 3.5. floorplanning that, if needed, constrains the placement of the design
modules on specific locations on the reconfigurable logic; 3.6. implementation and bit-
stream generation that performs the place and route of the HW functions and generates
the FPGA bitstreams.

generate the functions’ netlists. Florplanning (phase 3.5) is then optionally
executed if the architectural template leverages PDR, or if the architectural
template requires to specify floorplanning constraints, as for the Streaming
architectural template discussed in Chapter 5. Finally, the implementation
and bitstream generation (phase 3.6) performs the place and route of the
HW functions and generates the FPGA bitstreams. The output of the CAOS
platform are the bitstreams, that the user can use to configure the FPGAs,
and the application runtime, needed to run the optimized version of the user
application.

Differently from the frontend and the functions optimization flows, the
phases of the backend flow are currently deployed in a single macro mod-
ule. Indeed, while logically separated, most of the phases described in the
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CAOS Flow Manager

Module A Module B Module C Module D Module E

Frontend Flow Function Optimization
Flow

Backend
Flow

Web user interface

JSON / 
file archives

REST 
interfaces

Figure 2.5: Representation of the CAOS infrastructure in terms of its main components
and their interaction. The CAOS modules exchange structured JSON files and raw
file archives with the CAOS flow manager by means of REST APIs. The CAOS flow
manager holds the state of the current project and handles the execution of the different
modules when required. Finally, the user interacts with CAOS through a web interface
that, in turn, send requests and read the state of the current project from the CAOS flow
manager.

backend are very dependent on the specific architectural template and inter-
dependent from each other. Additionally, while we envision architectural
templates that make explicit use of PDR and hence require the schedul-
ing and mapping as well as the floorplanning phases extensively, the ar-
chitectural templates currently integrated into CAOS do not leverage such
features. Nevertheless, subsequent version of the platform will consider
splitting the phases in completely independent modules. Chapters 6 and 7
shows mapping and scheduling as well as floorplanning methodologies that
can be leveraged by architectural templates that exploits PDR, furthermore,
these chapters also formally define the input and output required by both
phases.

2.4 CAOS infrastructure

The principles described in Section 2.2 and the modular design depicted in
Section 2.3 help us in the definition of an as-a-Service architecture for the
CAOS platform. On one hand, the platform has to enable a fast and reliable
design process possibly relying on a cloud-oriented infrastructure. On the
other hand, the platform should provide sufficiently high scalability and
sufficient performance to support several users at a time in a multitenant
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environment.
To this aim, the CAOS platform is organized as a microservices archi-

tecture, leveraging Docker [32] application containers to isolate modules
and to provide scalability to the whole infrastructure. Each module is de-
ployed in a single container, and several implementations of the same mod-
ule can coexist to provide different functionalities to different users. More-
over, each module implementation can be replicated to scale horizontally
depending on system load. The modules are connected together and driven
by the CAOS Flow manager shown in fig. 2.5, which serves the User Inter-
face (UI) and provides the glue logic that routes each request to the proper
module.

The interaction between the flow manager and the CAOS modules is
performed by means of data transfer objects defined with a JSON DSL.
The flow manager is aware of the full state of the design flow and is in
charge of: 1) requesting the needed input from the user (e.g. the appli-
cation description), 2) generating the specific JSON input files needed by
the modules, and 3) collecting the output from the specific modules and
integrate them in the state of the current design flow. The user can spec-
ify at each phase the desired module implementation, depending on several
factors like architectural templates, software languages or code profilers,
and the platform will take care of routing the request to the proper mod-
ule automatically. Moreover, the platform can leverage modules deployed
remotely by simply specifying their IP address. Another advantage of the
proposed infrastructure is that, thanks to Docker containers, it can also be
easily deployed on cloud instances, possibly featuring FPGA boards, such
as the Amazon EC2 F1 instances. This allows a complete design process in
the cloud in which the user can optimize the application through a web UI,
while the final result of the CAOS design flow can be directly tested and
run on the same cloud instance.

2.5 Modules integration

One of the goals of the CAOS platform described in section 2.2 is to let
experienced users and developers to integrate their tools in the design flow
and to provide a general interface that can be used to expand the platform.
Up to now, CAOS supports the integration of new implementations of the
currently available modules specified in section 2.3. Each module can be
reimplemented integrating existing tools, as well as completely new imple-
mentations. The developers are free to adopt the best tool that fits their
needs, as long as the module provides the implementation of the REST
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Table 2.1: APIs a module should support to integrate with the CAOS flow manager

API name REST API type URI structure

info GET /info
submit POST /submit

task state GET /state/<taskId>
log GET /log/<taskId>

result GET /result/<taskId>/<filename>

APIs described in table 2.1. This way, the CAOS platform can reach and
communicate with the module knowing only its IP address and default port.

The CAOS module APIs describe a wide set of operations that can be
done with a module. At first, the info API allows the flow manager to know
the functionality provided by the module, as well as the expected input data
(either JSON files or file and code packages) and the number of tasks the
module can execute in parallel. The submit API let the flow manager send
data to be computed by the module. This API typically supports huge files,
as it can be used to send code packages or profiling datasets. The task
state API queries the module at a regular time basis, looking for task status
and task completion notifications specifying the task id as input. At the
same time, the flow manager queries the module asking for logging data
with the log API. Finally, when the module completes its job, the flow
manager retrieves the result of the computation by means of the result API,
specifying the task id and the name of the file to be retrieved.

The APIs defined in Table 2.1 are shared by all the CAOS modules.
However, each module type has its own specification in terms of the struc-
ture of the JSON file content to transmit and receive from the CAOS flow
manager, as well as whether it also need to receive input files and pro-
vide raw files as output. As an example, the hardware resources estimation
module, receives from the CAOS flow manager: the architecture descrip-
tion, the CAOS IR, the list of target functions to accelerate on hardware and
a raw archive containing the application sources. The module provides as
output a JSON file containing the estimated amount of resources used by
each candidate function. Listing 2.3 shows an example of an input JSON
file that is sent from the CAOS flow manager to the hardware resources es-
timation module, while Listing 2.4 shows the response sent by the module
after completion.
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Listing 2.3: Simplified example of an input JSON file provided to the hardware resources
estimation module in the function optimization flow. The architecture description is
provided in the “architecture” dictionary. The program description is contained in
the “language” and “supportedCompilers” keys. “codeArchive” specifies the name of
the archive containing the application code. “functions” and “callgraph” contain the
CAOS IR, while “architecturalTemplate” contains information on the functions that
need to be accelerated in hardware.

{
" a r c h i t e c t u r e " : { . . . } ,
" l a n g u a g e " : " c++" ,
" s u p p o r t e d C o m p i l e r s " : [ . . . ] ,
" codeArch ive " : " code . t a r . gz " ,
" f u n c t i o n s " : { . . . } ,
" c a l l g r a p h " : { . . . } ,

" a r c h i t e c t u r a l T e m p l a t e " : {
" t a r g e t C o n f i g u r a t i o n " : {

" d e v i c e s " : [
" f1−fpga−i n s t a n c e "

]
} ,
" s u p p o r t e d D e v i c e s " : [

" f1−fpga−i n s t a n c e "
] ,
" i d " : " M a s t e r S a l v e " ,
" f u n c t i o n s " : {

" v e c t o r _ a d d ( i n t ∗ , i n t ∗ , i n t ∗ ) " : {
" h a r d w a r e A c c e l e r a t i o n " : t r u e

} ,
" main " : {

" h a r d w a r e A c c e l e r a t i o n " : f a l s e
}

} ,
" t y p e " : " M a s t e r S l a v e "

}
}

Listing 2.4: Example of an output JSON file generated by the hardware resources estima-
tion module in response to Listing 2.3.

{
" v e c t o r _ a d d ( i n t ∗ , i n t ∗ , i n t ∗ ) " : {

" r e s o u r c e E s t i m a t i o n " : {
" f1−f pga " : {

"DSP48E" : 1 0 ,
"BRAM_18K" : 3 4 ,
"LUT" : 9 0 ,
"FF" : 7 ,
"URAM" : 0

}
}

}
}
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2.6 Final remarks

In this chapter we presented the motivations and the design flow of CAD
as an Adaptive Open-platform Service (CAOS), a platform designed to pro-
vide a fully integrated development experience for accelerating applications
on reconfigurable hardware. The platform has been conceived to automate
or heavily assist all the steps involved in the development flow, whereas
its infrastructure facilitates external researches in integrating their own cus-
tom modules. In the context of CAOS, we also introduced the concept of
architectural template as a mean to address the complexity in accelerat-
ing high-level source codes. Within the architectural template applicability
check phase, CAOS can validate which architectural template, among the
ones available, can be adopted in order to accelerate a specific function.
This opens also the possibility to extend the platform to support additional
architectural templates that can also leverage on advanced FPGA features
such as PDR. In Chapters 3 to 5 we describe the architectural templates
currently available in CAOS, while Chapters 6 and 7 cover floorplanning
and mapping and scheduling techniques that can be adopted to support PDR
within CAOS.
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CHAPTER3
Master/Slave architectural template

This chapter describes the Master/Slave architectural template for the
acceleration of a relatively large set of C/C++ codes on the Field Pro-
grammable Gate Array (FPGA) reconfigurable logic. In particular, after
having defined the target communication model, system architectures and
codes, we propose a semi-automated design space methodology to optimize
the performance of the accelerator based on High-Level Synthesis (HLS).
Finally, the chapter discusses the integration of the architectural template
within the CAOS platform presented in Chapter 2 and reports experimental
evaluation an the N-Body physical simulation.
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Chapter 3. Master/Slave architectural template

3.1 Introduction

One of the crucial aspects when designing FPGA-based hardware acceler-
ators is the management of the data transfer to and from the host system.
Indeed, the communication model has a direct impact on how the accelera-
tor can perform the actual computation.

When we consider accelerating high-level software functions on FPGA,
the selection of a specific communication model can make the difference
between a relatively straight-forward HLS translation, the need to perform
major code restructuring to adapt the computation for the communication
model, or being inherently not able to map the computation with the specific
communication model.

In this chapter, we describe the Master/Salve architectural template which
goes in the direction to ease the HLS process as well as to support a rela-
tively large set of C/C++ codes. The architectural template makes use of
memory mapped Master/Slave interfaces for the data transfer between the
accelerators and a global memory that can be also accessed by the host sys-
tem. The generality offered by the memory mapped interfaces allows, in
most cases, to accelerate software functions on FPGA by means of HLS
with relatively small changes to the original source code.

We start the chapter with Section 3.2 that provides a detailed description
of the target architecture and communication model of the Master/Slave
architectural template which is key for allowing the translation of a large
set of C/C++ functions to a corresponding Hardware Description Language
(HDL) implementation. More details about the types of computations and
source codes supported by our methodology are described in Section 3.3.
Then, in Section 3.4 we present the proposed design space exploration for
optimizing the performance of the hardware implementation of the can-
didate functions, while in Section 3.5 we discuss on how we integrated
the Master/Slave architectural template within the CAD as an Adaptive
Open-platform Service (CAOS) platform. Section 3.6 showcases the re-
sults achieved by leveraging the Master/Slave architectural in CAOS on the
N-Body simulation case study. Finally, Section 3.7 concludes the chapter.

3.2 Communication model and target systems

The Master/Slave architectural template targets systems that provide a shared
Double Data Rate (DDR) memory that can be accessed both by the host
running the software portion of the application and by the FPGA devices
on which we implement our accelerated functionalities (also referred as
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3.2. Communication model and target systems

DDR memory

HOST 
CPU

control (AXI lite)

FPGA

Kernel

AXI interconnectdata 
(AXI M/S)

Figure 3.1: Communication model of the Master/Slave architectural template: the data
transfer between the host and the accelerator is accomplished via a shared DDR mem-
ory. The accelerated kernel function has access to the DDR memory via an AXI4
Master/Slave memory mapped interface, while the host system controls the execution
of the accelerator through an AXI4-Lite interface.

kernel). As an additional constrain, the template also requires that the com-
munication between the accelerator and the DDR memory is performed via
memory mapped interfaces. Such requirements allow to standardize the
data transfer to and from the hardware accelerator as well as to support ran-
dom memory accesses to pointer arguments of the target C/C++ function.

Figure 3.1 shows the communication model of the Master/Slave archi-
tectural template. The host system is responsible for providing the input
data for the accelerator on the shared DDR memory and also controls the
execution of the accelerator. Once the accelerated computation is com-
pleted, the result is provided on the shared DDR memory and made avail-
able to the host system for further processing.

In recent years, FPGA vendors have provided a vast variety of com-
puting systems tightly integrated with FPGA devices that find applications
in domains ranging from High Performance Computing (HPC) [92, 93],
cloud [26, 84] and embedded systems [43, 81]. Among the systems that
provide a suitable solution to implement the Master/Slave communication
model, we currently support two system families, namely the Xilinx Zynq
System-on-Chip (SoC) which is widely adopted in the embedded domain
and the recently released Amazon EC2 F1 instances for high performance
accelerated cloud computing.
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Chapter 3. Master/Slave architectural template

Programmable Logic (PL)

data 
(AXI M/S)

DDR memory

Processing System (PS)

Zynq SoC (simplified)

Kernel

AXI 
interconnect

Cortextm-A9 
MPCoretm

AXI switchesDDR 
controller

Cortextm-A9 
MPCoretm

AXI 
interconnect control 

(AXI lite)

HP ports

GP ports

Figure 3.2: Host and accelerator system architecture for the Xilinx Zynq SoC.

3.2.1 Xilinx Zynq SoC

A simplified representation of the Xilinx Zynq SoC architecture is de-
picted in Figure 3.2. The Zynq SoC consists of two main components: the
Programmable Logic (PL), containing the FPGA programmable resources,
and the Programmable System (PS), featuring two ARM Cortextm-A9 pro-
cessors connected in a multi-processor configuration sharing a 512KB L2
cache. The PL has also access to the shared L2 cache via an AXI4 64bit
master interface via General Purpose (GP) ports. Such ports provide a con-
venient way to control the kernel via AXI4-Lite interface from the PS. Fur-
thermore, the PL has also a set of dedicated High Performance (HP) AXI4
master ports that enable direct access to the external DDR memory.

In the context of the Master/Slave architectural template, the ARM Cortextm-
A9 within the PS represents the host system, while the PL contains the
accelerated kernel implemented on the reconfigurable logic. The host sys-
tem is in charge of loading the necessary input data on the external DDR
memory and to start and monitor the execution of the kernel. On the other
hand, the kernel reads the data from the external memory via the AXI4
Master/Slave interface connected to the HP ports and writes back the result
to the memory once available.

3.2.2 Amazon EC2 F1 instances

Amazon has been one of the first companies to introduce cloud computing
with FPGAs, opening the world of reconfigurable computing to the masses
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HOST
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Figure 3.3: Host and accelerator system architecture for an Amazon Elastic Compute
Cloud (EC2) F1 instance equipped with a single FPGA.

and allowing users to focus only on creating and optimizing applications,
rather than spending time in installing the devices and the relative drivers.
Amazon EC2 F1 instances are, in fact, compute instances equipped with
Xilinx UltraScale+ VU9P FPGAs. They allow to launch multiple instances
equipped with 1, 2 or even 8 FPGA devices connected via PCIe to the host
system. Figure 3.3 represents the interconnection of the host and FPGA
components within an Amazon EC2 F1 instance equipped with a single
FPGA. The Intel Xeon host processor has a dedicated DDR memory and
communicates with the FPGA fabric via a PCIe x16 gen3 interface. The
FPGA resources are logically divided into a static region and a reconfig-
urable region. The static region, also referred as shell, contains the PCIe
DMA controller to interface the host system and a memory controller to
access a dedicated DDR4 memory. Furthermore, the static region also pro-
vides AXI4 ports to interface the accelerated kernel function within the
reconfigurable region.

3.3 Target computations

The Master/Slave architectural template supports most of the features of
C/C++, however it still requires some restrictions in order to ensure that
the code can be successfully synthesized with Vivado HLS [111], which is
leveraged by the architectural template in order to generate the final HDL.
Furthermore, we also consider restrictions that apply for using the code
within the SDAccel [109] workflow, required when targeting Amazon EC2
F1 instances.
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Chapter 3. Master/Slave architectural template

3.3.1 Code requirements

The granularity for software acceleration is at the function level. In particu-
lar, we refer to the target function for hardware acceleration as top function.
All the functions called either directly or transitively from the top function
are defined sub-functions, while the function tree represents the set of the
sub-functions together with the top function itself. Given these definitions,
a top function have to satisfy the following conditions in order to be sup-
ported by the Master/Slave architectural template:

• The function tree cannot access globally defined variables.

• There must be no cycles in the static callgraph of the function tree (i.e.
no recursion).

• C constructs within the function tree must be of a fixed size (e.g.: local
array sizes should be fixed).

• Pointer casting in the function tree must occur only on native C types,
while array of pointers cannot point to additional pointers.

• The function tree must not dynamically create or destroy objects (i.e.
new and delete are not supported) nor using dynamic polymorphism
and dynamic virtual function calls.

• There must be no syscall in the function tree.

• There must be no function pointers in the function tree.

• The top function return value must be void. This is needed to sim-
plify the interface generation for the SDAccel flow.

• The top function arguments must be either scalar or arrays with speci-
fied size. Although the size information is not required by the C stan-
dard, it is leveraged by the template in order to identify a bound on the
data transfer size and it is useful for optimization purposes.

The previously described requirements allow the architectural template
to synthesize and implement the target function tree, provided that enough
resources are available within the FPGA. Nevertheless, as we will discuss
in the next section, the design space exploration leverages on latency es-
timates in order to evaluate the quality of different optimizations. If the
code contains data-dependent loop bounds, such estimates might not be
available, since the execution time of the function largely depends on infor-
mation not available at compile-time. Hence, in order to evaluate different
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3.3. Target computations

optimizations, we also require that trip count bounds can be inferred for all
the loops of the function tree.

It is possible to verify the latter condition with scalar evolution analy-
sis. The scalar evolution framework [104], allows to identify how scalar
variables (such as integers) evolves throughout the iterations of a loop. In
particular, by applying such analysis together with the identification of
the loop induction variables and by analyzing the exit condition of the
loops, it is possible to infer the loop trip count bounds, provided they
do not depend on runtime conditions. Loop trip count bounds can be
easily obtained from Low-Level Virtual Machine (LLVM) by running the
LLVM opt command on the LLVM Intermediate Representation (IR):
opt IR.ll -scalar-evolution -analyze where IR.ll is the
LLVM IR of the corresponding C/C++ function. The LLVM IR can be ob-
tained running: clang -emit-llvm -O1 -S SOURCE.c -o IR,
where the O1 flag is needed in order to apply some basic optimizations to
the code that allow to improve the ability to infer loop trip count bounds
with scalar evolution.

3.3.2 Candidate applications

Despite the relatively large set of supported C/C++ codes, the Master/Slave
architectural template is not be beneficial for all kinds of applications from
a performance perspective. In particular, the efficiency of memory transfers
usually have a large impact on the overall execution time of the acceler-
ated top function. Hence, as we will discuss in the next section, the Mas-
ter/Slave architectural template applies caching optimizations so that the
data is transfered in burst mode from the DDR and stored locally on device
before the actual computation. While such an approach improves memory
transfer, it also splits the computation in three sequential stages: read input
data from DDR, compute, store output data to DDR. This solution is viable
for applications that are compute-intensive and are structured so that the
dataset can be split in blocks that fit within the device local memory. An
ideal test case is the N-Body application discussed in 3.6. Indeed, for an
input of size O(N), the computation requires O(N2) operations. Further-
more, the computation can also be tiled so that it can execute B2 runs on an
input of size O(k), with k = N

B
that require O(k2) steps to compute.

Overall, other examples of compute-intensive applications that can ben-
efit from the Master/Slave architectural template are: alignment algorithms,
such as Smith-Waterman [30] and PairHMM [90] from the computational
biology domain, Quantum Monte Carlo simulations [14] in the computa-
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Chapter 3. Master/Slave architectural template

tional chemistry domain, as well as dense linear algebra kernels.
It is also worth mentioning that, compared to other architectures such

as Graphics Processing Units (GPUs), FPGAs deliver the best advantages
in terms of performance and energy efficiency when dealing with reduced
integer data types, as for the Smith-Waterman algorithm where 2 bits are
sufficient to encode elements from a DNA sequence. Indeed, compared
to general purpose architectures, the FPGA can make more efficient use of
the available hardware resources by implementing specialized operators for
reduced bitwidth.

3.4 Design flow

The design flow for the Master/Slave architectural template can be divided
in 3 main steps. In the first step, we validate whether the target function
meets the requirements discussed in Section 3.3 and generates an initial
implementation of the accelerator. Afterwards, the flow moves to the ac-
tual design space exploration in which we iteratively explore and evaluate
multiple optimizations. Finally, the last phase takes care of generating the
necessary files to implement the system, as well as the updated host code
for the application.

3.4.1 Validation and initial design generation

Once having validated that the target top function meets the requirements
defined in Section 3.3, we need to generate a first version of the code that
can be synthesized through Vivado HLS. This translates into defining the
Master/Slave interfaces for the function by means of HLS pragma, since
our requirements already ensure that the code can be synthesized by Vivado
HLS. More specifically, we map each array argument to an AXI4 Master
interface and create an additional AXI4-Lite slave interface to configure
the offset address at which the data should be read or written. On the other
hand, we only define an AXI4-Lite interface for each scalar argument. Fi-
nally, we also create an AXI4-Lite interface to control the execution of the
kernel and its status. An example of the Master/Slave interfaces defined for
a simple vector sum code is provided in Listing 3.1.

The proposed scheme for mapping arguments to AXI4 and AXI4-Lite
interfaces allow to support the accelerator also within the SDAccel flow and
hence to target Amazon EC2 F1 instances.
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3.4. Design flow

Listing 3.1: Simple C code with pragma defining the Master/Slave interfaces.
void v e c t o r _ a d d _ k e r n e l ( i n t c [ SIZE ] , i n t a [ SIZE ] , i n t b [ SIZE ] ) {

# pragma HLS INTERFACE m_axi p o r t =c bu nd l e =gmem
# pragma HLS INTERFACE s _ a x i l i t e p o r t =c bu nd l e = c o n t r o l
# pragma HLS INTERFACE m_axi p o r t =a bu nd l e =gmem
# pragma HLS INTERFACE s _ a x i l i t e p o r t =a bu nd l e = c o n t r o l
# pragma HLS INTERFACE m_axi p o r t =b bu nd l e =gmem
# pragma HLS INTERFACE s _ a x i l i t e p o r t =b bu nd l e = c o n t r o l
# pragma HLS INTERFACE s _ a x i l i t e p o r t = re turn bu nd l e = c o n t r o l

f o r ( i n t i = 0 ; i < SIZE ; i ++) {
c [ i ] = a [ i ] + b [ i ] ;

}
}

3.4.2 Design optimization

The proposed design space exploration operates as shown in Algorithm 1.
The process iterates over the set of available optimizations, and, for each
optimization, generates a set of new candidate implementations starting
from the current one. Every implementation is then evaluated in terms of re-
sources and expected latency by running Vivado HLS and parsing the gen-
erated resource and performance reports. Then, for each optimization, the
best implementation that meet the resources available on the target FPGA
are considered as next candidates.

After having populated the set of candidate implementations C, the user
has the possibility to select the preferred implementation by considering
both estimated performance and resource occupation (selectImplementation
procedure). Additionally, the user can also decide whether to repeat the
optimization process to search for further optimizations or stop the explo-
ration and proceed with the implementation phase. An important aspect of
the design process that does not emerge directly from Algorithm 1, is that
the set of candidate implementations generated for an optimization can be
very dependent on the current implementation. Furthermore, the applica-
tion of an optimization o1, can affect the generation of the candidates for a
different optimization o2 in the next iteration. As an example, after having
optimized the data transfer and cached the data on the on-chip memory, it
might be beneficial to partition the newly created local memories to opti-
mize parallel accesses.

If, at every iteration the designer selects the best implementation in
terms of performance, Algorithm 1 can be regarded as a greedy exploration
that, at each step, considers the optimization that provides the highest per-
formance benefit. Nevertheless, while such approach might not lead to the
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Chapter 3. Master/Slave architectural template

Algorithm 1 Design space exploration for the Master/Slave architectural template
1: do
2: C ← ∅
3: for each o ∈ Optimizations do
4: Co ← ∅
5: I ← o.generateCandidates(currentImplementation)
6: for each i ∈ I do
7: i.perf← evaluatePerformance(i)
8: i.occupancy← evaluateOccupancy(i)
9: if i.occupancy< 100% then Co ← Co ∪ i

10: if Co 6= ∅ then C ← C ∪ {i ∈ Co | i.perf ≥ j.perf ∀j ∈ Co}
11: currentImplementation, repeat←selectImplementation(C, currentImplementation)
12: while repeat

optimal implementation, it is worth noting that many paths in the design
space lead to the same solution. Indeed, if we assume that the best design
is the result of the application of a set of optimizations O, the order fol-
lowed by the design space exploration to identify the set O does not affect
the quality of the solution. Furthermore, the considered optimizations are
very likely to locally improve performance, hence, it is unlikely that a path
from an implementation i0 to a better implementation in is not monotonic in
terms of performance improvement. Said in other words, it is unlikely that
in order to reach an optimal solution we locally need to select optimizations
that worsen the current performance, hence justifying the applicability of a
greedy approach to achieve good solutions.

The reason why we prefer to let the user select the next implementation,
instead of automatically selecting the best local optimization, is to give
more control over the design exploration process. Indeed, in most cases,
optimized designed tend to require longer synthesis time, but the user might
be satisfied with a sub-optimal solution as long as it meets the target per-
formance. Furthermore, more experienced designers might want to guide
the order in which the optimizations are applied to converge faster to an
optimal solution. In addition, we also allow the user to restart the design
process from an intermediate implementation in order to explore different
paths if required.

In the next sections we give more details on the specific optimizations
that are currently supported within the Master/Slave architectural template
and on how new candidate implementations are generated.
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On-chip caching

In most cases, trying to synthesize directly a C/C++ code leads to poor
memory transfer performance. Indeed, if memory accesses are not strictly
consecutive in time, Vivado HLS treats such accesses as single small trans-
fers with high overhead. One way to improve memory transfers and mini-
mize the overhead is to copy consecutive data to local on-chip memories in
burst mode. Vivado HLS, unless instructed differently, automatically im-
plements local arrays to on-chip Block RAM (BRAM). Hence, in order
to support memory bursts, we declare a local array for each correspond-
ing array argument and make use of memcpy calls to copy input/output
data from/to the array arguments to/from the local arrays. The size of the
memory transfers for the memcpy calls can be inferred from the size of
the array arguments provided by the user and from their base types. Fi-
nally, we rewrite the original accesses to the array arguments into accesses
to the local arrays. With this approach, we effectively fully cache the in-
put and output data of the function and make use of memcpy for which
Vivado HLS is able to infer memory bursts. Notice that it might not be fea-
sible to copy the entire working set on the on-chip memory since BRAM
are usually limited to a few MBs per device. Recent devices however also
provide larger on-chip memories such as the Ultra RAM (URAM) from
Xilinx UltraScale+ devices. Such memories currently allow to store 10s of
MBs and their usage can be enforced via HLS pragma. If there are enough
memory resources to perform caching and if the optimization is not already
applied, a candidate implementation is generated. On the other side, if,
even by relying on URAM, there is not enough storage, we do not generate
any candidate optimization. Future versions of the optimization might look
into finer grained approaches, such as leveraging more complex caches [57]
or perform partial caching.

Pipelining / unrolling

One among the most critical optimizations when dealing with HLS for
C/C++ functions is loop pipelining. Indeed, in most cases, the highest
amount of time is spent in loops, whose optimization is hence crucial. Loop
pipelining [117] allows to improve the overall execution time of a loop by
pipelining the execution of subsequent loop iterations. The number of cy-
cles between an iteration and the next one is referred as Initiation Inter-
val (II). If we consider a loop that needs L cycles to complete one iteration
and iteratesN times, the overall number of cycles t of the pipelined version
of the loop reduces from L ·N to [19]:
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t = II · (N − 1) + L (3.1)

When the ideal II = 1 is achieved, we obtain the maximum pipelin-
ing performance with an approximate speedup of L times (if we assume
L << N ). Depending on the specific code of the loop, it might not be
possible to achieve an ideal II of 1 cycle. Common reasons for this are loop
carried dependencies, which require data from previous loop iterations to
be computed before starting the next iteration, or multiple read/write ac-
cesses to the same BRAM in parallel, that might not be performed in the
same cycle due to limited memory ports.

Vivado HLS allows to apply the pipelining optimization to a given loop
simply by specifying the HLS PIPELINE pragma within the target loop
body. While it is relatively simple to test the pipeline optimization on a
single loop, handling loop nests with high nesting level or non-perfect loop
nests, such as the one that occurs in the image processing domain, requires
additional care. Indeed, when pipelining is applied to a loop nest at level
i, all the inner loops at level i′ > i will be automatically unrolled in order
to support pipelining at level i. This, in general, leads to higher resource
utilization and potentially higher performance. The performance improve-
ment depends on whether the unrolled operations can be scheduled in par-
allel running on multiple modules and effectively pipelined across the iter-
ations of the loop. Furthermore, pipelining can be applied even if the loop
contains a call to another function. In this case, a simple approach is to
inline the called functions and treat the resulting code as in the previous
case. Examples of Vivado HLS codes featuring loop pipelining and loop
unrolling are shown in Listing 3.2, while Figure 3.4 shows the scheduling
of the operations according to the specified optimization.

