POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA
DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

FORENSICS AND COUNTER-FORENSICS
METHODS FOR SOURCE DEVICE
IDENTIFICATION

Doctoral Dissertation of:

Sara Mandelli

Supervisor:

Prof. Stefano Tubaro

Tutor:
Prof. Andrea Virgilio Monti Guarnieri

The Chair of the Doctoral Program:
Prof. Barbara Pernici

2019 — XXXII Cycle






Abstract

MAGES and videos of various nature flood the web in an unbridled fash-
ion everyday, overwhelming our social network profiles. This wildfire
spreading of visual content published online can be seen as the direct

consequence of a new communication paradigm, founded on immediate
and effortlessly knowledge. The concept of “social” networks itself has
been revolutionized during the last few years. Nowadays, they represent
not only platforms for connecting people around the world but actual web-
sites for quick information, marketing purposes and politics propaganda.

As a matter of fact, visual communication is by far the most power-
ful and rapid instrument to convey a message in terms of data intelligibility.
Every age, group and education can access an enormous amount of data, ab-
sorb information and share new content in few seconds. This phenomenon
inevitably injects potential dangers into the communication process: when-
ever illegal or counterfeited data are uploaded on Internet, the longer we
wait, the harder is to verify the content authenticity and avoid its uncon-
trolled diffusion.

In this vein, performing forensics investigations on multimedia content
answers the need of smart solutions for assessing data authenticity and in-
tegrity. Tampered with and neural network generated data, as well as un-
known provenance and illicit material constantly fill days of forensics ana-
lysts, just to mention some examples.

In this thesis, we tackle a few of these forensics challenges, specifically
focusing on source device identification problems on images and videos.
As a matter of fact, determining the origin of visual data proves extremely
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helpful to expose copyright violations or fight distribution of illegal content
(e.g., child exploitation clips and terroristic threats). Since state-of-the-art
methods for image source identification may suffer from memory and tem-
poral requirements, we explore a novel strategy leveraging convolutional
neural networks (CNNs) to identify the source camera of a query image.
Our approach is a valid option to preserve important data storage and com-
putational time.

Extending image source identification strategies to videos is far from be-
ing straightforward, and several peculiar issues must be addressed. First of
all, videos are typically acquired at lower resolution and stronger compres-
sion than images. Furthermore, video stabilization technologies introduce
pixel misalignment in video frames which severely affects the identifica-
tion performance unless suitable countermeasures are considered. In light
of this, we thoroughly investigate the stabilization mechanism and propose
multiple strategies for dealing with source device identification on stabi-
lized sequences.

Finally, and just as important, the job of forensics analyst usually in-
cludes investigations taken from a counter-forensics perspective as well. In
case a malicious agent manipulates visual content with the goal of hinder-
ing investigations, forensics algorithms must be ready to address the issue
and be robust to the attack. In this regard, source device anonymization
is the counter-forensics instance of the identification problem. We draw
two possible solutions to the anonymization task, aiming at testing the ro-
bustness and spotting weaknesses of proposed identification algorithms in
literature.

To face these challenges, we rely on subtle sensor traces left by each
camera on its acquired content. These characteristic footprints take the
form of a random noise and are unique per device, thus enabling to di-
rectly trace data back to their origins. Specifically, we exploit a unique de-
vice fingerprint known as photo-response non uniformity (PRNU), without
limiting our investigations to statistical methods but opening new horizons
towards automatic and data-driven approaches.

The proposed experimental campaigns are always evaluated on images
and videos from well-known disclosed datasets. The achieved results draw
our strategies as competitive solutions, in terms of accuracy and computa-
tional complexity accomplishments.
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CHAPTER

Introduction

There has never been a time in human history where visual information has
been as readily available as it is today. From the very beginning of mankind,
visual arts have always represented a communication medium where writ-
ten texts and words were not likewise effective. Naming a few examples,
the goal to convey history and culture was at the heart of cave paintings,
frescoes in palaces and churches, the major architectural masterpieces, and
more recently of photography and filmmaking.

What makes the current visual information different from the past is not
in its contents and objectives but in how quickly information spreads from
one platform to another and how easy it is to produce it.

In the last 15 years, social media giants like Facebook, Instagram and
Twitter have become the primary communication channel not only for
worldwide connecting people, but most importantly for marketing purposes
and politics propaganda. This ingredient, mixed into the diffusion of inno-
vative techniques for readily editing digital multimedia content, brings as a
consequence a wildfire data spreading on the web with easy access by any
user. The immediacy of visual impact of images and videos with respect to
standard written communication allows these to be available to every age,
group and education. Consequently, the average time for absorbing new
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Chapter 1. Introduction

information and sharing it on the web is definitely reduced to few seconds.
We are far from being well prepared for the social, economic and political
repercussions of this event.

As an example, it has been proved the use of social media for orga-
nized manipulation campaigns in more than 40 countries in 2018 only [1]].
Computational propaganda, namely “the use of algorithms, automation,
and big data to shape public life” [1f], is becoming mainstream for influ-
encing global audience with social and political implications. Experts are
now worried about future political elections, which are likely going to be
strongly influenced by any kind of visual content circulating over the Inter-
net, and the threat is far from over [2,[3]].

Since few decades ago, pictures and footages were considered a safe and
incontrovertible proof of the trustworthiness of the facts reported by these.
As a matter of fact, the past has not been free from attempts of content mod-
ification, which took precisely advantage of the presumed inviolability of
these kind of visual communication. Although being true for the majority
of the cases, the trustworthiness assumption did not hold for a very reduced
group of contents, adulterated especially for regime propaganda reasons.
Such fine contents were very carefully crafted by experts’ hands, and of-
ten a comparison with the original was required for noticing the potential
modifications (e.g., missing, added, or altered people and objects) [4].

Nowadays, images and videos can be no more considered a reliable
source of information. The experts are talking about information disorder:
multimedia content running on the web is downloaded, modified and re-
shared so rapidly that it is getting harder everyday to identify the differences
between the original content and the modified one [5]]. This revolution in
visual information necessarily asks for efficient and smart solutions to ver-
ify the trustworthiness of the data. Finding ways to authenticate images or
videos could help minimize the impact of visual content manipulation.

Given these premises, many forensics challenges arise in identifying
whether the multimedia content is original, if it has been tampered with,
or, in the worst case, if it has been completely computer generated. The
forgeries can range from the classical copy-move or splicing applied to
images and videos [6]] to more advanced techniques which are based on
convolutional neural networks to generate fake content. Some examples
are the popular Face Swap [7] and Face App applications which work with
images, but also Deepfake [8]] videos. All of these owe their birth to gen-
erative adversarial networks (GANs) [9], which are the leading technology
for modifying multimedia content in a relatively easy way.

Another current issue for forensics analysts is source device identifica-
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tion, that is, given some multimedia content, estimating which is the actual
device which captured it. Nowadays this is a very present topic, as the
source of the multimedia content circulating over the Internet is most of
the time unknown and uncontrolled. Determining the origin of visual data
can be paramount for solving copyright infringement cases as well as pin-
pointing the authors of hideous crimes such as acts of terrorism or child
exploitation. This is actually a very fine request, because it is required to
estimate the precise source device, not just the corresponding camera model
or vendor [10].

If attributing images to their correct device is a relatively known prob-
lem in forensics community, it has a few limitations when dealing with
very large image databases, for example related to memory occupation and
long computational times [[11]]. Attributing a video to its recording device
is even a more challenging problem, and several peculiar issues need to be
addressed to obtain satisfactory performances. First of all, unlike images,
videos are almost always compressed with relatively low quality. Further is-
sues have been rising for the last 5 years, when mid price smartphones have
begun including video stabilization mechanisms, following the trend started
by the most expensive ones. Such mechanisms strongly hinder the perfor-
mances of standard forensics techniques for device identification since they
introduce subtle misalignment between the frames [12,|13]].

Therefore, if it is true that forensics investigation is a growing field of
study and it is evolved from the past, there is still much to be done to move
with the times. Indeed, the job of forensic analyst still remains a mouse and
cat game. Once you might think the fight is over, the “adversary” finds a
novel and unexpected strategy which resets the score. For instance, whether
a potential attacker aims at hindering the investigations, most of the times
he/she will be able to spoil the analyst work, as it is far easier to take ad-
vantages from algorithms’ weaknesses than building a robust investigation
method. Furthermore, even without malicious intentions, the infinite pro-
cessing chain images and videos undergo after being captured makes the
forensics analysis extremely complicated and often constrains the analyst
to find ad-hoc strategies related to the specific case of study.

In light of this, it is of paramount relevance for the forensics analyst to
tackle problems from an adversarial perspective as well. For this reason
in the last few years the counter-forensics research field has been contin-
uously gaining importance. As a matter of fact, it is a good practice to
test the vulnerability of commonly used algorithms, trying to put in the at-
tacker’s shoes and forcing the algorithm to fail. Only doing so we can test
the robustness of a forensic algorithm and spot its recondite weaknesses.
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For instance, diametrically opposite to the source device identification is-
sue, we find the source device anonymization task which aims at preventing
the attribution of multimedia content to its original source device. In this re-
gard, anonymizing visual data is likewise sought-after to preserve the owner
privacy, e.g., in situations where content is acquired by photojournalists or
human right defenders in countries at war.

Following these considerations, this thesis brings novel contributions
both in forensics and counter-forensics analysis. Precisely, we develop new
strategies for dealing with source device identification, tacking the problem
for both images and video sequences. In order to enhance image source
identification performances in terms of accuracy and computational bur-
den, we explore data-driven strategies based on convolutional neural net-
works [[14] and dictionary learning algorithms [|15]. Being the investigation
on video sequences still in its infancy, we thoroughly analyze the stabiliza-
tion mechanism and propose model-based and global optimization strate-
gies to identify the correct source device, even if the query is a compila-
tion of multiple sequences coming from diverse sources [16,|17]. Counter-
forensics investigations are proposed as well. In order to test the vulnerabil-
ity of state-of-the-art identification algorithms and preserve author privacy,
we propose two diverse strategies for anonymizing images such that these
can be no more linked to the original source device [18,/19]. For clarity’s
sake, in the next sections we introduce our original contributions providing
more details.

1.1 Original contributions

This thesis proposes new developments both in forensics and counter-
forensics analysis, specifically focusing on the family of source device
identification problems. In particular, our identification approaches fall in
the so-called passive methods category. As a matter of fact, active methods
require some prior information at the analyst side to identify the source de-
vice. For instance, a watermark or a signature can be injected in images and
videos at acquisition time, and this may help the analyst to match the visual
content with the correct device. On the contrary, passive methods do not
assume any a-priori knowledge about the source. Using passive methods
means to investigate only the content for extracting forensics information
regarding the acquisition process and potential modifications. In our inves-
tigations, we never exploit the meta-data information but only analyze the
pixel intensity values and the statistical information contained in them.
More precisely, the proposed methods make use of an intrinsic signa-

4



1.1. Original contributions

ture of the camera inevitably injected in all its acquired content [20]]. This
signature has the form of a random noise, and can be exploited as a unique
characteristic fingerprint typical of each device. Exploiting this fingerprint
we propose different technical approaches to identify the correct source of
the data, ranging from more classical model-based strategies to global op-
timization techniques and data-driven methods.

The first part of the thesis includes all the investigated forensics methods
for solving the problem of source device identification. We start facing the
problem on images. As state-of-the-art solutions rely on statistical meth-
ods which may suffer from high computational times and memory occu-
pation [11], we propose a novel and fast approach based on convolutional
neural networks (CNNs) [14]. Moreover, we append a survey tackling the
impact of compressions underwent by an image, being this a very present
issue and actually helpful for probing the digital history of an image [15].
On videos, we extensively analyze source device identification on stabi-
lized video sequences, and propose manifold strategies to solve the prob-
lem by varying the required complexity and level of accuracy [[16]]. As an
application, we study source device identification on compilations of video
sequences created by temporarily alignment of video frames coming from
different cameras [17]].

In the second part of the thesis we show methods for the counter-foren-
sics analysis for source device identification, which in this case converts
into source device anonymization. We start with a statistical method which
applies regularization techniques to modify the image content in such a way
to hinder the identification performances yet maintaining high the image
quality [18]. Secondly, we explore a data-driven approach using CNNs to
tackle the same goal in a more efficient way [[19].

Eventually, the experience we maturated in dealing with forensics tasks
has led us to produce additional contributions in solving similar problems
even though belonging to completely distant fields of research. In this vein,
the last part of the thesis regards applications on geophysical image pro-
cessing, and precisely face the challenging problem of interpolation and
denoising of corrupted seismic data [21,[22].

In the following lines we report a summary for each cited contribution.

1.1.1 A first CNN-based approach for source device identification

To the best of our knowledge, state-of-the-art solutions regarding source
device identification on images rely on model-based approaches based on
the noise traces left by the camera sensor on the acquired multimedia con-
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tent [10, 20, 23]]. However, statistical methods may suffer from high com-
putational times whenever it is required to identify the source among a
huge device collection, for instance when dealing with images uploaded
on social networks where there is a large pool of provenance devices to
be analyzed [11]. Moreover, when working on social networks, often only
cropped and resized images are available. This greatly drains the perfor-
mances of state-of-the-art methods, as these usually require investigations
over a large pixel portion for returning acceptable identification accuracy.

Up to now, data-driven approaches based on convolutional neural net-
works (CNNs) have limited their studies to camera model identification
[24-26]. As a matter of fact, these approaches present very accurate perfor-
mances when discriminating from one model to another, but cannot iden-
tify the specific device which shot an image. In this thesis, we propose a
fast CNN-based approach for source device identification on images [14]].
Specifically, we investigate two scenarios: (i) given a query image and a
pool of known devices, detect which device shot the image; (ii) given a
query image and a single device, detect if the device shot the image. We
make use of the characteristic fingerprint of each device to train a CNN able
to distinguish the subtle sensor traces left on images and match them with
the correct source camera. We thoroughly test our methodology selecting
cameras from Vision and Dresden image databases. Our method proves to
be faster than statistical methods in case a large amount of potential prove-
nance devices is investigated. Moreover, it requires less pixel content of the
query image to obtain comparable attribution accuracies.

1.1.2 Analysis of the compression problem

Being an initial step towards source device identification based on CNN:ss,
the strategy introduced above does not consider images which underwent
editing and heavy or multiple compressions. However, the largest portion
of the digital content running on the web is far from pristine, being usually
compressed a few times with high quality factors at least. As a conse-
quence, exploiting our CNN-based strategy directly on this content is not
straightforward, and results may be worse than expected.

Given these premises, forensic analysts might be interested in probing
digital history of content published on Internet to assess its authenticity. As
a matter of fact, knowing the digital history of an image could provide the
analyst an additional instrument to better predict which will be the perfor-
mances of its algorithms over the investigated data. For instance, a possible
indicator of image integrity is the number of JPEG compressions a picture
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underwent. Indeed, JPEG compression is typically operated first at image
inception time directly on the acquisition device. Then, it is customary
re-applied every time an image is manipulated or shared through social me-
dia. For this reason, the more the applied JPEG compressions, the more the
likelihood that an image underwent some editing [27]].

In this thesis, we propose an algorithm to detect multiple JPEG compres-
sions, specifically up to four coding cycles. Our approach leverages the
task-driven non-negative matrix factorization model, fed with histograms
of the discrete cosine transform of the image under analysis. Experimental
results show the effectiveness of the method if compared with the state-of-
the-art, confirming this strategy as a viable solution for detecting multiple
JPEG compressions [15].

1.1.3 Source device identification on stabilized video sequences

As reported above, identifying the source camera of a video sequence is
one of the first steps to be done for analyzing its digital history. Indeed,
detecting which device has been used to record a video enables to trace
down the owner of this digital content, thus proves extremely helpful to
solve copyright infringement cases as well as to fight distribution of illicit
material (e.g., child exploitation clips, terroristic threats, etc.). Currently,
the most promising methods to tackle this task exploit unique noise traces
left by camera sensors on acquired images [28]. However, given the re-
cent advancements in motion stabilization of video content, robustness of
sensor pattern noise-based techniques is strongly hindered [29]]. Indeed,
video stabilization introduces geometric transformations to video frames,
thus making camera fingerprint estimation problematic with classical ap-
proaches [30].

In this thesis, we deal with the challenging problem of attributing stabi-
lized videos to their recording source device [16]. Specifically, we propose:
(i) two strategies to extract the characteristic fingerprint of a device, start-
ing from either a set of images or stabilized video sequences; (ii) three
diverse strategies to match a stabilized video sequence with a given finger-
print. The proposed methodology is tested on videos coming from a set
of different smartphones, taken from the modern publicly available Vision
Dataset. The conducted experiments also provide an interesting insight on
the effect of modern smartphones video stabilization algorithms on specific
video frames.
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1.1.4 Blind detection and localization of video temporal splicing

Being able to solve source device identification problem on video sequences
paves the way for a variety of challenges which are nowadays commonplace
in forensics field. For instance, in recent years, not only professional users
but also amateur ones have the possibility of easily editing videos. As a
consequence, user generated video compilations obtained by splicing to-
gether in time different video shots spread over the Internet in an unbridled
fashion.

In order to perform forensic analysis on this kind of videos, it can be use-
ful to split the whole sequence into the set of originating shots. As video
shots are seldom obtained with a single device, we propose to identify each
video shot exploiting sensor-based traces. We consider a blind situation,
where videos are composed by few-second shots coming from various un-
known sources that have been temporally combined [17]. The focus is on
blind detection and temporal localization of splicing points. The proposed
methodology is tested on different cameras taken from the recently released
Vision Dataset. The method is validated on both non-stabilized and stabi-
lized videos, thus confirming the difficulty of working in the latter scenario.

1.1.5 Counter-forensics methods for image anonymization

Over the years, the forensic community has developed a series of very accu-
rate camera attribution algorithms enabling to detect which device has been
used to acquire an image with outstanding results. Many of these methods
are based on noise traces left by the camera sensor on each acquired im-
ages, allowing to powerfully trace back a picture to the camera that shot
it.

Studying the boundaries of image anonymization can enable analysts to
be aware of the robustness of camera attribution methods in the presence
of malicious attacks. In addition, when privacy is a concern, it would be
desirable to anonymize photos, unlinking them from their specific device.
Photojournalists in states at war, human right defenders and activists are
a few examples in which preserving the privacy of data owner may be re-
quired.

In view of this, we propose two different strategies for attenuating the
noise pattern left on images by the camera sensor, specifically: (i) a strat-
egy that deletes some pixels from the image and reconstruct them by means
of inpainting described as an inverse regularized problem [18]; (i1) a data-
driven strategy exploiting a convolutional neural network (CNN) which ed-
its images in a visually imperceptible way [19]. Both the two proposed
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methods aim at hindering the device attribution problem, removing the
traces of the device fingerprint from the image under analysis. The first
strategy does not require any priors about the fingerprint to remove, while
the second one needs the device fingerprint for training the image anony-
mization network.

1.1.6 Applications to geophysical image processing

The experience maturated on denoising and inpainting techniques inves-
tigated over this thesis allowed to tackle similar problems in completely
different fields of study. Motivated by the acquired knowledge on CNNs as
well, we present as an appendix a method for interpolation and denoising
of seismic data [21},22]. Specifically, we exploit CNNs for the joint tasks
of interpolation and random noise attenuation of 2D common shot gathers,
which, from the point of view of image processing, can be interpreted as
2D images in floating point format.

Inspired by the great contributions achieved in image processing and
computer vision, we investigate a particular architecture of convolutional
neural network referred-to as U-net, which implements a convolutional au-
toencoder able to describe the complex features of clean and regularly sam-
pled data for reconstructing the corrupted ones. In our numerical experi-
ments we consider a plurality of data corruptions including diverse noise
models and distributions of missing traces.

1.2 Outline

In order to ease the thesis readability, our contributions have been organized
in four main chapters.

Chapter 2 introduces the forensics investigations on images. Section|2.1
defines the PRNU and Section introduces the state-of-the-art for the
source device identification problem on images. Section [2.3] presents a
novel method to deal with the problem, leveraging convolutional neural
networks to identify the source camera of a query image. Finally, Sec-
tion [2.4] reports an analysis of the compression problem and proposes a
methodology for detecting the number of JPEG compressions an image un-
derwent [15]].

In Chapter 3 we report forensics investigations on video sequences. Sec-
tion[3.1]draws the state-of-the-art for source device identification on videos,
introducing the technology of video stabilization and presenting the issues
related to source camera attribution on stabilized sequences. Section [3.2]
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Table 1.1: Description of the notation used in the thesis.

Symbol Description
X column vector
xX; [X]z
X matrix
a-X scalar multiplication

XoY Hadamard product
XY matrix multiplication

presents multiple methods to deal with source device identification on sta-
bilized videos, showing how to compute a reliable camera fingerprint from
stabilized content and how to identify correctly the provenance device [16].
Section [3.3] addresses the problem of blind detection and localization of
video temporal splicing [[17]].

In Chapter 4 we describe the counter-forensics investigations on images.
Section [.1] presents the state-of-the-art for source device anonymization
on images. Section 4.2] reports an anonymization method based on pixel
inpainting [18]], while Section [4.3] addresses the same goal but faces the
problem with a deep learning perspective [19].

Chapter 5 depicts our contributions in geophysical image processing.
Section [5.1] shows the state-of-the-art for the problem of interpolation and
denoising of seismic data. In Section [5.3] we present the proposed method
for dealing with the problem exploiting convolutional neural networks [21,
22].

Chapter 6 includes final considerations and draws conclusions.

1.3 Notation

For the sake of clarity, we report here the notation used overall the thesis.
We indicate matrices using bold-uppercase letters, e.g., X whose elements
are defined as [X]; ;. Column vectors are written in bold-lowercase letters,
e.g., x with elements x;. Given a matrix X, its column-wise unwrapped
vector is also denoted by x. Digital images are represented as 2D matri-
ces, while video sequences are depicted as 3D matrices, in which the third
dimension is the time. The scalar multiplication is denoted by the sym-
bol -, the Hadamard product (i.e., the element-wise product) is defined by
o, and the generic matrix product is denoted without multiplication signs.
Precisely, Table. [I.1] reports the symbols of all the operations used in the
thesis.
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CHAPTER

Source device identification on images

In this chapter, we include the investigations regarding forensics methods
for source device identification on images. Specifically, in the first part
we introduce the concept of photo-response non uniformity (PRNU) and
present the standard workflow used to solve the problem. Later we de-
scribe our novelties with respect to the literature, showing how data-driven
approaches can outperform model-based strategies.

In this vein, we explore convolutional neural networks to satisfy impor-
tant storage and temporal requirements which are usually disregarded by
statistical methods. We work in the challenging scenario of tracing back to
their origin images subjected to cropping operations, investigating among
a large collection of provenance devices.