Within the Master/Slave architectural template we explore pipelining
opportunities for all the available loop nests within the function tree. More
specifically, we first logically collapse the function tree by inlining all the
sub-functions within the top function. Afterwards, we identify the available
loop nests with a direct search in the source code performed with the sup-
port of clang [55]. Then, for each loop within each loop nest, we generate a
candidate pipelined implementation. Notice that loops for which pipelining
was already applied are skipped together with their nested loops. Finally, in
order to select the best pipelining candidate, we evaluate the optimizations
starting from innermost loops towards outermost loops. Indeed, if we ver-
ify that pipelining a loop at level i produces solutions that exceed resource
requirements or for which Vivado HLS is not able to provide a schedule,
we can avoid exploring pipelining optimization at lower nesting levels (i.e.
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Clock Cycles
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(factor=2)
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Figure 3.4: Scheduling for the sequential, pipelined and partially unrolled loops presented
in Listing 3.2. Here we assume that a pipelined floating-point adder with 4 stages is
used and that load and store operations to local memories require 1 clock cycle. Note
that a single floating-point adder is needed for the sequential and pipelined loops,
while the partially unrolled loop requires 2 floating-point adders as well as enough
memory ports to perform the read and store operations in parallel.

Listing 3.2: Vivado HLS C code snippet performing a floating-point vector sum with
different implementations: (a) sequential loop, (b) partial loop unrolling, and, (c) loop
pipelining.

# d e f i n e N 256

. . .
f l o a t A[N] , B[N] , C[N ] ;
. . .

/ / ( a ) S e q u e n t i a l l oop
f o r ( i n t i = 0 ; i < N; i ++) {

A[ i ] = B[ i ] + C[ i ]
}

/ / ( b ) Loop u n r o l l e d by a f a c t o r o f 2
f o r ( i n t i = 0 ; i < N; i ++) {

# pragma HLS UNROLL f a c t o r =2
A[ i ] = B[ i ] + C[ i ]

}

/ / ( c ) P i p e l i n e d loop
f o r ( i n t i = 0 ; i < N; i ++) {

# pragma HLS PIPELINE
A[ i ] = B[ i ] + C[ i ]

}
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i′ < i), since such solutions would require higher resource requirements
while being also more complex to schedule.

Memory partitioning

As previously discussed, when applying the pipelining optimization, it might
not be possible to achieve the ideal II of 1 cycle. With the memory partition-
ing optimization, we specifically target the case in which the bottleneck for
pipelining performance is due to conflicting accesses to the same memory
ports.

In order to better understand how conflicting accesses occur it is use-
ful to consider how the on-chip FPGA memories are used in HLS. Each
on-chip BRAM provides a small storage capacity and a fixed number of
memory ports. In Xilinx devices, each BRAM can host 18Kbits of data
and provides two independent memory ports that can be used in differ-
ent configurations. Larger memories can be created by cascading multiple
BRAMs, this effectively increases the storage capacity, but the number of
available memory ports remain fixed. When a local array a of size S is im-
plemented in Vivado HLS, the tool automatically allocates a large enough
memory to store all the S elements by cascading multiple BRAMs. Hence,
it is clear that, the maximum number of parallel accesses that can be per-
formed to array a in a single cycle corresponds, at most, to the number
of memory ports available. As an example, consider the pipelined matrix-
vector product shown in Listing 3.3. The input matrix A of size M × N
as well as the input vector b and the result vector c are declared as local ar-
rays that will be implemented as on-chip memories. The code perform the
computation c = A · b, the N elements in vector c are computed in pipeline
performing all the M multiply-accumulate operations in parallel. Notice
that this code cannot achieve an II of 1, as this would require to access all
the elements of b and each element in a column of matrix A in parallel at
every cycle. However, only two memory ports are available to read data
from A and b.

To overcome this limitation, we can apply memory partitioning to split
the content of a large memory into smaller memories, so that data in the re-
sulting smaller memories can be accessed in parallel. Vivado HLS provides
different partitioning schemes for each array dimension, namely: block
partitioning, cyclic partitioning and complete partitioning. The number
of memory N into which the data should be stored, is referred as parti-
tioning factor and can be specified along with block or cyclic partitioning.
Block partitioning stores contiguous block of data in each of the N memo-
ries, while cyclic partitioning splits the data in a round-robin fashion over
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Listing 3.3: Vivado HLS C code snippet performing a pipelined matrix-vector product.

# d e f i n e N 256
# d e f i n e M 16

. . .
f l o a t A[N] [M] , b [M] , c [N ] ;
. . .

f o r ( i n t i = 0 ; i < N; i ++) {
# pragma HLS PIPELINE
f l o a t prod = 0 ;
f o r ( i n t j = 0 ; j < M; j ++) {

prod += A[ i ] [ j ]∗ b [ j ] ;
}
c [ i ] = prod ;

}

the N memories. Finally, complete partitioning stores each element of the
memory into a single memory or register, depending on its size. The de-
scribed partitioning schemes can then be applied to each dimension of a
local multi-dimensional array independently, providing a rich set of possi-
ble memory partitioning strategies. Notice that while memory partitioning
increases the available memory ports, it also increases resource usage as
the data tends to be fragmented in each target memory.

Within the Master/Slave architectural template we added the capability
to automatically detect memory partitioning optimizations. In particular,
we first identify all the local arrays together with their sizes in the function
tree by means of the LLVM IR, and, subsequently, we run Vivado HLS
on the current implementation. When Vivado HLS is not able to achieve
the ideal II due to limited memory ports, it reports a message in the syn-
thesis log with information on the involved arrays and the line of code at
which the conflict arises. Hence, we parse the HLS log and, among the
arrays identified at the first step, we consider only those for which mem-
ory partitioning can be beneficial. For each candidate array and dimension,
we generate a candidate implementation in which the dimension of the ar-
ray is partitioned completely. Finally, the best implementation is selected
according to Algorithm 1.

3.4.3 System implementation

The artifacts generated by the proposed design flow depends on the target
architecture. Currently the template supports Amazon EC2 F1 instances
and SoCs from the Xilinx Zynq-7000 family.
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Chapter 3. Master/Slave architectural template

When targeting the F1 instances, the original code is modified to support
both host compilation and HLS synthesis within the SDAccel toolchain.
This is done with the insertion of C preprocessor directives that hides or en-
able parts of the source code as necessary. The main function of the appli-
cation is modified so that, before performing the actual execution, it makes
use of the OpenCL Application Programming Interfaces (APIs) provided
by SDAccel to detect the FPGA board and load the accelerator bitstream
from the AWSXCLBIN file. On the other hand, the original top function
is wrapped in a function that, by means of the OpenCL APIs, takes care
of creating the buffers, copying the input data, starting the accelerator, and
copying back the results from the board memory to the host memory. Fi-
nally the template also provides a Makefile that can be used to generate the
XCLBIN file (a checkpoint of the accelerator design after place and route)
through the SDAccel toolchain and to compile the host executable. In order
to run the FPGA code on the hardware accelerators available on Amazon
EC2 F1 instances, the user has to perform a few extra steps to generate
the AWSXCLBIN from the XCLBIN binary generated by SDAccel, which
involve running predefined scripts and commands provided by Amazon.

With regards to the Xilinx Zynq platform, the changes applied to the
original code goes in the same direction of the Amazon EC2 F1 case. The
flow modifies the code to support HLS synthesis of the top function and
integrate the needed device initialization within the main function. How-
ever, in this case, the flow also runs Vivado HLS and integrates the resulting
HDL implementation within a Vivado design. The design is created auto-
matically through TCL scripts and includes the AXI memory interconnect,
the Zynq subsystem and the Memory Interface Generator (MIG) module
as well as the accelerator resulting from the high-level synthesis of the top
function. Finally, the user can generate the FPGA bitstream through Vivado
and compile the modified host code on the ARM processor available on the
Zynq SoC.

3.5 Integration in CAOS

The design flow presented in Section 3.4 assumes that the designer already
decided which function to accelerate in hardware, but does not provide any
guidance on how to select it. On the other hand, the CAOS framework
presented in Chapter 2 supports all the steps needed to accelerate a soft-
ware application on reconfigurable hardware, including the profiling of the
application and support for HW / SW partitioning. In order to combine
the benefits of the CAOS platform with the proposed design flow, we inte-
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Figure 3.5: Integration of the Master/Slave architectural template within the CAOS plat-
form. The shaded boxes with solid lines represent modules and components of the
CAOS framework that have been modified in order to perform the integration.

grated the Master/Slave architectural template in the CAOS platform. More
specifically, Figure 3.5 shows the modules and flows of the CAOS platform
that has been impacted by the integration.

CAOS offers two solutions for extending the support to a new architec-
tural template. The first, is to create brand new modules and specify in the
CAOS User Interface (UI) the proper IP addresses, the second, consists in
extending the default modules to perform dedicated tasks depending on the
architectural template being considered. The first option might be preferred
for external researchers willing to create their own modules, nevertheless,
for our scenario, we decided to integrate the functionality directly in the
default CAOS modules, so that the user can benefit from the architectural
template without the need to specify any custom IP address in the CAOS
UI. In the next sections we provide more details on how the different stages
of the Master/Slave design flow have been cleanly mapped to modules of
the CAOS platform.

3.5.1 CAOS frontend

In order to add a new architectural template within the CAOS frontend it
is only necessary to implement or modify the architectural template ap-
plicability check module. Indeed, the other frontend modules are mostly
independent from the architectural template being considered. In our sce-
nario, we extended the architectural template applicability check module to
validate whether the architecture description provided by the user matches
one of the Amazon EC2 F1 or Zynq-7000 systems described in Section 3.2.
If the check is successful, we then scan all the functions of the application,
by leveraging on the CAOS IR, and verify the constraints described in Sec-
tion 3.3 with the help of LLVM. Finally, for the functions that satisfy all
the requirements, we also run Vivado HLS to make sure that the tool is able
to generate an HDL implementation for the initial version of the function.
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Chapter 3. Master/Slave architectural template

As a result, the module returns if the Master/Slave architectural template
is supported for the current application and target hardware description,
and, if so, returns the list of functions that can be accelerated in hardware
as well as diagnostic information for those functions that do not meet all
the requirements.

3.5.2 CAOS functions optimization

The resulting function tree and corresponding top function identified in the
CAOS frontend, with the help of the profiling module and the HW / SW
partitioning module, are provided to the CAOS function optimization flow.
The Master/Slave design space exploration presented in Algorithm 1 can be
easily factorized and mapped to the different CAOS modules discussed in
Section 2.3.2. Hence, we extended the default CAOS modules to perform
the steps needed by the Master/Slave architectural template, provided that
the CAOS frontend validates its applicability.

Static code analysis

Within the static code analysis, we analyze the code in order to extract all
the information required to generate the candidate optimizations in the sub-
sequent modules. More specifically, we recover the following information:

• Read/write analysis: for each argument of the top function, we lever-
age on the LLVM IR to identify whether an argument is read, written
or both read and written. This information can then be leveraged by
the onchip-memory caching optimization to save copy time and stor-
age space for parameters that are only read or written.

• Local arrays identification: we identify all the local arrays in the
function tree as well as their sizes and number of dimensions, this in-
formation will be used to identify memory partitioning opportunities.

• Loop nests identification: the module identifies all the loop nests in
the function tree and determines the trip count for each loop. Notice
that the trip count information is guaranteed to be available due to the
code requirements from the architectural template applicability check
module. Such data can then by leveraged to explore loop pipelining
optimizations.

• Latency estimates: the module generates an initial latency estimate
by running Vivado HLS on the top function. Such data is useful in
order to compare the performance of the initial implementation with
respect to the ones achieved after applying a given optimization.
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Resource estimation

The resource estimation module simply executes Vivado HLS on the top
function and retrieve an estimates of the amount of resources required on
the target FPGA. The estimation is done assuming a default frequency of
200 MHz which is reasonable for designs targeting Xilinx UltraScale+ de-
vices. Notice that the implementation of this module can be easily replaced
with more fast or accurate estimation techniques that to not necessarily rely
on commercial tools.

Performance estimation

The performance estimation module has been extended to implement Al-
gorithm 1. The generation of the new candidate optimizations leverages the
data generated by the static code analysis and resource estimation modules
previously discussed. After having generated the set of candidates, Vivado
HLS is leveraged to evaluate the estimated latency and performance. Fi-
nally, the module returns the best candidate for each optimization type with
their associated resource estimation, performance estimation and optimiza-
tion parameters.

Code optimization

The code optimization module has been extended to implement the select
Implementation method described in Algorithm 1. In particular, the
user is given the opportunity to select the candidate optimization among
the ones generated by the previous module. After having selected the op-
timization, the module inserts the necessary code pragmas or modify the
code according to the optimization type and its parameters. After having
applied the optimization the user can decide whether to iterate the optimiza-
tion process or move to the backend flow.

3.5.3 CAOS backend

The CAOS backend has been extended to support the two implementation
flows described in Section 3.4.3, targeting either Amazon EC2 F1 instances
of Xilinx Zynq-7000 SoC. When the Master/Slave architectural template
is used for the generation of the final system, the module takes care of
generating the host code with the needed API calls to interface with the
accelerator and either a Vivado project or a Makefile that can be used to
generate the accelerator bitstream or XCLBIN file.

49



i
i

“thesis” — 2019/1/21 — 12:19 — page 50 — #70 i
i

i
i

i
i

Chapter 3. Master/Slave architectural template

Overall, the integration of the Master/Slave architectural template within
CAOS allows an application designer to easily go through all the needed
steps for accelerating a relatively large set of C/C++ codes on two widespread
systems featuring reconfigurable hardware. This allow the application de-
sign to focus more on the specific functionality to implement rather than
manually optimize the implementation and rewriting the code to target a
specific system.

3.6 Experimental results

Within this section we evaluate the Master/Slave architectural template in-
tegrated into the CAOS platform on the N-body physical simulation case
study. We accelerate the algorithm by means of CAOS targeting a Xil-
inx UltraScale+ VU9P FPGA on an Amazon EC2 F1 instance. Finally,
we compare the achieved results against the ones obtained by the bespoke
implementation proposed in [25] and later enhanced in [26].

3.6.1 The N-Body simulation problem

The N-Body simulation is a well known problem in physics and has appli-
cations in many fields ( [49,58,69]), such as fluid and molecular dynamics,
plasma physics, electromagnetism and astrophysics. The problem consists
in simulating the evolution of a system composed of N bodies interacting
by means of pairwise forces, such as the ones due to the gravity. Each body
is characterized by at least three properties: a position, a velocity and a
mass. The simulation is performed by solving the motion equations for the
bodies involved in the system at subsequent time steps.

In the literature, there exists different approaches to solve the N-Body
simulation problem, nevertheless the all-pair method [27] is among the
most generic ones, yet most compute intensive to perform. In our case study
we target the acceleration of the all-pair method. The algorithm consists
of two alternating functions executed at every timestep of the simulation:
forceComputation, which computes the force applied to each body
and updates the corresponding accelerations, and updatePosition, which
updates the velocity of the bodies and their positions. The core of the refer-
ence software implementation is shown in Listing 3.4, in which the number
of bodies N is a statically defined constant.
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Listing 3.4: Core of the considered N-Body simulation C application. This implementa-
tion operates on a system of N bodies, where N is a statically defined constant. Notice
that smaller systems can be simulated by padding the mass array to 0.

t y p e d e f s t r u c t {
f l o a t x ;
f l o a t y ;
f l o a t z ;

} c o o r d 3 d _ t ;

void u p d a t e P o s i t i o n ( c o o r d 3 d _ t p o s i t i o n [N] , c o o r d 3 d _ t v e l o c i t y [N] ,
c o o r d 3 d _ t a c c e l [N] ) {

u p d a t e _ l o o p _ 1 : f o r ( i n t i = 0 ; i < N; i ++) {
/ / i m p l i c i t d e l t a _ t i m e = 1 f o r i n t e g r a t i n g p o s i t i o n and v e l o c i t y
p o s i t i o n [ i ] . x += v e l o c i t y [ i ] . x ;
p o s i t i o n [ i ] . y += v e l o c i t y [ i ] . y ;
p o s i t i o n [ i ] . z += v e l o c i t y [ i ] . z ;
v e l o c i t y [ i ] . x += a c c e l [ i ] . x ;
v e l o c i t y [ i ] . y += a c c e l [ i ] . y ;
v e l o c i t y [ i ] . z += a c c e l [ i ] . z ;

}
}

void f o r c e C o m p u t a t i o n ( c o n s t f l o a t mass [N] , c o o r d 3 d _ t p o s i t i o n [N] ,
c o o r d 3 d _ t a c c e l [N] , f l o a t eps ) {

f o r c e _ l o o p _ 1 : f o r ( i n t i = 0 ; i < N; i ++) {
f o r c e _ l o o p _ 2 : f o r ( i n t j = 0 ; j < N; j ++) {

f l o a t rx = p o s i t i o n [ j ] . x − p o s i t i o n [ i ] . x ;
f l o a t ry = p o s i t i o n [ j ] . y − p o s i t i o n [ i ] . y ;
f l o a t r z = p o s i t i o n [ j ] . z − p o s i t i o n [ i ] . z ;
f l o a t dd = rx ∗ rx + ry ∗ ry + r z ∗ r z + eps ;
f l o a t d = 1 . 0 f / ( dd ∗ s q r t f ( dd ) ) ;
f l o a t s = mass [ j ] ∗ d ;
a c c e l [ i ] . x += rx ∗ s ;
a c c e l [ i ] . y += ry ∗ s ;
a c c e l [ i ] . z += r z ∗ s ;

}
}

}

void NBodySimula t ion ( c o n s t f l o a t mass [N] , c o o r d 3 d _ t p o s i t i o n [N] , c o o r d 3 d _ t
v e l o c i t y [N] , f l o a t eps , i n t t i m e _ s t e p s )

{
c o o r d 3 d _ t a c c e l [N ] ;

t i m e _ l o o p : f o r ( i n t t = 0 ; t < t i m e _ s t e p s ; t ++) {
memset ( a c c e l , 0 , N ∗ s i z e o f ( c o o r d 3 d _ t ) ) ;
f o r c e C o m p u t a t i o n ( mass , p o s i t i o n , a c c e l , eps ) ;
u p d a t e P o s i t i o n ( p o s i t i o n , v e l o c i t y , a c c e l ) ;

}
}
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Chapter 3. Master/Slave architectural template

3.6.2 Application acceleration trough CAOS

In order to process the application through CAOS, we prepared the follow-
ing input resources:

• An archive containing the C source files of the application.

• The JSON program description file that specifies the programming
language and the supported compilers with their flags.

• The dataset needed to profile the application.

• The JSON architecture description file targeting an Amazon EC2 F1
instance.

After having provided the necessary files to CAOS, we started the fron-
tend flow. During the architectural template applicability check phase,
CAOS validated the applicability of the Master/Slave architectural template
and identified the forceComutation and updatePosition as can-
didate functions for hardware acceleration. Indeed, both functions abide
by the constraints described in Section 3.3, while the provided architecture
description is supported by the architectural template.

The code profiling module showed that the forceComputation takes
the highest amount of time of the whole computation, this can also be noted
by analyzing the complexity of the code in Listing 3.4. Indeed, given
N bodies, the computational complexity of forceComputation and
updatePosition is O(N2) and O(N) respectively. Due to the highly
unbalanced execution time between the two candidate functions, the HW /
SW partitioning module suggested to accelerate forceComputation in
hardware and this concluded the CAOS frontend flow.

Subsequently, during the CAOS functions optimization flow, the plat-
form suggested to apply two optimizations to the forceComputation
function, namely on-chip caching and pipelining loop force_loop_1,
which also triggers full unrolling of the innermost loop force_loop_2.
Notice that such optimizations achieved for values ofN in the order of hun-
dreds of bodies (such as 160 and 320 bodies). Indeed, very high number of
N (e.g. more than 50000 bodies) might not allow to fully cache the data
due to lack of local BRAMs and URAMs, while values of N in the order of
1000s would prevent the tool from pipelining the outermost loop, since it
also requires to fully unroll the N iterations of the innermost loop, leading
to unsustainable Digital Signal Processing (DSP), Look-Up Table (LUT)
and Flip Flop (FF) resource requirements.
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Finally, the CAOS backend flow produced the optimized Vivado HLS
code for the forceComputation (shown in Listing 3.5), the host code
for the application and the Makefile to generate the XCLBIN file and the
executable for the Amazon EC2 F1 instance.

3.6.3 Achieved results and comparison

Table 3.1 and Table 3.2 show a comparison of the implementations achieved
by CAOS against the ones from [25] and [26] that target a Xilinx VC707
board and an Amazon EC2 F1 instance respectively. The performance mea-
sure is given in terms of million of pairwise forces (MPairs) computed per
second, which is a standard performance metric for the N-Body simulation
problem and allows to compare the performance of implementations run-
ning on datasets with different number of bodies. We consider two versions
of the application described in Section 3.6.2 providing support for a max-
imum of N = 160 and N = 320 bodies. It is important to mention that
despite larger values of N were supported by CAOS, the final implementa-
tion resulted in poor performance. The reason is that pipelining the outer
loop becomes unfeasible and the platform resorts to pipeline the innermost
loop only, leaving most of the FPGA resources unutilized.

As we can see from Table 3.1, the implementation provided by CAOS
with N = 320 bodies on a Amazon F1 instance outperforms, both in terms
of pure performance and energy efficiency, the software implementation
running in parallel on 40 threads on an Intel Xeon E5-2680 v2. Further-
more, the CAOS implementations achieve performance comparable to the
implementation in [25] targeting a Xilinx VC707 board. Nevertheless, if
we consider the latest implementation from [26], which is also targeting
an Amazon F1 instance, it is clear that the bespoke implementation outper-
form the CAOS one by a factor of about 5x. The performance gap is due
to additional optimizations which involve loop interchange, loop splitting,
partial accumulations as well as pipelining. Overall, this allowed a more
efficient use of the FPGA resources.

Despite the generated implementation is not optimal, it is worth noting
that the version of the code developed with the CAOS platform has not been
manually modified, whereas the versions presented in [26] and [25] were
developed by expert users. Additionally, the CAOS implementation has
been produced in less than a day, including the time to build the application
for the hardware accelerator.

As a final remark, we want to stress that the results shown in Table 3.1
are meant to compare the CAOS solutions using the Master/Slave architec-
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Listing 3.5: Optimized Vivado HLS implementation of the forceComputation func-
tion from the N-Body simulation described in Listing 3.4. The Master/Slave interfaces
are defined through HLS pragma, local arrays have been added to cache the data from
the external DDR memory, the outermost loop force_loop_1 has been pipelined
and the innermost loop force_loop_2 completely unrolled.

void f o r c e C o m p u t a t i o n _ k e r n e l ( c o n s t f l o a t hos t_mass [N] , c o o r d 3 d _ t
h o s t _ p o s i t i o n [N] , c o o r d 3 d _ t h o s t _ a c c e l [N] , f l o a t eps )

{
# pragma HLS INTERFACE m_axi p o r t = hos t_mass bu nd l e =gmem
# pragma HLS INTERFACE s _ a x i l i t e p o r t = hos t_mass bu nd l e = c o n t r o l
# pragma HLS INTERFACE m_axi p o r t = h o s t _ p o s i t i o n bu nd l e =gmem
# pragma HLS INTERFACE s _ a x i l i t e p o r t = h o s t _ p o s i t i o n bu nd l e = c o n t r o l
# pragma HLS INTERFACE m_axi p o r t = h o s t _ a c c e l bu nd l e =gmem
# pragma HLS INTERFACE s _ a x i l i t e p o r t = h o s t _ a c c e l bu nd l e = c o n t r o l
# pragma HLS INTERFACE s _ a x i l i t e p o r t = eps bu nd l e = c o n t r o l
# pragma HLS INTERFACE s _ a x i l i t e p o r t = re turn bu nd l e = c o n t r o l

f l o a t mass [N ] ;
c o o r d 3 d _ t p o s i t i o n [N ] ;
c o o r d 3 d _ t a c c e l [N ] ;

memcpy ( mass , hos t_mass , s i z e o f ( f l o a t ) ∗ N) ;
memcpy ( p o s i t i o n , h o s t _ p o s i t i o n , s i z e o f ( c o o r d 3 d _ t ) ∗ N) ;
memcpy ( a c c e l , h o s t _ a c c e l , s i z e o f ( c o o r d 3 d _ t ) ∗ N) ;

f o r c e _ l o o p _ 1 : f o r ( i n t i = 0 ; i < N; i ++) {
# pragma HLS PIPELINE I I =1
f o r c e _ l o o p _ 2 : f o r ( i n t j = 0 ; j < N; j ++) {

# pragma HLS UNROLL
f l o a t rx = p o s i t i o n [ j ] . x − p o s i t i o n [ i ] . x ;
f l o a t ry = p o s i t i o n [ j ] . y − p o s i t i o n [ i ] . y ;
f l o a t r z = p o s i t i o n [ j ] . z − p o s i t i o n [ i ] . z ;
f l o a t dd = rx ∗ rx + ry ∗ ry + r z ∗ r z + EPS ;
f l o a t d = 1 . 0 f / ( dd ∗ s q r t f ( dd ) ) ;
f l o a t s = mass [ j ] ∗ d ;
a c c e l [ i ] . x += rx ∗ s ;
a c c e l [ i ] . y += ry ∗ s ;
a c c e l [ i ] . z += r z ∗ s ;

}
}

memcpy ( h o s t _ a c c e l , a c c e l , s i z e o f ( c o o r d 3 d _ t ) ∗ N) ;
}
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tural template against other FPGA-based implementations within the state-
of-the-art on similar target platforms. Nevertheless, the nature of the N-
Body case study makes it particularly suited for GPU-based acceleration.
Indeed, thanks to the high amount of floating-point operations and the high
degree of parallelism, the n-body benchmark from NVIDIA [75] is capa-
ble of achieving performance in the order of 100,000 MPairs/s on the most
recent devices.

3.7 Final remarks

Within this chapter we presented the Master/Slave architectural template
and its integration into the CAOS platform. The template allows to target
either Xilinx Zynq-7000 SoC and Amazon EC2 F1 cloud instances, while
providing acceleration support for a relatively large subset of the C/C++
language. The integration of the Master/Slave architectural template in
CAOS enables application developers with low experience in FPGA-based
acceleration to quickly identify the functions of the application to map on
the reconfigurable hardware, optimize them and generate the system run-
time to test and deploy the final implementation.

We have shown the benefits of the approach on the N-Body simulation
case study, demonstrating the ability of the CAOS platform to quickly pro-
duce a working FPGA-accelerated implementation providing reasonable
performance thanks to semi-automatic code optimizations. Currently, be-
spoke solutions produced by expert designers are expected to beat the per-
formance of the implementations produced by the template. Nevertheless,
the Master/Slave architectural template provides an interesting trade-off in
terms of design time and performance.

Currently, we are working on a new design space exploration that alle-
viates the necessity to rely on Vivado HLS reports and logs. The overall
idea is to estimate the performance of HLS implementations by performing
approximate scheduling and resource mapping directly within the LLVM
compiler framework. Furthermore, we are also including additional opti-
mizations such as partial loop unrolling and support for cyclic as well as
block array partitioning. Preliminary results show a 10x improvement for
the design space exploration time and, in addition, we managed to automat-
ically identify an optimized N-Body implementation that achieves 12,072
MPair/s, which is close in performance to the bespoke solution presented
in [26]. As next steps, we plan to integrate this new methodology within the
CAOS Master/Slave architectural template. Furthermore, we also plan to
support more sophisticated caching mechanism, such as the one described
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3.7. Final remarks

in [57], that could be used as alternatives to full chip caching in case the
available local memory does not suffice. This would provide an additional
design space point in order to smoothly degrade the memory transfer per-
formance in case full caching is not feasible.

Overall, despite its generality and applicability, the Master/Slave archi-
tectural template does not provide optimal implementations for functions
that could be implemented with more specific architectures and communi-
cation models such as the ones described in Chapter 4 and Chapter 5.
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CHAPTER4
Dataflow architectural template

This chapter presents a new methodology for accelerating applications
featuring dataflow-like computations via Field Programmable Gate Array
(FPGA). In particular, in the first part of the chapter, we focus on the OX-
iGen toolchain [79] that allows to perform an automated translation of a
specific set of C/C++ functions into dataflow kernels. The second part of
the chapter delves into the integration of the OXiGen toolchain as an ar-
chitectural template within the CAOS platform presented in Chapter 2. Fi-
nally, we validate the approach on applications from the image processing
and finance domain.
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Chapter 4. Dataflow architectural template

4.1 Introduction

This thesis focuses on the definition and implementation of an open-research
platform to help and guide application designers towards the acceleration of
applications defined in high-level C/C++ codes by means of FPGA-based
architectures. Within this chapter, we discuss on how it is possible to au-
tomatize the process for the acceleration of a specific set of computations
that can be framed and restructured as pure dataflow computations. In-
deed, compared to other computing models, the dataflow one has proven
to be very effective when implemented on FPGA [20]. In this context, we
trade off the set of computations that we support in order to achieve higher
performance, compared with more general approaches such as the Mas-
ter/Slave architectural template discussed in Chapter 3. The proposed so-
lution for automating the acceleration process revolves around the OXiGen
toolchain and its integration within the CAD as an Adaptive Open-platform
Service (CAOS) presented in Chapter 2.