As the vast majority of visual data flowing over the Internet is typically
edited and compressed more than once, in the last part of this chapter we
provide an analysis of the impact of compression on digital images. Fur-
thermore, with the goal of helping the forensics analyst to correctly assess
their authenticity and integrity, we tackle the problem of estimating the
number of JPEG compression an image underwent. We propose an algo-
rithm leveraging task-driven non-negative matrix factorization for identify-
ing up to 4 coding cycles.
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Chapter 2. Source device identification on images

2.1 Photo-response non uniformity

Photo-response non uniformity (PRNU) is a noise fingerprint characteristic
of any image and video acquisition device. The PRNU pattern is introduced
by dishomogeneities in silicon wafers and imperfections in the sensor man-
ufacturing process, which cause a non-uniform sensitivity to light of the
sensor photo-diodes. As a result, excluding saturated acquisition setup and
very strong image compression, PRNU is introduced in the acquired images
and video frames as a pixel-wise multiplicative zero-mean noise pattern.
The classic pipeline assumes the availability of a certain number of images
coming from the same device to carry out a reliable PRNU estimation. In
the basic procedure proposed in the literature [[10], PRNU is estimated from
a set of NV images I, as

K== _ (2.1)

where ratio and raising to power are element-wise and W, is the noise
residual extracted from I,,. Precisely, W, = 1, — IL,,, being I,, a denoised
version of I,, computed as suggested in [10].

It has been demonstrated that, in order to compute a reliable device fin-
gerprint, at least 25 images depicting flat scenes (e.g., sky, ground, walls,
etc.) are sufficient, whereas we would need more than 50 images depict-
ing natural content (e.g., indoor and outdoor scenes) [23,31]] to achieve a
similar accuracy. For this reason, if available, flat scenes are always rec-
ommended for PRNU estimation. Since PRNU is a multiplicative noise,
totally dark or saturated pixels bring no information about it. The same ra-
tionale occurs for images undergone to strong JPEG compressions, which
may hinder the possibility of finding some residual content in pixel values.

Due to its properties, the PRNU pattern allows reliable device identifi-
cation [20]. Moreover, it can be used for other forensic tasks, such as image
forgery detection [10,32]. PRNU-based approaches normally rely on some
prior information, typically a large number of images known to come from
the camera of interest. However, blind methods have also been proposed
with competitive performances [33.|34]. In addition, the use of compressed
PRNU patterns has been proposed in [11,35] to allow real-time applica-
tions.

In the next section, we provide more details on the use of PRNU for
source device identification.
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2.2 State-of-the-art for image-camera attribution problem

State-of-the-art solutions use PRNU K as a unique camera fingerprint to
solve image-camera attribution problem. Given an image I and a test device
d, it is possible to solve the problem using statistical methods exploiting the
PRNU and the noise residual extracted from the image.

In particular, one way to solve the problem is based on measuring the
normalized cross-correlation between the image noise residual W and the
device PRNU K pixel-wise scaled by I. The normalized cross-correlation
(NCC) between these terms can be expressed as:

(W — piw]) " (Ka 01— ficgoi)
W — w2 - |[ka 01 = piegoil]2”

NCC(W,K,oI) = (2.2)

being || - || and j the symbols for £, norm and mean value, respectively.

A more general solution is given by the peak to correlation energy (PCE)

[23]]. In order to compute it over matrices W and W5, of size m xn, we first

have to cross-correlate them, defining [R], , = corr([W1]; j, [Wali—uj—v)-
The PCE(W,, W5) is then defined as

[R5
PCE(W, W,) = T ’ : (2.3)

m' Z [R]g,v
u, €N,

where (u,, v,) are the coordinates of the maximum correlation peak, NV, is a
small neighborhood of the peak and |, | its cardinality [23]. In particular,
(up,vp) can be seen as an estimate of the mutual shift between W, and
W,. Dealing with the standard image-camera attribution problem, we can
compute the PCE between the noise residual W and the camera PRNU
pixel-wise scaled by I, denoted as PCE(W, K, o I).

Considering both the two metrics, we predict that I has been taken by
the device d if the obtained NCC or PCE are higher than a confidence
threshold, set in order to bound false-detection probability below a chosen
value [10,20]. Actually, the dynamics of these metrics is very far one to the
other, thus the threshold modifies its values according to the used metrics.
For instance, NCC is always limited to 1, whereas PCE can extend up to
103 or more.

The presented metrics can be used almost alternatively according to the
specific tackled issue. If the analyzed images have the same resolution of
the camera PRNUs and did not undergo geometrical transformations (e.g.,
translations, rotations, etc.), the NCC may be the favourite metrics as it
requires only one scalar product per image, therefore it is computationally
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cheap. On the contrary, PCE is very robust to potential shifts between im-
ages and PRNUs. This property helps attributing images that have been
cropped with respect to the reference PRNU [36]. Furthermore, PCE has
been proven to be slightly more accurate than NCC even when images and
PRNU did not undergo any misalignment [23]]. As a matter of fact, (2.3)
evaluates the energy of the maximum peak with respect to the average en-
ergy of the remaining cross-correlation values, instead of limiting the eval-
uation to the peak only. In doing so, PCE helps avoiding undesirable errors
which may occur whenever cross-correlation matrix is noisy and does not
show a unique pronounced peak. However, evaluating PCE comes at the
expense of increased computational cost, since PCE needs to compute the
complete cross-correlation matrix R (considering every possible shift) be-
tween W and K, o 1.

2.3 Image source device identification with CNNs

As reported in Section [2.1] the classic pipeline for source device identifica-
tion on images assumes the availability of a certain number of images com-
ing from the same device to carry out a reliable PRNU estimation. Then the
noise residual of the image under test is computed and compared with the
sensor fingerprint usually by measuring the normalized cross-correlation
(NCC) or the peak-to-correlation energy (PCE).

However, solutions based on statistical methods may suffer from high
computational times whenever it is required to identify the source among a
large device collection, as it is typical for the goals of source identification
or image-to-identity linking over social networks [34,37,38]]. Furthermore,
even though the size of analyzed image portion contributes in enhancing the
attribution accuracy, it increases the identification time as well: the larger
the tested pixel-area, the higher the required identification time.

Beyond these considerations, it is important to highlight that when work-
ing on social networks imagery, often only cropped and resized images are
available [39] [40].

Recent works on convolutional neural networks (CNNs) propose to solve
the camera-model identification problem [25/26,41]]. Authors exploit CNNs
to extract model-related features which enable an accurate model identifi-
cation. Nonetheless, so far CNN-based methods have shown low accuracy
in identifying the very precise device in a set of devices taken from the
same camera model.

Given these premises, we propose a first solution to deal with the image
source device identification problem exploiting CNNs. Specifically, we in-

16



2.3. Image source device identification with CNNs

K,

PRNU
estimation

CcNN —Cy

Noise
extraction

Figure 2.1: Sketch of the proposed method for source device identification based on CNNs.

vestigate two situations:

1. closed-set scenario: given an image and a set of known devices, infer-
ring which device shot the image;

2. open-set scenario: given an image and one device, inferring if the
device shot the image.

To solve these problems, we do not resort to the cross-correlation tests
shown in [2.2] we exploit a particular CNN architecture trained with the
specific purpose of source device identification instead. We test our method
selecting devices from Dresden image database [42]] and from the recently
released Vision dataset [29]], showing significant performance enhancement
with respect to statistical methods, especially when a large amount of po-
tential source devices is analyzed. Focusing on a reduced pixel region, the
proposed methodology is able to save storage, at the same time reaching
comparable accuracy to state-of-the-art. It follows a detailed explanation
of the proposed method.

2.3.1 Proposed method

Likewise statistical methods, in order to solve the identification problem,
we exploit the device PRNU as unique device fingerprint and the noise
residuals extracted from images as reported in [10]. Opposite to state-of-
the-art, we aim at avoiding the cross-correlation test in favour of an al-
ternative attribution metrics based on CNNs. In a nutshell, as depicted in
Figure for each pair of query image I and candidate device d, we feed
the PRNU K, and image noise residual W to the CNN. The network re-
turns a CNN-based identification score C,; which is directly associated to
the coherence between image and device. By thresholding C; we can infer
whether I comes from device d or not.
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In the following, we describe the dataset generation and the CNN archi-
tectures used in the experiments, motivating our choice and drawing details
about the selected train, validation and test strategies.

2.3.2 Dataset creation

As in any supervised problem, we assume to have training and validation
data used by the CNN to learn the best parameters’ configuration for solv-
ing the problem. Considering a pool of N; devices, we first compute the
devices’ PRNUs and the noise residual W for every available image. Then,
we randomly extract three disjoint noise residuals’ datasets from each de-
vice: the training dataset WWr including 50% of the data, the validation
dataset Wy, containing 25% of the residues and the evaluation dataset Wp
built with the last 25%. Finally, we create dataset Dry which includes a
reduced amount of devices used for training and validating the network.

As depicted in Figure 2.1] the input to the network is always a pair of
PRNU and image noise residual, concatenated along the so-called “chan-
nel" dimension (i.e., the third dimension). We analyze only a central image
portion of P x P pixels with the goal of limiting the network complex-
ity. Moreover, the central pixel region should be characterized by lower
misalignment between PRNU and residue, thus it likely to produce better
identification performances than image corners.

As commonly done in CNN-based solutions, we normalize both PRNUs
and residues by their standard deviation before to feed them to the network.

2.3.3 Proposed CNN architectures

We investigate two CNN architectures rather different one from the other.

With the specific purpose of testing a shallow network enabling fast
computations, the first architecture is drawn using only 3 convolutional
layers as depicted in Figure For each pair (K4, W), we follow these
operations:

1. feed the pair to 3 steps of 2D Convolution, Leaky Relu and Max Pool-
ing, using the parameters shown in Figure 2.2}

2. add a Pair-wise Correlation Pooling layer, which is a layer tailored to
our specific problem;

3. perform a Fully Connected layer, obtaining a single output score.

Precisely, the Pair-wise Correlation Pooling layer is inspired to the con-
ventional metrics used to identify the source device on images, i.e., NCC
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Figure 2.2: Sketch of the proposed pair-wise correlation network (PCN).

and PCE. Since these are based on cross-correlation between noise resid-
ual and PRNU, this layer computes a correlation as well between adjacent
pairs of input features. Being P3 the input of Pair-wise Correlation Pooling,
the output is defined as:

P3 P3
1
[P4]TL - ﬁ Z Z [P3]Pi7pj72n—1 ’ [P3]pi7pj,2n ne [17 32]7 (2.4)
3

pi=1p;=1

where 7 is the channel index.

The Pair-wise Correlation Pooling layer can be seen as a simplified ver-
sion of Bilinear Pooling layer. Actually, Bilinear Pooling computes the cor-
relation between all the features maps, whereas Pair-wise Pooling evaluate
this only for adjacent pairs of features. The main motivation behind Pair-
wise Pooling is providing fast computations. Indeed, evaluating the com-
plete cross-correlation between all feature maps may be time-consuming.

The second network we propose is known in state-of-the-art as Incep-
tion-ResNet V2 [43]]. Diametrically opposite to the previously shown ar-
chitecture, Inception-ResNet V2 is designed for going deeper and provid-
ing very accurate results. Differently from the first solution which is trained
from scratch, we initialize the network weights, except for the last layer, us-
ing the weights trained on Imagenet database [44]. Since Inception-ResNet
V2 works on RGB images, we use respectively the R and G channels for
the PRNU and the residue.

For the sake of clarity, we denote the two network architectures as PCN
(pair-wise correlation network) and INC (inception).

2.3.4 Network training

We train the network using devices in dataset Dy . The network is trained
on coherent pairs (PRNU and residue of the same device), and non-coherent
pairs (PRNU and residue of diverse devices). In order to provide both co-
herent and non-coherent cases for each device inside one batch of data, we
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consider a batch-size of twice the cardinality of Dpy.. For every d € Dy,
we build the pairs using two slightly different approaches:

1. the coherent pair (K;, W) is created by randomly picking W from
the set of residues of device d, while the non-coherent pair (K4, W)
randomly selects W from another device d different from d, d €
Drv;

2. the coherent pair (K;, W) is created as above, while the non-coherent
pair (K ;, W) takes K; from another device d different from d, d €
DTV-

Label 1 is assigned to coherent pairs and label O otherwise. The network
returns a score Cg_ for coherent pairs and score C; _ for non-coherent ones.

It is worth noting that the first strategy forces the presence of PRNU K
in both coherent and non-coherent pairs, whereas the second one maintains
K, only in the coherent case. Since in testing phase the network receives
a generic pair of PRNU and residue, seeing twice the same PRNU during
training is likely to be more accurate, although being a more constrained
approach. For the ease of reference, the two strategies are named as pK
(pivot-on-PRNU K,) and pW (pivot-on-residue W), respectively, from
the term which maintains unaltered inside coherent and non-coherent pairs.

As far as the loss function is concerned, we investigate two strategies as
well. We tackle the problem as a binary classification problem aiming at
identifying coherent pairs versus non-coherent ones. As first strategy we
adopt the standard sigmoid cross-entropy loss, defined as:

lep= Y Im(I+e %)+ Y In(14+e%)  (25)

CSC 6CS(: CSnc 6CSnc

where C,, and C;,_ are respectively the set of scores related to coherent and
non-coherent pairs inside one batch.

The second solution has been inspired by [45,46]] which show possible
loss functions related to the area under the ROC curve of the binary classi-
fication problem. In detail, relying on the so-called softplus function [47],
we define the loss as:

we- Y mQedet). ap
Csc €Csc,Conc ECspe

As in standard neural network training, we follow an iterative proce-
dure to minimize either (2.5)) or (2.6), stopping at the iteration where the
accuracy (i.e., the fraction of correct predictions) over the validation set
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Figure 2.3: Sketch of the proposed training strategy. For every device d € Dry, one
coherent and one non-coherent pairs of PRNU-residue feed the network.

i1s maximum. Specifically, we use Adam optimization algorithm [48] with
learning rate and patience initialized at 0.001 and 30, respectively, training
the network for a maximum number of 500 epochs.

To clarify, Figure[2.3|depicts a scheme of the proposed training strategy.

2.3.5 Network deployment

In testing phase, we investigate two scenarios:

1. a closed-set scenario, in which, given an image, the forensics analyst
must identify the source among a finite pool of devices;

2. an open-set scenario, in which, given an image and a candidate device,
the forensic analyst must infer if the device shot that image or not.

To solve these problems, we always feed the network with pairs of image
residue and device PRNU. In the closed-set scenario, the camera returning
the highest CNN score is associated to the image. In the open-set scenario,
we can threshold the CNN score in order to attribute the image to the device
with a certain false alarm probability.

To explore both scenarios, we use the noise residuals belonging to eval-
uation dataset W for each of the N, investigated devices. Notice that we
test also cameras belonging to Dy, whose PRNUs have been already seen
by the network. In doing so, we aim at verifying that the network did not
learn to identify known devices only, but can generalize the attribution pro-
cess to any device.

2.3.6 [Experiments and results

In this section, we first describe the experimental set-up and the evaluation
metrics, then we report numerical results discussing the main achievements.
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Dataset

In order to test our method on a significant amount of devices, we con-
sider both the Dresden image database [42] and the recently released Vi-
sion dataset [29]. To avoid excessively old camera models, we only pick
devices whose imagery have resolution greater than 720 x 720 pixels. For
each device we exclusively investigate JPEG compressed images, as these
represent the most frequent data for a forensics analyst to deal with. Focus-
ing on computing reliable PRNU fingerprints, we select devices if at least
25 JPEG images depicting scenes of flat surfaces are available. In doing so,
we end up with 55 devices from Dresden and 32 devices from Vision.

To build the PRNU we select only flat-field images, ranging from a min-
imum of 25 shots per device to a maximum of 150. In order to fairly test our
method, we make use of images showing natural scenes taken from indoor
and outdoor scenarios. We work with more than 12000 images belonging
to Dresden and almost 7000 images from Vision. In both cases, more than
200 images per device are available on average.

As reported in Section[2.3.2] before being fed to the network PRNUs and
residues are cropped in the central portion by P x P pixels. We investigate
P =64, 128,256, 320, 512, 640, 720].

The training-validation dataset Dry includes 20 devices from Vision
and 16 devices from Dresden. It is worth mentioning that Dy has been
built using only devices of different models. In doing so, we avoid intro-
ducing an important constraint into the learning process, that is, training
using cameras of the same model. Indeed, this may help enhancing the fi-
nal performances, although requiring various instances of the same model
at investigation side, which is actually unlikely to happen. Furthermore,
we remove another big constraint from the training procedure, specifically
we do not include all the available camera models in Dpy. Thereby, we
are simulating a real situation in which the system has to be tested over
unknown camera models.

Evaluation metrics

We exploit two diverse evaluation metrics according to the considered sce-
nario.

In the closed-set scenario we test the residue of the query image with Ny
PRNUs. To assess the attribution accuracy, we include all possible query
residues in evaluation set Wg for each device. The closed-set accuracy
score A is defined as the average fraction of correct predictions per device.

The open-set situation can be solved as a binary classification problem

22



2.3. Image source device identification with CNNs

0.9 — —
0.85[ A
08~ - ]
075 ]

5 —__PCE
07L 1
i PCN |
065 ——INC
061 o P=80 |
e [ + P=96 -

<:30.957 x P=128
050 . P =160

0.45[ x P=192
B o P=224]
0.4F 6 P =256
0.35% A P =288
03l v P =320
B > P =512
0251 < P=640 |
020 % P=720 ]
i ‘ i

— 1
101 10°
Elapsed time [msec]

Figure 2.4: Accuracy Acs as a function of time [milliseconds] and crop size P.

which aims at distinguish correlating pairs of residue-PRNU from non-
correlating ones. To assess the accuracy, we resort to receiver operating
characteristic (ROC) curves. Specifically, for each camera, we consider
all noise residuals shot by that camera (i.e., the entire VWg set) as positive
samples, whereas the set of negatives includes an equal amount of residues
not taken with that camera, randomly selected from the evaluation dataset.
Each ROC curve draws the relationship between true positive rate (TPR)
and false positive rate (FPR), averaged over the set of available devices.
To numerically evaluate the accuracy, we use AUC,,, defined as the area
under the curve (AUC) for the open-set problem. The goal is to achieve a
high value of AUC,, ideally 1.

Results

For each crop size P, we evaluate results as a function of the chosen net-
work architecture, training strategy and loss function. We performed a
comprehensive investigation of all these parameter combinations, obtaining
comparable results among them. For the sake of brevity, we show results
only for two set-ups which tackle the problem from diverse perspectives:

1. exploit the PCN architecture with pK training strategy and [cg loss;
2. exploit the INC architecture with pW training strategy and [syc loss.
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The former method proposes a more customary and leaner approach:
PCN is not a complex architecture thus enables fast computations, and pK
and [cg can be viewed as the most intuitive strategies to deal with a CNN-
based classification problem involving PRNU. On the contrary, the latter
method proposes a deeper architecture, an unconventional training strategy
(pW) and a more sophisticated loss function. We expect this method to pro-
vide higher accuracy at the expense of increased computational complex-
ity. As state-of-the-art comparison, we perform the PCE test between each
noise residual in the evaluation dataset WWg and the N; = 87 PRNUSs of
devices. Following the considerations done in Section [2.2] we choose PCE
instead of NCC in order to guarantee the best attribution performances.

Figure [2.4] shows results for the closed-set scenario. In particular, A
is depicted as a function of the average computational time for testing one
pair of PRNU-residue and of the crop size P. Notice that for the second
parameter set-up (i.e., INC, pW, [pyc) we draw results only for 128 < P <
320, as P = 64 is too small to feed INC architecture and larger image
dimensions (i.e., P > 512) would require additional GPU memory. For
the sake of clarity, our workstation is composed by one Intel® Core™ i9-
9980XE (36 Cores @3.00 GHz), RAM 126 GB, running Ubuntu 18.04.2,
and one QUADRO P6000 (3840 CUDA Cores @1530 MHz), 24 GB.

As previously announced, the first parameter set-up (i.e., PCN, pK, /cg)
reveals to be fast and accurate at the same time: indeed, for equal values
of P, the required time is always at least 4 times slower than PCE and 10
times slower than second strategy. With respect to PCE, accuracy grows
as well: indeed, PCE is always worst and gets similar results only for the
highest P values. Second strategy is computationally heavier as expected,
but shows an accuracy gap with respect to PCE that is larger than the previ-
ous method. For instance, considering P = 256, the second set-up achieves
A = 0.86 while first set-up only reaches 0.76 and PCE obtains 0.64. To
achieve similar accuracies, PCE should consider an image size of more
than twice that of second strategy.

For what concerns the required computational times, it is worth noting
that the main advantage with respect to PCE is the possibility of feeding the
network with multiple pairs of residue-PRNU. These pairs can be processed
in parallel, at least until there is available GPU memory for storing the data.
As a consequence, the larger the amount of candidate devices, the higher
the CNN temporal benefit if compared to PCE. For instance, when testing
a query image over /Ny = 87 candidate cameras, we take up less than 8 GB
of GPU memory using the second parameter configuration. Whether more
devices were available, the average testing time would remain basically
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Figure 2.5: Confusion matrix of the closed-set problem, for P = 256, considering PCN,
pW and lcg as parameter configuration. Devices in Dy are denoted by e.

unchanged until reaching the maximum memory size.

In order to verify that we do not confuse instances of the same camera
model, we analyze the confusion matrix for each investigated parameter
configuration. Specifically, each row of confusion matrix is associated to
one provenance device, while columns are related to the devices predicted
by the network. We fill the matrix with the resulting CNN predictions con-
sidering all noise residuals in the evaluation dataset, then we normalize
each row by its cardinality.

For brevity’s sake, we show results narrowing down to the case P = 256
which represents a good trade-off between accuracy and required storage
and computational time. Figures[2.5]and [2.6]depict the confusion matrix for
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Figure 2.6: Confusion matrix of the closed-set problem, for P = 256, considering INC,
pK and I auc as parameter configuration. Devices in Dy are denoted by e.

the first and second parameter configuration, respectively. To be precise, we
use as device nomenclature for Vision devices the one reported in [29], and
we do the same for devices in [42]]. Red dots correspond to devices included
in training-validation set Dpy . It is worth noting that both the two matrices
present a diagonal behaviour, meaning that instances of the same model are
not confused and identification accuracy is quite good. The only exception
is represented by Casio-EX-7Z150 model whose instances are slightly mixed
up. Figure shows the confusion matrix associated to PCE. Notice
that instances of the same model are never confused, nonetheless there are
some models which are wrongly predicted most of the times. For example,
instances of Panasonic-DMC-FZ50 and Praktica-DCZ5-9 are hardly ever
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Figure 2.7: Confusion matrix of the closed-set problem, for P = 256 and PCE strategy.

identified, being mistaken for diverse models.

Results of the open-set scenario are reported in Figure 2.8] It is worth
noting that both proposed methods exceed PCE for any P > 128. Only
for P = 64 the proposed method has a performance decay but it is anyway
superior to the PCE evaluated with the same crop size.

Notice that we are not analyzing AUC,s as a function of the required
time, since the open-set scenario reduces investigations to only one pair of
PRNU-residue. In this scenario, both CNN and PCE report comparable
computational time, in the order of few milliseconds. However, as previ-
ously shown, whenever various images should be tested against the same
PRNU, we could exploit the data parallelization property of GPU to test
multiple images together, thus saving important computation time.
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Figure 2.8: Accuracy AUCs as a function of crop size P.

2.4 Analysis of the image compression problem

As images available online are likely to be the result of a multi-processing
chain, this engenders concerns about their authenticity and integrity [49].
Therefore, multimedia forensics community has been focusing on detecting
potential processing traces on images with the goal of restore faith in digi-
tal pictures [4,/50]. In particular, due to the wide diffusion of JPEG image
coding scheme, there is wide literature devoted to investigate and exploit
traces left by JPEG compression both in forensic [51-53] and counter-
forensic [54-56] scenarios. Indeed, most of the images available online
are compressed according to JPEG standard, which leaves on each picture
peculiar traces that can be exploited for forensic investigations.

Many of the forensic techniques proposed so far limit their goal to the
detection of double compression, i.e., they aim at discovering if an im-
age has been compressed once or twice [57H59]]. Several proposed ap-
proaches are based on the investigation of quantized Discrete Cosine Trans-
form (DCT) coefficient statistics, which are characteristically shaped by
JPEG compression procedure. Some works embrace the analysis of his-
tograms of DCT coefficients [60-62], or DCT First Significant Digit [63]].
However, in many practical situations, pictures under analysis might be
compressed several times. Think for example to the widespread habit of
sharing visual content on social media: the average user typically shot a
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picture with a smartphone (first compression), share it through a messag-
ing app (second compression), and the receiver may re-share it or post it
on a social platform (third compression). As a consequence, this operation
necessarily results in an “at-least-three-compression” chain for the image
under analysis.

Given the strong likelihood of digital images to undergo more than two
compression stages, finding a method able to estimate the number of en-
dured JPEG compressions is of paramount importance for the reconstruc-
tion of processing history of the investigated content. In this vein, the
method proposed in [64]] aims at identifying up to three JPEG compres-
sions through a testing scheme based on the statistical analysis of Benford-
Fourier coefficients [65]]. Authors of [66]] address up to four JPEG compres-
sion detection, by exploiting the First Significant Digit of DCT coefficient
in absolute values.

In light of this, we propose a novel method for detecting up to four JPEG
compressions. In particular, we cast multiple JPEG compression as four-
class supervised classification problem. To solve it, we exploit Task-driven
Dictionary Learning (TDL) model described in [67]. The goal of TDL is
to learn a feature dimensionality reduction strategy based on sparse data
representation, which minimizes classification loss by jointly optimizing
the dictionary used for dimensionality reduction and the classifier. More
specifically, we propose to feed histograms of DCT coefficients as fea-
tures to TDL model. Given the non-negativity of these features (i.e., his-
tograms bin counts cannot be negative), we illustrate a more specific for-
mulation of TDL, namely Task-driven Non-negative Matrix Factorization
(TNMF) [68]], which has proven to be even more effective than deep learn-
ing paradigms situations characterized by non-negative features [69].

2.4.1 Problem formulation

During standard JPEG compression, input images are partitioned into 8 X 8
non-overlapped pixel blocks. Discrete Cosine Transform (DCT) is com-
puted for each one of them, and transform coefficients are quantized into
integer-valued levels depending on the selected quantization matrix and
quality factor (QF). Quantized values are then converted into a binary
stream, exploiting lossless coding. In decoding phase, binary stream is
decompressed, coded blocks are reconstructed by applying inverse DCT on
rescaled coefficients and the image is re-built in the pixel domain [70]. Due
to quantization, it is well-known in the literature that histograms of DCT
coefficients show a typical comb-like shape, and spacing between consec-
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utive peaks is related to the adopted quantization step size. Moreover, if an
image is encoded many times with different quality factors, the resulting
quantization levels are modified accordingly [71]].

In this section we propose a method for detecting multiple JPEG com-
pressions. Namely, given an image, detect how many times (up to four) it
has been JPEG compressed. To do so, we leverage perturbations of DCT
histograms that capture traces of multiple compressions, and train a su-
pervised classifier to discriminate between images compressed different
amount of times. More in detail, multiple-JPEG detection is performed
using Task-driven Non-negative Matrix Factorization (TNMF) algorithm
(67,168 72]. This method allows to reduce feature dimensionality, which
helps avoiding data redundancy, by jointly estimating a dictionary for re-
duced data representation and a multinomial classifier for multiple-JPEG
detection. The rationale behind this choice is that, by optimizing feature
dimensionality reduction method, we should be able to obtain better perfor-
mance than methods that exploit first significant digits as DCT histogram
reduction methods [66].

2.4.2 Proposed Method

The proposed pipeline for multiple-JPEG compression classification is de-
picted in Figure During training, a feature vector is extracted from
training images. Then, TNMF algorithm is used in order to jointly learn
a dictionary for feature reduction and estimate parameters of a supervised
classifier. When the system is trained, a new image can be tested. To this
purpose, a feature vector is extracted from the image. Features are pro-
jected into a reduced dimensionality space using the learned dictionary and
eventually a classifier is used to detect the number of compressions. In the
following, we provide a detailed analysis of each step of the algorithm and
a simplified example of how TNMF dimensionality reduction works.

Feature extraction

In order to start our analysis, we first extract a set of selected features from
each image. We opted for the feature extraction pipeline presented in [62]],
which exploits block-wise DCT histograms of the image. Multiple com-
pression stages are well known to strongly condition the histograms of DCT
coefficients, hence justifying our approach. In particular, the set of investi-
gated coefficients includes only the first 9 AC spatial frequencies taken in
zig-zag order. Our choice comes from the more regular trend of lower fre-
quencies coefficients and from the reduced statistics of higher components,
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Figure 2.9: Schematic representation of proposed pipeline.

which are often quantized to zero [66]. For what concerns the histograms,
we select only the first 21 central bins for each DCT band, ending up with
a feature vector x € R’} of n elements per image, with n = 189. Notice
that x assumes non-negative values only.

TNMF Training

Since we aim at classifying multiple compressed images, we propose to ex-
ploit multinomial logistic regression, in a one-vs-rest implementation. This
means that the multi-class classifier is actually composed by four binary
classifiers (e.g., one compression vs. others, two compressions vs. oth-
ers, etc.), and results of these are merged. For each class label, we train the
classifier by minimizing the logistic loss function, defined as [ = I5(y;, A),
where y; is the image label and A = {w, c} is the parameter configuration
related to that class [[73]].

In particular, we propose to exploit Task-driven Non-negative Matrix
Factorization (TNMF), which is capable of finding sparse data represen-
tations by learning a dictionary suited to the specific task of classifica-
tion [67]. TNMF model allows to learn the task-driven dictionary and the
classifier parameters in a joint iterative fashion. More specifically, we es-
timate a classifier which is optimized with respect to standard logistic re-
gressor, thanks to a particular representation of input data: DCT features
extracted from images are projected on a dictionary that is actually tailored
to our multinomial classification task. The algorithm works iteratively, al-
ternating the updating of classifier and dictionary, until a fixed number of
iterations is achieved. It follows an exhaustive illustration of the method.

a) Feature reduction. At each iteration ¢, TNMF starts with feature
reduction. First of all, we select as dictionary the one from the previous
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iteration, hence D, = D;_;, with D, € R"”. Given a training vector x;
generated from image I;, TNMF model considers the optimal projections of
data points on the dictionary, with the constraints that all the elements of x;,
D, and the obtained projections are non-negative. Notice that p corresponds
to the desired size of reduced features, n is the input feature size, thus
p<n.

Typically, the problem is formulated as follows:

h;+(Dy) = arg min i = Dehll; + Alhll + Aoffb];. @7

+

h;;(D;) € RY is the estimated projection, \; and )y are regularization
penalty terms, in order to impose sparsity (¢; norm) and to obtain a strongly
convex problem ({5 norm) hence guaranteeing a unique solution. Eq.
can be solved with standard techniques available in the literature as shall be
cleared in the experimental results section.

b) Classifier updating. Once we have defined the optimal projections,
we can use them to update the classifier, associating each vector h;; to its
related class label y;. This operation is performed by the minimization of
the expected value of loss function /s over the entire training set:

Wi, € = argmin Ey, < [ls(yi, w, ¢, h; ,(Dy))] + v||w]|3, (2.8)

where v is the penalty term of the regularizer, introduced to prevent over-
fitting in the classifier. In the proposed framework, minimization is solved
by means of the L-BFGS iterative algorithm [74]. In other words, this step
consists in training the multi-class logistic regressor exploiting projected
training data samples h; ; and their labels.

c) Dictionary updating. At the end of each iteration ¢, the dictionary
must be updated considering the trained logistic regressor at step (), thus
obtaining D, to be used during next iteration ¢ + 1. This is done through
the minimization of loss function (2.8)) with respect to the dictionary D;.
In particular, we update the dictionary by means of stochastic gradient de-
scent, evaluating the function in each training sample x; and minimizing in
an iterative manner. In order to perform this task, we have to re-evaluate the
sparse representation of each training data sample, h; ;(D,), which depends
on the dictionary D, estimated from already analyzed samples (x;, 7 < 7).
To be more specific, the minimization is performed in two sequential steps:

* We exploit stochastic gradient descent by calculating the gradient with
respect to h; (D). Since we work with sparse representations of data,
we compute the active set S by selecting only the indexes € {1, ..., p} for
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Figure 2.10: Simple TNMF example: X is the matrix of data, specifically N is the total
amount of training samples. We can exploit TNMF to approximate X as the product of
the dictionary D and the matrix H containing in its columns the optimal projections

of X on D.

which vector h;;(D;) # 0. For the sake of notation, we introduce the
variable g; ;, defined as:

git = (D ]s[Dils + AoXis)) [V, 0, s (4, As, 1 1(D1))]s

where symbol [-|s represents the projection on the active set, and |S]| is the
cardinality of S.

* It follows a projection of g; ; over the dictionary space, leading to this
updating formulation:

D, =D; — p(—D; g, hzt(Dt) + (x; — Dy hy(Dy)) git) -

In order to impose the non-negativity of each dictionary element, we select
¢ = 1077 as floor value in case of negative entries of D;. The learning
rate p; is chosen with the same heuristic criterion proposed in [[67]: we
select it as min(p, p - nyer/(10t)), being p a parameter to set and n;;., the
number of iterations. Given the conspicuous theoretical baggage of TNMF,
we skip all the formal derivations, addressing the interested reader to [67]
for a thorough explanation.

Following the typical framework of dictionary learning problems, we
adopt a validation strategy for selecting the best dictionary and classifier.
More specifically, we split our data in training and validation set, evalu-
ating the classification accuracy on validation set at each iteration ¢, and
electing as best dictionary the matrix D, which returns the best accuracy.
Algorithm [2.T|reports the pseudo-code of TNMF method.

TNMF Testing

Once we estimate the best combination of dictionary and classifier, we are
ready for test phase. Given any new image I;.,;, we compute DCT his-
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2.1 TNMF Training (y, X, p, Niters AMs A2, V) — Diest, Apest

Initialize dictionary Dg
Split training and validation sets:
Ytrains Yvaly Xtrain, Xoval < Y, X
fort =1, ..., njter
Initialize dictionary: Dy = D¢_1
Feature reduction: hy(D¢) + D¢, Xirain
Classifier updating: A; < h¢(D¢), Yirain
Validation accuracy: acc <— D¢, At, Yval, Xoval
Dyests Apest < aCCmax{Dh At}
fori =1,..., N
Single feature extraction: h; ;(D¢) < D¢, X¢rain;
Active set: S <—indexes € {1,...,p} : h; ;(D¢) #0
Update learning rate: p; <— min(p,ptTU)
Update dictionary:
Dy =D; — pt(—Di gt th(Dt) + ...
+ (x; — Dt h; 1 (Dt)) g:,¢)
Impose non-negativity: D;(D¢ < 0) = ¢
end
end

tograms to obtain feature vector X;.;;. By considering the best validation
dictionary, Dy, we apply to project x;.s; and obtain the reduced fea-
ture vector h;.s;. Finally, we feed h;. ; to the logistic regressor using the
best validation configuration A, in order to perform label prediction, as
in a typical classification problem.

TNMF Training: a simplified example

For the sake of simplicity and data visualization, let us consider a simpli-
fied problem consisting of a small dataset of images compressed up to three
times. From each image we extract feature x only considering the 7-th DCT
frequency, picking the first central 13 bins. Selecting as reduced feature size
p = 3, we leverage TNMF training algorithm to find a dictionary for repre-
senting our data. In particular, as we are working in a simplified scenario
aiming at a ternary classification (discriminating up to three JPEG compres-
sions), a good feature reduction method should enable ternary classification
in the reduced space. Figure [2.10]depicts the results of dictionary learning
through TNMF: we are actually able to estimate a dictionary, associating
reduced features to original input data (i.e., classification result is clear just
by looking at projected features). Notice that matrix X illustrates quite well
the effects of multiple quantization steps: the more the compression stages,
the lower the density of the histogram bins.
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2.4.3 Experimental results
Datasets generation

Following the procedure depicted in [[66], we build three datasets starting
from 1338 images from UCID [75] (384 x 512 pixels). Given a final qual-
ity factor QF, € {75,80,90}, we compress each grayscale image up to 4
times. The intermediate QF at compression step ¢ < f is randomly chosen
in the interval [QF,,; — 12, QF;;, — 5] U [QF,,; + 5, QF,,; + 12] to en-
sure that QF; differs from QF, ;. We refer to these datasets as DY, D,
D, each of them with 4 x 1338 = 5352 images. In order to test our ap-
proach on a larger scale, we build three further datasets starting with 4000
grayscale images from RAISE database [[76]]. Due to the large dimensions
of these images, we previously center-crop them to 512 x 512 pixels and
then apply the aforementioned compression pipeline. We obtain DL, DE
DY, each of them with 4 x 4000 = 16000 images.

TNMF parameters

We follow a common train-validation-test approach, using 70% of each
dataset images for training and the remaining for testing. Training set is
further divided in training and validation, following a 90% — 10% partition.
In particular, as recommended in [67]], we initialize the dictionary Dg by the
unsupervised formulation of the problem, leveraging the SPAMS toolbox
for computations [77]. The size of D has been chosen as trade off between
result quality and computational cost: we set p as the 30% of the DCT
length, hence drawing a dictionary € ngxw.

Moreover, in order to improve the convergence speed of the training
phase, the proposed method works with a minibatch strategy for the stochas-
tic gradient descent. This basically takes into consideration np.., > 1
training samples at each iteration of the inner loop, instead of a single
one [77].

Due to the large amount of parameters of TNMF algorithm, we select
some specific values for tuning (i.e., iterations € {50, 100, 200, 500}, batch
size € {200,400}, p € {0.001,0.005,0.01}, A\; € {0.01,0.1,0.5}) and
perform a grid search in order to obtain the best accuracy on the validation
set. In particular, being TNMF an iterative algorithm, number of iterations
has a severe impact on validation accuracy, thus we explore different values
until convergence.

For what concerns the remaining parameters, we set Ao = 0 drawing
the idea from [67]], even though Ay > 0 would be necessary for the dif-
ferentiability of (2.7). This has proven to get satisfactory results in most
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Figure 2.11: Classification accuracy of TNMF algorithm. (a) UCID Dataset. (b) RAISE
Dataset.

experiments. The penalty weight in (2.8)) is left untouched with respect to
the standard formulation of logistic regressor, hence v = 1.

Comparison with state-of-the-art

At first glance, we notice that the algorithm needs more iterations on RAISE-
derived datasets than on the UCID ones. This is probably due to the huge
difference in terms of dataset size. In this vein, Figure[2.1T]depicts the tem-
poral evolution of TNMF accuracy, evaluated for training and validation
sets on DY, and DL . Notice that, if on DY, we achieve convergence in at
most 100 iterations, D% requires more than 200 iterations. For the sake of
brevity, we are showing results for the specific combination of parameters
which yields the best validation accuracy, and we will stick to this approach
from now on. Nonetheless, we performed a comprehensive investigation on
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Table 2.1: Mean test accuracies over 4 classes for proposed TNMF method, classifier
in [|66]], and logistic regressor (LR) without feature reduction. Best results in bold.

Accuracy | TNMF [66] LR Accuracy | TNMF [66] LR
DY 0.78 0.73 0.64 Di 080 0.76 0.64
DY, 082 0.75 0.65 DL 081 0.75 0.64
DY, 087 0.80 0.75 DE 0.87 0.83 0.74

(a) (b)

Table 2.2: Confusion matrices for D&, DE. Top: proposed method. Bottom: method
in [|66|]. The highest accuracy among the two methods for a given compression step
and dataset is highlighted in yellow.

DE, 1 2 3 4 DE, 1 2 3 4
1 | 098 0004 0015 0001 1 | 0997 0002 0001 0.000
2 [ 0009 0850 0068 0073 2 [ 0005 0952 0022 0021
3 0079 0119 0711 0.091 3 [ 0022 0048 0.833 0.097

4 [ 0005 0158 0.117 0.720 4 0000 0126 0175 0.699
DE | 1 2 3 4 DE | 1 2 3 4

1 0.999 0.000 0.000 0.001 1 1.000 0.000 0.000  0.000
2 0.025 0960 0.012 0.003 2 0.130 0.863 0.004 0.003
3 0.182 0.234 0523 0.061 3 0.029 0.088 0.828 0.055
4 0.094 0275 0.109 0.522 4 0.020 0.179 0.165 0.636

test results for all the parameter configurations, obtaining puny variations
among them (standard deviation of test accuracy < 0.01).

Tables [2.1]and [2.2]show results of the test phase, in terms of mean accu-
racies and confusion matrices. Specifically, we compare our strategy to [66]]
(i.e., the only algorithm that deals with four JPEG compressions to the best
of our knowledge) and to standard logistic regression without the feature
reduction step. This last experiment is used to study the actual positive
effect of dictionary projection.

For what concerns the accuracy, our solution is able to go beyond the
previously proposed method, since the overall average accuracy (consid-
ering all the datasets) is 5.5 percentage points above the mean accuracy
of [66]. Regarding the confusion matrices, our results are more accurate
than [66] in detection of classes 3 and 4. Indeed, for datasets D% and
DI the diagonal terms corresponding to classes 3 and 4 present an aver-
age gap of +0.15 with respect to state-of-the-art, which achieves accept-
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able multi-classification outcomes especially when QF; increases up to 90.
Concerning the other classes, our results are comparable to [|66] for single
compressed images, while the detection of double compressed is slightly
overwhelmed, probably dictated by a better accuracy of further compres-
sions.

Robustness

In order to preliminary test the method’s resilience to editing operations
in between JPEG compressions, we applied our detector trained on D, to
images that randomly underwent either blurring or gamma correction in ad-
dition to compression. This campaign shows that if a single transformation
is performed, accuracy drops approximately by 10%. The main effect of the
transformations is to hide the previously applied JPEG compression. This
paves the way to thrilling future research scenarios.

2.5 Conclusions

In this chapter we present methods for source device identification on im-
ages. Contrarily to state-of-the-art solutions which leverage statistical ap-
proaches to match images with the correct source camera, we exploit con-
volutional neural networks. The main motivation of our research is to find
efficient solutions when memory storage and computation time are a con-
cern (e.g., in situations where a huge device collection must be analyzed).

Specifically, we make use of the characteristic fingerprint of devices
(i.e., the PRNU) and the image noise residuals to train a neural network able
to extract subtle sensor traces of each device, thus enabling to link images
to the correct source. To this purpose, we propose diverse configurations of
network architectures, training strategies and loss functions. Results show
that CNN-based approach can exceed state-of-the-art performances, both
in terms of accuracy and time.

During our experimental campaign, we test the proposed methodology
on images compressed just once. However, an important portion of digital
images circulating over the Internet usually undergoes several compres-
sions due to various processing and sharing operations. Actually, being
able to infer the number of compressions an image underwent can provide
the analyst an instrument to assess the integrity of digital content. This may
be extremely helpful as primary step before to start with the identification
of source device.

In this vein, we propose a novel method for detecting multiple JPEG
compressions, considering up to four coding steps. Our approach takes ad-
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vantage of Task-driven Non-negative Matrix Factorization (TNMF) model,
both for feature reduction and for classification, through a joint iterative es-
timation of dictionary and classifier. We extensively test several setups, tak-
ing into account different datasets and quality factors. Experiments show
that our method outperforms up to date state-of-the-art in terms of classifi-
cation accuracy.
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CHAPTER

Source device identification on videos

In this chapter, we investigate source device identification problem on video
sequences. We start showing state-of-the-art solutions which tackle typical
problems occurring on video sequences, such as low video frame resolution
and strong compression. Then, we thoroughly analyze the issue of stabi-
lization and explain why this technology strongly hinders performances of
source identification algorithms on stabilized video sequences.

In this vein, we propose diverse methodologies for facing source device
identification on stabilized videos. Specifically, we present two methods to
compute the device reference fingerprint exploiting stabilized frames and
three different solutions to correctly attribute a query stabilized video to the
original source camera. To this purpose, we use coordinate system transfor-
mations and global optimization algorithms in order to match each video to
the correct device.

Eventually, we show an application of the source device identification
problem on compilations of videos created by temporarily aligning diverse
video sequences. The goal is to blind detect and localize the splicing points
of the query sequence. Precisely, we do not known the amount of combined
sequences, their temporal duration and the original source cameras. To
face the problem, we extract sensor-based footprints inspired to the device
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characteristic fingerprint. Our method is validated on both non-stabilized
and stabilized videos, thus showing the difficulty of working in the latter
scenario.

3.1 State-of-the-art for video-camera attribution problem

As reported in Section [2.2] the most powerful methods for device identifi-
cation on images rely on camera photo response non-uniformity (PRNU).
Whether the source device of an image must be identified, we can resort
to cross-correlation measures between a noise residual extracted from the
image and the PRNU of the candidate device.

PRNU-based methods have been readily extended to video to accom-
plish a variety of forensic tasks, e.g., source identification [23]], detection
of duplicate videos [78|] authentication of smartphones [[79]. However, ex-
tending PRNU-based methods to video sequences is not straightforward,
and presents multiple challenges [[13]]. Indeed, video signals are typically
less reliable than images due to their lower resolution, as well as stronger
compression.

Gaining robustness against compression is a primary goal of current re-
search, since videos are often uploaded on YouTube [[80] or shared through
other social networks [39,81]. In [23] blocking artifacts caused by com-
pression are corrected before evaluating decision statistics. In [82]] a con-
fidence weighting scheme is proposed to identify high-frequency areas of
the scene, which are discarded to ensure a more reliable PRNU estimation.
In [83]] video frames are reordered and weighed according to their reliabil-
ity, given that I-frames enable better PRNU estimate than P-frames. Also,
videos delivered on a wireless network suffer from blocking and blurring
due to packet losses, and suitable algorithms need to be developed to handle
this situation [84].