The remaining content of the chapter is organized as follows: in Sec-
tion 4.2 we provide more details behind the dataflow computing model and
show how FPGA can benefit from its applicability. In Section 4.3 we de-
scribe existing tools and approaches for simplifying the acceleration pro-
cess of applications on FPGA with a focus on the approaches that explicitly
consider the dataflow computing paradigm. Furthermore, we also motivate
and discuss the methodology proposed in this chapter. Section 4.4 presents
the OXiGen toolchain and its components, while Section 4.5 introduces the
performance and resource estimation model that are key for exploring and
comparing several design points for the implementation of the dataflow ac-
celerator. Section 4.6 discusses the integration of the OXiGen toolchain
within the CAOS platform highlighting the set of modules that have been
modified and the benefits brought by the integration. Finally, Section 4.7
analyzes the performance and productivity gain achieved by accelerating
applications by means of the dataflow architectural template resulting from
the integration of OXiGen within CAOS, while Section 4.8 draws the con-
clusions.

4.2 Dataflow computing and target systems

The dataflow computing paradigm represents a completely different view
on how to perform a computation compared to the classical Von Neumann
control-flow computational model [29]. Within the classical control-flow
computational model, an algorithm is described as a sequence of instruc-
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4.2. Dataflow computing and target systems

HOST 
CPU

PCI Express

Host DDR memory

FPGA

PE

MANAGER

PE

KERNEL

PE PE

PEPE

PE

PE

PE

Figure 4.1: Representation of a system targeted by the proposed dataflow architectural
template. The system consists of a host CPU connected to an FPGA via PCIe. The
FPGA resources are logically subdivided in a manger and a kernel portion. The man-
ager handles the data transfer to and from the host Double Data Rate (DDR) memory
via PCIe and the kernel, while the kernel performs the actual dataflow computation by
means of a set of interconnected PEs.

tions which are executed on a particular processor. Once the instructions are
loaded into memory, the computation is performed by moving instructions
from the memory to the processor, decoding the instructions to identify the
type of operations to perform, reading the necessary data from memory,
computing the required operation on the data and, finally, writing back the
computed results to memory. Even though nowadays processors employ
branch predictors, multiple caching levels and forwarding logic, the com-
puting paradigm itself is inherently sequential and temporal in nature [72].

Within a dataflow computing model instead, the data is streamed from
the memory directly to the chip containing an array of Processing Elements
(PEs) each of which is responsible for performing a single operation of
the algorithm. The data flow from a PE to the next one within a statically
defined directed graph, without the need for any kind of control mechanism.
In such a model, each PE performs its operation as soon as the input data is
available and forwards the result to the next element in the network as soon
as it is computed. This approach allows to layout the computation spatially
[20], so that at regime, each PE performs useful work in parallel, as opposed
to the control-flow paradigm in which operations are executed sequentially
on the same shared computational unit. Furthermore, the overall dataflow
graph can be deeply pipelined in order to achieve a throughput of one result
per clock cycle.
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Chapter 4. Dataflow architectural template

Thanks to the optimized data movement, efficient memory accesses and
the elimination of the control-flow logic, the dataflow paradigm allows
to improve both performance and energy efficiency by several orders of
magnitude for large-scale computations with a static compute graph [37].
Within this context, the FPGA has proved to be a very convenient yet effec-
tive technology for the implementation of dataflow computing system. In
Figure 4.1 we show the dataflow system that we target in our context. The
system consists in a host CPU and the dataflow accelerator deployed on a
FPGA connected via PCIe to the host. Both the host CPU and the FPGA
logic have access to the host DDR memory containing the input/output data.
The FPGA accelerator is organized internally as a Globally Asynchronous
Locally Synchronous (GALS) architecture divided into the actual acceler-
ated kernel function and a manger. The manager handles the asynchronous
communication between the host and the accelerator, whereas the kernel
is internally organized as a set of synchronous PEs that perform the actual
computation in parallel.

4.3 Related work and motivations

The most common way to develop designs for FPGAs is to use Hardware
Description Languages (HDLs), like Verilog and VHDL. However, it may
be definitely complex to master such low level languages. For this reason,
in the last years, High-Level Synthesis (HLS) tools has gained more and
more interest. Such tools allow the designer to develop an IP using high
level languages instead of HDL.

In the state-of-the-art, there exist many and different HLS tools or frame-
works that, starting from one or multiple Domain Specific Languages (DSLs),
target HLS tools. Xilinx Vivado HLS [111] is a directives-driven architecture-
aware HLS tool for Xilinx FPGAs. It supports C/C++ or System C lan-
guages, and provides multiple hardware optimized libraries and Application
Programming Interfaces (APIs) to support the designer in the development
of an IP. At the end of the HLS process, Vivado HLS provides the designer
with an exhaustive report about the produced IP, in terms of circuit latency,
resource usage, and so on. Eventually, the Vivado HLS exports the IP,
which can then be integrated in a system design.

The LegUp [36] HLS framework, with a different approach, guides the
developer through an incremental hardware acceleration of parts of an ap-
plication. In this case, a MIPS soft processor mounted on the FPGA con-
tains an hardware profiler, used to identify which parts of the program
should be accelerated. The actual synthesis of the functions is performed
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4.3. Related work and motivations

starting from an Intermediate Representation (IR) extracted from the initial
C code through the LLVM compiler framework, and an iterative process
applies different compiler passes and evaluates their effect on the resulting
design, selecting only the combination of passes which reduce the number
of clock cycles needed for execution. The framework aims at creating an it-
erative development model which allows a gradual transition from software
to hardware implementation.

With respect to the DSL context, FROST [24] is a common backend for
the acceleration of DSLs on FPGA. FROST provides an IR that can be
targeted by DSLs, and a high-level scheduling co-language to describe the
optimizations to enforce. FROST takes as input one or multiple functions
described using one of the supported DSLs, translates the computation in its
IR, and then applies optimizations according to the scheduling commands.
The result of this process is a C/C++ implementation of the original com-
putation suitable for Vivado HLS.

The aforementioned tools, as many other HLS tools, are designed to sup-
port different types of computational models, hence it is up the designer the
development of an efficient implementation according to the computational
model. On the other hand, other approaches focus on specific domains in
order to better optimize the resulting design. In particular, since FPGAs fit
well the dataflow computational model, there are different tools and lan-
guages tailored to this model. Darkroom [45] is a DSL and compiler for
image processing pipelines. Darkroom compiles the input application into
Verilog line-buffered pipelines, which are then synthesized for multiple ar-
chitectures, namely ASIC, FPGA, or CPU. Another example of DSL for
image processing is RIPL [99]. RIPL first compiles the input program to
dataflow graphs, then exploits an open source dataflow compiler [11] to
generates the RTL.

Maxeler Technologies implements the dataflow model through Max-
Compiler, a compilation tool for the development of dataflow applications
on FPGA-based platform. Each application is composed of the CPU host
code comprehending the most control intensive code and the Dataflow En-
gine (DFE) code modeling the dataflow execution logic. On the other hand,
each DFE is composed of several dataflow kernels performing simple but
data-intensive computations and a manager responsible for handling the
flow of data between kernels, memory and external interfaces. The CPU
host code is written in a high level language, like C, whereas both kernels
and manager are written in the MaxJ proprietary language.

Another work that targets Maxeler DFE is the FAST/LARA [42] com-
pilation approach, which uses FAST, a programming language based on
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Chapter 4. Dataflow architectural template

C99 syntax, to provide a dataflow specification of the designs, and an As-
pect Oriented Programming section specified in LARA to implement the
necessary transformations to target the MaxCompiler architecture.

As described so far, there are many tools and languages to target FPGAs,
and, even if we tighten the context to a specific type of computation, namely
dataflow, the designers still have to adapt themselves to a specific tech-
nology in terms of both toolchain and language. Differently from the ap-
proaches available in the state-of-the-art, OXiGen enables designers to eas-
ily design dataflow applications for FPGA from one of the high level lan-
guages supported by LLVM. Moreover, OXiGen automatizes the synthesis
process; hence, no knowledge of such process is required to the designer.
Finally, OXiGen leverages MaxCompiler to implement the dataflow com-
putation on Maxeler’s DFEs.

By means of the Dataflow architectural template resulting from the in-
tegration of OXiGen within CAOS, we provide a comprehensive approach
for accelerating dataflow-like applications on FPGA. More specifically,
CAOS let the user identify which portions of the applications are amenable
to be accelerated as dataflow kernels, allows the user to identify which,
among such functions, are the ones that benefit the most from hardware
acceleration and, finally, after having optimized the implementation of the
candidate functions, it generates the required artifacts for running the ac-
celerated application on the target system.

4.4 OXiGen infrastructure

4.4.1 Overview

The frontend, backend and overall design flow for OXiGen are shown in
Figure 4.2. The tool takes as input a LLVM IR source file generated from a
high level language frontend, the name of a target function defined within
that file, and a set of parameters that determine the translation configura-
tion. The IR of the target function is analyzed and processed in a series
of stages in order to produce a dataflow representation of the computation.
Once the dataflow graph for the function has been generated, the tool pro-
duces a conservative estimate of the hardware resources required to synthe-
size the circuit on FPGA, based on a simple model that allows to predict
how a change in the configuration parameters would affect the estimated
result. This information along with the resources constraints for the target
board is sent to the configuration optimizer, which produces the optimal
configuration for the design. The translation module produces the target

64



i
i

“thesis” — 2019/1/21 — 12:19 — page 65 — #85 i
i

i
i

i
i

4.4. OXiGen infrastructure

Figure 4.2: The infrastructure surrounding OXiGen. The frontend contains the input,
which consists of a .ll file of the source code generated by Clang, the name of the
target function and a set of optimization options. The input is then processed by OXi-
Gen, which outputs an optimal optimization configuration for the design and a kernel
code which can be compiler with the selected backend synthesis tool.

code by translating the intermediate representation into the target language
of choice. When the translation is completed, the tool produces a file con-
taining the code of the kernel, which can then be compiled by the beckend
synthesis tool, in this case MaxCompiler, to generate the bitstream.

4.4.2 Frontend support

Presently, the variety of functions which can be translated by OXiGen have
some restrictions. An exemplary structure for the input function is illus-
trated in the snippet of code shown in Listing 4.1. The function to be trans-
lated must have one or more outermost loops that iterate over an iteration
variable with unitary stride and a number of iterations that is either known
at compile time or directly dependent on a scalar input. Every input struc-
ture accessed in its outermost dimension through that iteration variable is
considered a stream. The code can have any combination of further nest-
ing levels and the corresponding iteration variables can be used to index
local variables or other dimensions of the input and output streams. The
restriction on the access patterns dictates that all the streams must be ac-
cessed linearly through an iteration variable with a constant offset. The fur-
ther nested loops must also have a number of iterations known at compile
time, and the local variables or the further dimensions of input and output
streams can be accessed either through constant access or through a nested
iteration variable with an optional offset, also known at compile time. It
is worth nothing, that user-defined function calls are allowed and complex
acyclic callgraphs are also supported (i.e. there should be no direct or in-
direct recursive calls). OXiGen automatically inlines sub-functions within
the top function and treats it as a single software description of the dataflow
kernel to implement. Furthermore, OXiGen also provides a library of pre-
optimized functions that the user can call within the kernel. Such functions
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Chapter 4. Dataflow architectural template

are defined in a custom header file, which overrides the actual library func-
tion calls within the code. The library includes many basic mathematical
functions, such as min(), abs(), ceil() and can be easily extended by
providing the C-prototype as well as the description of a custom hardware
module specified using the backend specific language (such as MaxJ for the
MaxCompiler backend).

Despite the constraints on the code, it is worth noting the many applica-
tions can be expressed in a form similar to the one presented in Listing 4.1.
From a high-level perspective, the computations supported by OXiGen are
of the form yi = f(ψ(x̄, i), i), where x̄ is the input vector and ȳ is the out-
put vector. The function ψ(x̄, i) returns a set of inputs relative to index i.
As an example, if we consider x̄ and ȳ as vectors containing the pixels of
two images stored row-wise, a 1x3 filter f that applied to the input image x̄
generates the output image ȳ can be expressed as yi = f({xi−1, xi, xi+1}, i)
in which we used ψ(x̄, i) = {xi−1, xi, xi+1}.

4.4.3 IR preprocessing

In the first phase of the translation process the IR is optimized through
a series of LLVM analysis and transformation passes. The -mem2reg
pass promotes memory references to register references and transforms the
IR into pruned Static Single Assignment (SSA) form. Then, the -loops
analysis pass is used to extract information on the natural loops of the func-
tion and their structure. Finally, the -scalar-evolution analysis pass
provides information on the scalar expressions within loops. This allows to
compute the number of iterations performed by a loop and to identify the
iteration index. The preprocessing phase puts the IR into a form which can
be more easily translated into a dataflow representation and extracts all the
information required to perform the next translation step. At this stage of
the flow, the vectorization optimization can be applied if requested. Vector-
ization changes the data type of the input and output streams of the target
function into vector types. The user can select a vectorization factor to de-
termine the size of the input and output vectors. A vectorized version of the
function is created where an additional dimension is added to the existing
data types and the structure is changed to allow iteration over the added vec-
tor dimension. This optimization is target specific, since in MaxCompiler
this structural change allows to improve the parallelism of the computation,
as the hardware resources for each element of the vectorized dimension are
replicated and the elements are processed in parallel. This also allows to
fully utilize the available bandwidth for data transfer.
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4.4. OXiGen infrastructure

Listing 4.1: An exemplary code for OXiGen. The function takes as input a combination of
array types and scalar types. The outer loops iterate over the outer dimension of the
array types which will be translated as streams. The accesses to the streams are linear
with constant offsets. The function can have a combination of nesting levels iterating
over the inputs or local variables

# d e f i n e INPUT_SIZE 100

void foo ( d a t a _ t y p e _ 1 ∗ in_1 , d a t a _ t y p e _ 2 ∗ in_2 , d a t a _ t y p e _ 1 ∗ out_1 ,
s c a l a r _ t y p e _ 1 v_1 ) {

d a t a _ t y p e _ 1 tmp_vec t [ 1 5 ] ;

L1 : f o r ( i n t i = c o n s t _ o f f s _ 1 ; i < INPUT_SIZE − c o n s t _ o f f s _ 2 ; i ++ ) {

S1 : . . . s t a t e m e n t s . . .

L1 . 1 : f o r ( i n t j = c o n s t _ o f f s _ 3 ; j < 1 5 ; j ++ ) {

S2 : tmp_vec t [ j ] = . . . e x p r e s s i o n . . .
}

S3 : d a t a _ t y p e _ 1 t m p _ s c a l a r = . . . e x p r e s s i o n . . . ;

L1 . 2 : f o r ( i n t j = c o n s t _ o f f s _ 3 ; j < 1 5 ; j ++ ) {

S4 : t m p _ s c a l a r = t m p _ s c a l a r + tmp_vec t [ j ] ;
}

}

L2 : f o r ( i n t i = c o n s t _ o f f s _ 4 ; i < INPUT_SIZE − c o n s t _ o f f s _ 5 ; i ++ ) {

S5 : . . . s t a t e m e n t s . . .
}

}
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Chapter 4. Dataflow architectural template

Figure 4.3: Dataflow graph generated by OXiGen on the exemplary code.

4.4.4 Function analysis

In the second phase of the translation process a custom pass is used to
generate a dataflow graph for the target function. This representation of
the computation is not bound to a specific language and is designed to
generate translations for different backends. This graph representation is
constructed by parsing the LLVM IR and makes use of several LLVM anal-
ysis and APIs, but is distinct from the LLVM IR of the function since it is
designed specifically to represent dataflow computations. The pass is orga-
nized into several components which perform specific functionalities and
are instantiated as needed, depending on the characteristics of the target
function. The first two, the AnalysisManager and the StreamsAnalyzer, are
always scheduled and perform a series of analysis which inform the subse-
quent components. In particular, the AnalysisManager examines the struc-
ture of the function to identify the outermost loops, which become implicit
in the dataflow graph representation, and classifies the memory accesses.
This is done to enforce restrictions on the patterns which can be used to
access memory data structures. In particular, we have restricted the possi-
ble memory access patterns to linear accesses with constant offsets. Once
these constraints have been verified, the StreamsAnalyzer identifies the data
structures which will be translated as streams and the inputs and outputs for
the function. This information is used to initialize the construction of the
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4.4. OXiGen infrastructure

dataflow graph.

4.4.5 Dataflow graph construction

The graph is constructed iteratively by alternating phases in which instruc-
tions are parsed to generate new nodes of the graph and phases in which the
generated nodes are linked to one another by analyzing the data dependen-
cies within the function. These two processes are performed by the DFG-
Constructor and DFGLinker components respectively. During the graph
construction, the different offsets used in the indexes to access data struc-
tures are translated into offset nodes in the graph, in order to maintain the
function semantics. The DFGSubloopHandler takes care of analyzing and
translating the nesting structure of the function, which is represented as dif-
ferent nesting levels of the graph. A DFGLoopNode is a graph node which
represents a loop and contains a dataflow graph representing the computa-
tion performed by the body of the loop, as well as additional information
such as the trip count for the loop and the loop iteration variable. These
nodes are translated in a target-specific fashion in the next translation phase.

4.4.6 Dataflow graph translation

The fourth and final translation phase takes as input the dataflow graph
of the target function and the optimization options selected by the user to
generate the final code for the kernel. This final phase is target specific,
since the nodes of the graph need to be parsed and translated into instruc-
tions for the target language. At present, the only supported target lan-
guage is MaxJ, but we are looking to expand this pool in the future. After
the dataflow graph has been fully constructed, the loop rerolling optimiza-
tion is applied if requested. This optimization is also target specific and
allows the user to control the amount of hardware replication for the com-
putation within nested loops, provided that said computation does not have
data dependencies across loop iterations. The loops are translated in MaxJ
as java-like loops which act as macros that describe hardware replication.
Each MaxJ loop body iteration is implemented using dedicated dataflow
nodes and the dependencies among iterations are resolved statically. A
previously conducted analysis in the dataflow graph provides a represen-
tation of the nested loops within the function and their data dependencies
and labels each loop depending on the kind of computation it performs.
The loops which write in a local data structure at each iteration are labeled
as ExpansionLoops and produce several outputs in parallel, proportionally
to the number of iterations they perform. Conversely, those loops which
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Chapter 4. Dataflow architectural template

read more than one element in parallel and write an aggregated result are
labeled as AccumulationLoops. Presently, if a loop performs both an expan-
sion and an accumulation is not considered eligible for the optimization. A
possible future development for this analysis would be the ability to au-
tomatically separate the expansion and accumulation computations in two
distinct loops to enable further optimization. If the rerolling optimization
is selected, the user chooses a rerolling factor which determines how many
elements are produced in parallel by the expansion loops. The rerolling
factor effectively reduces the number of iterations for a loop (i.e. hardware
replication) and the elements of the computation which were previously
produced fully in parallel are distributed across several cycles. The accu-
mulation loops use different stream offsets to access the elements needed
for the aggregate computation they need to perform, and appropriate delays
are introduced to maintain data dependencies. This optimization reduces
the speed at which the input is consumed by the kernel, effectively slowing
down the computation, but is useful for those computations which cannot
by fully parallelized due to limited FPGA resources. Selecting an appropri-
ate rerolling factor can reduce the required hardware resources by sharing
them across time. The actual translation phase is relatively straightforward,
as most of the computation transforms the information already contained in
the graph into statements. The resulting code is in a quasi-SSA form and
the instructions relate to the graph nodes in an almost one-to-one mapping.
In this phase the function calls within the target functions are resolved by
either mapping them to already existing library functions for the target lan-
guage or including in the kernel a custom implementation for the function.
The necessary information to guide this process are provided by including
in the original source code a custom header file with all the functions sup-
ported by the tool, which overrides the original implementations for those
functions. Once the code of the kernel has been generated, it is produced
as output in the form of a MaxJ file.

4.5 Resources and performance model

In order to guide the optimization of the function, OXiGen generates a per-
formance and resource model specifically tailored for each of the supported
optimizations, such as rerolling and vectorization.

Each model considers two sets of variables that can be tuned in order
to modify the expected final performance and resource consumption of the
implementation. The first is a set of variables fi for i ∈ I related to the
optimization to perform, while the second set consists of a single variable
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θ ∈ N that specifies which configuration parameters to use for the back-
end tool when implementing the final system. Currently, in our models,
the choice of the value of θ is expected to impact mainly on resource con-
sumption and, in particular, on the resource mix used for implementing the
different nodes within the dataflow system. In our experimental setting de-
scribed in Section 4.7, we used θ to select among different values of the
DSP push parameter provided by MaxCompiler that allows to balance the
usage of Digital Signal Processings (DSPs), Look-Up Tables (LUTs) and
Flip Flops (FFs) by using a different technology mapping.

Overall, each model provides a function p(f0, · · · , fi) that expresses the
throughput of the system (bits / second) and the functions qn(f0, · · · , fi, θ)
that specify the number of instantiations of dataflow node n ∈ N in the final
system (e.g. number of 32-bits floating-point multipliers, 8-bits adders, ...).

The overall estimation rt of the resource consumption of resource type
t ∈ T (e.g.: T = {DSP,BRAM,FF, LUT}) is given by the following
simple model:

rt =
∑
n∈N

cn,t,θ · q(f0, · · · , fi) (4.1)

where, cn,t,θ is the number of resources of type t used by node n under the
configuration θ. The characterization of the compute nodes given by cn,t,θ
is performed only once by implementing each node separately as a single
kernel function and retrieving the final resource utilization reported by the
backend tool after place-and-route at a given target frequency on the target
FPGA, across the possible configurations θ. It is worth noting that even if
this is a time consuming task, once the characterization is performed, the
achieved results are independent from the application and can be reused.
Furthermore, the range of possible configurations given by θ is usually re-
stricted to a small range (e.g. 10 different configurations).

It is worth mentioning that the resource model only takes into account
the resources occupied by the kernel and does not consider the resources
needed by the communication subsystem. Nevertheless, as shown in Sec-
tion 4.7, the resource consumption of the most constrained resource not
related to the kernel function is well below 10%. During the design space
exploration OXiGen takes into account a 15% slack of the total available
resources in order to avoid to overconstrain the design and leaves enough
space for the communication subsystem.

In the following sections, we provide the expression of the functions p
and qn of the performance and resource estimation model for the rerolling
and vectorization optimizations.
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4.5.1 Rerolling model

The rerolling optimization only requires one variable f0 ∈ N0 that specifies
the global rerolling factor for the supported nested loops (i.e.: loops with-
out carried dependencies). Since the amount of rerolling is inversely pro-
portional to the peak throughput, the performance p(f0) can be estimated
as:

p(f0) = min

{
Rout

f0
, Bout,

Rout

Rin

·Bin

}
(4.2)

Where Rout and Rin are the overall output produce rate and input con-
sume rate, while Bout and Bin are the maximum output and input band-
width respectively. On the other hand, the number of occurrences of the
nodes within the final implementation can be computed as:

qn(f0) = k0 +
∑
l∈L

kl,n ·
⌈
il
f0

⌉
(4.3)

Where L is the set of nested loops that supports rerolling, il is the origi-
nal number of iterations of nested loop l, k0 is the number of occurrences of
node n outside the nested loops in L, while kl is the number of occurrences
of node n within nested loop l.

4.5.2 Vectorization model

As for rerolling, the vectorization optimization requires a single variable
f0 ∈ N0 that specifies the vectorization factor. Since vectorization increases
the overall output produce rate (Rout) and input produce rate (Rin) of the
kernel function, we can estimate the performance as:

p(f0) = min

{
f0 ·Rout, Bout,

Rout

Rin

·Bin

}
(4.4)

On the other side, the number of instances of a node in the resulting
implementation is simply multiplied by the vectorization factor since the
optimization replicates the hardware in order to support the increased input
and output consume and produce rates:

qn(f0) = f0 · k0 (4.5)

Where k0 is the overall number of occurrences of node n ∈ N in the
original not optimized implementation.
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4.5.3 Design space exploration

Overall, in order to get the optimal performance for a given optimization,
we have the following objective:

argmaxf0,··· ,fi,θ p(f0, · · · , fi) (4.6)

under the constraint on the available FPGA resources:

rt ≤Mt ∀t ∈ T (4.7)

Where Mt is the amount of resource of type t available on the FPGA.
By substituting the equations derived for either the vectorization or rerolling

model into equations 4.6 and 4.7 and by applying standard linearization
techniques, we can derive a Mixed-Integer Linear Programming (MILP)
model that can be solved in order to find the optimal parameters for the
given optimization.

The design space exploration starts from the initial dataflow graph de-
scription and examines all the available optimizations. For each optimiza-
tion, the optimal parameters f0, · · · , fi, θ are identified by solving the cor-
responding MILP model and the feasible optimization that provides the best
performance is selected. Finally, the exploration can be repeated to check
if the application might benefits from additional optimizations. It is worth
noting that the MILP solver might not be able to find any feasible set of
parameters due to the hardware resource constraints. In this case, the cor-
responding optimization is simply excluded from the available alternatives.

As a final remark, notice that rerolling and vectorization are opposing
optimizations that either improve hardware utilization against performance
or increase performance at the cost of higher resource utilization respec-
tively. Hence, the design space exploration would apply at most one among
rerolling and vectorization.

4.6 OXiGen integration in CAOS

The support for the OXiGen toolchain within CAOS is implemented as an
architectural template named as dataflow architectural template. This al-
lows CAOS to check, within the architectural template applicability check
module, if the application is suitable or not for being implemented with OX-
iGen using the dataflow computational model. This approach also allows
the designer to simultaneously verify which, among the different architec-
tural templates, is available for accelerating the application. Finally, the
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Chapter 4. Dataflow architectural template

designer can start multiple design flows testing with different architectural
templates to achieve best performance.

Similarly to the integration of the Master/Slave architectural template in
CAOS discussed in Section 3.5, we decided to modify the default CAOS
modules instead of creating new modules accessible at different IP ad-
dresses. The next sections provides more details on the changes performed
at the different steps of the CAOS design flow.

4.6.1 CAOS frontend

With regards to the CAOS frontend, we only needed to modify the archi-
tectural template applicability check module. Adding new architectural
template to such module is a relatively easy task, since the module is in-
ternally organized in a modular fashion and allows to extend the check for
additional templates simply by extending a common interface.

First of all, in order to ensure that the dataflow template is supported, we
verify if the architecture description JSON file matches one of the board
supported by he Maxeler toolchain, which is currently leveraged for the
generation of the final system. As a second step, we scan all the functions
of the application and verify whether there is any function which complies
to the code structure described in Section 4.4.2. This is done by running
the OXiGen toolchain and early stop the execution at the function analysis
stage to make sure that the source code is suitable for being converted to a
dataflow kernel.

4.6.2 CAOS functions optimization

The CAOS functions optimization flow is internally organized into 4 dif-
ferent modules: static code analysis, hardware resource estimation, per-
formance estimation and code optimization. In order to integrate OXiGen
within the functions optimization flow, we have developed specific exten-
sions leveraging on the common interfaces offered by each default CAOS
module. Notice that OXiGen does not directly modify the original source
code of the software implementations, but instead tailors the overall trans-
lation process to the MaxJ dataflow implementation using a set of configu-
ration parameters. In order to keep track of the specific optimizations that
OXiGen should apply to the code during the translation process, we add
an optimization configuration file together with the source code of the soft-
ware implementation. Such configuration file can than be parsed by each
of the modules within the functions optimization flow as needed.
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Static code analysis

The static code analysis module is responsible for extracting specific in-
formation from the function code that can then be leveraged by the perfor-
mance estimation module in order to explore different optimization oppor-
tunities and estimate their quality. With respect to the dataflow architec-
tural template, the module leverages OXiGen in order to extract the input
and output streams of the function, the bitwidth of such streams, the rate at
which input and output data are read and written under the assumption of
unlimited bandwidth, the instruction count for each of the node and loop
node in the OXiGen dataflow graph and the trip count for each loop node.

Resource estimation

The resource estimation is performed by running OXiGen until the resource
model stage. The estimation of the resources takes into account the current
set of optimization applied to the code defined within the optimization con-
figuration files as well as the target architecture. The estimation process is
performed as described in Section 2.3.2.

Performance estimation

This module is responsible for performing two different tasks. The first
task is to collect the information derived from the static code analysis and
resource estimation modules to produce a comprehensive report of the hard-
ware resource utilization and an estimation of the final kernel throughput
that takes into account the available bandwidth for input and output data
transfer. The second task instead, is to provide one or more optimization
opportunities to apply during the OXiGen translation process. The poten-
tial optimizations are generated by means of the design space exploration
discussed in Section 2.3.2.3 using the data derived from the static code
analysis for the construction of the performance and resource models.

Code optimization

Once the user selects one among the optimizations produced by the perfor-
mance estimation module, the code optimization module is responsible for
applying the desired changes. Since OXiGen does not directly operates on
the original source code of the application, the code optimization is simply
performed by annotating the requested optimization within the optimiza-
tions configuration file that is taken into account by all the other modules
when dealing with the dataflow architectural template.
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4.6.3 CAOS backend

After having performed the function optimization flow, the CAOS backend
runs OXiGen until completion by taking into account all the selected opti-
mizations. As a result, OXiGen generates the MaxJ files describing both the
dataflow kernel and the manager subsystem. Then, the runtime generation
phase has been extended to modify the original software source code and
integrate the Maxeler headers and APIs calls to run the accelerator. Overall,
the end result of the CAOS backend flow targeting the dataflow architec-
tural template consists in a Maxeler project ready to be build and compiled
on the target system.