Therefore, PRNU traces in video sequences tend to be very subtle. This
is confirmed by the authors of [23}/83]], who propose to consider each video
frame as a picture and follow the standard PRNU-based pipeline for image
attribution. Their results show that not all video frames can be considered as
equally informative (i.e., intra-coded frames typically contain more reliable
PRNU information).

Interesting alternative approaches have been proposed by [[12,|13]]. The
authors suggest to estimate camera PRNU from images as reported in (2.1]),
and use it for video attribution. However, the authors cannot compare
image PRNU with video noise directly, as video resolution is typically
lower than image one [23]. In order to adapt the sensor size to the video
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recording area, they propose a strategy that searches for a correct scale and
crop transformation to match image PRNU and video resolutions.

Another major problem is video stabilization, which applies geometri-
cal transformations (e.g., translations, similarities, homographies, etc.) to
acquired video frames in order to compensate for involuntary user’s move-
ment [30]. This causes misalignment of individual pixels across frames,
preventing a reliable estimation of the PRNU fingerprint. Since modern
smartphone cameras adopt video stabilization, and most of the videos up-
loaded on the Internet come from smartphones, PRNU-based methods may
be of little use [29]] without suitable corrections.

The first paper addressing this problem [85] dates back to 2011, but it
only takes translations into account. In [[13], it is more realistically assumed
that stabilization is performed using a combination of translation and rota-
tion, which are estimated and compensated on I-frames only. In the same
work, it is also proposed to perform video camera attribution using a set of
images from the same camera. This idea is further developed in [12] where
a hybrid sensor pattern noise analysis is carried out to handle the problem
of video stabilization. Specifically, the reference PRNU is estimated using
only still images, whereas query videos are mapped to the image domain
by compensating for possible scale and translation transformations.

In the following, we enter more in details of video stabilization tech-
nology, in order to clarify why it can impede the performances of standard
PRNU-based methods.

3.1.1 In-camera video motion stabilization

Since a significant percentage of videos shared online is captured by am-
ateur users, which are usually not equipped by professional stabilization
tools, these videos often suffer from camera-shake. Motion is principally
induced by the hand-held capturing process, but can also be due to other
movements of the users that may walk or even run while recording. As a
consequence, plenty of strategies to perform the stabilization of a video (di-
rectly on the recording camera or off-line) have been proposed [30L[86-90]].

Video motion stabilization methods allow to improve the quality of the
recorded videos, making each sequence appearing as if it were recorded
from a stable camera moving along a smooth path. In particular, these sys-
tems are able to detect and correct high frequency jitter artifacts, low fre-
quency artifacts, rolling shutter wobbles, foreground motion, poor lighting,
and scene cuts [30].

Among the most recent state-of-the-art approaches, the authors of [30]
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propose to perform video stabilization by fitting the original 2D camera
path with linear motion models, characterized by a different amount of de-
grees of freedom (DOF). Whenever these models are considered to be valid
for the considered frame-pair motion, the original path is transformed ac-
cording to the model and a smooth camera path is generated. Frames are
then warped on this new path by applying a set of pixel-wise transforma-
tions.

The easiest motion model describes only translations, hence 2 DOF. This
can be represented by means of a pixel coordinates transformation matrix

T, defined as
Ty = L Co (3.1)
2 01 ¢/’ '

where ¢, and ¢, are the magnitude of translation of the camera along the
horizontal and vertical axes, respectively. Alternatively, in order to detect
also rotation and uniform scaling between frames, the similarity model in-
cluding 4 DOF can be used. The matrix describing the motion relationship
between frames is

s-cosa —s-sina ¢y
T, = < ) : (3.2)

s-slna S-COSQ Gy

being s and « the scaling factor and rotation angle, respectively. More com-
plex homographic models can also be considered if perspective distortions
have to be recovered. However, not every model can efficiently represent
the motion between two frames, and the application of an incorrect mo-
tion model introduces distortions in the stabilized video. As an example,
whenever the model is invalid, translations and similarities inject additional
shaking in the estimated path, whereas the homographic models result in
perspective warping errors. Moreover, the higher the complexity of the
used model, the higher the probability of wrongly estimating it, potentially
leading to temporal instability of the generated path [87,91].

In the light of this, stabilization methods usually perform a first step to
delete the shake due to similarity and lower DOF motions, without taking
into account higher DOF. Then, any residual motion can be additionally
corrected exploiting the homographic models if needed [30]]. This two-step
approach comes in handy whenever computational complexity is an issue.
Indeed, if stabilization is performed on mobile devices, a single step can be
used.

A consequence of motion stabilization on a video sequence is that two
pixels sharing the same geometrical coordinates on two different frames
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Figure 3.1: (a) In absence of stabilization, the pixel coordinates (green circle) do not
change from frame to frame; (b) In presence of stabilization, recording sensor area
can be slightly shifted, scaled and rotated, hence the pixel coordinates (green circle)
can change with respect to the original ones (shown in dashed line).

may have been acquired with different portions of the camera sensor due
to the introduced geometrical transformations. For the sake of clarity, Fig-
ure [3.T] reports three adjacent frames of a video. The area inside the white
box highlights the final scene depicted on the recorded video by the device.
In the first row, the depicted scene in absence of stabilization: selecting a
pixel inside the recording area, its coordinates maintain fixed during cap-
ture. Whenever stabilization is present (second row), in order to generate
a stable camera path, each pixel can actually vary its coordinates during
recording. As shall be clear in the next section, this is a problem for PRNU-
based video camera attribution.

3.1.2 Pixel transformations introduced by video stabilization

As reported above, solving the camera attribution problem on videos is far
from being an easy task. First, video sequences typically have a different
resolution with respect to PRNU. Actually, this issue could be solved by
searching the correct scale and crop transformation to match the PRNU and
video frame resolutions. However, if video stabilization is used, additional
transformations may have been applied as well.
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In the light of these considerations, we propose to exploit a 4-parameter
linear model to describe the relation between image and video frame do-
mains, modeling both the operation that shrinks the recording area and the
stabilization counteracting global frame shake [87.,90]]. The considered lin-
ear model consists in a 2D similarity transformation & resulting from the
combination of two geometric transformations: (i) the first, 7,,, depicting
the effect of sensor area shrinkage into video resolution (represented by the
matrix T;,); (ii) the second, 7, describing the video frame stabilization
process (depicted by the matrix T\). In particular,

Siv 0 Civ
Ty = ( ) ; (3.3)

0 Siv Ciy,

and
Sy COsSQy, —Sy-sinay cCy,
T, = ( ) . (3.4)

Sy -sinqy, S, -COSQy Gy,

T, models the scaling and cropping operations performed in order to map
high resolution PRNU into video resolution [12,13]]: s;, describes the scale
and ¢, = (¢, ci\,y) the translation along = and y axes, respectively.

Notice that the transformation %;, depends on video and image resolu-
tions, which may actually assume different values for the same device. For
this reason, 7, is not necessarily unique per device. The second matrix T,
models the additional geometric transformation resulting from video stabi-
lization: s, describes the scale, «, the rotation, and vector c, the shifts. The
transformation of image to frame domain can be modeled as Z; = J (Z),
being 7 the image space and Z; the space related to video frames.

Concerning non-stabilized videos, the relations expressed by and
(3.4) can be further simplified by noticing that T is reasonably an identity
matrix. As a matter of fact, there would be no reason to change scale, rota-
tion angle and shift between frames when recording a non-stabilized video.
Moreover, as reported in [12]], all video frames recorded with the same res-
olution by a unique non-stabilized device are affected by equal scaling and
shift factors, being these parameters probably fixed by the device firmware
specifications. Therefore, the image to video frame transformation reduces
toJ =T,.

When video stabilization is used, each frame I in the sequence expe-
riences its own scale, rotation and translation. The overall similarity is
frame-specific, thus can be defined as 7, which can be modeled by

Sprcosqy —Syp-Sinay  Cqy
T, = o, 3.5
! (sf~sinaf Sp-cosay cyf> (3-3)
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where the tuple {s;, s, cs} results from the entries of the matrix product
T, T;,. Specifically,

« sy = s sv(f);

* oy = ay(f);

* oy = Civ, - Su(f) - cosan(f) = civ, - su(f) -sinay(f) + e, (f);
* ¢y, = Civ, - Su(f) -sinay (f) + civ, - su(f) - cosay (f) + ¢, (f).

All these transformations should be taken into account when dealing with
PRNU-related problems.

3.2 Source device identification on stabilized video sequences

Following the previous considerations, in this section we focus on the prob-
lem of video source identification in the challenging scenario of in-camera
stabilized video sequences. In order to solve this problem, we exploit
PRNU-based traces and split the workflow into two separate steps:

* given some multimedia content acquired with a device, estimate its
PRNU-based fingerprint;

* given this fingerprint and a video query, detect whether the video
comes from the camera under analysis.

Concerning the first step, the primary goal is finding a good estimation
of the camera fingerprint in the video resolution domain. To this purpose,
it is reasonable to consider three main strategies, depending on the data
owned by the analyst:

* exploiting only images shot by the camera to estimate K, then trans-
form it into the video frame domain, given that conversion parameters
reported in (3.5)) are known for each frame;

* exploiting both images and videos shot by the camera, without know-
ing the conversion parameters;

* exploiting only videos recorded by the camera.

To the best of our knowledge, the first case is not realistic as the warping
image-to-frame parameters are not apriori known neither can be reported in
the literature. Therefore, we focus on the other two scenarios. The pipeline
of the proposed method is depicted in Figure In the following, we
present the proposed strategies for fingerprint estimation and video source
attribution, discussing the main intuitions behind the approaches.
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Figure 3.2: Pipeline of the proposed method. Initially, the device signature is estimated,
using images and videos captured by the camera, or videos only. Then, each video
query is tested and eventually attributed or not to the camera.

3.2.1 Reference video fingerprint estimation from images and videos

In the first scenario, the analyst has a set of images and videos recorded with
the same camera. We propose a pipeline composed by four main steps:

1. Estimate the device PRNU K from the available set of pictures apply-
ing the definition provided in (2.1).

2. Estimate the image-to-frame transformation parameters {s¢, af,cs}
defined in (3.5)), by solving an iterative maximization problem for each
analyzed frame.

3. Exploit the parameters {sy, o, ¢y} for estimating the parameters s;,
and c;, of the transformation %;,.

4. Estimate the device fingerprint K;, in video domain, by warping K
with the estimated s;, and c;,, hence K;, = 7, (K).

In other words, we propose to use as video fingerprint a transformed
PRNU, downsampled to the scale of video frame’s resolution. This fin-
gerprint is denoted as K, since it is computed using images and then it is
converted into the video resolution. We propose this pipeline driven by the
following observations:

* Images are often acquired at higher resolution and with better coding
quality than videos, thus they typically contain more reliable device
fingerprint information.

* Downsampling the image PRNU K to the video frame’s scale requires
less computational power than upsampling video frames to the scale
of K (e.g., smaller matrices to fit into memory, PCE correlation com-
puted on less samples, etc.).
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* It has been shown in [[11] that PRNU downscaling of a factor up to
2 does not significantly hinder camera attribution performance, which
is good news considering that image resolution is rarely twice that of
a video.

In order to register the image PRNU into video frame domain, we first
estimate the image-to-frame conversion tuple {sy, af, cs} for each selected
frame. To infer these parameters, we search for the similarity transforma-
tion J; that maximizes the PCE correlation between the transformed ver-
sion of K and frame residuals W, extracted from frames I+ belonging to
a set of selected frames. Formally, we select reasonable search ranges S,
A, C for scale, rotation angle and shift, respectively. Then, we estimate
{sf, ay,cy} related to each frame I; by solving the maximization problem

sf,af,cp = argmax PCE(Wy, I-J(K)). (3.6)
seS,aeA,ceC

If frames come from a non-stabilized video, the tuple {s;, oy, cs} is
expected to be coherent for all frames in the set. Indeed, cameras do not
typically use different portions of the sensor from frame to frame. More-
over, as previously reported, o is expected to be zero, as non-stabilized
videos are not commonly acquired by rotating the sensor. Therefore, any
estimated tuple {s;, = s 7 0,¢, =c f} from the selected frame-set can be
used for warping the image PRNU into the video domain by means of the
transformation %;,.

If frames come from stabilized video sequences, {sy, oy, cs} can vary
from frame to frame, as each frame is (almost) independently warped based
on the content to stabilize. However, if the considered video does not con-
tain strongly textured areas (flat scenes are always suggested for PRNU
extraction [[10]]) and it is not characterized by excessive device shaking,
(typically true for videos to be pleasant at visual inspection), we can as-
sume that the set {sf, 0, cs} only slightly changes from frame to frame,
oscillating around the true set {s;,, 0, c;, }, which models the shrinkage of
recording area and is independent from frame stabilization. Furthermore,
it is reasonable to assume that the rotation contribution is likely to be very
small, and it is almost zero for at least a small set of frames. Indeed, the
captured scene should not look rotated to video viewers.

In order to select a unique parameter set {s;,, 0, ¢, } for the image-to-
video PRNU conversion, we propose to fix oy = 0, and average the esti-
mated s; and ¢y parameters over the frames with strong PCE. Notice that
frames for which rotation parameter is not really zero can be filtered out
from our estimate as they will be characterized by low PCE values.
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Civy K

——>
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Figure 3.3: Image PRNU conversion to the video domain. Blue area is the whole sensor
with size X; X Y, used for image PRNU, whereas white area represents the video
domain fingerprint K;,, with size X, x Y.

Formally, we compute
ps = PCE(Wy, Ij - 74(K)). (3.7)

Then, we estimate scale and translation parameters as

N N T2
Siv = Z ’-FI|, Civ, = Z ‘./T';” Civ, = Z “;-jlcla (38)

fEFL feFT fEFT

being Fi the set of frames for which p; > 60 (i.e., a PCE threshold sug-
gested in [[13,92]], which we verified to be a reliable threshold for selecting
frames actually matching with the device) and | F;| its cardinality.

In order to pass from image to video domain, we apply the similarity
transformation 7, to the image PRNU, thus obtaining the video fingerprint

Ki, = J(K). (3.9)

For the sake of clarity, Figure[3.3|depicts the operations done for converting
the image PRNU to the video domain. A scale transformation with param-
eter s;, is performed on K to shrink the space to a reduced area, then scene
is cropped to match video resolution, according to the estimated shift c;, .

Note that K, can be exploited as device signature for testing the camera
attribution problem over a generic video query. Indeed, the resolution of
the fingerprint should match the resolution of the query sequence. More-
over, since Kj, is the result of aligned noise contributions coming from high
resolution images, it reasonably contains a very reliable camera model in-
formation.
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3.2.2 Reference video fingerprint from videos only

The second considered scenario is based on the fact that information about
images captured by the device under analysis is not always available. For
this reason, we focus on how to estimate the device fingerprint directly
from video content. In this setup, we propose a pipeline composed by the
following steps:

1. We search for the frame whose residual W correlates well in terms
of PCE with the largest number of other frames’ residuals.

2. We estimate a candidate video fingerprint K, starting from the se-
lected W.

3. We update the video fingerprint K, by iteratively aggregating infor-
mation from other frames whose noise residuals correlate well with
the fingerprint in terms of PCE.

Despite this pipeline seems trivial, the procedure of noise aggregation
is not straightforward at all. Actually, due to motion stabilization, if we
randomly pick a set of frames and estimate the fingerprint following PRNU
estimation as reported in (2.1]), noise residuals left by the camera sensor
risk to be averaged while misaligned.

To avoid averaging misaligned contributions, noise residuals should be
in principle coherently warped one on the other by following a procedure
similar to the one proposed in Section [3.2.1] However, sensor noise traces
are extremely subtle in video signals. To top it all off, scene content often
leaks into frame noise residuals due to the used suboptimal denoising algo-
rithms. These two factors make the estimation of transformation parame-
ters that map a frame noise residual into another one an almost preposterous
task.

In order to avoid mistakenly estimating the warping parameters, we
make the assumption that a set of video frames affected by similar stabiliza-
tion transformations &, exists within the available reference videos. This
assumption reasonably holds for sequences characterized by low (if any)
textured content that does not need to be strongly stabilized (i.e., typical
sequences used for PRNU estimation). Under this assumption, we propose
an iterative noise residual aggregation method composed by the following
steps:

a) Loop over all frames in the set F of available ones. For each frame I,
solve the standard camera attribution problem against all other frames I;.
Specifically, compute PCE(W, I, - W), VI, f € F, | # f.
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b) Analyze the relative PCE values in search for noise residual’s match-
ing. A match is considered if two constraints on the computed PCE are
satisfied.

The first constraint is on PCE magnitude. We consider a match only for
strictly positive PCE values to avoid strongly uncorrelated frames.

As second constraint, we check the relative shift estimated through PCE
(i.e., the position of PCE maximum peak). As a matter of fact, the effect
of video stabilization is to scale, rotate and translate the frames one dif-
ferently from the others, but without introducing visible artifacts on the
recorded sequence. For this reason, it is reasonable to assume that a sta-
bilization algorithm does not translate too much one frame with respect to
the temporally adjacent ones.

In principle, if frames were not stabilized, the relative shift estimated
through PCE should be of (0, 0) pixels, since both frame residuals should
be aligned in terms of sensor noise. Conversely, in stabilized videos, the rel-
ative alignment can be different from (0, 0). However, under the hypothesis
of small translations introduced by stabilization, if the relative alignment is
too far from (0,0) we can attribute it mainly to PCE correlating textured
content or additional noise contributions, rather than noise patterns related
to the original camera fingerprint.

Therefore, in order to avoid false matching results that do not actually
correspond to noise residuals’ alignment, we only consider matching resid-
uals if the relative shift is less than (A, A) pixels (A = {5, 10, 20,30} in
our experiments with Full-HD sequences).

c) Select as reference frame I, the video frame I that matches with the
largest number of frames according to the matching definition provided in
step (b).

d) Include the selected frame(s) in the set of frames exploited for the
fingerprint estimation, defined as F,. For instance, initially F, = {I, }.

e) Update the estimated fingerprint K, by pixel-wise averaging through
arithmetic mean all the re-synchronized noise residuals Wy, f € F,. Thus,
at first iteration, the video fingerprint candidate is the residual of frame 1,
namely K, = W,..

f) Correlate the remaining frames (not in F,) with the estimated finger-
print, computing PCE(W,, I - K, ),Vf ¢ F,.

g) If the PCE related to some frames honors the constraints reported in
(b), select these frames and compensate their relative shift misalignment
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Figure 3.4: Pipeline of the proposed method for estimating the fingerprint K,,.

with respect to the estimated fingerprint K,. Then, go to step (d) and con-
tinue iterating. Whether no more frame noise residuals match with K, stop
the iterations.

Eventually, the estimated camera fingerprint for testing the video queries
is K,. For the sake of clarity, Figure depicts the proposed pipeline for
estimating the device fingerprint K, .

Notice that there is a big difference between K;, and K,. The former
is computed from a conspicuous number of high resolution images whose
PRNU traces are by default aligned one with respect to the other, and then
it is warped into the video resolution. The latter is an aggregation of video
noise residuals, which have to be realigned because of stabilization. First of
all, frames usually undergo strong compression. Moreover, the set JF, does
not include all the available video frames, but only those satisfying some
fixed constraints. Thus, the amount of exploited noise residuals can be
reduced, potentially hindering the quality of the fingerprint estimation. For
this reason, Kj, can be considered a higher quality estimate of the device
video fingerprint compared to K,.

3.2.3 Testing the video query

Given a device fingerprint K, (being either K;, or K,) and a video to be
attributed, we propose to test a set F of frames belonging to the sequence
following a similar procedure to the standard PCE-based method. Specif-
ically, we estimate the warping configuration that maximizes the PCE be-
tween each frame and the transformed fingerprint K;. In this way, even
if the fingerprint has already been registered into video domain, we can
compensate for the additional stabilization deviations introduced on query
frames. In order to align the reference fingerprint with the tested frames,
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we exploit the similarity 7, defined in Section by means of the matrix
T,.
Therefore, we estimate the scaling factor, the rotation angle and the rel-
ative shift for every frame in the set such that the PCE is maximized, i.e.,
Pf = max PCE(Wf,If 'gv(Kd)), (310)

syESy,ayEAy,cy€Cy

where f is the frame index belonging to the set F of considered query
frames, with cardinality F'. Note that the search ranges S,, A,,C, can be
different from the ones presented in Section[3.2.1] as in this case both video
frames and device fingerprint are in video resolution.

In order to attribute or not the video query to the camera, we simply
select the highest P; over all tested frames as

Pomy = Pe. 11
comp IJI}G%Z{ f (3 )

The variable P, is named after the chosen testing strategy, which esti-
mates the complete set of parameters describing the similarity transforma-
tion between frames and reference fingerprint. If P, is above a certain
threshold, the query is attributed to the camera, otherwise it is considered
coming from a different device. This approach empirically proves to be
quite accurate, and we show in our experimental analysis that even a re-
duced number of frames is enough for performing a correct video query
matching.

In particular, notice that if K; = K,, only one geometric transforma-
tion is performed on the device fingerprint in order to register it on each
query frame. On the contrary, the case K; = K, requires two consecu-
tive geometric transformations: the former warps the device PRNU K into
K., the latter registers K;, on each query frame. At a first glance it may
seem unnecessary to apply these two transformations separately: indeed,
one might think of directly using the original device PRNU K as K, for
testing a generic video query. In this case, it would be enough to simply
register the high resolution K on the stabilized video content estimating
one transformation J; per query frame, as defined in (3.5). However, this
process will actually result in worse performance if compared to the use
of K, with the proposed strategy. First, as the fingerprint K;, has reduced
resolution, it enables to speed up the process because it reasonably requires
less memory usage and less computational power. Moreover, K, results
after some cropping operations performed on the scaled PRNU. This step
allows to remove from the reference fingerprint the sensor pixels lying out-
side the area used for video recording (i.e., the blue frame within the dotted
line in Figure [3.3)), which negatively affect PCE computation.
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Despite the use of either K;, or K, as device fingerprint K, the pro-
posed methodology can still be slightly time consuming, as the estimation
of the warping parameters through PS requires a fairly high amount of op-
erations. In order to overcome this issue, we propose one possible way
out, which can be very efficient whenever there is a consistent amount F'
of query frames. Indeed, it is likely that not all frames in the set underwent
strong rotation or scale transformations due to stabilization. As reported
in [30], it is common to exploit simplified motion models including trans-
lation only to stabilize some video frames, at the benefit of faster estimation
and higher stability. Hence, we can limit our search to the estimation of the
relative shift between the query frames and the fingerprint. To test a video
query, we select the best PCE obtained over the set as

Pquick = r?a% PCE(Wf,If : Kd) (312)
€

To attribute the video query to the device under analysis, we threshold
Pquick'

Concerning both proposed methods, robustness strongly depends on the
length of the video query. The larger the frame-set, the higher the proba-
bility to find one correlating frame over the whole video. We refer to the

approach described in (3.10) and (3.11) as complete test strategy, whereas
we depict the procedure shown in (3.12)) as quick test strategy.

3.2.4 How to tackle maximization problems

The maximization problems shown in and (3.10) aim at estimating
the transformation parameters between the video frames and the reference
fingerprint. We propose to split them in two sequential steps:

1. estimating scale and rotation angle;
2. deriving the relative pixel shift.

This is motivated by the natural robustness of PCE to translation, as the
peak coordinates resulting from PCE are an estimate of the mutual shift
between the correlated terms. For this reason, we first estimate scale and
rotation angle which maximize and (3.10), then we directly derive the
shift from the coordinates of the maximum correlation peak.
Unfortunately, the behaviour of PCE as a function of scale and rotation
can be strongly not convex, actually reporting many local maxima, which
hinder the use of gradient descent methods for estimating the correct pa-
rameters. For instance, Figure [3.5] shows examples of the behaviour of
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Figure 3.5: Examples of behaviour of PCE for different video frames (« is expressed in
[rad)). Specifically, (a) depicts the resulting function selecting I from a low-textured
and static sequence; in (b), Iy comes from a still video in outdoor scenario; in (c), It
is taken by a moving user, but in an almost flat scenario; in (d), 1y depicts an outdoor
scenario with user motion. Symbol * represents the global maximum position.

PCE according to various values of s and «, computed between stabilized
video frames and the fingerprint K, of their original device, warped by the
similarity transformation 7, (-). It is noticeable that, whether I+ comes from
a static and almost flat video, the global maximum is likely to be found, be-
cause PCE is basically convex in the space of searched scale and angle. On
the contrary, if some texture or user motion are included, PCE presents a
global maximum localized within a very small parameter area, and many
local maxima can be found, even far from the true one.

In light of these considerations, we propose to search the peak of PCE
exploiting global optimization algorithms. In particular, we investigated
three different strategies: a particle swarm (PS) [93]], a genetic algorithm
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(GA) [94] and a multi start (MS) [95]] method. We verified that PS is the
best solution, in terms of achieved device attribution accuracy and compu-
tational burden. For this reason, we exploit PS for all the experiments, even
though we dedicate a vast space of comparison between the algorithms for
what concerns the problem of attributing a stabilized video to the correct
device fingerprint. In the following, all the details about the experimental
set-up used for the performances evaluation.

3.2.5 Experiments and results

In this section we report the results of the conducted experimental analy-
sis. First, we describe the used dataset, then we define the adopted evalu-
ation metrics and optimization strategy, finally we report the numerical re-
sults achieved by the proposed method. In doing so, we also compare with
state-of-the-art methods for device identification using stabilized video se-
quences.

Dataset

In order to test our method in a fair setup, we make use of a dataset of almost
400 videos coming from 24 different devices. This dataset has been built
starting from the recently released Vision Dataset, which includes images
and videos from a wide variety of mobile devices from 11 major brands
[29]]. Specifically, before starting with the investigations, we synchronize
the imagery of each device in landscape format.

To build the image PRNU K for each device, we select all the available
images shot by the device depicting scenes of flat surfaces. To be precise,
at least 100 images of this nature are available for each device.

Concerning videos, we select all devices whose video resolution is equal
to Full-HD (1920 x 1080 pixel). We consider both static and motion scenes
(corresponding to the tags still, panrot, move in [29]). Moreover, we also
include videos with almost-flat content and with a significant texture con-
tribution (i.e., labeled as flat, indoor, outdoor in [29]]). Therefore, we end
up with 165 non-stabilized sequences from 10 devices, and 232 stabilized
video sequences from 14 devices. For each sequence, with an average
temporal duration of one minute, we only exploit I-frames, as they con-
tain more reliable sensor noise information with respect to inter-predicted
frames [13,83]. When we refer to any specific device, we use the same
naming convention introduced in [29].
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Evaluation metrics

In order to assess the accuracy in solving camera attribution problem, we
resort to receiver operating characteristic (ROC) curves. Specifically, for
each camera, we consider all videos recorded with that camera as posi-
tive samples, whereas the set of negatives includes an equal amount of se-
quences not taken with that camera, randomly selected from the dataset.
Each curve depicts the resulting relationship between true positive rate
(TPR) and false positive rate (FPR), averaged over the set of available
cameras. To numerically evaluate the quality of the attribution, we use:

» AUC, defined as the area under the (ROC) curve.
* TPRag.01, defined as the TPR calculated at a fixed FPR of 1%.

The goal is to achieve a high value of AUC (ideally 1) and the highest
possible value for TPRqq.01 as well.

Particle swarm optimization

Maximization problems are solved using a particle swarm optimizer (PS),
which is a population-based algorithm, where a collection of individuals
called particles move in steps throughout a search region [96,97]. At each
step, the algorithm evaluates the objective function for every particle, and
the best particle corresponding to the maximum of the function is selected.
Then, particles move, and after a number of iterations the global maximum
is hopefully found. In particular, we tackle maximization problems using
a common parameter configuration for the PS, shared by all the following
reported experiments. This configuration allows a reliable estimation of the
maximum of the considered functions, and consists in:

* N, = 50, i.e., the number of used particles;
* max;; = 50, i.e., the maximum number of PS iterations.

The other parameters are the default ones defined in [97].

Preliminary study on stabilization disadvantages

In order to confirm the challenge of dealing with stabilized video sequences,
we perform a preliminary test consisting in facing camera attribution prob-
lem using standard procedures devised for non-stabilized videos.

Similarly to approaches proposed in [23,29], we compute the finger-
print of each video by simply aggregating noise residuals extracted from
I-frames. The reference camera fingerprint is estimated selecting a static
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Figure 3.6: ROC curves obtained using the standard PRNU-based video source attribu-
tion method [23|] considering non-stabilized and stabilized sequences. Video stabiliza-
tion strongly hinders the state-of-the-art performance.

and low-textured sequence for each device, precisely the first video tagged
as flat-still in the dataset. For testing a generic video query, we compute
the PCE between the camera fingerprint and the query one. We apply the
same pipeline to both non-stabilized and stabilized video sequences.

Results are reported in Figure[3.6] The difference between stabilized and
non-stabilized videos ROC curves is clear. For the non-stabilized pool, the
pipeline achieves AUC = 1, which means perfect device attribution. For
the stabilized set, this pipeline achieves lower performance with AUC =
0.77. This confirms that video stabilization makes PRNU-based video cam-
era attribution a more challenging task as shown in [[12,|13]].

Considerations about the first video frame

The authors of [30]] show that, generally, the first frame of a video does not
undergo any stabilization, as there is no motion to be corrected. Indeed,
it is possible that the first frame is taken as reference for stabilizing the
next frames. On one hand, this is good news whenever it is available to the
analyst. On the other hand, we must realistically assume that the video se-
quence might have been temporally trimmed, thus making the first acquired
video frame unavailable.

In order to test the effect of using or not the first frame for camera at-
tribution with stabilized videos, we perform the following experiment. We

59



Chapter 3. Source device identification on videos

17 —
08l
0.6
o'
o
=
0.4
0.2 |
— F-1f=1
--F= 1af 7é 1
0 L L L L
0 02 04 06 08 1
FPR

Figure 3.7: ROC curve related to a single-frame video, exploiting the complete test strat-
egy.

estimate the reference fingerprint K, for each device.

Then, we proceed with the testing phase, following both the complete
and the quick strategy reported in Section [3.2.3] considering a single frame
for each video query (i.e., ' = 1). The test has been performed in two
scenarios: (i) selecting the first frame (i.e., f = 1); (ii) selecting a random
I-frame different from the first one (i..e, f # 1).

ROC curves for the complete test strategy are reported in Figure
while ROC curves for the quick test strategy are reported in Figure 3.8] In
both situations, results obtained considering the first frame are well above
the ones computed with a random frame. This confirms that stabilization
algorithms used by devices within Vision dataset may skip stabilization on
the first frame.

In order to avoid biasing the results and making wrong conclusions
about the proposed algorithm, hereinafter we never include the first frame
in our experiments, neither for the estimation of the video camera finger-
print, nor for the attribution phase. In doing so, we assume working in the
far more general scenario in which videos available at the analyst can be
short portions of longer sequences.

Reference video fingerprint from images and videos

To build the video fingerprint K;, in Full-HD resolution, we need to esti-
mate some scale and translation parameters for each device as explained
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Figure 3.8: ROC curve related to a single-frame video, exploiting the quick test strategy.

in Section 3.2.1] To estimate the image to video domain transformation,
we apply the proposed K;, estimation algorithm to 10 randomly selected I-
frames coming from reasonably flat and almost static scenes from each sta-
bilized device in the dataset. Precisely, we pick them from videos tagged as
flat-still in [29]]. Then, we choose as reasonable search range for the scaling
factor S = [0.3, 0.85], whereas the shift is searched all over the video reso-
lution. The boundaries of the search range S are chosen in order to respect
some specific constraints. First, the final resolution after scaling should
not be less than Full-HD, otherwise some zero-padding would be required.
Secondly, after scaling, the following cropping operation for obtaining the
Full-HD resolution should not reasonably discard an excessive percentage
of the original sensor area. Therefore an upper bound for the scale must
be set. Actually, these bounds vary according to the device image resolu-
tion and other device specifications. In this work, the reported bounds are
inclusive of all the stabilized devices in the dataset.

Table [3.1] reports the estimated average scale (i.e., si,) and translation
(i.e., ¢y, and ¢,) parameters for each stabilized device. In particular,
we estimate the conversion parameters by running the PS in parallel over
multiple cores. In our workstation composed by 2 xIntel Xeon Gold 6126
2.6GHz with 377GB of RAM running Ubuntu 17.10, the process takes on
average 47.4s per frame. Notice that, for each device, we exploit images
with original resolution reported in [29]. Actually, since a lot of devices
allow to record photos and videos with various resolutions, the conversion
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Table 3.1: Average scaling and translation parameters for image-to-Full-HD-video do-
main conversion. Device naming convention is the same as in [29|]. Only stabilized
devices have been used.

DEVICE ‘ DOZ‘ D05 ‘ D06 ‘D]O‘ D12 ‘ D14 ‘ D15 ‘ D18 ‘ D19 ‘ D20 ‘ D25 ‘ D29 ‘ D32 ‘ D34

Siv 0.75 | 0.687 | 0.707 | 0.75 | 0.379 | 0.688 | 0.706 | 0.688 | 0.706 | 0.815 | 0.517 | 0.687 | 0.517 | 0.687
Civ, 270 158 201 279 33 167 190 166 190 97 239 161 242 161

Civ, 374 | 304 328 | 384 | 205 308 323 308 324 248 361 302 356 302

parameters for each device are not fixed, but depend on the image-video
resolution under investigation. Therefore, the transformation 7, is gener-
ally not unique and should be computed every time either image or video
resolution changes.

Reference video fingerprint from videos only

In order to estimate the camera fingerprint K, from stabilized videos only,
we follow the iterative noise aggregation method proposed in Section[3.2.2]
In particular, for each stabilized device, we select an almost static video
with little image content (precisely, the first video flagged as flat-still in the
dataset), considering different values for the parameter A limiting the shift
search range.

We expect K, to become a better and better estimate of the true de-
vice fingerprint as long as we correctly aggregate more frames. To evaluate
whether the aggregation method is properly working, we define p(f) as the
normalized cross-correlation (NCC) between the fingerprint K;, and the
fingerprint K, (f), estimated using f frames. Notice that we should not
directly cross-correlate these terms, as K, has been built by selecting a cer-
tain frame as reference, and then registering other frames on it. Therefore,
because of video stabilization, the obtained fingerprint K, could be slightly
scaled, rotated and shifted with respect to the fingerprint K;,. In order to
compare these terms, we estimate the similarity transformation which reg-
isters the fingerprint K, on K, then we apply this transformation to the
frame-variant K, (f).

Actually, p(f) can be very helpful to evaluate the algorithm performance
in estimating the video fingerprint. For instance, if p(f) has a monotonic
increasing behavior, we are aggregating the frames in a correct way. Other-
wise, we are aligning frames by means of some correlating content not due
to the original device fingerprint. The choice of NCC as metrics instead
of the PCE is motivated by its higher computational efficiency. Moreover,
being normalized at 1, NCC allows a clearer comparison between the per-
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Figure 3.9: Resulting cumulative NCC computed between K, and registered K, (f) for
device D34.
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Figure 3.10: Resulting cumulative NCC computed between K, and registered K, (f) for
device D32.

formance of different devices.

We compute p( f) for each stabilized device in the dataset. For instance,
results for devices D32 and D34 are reported in Figures[3.9]and as rep-
resentative of the overall trend on all videos. For some video sequences (see
Figure the bound on A value does not impact on the algorithm, as all
the available I-frames can be correctly aggregated independently from the
chosen A. However, in case videos contain more texture (see Figure [3.10),
the proposed method tends to register scene content rather than sensor noise
traces if A is too high. Indeed, p(f) does not increase. Moreover, it can
happen that the aggregation process stops after few frames, as there is only
a restricted amount of imagery satisfying the constraints reported in Sec-
tion b ). For this reason, hereinafter we limit our further analysis to
A = {5,10}, since these values enable achieving the best aggregation per-
formances on average, i.e., a high final value of p(f) and more aggregated
frames.

Finally, Figure shows the values achieved by p(f) at the last ag-
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Figure 3.11: Final value of the resulting cumulative NCC for all stabilized devices in the
dataset, setting A = 10.

gregated frame, namely p(F'), obtained by fully running the proposed K,
estimation method setting A = 10 for all devices. Notice that p(F') val-
ues are almost always higher than 0.1, which actually represents a good
NCC measure in standard attribution problems [20]]. This confirms that the
estimated video fingerprint K, is informative of the camera model.

Testing the video query

To check how accurately we can attribute a stabilized video to the origi-
nating device, we present the ROC curves computed over all the stabilized
devices in the dataset. To be precise, for each stabilized video sequence, we
randomly select F' I-frames, and we test the complete and quick attribution
methods on both fingerprints K;, and K,.

First, we report the results achieved using the complete method reported
in Section [3.2.3] Specifically, considering the fingerprint K;,, we investi-
gate the previously reported global optimization strategies using a standard
set of parameters as defined in [97]. Notice that, to perform a fair compari-
son between the solvers, we select an equal number of swarm particles for
PS, of population size for GA and problem instances for MS, precisely set
to 20 (i.e., the default swarm size of PS for searching 2 parameters). Then,
as all the methods search for the maximum of PCE inside some predefined
boundaries in the parameter space, we fix for the three of them a scale range
S, =[0.99,1.01] and a rotation range A, = [—0.15, 0.15]rad, following an
approach similar to [30]. Indeed, reference fingerprint is already in the
video domain, thus we only need to slightly warp frames.

In this case, our experimental set-up includes the stabilized dataset, ex-
tracting 1 random I-frame from each video. Figure [3.12(a) shows ROC
curves achieved by the three proposed algorithms. Notice that PS exceeds
the other two strategies for both AUC and TPRqg ;. This accuracy gain
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Figure 3.12: ROC curves (a) and average computation times (b) achieved by PS, GA and
MS methods using their default parameters.

brings a few drawbacks regarding the average computational time, shown
in Figure[3.12b), which is higher for PS (whose time is taken as reference),
but still affordable. Hence, we select PS as the primary method for solving
the source device identification problem.

Figure [3.13|depicts the results of complete test strategy evaluated using
both K;, and K, as reference fingerprints, and testing F' = {5, 10} ran-
dom I-frames of the query videos. Notice that we only show results for
K,,._,, (K, computed with A = 10) as these are highly comparable to the
case A = 5. It is possible to note that the proposed method is quite accu-
rate. As a matter of fact, testing just 5 I-frames (i.e., ~ 5 seconds of video
content), we obtain AUC = 0.96 exploiting the fingerprint K;,. The perfor-
mances achieved by K, are quite good as well, considering this fingerprint
is computed from video frames only. Nonetheless, the larger the amount
of investigated I-frames, the better the ROC curve. For instance, regarding
K.,_,, results, with just 5 frames we achieve AUC = 0.89, whereas 10
frames return AUC = 0.92.

The overall results of the complete strategy are depicted in Table [3.2]
which reports the achieved AUC and TPRag.; corresponding to all the
curves. In particular, on our workstation, the average time for testing 1
query frame against 1 camera fingerprint with the complete strategy (con-
sidering matching cases as well as non-matching ones) is of 57's, therefore
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Figure 3.13: ROC curves obtained testing F' = {5, 10} I-frames with the complete strat-
egy.

Table 3.2: AUC and TPRag.01 exploiting K;, and K, as reference fingerprint, testing
F = {5,10} random I-frames with the complete strategy.

FINGERPRINT ‘ Ky, F=5 | Ky, F =10 ‘ Ky o, F=5| K, ,,F=10 ‘ K

VA=107

TPRao.o1 0.87 0.91 0.71

AUC 0.96 0.97 0.9 0.89 0.89 0.92
0.77

the process requires on average less than 5 minutes for testing 5 frames.
To be more specific, the computational time derives from the computation
of one geometric transformation (i.e., 7,) and one PCE evaluation for each
particle at each iteration of the PS algorithm. In addition, we show the
results obtained with the alternative quick attribution method proposed in
Section [3.2.3] Figure [3.14] depicts the results evaluated using both refer-
ence fingerprints. Specifically, we select I = {5, 20,50} query I-frames
for evaluating the performance of the fingerprint K;,, whereas for the fin-
gerprint K, we limit the plot to the use of 50 I-frames, as a lower amount of
frames reduces the performance. Note that some sequences in the dataset
do not have 50 I-frames. In these situations we use as many I-frames as pos-
sible. We can notice that, to obtain results with similar accuracy to those
of the complete testing procedure, 50 I-frames are needed rather than just
5. Anyway, even exploiting K, as reference, we can solve the attribution
problem using the quick algorithm, as long as the analyst has approximately
one minute long video.
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Figure 3.14: ROC curves obtained testing F' = {5,20,50} I-frames with the quick strat-
egy.

Table 3.3: AUC and TPRag.01 exploiting K;, and K, as reference fingerprint, testing
50 random I-frames following the quick test strategy.

FINGERPRINT ‘ Ky | Koo ‘ Ko .
AUC 0.96 | 0.88 | 0.89
TPRao.o1 089 | 0.74 | 0.75

To be precise, Table [3.3| contains AUC and TPRgg o1 corresponding to
the curves achieved testing 50 query I-frames with both reference finger-
prints K;, and K,. Concerning the computational time, the quick strategy
requires only one PCE evaluation per query frame, ending up with an aver-
age time for testing 1 frame against 1 camera fingerprint of 0.075s. Thus,
for 50 query frames we need less than 4 s.

As far as the comparison between the complete and quick methods is
concerned, we can notice that the former method is more accurate than the
latter one as expected. Indeed, in order to fairly compare the two methods,
we should consider the very same number of testing frames for the both
of them. As a matter of fact, exploiting just 5 I-frames returns similar
results to the case in absence of rotation and scaling only for /' = 50. For
this reason, when few video frames are available, we suggest to estimate
the similarity transformation between the camera signature and the frames.
Indeed, accuracy is increased at the expense of more computational time.
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On the contrary, when plenty of frames are at hand, it can be a good choice
to limit the analysis to translation models, since the pair AUC — TPRqg.01
reports highly acceptable and comparable results with the first solution.

State-of-the-art Comparison

To the best of our knowledge, only few methods have been proposed in the
literature to deal with camera attribution from stabilized videos.

One solution has been presented in [[13]]. The authors consider videos
stabilized by means of a controlled algorithm (i.e., FFMPEG deshaker),
which only applies rotations and translations. As the proposed method does
not take scaling into account and does not deal with videos directly stabi-
lized on the recording device, it is likely going to fail on the uncontrolled
dataset used in this thesis.

A more recent solution has been proposed in [12]]. The authors propose
to search for scales and translations, but they do not take rotations into
account. Moreover, they only attribute stabilized videos to cameras if a
reference PRNU obtained from still images is available (i.e., they do not
compare videos to videos). This makes their problem formulation more
similar to the one we described in Section [3.2.1] rather than the method
proposed in Section [3.2.2]

Additionally, both solutions presented in [12,/13] make use of the first
frame of each video sequence, which we do not consider as there is a high
chance it has not been stabilized, thus making the problem less challenging.

In the light of these considerations, even the comparison against [[12]
would not be completely fair. However, the used metrics are the same (i.e.,
TPRao.01 and AUC), and concerning the dataset, we both consider videos
from the Vision dataset (8 devices in [12f], 14 devices in this work). There-
fore, a few conclusions can still be drawn. To compare the methods in the
same experimental setup, we select from Vision dataset all the available
instances we can find for each device model exploited in [12]. Exploit-
ing the video fingerprint Kj, described in Section [3.2.1] over this reduced
dataset, we are able to achieve TPRago1 = 0.89 and AUC = 0.96 us-
ing the complete strategy on 5 query frames, and TPR@p o1 = 0.92 and
AUC = 0.97 testing 50 query frames with the quick method. Conversely,
results in [12]] show TPRag g1 = 0.87 and AUC = 0.95, which are below
the ones achieved by us, even considering that we are discarding the con-
tribution from the first frame, and we also cope with the video vs. video
case.
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Upper bound on video fingerprint estimation

In order to understand whether it is possible to extract better fingerprint
information from stabilized video frames, we perform a final experiment
involving an Oracle providing us with data normally unavailable to the an-
alyst.

Specifically, let us consider the scenario depicted in Section in
which the video fingerprint K, is extracted from video frames. However,
we envision an Oracle telling us how to align each frame noise residual with
the others, in order to obtain a much better video fingerprint estimate. To
do this practically, we apply an analogous algorithm to the one proposed in
Section[3.2.2] with the difference that frame alignment step is performed by
similarity transformation against the reference K, (i.e., a cleaner version
of the device fingerprint) rather than a reference video frame.

Of course, this is clearly an unrealistic situation (i.e., if the analyst had
Ky, he/she could use the algorithm proposed in Section [3.2.1]). Nonethe-
less, this is a very powerful investigation tool for evaluating the accuracy
of our results. We can therefore compare results obtained with this Oracle-
based fingerprint, and with the proposed fingerprint K,, to see how much
they differ.

In terms of quality of the estimated fingerprint, the final values of p(F")
evaluated with the Oracle-based fingerprint only report a slight increment
(less than 0.1 on average) with respect to those obtained in Figure [3.11]
using K. This confirms that the proposed method is quite good and repre-
sents a viable solution for extracting the device fingerprint in video domain.