4.7 Experimental evaluation

In order to validate the proposed approach, we have tested the dataflow ar-
chitectural template powered by OXiGen on two case studies belonging to
two different application domains. The first application is a financial algo-
rithm used to calculate the pricing of Asian options, which has already been
accelerated on FPGA with a dataflow approach in [72], and has yielded re-
markable results. The second application consists of a series of filters used
in the context of image processing to sharpen images, increasing the con-
trast between bright and dark regions to bring out features [80]. During
the experimental campaign, we considered a C implementation of the al-
gorithm that operates on full High-Definition images (1920x1080 pixels)
with 3 8-bit color channels. These two applications have different critical
resources and are very appropriate to test the effects of the different config-
uration options on the resulting design.

The testing system consists of an host machine featuring an Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz connected via PCIe gen1 x8 to a
MAX4 Galava board equipped with an Altera Stratix V FPGA. The CPU
baselines were compiled with gcc 4.4.7 using -O3 level optimizations, while
the target frequency for the dataflow designs is 200 MHz. The characteriza-
tion of the resource consumption of the base dataflow nodes was performed
considering 11 different values for the DSP push parameter (0.0, 0.1, · · · ,
0.9, 1.0). Finally, Gurobi Optimizer 7.5 [44] has been used to identify the
optimization parameters during the design space exploration. It is worth
noting that in both test cases the design space exploration time, including
the time for solving the MILP models, was well below a second, which is
negligible compared to the overall system synthesis time.
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4.7.1 Asian Option Pricing

The Asian Option Pricing algorithm accelerated on Maxeler’s DFE in [72]
is the Curran’s approximation algorithm [74]. This algorithm is definitely
computationally expensive, and provides different opportunities for paral-
lelization. Figure 4.4 shows the overall structure of the Asian Option Pric-
ing algorithm. Such application is mainly composed by five asynchronous
kernels, reported in Figure 4.4 as K1, K2, K3, K4, and K5. Each ker-
nel performs part of the Curran’s algorithm, communicates with the other
kernels by means of FIFOs, and leverages fixed-point data types to reduce
resource usage, while satisfying the accuracy constraint typical of financial
applications. Finally, kernel K4 exploits the normal cumulative distribu-
tion function (NCDF) to easily compute the Asian put and call options.
Maxeler’s library provides functionHART to efficiently compute an ac-
curate approximation of the NCDF. functionHART is implemented with
a fixed-point piece-wise polynomial approximation generated at hardware
compile time using the Remez algorithm [65, 72].

Starting from the C version of the Curran’s approximation algorithm
with 30 averaging points, OXiGen generates an efficient implementation
for the Maxeler’s DFEs. Just like in the implementation presented in [72],
OXiGen organizes the computation in five kernels. In particular, OXiGen
can act on K2 and K4 kernels, which are dependence free loops, and apply
reroll in order to reduce the usage of hardware resources, and, consequently,
the performance. On the other hand, OXiGen currently cannot act on K3
and K5 kernels, since they contain carried dependencies. Finally, OXiGen
makes functionHART available within its library, which allows users to
call it from the C side.

Without the reroll optimization, the application would not fit into the
target FPGA. OXiGen detects this issue and finds an implementation that
fits within the FPGA and maximizes the performance. The final solution
generated by OXiGen uses a rerolling factor of 5 and a DSP push factor
of 0.1 achieving a 88.1x speedup over the single-threaded CPU execution.
The identified solution together with other implementations using different
combinations of the rerolling factor and DSP push factor are shown in Ta-
ble 4.1 and Table 4.2. The Table reports the speedup with respect to the
single-threaded execution on the host machine, the input output bandwidth
achieved by the system, the resource utilization as well as the resource es-
timation error for the kernel function and the total resource consumption
including the communication subsystem generated by MaxCompiler. From
the table it is possible to see that different values of the DSP Push factor
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in

K1

K2 K2

K3

K5

out

K2 K2…

K4 K4 K4 K4…

Figure 4.4: The overall structure of the Asian Option Pricing application, as implemented
in [72].

generates implementations with a different balance of DSPs, LUTs and FF.
It is worth noting that an implementation with a default DSP Push factor
of 1.0 would have exceeded the number of available DSPs for a rerolling
factor of 5, nevertheless OXiGen was able to identify a feasible solution
using a DSP push factor of 0.1.

The absolute error of the resource estimation model for the estimation
of DSP, FF and LUT is below 5% of the total amount of available FPGA
resources, while the Block RAM (BRAM) resources are generally underes-
timated (at most -9.23% for the largest design). This is due to the fact that
the estimation model currently does not consider the impact of the FIFOs,
which we plan to support in future works. Despite the estimation error, the
model is able to successfully perform the design space exploration since
both the reroll and vectorization are coarse grain optimizations that do not
require high accuracy.

Finally, compared to the implementation obtained in [74] we needed a
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in

gray

blury

blurx

sharpen

ratio

unsharp

Figure 4.5: The sequence of filters applied by the sharpen filter on the input image. The
figure shows the filters and their data dependencies.

higher rerolling factor (5 instead of 2) at a similar target frequency. Despite
a completely fair comparison of the two implementations is not possible
since the authors in [74] targeted a different system, i.e. a Maxeler MAX4
MAIA DFE connected to an Intel Xeon CPU E5-2697 v2 CPU, it is still
interesting to compare the execution time of the two solutions on the same
dataset. In particular, for a problem consisting of 10000 Asian Options over
5000 market scenarios and using 30 averaging points, the implementation
from [74] required 1.25 seconds, while our implementations completed in
1.78 seconds. Hence, the bespoke implementation achieved a 1.4x speedup
over the solution generated with OXiGen. Such performance different is
rather small if we compare it to the performance gain achieved against a
CPU-based implementation. Moreover, it is worth mentioning that the im-
plementation of the full system, starting from the original floating-point
version of the code written in C, was performed in about half a day by a
non expert user through OXiGen.
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4.8. Final remarks

One of the main reasons for the performance gap between the OXiGen
solution and the one proposed in [74], is the usage of fixed-point data types
which allow to reduce the impact on resource consumption and hence to
perform a less aggressive rerolling optimization.

4.7.2 Sharpen Filter

A schematic representation of the filters applied within the sharpening al-
gorithm and the corresponding kernels is shown in Figure 4.5. The C im-
plementation of the algorithm does not harness the potential for parallel
computation of the FPGA, and can be vectorized until the maximum band-
width for the target board is reached. Indeed, implementing the application
without any optimization leads to an overall resource consumption of 10%
of the most constrained resource and a bandwidth utilization of about 26%.
In this case, OXiGen identified a solution using a vectorization factor of 8
which achieves a bandwidth utilization close to the maximum PCIe gen1 x8
peak bandwidth. Table 4.3 and Table 4.4 show different implementations of
the sharpening algorithm using different values of the vectorization factor.
As can be noted, using a vectorization factor higher than 8 does not bring
any benefit due to the data transfer bottleneck and unnecessarily increase
resource utilization, while smaller vectorization factor produce sub-optimal
implementations. Overall, we achieved a speedup of 15.85x compared to
the CPU-based single-threaded implementation simply by leveraging the
dataflow architectural template within CAOS and implementing the final
system via MaxCompiler.

4.8 Final remarks

Within this chapter we presented the CAOS dataflow architectural template
powered by the OXiGen toolchain, that allow to translate high-level code
functions into optimized FPGA-based dataflow kernels. We evaluated the
capabilities of the approach on two applications from the finance and image
processing domains and achieved a speedup of 88.1x and 15.85x over the
initial single-threaded software implementations respectively. The imple-
mentations were obtained in less than a day by non expert users and OX-
iGen automatically identified the optimization opportunities by leveraging
the proposed resources and performance estimation model.

Future works will investigate the possibility of enhancing the accuracy
of the resource estimation model in order to enable finer grain optimizations
and to extend the set of available optimizations. Moreover, even though we
consider a fixed clock frequency for the implementation of the designs, an
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4.8. Final remarks

additional design space exploration step could be considered to identify the
maximum achievable clock frequency in order to improve the performance
of compute bound designs. Notice also that despite the Maxeler toolchain
is used for implementing the final system, it is not a requirement of the
proposed approach. Indeed, future work might consider generating code
for Vivado HLS or targeting directly HDL generation.
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CHAPTER5
Streaming architectural template

Stencil computations represent a highly recurrent class of algorithms in
various high performance computing application scenarios, such as dif-
ferential equation solving or numerical and scientific simulations. The
Streaming Stencil Time-step (SST) architecture represents a very promis-
ing state-of-the-art Field Programmable Gate Array (FPGA) implementa-
tion of stencil computations, which exploits the highly regular and repeti-
tive structure of such algorithms to achieve a high performance/power con-
sumption trade-off. In this chapter, we present a design space exploration
methodology for SST-based architectures which leverages on floorplanning
in order to identify the maximum number of modules that can be instanti-
ated for a given device. Furthermore, we describe the integration of the
SST architecture and the proposed design exploration as an architectural
template in CAOS. The resulting streaming architectural template allows
programmer to efficiently accelerate stencil code written in C on FPGA.
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Chapter 5. Streaming architectural template

5.1 Introduction

Iterative Stencil Loops (ISLs) represent a class of algorithm that are highly
recurrent in many High Performance Computing (HPC) applications such
as differential equation solving (e.g. for weather or ocean modeling [59]),
scientific simulations (e.g. quantum dynamic [67] or seismic ones [51]).
The fundamental structure of such algorithms consists of a main loop it-
eratively processing an n-dimensional input vector many times; at each
iteration each value in the vector is updated by applying a stencil, being a
weighted sum of the elements in the neighbor positions.

The implementation of ISLs has been widely investigated in the litera-
ture, and their optimization has been approached in a variety of ways and
targeting various architectures such as multi-core CPU [6, 56], Graphics
Processing Units (GPUs) [47] and FPGA devices [66, 70, 91]. Indeed,
the ISL regular structure makes them an excellent candidate for automatic
compile-time analysis and optimization. For instance, such regularity al-
lows ISLs to be modeled via a powerful mathematical framework, called
polyhedral model [33]. This model has been employed to either optimize
ISL implementation on the target architecture, such as in [6], or design
custom HW architecture tailored to this class of algorithms, as proposed
in [70].

Among the available solutions, FPGA-based implementations (such as
[66,70,91]) currently represent a very promising candidate for ISL acceler-
ation, as they offer a compelling trade-off between performance and power
consumption thanks to direct hardware acceleration, while retaining flexi-
bility achieved by means of their reconfigurability. One of the most inter-
esting approaches in this scenario has been presented in [70]. The work
proposes a design methodology for the automated generation of HW ac-
celerators targeting FPGA devices starting from the C algorithmic descrip-
tion and exploiting commercial High-Level Synthesis (HLS) tools. The
obtained design consists of a highly repetitive and modular pipeline of a
basic module, called SST, that results in an efficient resource usage and
scalability. However, such methodology lacks a backend devoted to the
implementation and optimization of the pipeline design onto the FPGA re-
source grid. In fact, since the SST-based architecture usually contains up
to 100 modules, the absence of specific actions in the implementation flow
leads to suboptimal performance and long design times.

Given these motivations, in this chapter we propose a fully automated
design flow to support the designer in the acceleration of stencil codes as
streaming accelerators powered by an SST-based architecture on FPGA.
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Additionally, we integrate such design flow within CAD as an Adaptive
Open-platform Service (CAOS) as the streaming architectural template, so
that the designer can also benefit from the modules of the CAOS frontend
to profile the application and verify which architectural templates can be
used for hardware acceleration. The proposed approach, starts by generat-
ing an initial version of the system consisting of a single SST by following
the methodology in [70], then, it maximizes the throughput of the initial de-
sign by 1) preliminarily estimating the number of SST modules that can be
instantiated on the target FPGA device, and 2) floorplanning the design by
means of a custom strategy to maximize the achievable clock frequency. As
experimentally demonstrated, the main advantages of the proposed method-
ology are 1) a drastic reduction of the design time, since the approach is not
based on iterative improvements, and 2) the possibility to increase the per-
formance of the final design thanks to the exploitation of its characteristic
regularity.

The rest of the chapter is organized as follows. Section 5.2 briefly dis-
cusses the background on the SST architecture and highlights the motiva-
tions of this work. Then, Section 5.3 presents the proposed design flow,
while its integration in CAOS is discussed in Section 5.4. Finally, the pro-
posed design flow is evaluated in Section 5.5, while Section 5.6 draws the
conclusions and presents the future work.

5.2 Background and motivations

This section briefly describes the SST architecture and, later, analyzes its
performance characteristics in order to identify the possible knobs to be
acted in the proposed design flow.

SST architecture The basic structure of ISLs is depicted in Algorithm 2; the
outer loop iterates for a given number of times, so called time-steps, while,
at each time-step, the inner loop updates each value of the n-dimensional
input vector by means of the stencil function, computing a weighted sum
of the neighbor values in the vector.

Algorithm 2 Generic ISL Algorithm.
for t ≤ T imeSteps do

for all points p in matrix M do
p← stencil(p)

The architectural template of the SST-based accelerator [70] is depicted
in Figure 5.1. The basic SST module performs the computation of a single
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Chapter 5. Streaming architectural template

time-step and is conceptually separated in a memory system, responsible
for storage and data movement, and a computing system, that performs the
actual computation. The SST module is designed in order to operate in
a streaming mode on the various elements of the input vector; this inter-
nal structure is derived by means of the polyhedral analysis that allows to
refactor the algorithm to optimize on-chip memory resource consumption
and implement a dataflow model of computation. Then, the complete SST-
based architecture is obtained by replicating N times the basic module to
implement a pipeline, where each module computes in streaming a sin-
gle time-step of the outer loop of the algorithm. Such a pipeline is finally
connected with a fixed communication subsystem interfacing with the host
machine.

CS
MS

CS
MS

CS
MS

CS
MS

CS
MS

CS
MS

…

FIXED COMM. 
SUBSYSTEM

DMA

SST 0 SST 1 SST N-2

SST N-1SST N

Figure 5.1: Architecture of an SST-based accelerator for ISL.

SST performance evaluation As discussed in [70], the performance of such
architecture scales almost linearly with the increase in the number of SSTs
(Figure 5.2(a)). Indeed, as the overall number of iterations of an ISL algo-
rithm is usually very large, performance can be improved by maximizing
the number of modules in the pipeline within the limits on the available
device resources. The result is that the accelerator implements a higher
fraction of the total number of time-steps of the ISL, reducing the number
of needed sweeps through the accelerator. From an analytical point of view,
the performance of this architecture can be estimated as:

Tq =
T0
q

(5.1)

where Tq is the completion time of the system with q instantiated SSTs and
T0 is the one of a single module.
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Figure 5.2: Experimentally-measured performance scaling for Jacobi2D algorithm.

Within this work we also analyzed the impact of the clock frequency
targeted in the implementation on the overall system performance. As an
example, Figure 5.2(b) reports the performance speedup of a Jacobi2D
algorithm featuring a single SST module, synthesized on a Xilinx Virtex
XC7VX485T device by means of Xilinx Vivado. We notice that also fre-
quency improvements result in a linear increase in performance. For this
reason, we can enhance the speedup model taking into account both the
number of SSTs and the clock frequency:

Tq =
T0
q
· f0
fq

(5.2)

where fq and f0 are respectively the improved clock frequency and the
original one.

As an additional experiment, we used the analytical approach of re-
source occupation provided in the original methodology [70] to identify
the maximum number of SSTs instantiated in the pipeline. Unfortunately,
this is an iterative approach that overestimates the number of SSTs that can
be implemented in the final design, and, performs several synthesis to find
the actual number with a trial-and-error flow, thus requiring a considerable
design time. In the Jacobi2D example, the approach started from 127 mod-
ules and converged to 88 instances at 206 MHz in a design phase lasting for
406 hours. This highlights that such an approach is not accurate and effi-
cient; as we will demonstrate in this work a more accurate estimation of the
resources based on a preliminarily floorplanning of the design on the target
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Figure 5.3: The proposed design flow for the streaming architectural template, its main
phases, inputs and outputs.

device grid offers the possibility to directly identify the actual number of
SST modules that can be instantiated. Nevertheless, a specific floorplan-
ning activity may also allow to reach final implementations guaranteeing
the timing closure at clock frequencies not reachable by an unconstrained
implementation. In our running example, we were able to implement up to
90 SSTs at 228 MHz in a design phase lasting 25 hours.

We may conclude that there is room for a large improvement both in
the performance of the SST-based architecture under consideration and in
the duration of the design process. This issue has been addressed in this
work by defining a novel design flow to optimize the result achieved by the
methodology in [70].

5.3 Design flow

This section provides a high level overview of the proposed design flow for
the streaming architectural template and, subsequently, discusses the details
of its phases.

5.3.1 High level overview

The objective of the design flow is twofold: first, maximize the perfor-
mance of the overall system by determining the maximum number of SSTs
that can be instantiated onto the FPGA and by allowing to increase the oper-
ational frequency; second, reduce the overall synthesis and implementation
time that would be incurred with simple iterative Domain Space Explo-
ration (DSE) approaches. In order to achieve both objectives, we leverage
floorplanning. On one side, by optimizing the floorplan of both the fixed
communication subsystem and each SST, we are able to increase the fre-
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quency of the system and the number of SSTs that can be instantiated while
gaining timing closure. On the other hand, thanks to floorplanning, we
can directly determine the number of SSTs that can be instantiated without
running multiple implementation attempts thus requiring significantly long
design times.

The overall design flow, depicted in Figure 5.3, is internally organized in
four phases, and is interfaced with a commercial synthesis and implemen-
tation tool (Xilinx Vivado has been here used). Phase 1 starts by generating
the Hardware Description Language (HDL) of an SST module from a C
language description of the ISL computation. This phase is well described
in [70] and does not constitute a contribution of the proposed streaming ar-
chitectural template. In Phase 2, we consider a base design consisting in a
single SST accelerator and the fixed communication subsystem generated
from Phase 1. Such design is synthesized in order to obtain a first SST re-
source estimation; the module is further refined by floorplanning the design
and validating the place and route results against several possible choices in
the size and shape of the placement region. Once the minimal SST region
size is determined, Phase 3 leverages an Integer Linear Programming (ILP)
model to maximize the number of SST regions that can be floorplanned and
solves an euclidean Traveling Salesman Problem (TSP) to find an optimal
interconnection order for the SST accelerators. Finally, Phase 4 imple-
ments the full design with the identified floorplanning constraints and runs
multiple synthesis to determine the maximum design frequency.

Phase 2 and 3 require a preliminary generation of a set of placements
covering a given amount of FPGA resources. Hence, we first present this
preliminary placements generation process and the FPGA characterization
with respect to the proposed design flow. Then, the details of the four
phases are discussed.

5.3.2 FPGA model and placements generation

Similarly to most of the floorplanning algorithms available in the litera-
ture [73, 85], we model an FPGA device as a matrix of tiles, each one
containing a single type of resource such as Control Logic Blocks (CLBs),
Digital Signal Processings (DSPs) and Block RAMs (BRAMs).

Generally, the tile granularity is dependent on the type of addressed
problem; for a better description of the tile constraints that are needed when
considering Partial Dynamic Reconfiguration (PDR), we refer the reader to
Chapter 6 that specifically targets this problem. Nevertheless, since in our
scenario we are addressing only static designs, in order to maximize the
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clock region tile

half-clock region tile

proposed tiles

Figure 5.4: Different tile sizes for a Xilinx Virtex7 FPGA device.

overall utilization of the device, we take into account a small tile granu-
larity, as shown in Figure 5.4. The considered tile spans a single resource
wide, while its height covers the minimum integral number of resources for
each resource type (e.g. either 2 DSPs, 2 BRAMs or 5 CLBs for Virtex7
devices).

We denote with W and H the number of tiles on the horizontal and
vertical directions respectively. A placement p = (x, y, w, h) on the tiles
grid, is defined as a rectangular shape starting in the bottom-left corner
(x, y) and spanning w tiles wide and h tiles height. Furthermore, we denote
with rp = (nCLB, nDSP , nBRAM) the resource vector of placement p that
specifies the number of CLB, DSP and BRAM covered by the placement.

Upon the presented FPGA model, we here define an utility routine lever-
aged by Phase 2 and 3 of our design flow that is in charge of the generation
of the set of all the possible placements for a single SST. In our formula-
tion, a valid placement is defined by specifying a width w such that: 1) the
region has the minimum width to form a bounding box covering all the re-
sources required by the SST module, 2) it presents a given aspect ratio (i.e.
the width/height ratio). Algorithm 3 shows the procedure for SST place-
ments generation; the function searchWidth uses binary search to find the
minimum width in the range [minW,maxW ] compatible with the aspect
ratio constraint. If the searchWidth is unable to find such value, or the iden-
tified placement overlap with a hardware macro or forbidden user-defined
area, the function returns 0.

After several experimental tests, we noted that a maximum aspect ratio
of 2.5 provides the best performance in terms of capability to maximize the
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Algorithm 3 SST placements generation

1: a← maximum aspect ratio (≤ 1)
2: r ← resource requirement vector
3: P ← ∅
4: for x← 0 to W − 1 do
5: for y ← 0 to H − 1 do
6: for h← 1 to H − y do
7: minW ← a · h
8: maxW ← (1/a) · h
9: w ← searchWidth(x, y, h,minW,maxW, r)

10: if w > 0 then
11: P ← P ∪ (x, y, w, h)

number of SST while still allowing to meet timing closure. Hence in the
rest of the chapter, such value is used for the SST placements generation.

Additionally, since all the SST designs share the same fixed communi-
cation subsystem, the floorplanning of such part is only dependent on the
chosen FPGA device. Even though we do not directly target the placement
of this subsystem, we noted that a simple approach to find a good placement
is to synthesize a design without any SST and note the area in which the
place and route tool places the components. Secondly, a floorplan constrain
can be directly derived starting from the place and route suggestion. For the
rest of the discussion we assume that the placement for the fixed subsys-
tem is already defined and no placements overlapping with such region are
generated by Algorithm 3.

5.3.3 Phase 1: module generation

Phase 1 follows the steps discussed in the methodology in [70]. In particu-
lar, we first verify whether the C function features an ISL computation by
extracting its polyhedral representation via Clan1. If the function abide by
such requirements, Candl2 is used to construct the data dependency graph
on which several transformations are applied in order to generate the im-
plementation of an SST module defined in Vivado HLS C++ code. Finally,
Vivado HLS is used to generate the HDL code for the SST module.

5.3.4 Phase 2: resource requirements analysis

Phase 2 consists in determining the minimum resource requirements for a
placement hosting an SST module. Indeed, we empirically observed that, in
most cases, Xilinx Vivado returns a conservative estimation of the required

1http://icps.u-strasbg.fr/~bastoul/development/clan/
2http://icps.u-strasbg.fr/people/bastoul/public_html/development/candl/
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CLB resources; hence, if we floorplan an SST module by considering such
an estimation without providing any additional resource margin, the subse-
quent place and route phase tends to fail.

The first performed step is the synthesis of a simple design containing
only a single SST and the communication subsystem. Once the synthe-
sis is performed, we collect the estimated SST resource vector r̂SST =
(n̂CLB, n̂DSP , n̂BRAM) and generate the set of placements P̂ that covers
the resource vector r̂. Among the identified placements, we select the one
that covers the least amount of CLB resources and do not overlap with the
predefined area for the fixed components. Finally, we perform the place
and route of the design using a runtime optimized strategy (such as the
Flow Quick implementation strategy available in Xilinx Vivado) that limits
the overall implementation time. Depending on the success or failure of the
place and route, we repeat the entire procedure by respectively decreasing
or increasing n̂CLB by ∆ = 5 CLB tiles (corresponding to half a CLB tile
on Virtex7 devices). The algorithm terminates once the minimal placement
size for which the place and route succeeds is determined.

It is worth noting that, even if we are running multiple place and route
iterations, they are performed on a small design and hence the required time
is often negligible with respect to the full design synthesis and implemen-
tation. As we will show in the experimental section, each place and route
run takes up to a few minutes, while the final synthesis of the whole design
lasts several hours.

5.3.5 Phase 3: maximal floorplan generation

In Phase 3, based on the resource requirements derived from the previous
phase, we simultaneously identify the maximum number of SSTs that can
be placed into the device and their floorplanning constraints. More for-
mally, given a resource vector r for a single SST and the set of placements
P generated using Algorithm 3, the objective is to find a maximal subset of
placements F ⊆ P such that no two distinct placements p1, p2 ∈ F overlap.

It is worth noting that this problem is quite different from classical
FPGA floorplanning problems, such as the one discussed in Chapter 6;
indeed, in this scenario we are not given a specific set of regions to floor-
plan, but we need to maximize their number. Nevertheless, even if classical
floorplanners [73, 85, 105] can be adapted to iteratively increase the num-
ber of regions to determine the highest feasible number, they might require
a considerable number of attempts. Furthermore, as we will show in the
experimental section, solutions obtained by re-adapted recent approaches
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such as [73] are in general suboptimal in our context.
In order to identify such a maximal floorplan, we propose an ILP-based

strategy that allows to find the optimal number of placements within a lim-
ited amount of time. For every placement p ∈ P , we associate a binary
variable xp that is set to 1 if and only if the corresponding placement p is
selected in the final solution. Hence the objective of the ILP can be simply
written as:

max
∑
p∈P

xp (5.3)

Moreover, to guarantee the feasibility of the ILP solution, the selected
placements must not overlap. As further detailed in Chapter 6, such con-
straint can be translated into requiring that at most one placement can be
selected out of those covering a specific FPGA tile:

∀ xt ∈ {0, 1, . . . ,W − 1}, yt ∈ {0, 1, . . . , H − 1} :∑
p=(x,y,w,h)∈P |
x≤xt<x+w,
y≤yt<y+h

xp ≤ 1 (5.4)

Once the ILP model is solved, the maximal subset of placements is
F = {p ∈ P | xp = 1}. It is worth noting that this ILP formulation corre-
sponds to solve the maximum independent set problem on a graph G(P,E)
where P is the set of nodes and for each pair of overlapping placements
p1, p2 there exists an edge (p1, p2) ∈ E. In our formulation, Equation (5.4)
represents the clique constraints that ensure that in the final solution F no
two placements p1 and p2 are connected by an edge (i.e. they do not over-
lap). Since finding the maximum independent set is NP-complete [48], it
is unlikely that there exists an efficient incremental floorplanner that, start-
ing from a partial solution F ′ ⊆ P in which some of the placements are
already selected, guarantees to find the optimal solution.

At this stage of the phase we have identified the number |F | of SSTs
and their floorplanning constraints, but we have not yet taken into account
the modules interconnections. To optimize the interconnections among the
SSTs, we exploit the regular design structure shown in Figure 5.1. Indeed,
it is easy to note that the interconnection topology of the SSTs and the
fixed subsystem form a ring. Furthermore, since the SSTs are all replicas
of the same basic module, we are allowed to interchange the connections
of two elements in the ring topology without affecting the functionality
of the design. Thanks to these properties, the problem of optimizing the
SST interconnections translates into finding a minimum TSP tour that vis-
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its the centers of each SST placement and the fixed part of the design ex-
actly once. For the TSP optimization, we consider the euclidean distance
among the centroids of the placements, as it ensures no overlap among the
interconnections, and we leverage an exact TSP solver to find the optimal
solution. Notice that the number of modules in the final design is usually
below 150/200 units, hence in practice, the time to find an optimal eu-
clidean TSP is very small. An example of a final result achieved after this
phase is shown in Section 5.5.

5.3.6 Phase 4: system implementation and frequency scaling

In Phase 4, the design flow explores different target frequencies to deter-
mine the maximum one that allows timing closure during the system place
and route. The exploration is performed within an interval I = [fmin, fmax]
by first implementing a design at frequency fmin to verify the existence of
a feasible design, and subsequently exploring with binary search other tar-
get frequencies in the interval. Due to technological constraints, the actual
frequency values that can be selected in the interval I consist in a small
set of frequency choices f0, f1, · · · , fn. Hence, the binary search termi-
nates returning frequency fi as soon as it verifies that timing closure is met
at frequency fi but not at fi+1 or if fi = fmax. Notice that compared to
the SST maximization, frequency exploration is a time consuming process
since each binary search iteration requires to re-synthesize the overall de-
sign. Nevertheless the same design time overhead would also apply for
the approach discussed in [70] since no explicit frequency estimation ap-
proach is defined. After several tests, we noted that a suitable frequency
range for the frequency exploration process on a Xilinx Virtex7 devices is
[160MHz, 250MHz]. Such interval will be also used within the experi-
mental section.

5.4 Integration in CAOS

In this section, we highlight the changes performed to the default CAOS
modules to add support for the streaming architectural template and its un-
derlining design flow.

5.4.1 CAOS frontend

Similarly to the Master/Slave and dataflow architectural templates discussed
in Chapter 3 and Chapter 4, we only modified the architectural template
applicability check module within the CAOS frontend. For a given func-
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tion, we leverage on the Clan tool to verify whether the polyhedral model
can be used to represent the function and if it describes an ISL computa-
tion. Subsequently, the module also checks if the architecture description
matches one of the boards supported by [70], namely the Xilinx VC707
(XC7VX485T) and the Xilinx Zynq Zybo (XC7Z010). The reason for this
restriction is that we rely on the TCL scripts and templates from [70] for
the generation of the final system implementation.

5.4.2 CAOS functions optimization

The optimization of the number and the placement of the SST modules
is performed within the CAOS functions optimization flow. In this flow,
Phase 1, Phase 2 and Phase 3 of the streaming architectural template are
implemented within distinct CAOS modules.