In terms of device attribution, Figure [3.15|reports ROC results obtained
with the use of the Oracle and results obtained with K,, using either the
complete or quick test methods. The TPR@qg o1 of Oracle-based strategy
reaches (.84, while the TPRqg9; of complete strategy using K, is 0.14
points lower, but the quick strategy is able to achieve TPRqg o1 = 0.76.
Notice that the accuracy gap between complete and quick strategies should
not lead to rushed conclusions: as previously stated, the two methods can
be correctly compared only if the number of query frames is the same.
Considering the overall performance, the proposed method can be consid-
ered reasonably accurate, taking into account that it works in the realistic
scenario where video sequences can contain some textures, potentially un-
dermining the video fingerprint estimation.
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Figure 3.15: ROC curves obtained testing the complete strategy on 5 I-frames, and testing
the quick strategy on 50 I-frames, using the Oracle-based fingerprint and K,.

3.2.6 A Fourier-Mellin approach to source device identification

In this section, we present an alternative solution for solving the complete
test strategy for source device identification. Specifically, we leverage the
so-called Fourier-Mellin transform [98]] to solve the maximization problem
shown in (3.10). In the following, we present the theoretical motivations
behind this choice, then we describe our approach and report a comparison
with the previously shown strategy.

Fourier-Mellin transform

Fourier-Mellin transform exploits the properties of Fourier transform with
respect to scale, rotation and shift for estimating the similarity transforma-
tion between two images [98]. If an image I, is denoted as 7, (I,,), where
T, is a similarity transformation including a scaling factor s, a rotation
angle a,, and shift vector c,p, it is theoretically possible to estimate this
transformation in closed form, given I, and I, only. For the sake of clarity,
we denote with T, the matrix corresponding to similarity 7, :

Sab * COS Qg  —Sap * SIN Qlap  Cab
T,, = . o). (3.13)
Sab * SN (3p Sab * COS O5p Caby

Notice that T,, models as initial geometric transformations the scale and
rotation, only later including translation as successive transformation.
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In absence of rotation and scaling, translation can be estimated using the
Fourier shift theorem [98]. Whether I, has been translated with respect to
I, of cap = (Cab,, Cab, ), Fourier transform fulfills this condition:

Fo(fe, fy) = Fo(fu, f,) - @ 2 cabafomi2meaby fu (3.14)

being F, and F, the Fourier transforms of I, and I, and f,, f, € [—0.5,0.5]
the spatial frequencies. The Fourier transform magnitudes of the two im-
ages are equal. The only difference consists of a linear phase term as a
function of spatial frequencies, due to the mutual shift. This shift can be
estimated exploiting phase correlation, defined as the inverse Fourier trans-
form of the cross-power spectrum of the images. More formally, the cross-
power spectrum X is defined as

F.F.,*
|Fan*|,

X[F,, Fy] = (3.15)
where the symbol * denotes the complex conjugate and division is com-
puted element-wise. For the sake of notational compactness, we omit the
indexes (f3, f,) except for cases in which they are useful to clarify equa-
tions. Phase correlation ® is the inverse Fourier transform of X, hence:

®(F,, Fy) = F{X[F,,Fy))}, (3.16)

being F'~1{-} the operator of the inverse Fourier transform. In this specific

case, ’ .
X[Fa, Fb}(fm7 fy) — 6J27r5abzf:c+]27rcabyfy’ (3.17)

thus the phase correlation coincides with an impulse centered in c,, =
(Cab, , caby). The relative pixel shift c,, can be found as the position of this
impulse.

The Fourier-Mellin method also allows to match images which have
been rotated one with respect to the other. For instance, if I, is rotated by
aap With respect to I, the relationship between their transforms becomes

Fa(f;rv fy) = Fb(fx'COS aab"’fy'Sin Qab, —fx-SiIl Oéab—l-fy'COS aab)~ (3.18)

A rotation by an angle «,, in pixel domain implies that Fourier transform
is rotated as well by the same angle. In order to estimate the angle, Fourier-
Mellin approach converts this relationship in polar coordinates:

P{F.}(p, ) = P{Fp}(p, @ — cap), (3.19)

being P{-} the operator computing the polar coordinate transformation, p
the radial coordinate and « the rotational coordinate. It is worth noting
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that rotation in Cartesian domain becomes translation in polar domain. To
estimate «,p,, we resort again to phase correlation computed between the
Fourier transforms written in polar domain. The y-coordinate of the im-
pulse corresponds to the rotation angle.

A scale transformation by a factor s, can also be modeled. In this case,
according to the Fourier scaling theorem,

Fy(fo. f)) = Sibe<fm/sab, 1, /sa0)- (3.20)

Given an image stretch in pixel domain, the Fourier transform is squeezed
in frequency domain by the same factor. This very same relationship can
be written differently, resorting to log-polar coordinates:

LP{F,}(p,a) = LP{Fy}(p — log sup, ), (3.21)

where LP{-} is the operator for log-polar transformation. To find s, it
is enough to evaluate again the impulse position in the phase correlation
matrix between LP{F,} and LP{F}}, and convert the found value from
logarithmic to linear domain.

Merging all these considerations, Fourier-Mellin strategy allows to esti-
mate the complete similarity transformation (including scale, rotation and
translation) between images I, and I,. The workflow consists of two con-
sequent steps:

1. estimate the scale and rotation;
2. estimate the mutual shift.

Initially, selecting only the Fourier magnitudes, we come out with
LP{Ma}<p7 Oé) = LP{Mb}(p - IOg Sab, O — aab)a (322)

where M, and M,, represent the Fourier transform magnitudes. Since in
log-polar coordinates scale and rotation become shift terms, these can be
estimated by looking at the position of the maximum peak of phase corre-
lation computed between the Fourier magnitudes. Images can be realigned
for what concern rotation and scale, leaving translation only to be esti-
mated.

Then, as shown in (3.17), the relative shift can be found by examining
the coordinates of the maximum peak of phase correlation between the two
realigned images.

Going back to source device identification, we can think at the Fourier-
Mellin strategy has a potential competitors to the particle swarm approach
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proposed in Section[3.2.4] Indeed, since the goal of complete test strategy is
estimating the geometric transformation that realigns the query frame noise
residuals and the device reference fingerprint, we may exploit Fourier-
Mellin strategy to derive this transformation following the above steps. For
the sake of clarity, in the following section we provide more details about
the proposed method.

Application of Fourier-Mellin to the complete test strategy

In this section, we investigate the performances of Fourier-Mellin approach
on the source device identification problem. In particular, we apply this
strategy to the complete test, exploiting the best device reference finger-
print, i.e., K; = K.

At first glance, the solution to this problem may seem straightforward.
However, notice that, differently from the Fourier-Mellin theory presented
above, the two terms to compare are not exactly one the transformed ver-
sion (by means of a similarity transformation) of the other. First, as stated
in Section [3.1.1] the geometric transformation introduced by stabilization
on video frames is not necessarily a similarity, but can include also perspec-
tive distortions. Second, the noise residuals of video frames may contain
scene content and noise contributions which are not present in the refer-
ence device fingerprint. This is typically due to imperfections in the noise
extraction process. Indeed, W is usually slightly influenced by the scene
depicted on the corresponding frame I and by compression artifacts.

The primary consequence of this dissimilarity is that selecting only the
Fourier magnitudes for estimating scale and rotation between the two terms,
as reported in (3.22), may be not precise. Indeed, the phase correlation be-
tween the Fourier magnitudes of K;, and W ; does not show a pronounced
peak, thus the estimation of scale and rotation angle is strongly hindered.
A wrong estimation of scale and rotation inevitably leads to a totally wrong
estimation of the mutual shift and to a poor performance of the complete
test strategy related to the query frame.

In order to overcome this issue, we propose to consider phase terms in
addition to Fourier transform magnitude.

Unfortunately, the natural drawback of this approach is that we cannot
isolate anymore the estimation of scale and rotation to that of mutual shift.
Indeed, in this case, the complete phase correlation does not exclusively
depends on scale and rotation transformations, but also on translation be-
tween the two terms. Thus, we cannot simply select the two entire Fourier
spectra (i.e., magnitude and phase), convert into log-polar domain, compute
the phase correlation, select the peak coordinates and find the scale and ro-
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tation parameters. This pipeline would work only if W, and K, were
almost perfectly aligned in terms of translation, i.e., if their mutual shift
after correcting scale and rotation were basically 0 pixels in both horizon-
tal and vertical directions. In other words, we first would have to correctly
realign the PRNU traces left on the noise residual with those on the refer-
ence fingerprint for what concerns the relative shift, then we could convert
the Fourier transforms into log-polar domain and estimate the remaining
parameters.

Actually, finding a rule to estimate the relative shift between W ¢ and
K, without knowing the correct scale and rotation is far from being an
easy task. Indeed, as stated before, the estimation problem is no more sep-
arable and shift can be derived only if rotation and scale are estimated too.
In order to estimate the best shift parameter, we propose to set a double
maximization problem. Formally,

Cfm,., Cim, = AIg I?CaX(
Cz,Cy&lfm

max®[LP; o {Fw,}, LPs o{Fx, (fo, [,) - e /2T em72meulu}])(3.23)

being Fk,, and Fyy, the Fourier transforms (complete of magnitude and
phase) of K;, and W, respectively. LP;,{-} represents the log-polar
transformation as a function of radial and angular coordinates. To clarify,
(3.23) follows these steps:

a) fix one shift combination (c,, ¢, ), considering ¢, ¢, € Cm;

b) realign W and K;, for the selected pixel shift (c,, ¢,), multiplying
FKiv (fac; fy) by e_jQWCmf,r—jZﬂ'cyfy;

c¢) convert the Fourier transforms into log-polar domain;
d) evaluate phase correlation and select the highest peak.
Repeat steps from (a) to (d) for each possible shift combination.

e) select the shift combination which returns the highest peak in phase
correlation.

Each shift combination is associated to one peak value in phase correla-
tion and a pair of estimated scale and rotation parameters. For the sake of
clarity, we denote with ®,,.,;, the value of the peak in phase correlation as
a function of the mutual shift:

(I)Peak(cxa Cy) = maxq)[LPs,oc{FWf}y LPs,a{FKiv ' e_jQWCQ;fx_j27rCyfy }]
’ (3.24)
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3.2. Source device identification on stabilized video sequences

The best mutual shift can be found in correspondence of the maximum
between all the analyzed peak values, therefore (3.23)) becomes

Cfmy s Cfm, = I rélcaxfﬁpeak(cx, Cy)- (3.25)
Cx,Cy&lfm

After the shift parameters (¢, , Cfmy) have been estimated, we can search
for the scale and rotation parameters. These can be estimated in closed-
form by other 3 steps:

f) realign W and K;, for the found (cfm, , Cfm, ):
g) convert their Fourier transforms into log-polar domain;

h) look at the coordinates of the maximum peak of their phase correla-
tion.

Formally,

Sfm, Qfm = arg max(

s,

BLP, o{Fw,}, LPso{Fx, (fo, f,) - e P2memetems2mem, Iu}]) - (3.26)

Notice that sq, and oy, can be derived without the need of a global op-
timization strategy. On the contrary, gradient descent strategies to solve
(3.25)) suffer from the non-convex behaviour of ®,., as a function of the
shift. For instance, Figure [3.16| reports the behaviour of @, versus hor-
izontal and vertical shift between some video frames and Kj;,. Notice that,
especially in video sequences characterized by outdoor scenarios or user
motion, the actual maximum peak value can be hard to find with gradient
descent algorithms. Many local maxima are spread over all the investigated
mutual shift values.

The estimation problem shown in (3.25]) could be solved again by resort-
ing to global optimization techniques. It is worth noting that the translation
between W, and K, can be assumed with slight approximation to imply
integer shift in horizontal and vertical directions, i.e., to represent a certain
number of pixels and not a fraction of them. Particle swarm optimization
is very suitable for deriving continuous parameters, however being subop-
timal in case of integer estimation. We propose to leave particle swarm
in favour of a genetic algorithm that allows a more efficient estimation of
integer parameters [97]].

Precisely, genetic algorithms mimic biological evolution to solve the
selected problem. At each iteration, the algorithm modifies its population:

75



Chapter 3. Source device identification on videos

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

0.007
0.006
0.005
0.004
0.015 0.003

10
0.01 0.002
0.001

0.005

0 0

@

Figure 3.16: Examples of behaviour of ® peqr. for different video frames, as a function of
the horizontal and vertical shift. Specifically, (a) depicts the resulting function select-
ing Iy from a low-textured and static sequence; in (b), 1y comes from a still video in
outdoor scenario; in (c), Iy is taken by a moving user, but in an almost flat scenario; in
(d), 1y depicts an outdoor scenario with user motion. Symbol * represents the global
maximum position.

some individuals are selected as parents of new children which are used for
the next generation. Over subsequent generations, the algorithm converges
toward the optimal solution.

After estimating the warping parameters Sfm, Qifm, Crm, 1ast steps consist
in:

i) compensate the scale, rotation and shift in K;, by means of the esti-
mated transformation

fm O¢fm Cfm

J) resort to PCE as strategy for a correct device identification.

Precisely, exactly as reported in Section [3.2.3] we compute PCE between
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Figure 3.17: ROC curves obtained testing F' = {5, 10} I-frames with the Fourier-Mellin-
based strategy.

W and the warped reference fingerprint K;,. We come out with Py, de-
fined as:

Pin = PCE(W ¢, Ty, apmen (Kiv))- (3.27)

Comparison with particle swarm results

In order to show the potentiality of Fourier-Mellin approach in dealing with
source device identification problem, we apply the complete test strategy
comparing the results with those achieved by particle swarm optimization.
To this purpose, we select as device reference fingerprint K; = K;,, and
we pick exactly the same dataset used for testing the complete strategy with
particle swarm. For each analyzed video frame, we estimate the relative
shift between scaled and rotated Wy and K;, as shown in (3.25) , then
we find scale and rotation following (3.26). Precisely, we set as search
range for the mutual shift Cr,, = [—90, 90] both in horizontal and vertical
directions. We verified this range includes all possible mutual shift between
correlating video frames and reference fingerprint. Eventually, we evaluate
Py, as the PCE between the realigned fingerprint and W.

For the sake of clarity, we use the very same accuracy metrics presented
above, i.e., AUC and TPRago1 of ROC curves. Precisely, Figure [3.17]
shows ROC curves drawn testing 5 or 10 I-frames per video query. No-
tice that results maintain the previously derived trend: the more the tested
frames, the better the attribution.
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Table 3.4: AUC and TPRag.g1 exploiting K,, as reference fingerprint, testing F' =
{5,10} random I-frames with the Fourier-Mellin-based strategy and particle swarm
strategy.

STRATEGY ‘ P, F'=5 ‘ P, FF =10 ‘ Peomp, ' =5 | Peomp, F' =10

AUC 0.92 0.94 0.96 0.97

TPRao.01 0.82 0.87 0.87 0.91

For the sake of comparison, Table shows the achieved AUC and
TPRao.01 using the Fourier-Mellin-based strategy and the particle swarm
strategy presented in Section [3.2.3]

For both cases F' = 5, F' = 10, Fourier-Mellin approach presents worse
performances with respect to the particle swarm strategy, even though re-
porting acceptable results which are always better than quick test method.
Unfortunately, the required computational time increases. If particle swarm
requires 57 seconds for testing one single query frame with the complete
test strategy, the Fourier-Mellin approach implemented using the genetic
algorithm needs 275 seconds for estimating the correct warping parameters
and compute Py,. This time growth is mainly due to Fourier transform com-
putation, which needs a great number of samples to avoid undesired border
effects and wrong parameters’ estimation. Indeed, in order to obtain a good
log-polar representation for Full-HD video sequences with pixel resolution
1080 x 1920, we exploit 4096 x 4096 Fourier transform samples. With re-
spect to particle swarm which runs optimization on Full-HD sequences, the
genetic algorithm suffers from this resolution enhancement and slow down
temporal performances.

Nonetheless, the Fourier-Mellin approach presents interesting aspects as
well. First of all, contrarily to particle swarm, it does not require a global
optimization technique to find the correct scale and rotation parameters,
because these can be directly derived from the position of the peak in phase
correlation. This enables a faster estimation of the two parameters, in the
order of few milliseconds in all the situations in which shift is known to be
absent or negligible by construction. Furthermore, Fourier-Mellin does not
require to fix search bounds for scale and rotation parameters. In principle,
we could estimate every possible scaling factor and rotation angle, provided
that Fourier transform is computed with a high resolution level.

The only obstacle preventing the use of closed form estimation consists
in the presence of mutual shift between noise residuals and reference fin-
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gerprint. So far, it seems a hard task to find a relationship allowing the
alignment (in terms of horizontal and vertical translation) between the log-
polar representations of noise residual and device reference fingerprint, and
this still remains an open problem. For this reason, Fourier-Mellin ap-
proach surely needs further investigations for solving the device identifi-
cation problem in case of video stabilization. This strategy can potentially
pave the way for accurate and fast solutions with respect to state-of-the-
art. A first solution in this sense could be the use of ad-hoc sparse version
of Fourier transform, enabling to quickly compute dense spectra at some
frequencies of interest and disregarding other frequency ranges [99].

3.3 Detection and Localization of video temporal splicing

Solving source device identification on videos is just one of the primary
steps of the work performed by the forensics investigator when he/she must
assess the integrity of this kind of multimedia content. Indeed, there is
an infinite list of possible forgeries and modifications videos can undergo
after the acquisition. This is mainly due to last year developments in video
editing software and computer graphics tools, where by manipulating visual
contents has become a relatively easy task. Some forged videos are so well
crafted to elude visual scrutiny even by forensic experts. For this reason,
there is a growing interest for automatic tools which can reliably establish
video integrity.

Within the large number of video forensics methods proposed in the
literature, methods based on PRNU are independent of the specific type
of manipulation, which is why they are drawing considerable attention in
both research and applications. However, as previously stated, PRNU esti-
mation is a much harder task for videos than for images, since videos are
usually compressed with relatively low quality, compromising the sensor
footprints. Another major problem is video stabilization, that causes mis-
alignments of individual pixels across frames. Indeed, we shown in Section
[3.2]that stabilization is a serious issue and PRNU-based methods are not ef-
fective anymore in the absence of suitable countermeasures.

Even neglecting the above problems, to reliably estimate the PRNU pat-
tern, a large number of video frames should be available. Unfortunately,
this is not always the case. Quite often, one is required to work in a blind
setting, analyzing a single video of unknown origin downloaded from the
net. In this situation, one can use some of the video frames to estimate
the PRNU, but the quality will significantly impair, not only for the limited
number of available frames but also because of their content correlation.
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Figure 3.18: Video sequence composed of Ny shots coming from unknown devices.

A possible approach is to work on noise residuals estimated from the sin-
gle video and extract as much information as possible from them. In [[100]
some initial video frames are used to estimate a reference pattern and check
for video authenticity. In [[101]] the temporal correlation of noise residuals is
analyzed through a Gaussian mixture model, while in [[102] the inconsisten-
cies of the photon shot noise characteristics are used for forgery detection.

In this section, we address the detection of video temporal splicing,
which arises when two or more video shots are used to compose a new
video. As in [100], the noise residuals of the initial video frames are used
to extract a reference pattern (a coarse PRNU estimate), which is used in
turn to detect the presence and position of a possible splicing. The process
is then iterated, with the aim to detect eventually the precise combination
of different shots and their temporal composition. To the best of our knowl-
edge, this is the first time this manipulation is considered in the literature.
In the following, we introduce the goal and show the proposed solution.

3.3.1 Problem formulation

We aim at detecting and localizing video temporal splicing in a blind way.
Specifically, we do not know how many source devices are spliced to-
gether, nor the number of splicing portions and the temporal position of
the splicing. Formally, let us consider a video V modeled as the tempo-
ral concatenation of an unknown number N of shots S,,, n € [1, Ny], i.e.,
V = {S;,S,,...,Sn.}. Each shot S,, is composed by an unknown num-
ber of frames recorded from a single device. Devices are assumed to be
unknown.

Figure [3.18] shows an example of video compilation composed by N,
shots. Our goal is to estimate the amount of shots N, and segment the
video V into its originating shots S,,. In order to split the video into the
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set of originating shots, we leverage PRNU-based source device attribu-
tion. In principle, if each shot corresponds to a single acquisition device
whose PRNU is known, it could be possible to aggregate frames sharing
significant correlation with each PRNU, thus detecting and localizing the
various splices. However, we consider the challenging scenario in which
shots’ PRNUs are not available, as we do not know the camera models ex-
ploited for generating the video compilation under analysis. To overcome
this problem, we propose an algorithm to estimate the various camera fin-
gerprints directly from video frames, in an iterative fashion. This allows to
blindly identify how many shots generate the compilation, and localize the
splicing portions.

For the sake of clarity, we suppose to work with video compilations
composed by non-stabilized sequences. Nonetheless, in section dedicated
to results, we provide experiments on both non-stabilized and stabilized
videos. In the next following, we report a detailed description of the pipeline.

3.3.2 Proposed method

As previously stated, every analyzed video V is the combination of various
shots with distinct characteristics. More specifically, we are completely
unaware of the number of involved devices, related camera models, and
number of frames of each splicing shot. Here we show the rationale driv-
ing the proposed method through an example, followed by an exhaustive
description of the algorithm.

Let us suppose we randomly select from the whole sequence a reference
frame I, and extract its noise residual W, as proposed in [10]. This frame
belongs to a random shot, thus its noise W,. is supposed to correlate only
with noise residuals extracted from other frames of the same shot. By scan-
ning all video frames Iy, f € [1, Nf| and extracting the relative noise W,
we define the cumulative sample mean noise as

f .
W => V;f (3.28)
=1

This cumulative average noise contains information about noises extracted
from all frames until the f-th one. If V is generated from a single shot,
W (f) is directly related to the PRNU of the recording camera as defined
in 2.1). In case of multiple shots, W (f) contains averaged information
about different shots’ fingerprints, depending on f.

Taking into account these considerations, we can solve the source device

identification problem between the available fingerprint estimate W (f) and
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Figure 3.19: Video sequence composed of 3 shots coming from 3 unknown devices.

the reference frame I,.. It is worth noticing that computing the frame-variant
NCC denoted as ¢(f) = NCC(W,, W(f) o L.), we can observe this be-
havior:

* If f < r and the considered f frames do not belong to the same shot
of I, then ¢(f) is low and more or less constant. As a matter of fact,
W(f) is a completely wrong estimate of the fingerprint related to the
reference shot and does not correlate with W,..

 Atagiven f < r, W(f) starts being built exploiting noise residuals

from frames belonging to the very same device of I,. Hence, W (f)
starts matching W,., and ¢( f) begins to increase.