Static code analysis

The static code analysis module has been extended to implement Phase 1.
In particular, it applies the methodology in [70], which leverages on poly-
hedral analysis, to generate the HDL implementation of a single SST. Ad-
ditionally, the module also reports the number of clock cycles needed to
complete the processing of a single time-step by assuming a default fre-
quency of 200 MHz.

Resource estimation

Phase 2 of the streaming architectural template cleanly maps to the CAOS
resource estimation module. Here, the SST implementation is synthesized
using quick synthesis options to obtain a more accurate estimation of the
resource requirements of the module than the one that would be achieved
via HLS.

Performance estimation

Phase 3, which is at the core of the design space exploration of the stream-
ing architectural template, is implemented within the CAOS performance
estimation module. The resource estimations from the previous module are
used to generate the set of feasible placements for an SST on the target
FPGA fabric. Subsequently, the module generates a maximal floorplan of
the SST modules following the approach described in Section 5.3.5. If a
feasible solution is found, the module outputs a single CAOS optimization
dubbed as SST queuing. The optimization specifies the number of SST
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modules that can be placed, their floorplanning constraints and their con-
nectivity. Finally, the module estimates the performance of the provided
optimization in terms of overall execution time of the accelerated FPGA
computation. The estimation is done by considering the overall number of
time-steps of the computation, the number of allocated SSTs and the num-
ber of cycles that an SST takes to compute a single time-step as provided
by the static code analysis module.

Code optimization

The modification applied to the default code optimization CAOS module
are relatively simple. Indeed, since the user can only select the SST queuing
optimization, the module simple stores the parameters of the optimization
in a dedicated file within the code archive that is later exploited by the
CAOS backend for generating the final system.

5.4.3 CAOS backend

The CAOS backend flow tailored for the streaming architectural template
mainly performs the steps of Phase 4 discussed in Section 5.3.5. The back-
end generates a Vivado project starting from a base template and instan-
tiates as many SSTs as dictated by the SST queuing optimization. Subse-
quently, the flooprlanning constraints are used to specify the exact regions
in which each SST should be implemented. Finally the design is synthe-
sized, placed and routed multiple times using different target frequencies in
order to identify the maximal one.

5.5 Experimental evaluation

The proposed streaming architectural template has been evaluated on three
representative ISL computations (Jacobi2D, Heat3D and Seidel2D) target-
ing a Xilinx Virtex XC7VX485T device. The synthesis and implementation
process has been performed using Xilinx Vivado 2015.4, the ILP models
have been solved by means of Gurobi 7.0.2 [44], and the TSP problem has
been solved by means of the exact Concorde TSP solver [3]. Experiments
have been performed on a Intel Core i7-6700 CPU at 3.40 GHz with 32
GBs of RAM.

In our experimental campaign we compared the Proposed Approach
(PA) against the baseline design methodology defined in [70], that for the
sake of fairness in the comparison, has been enhanced with the final fre-
quency exploration strategy defined in Section 5.3. Table 5.1 reports the
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Table 5.1: Analysis of the achieved system performance.

Algorithm
# SSTs design frequency PA performance

(MHz) improvement with respect to [70]

PA [70] PA [70]

Jacobi2D 90 88 228 206 13.20%
Heat3D 25 25 228 206 10.68%
Seidel2D 19 19 183 183 0%

performance improvement achieved by the proposed approach over the
baseline [70]. As can be noted, thanks to FPGA floorplanning we are able
to increase the target frequency for the Jacobi2D and Heat3D algorithms of
approximately 11%. Additionally, for the Jacobi2D case, the ILP model is
also able to allocate two additional SSTs achieving a final floorplan further
improving the performance up to 13%; the final floorplan of such system
is reported in Figure 5.5. Nevertheless, the Seidel2D algorithm does not
provide the same improvement figure. Indeed, since the total number of
SSTs that can be placed into the design is small for this benchmark due to
the internal complexity and resource requirement of the single SST module,
the floorplanning reduces its impact on the overall design by leaving more
room to the place and route algorithm. Additionally, the Seidel2D base
SST is intrinsically more complex, as this ISL has spatial dependencies
between point updates, and thus updates within a time-step are inherently
sequential [70]. Due to this characteristics, the resulting SST design is more
convoluted and more eager of logic resources.

The execution time as well as the number of synthesis required by the
two approaches is reported in Table 5.2. As can be noted, the maximal
floorplanning algorithm allows to greatly reduce the number of required
synthesis within the SSTs maximization stage, thus leading to an execu-
tion time saving of 15.84x for Jacobi2D. Instead, the execution time of the
frequency exploration phase does not change significantly among the two
approaches as it only depends on the binary search iterations required to
identify the maximum frequency.

Finally, we aimed at demonstrating also the higher efficiency of our
strategy specifically targeted to the SST design with respect to the employ-
ment of one of the standard FPGA floorplanners proposed in the literature.
To this purpose we adopted PRFloor, i.e. the most recent full-fledged strat-
egy presented in [73]3 and used it in an iterative fashion by floorplanning an

3It is worth mentioning that we reimplemented the algorithm in [73] since it is not publicly available.
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Chapter 5. Streaming architectural template

Figure 5.5: Floorplan achieved by the proposed approach on the Jacobi2D algorithm.
The fixed communication components are placed on the top-right corner, while the
other regions constrain the position of 90 SST modules.
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5.5. Experimental evaluation

Table 5.2: analysis of the DSE execution time.

Algorithm
SSTs maximization time frequency exploration time PA time reduction

(# synthesis runs) (# synthesis runs) with respect to [70]

PA [70] PA [70]

Jacobi2D 6.36h (1) 382.00h (40) 19.30h (3) 24.30h (4) 15.84x
Heat3D 4.19h (1) 13.91h (2) 14.66h (3) 17.94h (4) 1.69x
Seidel2D 4.95h (1) 8.60h (2) 17.31h (4) 15.42h (4) 1.08x

Table 5.3: Comparison of the proposed approach and the iterative version of
PRFloor [73] using half-clock region tiles.

Algorithm # SSTs execution time

PA PRFloor PA PRFloor

Jacobi2D 90 64 0.18s 4207.39s
Heat3D 20 18 1.77s 450.41s
Seidel2D 18 15 0.78s 209.97s

increasing number of SST modules until no more feasible solution is found.
In order to align to the PRFloor algorithm, we here consider tiles spanning
half a clock region. Furthermore, since the final trial-and-error placement
procedure of PRFloor is not completely defined in [73], we adopted instead
an exact ILP model equivalent to the one discussed in [85], but targeting
only the subset of placements that are close to the anchor points identi-
fied by the PRFloor bipartitioning phase. As a consequence, the modified
PRFloor is guaranteed to find a floorplan solution, if it exists, even if it
might incur in a higher running time. Table 5.3 compares the number of
SSTs identified by the algorithms as well as their running time. Notice that
since we increased the granularity of the tiles, the numbers of SSTs found
by our approach can be smaller than the ones presented in the previous
experimental session. As it can be noticed from the table, PRFloor is not
able to identify the maximum number of SST even if it uses a considerable
amount of time. The cause is that the bipartitioner does not fit well the
regular ring topology of the SST-based accelerator. Indeed, a ring topol-
ogy leads to several optimal partitioning solutions, however, since PRFloor
considers the horizontal and vertical cuts independently, it has a low prob-
ability of spreading the modules evenly on the FPGA.
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5.6 Final remarks

In this chapter, we presented the streaming architectural template that al-
lows to efficiently accelerate ISL computations written in C on FPGA.
Starting from the initial design flow proposed in [70], we devised an au-
tomated design space exploration, capable of achieving the maximum per-
formance level for a given FPGA through 1) the maximization of basic
modules instantiated in the design and 2) optimization of the design floor-
planning. The architectural template has been integrated into the CAOS
platform, hence allowing users to quickly evaluate whether the streaming
architectural template can be applied to one or more critical functions of
the application.

Experimental results have demonstrated the capability of the proposed
approach to reduce the design time up to 15x with respect to naive design
space exploration approaches, and, at the same time, to improve the per-
formance of the 13%. Such benefits have been achieved thanks to careful
floorplanning of the base modules of the design. In Chapter 6, we will
continue the discussion on automated floorplanning algorithms shifting the
focus towards partially reconfigurable designs. Indeed, while floorplanning
can be regarded as a commodity for the streaming architectural template,
we foresee the possibility to integrate in CAOS architectural templates the
rely on partial dynamic reconfiguration which require floorplanning as a
key ingredient.
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CHAPTER6
CAOS backend: floorplanning for

partially-reconfigurable designs

When dealing with Partially-Reconfigurable designs on Field Programmable
Gate Arrays (FPGAs), floorplanning represents a required yet critical step
that highly impacts system’s performance and reconfiguration overhead.
However, current vendor design tools still require the floorplan to be man-
ually defined by the designer. In this chapter, we present a novel floorplan-
ning automation framework, targeting the Xilinx toolchain, which is based
on an explicit enumeration of the possible placements of each region. The
proposed approach is suitable for being integrated within the CAOS back-
end flow discussed in Chapter 2 in order to automatize the implementation
process for architectural templates that require partial-dynamic reconfigu-
ration support.
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6.1 Introduction

FPGA devices are nowadays widely employed in commercial and indus-
trial appliances in many scenarios (e.g. telecommunication, automotive,
high performance computing, video and image processing), due to their re-
duced costs, good computational power, and high flexibility since they can
be reconfigured in order to change their functionality. Moreover, Partial Re-
configuration (PR) [112] has received a considerable attention in the recent
years since it even more enhances such flexibility, by enabling the pos-
sibility to dynamically change only part of the modules at runtime while
the rest of the system keeps working. Indeed, PR offers new opportunities
such as the possibility to execute at different times more functionalities than
the ones physically placeable on the device or the possibility to update or
vary their implementations. In order to enable PR two necessary conditions
must hold: 1) the FPGA device has to physically support the change of only
a part of the configuration at runtime, and 2) the companion design tools
have to support the implementation of such reconfigurable systems. In this
scenario, Xilinx [110] is the vendor presenting the most mature solution.

The role of floorplanning [18] in PR-based system design is even more
prominent than to the standard FPGA design flow. In fact, while in the lat-
ter, this activity is mainly of interest for expert designers aiming at achiev-
ing advanced performance optimization, in the former the implementation
of a partially reconfigurable system forces to define the specific regions on
the device fabric that will host the interchangeable functionalities. There-
fore, floorplanning directly affects the feasibility and the performance of
the final solution. However, it is a quite complex activity since the area
constraints for the reconfigurable regions have to meet specific placement
requirements (reported in [112]), while covering a minimum amount of
configurable resources that are needed by the modules reconfigured over
time in each of the regions. Nevertheless the internal architecture of FPGAs
is becoming more and more advanced, exacerbating the floorplanning com-
plexity. In fact, the homogeneous grid of Control Logic Blocks (CLBs) is
alternated, most of the time in an irregular way, with columns of dedi-
cated elements such as Block RAMs (BRAMs) and Digital Signal Process-
ings (DSPs).

Commercial tool-chains still support floorplanning through visual in-
struments, such as Xilinx Vivado [110] (which integrates the previous PlanA-
head tool). However, the designer still has to manually define the shape and
the position of the reconfigurable regions, since the tool provides a limited
automation on the regions definition that generally leads to unfeasible so-
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6.1. Introduction

lutions. Nevertheless, also other design flows for Xilinx FPGA devices
proposed by the academia (e.g., [10, 114]) suffer from the same lack. On
the other hand, several academic solutions have been presented in literature
to automate floorplanning ( [7, 13, 18, 63, 85, 98, 105, 115]). However, only
few ones ( [13, 85, 105]) take into account the requirements for PR, and,
at the same time, accurately consider an arbitrary distribution of heteroge-
neous resources within the device. Indeed, most of the algorithms consider
only one of the two aspects, i.e. the PR requirements (e.g. [63, 115]) or the
resource distribution (e.g. [7, 18, 35, 98]). Finally, as it will be shown in
this work, such comprehensive approaches generate suboptimal solutions.
Another relevant consideration that can be drawn on most of such automa-
tion solutions is the fact that they are actually unconnected from the real
design flow; in fact, only few of these engines ( [10, 54, 71, 114]) are tested
on real circuits and synthesize their final outcome on a real board to check
for feasibility.

In this work we present a novel floorplanning automation framework
fully integrated with the Xilinx design flow. The framework exploits a di-
rect representation of the problem based on the enumeration of the fea-
sible placements that is able to abstract the computational complexity of
floorplanning exploration while taking into account all the relevant con-
straints for PR on recent devices and metrics such as area consumption
and aspect ratio. We show that, differently from the classical problem for
VLSI design, enumerating a suitable subset of the feasible placements for
each reconfigurable region is a viable approach and can be also efficiently
automated by means of classical optimization algorithms. In a previous
work [82] we proposed a preliminary version of the framework where the
design space exploration was automated by means of a Mixed-Integer Lin-
ear Programming (MILP) formulation. We here propose a more complete
and mature framework featuring a new automation engine providing higher
performance. In conclusion, we summarize our contributions as follow:

• We accurately model all the constraints in the current PR guidelines [112].

• We propose a direct formulation of the floorplanning problem based
on a conflict graph of the feasible regions placements described in
terms of the actual coordinates on the fabric grid.

• We propose a genetic algorithm extended with a local search strategy
exploiting the defined problem representation. The algorithm is able
to speed up the identification of near-optimal solutions in a limited
elaboration time.
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• Finally, we experimentally show the effectiveness of the proposed ap-
proach by comparing against various state-of-the-art solutions and al-
ternative engines exploiting the same problem representation on both
synthetic benchmarks and real case studies.

The remainder of the chapter is organized as follows. Section 6.2 dis-
cusses the related work in the area, while Section 6.3 presents a formal
description of the problem. Then, Section 6.4 shows the proposed de-
sign flow, whose details are discussed in Sections 6.5 and 6.6 in which
the feasible placements generation process and the floorplanning automa-
tion algorithm are presented respectively. Finally, Section 6.7 evaluates our
approach on different problem instances, and Section 6.8 draws the conclu-
sions. In addition, we report in Appendix 6.A a revisited presentation of the
MILP formulation [86] that has been used as a baseline for the experimental
evaluations.

6.2 Related work

Several floorplanners for FPGAs have been proposed in literature; how-
ever, most of them produce solutions that are either not compliant with PR
requirements and guidelines (e.g. [7, 35, 98]), or only focus on a simpli-
fied device model, not capable of representing modern FPGAs lacking a
uniform distribution of heterogeneous resources (e.g. [63, 115]).

One of the first algorithms that considers the heterogeneity of FPGA
resources has been presented in [18]. The algorithm exploits simulated
annealing over a slicing-tree representation, and, subsequently, performs a
compaction step to recover from unfeasible solutions and to improve the
shapes of the modules. However, the resulting floorplan unlikely produces
shapes that meet the PR requirements. Furthermore, the approach assumes
the FPGA to have a homogeneous resource distribution, i.e., BRAM and
DSP columns are homogeneously spaced within the device fabric. Based
on this assumption, the algorithm divides the fabric grid in a set of homo-
geneous blocks having the same size and containing the same amount of
resources for each resource type (DSP, BRAM and CLB). However, this
organization, which characterizes obsolete device families (such as Xilinx
Virtex-II and Spartan 3), does not hold for the recent devices (e.g. Xilinx
Virtex 6). Interesting aspects of such formulation are the Irreducible Real-
ization List (IRL) and the dominance relation, that have been successfully
borrowed in our problem representation as described in Section 6.5.

A similar approach considering a heterogeneous FPGA device has been
proposed in [35]; it consists in 1) a simulated annealing algorithm explor-
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ing a sequence-pair representation of the solution, and 2) a subsequent re-
finement of such solution by means of a Min-Cost Max-Flow formulation
which alters the rectangular shapes of the reconfigurable regions. Due to
this second phase, the approach in general does not satisfy PR requirements.

Another class of approaches ( [63, 115]) introduces the time domain in
the problem by handling the definition of reconfiguration operations to-
gether with the design of the floorplan. In [115] only logic blocks are taken
into account while ignoring other types of resources available in the FPGA
device. The work proposed in [63] considers both the partitioning of mod-
ules into reconfigurable regions and their floorplanning. During the parti-
tioning phase, the algorithm assigns each of the modules to a reconfigurable
region to minimize the wastage of resources over time. After partition-
ing, the resource requirements of the regions are known and the algorithm
computes a floorplan by means of simulated annealing using moves that
preserve the PR constraints. Even though the approach considers hetero-
geneous resources, similarly to [18] it assumes their regular and uniform
distribution.

Differently from [63], other approaches ( [7, 98]), called multi-layer
floorplanners, analyze together the various circuit configurations the sys-
tem assumes in different instants of time. Their aim is to identify a floorplan
such that the common modules used in all the configurations are placed at
the same position in all the circuit configurations. Such modules will repre-
sent the static area of the device, while the rest of the device is reconfigured
as a whole. As a consequence, the reconfigurable part does not follow the
Xilinx PR flow. Nevertheless, in [7] the device is assumed to have a homo-
geneous resource distribution as in [18].

A last class of floorplanners ( [13], [105], [85]) considers both the PR
constraints and an accurate description of the heterogeneous resource distri-
bution. The work proposed in [13] stems from Parquet [2], the state-of-the-
art fixed-outline floorplanner for VLSI design, and presents a non-trivial
adaptation of the methodology to deal with partially reconfigurable FPGAs.
The algorithm uses simulated annealing to perturb a floorplan representa-
tion that consists of a sequence pair augmented with a vector characteriz-
ing the aspect-ratio of the modules. Moreover, to increase the probability
to detect feasible floorplans, it implements smart moves to recover from
solutions in which the resource requirements are not satisfied.

The approach devised in [105] characterizes the FPGA device in terms
of minimal reconfigurable units [112] called tiles. Each tile spans multi-
ple configurable frames on the horizontal direction and contains a specific
type and number of resources. Thus, the resource requirements of the re-
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configurable regions are translated in terms of tile requirements and a tech-
nique called Columnar Kernel Tessellation is applied to search for floor-
plans that minimize the overall estimated bitstream size. A post processing
step moves the obtained areas on the vertical direction trying to locally im-
prove the wire length without affecting the occupation of resources.

Even though [13] and [105] give better results than [63] in terms of
wire length and area occupancy respectively, [85] shows that the quality
of their solutions can still be improved by means of analytic methods at
the cost of a longer execution time. Specifically, [85] proposes two algo-
rithms both based on a compact MILP formulation. The first algorithm is
meant to locally improve the quality of an initial feasible solution with a
relatively small computational effort. Instead, the second algorithm is able,
in principle, to explore the full solution space and to find provably opti-
mal solutions. Unfortunately both the algorithms require, to some extent,
an initial feasible floorplan to achieve good final solutions. In our previ-
ous publication [82] we have demonstrated that solutions achieved by the
approaches proposed in [85] (and consequently in [105] and [13]) can be
further optimized without additional time penalties.

A final aspect to be considered is the experimental validation of the pro-
posed solutions. Actually, only in few approaches ( [10, 54, 71, 114]) the
produced results are synthesized on the target device to check their feasi-
bility and the achieved performance in terms of maximum clock frequency.
In particular, in [54] an in-depth analysis of the effects of modules aspect
ratio on the maximum achievable clock frequency is performed, while no
automation strategies are presented. In [71] a similar analysis is performed
by concluding that squared aspect ratios are preferable, and a very simple
semi-automated floorplanner for pipeline designs based on a single chain
of components is proposed. In [10], the floorplanning problem is tackled
from a different perspective: the system is first synthesized without any
constraint, and, then, an automated engine tries to identify a suitable set
of placement constraints around the area used for placing and routing each
module; unfortunately the approach is tested with a single reconfigurable
region and it is unlikely to work with a larger number of regions. Finally,
in [114] a simulated annealing is directly integrated with the synthesis tool
to implement each explored solution; even though such a strategy presents
a huge cost in terms of elaboration time.

Table 6.1 recaps the characteristics of the existing approaches showing
the supported features. It is worth noting that the most efficient approach
has been proposed in [86]; in fact, it outperforms (possibly in a indirect
way) most of the relevant previous solutions supporting PR (i.e. [13, 35,
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Table 6.1: Comparative analysis of past approaches

Approach FPGA Reconfig. PR Experimental Exp.
Model* aware support comparison** verified

Cheng et al. [18] Homo. [2]
Feng et al. [35] Heter.
Yuh et al. [115] CLB X
Montone et al. [63] Homo. X X
Singhal et al. [98] CLB X
Banerjee et al. [7] Homo. X
Bolchini et al. [13] Heter. X X [35, 63]
Vipin et al. [105] Heter. X X [63]
Rabozzi et al. [85] Heter. X X [13, 105]
Lamprecht et al. [54] Heter. X
Neely et al. [71] CLB X X X
Beckhoff et al. [10] Heter. X X X
Yousuf et al. [114] Heter. X X X
Rabozzi et al. [86] Heter. X X [13, 85]
PA Heter. X X [86] X

(*) Device models with a homogeneous resource distribution, heterogeneous
one and considering only CLBs

(**) The cell lists the approaches that have been tested and outperformed by the
one of the current line

63, 85, 105]). However, the weakness it presents is the lack of an exper-
imental validation of the achieved solutions while not all the current PR
constraints are taken into account. In this chapter, we aim at proposing a
novel floorplanning automation framework that, starting from the prelim-
inary idea presented in [86], supports the peculiarities of modern FPGA
devices and PR design flow, and features an even more efficient automation
engine in terms of quality of the achieved solutions and elaboration time.
Moreover, we also present an experimental validation of the approach by
implementing real designs on a FPGA device.

6.3 Floorplanning problem description

This section provides some relevant background on the floorplanning prob-
lem, in particular focusing on the Xilinx FPGA devices and the design rules
of the related PR flow.

As shown in Figure 6.1a, the reconfigurable fabric of an FPGA de-
vice is organized in a set of columns of resources of various types, that is
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BRAM Tile CLB Tile DSP Tile

Center clock column Clock region
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0
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1
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4

Modules

a) Device model b) System model

Reconfigurable 
region

Region 
placement

!! = {1,2,3}!Figure 6.1: Problem representation in terms of a) the reconfigurable FPGA device and b)
the top level structural description of the system.

T = {CLB,BRAM,DSP}. The grid is also divided in quadrants, called
clock regions according to the structure of the clock tree and the organiza-
tion of the configuration memory. Based on the memory organization, the
basic reconfiguration portion of the device grid, that we call tile, spans one
clock region height and one resource width. Each tile contains a single type
of resource depending on the position of the tile, and the amount of units
depends on the type of resource. Thus, as in [105], we consider a more
abstract model of the FPGA organization in terms of a grid of tiles. Finally,
we also define a coordinate system on the grid of tiles, starting from the
bottom-left corner. We denote with W and H the maximum values on the
X and Y axis respectively.

According to the PR design guidelines, as shown in Figure 6.1b, the
reconfigurable system is specified in terms of a structural description of
interconnected N top components called reconfigurable regions1. Each re-
gion implements a partially-reconfigurable unit in which it will be possible
to load in a mutually-exclusive fashion a set of modules implementing dif-
ferent functionalities. Thus, the reconfigurable region n presents resource
requirements that depends on the hosted modules; for each resource type t
we denote the required amount as rn,t. Moreover, the region is connected
with the others and with the static part of the design (another component

1When clear from the context, we also refer to them simply as regions.
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or set of components not featuring reconfiguration capabilities) by means
of a set of interconnection buses, each one characterized by a width b in
terms of number of wires. Do note that at floorplanning stage, positioning
of the connections of the wires among the region boundaries is not han-
dled; therefore, a center-to-center interconnection model is here adopted
and the overall wire length is estimated using the classical half-perimeter
wire length (HPWL) formula [7].

The goal of the floorplanning is to define a placement for each of the
reconfigurable regions, in terms of rectangular shape and position on the
FPGA resource grid. To this purpose, on the basis of the defined FPGA
model, we denote with P the set of all possible placements that may be
defined for the floorplanning of a single reconfigurable region:

P = {(x, y, w, h) | x, y, w, h ∈ N,
x+ w ≤ W, y + h ≤ H} (6.1)

where x and y represent the coordinates of the bottom-left corner of the
placement, while w and h define its width and height respectively. Thus,
the specific placement p can be characterized in terms of the available re-
source capacity, denoted as cp,t (for each resource type t), depending on the
specific position and shape. It is worth noting that in some devices (e.g.
the Zynq device) specific placements are forbidden since they overlap with
hard processors, static logic or I/O blocks. We represent such placements
with the subset S ⊂ P , that will be discarded during the floorplanning ex-
ploration. For a formal description of the floorplanning requirements it is
convenient to define a relation ⊥ such that for p1, p2 ∈ P : p1 ⊥ p2 if and
only if the two placements overlap on at least a tile. The non-overlapping
relation 6⊥ is simply defined as the complement of ⊥: 6⊥= P × P \ ⊥.

To be feasible, a floorplan must assign a placement pn for each region n
and satisfy a set of PR requirements:

REQ1: each assigned placement must contain at least the required resources
for the corresponding region:

∀n ∈ N, t ∈ T : cpn,t ≥ rn,t (6.2)

REQ2: each assigned placement must not be forbidden:

∀n ∈ N : pn 6∈ S (6.3)

REQ3: the left and right boundaries of a placement pn must be aligned
to specific coordinates that prevent splitting of interconnect resources
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[112] (V L and V R enumerate valid left and right coordinates, respec-
tively):

∀pn = (x, y, w, h) | n ∈ N : x ∈ V L ∧ x+ w ∈ V R (6.4)

REQ4: CLB resources at both sides of the center clock column must lie in
the static part of the design, an assigned placement can cross the cen-
ter column but such resources are not available for the corresponding
region:

∀t ∈ T : c(xclk−1,0,2,H),t = 0 (6.5)

REQ5: placements assigned to two different regions cannot overlap:

∀pn1, pn2 | n1, n2 ∈ N ∧ n1 6= n2 : pn1 6⊥ pn2 (6.6)

This list of constraints can be partitioned in two groups: REQ1-REQ4 are
specifically related to the placement pn for a single region n, while REQ5
rules the relative positions between different regions. Moreover, the first set
can be summarized in a single definition by introducing a new set Pn, which
represents all the feasible placements on the device for a reconfigurable
region n.

In conclusion, the floorplanning problem can be stated as follows: Given
the sets Pn of feasible placements, a floorplan is a function f that assigns
for each region n ∈ N a placement p ∈ Pn such that there is no overlapping
among the placements. More formally:

f : n ∈ N → p ∈ Pn
f(n1) 6⊥ f(n2) ∀n1, n2 ∈ N : n1 6= n2

(6.7)

6.4 Proposed floorplanning framework

The structure of the proposed floorplanning automation framework and its
integration in the Xilinx design flow is depicted in Figure 6.2. The design
flow implemented in Xilinx Vivado consists in three main automated steps:

1. Synthesis, which takes the input Hardware Description Language (HDL)
structural specification of the system and translates it in an intermedi-
ate netlist,

2. Implementation, which performs the place and route of the netlist on
the selected FPGA device, and,
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Figure 1. The proposed design flow.

this second kind of devices (e.g., Virtex-4 and Virtex-5
families).

According to the PR flow, the reconfigurable system
S is modeled in terms of reconfigurable modules and
reconfigurable areas. A reconfigurable module cj is a tech-
nologically mapped netlist, containing a set of functional
units and characterized by a vector of required resources
reqj. A reconfigurable area ai is a region on the device
grid that will host a specific set of reconfigurable modules,
c1, · · · , cm, in different time instants, in a mutually exclu-
sive fashion. Since the mapping and scheduling activities
have already been performed (for instance with the method
proposed in [13]), the set of reconfigurable modules of
each reconfigurable area is known a-priori. The system
includes also a static area containing a set of functional
units loaded at boot time and never reconfigured. All areas
are interconnected to each others with ad-hoc communi-
cation links (called proxy logic), with a specified width,
and are automatically introduced by the PR synthesis tool;
moreover, each area may be connected with a set of
IOBs for the communication with external devices. Being
the FPGA mounted on an existing board, each IOB is
already mapped on a specific position in the device grid
corresponding to the required device pin.

The definition of a floorplan for a reconfigurable system
according to the PR flow imposes the following constraints
on the shape and the position of the reconfigurable areas.
Each reconfigurable area ai is shaped as a rectangle,
identified by coordinates [(xBLi , yBLi), (xTRi , yTRi)], being
the Bottom-Left corner and the Top-Right corner, respec-
tively. According to the position and the size, each area
ai contains a specific vector of resources named resi. To
obtain a physically feasible implementation, the following
constraints must be satisfied:

1) each area ai must be inside the device grid;
2) different areas must not overlap;
3) each area ai must contain an amount of resources

resi (except for IOBs) sufficient to satisfy the re-
quests reqj to implement each one of the hosted
modules cj,

4) the yBLi and yTRi coordinates of the area must be
multiple of the height of the frame row, for partial
reconfiguration;

5) coordinates xBLi and xTRi must fulfill specific posi-
tioning constraints, for the correct placement of proxy
logic.

These rules correspond to the formal formulas below
(same ordering):

(1) 8ai 2 S, 0  xBLi < xTRi < Wdev ^ 0  yBLi < yTRi < Hdev

(2) 8ai, aj 2 S, (xTRi < xBLj _ xTRj < xBLi) ^
(yTRi < yBLj _ yTRj < yBLi)

(3) 8ai 2 S, 8cj placed in ai, 8k 2 R reqj[k]  resi[k]

(4) 8ai 2 S, yBLi = ⌘ · Hfr ^ yTRi = # · Hfr � 1

where ⌘, # 2 N, ⌘, # 2 [0, Nfr rows], ⌘ < #

(5) 8ai 2 S, xBLi = � · 2 ^ xTRi = � · 2� 1

where �, � 2 N, �, � 2 [0, Wdev/2], � < �.

The PR flow does not impose any constraint to the static
area that can be implemented freely on the parts of the de-
vice not occupied by the reconfigurable areas. However, in
order to easily handle and optimize interconnection issues,
we manage the various parts of the static area similarly
to the reconfigurable ones. Nevertheless, if necessary, the
designer can manually specify one or more rectangular
regions where to place the various functional units of the
static area; such regions will be considered as unavailable
space during the floorplanning activity.

Given the above-presented models, the considered floor-
planning problem is formulated as the identification of an
optimal shape and position of all reconfigurable and static
areas of the system, fulfilling the resource requirements
and the area definition constraints, and minimizing the
interconnections length both between reconfigurable areas
and with respect to the IOBs, measured by means of the
commonly adopted Manhattan distance metric.
Note that, in the following, we will use the term areas to
refer to both static and reconfigurable ones.

IV. FLOORPLAN REPRESENTATION

The adopted floorplan representation is composed of the
classical sequence pair ([15]) with an additional vector
containing the height of each area. The sequence pair
represents two permutations of the N areas contained in
the reconfigurable system. This representation captures ge-
ometric relations between each pair of areas; in particular,
because overlapping must not occur, two areas constrain
each other in either the vertical or the horizontal direction
as follows:

(h..., ai, ..., aj, ...i, h..., ai, ..., aj, ...i)) ai at the left of aj(6)
(h..., ai, ..., aj, ...i, h..., aj, ..., ai, ...i)) ai above aj(7)

Vector Ha = {ha1 , · · · , haN} specifies the heights of the
areas in terms of frame rows; each height is included
in the range [1, Nfr rows]. Classically, the shape of soft
modules is specified by an aspect ratio parameter (as in
[15]); however, due to the coarse grain granularity of the
heights the areas can assume, this choice is not suitable.
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this second kind of devices (e.g., Virtex-4 and Virtex-5
families).

According to the PR flow, the reconfigurable system
S is modeled in terms of reconfigurable modules and
reconfigurable areas. A reconfigurable module cj is a tech-
nologically mapped netlist, containing a set of functional
units and characterized by a vector of required resources
reqj. A reconfigurable area ai is a region on the device
grid that will host a specific set of reconfigurable modules,
c1, · · · , cm, in different time instants, in a mutually exclu-
sive fashion. Since the mapping and scheduling activities
have already been performed (for instance with the method
proposed in [13]), the set of reconfigurable modules of
each reconfigurable area is known a-priori. The system
includes also a static area containing a set of functional
units loaded at boot time and never reconfigured. All areas
are interconnected to each others with ad-hoc communi-
cation links (called proxy logic), with a specified width,
and are automatically introduced by the PR synthesis tool;
moreover, each area may be connected with a set of
IOBs for the communication with external devices. Being
the FPGA mounted on an existing board, each IOB is
already mapped on a specific position in the device grid
corresponding to the required device pin.

The definition of a floorplan for a reconfigurable system
according to the PR flow imposes the following constraints
on the shape and the position of the reconfigurable areas.
Each reconfigurable area ai is shaped as a rectangle,
identified by coordinates [(xBLi , yBLi), (xTRi , yTRi)], being
the Bottom-Left corner and the Top-Right corner, respec-
tively. According to the position and the size, each area
ai contains a specific vector of resources named resi. To
obtain a physically feasible implementation, the following
constraints must be satisfied:

1) each area ai must be inside the device grid;
2) different areas must not overlap;
3) each area ai must contain an amount of resources

resi (except for IOBs) sufficient to satisfy the re-
quests reqj to implement each one of the hosted
modules cj,

4) the yBLi and yTRi coordinates of the area must be
multiple of the height of the frame row, for partial
reconfiguration;

5) coordinates xBLi and xTRi must fulfill specific posi-
tioning constraints, for the correct placement of proxy
logic.

These rules correspond to the formal formulas below
(same ordering):

(1) 8ai 2 S, 0  xBLi < xTRi < Wdev ^ 0  yBLi < yTRi < Hdev

(2) 8ai, aj 2 S, (xTRi < xBLj _ xTRj < xBLi) ^
(yTRi < yBLj _ yTRj < yBLi)

(3) 8ai 2 S, 8cj placed in ai, 8k 2 R reqj[k]  resi[k]

(4) 8ai 2 S, yBLi = ⌘ · Hfr ^ yTRi = # · Hfr � 1

where ⌘, # 2 N, ⌘, # 2 [0, Nfr rows], ⌘ < #

(5) 8ai 2 S, xBLi = � · 2 ^ xTRi = � · 2� 1

where �, � 2 N, �, � 2 [0, Wdev/2], � < �.

The PR flow does not impose any constraint to the static
area that can be implemented freely on the parts of the de-
vice not occupied by the reconfigurable areas. However, in
order to easily handle and optimize interconnection issues,
we manage the various parts of the static area similarly
to the reconfigurable ones. Nevertheless, if necessary, the
designer can manually specify one or more rectangular
regions where to place the various functional units of the
static area; such regions will be considered as unavailable
space during the floorplanning activity.

Given the above-presented models, the considered floor-
planning problem is formulated as the identification of an
optimal shape and position of all reconfigurable and static
areas of the system, fulfilling the resource requirements
and the area definition constraints, and minimizing the
interconnections length both between reconfigurable areas
and with respect to the IOBs, measured by means of the
commonly adopted Manhattan distance metric.
Note that, in the following, we will use the term areas to
refer to both static and reconfigurable ones.

IV. FLOORPLAN REPRESENTATION

The adopted floorplan representation is composed of the
classical sequence pair ([15]) with an additional vector
containing the height of each area. The sequence pair
represents two permutations of the N areas contained in
the reconfigurable system. This representation captures ge-
ometric relations between each pair of areas; in particular,
because overlapping must not occur, two areas constrain
each other in either the vertical or the horizontal direction
as follows:

(h..., ai, ..., aj, ...i, h..., ai, ..., aj, ...i)) ai at the left of aj(6)
(h..., ai, ..., aj, ...i, h..., aj, ..., ai, ...i)) ai above aj(7)

Vector Ha = {ha1 , · · · , haN} specifies the heights of the
areas in terms of frame rows; each height is included
in the range [1, Nfr rows]. Classically, the shape of soft
modules is specified by an aspect ratio parameter (as in
[15]); however, due to the coarse grain granularity of the
heights the areas can assume, this choice is not suitable.
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Figure 6.2: The proposed floorplanning framework integrated within the Xilinx PR design
flow.

3. Bitstream Generation, which generates the final partial and complete
configuration files.

Moreover, after each phase, a set of manual steps can be performed to de-
fine specific aspects and set parameters (such as the selection of the I/O
pins or the floorplanning of the modules), while the obtained circuit can
be analyzed by means of utility tools (for instance to estimate the power
consumption or the timing of the netlist).

In this scenario, the PR design flow is an enhancement of the standard
flow able to handle the fact that several modules can be implemented in the
same reconfigurable region. During the three phases, partial specifications,
related to the modules and the top level of the design, are used for the syn-
thesis and the implementation of sub-circuits and the subsequent generation
of partial bitstreams. Within this scenario, the floorplanning is a manual
activity executed before the implementation phase, immediately after the
definition of the reconfigurable regions within the top level specification.

The proposed floorplanning automation framework replaces the corre-
sponding manual activity in the considered PR design flow. The frame-
work takes in input the HDL structural specification of the system and
translates it in an internal agile representation based on a graph. More-
over, it exploits synthesis reports to collect information on the resource
requirements, that will be annotated on the system internal representation.
The overall resource requirements of each reconfigurable region are com-
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Figure 6.3: Example of conflict graph.

puted as the maximum requirements among the various modules that will
be hosted within the specific region. Finally, the framework takes in in-
put the description of the considered FPGA device modeled as discussed
in Section 6.3. The output of the framework is the set of rules describing
the floorplan solution, specified in the Xilinx constraint language to be im-
ported in Vivado in order to continue with the subsequent implementation
phase.

According to the formalization of the problem presented in the require-
ments REQ1-REQ5, the floorplanning automation framework is divided in
two different phases:

1. Feasible placements generation, that consists in building a conflict
graph where nodes represent the union of the Pn sets of possible fea-
sible placements for each reconfigurable region n (REQ1-REQ4), and
edges represent the overlapping among pairs of placements of differ-
ent regions (REQ5).

2. Floorplanning exploration, that selects a possible placement in Pn
for each reconfigurable region n such that there is no overlap among
placements (REQ5) and an objective function specified by the de-
signer is maximized.

We automated the two phases with different strategies according to their
peculiarity and computational complexity. In particular, the first phase per-
forms an exhaustive exploration for the definition of the conflict graph,
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6.5. Feasible placements generation

since, as shown in the next section, the problem has a limited complex-
ity. For the second phase, characterized by a considerably larger design
space, the framework features an efficient exploration engine powered by
a genetic algorithm extended with a local search strategy. As shown in the
experimental session, this strategy provides near-optimal solutions with a
very limited execution time. Nevertheless, as shown in Section 6.7, the
framework supports the integration of further automation strategies. The
two phases are discussed in more details in the following sections.

6.5 Feasible placements generation

The first phase of the proposed framework is devoted to the definition
of an abstract model called conflict graph that describes all the feasible
placements for the various reconfigurable regions and the possible conflicts
among pairs of placements. As shown in Figure 6.3, the conflict graph con-
tains a group of nodes for each reconfigurable region n representing the
overall enumeration of the feasible placements Pn, computed by fulfilling
requirements REQ1-REQ4. Moreover, edges are used to represent conflicts
between pairs of placements of two different regions, according to require-
ment REQ5.

It is worth noting that in the classical floorplanning for VLSI design it is
commonly agreed that such a problem representation, based on the direct
specification of all the possible region coordinates on the device grid, is
extremely inefficient for automated optimization due to the huge solution
space it defines. For this reason, past approaches have exploited various
indirect representations, such as slicing trees, sequence pairs or other hier-
archical tree-based representations [39]. At the opposite, the PR guidelines
cause a considerable decrease in the number of feasible placements for a
single reconfigurable region, thus allowing to effectively exploit such a di-
rect representation of the placements. As an example, Figure 6.4 reports the
number of feasible placements generated for a single reconfigurable region
when varying its resource requirement on a specific Xilinx XC7V585TFF6
device; the number of all feasible placements under PR constraints (Pn) is
two order of magnitude smaller with respect to the number of all the pos-
sible placements that can be generated on the device without constraints
(namely No PR in the figure). It is worth noting that only CLBs are consid-
ered as resource requirements, while taking into account also other resource
types would have even more decreased the number of placements.

The number of placements to be explored for the floorplanning can be
even more reduced with respect to Pn, if we consider that in most of the
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Figure 6.4: Number of feasible placements for a single reconfigurable region.

cases, from an optimization point of view it is not efficient to define place-
ments larger than the minimal bounding boxes containing the required re-
sources. In fact, as discussed in [18] and [13], by using the minimal bound-
ing boxes it is possible to reduce resource utilization, thus leaving space for
additional functionalities and reducing the reconfiguration time. For this
reason, we define a new set P irr

n containing the irreducible placements of a
region n as:

P irr
n = {p ∈ Pn | @p2 ∈ Pn : p2 6= p ∧ p2 ≺ p} (6.8)

where ≺ represents a containment relation between two different place-
ments of the same region. More formally, given two placements p1 =
(x1, y1, w1, h1), p2 = (x2, y2, w2, h2) ∈ Pn, we have p1 ≺ p2 if and only if
x1 ≥ x2, y1 ≥ y2, x1 + w1 ≤ x2 + w2 and y1 + h1 ≤ y2 + h2. As shown
in Figure 6.4, P irr

n allows to reduce the size of the conflict graph of about
another order of magnitude compared to Pn.

Even if P irr
n sets are well-suited for optimizing resource occupation,

we have experimentally noted that they may produce suboptimal results in
terms of global wire length among various regions. For this reason, we
have slightly relaxed the definition of P irr

n to consider also placements that
are required to be minimal only with respect to the horizontal direction.
For a formal definition of this set of placements we consider a weaker con-
tainment relation ≺w: given the two above placements p1 and p2, we have
p1 ≺w p2 if and only if x1 = x2, y1 = y2, h1 = h2 and w1 ≤ w2. Thus the
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6.5. Feasible placements generation

Algorithm 4 Width-reduced placements generation
1: for each n ∈ N do
2: Pw

n ← ∅
3: for each x ∈ V L do
4: for y ← 0 to H − 1 do
5: for h← 1 to H − y do
6: w ← searchMinimalWidth(x, y, h, n)
7: v ← validAspectRatio(x, y, h, w)
8: if w > 0 ∧ v = true then
9: Pw

n ← Pw
n ∪ (x, y, w, h)

corresponding width-reduced placements set for region n is defined as:

Pw
n = {p ∈ Pn | @p2 ∈ Pn : p2 6= p ∧ p2 ≺w p} (6.9)

For the three defined sets the following relation holds:

P irr
n ⊆ Pw

n ⊆ Pn (6.10)

It is worth noting that the choice of reducing the placements only on the hor-
izontal direction is suggested from the structure of current devices. Usually
H is much more coarse-grained than W ; as an example a Xilinx Virtex-5
XC5VLX110T is described using 8 rows and 62 columns of tiles (W = 62
and H = 8) [85]. On average, with respect to different CLB resource
requirements, this relaxed strategy leads to 14% more placements with re-
spect to P irr

n , as shown in Figure 6.4.
A last relevant issue related to the generation of the feasible placement

is the aspect ratio, that is the ratio between the width and the height of
a placement. Indeed, as discussed in [71] and [54], extreme aspect ratios
(e.g. lower than 1:5 or higher than 5:1) often lead to implementations with
high routing congestion and low performance. This issue is mainly suf-
fered on the vertical direction since its axis is more coarse-grained. Thus,
placements with such elongated shapes can be filtered during the placement
generation process; then, among the available ones, higher cost can be at-
tributed to placements with extreme aspect ratios during the exploration
phase.

Algorithm 4 automates the computation of the sets Pw
n . The procedure

executes an extensive search of the possible placements by scanning all the
valid coordinates of the device starting from the bottom left corner of the
FPGA. For each point on the coordinate system, the algorithm considers
all the possible placement heights that do not exceed the boundaries of the
device and search for the minimal width needed to cover the required re-
sources. Notice that depending on the resource requirements and on the
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presence of hard processors and static logic, the search for the minimal
width can fail; in these situations the corresponding placement is not gen-
erated. In case of success, the searchMinimalWidth function returns the
minimal width for the current starting point and height. If it is not possible
to find a feasible placement for the given height and position, the method
returns 0. At the same time the validAspectRatio function is called to check
if the current placement has to be discarded due to extreme aspect ratios.

From an asymptotic complexity point of view, searchMinimalWidth func-
tion is the most time consuming operation in the innermost loop. By using
a binary search and pre-computing the resources occupied by each place-
ment on the device, this function can be implemented with a O(logW )
time complexity. Since the set V L, representing valid left coordinates for
the regions, has a size proportional to W , searchMinimalWidth function is
invoked O(|N | ·H2 ·W ) times. In conclusion, Algorithm 4 has an overall
time complexity of O(|N | · H2 · W · logW ). Notice that H and W are
usually small numbers and the placements generation takes only a small
amount of time compared to the overall optimization of the floorplan. An-
other observation, deriving directly from the algorithm, is that the number
of width-reduced feasible placements for a region cannot exceed H2 ·W .
As discussed in Section 6.7, in real situations the number of feasible place-
ments is limited up to few thousands items per set, and therefore leads to
manageable conflict graphs and to a placements generation time of few sec-
onds.

6.6 Floorplanning exploration

Once the feasible placements are generated, the second phase of the pro-
posed floorplanning framework consists in the choice of the most suitable
placement p for each region n among the available ones, such that 1) all
selected placements do not overlap, meaning that no conflict edge exists
among pairs of such placements, and 2) a specified objective function is
optimized. The proposed floorplanning automation framework supports the
integration of any automation engine capable of solving such an exploration
problem by working on the defined conflict graph. It is worth noting that
even if the conflict graph has a small size, the solution space, represented
by the Cartesian product of the sets of feasible placements of each recon-
figurable region, has a size that grows exponentially with respect to the
number of regions, thus motivating the necessity of an efficient exploration
engine.

In the preliminary formulation of the framework [82] we adopted an ex-
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ploration engine based on an exact MILP model, whereas, within this work
we designed and tested various heuristic methods in order to improve the
floorplan exploration time. During our experimental sessions, we identified
the Genetic Algorithm (GA) engine extended with steepest descent local
search to be the most effective approach in finding near-optimal solutions
in a reduced amount of time. Therefore, we here present the GA engine in
details, while we refer the reader to Appendix 6.A for a description of the
MILP model that has been used as a baseline. From experiments conducted
with different placement sets, we also noticed that the width-reduced place-
ments Pw

n offer the best trade-off in terms of size of the resulting solution
space and quality of the achievable results. Hence, in the following discus-
sion we refer to sets Pw

n , even though the approach is still valid when other
sets of placements such as Pn or P irr

n are considered.
The proposed GA engine for automating the floorplanning exploration is

based on the classical simple Genetic Algorithm formulation [41]. We de-
fined a solution encoding exploiting the enumeration of the feasible place-
ments identified during the first phase of the floorplanning framework. More
precisely, the chromosome is a linear vector where each position represents
a reconfigurable region n, and the contained value refers to the feasible
placement p in the corresponding set Pw

n . Then, the standard crossover and
mutation operators have been employed. The crossover operator cuts in a
random point the chromosomes of two parent solutions and exchanges the
second parts to generate two children, while the mutation operator replaces
with a given probability the placement of a region with another randomly
selected placement in Pw

n .
In order to evaluate the solution we consider two different cost metrics:

• Acost, the cost directly related to placement selection.

• Wcost, the cost deriving from inter region wire length.

The first contribution can be easily computed summing the cost ap,n asso-
ciated to each placement p ∈ Pw

n that is selected for the current floorplan.
As an example, the cost ap,n can refer to the aspect ratio of the placement,
amount of wasted resources, or wire length of a connection to a fixed I/O
pin. On the other hand, the second metric estimates the inter region wire
length using the HPWL formula. HPWL considers the wire connections
concentrated in the center of the regions and measures the wire length us-
ing the Manhattan distance. In conclusion, the considered fitness function is
a linear combination of the two defined metrics and an additional parameter
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Algorithm 5 GA local search
1: function IMPROVESOLUTION(solution)
2: obj ←solution.evaluate()
3: repeat
4: oldObj ← obj
5: for each n ∈ N do
6: for each p ∈ Pn do
7: obj′ ← solution.evaluatePlacement(n, p)
8: if obj′ < obj then
9: solution.setPlacement(n, p)

10: obj ← obj′

11: until obj < oldObj
12: return solution

λ able to handle unfeasible situations:

obj = qa ·
Acost
Amax

+ qwl ·
WLcost
WLmax

+ λ (6.11)

In the formula, Amax and WLmax represent the maximum values that Acost
and WLcost can assume respectively; they are used to normalize the two
contributions. Then, qa and qwl are user-defined weights. In particular, the
fitness function first analyzes the feasibility of the solution only in terms
of fulfillment of the non-overlapping condition (REQ5), and then computes
the cost according to the selected metrics. If the solution is unfeasible, a
penalty value λ, defined as the number of pairs of regions that overlap, is
summed to the objective value. In Equation (6.11) we force qa+ qwl = 1 so
that, valid floorplans are represented by 0 < obj ≤ 1, while obj > 1 identi-
fies unfeasible solutions. The goal of the λ factor is to enable the selection
operator of the GA (we use the classical tournament selection) to rank un-
feasible solutions in terms of the criticality of the constraint violation.

The choice of a simple solution encoding and operators has been driven
by the possibility to directly manage the solution space, as motivated in
Section 6.5. However, as a drawback, we have noted during a preliminary
experimental evaluation that such GA engine is not able to obtain better
performance than the preliminary MILP approach since it generates too
many unfeasible solutions. In fact, the direct problem formulation leads
feasible solutions to evolve in unfeasible ones with a high probability. The
main cause is the crossover operator that, due to its nature, applies “global
changes” to each explored solution; at the opposite the mutation operator
which performs local moves, has higher possibilities to make a feasible
solution to evolve to another feasible one, that is a “neighbor” in the so-
lution space. For this reason, such engine has been enhanced with a local
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search function, based on a steepest descent heuristic, that improves the
current solution with iterated local modifications until no further improve-
ment is possible. The strategy, shown in Algorithm 5, is invoked in the
GA fitness function and guarantees to reach a local optimum from the in-
put solution. We empirically demonstrated that the adoption of local search
within GA leads to a hybrid approach able to converge faster towards global
optima [107].

6.7 Experimental evaluation

The proposed floorplanning automation framework has been implemented
in C++; GAlib [106] has been used for the GA engine. Within the follow-
ing experimental sessions, we also integrated in the framework a Simulated
Annealing (SA) engine, implemented in C++ by using the GNU Scientific
library [1], and the preliminary MILP formulation [82]. For the other con-
sidered state-of-the-art approaches, the original algorithms provided by the
related authors have been adopted, while all the MILP models have been
solved using Gurobi 6.5.

In the first experimental session, we performed an extensive testing cam-
paign considering a large set of synthetic circuits aimed at demonstrating
that the proposed GA engine outperforms the state-of-the-art approaches,
whereas in the second section we performed a more in-depth comparison
of various engines (such as GA, SA and MILP) exploiting the same direct
problem representation proposed in this chapter. Finally, we carried out
two real case studies to show that the framework generates feasible floor-
planning solutions possibly without any manual action of the designer, and,
moreover, it is able to improve the system performance. The three sessions
are presented in the following sections. As a final note, all the experiments
have been performed on a 2.2GHz Intel Core Duo T6600 processor running
a Linux operating system.

6.7.1 Comparison with respect to past approaches

The first experimental session considered the test suite of synthetic circuits
from [85] targeted for the Virtex-5 XC5VLX110T device. This suite con-
sists of 20 circuits with different area occupancy and number of reconfig-
urable regions; specifically there are 4 circuits having a number of recon-
figurable regions in the range {5, 10, 15, 20, 25}, while with respect to area
utilization there are 5 circuits for each fixed device occupancy in the range
{70%, 75%, 80%, 85%}. It is worth noting that the maximum number
of regions for the considered circuits has been set by taking into account
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that reasonably a reconfigurable system does not feature a larger number
of reconfigurable regions. Moreover, we also made comparisons on some
circuits from MCNC and GSRC suites, adapted as done in [13]; more pre-
cisely, we considered apte, xerox, hp, ami33 and ami49 targeted for
a more recent Virtex-7 XC7K160T device.

In this first session, we compared our GA engine (dubbed PA-GA2)
against the most efficient state-of-the-art approaches discussed in Section 6.2,
i.e., [13], the HO and O MILP-based algorithms presented in [85] and our
preliminary MILP formulation [86] (dubbed as PA-MILP). Nevertheless, in
order to perform the comparison it was necessary to remove requirements
REQ3 and REQ4 from the placement generation process since previous ap-
proaches do not support them and their integration for [13] and [85] is not
straightforward. Regarding the objective function, in this section we only
considered the overall wire length since it has been noted to be the most
challenging optimization goal. For each experiment we executed 10 runs
of [13] and considered the best result as its final solution. According to the
approach defined in [85], we run the HO approach by starting from some of
the best solutions found by [13] (the ones within 10% from the best one),
and subsequently O by using the final solution achieved by HO. For all the
MILP formulations, the Gurobi solver execution time was limited to 1800
seconds, whereas, for PA-GA engine we used a stopping criterion based on
elapsed time and the same time limit was applied. The elaboration was par-
allelized on all the available cores by using the Threads Gurobi setting and
by running different processes for PA-GA with different random seeds. No-
tice however that the time limit does not take into account the time needed
by PA-MILP and PA-GA for the generation of the feasible placements and
the additional time to generate the initial solution for O [85]. Finally, PA-
GA and PA-MILP used Pw

n as input.
Tables 6.2 and 6.3 show the results of this first experimental session both

in terms of execution time and quality of the achieved solutions. PA-GA
was always able to find equivalent or better solutions than PA-MILP that in
turns provided better results than [85] and [13]. Furthermore, the highest
improvements were achieved for the most challenging circuits consisting
of high number of reconfigurable regions. Specifically, for the test cases
having 20 and 25 regions PA-GA reduced the wire length of PA-MILP so-
lutions by 8.2% on average while using the same amount of time. On the
other hand, when considering the variation of resource usage (reported in
Table 6.3), as expected, the best results for both PA-GA and PA-MILP are

2The label PA, standing for Proposed Approach, here identifies all the engines based on the direct problem
formulation proposed in this work.
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obtained for circuits with lower resource requirements even if there is no
pronounced trend.

Table 6.4 reports the results for the re-adapted MCNC and GSRC bench-
marks. Results show that PA-MILP gives an improvement with respect
to O that varies from 1.2% on ami33 to 49.5% on hp circuits, while
with respect to the comparison between PA-MILP and PA-GA, the results
are aligned to the synthetic benchmark trend. Indeed, for apte, xerox
and hp circuits both PA-MILP and PA-GA provides a similar overall wire
length, whereas, when dealing with the bigger ami33 and ami49 circuits,
PA-GA is able to improve PA-MILP solutions by 18.8% and 18.0% respec-
tively.

It is worth noting that for the synthetic circuits having 5 reconfigurable
regions (Table 6.2), PA-MILP is able to certify the optimality of the solu-
tions and thus complete its execution before the given time limit. PA-GA,
being a meta-heuristic approach, cannot state if the identified solution is op-
timal, and, hence, the execution time of the algorithm depends on the time
budget assigned. However, in these cases, we noted that PA-GA converge
faster to the optimal solution than PA-MILP, while as the problem grows
above the 10 regions, no MILP formulation is able to reach the optimal so-
lution in a reasonable time when the inter-region wire length is considered.
In fact, in our tests we run the PA-MILP, i.e. the most efficient MILP for-
mulation for several hours; however, after an initial very fast convergence
to a near-optimal solution, the engine was not able to improve the solu-
tion or certify its optimality. This is related to the weak linear relaxation
bounds provided by the MILP formulation with respect to inter-region wire
length; the issue was only partially mitigated by using additional cuts to
the model (see Appendix 6.A). As an example, we report in Figure 6.5 the
graph representing the improvement of the best solution for the considered
algorithms. We may note from the figure that PA-GA is the faster to evolve
towards near-optimal solutions. This trend is representative for all the per-
formed tests. Moreover, we noted that on average PA-GA and PA-MILP
tends to stabilize their solutions in less than 600 seconds, while after that,
no relevant improvement is reported.

As a final note, the generation of the definition of the conflict graph
model had a negligible impact on the overall execution time of the pro-
posed algorithms. Indeed, in real situations, the size of the conflict graph
is manageable; as an example, for the circuit having the highest number
of regions (ami49), the feasible placements generation process produced
146446 nodes in less than 10 seconds.
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Figure 6.5: Solution improvement over time for different approaches on the ami49 test
case.

6.7.2 Analysis of engines based on the proposed representation

In a second session, we performed a more challenging comparison of PA-
GA against other engines exploiting the same direct problem representa-
tions. In particular, we considered 1) PA-MILP, 2) an SA engine (called
PA-SA), since it represents the classical approach for floorplanning strate-
gies, and 3) a GA engine exploiting the same solution encoding but without
any local search strategy (dubbed as PA-GAn). The SA engine was de-
fined on the basis of the standard SA algorithm and re-using the evaluation
and mutation functions of the GA engine. In this experimental session we
considered PA-MILP as a baseline, since it has been the preliminary au-
tomating solution designed for the proposed framework. For this analysis,
we included requirements REQ3 and REQ4, and we re-adapted the suite of
the first session to target a Virtex-7 XC7V585T device; we actually mod-
ified the resource requirements of the circuits according to the size of the
new device and we considered a new set of circuits with 30 regions. It
is worth noting that the considered Virtex-7 device presents a higher het-
erogeneous distribution of resources and requires the introduction of more
forbidden placements than the Virtex-5 one used in the first experimental
session. Indeed, in some preliminary tests, we found that the considered
state-of-the-art engines in [13,85] failed in finding any feasible solution on
this device.
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Moreover, the tests have been performed considering different settings
of the objective function ranging from an optimization based only on place-
ments cost (qa = 1.0, qwl = 0.0), one considering only wire length (qa =
0.0, qwl = 1.0) and finally a mixed objective function taking into account
both metrics to the same extent (qa = 0.5, qwl = 0.5). In order to perform
a fair comparison of the approaches in terms of exploration efficiency, ac-
cording to the discussion in Section 6.7.1 we fixed a limited time budged of
600 seconds that includes the time for the generation of the feasible place-
ments. Except for the new time limit, the run settings for PA-MILP and
PA-GA were as in the previous section, whereas, we restarted PA-SA en-
gine several times on the available cores using different random seeds until
the available time budget elapsed.