* After all frames of the reference device have been scanned (i.e., the f-
th and r-th frames come from different devices), ¢( f) starts dropping,
since W ( f) begins containing contributions from noises not correlat-
ing anymore with W,

For the sake of clarity, Figure [3.19 reports a compilation composed by
three splicing portions:

* Sy, composed by frames I, f € [1,450];
* S,, composed by frames I, f € [451,1050];
* S3, composed by frames I, f € [1051, 1650].

The behaviour of the relative c( f) is depicted in Figure :

If the reference frame is I o (i-e., belonging to S;), ¢(f) increases up
to f = 450, then it starts dropping as frames after 1,59 do not belong to
S; anymore. If the reference frame is I7oo (i.e., belonging to Ss), ¢(f) is
almost flat for f < 450 (i.e., frames belonging to S;), shows an increasing
behavior for 450 < f < 1050 (i.e., frames belonging to Ss), then it drops
again for f > 1050 (i.e., frames belonging to S3). A coherent behavior can
be observed if we consider reference frame I;3qg.
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Figure 3.20: Example of c(f) behaviour over the video shown in Figure

Bearing this in mind, the proposed pipeline for blind detection and lo-
calization of temporal splicing consists of the following steps:

a) selecting the reference frame — randomly select one reference frame
from the video and compute c(f), f € [1, Ny

b) clustering frames — group together frames for which ¢(f) locally in-
creases and delete the selected group from the entire video;

Iterate steps (a) and (b) until almost all video frames have been clustered
in different groups;

c) clustering shots — to counteract the problem of over-estimating the
number of splicing shots, cluster the groups of frames with higher inter-
correlation;

d) assigning left-out frames — assign the remaining frames to the best-
matching shot.

It follows an exhaustive description of each step.

(a) Selecting the reference frame

Since information about temporal segmentation is not available, the only
way for selecting the reference frame is to pick it up randomly. Actually,
interpretation of ¢(f) is not always straightforward like in Figure As
a matter of fact, correlation ¢(f) can exhibit an increasing behavior even
for frames not belonging to the same shot of I, as well as multiple local
maxima (e.g., due to correlated frame content). Therefore, to increase the
algorithm’s robustness, we perform multiple experiments, picking up a pool
of different reference frames.
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The algorithm extracts R possible I, frames, and computes c¢,.(f) for
each realization r € [1, R]. We define three quantities useful to evaluate
¢ (f) goodness:

* The maximum value of ¢,(f), defined as
M, = max (e (f)) - (3.29)

* The frame index related to the maximum c,( f) value, defined as
my = argmax (cr(f)) - (3.30)

* The largest set of frame indexes for which ¢,(f) shows a monotoni-
cally increasing behavior, defined as A,.

The best reference 7 out of the R ones is selected as the realization with
highest M,., given that m,. € A,.. This ensures that frames whose index lies
in A, belong to a single device.

(b) Clustering frames

Once the best realization 7 has been selected, we average noise residuals of
frames belonging to Az, in order to estimate a fingerprint K,, which will be
related to a new shot S,,.

To cluster frames together, we follow the standard PRNU-based source
attribution pipeline: being K, the estimated fingerprint, noises from all
video frames are correlated with K,. We assign to the new shot S, all
frames for which NCC is above a predefined threshold. Next operation con-
sists in removing the estimated group of frames from the video sequence,
and iterate steps (a) and (b) until remaining frames are less than a default
value (i.e., 100 in our experiments).

(c¢) Clustering shots

Estimation of true fingerprint from a small subset of frames is far from
being an easy task. For this reason, it sometimes happens that frames be-
longing to the same original shot are not clustered together, due to low
correlation values. Therefore, we usually end up with an estimated com-
pilation V = {S;,Ss, ..., Sps. }, whose number of shots is higher than the
true one (i.e., M, > N,).

Some control on over-estimation is thus necessary. On the other hand,
it is still better over-segmenting the compilation than clustering shots of
different sources. To this purpose, we propose a clustering strategy for
blindly grouping shots wrongly split:
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* We compute the reference noise pattern K., for each estimated shot in
V.

* We correlate through NCC all pairs of reference noise patterns.

* We cluster different shots if and only if each shot of the cluster has
pairwise NCC with all other shots greater than a threshold I', and the
cluster is composed by temporally adjacent shots.

* The estimated video sequence V now includes a reduced set of shots,
whose fingerprints are the average of noise patterns inside the same
cluster.

This procedure is iterated manifolds, until no more shots are aggregated.

(d) Assigning left-out frames

At this step, the compilation V = {Sl, S,,....S L. } includes the reduced set
of L, shots, while at most 100 remaining frames have not been assigned to
any contribution. The easiest way for labeling them is to apply the standard
PRNU-based source attribution pipeline. We assign each singleton frame to
the shot whose estimated fingerprint better correlates with the frame noise
residual.

3.3.3 Experiments and validation

In this section we first introduce the datasets used for experiments, then we
report the achieved results.

Datasets

Splicing portions have been collected from the same dataset used for ex-
periments in Section the Vision dataset [29]. More specifically, we
created two distinct datasets for non-stabilized and stabilized compilations.
For the sake of brevity, from now on we describe the generation process of
non-stabilized compilations, but procedure still remains the same for both
cases.

From dataset [29]], we only select non-stabilized devices with minimum
Video Resolution set to HD-Ready (VR > 720p). Then, 5 videos per de-
vice are collected, randomly picking from indoor/outdoor scenarios and
considering only move/panrot acquisition modes. This choice comes from
the idea of generating plausible results, since combinations of flat or static
videos are actually less likely to be found.
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For each device, we cut the 5 selected videos at frame index 150, 300,
450, 600, 750, respectively, in order to generate splicing portions of differ-
ent lengths. The resulting splicings are then cropped to common resolution
of 720 x 720 pixels and gray-scale converted. Since the available non-
stabilized devices are 19, we end up with a pool of 95 distinct splices.

The final video compilation is obtained as the temporal concatenation of
N, € [3, 6] splicing portions, randomly extracted from the pool. Following
this pipeline we generated two datasets, covering 150 non-stabilized videos
and just as many stabilized.

Evaluation Metrics

We developed two kinds of accuracy measures for inferring the quality of
proposed method in splicing localization. Specifically, A,,;;, and A, are
defined as:

* A,nig: for each original shot, A,,;, is the percentage of frames be-
longing to that shot which actually have been labeled as a unique
cluster in the estimation process. This measure detects presence of
over-segmentation.

* A.q: for each estimated shot, A is the percentage of frames belong-
ing to that shot, which effectively belongs to a unique original splice.
It decreases in case of under-segmentation.

Concerning quality evaluation in identifying the number of shots in the
compilation, it is paramount to take into account previous considerations
made in Section [3.3.2] Our goal is to reduce as much as possible the error
in the amount of estimated shots, still favoring over-segmentation in order
not to mix various devices together. We define E; as the error in estimating
the number of shots which generates the video.

Accuracies and E; are averaged over the total amount of contributions
in a single compilation.

Results

We show results in terms of mean A,,;;, A.s, E5 over the two datasets of
non-stabilized and stabilized videos. More specifically, we evaluate these
measures for different values of threshold I" exploited for clustering splices.

Figure[3.21]depicts outcomes for non-stabilized compilations. The more
I' increases, the less splices are clustered. Hence, while accuracy A,
decreases for over-segmentation, Ay gets approximately to 0.95. Note
that we must necessarily investigate accuracy behavior together with Ej,
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0.95

Figure 3.21: Results for non-stabilized video compilations.

otherwise we could fall into several interpretation mistakes. Higher values
for A.s are feasible only as long as E; does not excessively grow. For
this reason we introduce a new accuracy measure, averaging A,,;; and A g

versus [', ending up with A.

We think of A representing a good measure for the selection of best I'
for clustering. Indeed, A takes into account both over-segmentation risk
(highlighted by A,,;,) and under-segmentation risk (stressed by A.y;). In
light of this, we note that the best threshold values are I' = {5,6} x 1073,
which guarantee A around 0.9, and segmentation error E; below +1 over-
estimated splices on average.

As far as stabilized compilations are concerned, results are shown in
Figure[3.22] Note that, in this situation, the PRNU-based source attribution
approach is severely hindered. As a matter of fact, A,,;, is always well
below 0.7. On the other hand, A.,; achieves very good measures, reaching
scores about 0.94. We must beware of this result: the behavior of E; is far
from being acceptable, as E; > 4 for all thresholds. This means that we are
actually over-segmenting shots very often. However, as PRNU estimation
is known to be a challenging task for stabilized videos, these results are
expected.
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Figure 3.22: Results for stabilized video compilations.

3.4 Conclusions

In the initial part of this chapter, we propose several solutions to the prob-
lem of video source attribution when motion stabilized video sequences are
considered. The experimental campaign is conducted on a publicly avail-
able dataset composed by almost 400 videos coming from stabilized and
non-stabilized mobile devices. The best results for video attribution are ob-
tained if images are available for reference fingerprint estimation, whereas
using only videos worsen the achieved performance as expected. It is worth
noting that video stabilization is performed directly on-board by proprietary
software, and we have no control over it, thus making the experiments com-
pletely realistic. Despite this lack of knowledge, modeling video stabiliza-
tion with similarity transformation proves to be quite effective. Overall, it
is required less than a minute per frame for parameters estimation by means
of particle swarm optimization.

Additionally, we investigate an alternative strategy to estimate the simi-
larity parameters based on Fourier Mellin transform. Though this method-
ology still needs improvement in terms of asked computation time and stor-
age, it can potentially pave the way for efficient transformation estimations
which do not require global optimization strategies.

Eventually, we highlight the effect of using the first acquired video
frame for camera attribution. As this frame is often not stabilized, in-
cluding it within the experimental campaign can produce misleading re-
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sults and leads to wrong conclusions. This is especially true if we con-
sider a future scenario in which mobile devices will start recording videos
even before pressing the rec button (e.g., as already proposed in the latest
Android-based Google devices). Indeed, in this situation, the concept of
first acquired frame becomes fuzzy, and possibly all available frames can
be motion compensated.

As a further analysis on video sequences, we consider the problem of
blind detection of video splicing exploiting PRNU-related traces. We in-
vestigate video compilations composed by an unknown number of shots
coming from an unknown amount of different devices. The proposed al-
gorithm estimates the number of shots as well as their starting and ending
points in time. We leverage the idea that noise traces (related to PRNU)
extracted from different frames within a sequence should correlate only if
frames have been acquired with the same device. It is therefore possible to
iteratively group frames generated from the same device, eventually esti-
mating all frame clusters, i.e., different shots.

We test our method on the same dataset used for source device iden-
tification. Despite the promising results obtained on non stabilized video
sequences, this study confirms that video stabilization is a highly-corruptive
operation in terms of PRNU-based detectors. Whenever a compilation of
stabilized sequences is under investigations, the issues due to the risible
amount of video frames and frame misalignment require suitable counter-
measures similar to those previously presented and additional investiga-
tions as well.
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CHAPTER

Source device anonymization

In this chapter, we present all the investigations regarding counter-forensics
methods, namely strategies to undermine performances of forensics algo-
rithms. Specifically, we focus on counter-forensics methods related to the
source device identification problem. In this vein, the goal is now reversed
with respect to previous tasks and consists in source device anonymization.
A given visual content is manipulated in such a way it cannot be linked
anymore to its provenance device. As previously reported, the motivations
behind source device anonymization are basically two: spotting the weak-
nesses of source device identification algorithms and preserving the privacy
of data owners.

Since this is a relatively new field of study, our research focuses on im-
age anonymization. To this purpose, we propose two strategies. The for-
mer one deletes a predefined set of pixels and inpaints them from neigh-
bours exploiting regularization techniques. This operation helps to reduce
the PRNU traces left on the image, lowering the cross-correlation test with
the candidate device while guaranteeing an acceptable image visual qual-
ity. The latter strategy leverages recent findings in the deep learning field
to attack PRNU-based detectors. Specifically, we focus on the possibility
of editing an image through convolutional neural networks (CNNs) in a
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visually imperceptible way, still hindering PRNU noise estimation.
In the following lines, we first report the state-of-the-art on image anon-
ymization, later we show the novelties of our proposals.

4.1 State-of-the-art in image anonymization

In the latest years, the increased privacy concerns make the need for ef-
fective anonymization methods rather pressing. Furthermore, studying the
boundaries of image anonymization can enable analysts to be aware of the
robustness of camera attribution methods in the presence of malicious at-
tacks. For these reasons, device anonymization techniques tailored to re-
move or hinder PRNU traces have been developed.

Among the developed techniques, some require the knowledge of the
PRNU pattern to be deleted. As an example, the authors of [[103]] and [[104]]
propose different iterative solutions to delete a known PRNU from a given
picture. They propose to remove the PRNU by means of the subtraction of
this from the image intensity.

Other methods work by blindly modifying pixel values and scrambling
their positions in order to make the underlying PRNU unrecognizable. In-
deed, they do not require the knowledge of the PRNU pattern, thus being
more suitable in cases where the corresponding device is not available.

For instance, [[105]] investigates the robustness of PRNU against standard
processing operations like denoising, JPEG compression, re-compression
and demosaicking. They show that even after eight denoising steps there are
issues in anonymizing images, because the correlation between the image
noise residual and PRNU is still significant. Furthermore, they demonstrate
that compression or demosaicking operations contribute in lowering the
accuracy of source device attribution, but cannot remove the PRNU pattern
in an acceptable manner.

Alternatively, [106,/107] propose to anonymize images by misaligning
the noise residuals and the PRNU pattern. As a matter of fact, as seen with
video stabilization, in order to compute the correlation test, the noise con-
tent of both terms should be aligned in pixels. In order to hinder the attribu-
tion performances, the authors show that neither geometric transformations
are enough but we need to incorporate irreversible transformations. They
propose to anonymize images by applying seam-carving to change pixel
locations, thus introducing irreversible misalignments.

More recently, [92]] compares patch-based methods to shuffle small im-
age blocks. In their paper, authors explore the natural self-similarity of
digital images to move small patches into different positions of the image,
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4.2. Inpainting-based image anonymization

thus impeding the pixel alignment between noise residual and device fin-
gerprint.

4.2 Inpainting-based image anonymization

In this section, we investigate parallel and fast inpainting techniques as
methods for image anonymization. Inpainting is a well-known topic, which
refers to the application of simple or sophisticated algorithms for recon-
structing lost or corrupted portions of an image (e.g., by solving partial
differential equations, by applying sparse domain transformations or regu-
larization of inverse problems, etc.). The rationale behind our approach is
that, by deleting and reconstructing each pixel from its neighbours, PRNU
effect can be strongly attenuated. The proposed method mainly works in
two steps:

1. each image pixel is substituted by its inpainted value, in order to cor-
rupt the PRNU;

2. pixels around edges are replaced by denoised versions of the original
ones in order to mask possible visual artifacts around sharp disconti-
nuities.

Even though the literature is wide and provides many advanced solu-
tions, we investigate the use of simple yet effective inpainting schemes that
keep computational complexity at bay. Specifically, we only consider solu-
tions that reconstruct pixels by solving inverse regularized problems.

In particular, it is important to point out that a regularization which per-
fectly reconstructs the original image would lead to a high visual quality
result, but would be totally useless for what concerns the anonymization
task, as the traces of PRNU would remain almost unchanged. Therefore,
in order to achieve our goal, the algorithm proposes a trade off between
quality and anonymization of the outputs.

4.2.1 Proposed method

The problem of image anonymization translates into the following con-
straint: given an image I, attenuate its PRNU traces so that it is impossible
to attribute the image to the device that shot it. In other words, if I is ac-
quired with a device whose estimated PRNU is K, it is reasonable that its
NCC(W, 10 K,) > T, as previously shown in Section Our goal is
to modify I through editing techniques in order to obtain an anonymized
version I with the following properties:
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Figure 4.1: Pipeline of the proposed anonymization strategy: the original image 1 un-
dergoes block selection, and every modified version is inpainted in parallel. Results
are merged to obtain I which is further processed around edges, thus obtaining the
anonymized image I

Logical
Complement

* NCC between the noise extracted from the output image IGe., W)
and the camera PRNU K, gets to reasonably low values, therefore
NCC(W, Io Kd) <TIy

* image I is not visually corrupted by the applied editing operations
(i.e., peak-signal-to-noise ratio between I and I assumes high values).

The proposed pipeline, shown in Figure .1} is the following:
1. select and delete different blocks of I;

2. blocks of I are processed in parallel, reconstructing the erased pixels
from neighboring ones as in a classical inpainting problem;

3. image I is reconstructed by splicing together all the inpainted blocks;

4. the final anonymized image I is obtained by further processing pixels
around edges of 1, in order to mitigate inpainting artifacts near sharp
discontinuities and increase visual quality.

The algorithm is applied separately on each color plane. In the following,
we describe each step focusing on a single color plane, without loss of
generality.

Block selection

The first step consists in selecting and deleting different image blocks as
shown in Figure [d.2] The selection of pixels is performed through NV pixel
selectors Sg, s € [1, V], applied in an element-wise fashion to I. Specifi-
cally, each pixel selector S is a matrix with the same size of the image, set
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Figure 4.2: Results of applying 4 pixel selectors to image 1: each selector S; selects and
deletes different blocks of the original image. White areas represent deleted pixels.

to 0 if the pixel must be removed and to 1 elsewhere. This matrix, if mul-
tiplied pixel-wise with image I, selects and erases areas of B x B pixels,
interleaved in both horizontal and vertical directions by a fixed gap of P
pixels left at their original values. In order to gradually select and cancel all
image pixels, each selector S; is orthogonal to the others. This means that
each selector deletes a different portion of the image, but the whole image
is covered considering the effect of all selectors eventually.

Figure 4.2] shows an example in which 4 pixel selectors are multiplied
by the original image in order to cancel some specific regions. We define
each modified version of I as Iy = S; o I, with s € [1, NV].

Image inpainting

We investigate the family of inpainting methods based on the solution of
simple ¢; and /5 regularized inverse problems. Our choice is motivated by
the fact that this class of problems has been broadly implemented through
standard and efficient iterative methods [[108].

In this scenario, the inpainted image I, is estimated by solving the min-
imization problem:

I, = arg H%in 1S5 o Ly — L[I% + s [| R{L}% . “4.1)

The pixel selector S, selects the pixels from I, || - ||p represents the Frobe-
nius norm, g is the penalty weight associated to the regularizer operator
R{-}, and || - ||, is the entrywise ¢, norm. The first term of the objective
function (i.e., ||S, 0L, —I,||%) is a fitting condition. It basically imposes that
the inversion result approximately honors the known samples of the image.
The second term (i.e., i || R{I}||?) is the regularizer, which provides the
condition to be respected by the inpainted pixels. Different regularizing
operators and norms lead to different inpainting results.
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A reasonable regularizer condition consists in imposing some smooth-
ness constraints (i.e., R{-} should be a roughening operator). This ensures
inpainted values to be not too dissimilar from neighboring pixels, which is
desirable especially in flat regions of natural images (i.e., far from edges).
Among the many regularization operators available in the literature, we
make use of R{-} = /(D.{-})* + (D,{-})? where operations are applied
element-wise and D,{-} and D,{-} are the horizontal and vertical deriva-
tive operators, respectively.

For instance, the result of applying D,{-} to an image I, is defined as

[i Jij = [is]m’ - [L]i,j+A Jj el H—A]
Sz 11, 0 ]E[H—A+1,H]

where A > 0 is the desired pixel gap for the derivative calculation, H
represents the image height and width, as we are dealing with square im-
ages, and (i, j) represent the pixel locations within the image. By setting
different gaps A, various definitions of derivative can be used.

For what concerns the norm applied to the regularization term, we con-
sider two strategies:

, 4.2)

1. a /5 norm leading to the well-known Tikhonov regularization [109]],
which is the most widespread technique for inverting ill-conditioned
problems;

2. afy norm strategy, known as Total Variation (TV) regularization [[110],
which exhibits edge preserving properties.

While the /5 strategy is very simple from an implementation point of view,
it is known to introduce an overall smoothing effect that may be undesir-
able around sharp edges. For this reason we also investigate the ¢; norm
applied to the previously defined operator, which is widely used for pre-
serving edges and discontinuities in the final inpainting solution.

Block Merging

After obtaining the inpainted versions I, of each image I, we construct the
image I by merging the inpainted blocks:

N
I=) (1-8,)o0L. (4.3)
s=1

Note that each pixel of Iisan inpainted pixel, and no original pixels of I
survive this operation. Moreover, due to S definition, each pixel of I is
reconstructed from a single I;.
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Edge Processing

Inpainting applied with the aforementioned solutions may still introduce
some undesirable visual artifacts around edges (the effect can be noticed in
Figure where image I has low peak signal-to-noise ratio). Therefore,
to increase image visual quality, a further edge processing operation is ap-
plied. More specifically, we substitute pixels of I around image edges with
pixels coming from a denoised version of I, in order to avoid the reintroduc-
tion of too much PRNU information. Indeed, [105] shows that denoising
contributes in attenuating PRNU, thus motivating our approach.
Formally, the edge reconstruction pipeline is as follows:

1. the original image I is denoised using two successive steps of BM3D
algorithm [[111](with variance parameter ¢ = 7), thus obtaining I,

2. the edges of I are extracted using Canny edge detector (with its default
parameters defined in [[112]), obtaining a binary edge mask E (the
same size of I), which is 1 only at edge locations and 0 elsewhere;

3. edge-mask E is dilated by means of a disk structural element (with
radius of 3 pixels);

4. the final anonymized image is defined as I = I o (1-E)+1I0E.

Figure shows the effect of applying edge processing to I. Note that
peak signal to noise ratio (PSNR) of I is increased by 7 dB. Moreover, the
computational complexity of this step is mainly due to denoising operation,
which is almost negligible with respect to the rest of the inpainting pipeline.

4.2.2 Results

In this section we report all the details about the conducted experimen-
tal campaign. To this purpose, we first introduce the used experimental
methodology. Then, we report results obtained with different inpainting
strategies.

Methodology

Our experimental setup mimics that of Entrieri et al. [92], one of the most
recent image anonymization approaches. For this reason, as image dataset,
we randomly select 600 never-compressed Adobe Lightroom images from
the Dresden Image Database [42] coming from 6 camera instances (Nikon
D70, Nikon D70s, Nikon D200, two devices each). All images are syn-
chronized to landscape orientation and cropped to the central portion of
size 512 x 512 pixels.
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The estimation of the clean sensor fingerprint K, for each device is ob-
tained from 25 homogeneously lit flatfield images as typically suggested
[20./113]. Image noise residuals W are computed with the Wavelet-based
filter [114] commonly used in PRNU extraction [20].

We show results in terms of receiver operating characteristic (ROC)
curves of a camera identification PRNU-based detector. Specifically, fix-
ing the PRNU of a given camera, NCC obtained from anonymized images
taken with that camera define the set of positive samples, whereas the set
of negative ones includes NCC values from all images not taken with that
camera. Our goal is to reduce as much as possible the area under the curve
(AUC), thus making the PRNU-based detector not working.