Table 6.5 and Table 6.6 compare the obtained results according to the
number of regions and device usage respectively. For the problem instances
consisting of 5 regions the MILP approach and the GA were both able to
find the optimal solution in all cases, whereas the SA engine found optimal
solutions only when the objective function was set to consider uniquely
region placements cost. In general, the SA engine was almost never able
to achieve better solutions than the MILP based algorithm except for some
problem instances consisting of large number of regions. This result is
quite interesting since SA is the commonly used approach for automating
the floorplanning exploration. On the contrary, we may conclude that it is
not well-suited for the defined problem representation due to the fact that
many unfeasible solutions can be generated.

PA-GA proved to be an effective approach, leading to almost the same
results for an optimization based on placement cost, while greatly outper-
forming the MILP engine when considering the most difficult problem, that
is the wire length optimization. This is especially highlighted when the
circuits feature a large number of regions or a low resource usage. This
improvement was mainly obtained exploiting local search within GA that
allows to quickly explore a solution space consisting of local optimal solu-
tions. Indeed, as it is possible to notice from the two tables, PA-GAn pro-
vides results considerably far from its enhanced counterpart since it spends
a large amount of time exploring unfeasible regions of the solution space,
without the capability to recover to a feasible solution. It is worth noting
that in some experiments PA-GAn was not able even to find an initial fea-
sible solution; such situations were discarded from the results reported in
the two tables. Thus, we may conclude that the GA engine is the most
promising solution for the proposed floorplanning framework.
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6.7.3 Case studies

Finally, we validated the proposed approach on two real case studies to
be implemented on a Virtex-7 XC7V585T device. The first case study is
a re-adaptation of a Xilinx sample design (project_cpu_virtex7), consist-
ing of five modules connected using a star topology, whereas the second
case study is an in-house design of a an image processing pipeline with
reconfigurable components. As already noted in the previous section, the
approaches proposed in [13] and [85] do not consider requirements REQ3
and REQ4 thus leading to potentially invalid floorplan solutions with re-
spect to the subsequent place and route phase. Hence, we compared the
results achieved by the proposed floorplanner with respect to solutions de-
signed manually by starting from the initial placements provided by the
place pblock feature available in Vivado. This Vivado feature provides the
user with suggestions on where to place the reconfigurable regions, how-
ever the identified placements do not meet PR guidelines and require man-
ual modifications.

Similarly to [71], the Xilinx case study has been re-adapted consider-
ing each of the five available modules as reconfigurable, thus leading to
five distinct reconfigurable regions each containing a single module. No-
tice however that this does not represent a limitation for the evaluation
of the proposed approach since the employed implementation flow is the
same. The resource requirements of the reconfigurable regions are derived
from the requirements of the corresponding modules (shown in Table 6.7)
in which the number of LUTs was augmented by approximately 25% to
ensure enough space for the insertion of proxy logic [112]. Furthermore,
the number of interconnections among reconfigurable regions together with
interconnections to I/O are summarized in Table 6.8.

For the exploration, the objective function was set to consider wire length
and resource consumption to the same extent in order to reduce both recon-
figuration overhead and improve the possibility to meet timing constraints.
The floorplan solution identified by PA-GA is shown in Figure 6.6a together
with the placed and routed circuit. Overall the implementation phase was
successful and the timing constraint requiring a 100MHz frequency was
met. On the other hand, Figure 6.6b presents the initial solution provided by
Vivado place pblock, and Figure 6.6c the subsequent manually re-adapted
floorplan. It is clearly visible that the designer has to perform a considerable
and intrusive change of the solution proposed by Vivado; from our experi-
ence we may report that such activity requires around 2 hours of time, while
our automated engine requires a few minutes. Moreover when considering
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Table 6.7: Resource requirements of modules from the Xilinx case study

Module LUTs Registers F7 Muxes F8 Muxes BRAMs DSPs

cpuEngine 7440 3892 297 0 21 4
fttEngine 2837 1679 0 0 16 96
usbEngine0 6000 4699 259 81 36 0
usbEngine1 6080 4699 259 81 36 0
wbArbEngine 6800 1044 1959 172 0 0

Table 6.8: Interconnection matrix of regions for the Xilinx case study

Region fttEngine usbEngine0 usbEngine1 wbArbEngine I/O

cpuEngine 1 0 0 311 0
fttEngine - 0 0 106 69
usbEngine0 - - 0 118 69
usbEngine1 - - - 118 0
wbArbEngine - - - - 0

the quality of the achieved solutions, this second one was not able to meet
timing during implementation due to not optimized inter-region intercon-
nections. By lowering the timing constraint it was possible to meet timing
at 80MHz, however no place and route solution was found satisfying timing
constraints with frequency equal or higher than 85MHz. Furthermore, the
floorplan produced by the GA engine was able to reduce the overall size of
the partial bitstreams by 25.7% with respect to the manual solution.

As a second case study, we realized a design in the context of image
analysis consisting of seven different modules whose interconnections are
shown in Figure 6.7. In particular, the design is composed of two main com-
putational pipelines that operate on a gray scaled image. The first pipeline
includes the histogram, Otsu filter and threshold 1 modules, it binarizes
the given image by applying the Otsu separation algorithm [77], while, the
second pipeline is configured to perform edge detection by exploiting the
Gauss filter, Laplace filter and Threshold 2 modules. The modules were
generated by using Vivado HLS and AXI stream interfaces were used for
communication. Furthermore, we implemented different alternative ver-
sions of each module within the design (employing different algorithms or
having a different trade-off between results accuracy and execution time)
to exploit partial reconfiguration to switch from one to the other one; thus,
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Timing failure due to inter-region interconnections

(a) (b) (c)

!! = {1,2,3}!
Figure 6.6: Floorplans for the Xilinx case study: (a) place and route of PA-GA floorplan

at 100MHz constraint, (b) initial floorplan obtained with Vivado place pblock, and, (c)
place and route of manually adapted Vivado floorplan at 90MHz constraint.

seven reconfigurable regions were considered (one for each component
within the original design). The resource requirements for each version
of the various modules are listed in Table 6.9, whereas the requirements for
the corresponding reconfigurable regions were obtained as in the previous
case study.

Even in this scenario, the objective function was tuned to take into ac-
count inter-region wire length, regions aspect ratio and wasted resources to
the same extent. Within this case study, an analysis of the post-implementation
results showed that the critical paths were represented by the internal inter-
connections between the computational logic and the local BRAMs of the
modules, whereas, inter-region interconnections were easily routed. Due
to the peculiar characteristics of this design, both the PA-GA and manually
re-adapted floorplans were able to meet timing at 120MHz and failing at a
frequency equal or higher than 125MHz. Moreover, the floorplan produced
by the GA engine was able to reduce the overall size of partial bitstreams of
the manual solution from 9695 KB to 8815 KB, hence leading to a smaller
reconfiguration time. Finally, similarly to the previous case, the manual
definition of the floorplan required about 2 hours of activity.

6.8 Final remarks

In this chapter, we proposed a novel floorplanning automation framework,
compatible with the Xilinx tool-chain and its PR flow. The framework con-
siders a direct problem representation, which consists in an explicit enu-
meration of the possible placements of each region. The defined model
allows to simplify the development of efficient floorplanning algorithms
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!! = {1,2,3}!Figure 6.7: Modules interconnections for the image processing case study.

Table 6.9: Resource requirements of modules for the image processing case study

Region Module LUTs FFs BRAMs DSPs

Laplace filter LF_v1 628 332 64 2

Gauss filter GF_3x3 807 465 64 0
GF_3x3 float 881 809 32 5
GF_5x5 float 815 760 32 5

Gray scale GS_v1 334 238 64 4

Histogram Hi_v1 256 180 1 0
Hi_v2 104 87 1 0

Otsu filter OF_v1 1205 1164 0 13
OF_v2 726 517 0 2

Threshold 1 Th_v1 115 71 0 0

Threshold 2 Th_v1 115 71 0 0
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devoted to the optimization of different metrics such as aspect ratio, inter-
region wire length and resource consumption. Various engines, based on
an exact MILP formulation, GA and SA heuristic approach, possibly en-
hanced with local search strategies, have been designed for automating the
floorplanning activity. Such algorithms are experimentally evaluated with
a challenging synthetic benchmark suite and real case studies. Experimen-
tal results demonstrated the effectiveness of the proposed direct problem
representation and superiority of the defined GA engine with respect to the
other defined strategies and the state-of-the-art approaches in terms of ex-
ploration time and identified solution.

In the context of CAD as an Adaptive Open-platform Service (CAOS),
the proposed floorplanning automation framework can be leveraged by sev-
eral architectural templates within the CAOS backend. Examples of such
an architectural template could be inspired on the Dyplo workflow by Topic
[103]. Indeed, they consider an architecture in which multiple reconfig-
urable regions are connected in a ring topology and the application is al-
lowed to swap in and out different accelerator at runtime using Partial Dy-
namic Reconfiguration (PDR). Deciding the dimensions and placements of
the reconfigurable regions, is a design space exploration task suited for our
automated floorplanning framework.

6.A MILP formulation

Within this appendix we report the MILP model proposed in the prelimi-
nary version of the framework [86] and used within Section 6.7 as a base-
line for algorithms comparison. The variables, sets and parameters of the
formulation are listed in Table 6.10, whereas the model constraints and ob-
jective function are summarized in Table 6.11.

In the proposed model, the binary variables xn,p represent the current
solution by stating which placement p is chosen for a given region n; when
considering the conflict graph, these variables state which specific node
is selected for each region. Thus, a first class of constraints, dubbed as
placements constraints, guarantees that a given solution is feasible: in par-
ticular, exactly one placement for each region must be selected (C1), and
no pairs of placements connected by an edge can be selected since they are
overlapping (C2). It is worth noting that constraint C2 is defined on max-
imal cliques (i.e. fully-connected subgraphs) in the conflict graph instead
of single edges. This allows to reduce the size of the model while, at the
same time, improves the linear relaxation bounds during the MILP solving
process [88], so that the overall effect is a speed-up in the MILP solver
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Figure 6.8: Comparison of model size for the maximal cliques and single edges MILP for-
mulations on a problem consisting of two regions having equal resource requirements.

performance. Such a reduction in the problem size can be clearly seen in
Figure 6.8, by analyzing the number of edges between the placements gen-
erated for two regions when varying equally their requirements in terms of
CLBs; more precisely, the figure compares the number of non-zero terms
within the constraint matrix of the complete MILP model using the single
edges approach and the maximal cliques approach.

A second class of constraints, parameters and variables are used to com-
pute the cost OBJ of a given solution, that is equivalent to the one used
for the GA engine without the penalty contribution. Constraint C9 com-
putes theAcost metric by summing the cost ap,n of each selected placement,
while constraint C10 computes the global HPWL. The specification of C10
requires the introduction of variables cxn and cyn to compute the coordi-
nates of the centroid of each region n, and variables dxn1,n2 and dyn1,n2 to
compute the Manhattan distance between the centroids of each couple of
regions n1 and n2. Moreover, in order to guarantee the semantics of these
variables constraints C3-C8 are specified; constraints C3-C4 compute the
coordinates of the centroids, while constraints C5-C8 ensure that the dis-
tances among regions cannot be less than expected.

An in-depth analysis of the formulation has shown that constraints C3-
C8 give weak bounds when the linear relaxation of the MILP model is
solved. For this reason we introduced the additional cut C11, stating that
that the centroid distance of two regions has to be at least the sum of the
distances to reach the centroids of the selected placements from their near-
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est borders. Indeed a wire connecting the centroids of two placements has
to cross at least one border for each of them.
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6.A. MILP formulation

Table 6.10: MILP variables, sets and parameters

Sets
N set of reconfigurable regions to floorplan

Pw
n set of width-reduced feasible placements for region n

I set of interconnections between regions. Each element is a

tuple of the form: (n1, n2, b) where n1 and n2 are the

regions involved in the interconnections and b is its width

Parameters
W maximum value on the horizontal direction

H maximum value on the vertical direction

tileW the width of a tile within the FPGA

tileH the height of a tile within the FPGA

an,p cost associated to placement p ∈ Pw
n for region n ∈ N

qa weight associated to the area cost

qwl weight associated to the wire length cost

Amax maximum cost due to placements selection

WLmax maximum cost related to global inter-region wire length

Variables
xn,p binary variable set to 1 if and only if the placement

p ∈ Pw
n is selected for region n ∈ N

cxn x coordinate of region n ∈ N centroid

cyn y coordinate of region n ∈ N centroid

dxn1,n2 horizontal distance between centroids of regions n1, n2 ∈ N

dyn1,n2 vertical distance between centroids of regions n1, n2 ∈ N

Acost floorplan cost due to placements selection

WLcost floorplan cost related to global inter-region wire length
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Table 6.11: MILP model constraints and objective function.

Placements constraints
C1

∑
p∈Pw

n
xn,p = 1,∀n ∈ N

C2
∑

n∈N,p∈Pw
n :p⊥(xp,yp,1,1) xn,p ≤ 1,

∀xp ∈ [0,W − 1], yp ∈ [0, H − 1]

Wire length semantics
C3 cxn =

∑
p=(xp,yp,wp,hp)∈Pw

n
xn,p · (xp+ wp/2),∀n ∈ N

C4 cyn =
∑

p=(xp,yp,wp,hp)∈Pw
n
xn,p · (yp+ hp/2),∀n ∈ N

C5 dxn1,n2 ≥ cxn1 − cxn2,∀n1, n2 ∈ N | n1 6= n2

C6 dxn1,n2 ≥ cxn2 − cxn1,∀n1, n2 ∈ N | n1 6= n2

C7 dyn1,n2 ≥ cyn1 − cyn2,∀n1, n2 ∈ N | n1 6= n2

C8 dyn1,n2 ≥ cyn2 − cyn1,∀n1, n2 ∈ N | n1 6= n2

Cost functions definition
C9 Acost =

∑
n∈N,p∈Pw

n
an,p · xn,p

C10 WLcost =
∑

(n1,n2,b)∈I(dxn1,n2 · tileW + dyn1,n2 · tileH) · b
Additional cuts
C11 dxn1,n2 + dyn1,n2 ≥∑

p=(xp,yp,wp,hp)∈Pw
n1

xn1,p ·min{wp/2, hp/2}+∑
p=(xp,yp,wp,hp)∈Pw

n2
xn2,p ·min{wp/2, hp/2},

∀n1, n2 ∈ N | n1 6= n2

Objective function
OBJ min

{
qa · Acost

Amax
+ qwl · WLcost

WLmax

}
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CAOS backend: mapping and scheduling

for partially-reconfigurable designs

The usage of Partial Dynamic Reconfiguration (PDR) broadens the set
of design choices and trade-offs to consider for the implementation of ac-
celerated functions on Field Programmable Gate Array (FPGA). Indeed,
while PDR allows to overcome the limited availability of FPGA resources
with granular time-multiplexing, it also introduces reconfiguration over-
head, that, if not carefully considered and hidden, might jeopardize per-
formance. In this chapter we present and evaluate an approach to map
and schedule a Directed Acyclic Graph (DAG) of compute tasks onto re-
configurable regions on a target FPGA. The proposed algorithm exploits
the notion of resource efficient task implementations in order to reduce the
overhead incurred by PDR and increase the number of concurrent tasks
that can be hosted on the reconfigurable logic as hardware accelerators.
The mapping and scheduling techniques discussed in this Chapter as well
as the floorplanning algorithm presented in Chapter 6 are two key steps for
adding partial-reconfiguration support within the CAOS backend described
in Chapter 2.
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7.1 Introduction

In the last few years, System-on-Chip (SoC) architectures consisting of pro-
cessor cores tightly coupled with reconfigurable logic have become popu-
lar [113]. These SoCs allow the designer to realize complex applications
in which hardware software co-design solutions are required to achieve the
best performance. Furthermore, current FPGAs allow to reconfigure por-
tion of the device dynamically while components not affected by the re-
configuration process can still operate [112]. This feature, dubbed as PDR,
allows to virtually increase the resource availability of the FPGA by chang-
ing at runtime the set of configured hardware modules. To enable PDR, the
reconfigurable logic is partitioned into several reconfigurable regions each
being able to host different hardware accelerators over time. Each reconfig-
urable region must be defined large enough to satisfy the resource require-
ments of the hardware modules that are assigned to it, while the floorplan-
ning of the regions on the FPGA must comply with PDR constraints [86].
The reconfiguration process is then performed by means of a dedicated
component, such as the Internal Configuration Access Port (ICAP) avail-
able on Xilinx devices, that is exploited to load the partial bitstream for the
reconfigurable region to the FPGA configuration memory.

Even though PDR provides a great flexibility for designing the system,
the overhead incurred during the reconfiguration process must be care-
fully taken into account since it can easily jeopardize the performance gain
achieved by hardware acceleration [15]. The reconfiguration time is pro-
portional to the amount of resources required by the reconfigurable region
in which the new hardware accelerator has to be allocated, it is thus crucial
to minimize unused resources across region configurations and mask the
reconfiguration time whenever possible.

An additional degree of freedom given to the designer is the selection
of the implementation for an application task. Indeed, a task can be ei-
ther implemented in software and run on the available processor cores, or
implemented as a hardware accelerator. Furthermore, multiple hardware
implementations with different resource requirements and execution time
might also be available. As an example, the designer can provide a software
implementation for a given task and leverage High-Level Synthesis (HLS)
tools to generate multiple hardware implementations by setting different
loop unrolling factors to trade off task performance against resource re-
quirements.

Overall, the resulting task scheduling problem is NP-hard as it repre-
sents a more general optimization version of the Resource Constrained
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Scheduling Problem (RCSP) that is NP-complete [38]. Thus efficient schedul-
ing heuristics are required to both quickly evaluate the potential perfor-
mance achievable by the application on a given architecture and provide
optimized solutions. In this work, we propose an offline scheduling tech-
nique for application taskgraphs on SoCs featuring processor cores and a
partial dynamic reconfigurable FPGA. The proposed approach leverages
the floorplanning algorithm presented in Chapter 6 to ensure that the final
solution admits a feasible floorplan. Within this context, we may summa-
rize our contribution as follows:

• we introduce the notion of resource-efficiency as a mean to guide the
scheduler in the generation of a suitable set of reconfigurable regions;

• we present a fast deterministic scheduling heuristic for the optimiza-
tion of the application execution time;

• we propose a randomized version of the scheduling heuristic that can
be exploited to trade off algorithm execution time and quality of the
final solution;

• finally, the effectiveness of the proposed algorithms are evaluated on
a large set of synthetic benchmark and compared with state-of-the-art
approaches.

The remainder of the chapter is organized as follows: Section 7.2 shows
the related work in the literature, Section 7.3 gives a formal description of
the problem, Section 7.4 presents a high level view of the proposed ap-
proach, Section 7.5 discusses the implementation details of the determin-
istic scheduler, Section 7.6 shows how we derived the randomized version
of the algorithm, Section 7.7 evaluates our approach on different problem
instances and, finally, Section 7.8 draws the conclusions.

7.2 Related work

In the literature, several approaches that address the task scheduling prob-
lem on reconfigurable architectures have been proposed ( [8,9,15,23,34,40,
53, 61, 89]). However, only few of them explicitly take into account PDR
and consider reconfigurations as separate tasks performed by a dedicated
component ( [8, 9, 15, 23, 89]).

In [34], the authors propose an exact algorithm for the scheduling and
mapping of tasks having a single hardware implementation on FPGAs with
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homogeneous resources. However, the approach does not consider con-
tention on the reconfigurator, so that an unlimited number of reconfig-
urations can be performed concurrently. The same limitation still holds
for the optimal algorithm described in [40] where reconfigurations are not
explicitly handled as separate tasks. Furthermore the approach considers
reconfigurable regions having equal dimensions, thus limiting the size of
the solution space and leading to potential suboptimal results. Differently
from [34] and [40], [61] gives more flexibility in terms of the type of avail-
able implementations for the application tasks. In [61], the authors present
a hybrid approach based on genetic algorithm and list based scheduling that
allows to partition the tasks of the applications either in software or on the
FPGA. However, the bottleneck due to the single reconfigurator is still not
taken into account. The work developed in [53] generalizes the partitioning
of tasks to an arbitrary set of processing elements and adopt clustering tech-
niques to reduce the communication overhead across different components,
nevertheless the algorithm does not consider PDR for FPGAs components.

Among the approaches that take into account PDR and contention on
the reconfiguration controller, [9] is worth mentioning. The authors in [9]
propose the PARLGRAN heuristic, an improved solution with respect to
their previous work [8] for the scheduling and placement of tasks consider-
ing physical constraints. The approach uses anti fragmentation techniques
for the definition of the areas on the FPGA and exploits time slacks within
the reconfigurator to mask the reconfiguration overhead. However, the ap-
plicability of the algorithm is limited to applications whose tasks have a
single hardware implementation. In [89], the authors present an Integer
Linear Programming (ILP) formulation that allows to perform scheduling,
mapping and define the reconfigurable regions for the tasks assigned to
the FPGA. The model considers the reconfigurations as separate tasks and
enables schedules in which the configuration of a task does not need to
precede immediately its execution. The latter strategy is dubbed as re-
configuration prefetching and allows to improve the final solution thanks
to the added flexibility for the reconfigurations scheduling. The formula-
tion also consider module reuse, that is the possibility to avoid reconfigu-
ration among subsequent tasks that have the same implementation and are
scheduled in the same reconfigurable region. Furthermore, [89] generalizes
the task scheduling problem by giving the possibility to consider multiple
reconfiguration controllers. Nevertheless, the resulting complexity of the
ILP formulation makes the approach not viable even for small problem in-
stances.

Both the approaches presented in [15] and [23] explicitly consider par-
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tial dynamic reconfiguration as a mean to optimize the execution time of
the application. In [15], the authors tackle the scheduling and the map-
ping of tasks on the architectural components separately. Ant Colony Op-
timization (ACO) is used to explore the solution space in terms of tasks
mapping, while, at each iteration of the metaheuristic a list-based sched-
uler is invoked to search for an optimized schedule given a fixed mapping.
The separation of the two phases allows to manage the complexity of the
problem but, at the same time, increases the probability to find suboptimal
solutions. On the other hand, in [23] the authors propose a Mixed-Integer
Linear Programming (MILP)-based algorithm that tackle simultaneously
the mapping of tasks on the architecture and the scheduling of their execu-
tion. Even though the approach could potentially be used to search for the
optimal solution to the problem, the execution time of the algorithm grows
exponentially with the number of tasks, thus making it impractical for large
problem instances. To overcome this difficulty the authors propose IS-k,
an iterative approach in which k tasks at a time are optimally scheduled
exploiting the MILP model. Even though IS-k showed to achieve better
results than [15], the iterative scheme of the algorithm makes it vulnerable
to initial wrong decisions as demonstrated in Section 4.4.6.

Within this work we propose two novel scheduling heuristics that are
able to improve the quality of the results achieved by [23] in terms of run-
ning time and schedule execution time. The approaches take into account
PDR, the reconfiguration overhead caused by contention on the reconfigu-
ration controller and allows the designer to provide a set of different imple-
mentations for every single task. Furthermore, we exploit the MILP-based
floorplanning algorithm described in Chapter 6 in order to identify the con-
straints for the reconfigurable regions and to validate the final solution.

7.3 Problem description

The task scheduling problem addressed in this work is similar to one pre-
sented in [23] and [15]. Given a description of the target architecture in
terms of processor cores and the resource availability of the reconfigurable
logic, the goal is to schedule the applications tasks either in Hardware (HW)
or Software (SW) trying to minimize the overall execution time while pos-
sibly exploiting PDR. More formally, the architecture description is given
by the following parameters:

P := set of available processor cores;
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R := set of reconfigurable resources on the FPGA (e.g.: CLB, BRAM,
DSP, . . .);

recFreq := the amount of bitstream that can be reconfigured in a second
on the reconfigurable logic;

maxResr := number of resources of type r ∈ R available on the FPGA;

Notice that within the architecture we consider a single reconfiguration
component, thus no two separate reconfigurations can occur at the same
time due to contention.

On the other hand, the application is given in terms of a taskgraph, that is
a DAG G = (T,E) in which a node t ∈ T represents a specific application
task and an arc (t1, t2) ∈ E denotes data dependency between tasks t1
and t2. Furthermore, each task can have several hardware and software
implementations whose details are given by the following parameters:

IHt := set of available HW implementations for task t ∈ T ;

ISt := set of available SW implementations for task t ∈ T ;

It := set of all implementations for task t ∈ T (IHt ∪ ISt );

timei := execution time of implementation i ∈ It;

resi,r := resources of type r ∈ R required by hardware implementation
i ∈ IHt ;

The communication overhead among different tasks is not explicitly han-
dled by the adopted problem representation, however the time needed to
read and write data for a given implementation can be included within its
execution time. Furthermore, we assume that at least a software implemen-
tation is available for each task.

The output of the scheduling algorithm consists of: (1) the set of recon-
figurable regions together with their resource requirements, (2) a mapping
function that assign each task to a specific implementation and to a pro-
cessor core or a reconfigurable region, (3) the time slot allocated for each
task, and, (4) the set of required reconfigurations together with their time
slots. Furthermore, the scheduler ensures that the dependencies among dif-
ferent tasks are respected, guarantees that reconfigurations are performed
between the execution of tasks assigned to the same reconfigurable region
and ensures that the resource required by the reconfigurable regions do not
exceed the available FPGA resources.
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Figure 7.1: Impact of implementation selection on schedule execution time.

7.4 Proposed approach

A critical step of the task scheduling problem is the selection of the imple-
mentation to be used for a specific task. As an example, in Figure 7.1 we
show two possible schedules for a simple application consisting of tasks
T = {t1, t2, t3} where task t1 has two available hardware implementations
(t1_1 and t1_2), while tasks t2 and t3 have a single hardware implementa-
tion. Software implementations are not reported, but we assume that their
execution time is high enough so that, when selected, they always worsen
the overall schedule. The figure also shows the data dependencies between
the three tasks and, for the sake of simplicity, considers a single type of
FPGA resource. The available implementations for task t1 offer a trade-off
between execution time and resource requirements as it generally happens
for real hardware implementations. As we can see form the schedule on the
left, the selection of implementation t1_1 provides the best execution time
for task t1 but leads to the generation of a single large reconfigurable region.
This choice is not efficient in terms of resource utilization and worsen the
overall execution time in three ways: (1) limits parallelism since a single
task at a time can run on a reconfigurable region, (2) increases the number
of required reconfigurations and, (3) leads to higher reconfiguration times
since a larger bitstream is required for the region reconfiguration. On the
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other hand, the selection of t1_2 locally worsen the execution time for task
t1 but eventually improves the schedule execution time, as shown in the
schedule on the right.

Iterative algorithms such as IS-k perform subsequent greedy optimiza-
tions of the schedule considering k tasks at a time. In the extreme case of
IS-1, the implementation t1_1 would be selected, thus increasing the over-
all application execution time. In order to overcome this issue, we propose
a deterministic scheduling heuristic that: (1) starts by considering imple-
mentations having a suitable trade-off in terms of resource requirements
and execution time, (2) assigns the hardware tasks on the reconfigurable
logic giving priority to tasks with resource-efficient implementations, (3)
creates an initial optimal but generally not feasible schedule and, (4) modi-
fies the initial schedule to achieve a feasible solution by increasing as least
as possible the overall execution time. With resource-efficient task imple-
mentation we mean those hardware implementations that have a high ratio
between execution time and required resources. Such implementations tend
to have a high execution time with low area usage and, as shown in Figure
7.1, they allow to distribute more evenly the load on the reconfigurable
logic. In addition, we also propose a randomized variant of the scheduler
that relaxes the fixed priority based on resource-efficiency and allows to
explore a larger solution space.

Both the proposed algorithms are able to generate directly the set of re-
configurable regions S needed by the hardware implementations and the re-
source requirements ress,r for each region s ∈ S and resource type r ∈ R.
Such information are also exploited internally by the scheduler to estimate
the bitstream size for a reconfigurable region s ∈ S by means of the fol-
lowing equation:

bits =
∑
r∈R

ress,r · bitr (7.1)

where bitr represents the average number of bits required to configure a
single resource of type r whose value is derived form the number of con-
figuration frames and resources available in a FPGA tile of type r [105].
Starting from the bitstream size, the estimated reconfiguration time for re-
gion s ∈ S is simply computed as:

reconfs =
bits

recFreq
(7.2)

Even though the schedulers guarantee that the resources required by dif-
ferent reconfigurable regions do not exceed the amount of resources avail-
able on the FPGA, it is still necessary to verify whether the set of regions
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admits a floorplan that complies with the PDR constraints [112]. Similarly
to [23] a floorplanning algorithm is executed after the scheduling phase to
search for a feasible floorplan. If a solution is not found, the scheduler is
re-executed by virtually reducing the available FPGA resources maxResr
by a constant factor.

7.5 Implementation details

The proposed deterministic scheduling heuristic can be subdivided in a se-
quence of eight different steps. The first one, dubbed as implementation
selection, assigns each task to an initial hardware or software implementa-
tion based on a cost metric, then, during the subsequent critical path ex-
traction step an initial schedule is generated assuming unlimited resources.
The third step, named regions definition, re-evaluates the initial schedule
and assigns each task requiring a hardware implementation to a reconfig-
urable region by leveraging an efficiency index. After having defined the
reconfigurable regions, a post processing step called software task balanc-
ing tries to improve the schedule by switching tasks implementation from
hardware to software. Once the implementations choices have been fixed,
step five performs a start and end time computation for each task. Then,
step software task mapping assigns the software tasks to the available pro-
cessors and step reconfiguration scheduling concludes the generation of the
schedule by defining the reconfiguration tasks and ensuring that no two re-
configurations overlap in time. Finally, the feasibility check step invokes
a floorplanning algorithm to verify that the final solution is feasible. The
details of the algorithm steps are discussed in the following subsections.

7.5.1 Implementation selection

Within this phase, the scheduler identifies and selects the most suitable im-
plementation for each task of the application. As a first step, for every task
t ∈ T a cost is associated to each hardware implementation i ∈ IHt :

costi =

∑
r∈R weightResr · resi,r∑

r′∈R weightResr′ ·maxResr′
+
timei
maxT

(7.3)

where:

weightResr = 1− maxResr∑
r′∈RmaxResr′

maxT =
∑
t∈T

(min
i∈It

timei)
(7.4)
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As shown in equation 7.3, the cost of an implementation takes into
account the relative amount of resource required on the FPGA, and, the
needed execution time normalized with respect to the schedule in which all
the tasks are executed in series using the lowest execution time. This allows
to assign a higher cost to those implementations that either use a relatively
large number of resources or execution time. Notice also that higher impor-
tance is given to resources that are more scarce on the device. After having
assigned the implementation costs, the algorithm identifies the HW imple-
mentation iH ∈ IHt having the lowest cost and the software implementation
iS ∈ ISt having the lowest execution time. Finally the implementation with
the lowest execution time among the SW and HW implementations iS and
iH is assigned to task t. In the next steps we refer to hardware and software
tasks depending on the type of implementation selected.

7.5.2 Critical path extraction

Once every task t ∈ T has been assigned an implementation i ∈ It, and
consequently, an execution time TEXEt = timei, the taskgraph topological
order is computed and its critical path is extracted using the Critical Path
Method (CPM). Every task belonging to the critical path is categorized as
critical while all the other tasks are labeled as non critical tasks. The CPM
generates a time interval for every task t ∈ T between a minimum and a
maximum time instant defined as a time window wt = [TMINt , TMAXt ],
where TMINt represents the minimum time at which task t can start its ex-
ecution, while TMAXt is the last time instant at which the task execution
can be completed without propagating delays to the overall schedule. In
the following steps, whenever a task is assigned a different implementa-
tion, the time windows are recomputed with respect to the current tasks
dependencies.

7.5.3 Regions definition

The goal of this phase is to define the set of reconfigurable regions S, spec-
ify the resource requirements ress,r for each region s ∈ S and resource
r ∈ R and assign each hardware task to one of the defined regions. As
a preprocessing step, the efficiency index for the each task t for which a
hardware implementation i has been selected, is computed as follows:

effi =
timei∑

r∈R(resi,r ∗ weightResr)
(7.5)

Then, the phase starts by setting S = ∅ and subsequently loops through
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the hardware tasks trying to assign them to already defined regions, or gen-
erating new ones if needed. The order in which hardware tasks are pro-
cessed determines the set of the reconfigurable regions that are generated
and, as a consequence, greatly impacts the quality of the final schedule
as discussed in Section 4.4.6. In order to reduce the probability to incur
in schedule delays, the region assignment is performed for critical tasks
first. Among the set of critical and non critical tasks, precedence is given
to those having a hardware implementation with higher efficiency index.
This choice tends to increase the number of reconfigurable regions that can
be defined on the FPGA giving the possibility to better exploit hardware
parallelism.

The region assignment for a critical task t having a hardware implemen-
tation i is done as follows:

1. We consider the set of regions St ⊆ S such that s ∈ St has the follow-
ing properties: s has enough resources to host t, the time windows of
tasks already assigned to s do not overlap with wt and with the time
window of the reconfiguration required to host t. If St 6= ∅, then task
t is assigned the region s ∈ St having the lowest bitstream bits.

2. else, if there are enough available resources on the FPGA, a new re-
gion s with resource requirements ress,r = resi,r is added to S and
assigned to task t.

3. Otherwise, the implementation of task t is switched to the fastest SW
one and the time windows are updated.

Area assignment for a non critical task t with hardware implementation
i follows a similar procedure, however the goal is shifted towards trying to
maximize the FPGA utilization:

1. If there are enough available resources on the FPGA to host imple-
mentation i, a new region s ∈ S ′t with resource requirements ress,r =
resi,r is added to S and assigned to task t.

2. else, we consider the set of regions S ′t ⊆ S such that s has enough
resources to host t and the time windows of tasks already assigned to
s do not overlap with wt. If S ′t 6= ∅, then task t is assigned to the
region s ∈ S ′t having the lowest bitstream bits.

3. Otherwise, the implementation of task t is switched to the fastest SW
one and the time windows are updated.
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Notice that in the previous step, whenever a task is assigned to an existing
reconfigurable region, new dependencies are inserted into the taskgraphs to
guarantee the ordering of tasks inside each reconfigurable region.

7.5.4 Software task balancing

Within the previous phase some of the task implementations could have
been switched to SW and, as a consequence, the overall solution could
have worsened since SW implementations tend to have a higher execution
time than the HW ones. This change in the implementation choice gen-
erally produces a solution in which HW tasks are blocked for a long time
waiting for the completion of other SW tasks. In order to exploit the un-
derutilized resources on the FPGA, it is possible to check if some SW tasks
can be executed in hardware during the unused time interval. The SW task
balancing procedure is applied to all the SW tasks t ∈ T | IHt 6= ∅ starting
from the ones having lower TMINt as follows:

1. An estimation of the total amount of time spent for reconfigurations is
calculated using the equation:

totRecT ime =
∑
s∈S

reconfs · (|Ts| − 1) (7.6)

where Ts represents the set of hardware tasks assigned to the recon-
figurable region s.

2. If TMINt > totRecT ime and exists a region s ∈ S whose tasks time
windows do not overlap with wt, then task t is assigned to region s
using the hardware implementation with the lowest cost and the time
windows are recomputed.

In the above procedure, the total reconfiguration time is used to verify that
the task implementation can be moved to hardware without generating con-
tention on the reconfigurator.

7.5.5 Start and end time computation

After having fixed all the implementations and assigned the hardware tasks
to reconfigurable regions on the FPGA, this phase computes the start and
end time for each task t ∈ T as follows:

TSTARTt = TMINt

TENDt = TSTARTt + TEXEt

(7.7)

Notice that the execution time TEXEt is known from the implementation
selected in the previous phases.
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7.5.6 Software task mapping

The aim of this step is to bind each SW task to one of the available proces-
sors in P . The main idea is to consider the software tasks in chronological
order and assign them to the processor in which the minimum delay is gen-
erated. For each task t ∈ T the following procedure is applied starting from
tasks having the lower TMINt:

1. For every processor p ∈ P the potential delay λp is computed as:

λp = min{0, maxt2∈Tp(TENDt2 − TMINt)}, (7.8)

where Tp is the set of current tasks assigned to p.

2. The task is assigned to the processor p ∈ P having the lowest delay
λp and new dependencies are added to ensure task ordering within the
processor.

3. The task start and end time are recomputed as:

TSTARTt = TMINt + λp

TENDt = TSTARTt + TEXEt

(7.9)

4. if TENDt > TMAXt the delay TENDt − TMAXt is propagated over the
taskgraph.

7.5.7 Reconfigurations scheduling

The last step required to obtain a complete application schedule is to gen-
erate the set of reconfiguration tasks RT for the regions hosting multiple
implementations. A reconfiguration occurs between each couple of subse-
quent tasks tin, tout ∈ T assigned to the same reconfigurable region and it
is needed to load the partial bitstream for task tout. Tasks tin and tout are
dubbed as ingoing and outgoing task respectively, if a reconfiguration has
an outgoing critical task, then the reconfiguration task is also considered
critical. Similarly to the application tasks, each reconfiguration t ∈ RT has
a time window in which it has to be executed to avoid the generation of
delay:

TMINt = TENDtin

TMAXt = TSTARTtout
(7.10)

On the other hand, the execution time of the reconfiguration t depends on
the region s ∈ S in which the ingoing and outgoing tasks are scheduled:

TEXEt = reconfs (7.11)

149



i
i

“thesis” — 2019/1/21 — 12:19 — page 150 — #170 i
i

i
i

i
i

Chapter 7. CAOS backend: mapping and scheduling for
partially-reconfigurable designs

Critical reconfigurations are scheduled before non critical ones since
their delays would be completely propagated on the schedule. For each
critical reconfiguration t ∈ RT , the following procedure is applied starting
from the reconfiguration having lower TMINt:

1. The time window for the reconfiguration task is recomputed since
some delays may have modified the time windows of its ingoing and
and outgoing tasks.

2. The last scheduled reconfiguration task tl on the reconfiguration com-
ponent is extracted.

3. If TMINt > TENDtl
, then the start time of the reconfiguration is set

as TSTARTt = TMINt otherwise the reconfiguration start time is com-
puted as TSTARTt = TENDtl

+ 1.

4. The end time for the reconfiguration is set as usual as TENDt = TSTARTt+
TEXEt

5. Check if the reconfiguration task generates a delay (i.e. TENDt >
TMAXt) and, if so, propagate the delay over the taskgrpah.

The scheduling of non critical reconfiguration task is more complex
since an existing partial scheduling is already present and we must ensure
that no two reconfigurations overlap in time. For each non critical recon-
figuration t ∈ RT , the following procedure is applied starting from the
reconfigurations having lower TMINt:

1. If the time instant TMINt lies within the execution of an already sched-
uled reconfiguration, TMINt is set to the first time instead ahead in time
in which no other reconfigurations are performed.

2. The start time and end time of the reconfiguration are computed as
TSTARTt = TMINt and TENDt = TSTARTt + TEXEt .

3. If TENDt > TMAXt , the delay of the reconfiguration is propagated to
the outgoing task.

4. Finally, if the reconfiguration overlap with the execution of other re-
configurations, those are shifted ahead in time and their delay is prop-
agated over the taskgraph.
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7.5.8 Feasibility check

At this stage, a schedule and mapping of all the tasks on the target archi-
tecture has been performed, however, there is no guarantee that the identi-
fied reconfigurable regions admit a valid floorplan on the FPGA. For this
purpose, the set of regions S together with the resource requirements ress,r
are given has input to the MILP-based floorplanning algorithm presented in
Chapter 6. It is worth noting that no objective function is specified for the
floorplanner since we are interested in verifying the existence of a solution
in a small amount of time. If it is not possible to find a feasible floorplan,
the scheduling algorithm is restarted by virtually reducing the number of
resources available on the FPGA by a constant factor.

7.6 Randomized scheduler variant

The order in which non critical tasks are considered during the reconfig-
urable region definition presented in Section 7.5.3 leads in general to sub-
optimal schedules, since it does not take into account the impact of tasks
dependencies, reconfiguration constraints and the possibility that some task
implementations can be switched to SW. However, finding the best order-
ing is a computationally expensive processes, while sorting the tasks with
respect to the efficiency index of theirs selected implementations provides
good quality results in a small amount of time. In this section we relax
the fixed processing ordering for non critical hardware tasks and we pro-
pose a variant of the algorithm that exploits a randomized order. This gives
the possibility to explore a larger solution space by executing the scheduler
several times, so that the designer can trade off the quality of the solution
against the execution time of the algorithm. Furthermore, this randomized
approach allows to amortize the computational cost of the floorplanner over
different scheduling iterations. A high level view of the scheduler variant
is given by Algorithm 6.

The doSchedule function represents the core of the algorithm described
in Section 7.5 devoid from the feasibility check phase, where an additional
parameter has been added to specify the type of ordering for non critical
hardware tasks during the definition of the reconfigurable regions. On the
other hand, the checkF loorplan method is used to query the floorplanner
and verify that the current schedule is valid. Overall, the algorithm takes as
input the problem instance describing the target architecture together with
the application taskgraph and a time budget, while it produces as output the
best schedule found. As shown in Algorithm 6 the floorplanner is executed
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Algorithm 6 Randomized task scheduling algorithm

1: function RSCHEDULER(instance, timeToRun)
2: deadline = getCurrentT ime() + timeToRun
3: bestSchedule = null
4: bestExeTime = +∞
5: tasksOrder = "RANDOM"
6: while deadline ≥ getCurrentT ime() do
7: schedule = doSchedule(instance, tasksOrder)
8: if schedule.exeTime < bestExeTime then
9: feasible = checkF loorplan(solution)

10: if feasible then
11: bestSchedule = schedule
12: bestExeTime = schedule.exeTime
13: return bestSchedule

only when a potential improving schedule is found so that the overall time
spent in validating the solution on the FPGA is reduced. Furthermore, dif-
ferently from the deterministic approach, unfeasible solutions in terms of
the resulting floorplan are simply discarded without the need to restart the
scheduler reducing the amount of available FPGA resources.

7.7 Experimental evaluation

Within this section we evaluate the proposed scheduling algorithm with
task ordering based on efficiency index (PA), and, the scheduler variant
that exploits randomized tasks ordering (PA-R). The achieved results are
also compared to the ones found by IS-k [23], since it is the approach that
is more close to our context, being able to exploits PDR and giving the pos-
sibility to trade off the execution time of the algorithm against the quality of
the solutions. Specifically, the comparisons are performed against IS-1 and
IS-5, where IS-1 represents the version of IS-k that has the lowest execu-
tion time for small to medium taskgraphs, while IS-5 is able to give better
results at the cost of a generally higher but still acceptable execution time.

7.7.1 Testing Environment

The evaluations were performed on a test suite consisting of 100 pseudo-
random taskgraphs that are organized in 10 groups containing 10 taskgraphs
each. The taskgraphs within a group have a fixed number of tasks that
varies in the range [10, 100] across different groups. Each task has one
software implementation and 3 hardware implementations with heteroge-
neous resource requirements (i.e. different requirements of CLBs, DSPs
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Table 7.1: Execution time of the scheduling and floorplanning algorithms.

# Tasks
PA [s]

IS-1 [s] PA-R / IS-5 [s]scheduling floorplanning total

10 0.070 0.332 0.402 1.211 4.734
20 0.097 0.526 0.623 3.286 68.387
30 0.118 0.979 1.097 13.628 90.304
40 0.139 1.074 1.213 25.786 149.460
50 0.161 1.028 1.189 57.215 135.362
60 0.180 1.005 1.185 120.131 189.140
70 0.197 1.091 1.288 256.967 413.137
80 0.216 1.166 1.382 276.271 288.639
90 0.236 0.981 1.217 328.214 288.528
100 0.276 1.041 1.317 564.855 563.129

and BRAMs). Moreover, we considered that different tasks can share a
common implementation so that module reuse can be exploited by IS-k,
a feature currently not supported by the proposed approach. The target
architectures for the applications is the ZedBoard with Zynqtm-7000 All
programmable SoC that provides a dual core ARM Cortex-A9 CPU and a
Xilinx XC7Z020 FPGA.

All the tests were run on a Intel Core i7 4700MQ under Linux, while
we used Gurobi 6.5 [44] for solving the MILP models for the floorplanner
described in Chapter 6 and IS-k [23]. PA, IS-1 and IS-5 were executed
until completion, while PA-R was assigned a time budget equal to the time
used by IS-5 in order to have a fair comparison in terms of computational
efficiency between the two approaches.

7.7.2 Results analysis

Figure 7.2 shows the average schedule execution time for the solutions
found by the proposed algorithms and by IS-k with respect to each group
of taskgraphs, whereas Table 7.1 reports the execution time of the different
algorithms, in which the elaboration time of PA has also been subdivided
in time spent during the the scheduling and the floorplanning phase. In
the following discussion we focus our attention on the comparison between
PA and IS-k in terms of both algorithms running time and quality of the
achieved results and between PA-R and IS-5 in terms of computational ef-
ficiency.

As we can see from Table 7.1, the time required by PA to compute the
schedule grows almost linearly with respect to the number of application
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Figure 7.2: Comparison between solutions

tasks, while the overall PA execution time, that includes also floorplan-
ning, is two order of magnitudes smaller than the one of IS-1 and IS-5
for taskgraphs consisting of 60 or more tasks. In order to better analyze
the difference in terms of quality of the solutions, we report in Figure 7.3
and Figure 7.4 the average improvements of the schedules execution times
achieved by PA using IS-1 and IS-5 as baselines respectively.

As shown in Figure 7.3, PA is able to improve IS-1 solutions by 14.8%
on average, while the best results are achieved for medium-sized applica-
tions having a number of tasks in the range [20, 60]. The improvement is
mainly obtained by considering hardware implementations having a low
impact on the FPGA resources and by scheduling the tasks on the reconfig-
urable regions giving priority to those tasks whose implementations have
higher efficiency indexes. However, for applications with a small number
of tasks, there is less contention on the FPGA and thus the benefits of the
proposed scheduler are less evident. Notice also that IS-1 tends to reduce
the improvement gap of PA for large taskgraphs, this is due to the fact that
IS-k spends an exponentially larger amount of time in optimizing the sched-
ule when the number of tasks increases. Indeed IS-k is not a pure greedy
algorithm and some of the time variables involved in its MILP formulation
are allowed to be modified between subsequent scheduling iterations, thus
leaving room for exploring a larger solution space. Overall, PA has a much
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Figure 7.3: Average solutions improvement of PA with respect to IS-1.

Figure 7.4: Average solutions improvement of PA with respect to IS-5.
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Figure 7.5: Average solutions improvement of PA-R with respect to IS-5.

lower running time than IS-1 and is in general able to improve IS-1 solu-
tions. On the other hand, as shown in Figure 7.4, the improvement of PA
with respect to IS-5 is reduced due to the additional flexibility given to the
IS-5 MILP model that also translates in increased running time.

When the goal is shifted towards finding near optimal solutions, the ran-
domized approach PA-R can be applied to trade off the small running time
of PA to search for better schedules. Figure 7.5 shows the improvement of
PA-R over IS-5 solutions where both algorithms have been executed for the
same amount of time. For small applications consisting of 10 taskgrpahs,
IS-5 is still able to provide better solutions by exploiting implementations
having low execution time and high impact on the FPGA resources. How-
ever, for applications having more than 20 tasks FPGA contention becomes
more relevant and PA-R is able to provide an average 22.3% improvement
with respect to IS-5 by considering cost effective implementations.

It is worth noting that the high standard deviation shown in Figures 7.3,
7.4 and 7.5 is due to the fact that the number of tasks is not the only factor
that influence the improvement achieved by the proposed approach. Further
investigations are required in order to clearly identify these factors, how-
ever, we observed that the improvements achieved by PA-R with respect to
IS-5 are more restrained when either the taskgraph expose a reduced level
of parallelism or, at the opposite, when a great proportion of the application
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Figure 7.6: Solution improvement over time for PA-R on different taskgraphs.

tasks can be executed in parallel.
As a final analysis, we executed PA-R with an extended time limit of

1200 seconds over 5 of the given pseudo-random taskgraphs having a num-
ber of tasks in the range {20, 40, 60, 80, 100}. Figure 7.6 reports the best
schedule execution time found by PA-R with respect to the running time
of the algorithm. Notice that only the first 500 seconds of execution are
shown since we observed that after this time interval the solutions found by
PA-R did not improve further. As we can see from the figure, the algorithm
generally converges to a good solution in a small amount of time and the
convergence time increases together with the number of tasks involved in
the taskgraph.

7.8 Final remarks

Within this chapter we proposed a novel scheduling approach for applica-
tions described in terms of DAG of tasks for SoC featuring homogeneous
processing cores coupled with a partial dynamic reconfigurable FPGA. Two
different algorithms were presented: the first one, is a deterministic schedul-
ing heuristic that allows the designer to obtain a fast evaluation of the de-
sign performance on the target architecture, while the second one exploits
randomization to explore a larger solutions space and is able to find op-

157



i
i

“thesis” — 2019/1/21 — 12:19 — page 158 — #178 i
i

i
i

i
i

Chapter 7. CAOS backend: mapping and scheduling for
partially-reconfigurable designs

timized results. On average, For medium to large size applications, the
proposed randomized algorithm reduces the execution time of the sched-
ules by 22.3% with respect to the MILP-based approach presented in [23]
that already proved to achieve better performance than [15].

Future work will investigate the possibility to leverage module reuse
in order to further improve the solutions by removing the reconfiguration
overhead for tasks sharing the same hardware implementations. Further-
more, we plan to relax the exact implementation selection phase in order to
explore a larger solution phase that might lead to the identification of better
solutions. Finally, we will also consider the possibility to explicitly model
the communication overhead between the application tasks to improve the
schedule accuracy.
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CHAPTER8
Conclusion

This chapter summarizes the contributions of this thesis and discusses cur-
rent limitations and research directions for future work.

This dissertation presented CAD as an Adaptive Open-platform Ser-
vice (CAOS), a platform whose main objective is to improve productivity
and simplify the design of Field Programmable Gate Array (FPGA)-based
accelerated systems, starting from pure high-level software implementa-
tions. As discussed in Chapter 1, the slowing rate at which general purpose
processors improve performance is strongly pushing towards specialized
hardware. We expect FPGAs to have a more prominent role in the upcom-
ing years as a technology to achieve efficient and high performance solu-
tions for a wide set of application domains both in the High Performance
Computing (HPC) and cloud domains. Hence, by embracing this idea, we
designed CAOS in a modular fashion (Chapter 2), providing well defined
Application Programming Interface (API) that allow external researchers to
integrate extensions or different implementations of the modules within the
platform. Indeed, the second, yet not less important, objective of CAOS, is
to foster research on tools and methods for accelerating software on FPGA-
based architectures. The ultimate objective is indeed to reduce the produc-
tivity gap between pure software development and the implementation of
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systems employing FPGA accelerators.
In order to achieve this ambitious objective, we have presented a de-

sign flow which revolves around the concept of architectural template as a
mean to target the complexity and generality of high-level software, such
as C/C++. An architectural template is a characterization of the accelera-
tor both in terms of its computational model and the communication with
the off-chip memory. An architectural template constrains the architecture
to be generated on the reconfigurable hardware and poses restrictions on
the application code that can be accelerated, so that the number and types
of optimizations available can be tailored for a specific type of hardware
implementation. Leveraging on the idea that different types of template
architectures can be generated depending on specific characteristics of the
high-level C/C++ code, we have presented three architectural templates in-
tegrated into CAOS.

The Master/Slave architectural template, discussed in Chapter 3, allows
to achieve good acceleration results for a large set of C/C++ codes. The
template leverages on existing High-Level Synthesis (HLS) vendor tools
and features an automated design space exploration to evaluate different
candidate optimizations. Overall, for regular applications with inherent
data parallelism, the template is able to outperform CPU-based solutions
in terms of energy efficiency and pure performance. Furthermore, the tem-
plate allows to easily target both Xilinx Zynq-7000 System-on-Chip (SoC)
and Amazon F1 cloud instances. While the gap between bespoke solutions
and implementations achieved through CAOS leveraging on such template
is still relevant (about 5x), yet the productivity improvement is remarkable,
allowing to reduce the development time from several weeks to a few days.

When moving towards more specialized architectural templates, the range
of supported codes reduces, but the higher specificity also allows to achieve
higher performance and exploit the FPGA low-level resources more effi-
ciently. This is the case of dataflow architectural template presented in
Chapter 4 and the streaming architectural template discussed in Chapter 5.
Broadly speaking, the dataflow architectural template targets C/C++ codes
whose control flow graph is statically defined and for which accesses to
the input/output arguments occur linearly through an outer loop iteration
variable. For such type of functions, which are common in the finance
and image analysis domain, the architectural template is able to automati-
cally derive a dataflow implementation which, at the moment, is based on
the MaxJ Domain Specific Language (DSL) from Maxeler. As we have
shown, the template reaches performance very close to hand-tuned imple-
mentations yet in a very small amount of time, in the order of days instead
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of weeks. On the other side, the streaming architectural template targets
Iterative Stencil Loop (ISL) computations which are common in the sci-
entific domain (e.g. linear equation solving, flow heat distribution simu-
lation). Such template borrows from the dataflow architectural template
the idea of computing while the data flows trough the accelerators’ nodes.
However, the architectures are built differently from the dataflow architec-
tural template. This template generates a module for the computation of a
single time step of the outermost loop of the ISL. Finally, a design space
exploration based on floorplanning allows to maximize the number of mod-
ules that can be instantiated on the device, while minimizing inter-modules
wire length. Such approach allows to improve performance of 13% com-
pared to handmade designs and to reduce the design time up to 15x.

All the FPGA implementations achieved by the architectural templates
described in Chapter 3, Chapter 4 and Chapter 5 are static, meaning that,
once the FPGAs are configured, the configurations remain unchanged for
the whole execution of the application. While this approach is simple and
fits most of the use cases, there are circumstances in which the optimal de-
sign does not fit within a single FPGA or require different computational
stages over time. In the last years, FPGA vendors such as Xilinx, have
offered the possibility to perform Partial Dynamic Reconfiguration (PDR),
i.e. reconfigure only a portion of the device at runtime while the rest of the
design keeps working. Such technique opens up a wide range of possible
designs, yet, it also requires the designer to floorplan a set of reconfigurable
regions, to decide how to schedule the execution of the tasks of the applica-
tions and how to map them on the defined reconfigurable regions. For large
designs this challenges become critical for achieving high quality results.
Hence, in Chapter 6 we discussed an automated floorplanning framework
with a configurable objective function, able to outperform state-of-the-art
approaches in terms of exploration time and quality of the identified solu-
tion. Finally, Chapter 7, focused on the scheduling and mapping problem
for applications taskgraphs on SoCs featuring processor cores and a par-
tial dynamic reconfigurable FPGA. The synergy between the scheduler
and mapping techniques discussed in Chapter 7, together with the floor-
planning framework presented in Chapter 6, represent a building block for
architectural templates in CAOS that need support for PDR.

8.1 Limitations and future works

Specific remarks and future works have been already presented in the final
section of each chapter. Here instead, we want to discuss more general
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Chapter 8. Conclusion

remarks and future research directions on CAOS, as well as limitations that
are still present within the current version of the platform.

One of the main assumptions considered throughout the discussion on
CAOS, is that the granularity at which the platform analyzes acceleration
opportunities and matches against one or more architectural templates, is
at the function level. This assumption simplifies a number of analysis and
allows to have a relatively small list of candidate functions to target, how-
ever, it comes at a cost. Indeed, depending on how the user expresses the
computation and splits it across functions, the end result of the CAOS flow
might change considerably. At the very extreme, if the application features
a compute-intensive function in which the majority of the code is amenable
to hardware acceleration, but a small portion cannot be accelerated (e.g.
contains a few system calls for standard input/output), the whole function
will not be considered for hardware acceleration. Nevertheless, CAOS will
report diagnostic information to let the user modify the code and possibly
move the undesired instructions out of the function.

The user might also affect the final design depending on how he/she
organizes the function calls within the code. For instance, consider the case
in which two functionsB and C are always called one after the other within
function A. Assume also that both B and C can be accelerated, whereas
A contains code that does not map to any architectural template. In this
scenario, the architectural template applicability check module detects two
function trees rooted at B and C as hardware candidates. As of now, the
platform will only allow to perform the acceleration of one of the two.
Indeed the optimizations and estimations are on a per kernel basis and it
is far from trivial to identify the optimal resource / performance trade-off
for implementing the two kernels conflicting on the same set of resources.
This could have been avoided by the insertion of a wrapper function D in
charge of calling B and C.

Both issues arise either directly or indirectly from the same assumption:
design flow granularity at the function level. In order to overcome such lim-
itations and reduce the results sensitivity to code organization, a possible
extension of the platform is to consider finer-grain elements, e.g. instruc-
tions or basic blocks, or even let each architectural template the possibility
to specify the desired granularity. Departing from the function-level gran-
ularity assumption, also requires to properly define the kernel interfaces,
since the inputs and outputs of the code portion to accelerate cannot be de-
rived from the function arguments. Finally, the granularity choice might
also impact on the time required to perform the applicability check analy-
sis. All such considerations should be taken into account for extending the
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8.1. Limitations and future works

CAOS platform in this direction.
Another critical aspect of CAOS, resides in the current implementations

of several of its modules, especially in the context of the Master/Slave ar-
chitectural template. Indeed, most of them rely on the resource and perfor-
mance estimates of Xilinx Vivado HLS. Two shortcomings of this approach
are: 1) latency estimates do not accurately account for data transfer over-
head to and from the external memory and, 2) the execution time of the
tool might be very high when heavy unrolling or memory partitioning is
performed. One possible solution to such issues, would be to devise cus-
tom approaches for resource and performance estimation of a C/C++ code,
without explicitly requiring proprietary tools. A very successful model
that allows to perform bound and bottleneck analysis of the performance
of a software code on a general purpose processor is the Berkeley roofline
model [108]. The roofline model takes into account the memory bandwidth
and peak performance of the architecture as well as the computational in-
tensity of the algorithm. One of its main advantages is to condense in one
graph the most relevant information on the architecture and the algorithm.
Thanks to this, it allows to easily verify if the algorithm is compute or mem-
ory bound and to drive the proper optimizations. When dealing with FPGAs
however, the architecture is not fixed a priori and a direct application of the
roofline model is not feasible. In the literature, proposals to extended the
roofline model for FPGA still rely on HLS tools [21]. Despite they allow to
tackle the issue of underestimated memory transfer, the still incur in high
execution time for complex HLS optimizations. With respect to this, an
interesting research direction is to consider alternative solutions to evaluate
the performance of C/C++ HLS code. For instance, it might be possible
to obtain a meaningful, even if less accurate, design space exploration by
relying on sub-optimal yet faster scheduling techniques.

Finally, we believe that in order to broaden the interest from the commu-
nity towards the CAOS platform, an extensive set of predefined applications
benchmark is needed. This work is currently being pursued and the over-
all idea is to allow other researchers to compare, on a common test bench,
the results achieved with custom module implementations against the ones
achieved with the default implementation of the CAOS modules.
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