Moreover, to evaluate image quality level, we report the relationship
between PSNR and true positive rate (TPR) calculated at a fixed false pos-
itive rate (FPR) of 1%, which we denote as TPRago1. The goal is to reach
a high PSNR with low values of TPR@ag.0; and AUC. Results are always
averaged on all 6 devices.

To distinguish between the proposed inpainting strategies, we use the
following notation: each technique is identified by the label 62(73), where
¢, represents the selected norm for the cost function regularization (i.e.,
p € {1,2}), while the superscript defines the size of the B x B regions
deleted by the pixel selectors.

For what concerns the derivative implementation, we noticed that A =
3 provides a good trade off between high reconstruction quality and low
PRNU correlation. Indeed, smaller A tend to inpaint the image from nearer
(and more correlated) pixels, consequently enhancing the correlation with
the camera fingerprint. Conversely, larger A result in low PSNR. The
penalty weight associated to the regularizer is . = 102 for both /5 and ¢,
norms, since higher values oversmooth the image, thus reducing the visual
quality.

Testing

The first experiment aims at showing that the proposed pipeline is actually
able to fool PRNU-based camera attribution detectors. To this purpose,
we tested both ¢, and /; inpainting by considering different block sizes
B € {3,5}. Figure reports promising ROC curves, as their slopes
are approximately 45° degrees (i.e., perfect anonymization). Every strategy
seems to provide satisfying performances, even though, the bigger the block
dimensions (B = 5 instead of 3), the better the anonymization results.

For what concerns the inpainting effect on image quality, Figures 4.4]
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Figure 4.3: ROC curves after camera anonymization process (each color represents a
different inpainting strategy).
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Figure 4.4: (a) Median PSNR vs. TPRag.01 for different inpainting strategies, in
comparison with PatchMatch-based (gray lines) patch replacement [92)]; (b) Median
PSNR vs. AUC for different inpainting strategies, in comparison with PatchMatch-
based (gray lines) patch replacement [|92]].

shows encouraging results, both in terms of TPRy; and AUC as a func-
tion of the median PSNR of inpainted images. As the goal of image anon-
ymization is to reduce TPRag 1 or approaching AUC =~ (.5 still granting
high PSNR, the best solutions for Figures 4.4(a) and 4.4[b) are those in
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the lower right quadrant of the graph. In particular, notice that with the ¢,
strategy we are able to reduce TPRg; under 11% and to obtain an AUC
of 0.6 by still achieving a median PSNR around 39 dB.

As state-of-the-art comparison, Figure shows results of the
PatchMatch-based image anonymization proposed in [92], adapted to work
on color images. This algorithm depends on two parameters: (i) 7 is an er-
ror threshold; (ii) o is a smoothing factor. Each gray line represents results
obtained for a given 7 and changing o € {0.1,0.75,2,4}.

This comparison shows that the proposed methodology is an effective
alternative to PatchMatch-based anonymization, both in terms of TPRg o,
and AUC. For instance, the ¢; solution for both B € {3,5} is able to
match state-of-the-art performances in terms of median PSNR, while gain-
ing about 0.1 in terms of both TPR¢; and AUC.

4.3 Image anonymization through CNNs

In this section, we explore the possibilities offered by CNNs in terms of
image anonymization. Contrarily to the previous strategy proposed in Sec-
tion[4.2] we present a method based on the knowledge of the device PRNU,
in which an image-wise anonymization loop is built upon a CNN-based
noise extractor. Specifically, an autoencoder-inspired fully-convolutional
neural network is trained as anonymization function via back-propagation,
exploiting the possibilities offered by a recently introduced CNN-based de-
noising method [[115].

It is worth noting that the proposed use of a CNN is different from the
typical one. Instead of training a CNN on many images to learn a general-
izable method, we “overfit” the proposed CNN on each single image to be
anonymized. In other words, we consider the CNN as a parametric opera-
tor. We build a loss function to be minimized in order to estimate the CNN
parameters. The CNN training is seen as an iterative way of minimizing the
CNN loss for each given image.

For the sake of clarity, in the following sections we describe in details
the proposed method and the experimental results.

4.3.1 Proposed method

In order to anonymize an image I, we propose an anonymization oper-
ator A{I, K,} that generates an anonymized version of I, namely I =
A{I,K,}. As shall be clear from the next section, the design of A{-} is
such that PSNR between I and I is greater than a reference value while the
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Figure 4.5: Architecture of the proposed system. An anonymization operator A{-} is fed
with the input image 1 and the relative device PRNU K. The anonymized image 1
is used to compute a quality loss 1, based on the MSE between 1 and 1. The noise

residual W, extracted through a noise extractor N {-} from L is used together with the
device PRNU K to determine a correlation loss ..

normalized cross-correlation between the noise residual W extracted from
I and K, is minimized. In an optimal case, it will result that NCC(W, K o0
i) < I, so that it is not possible anymore to bind the anonymized image I
to its camera device with a given confidence +.

The proposed anonymization method is based on the idea of minimizing
a cost function made up of two components:

1. a measure of the difference between input image I and its anonymized
version I;

2. the cross-correlation between the anonymized noise residual W and
the device PRNU K.

Figure[4.5|shows the overall working scheme. An image I and the corre-
sponding device PRNU Kj are fed as input to the anonymization operator
A{-}. The output of A{-} is an anonymized version of I, namely I. The
mean square error (MSE) between I and Iis computed and stored into [,
the first component of the global cost function. The anonymized image I
is fed as input to the noise extraction operator N{-} and the output W is
correlated with the sample-wise product between K, and Ito get [, the
second component of the global cost function. The global cost function [ is
then defined as | = (1—f3)-{,+ - l., where [ is a weighting parameter tai-
lored at balancing the trade-off between image quality and anonymization
performance.

In the depicted scheme, N{-} is a fixed noise extractor, whereas A{-} is
a denoising operator independently learned on every input pair (I, K;). We
require both of them to support gradient computation so that it is possible
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Figure 4.6: Structure of the proposed CNN-based anonymizer A{-}. The input image I is
processed through a set of 17 convolutional layers (Conv2D) followed by ReLU non-
linearity and Batch Normalization (BN). The reference PRNU K is processed with
two convolutional layers separated by a ReLU non-linearity. The output anonymized
image I results from the sample-wise algebraic sum of the input image 1 and the two
fully-convolutional branches.

to learn via back-propagation the parameters of A{-} as a function of the
overall cost function /.

To satisfy the gradient computation capability for N{-} we resort to
DnCNN [115], a fully-convolutional neural network that shows noise ex-
traction capabilities comparable with the Wavelet-based filtering approach
commonly used for PRNU-based image source attribution. DnCNN is com-
posed by a set of 17 convolutional layers composed by 64 filters each with
kernel size equal to 3 and padding 1, each followed by ReLLU non linear-
ity and batch normalization. The fully-convolutional nature of the network
does not require as input a fixed size image and produces as output a noise
residual with the same size of the input image.

As for the choice of A{-}, we exploit an autoencoder structure similar
to DnCNN, as depicted in Figure The input image I is processed by
a set of 17 convolutional layers (Conv2D), each followed by ReLLU non-
linearity and batch normalization (BN). The reference PRNU K, is fed to
a convolutional layer, followed by a ReLU and yet another convolutional
layer. The final anonymized image I results from the sum of the two con-
volutional processing branches together with the input image itself. The
weights of the convolutional layers and the parameters of batch normal-
ization for A{-} are learned for every single image via back-propagation,
driven by the global cost function /.

The image-wise anonymization process follows as from Algorithm 4.1
An image I, a reference PRNU K, and a minimum desired PSNR
(PSNRyin) are provided as input. The loss weighting factor 3 is initial-
ized at 0.1. At every iteration we first compute the anonymized image I,
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Algorithm 4.1 Image-wise anonymization process
Require: I, K;, PSNRin

6+ 0.1
foriin {1,...,3000} do
I+ A{LLK;}

l; < MSE( T)
P + PSNR(L I)
W « N{I}
lo + |NCC(W,Kgo0T1) |
l=1=8)lg+B-l
A{ -} < BACKPROPAGATE(A{ -}, 1)
if MOD(i, 300) =0 A P < PSNR,;, then
B+ B/4
end if
if P > PSNRuin A l. < 107* then
return I
end if
end for
return I

together with the MSE loss [, and the PSNR with respect to the original
image I. Then the noise extractor N{-} is used to extract a noise residual
W from I and compute the cross-correlation loss .. The global loss [ is
computed according to the weighting factor 5. As all operations in A{-}
are differentiable, it is possible to back-propagate the error and modify the
anonymizer parameters to minimize loss using any iterative optimization
algorithm (e.g., stochastic gradient descent in our implementation).

It is not required for N{-} and A{-} to have a similar structure, as long
as both are differentiable operators. Once every 300 iterations, if the PSNR
value is smaller than the desired minimum value PSNR,,;,, the weighting
factor (3 is reduced by a factor 4, in order to raise the importance of the MSE
loss [, over the cross-correlation loss .. If the current PSNR is greater than
the desired minimum and the cross-correlation loss is small enough (i.e.,
l. < 107%), the current anonymized image I is returned and the optimiza-
tion stops. At most 3000 iterations of the algorithm are performed, in order
to bound the required anonymization time if the early stop condition is not
met. A sample of the evolution of I, NCC and PSNR over the iteration is

provided in Figure

103



Chapter 4. Source device anonymization
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Figure 4.7: Iterations of the proposed algorithm on a sample image. From left to right the
evolution of T at i = {30, 410,970} with NCC decreasing and PSNR increasing. The
rightmost picture is the original image 1.

4.3.2 Experiments and results

To state the effectiveness of the proposed approach, we resort to the same
dataset and metrics used in state-of-the-art [92] and in Section[d.2][18]]. The
dataset is composed of 600 raw natural images, demosaicked with Adobe
Lightroom, randomly selected from 6 cameras (Nikon D70, Nikon D70s,
Nikon D200, two devices each) from the Dresden Image Database . All
the images are cropped in their center to a fixed size of 512 x 512 pixels.
We evaluate the anonymization performance by using two different noise
extraction functions:

1. the DnCNN function used as noise extractor within the anonymization
scheme, denoted as Ny,;

2. the Wavelet-based noise exaction function [114] commonly used in
PRNU-based works, denoted as V.

As for the use of DnCNN as noise extractor, we resort to the pre-trained
model available from [115]. We resort to Pytorch as Deep Learning
and CNN framework.

The reference PRNU K, for each device is estimated from 25 raw flat-
field images from the same database, according to N, as from [20]. All
the 600 images are anonymized by varying the PSNR,;, parameter in the
set of values {37, 38,39,40,41}. Each anonymized image is stored as an
uncompressed PNG file, thus being quantized to 8-bit as in real case sce-
nario. For each value of PSNR,,;, we observe the distribution of the ob-
tained PSNR values. Noise residuals are extracted with Ny, and N, for
each anonymized image and than correlated with the 6 camera PRNUs. For
each PSNR,,;, we compute a receiver operating characteristic curve (ROC)
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Figure 4.8: Distribution of normalized cross-correlation values on pristine images using
DnCNN (a) and Wavelet (b) noise extractors, for matching image-PRNU pairs (M) and
non-matching pairs (NM).

by varying the value of I', the threshold used in the cross-correlation test to
detect whether an image as being shot from a specific device. From each
ROC we extract both the true positive rate value at a false alarm proba-
bility v = 0.01 (TPR@g01) and the area under the curve (AUC). Small
AUC values indicate good anonymization performance. Small TPR@ag 01
values indicate that when accepting a small false-alarm probability it is not
possible to bind the picture to its camera device.

Validation of Denoising Operator

First, we need to asses whether DnCNN (/Vy,,) can be used as a reasonable
approximation for the widespread Wavelet (/V,,) noise extractor tailored
to PRNU matching and camera device identification. Figure shows
the distribution of normalized cross-correlation values (NCC) when Ny,
and N, are used as noise extractors from pristine images. In both cases
the reference PRNU (K,) is computed with the Wavelet filter. We can
notice that for both noise extractors the discriminability between matching
(M) and non-matching (NM) image-camera pairs is preserved, with a slight
superimposition of the two distribution for DnCNN.

Figure [4.9] shows the difference in terms of ROC between Ny, and Ny
on pristine images. The values of AUC reported in the legend show how
DnCNN detection performance are slightly lower than the ones of Wavelet,
but still above 0.99. This test confirms that DnCNN is able to extract
PRNU-based residual information from images, thus justifying its use
within our anonymization pipeline.
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Figure 4.9: Comparison between N, and Ny, as noise residual extractors in terms of
ROC curves. The AUC reported between squared brackets shows almost equivalent
performance in terms of detection.

Minimum PSNR Requirement

As the proposed algorithm uses the PSNR;, as a driving criteria for the
minimum accepted image quality, we are interested in checking whether
this criteria is actually met in an experimental fashion. In facts, it might
happen that the anonymization loop reaches the maximum number of iter-
ations but the PSNR between I and I is still smaller than PSNR,,,;,. Fig-
ure[d.10|reports the histograms of PSNR values obtained for various values
of PSNR . It is possible to notice that for every choice of PSNR,;, the
actual values of PSNR are always greater or equal to the minimum bound.
This confirms that the proposed iterative method is able to reach conver-
gence in terms of the imposed minimum PSNR requirement.

Image Anonymization

When it comes to verify the effectiveness of the proposed pipeline in re-
ducing PRNU-based device identification, we first compute the distribu-
tion of matching and non-matching normalized cross-correlation (p) val-
ues obtained from anonymized images with noise residuals extracted with
DnCNN (Ng,) and Wavelet (N,,). Figure d.1Tfa) shows how the distribu-
tions of matching and non-matching p values, obtained when noise residu-
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Figure 4.10: Real PSNR distribution when varying PSNR i, € {37,38}. The real
PSNR values are always greater or equal the the minimum value (vertical dashed
gray line). The same behavior is obtained for different PSNR i, values.
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Figure 4.11: Distribution of normalized cross-correlation values on anonymized images
using DnCNN (a) and Wavelet (b) noise extractors, for matching image-PRNU pairs
(M) and non-matching (NM) pairs.

als are extracted from I through Ng,, are superimposed. This makes prac-
tically impossible to bind an anonymized images to the device it comes
from. This means that the proposed anonymization pipeline is working in
the proper way, thus it has minimized the cross-correlation between the
reference PRNU K and the noise residual extracted through Ny,. As we
wish to evaluate the effect of the proposed method when the Wavelet-
based noise extractor is used on I, Figure b) shows the distribution
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Figure 4.12: ROC curve after image anonymization process for PSNRp;, = 40.

of matching and non-matching p values obtained when noise residuals are
extracted with N,,;. We can immediately spot two differences with respect
to the Ny, extractor: i) the mean of the matching values is not anymore
zero, but it is shifted toward negative values; ii) the variance of matching
cross-correlations is way higher than the variance of non-matching cross-
correlations. A forensic investigator acting in a blind way, without the
knowledge of the proposed anonymization pipeline, might use the cross-
correlation test to asses whether an image I under investigation comes from
a camera whose PRNU is K. However, a smart investigator would also
perform another test, evaluating the absolute value of the normalized cross-
correlation, thus building a symmetric test |[p (W, K o0I)| > 7. In the
plots, we refer to the results obtained with the standard Wavelet detector
with N,,, while the results obtained with the Wavelet symmetric detector
are denoted as N},.

Figure .12 shows the ROC on anonymization detection for PSNR i, =
40. If Ny, is used to extract the noise residual from I we get almost perfect
anonymization performance. This confirms that the anonymization loop,
based on the minimization of the cross-correlation value between K, o I
and W extracted through Ny, is effectively working as expected. When
noise residuals are extracted from I through the Wavelet-based function and
the unidirectional test is used (/V,), the detection performance are severely
affected. However, resorting to the symmetric detector (/V) shows that in
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Figure 4.13: TPRag.o1 (a) and AUC (b) when varying PSNR min.

fact the detection performances are affected, but are not as bad as when the
asymmetrical detector is used.

A final result is shown in Figure 4.13] where two standard metrics in
anonymization are presented. Figure .13 respectively reports TPRag.01
and AUC for several median PSNR values. Each point is obtained by set-
ting PSNR i to {37, 38,39, 40,41}. The almost zero TPRag o1 value for
Ny, and the almost constant 0.5 value for AUC are assessing that the anon-
ymization cycle is working properly if the noise extraction function used in
the anonymization loop is the same as the one used for analysis purposes.
When a different noise extraction function is used and a forensics inves-
tigator is aware of the attack (V2)) the anonymization is not guaranteed
anymore.

4.4 Conclusions

In this chapter, we propose two strategies for anonymizing images against
PRNU-based detectors.

The first approach leverages image inpainting to reconstruct image pix-
els and edge processing to increase image visual quality. We test different
inpainting strategies, showing that it is possible to attenuate PRNU traces
even exploiting simple inpainting solutions. Considering that results are
competitive with state-of-the-art blind PRNU removal solutions [92]], the
investigated pipeline proves an interesting alternative method for image
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anonymization. Moreover, the proposed framework is computationally ef-
ficient because of its high parallelization potential. Indeed, inpainting is
computed in parallel on different versions of the image, and results are
merged at the end.

The second approach works in a scenario in which the specific PRNU
to be removed is assumed to be known. Despite the previous approach and
state-of-the-art methods achieve better anonymization performance, we be-
lieve this strategy shows a different perspective on the topic, as the proposed
solution makes use of a CNN in an uncommon fashion. Indeed, the CNN is
seen as a parametric operator. The training phase is used to estimate CNN
parameters by minimizing a loss function on a single image. Given these
premises, the proposed method works by overfitting a specific CNN to each
input image.

From the adversarial forensic point-of-view, results show an interesting
aspect. If the denoising operators used for PRNU testing and within the
anonymization network match (i.e., DnCNN is used), images are strongly
anonymized. If the analyst makes use of a different denoising operator for
PRNU testing (i.e., the Wavelet-based one), anonymization may be effec-
tive or not depending on the used correlation test. In reality, denoising
operator matching is not needed by an attacker, given that the analyst is not
informed about the possibility of an attack. If analysts know about possible
attacks, they can use the symmetric test to avoid being completely fooled.
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Geophysical applications

The know-how acquired over these three years on regularization techniques
for inpainting and denoising of digital images, in addition to the matured
experience on convolutional neural networks, has generated the possibil-
ity to solve similar problems belonging to completely different fields of
research. For instance, even if including higher dimension data, different
constraints and priors, denoising and inpainting problems are commonplace
in geophysics applications as well. Some examples can be found in removal
of random and/or coherent noise in seismic pre-processing workflow, or in
reconstruction of regular and densely-sampled seismic traces. Indeed, there
is a keen interest in the geophysics community regarding data denoising,
interpolation and extrapolation.

Given these premises, in this chapter we present some results achieved
by exploiting CNNs for the goal of denoising and/or interpolation of 2D
common shot gathers. In particular, inspired by the great contributions
achieved in image processing and computer vision, we investigate a par-
ticular architecture referred to as U-net, which implements a convolutional
autoencoder able to describe the complex features of clean and regularly
sampled data for reconstructing the corrupted ones. In the following, we
first introduce the problem and the state-of-the-art, then we describe the
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details of the proposed method.

5.1 Seismic data interpolation and denoising

Seismic processing and imaging methods are essential to discover, localize
and characterize economically worthwhile geological reservoirs, such as
hydrocarbons accumulations, and to manage the extraction of the resources
stored in them. However, since easy-to exploit resources are dramatically
reducing and exploration targets are more and more complex, the require-
ments for the quality of seismic data, both in term of signal-to-noise ratio
and of regularity and density of its sampling, are constantly increasing.

Unfortunately, various types of random and coherent noise, depending
on the environment and on the acquisition technology, often corrupt seismic
data sets. An additional problem is that economic limitations, cable feath-
ering in marine case, environmental constraints and elimination of badly
acquired traces cause irregular spatial sampling in almost all seismic acqui-
sitions.

Most state-of-the-art seismic processing algorithms, such as reverse-
time-migration [[117], full-waveform-inversion [118] and surface related
multiple elimination [[119] benefit from high quality regularly sampled data.
Consequently, the vast majority of seismic processing workflows require
data pre-processing steps, including effective denoising and trace interpo-
lation algorithms. Moreover, due to the increasing size of the acquired data,
a key factor of these procedures for industrial application is their compu-
tational burden, in terms of both memory requirements and computational
time. Given these premises, the following lines summarize the state-of-the-
art for the problem of seismic data interpolation and/or denoising.

5.1.1 State-of-the-art in geophysics

The problems of trace interpolation and noise attenuation have been widely
investigated, either simultaneously or separately. Among the dozens of in-
terpolation methods proposed so far, we can roughly identify four main
categories.

Model-based algorithms implement an implicit migration-demigration
pair [120,/121]. A major drawback of these techniques is that their perfor-
mance is strongly affected in case of complex structural burden.

A second approach, for both denoising and interpolation, is based on
prediction filters [122H125], which assume seismic data to be a (local) su-
perposition of plane wlaves. However, these methods target regularly sam-
pled data, which is a heavy limitation.
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Due to their repetitive features, clean seismic data are intrinsically low-
rank in the time-space domain. Conversely, noise and missing traces in-
crease the rank of the data [126]. Therefore, algorithms recasting the in-
terpolation (and denoising) problems as rank reduction and matrix/tensor
completion have been largely studied in the past decade as third alternative
to the problem [[127-131].

A great amount of denoising and interpolation algorithms exploit a trans-
form domain where the clean signal can be represented only by few non-
zero coefficients and therefore clean data and noise are more easily sepa-
rable. The rationale behind this forth family of methods is that noise and
missing traces map in non-sparse artifacts in the transform domain.

Several fixed-basis sparsity-promoting transforms have been widely
used also for seismic data interpolation. Among the various approaches,
coming from different fields, we can cite: the Fourier transform [132]], the
Hilbert-Huang transform [[133]], the time-frequency peak filtering [[134], the
Radon transform [135]], different curvelet-like transforms [136-140] and
the EMD-seislet transform [[141]].

These methods assume the ability to describe the data in terms of a linear
combination of atoms taken from a dictionary. The aforementioned trans-
form methods implicitly assume regularity of the data described by analytic
models, resulting in predefined fixed dictionaries. However, these dictio-
naries can be thought as defining only a subset of the transforms methods.

Alternatively, data driven sparse dictionaries can be learned directly
from the dataset. In other words, these methods assume that clean signals
are a linear combination under a sparsity constraint of the atoms in a learned
overcomplete dictionary. Learned dictionaries, in the form of explicit ma-
trices for small patches, usually better match the complex data character-
istics. For instance, denoising results obtained using double sparse dictio-
nary learning and outperforming fixed dictionary transforms have been re-
ported in [[142] and [[143], combining the dictionary learning based sparse
transform with the fixed-basis transform, which is called double-sparsity
dictionary. Recently, [144] introduced a joint seismic data denoising and
interpolation method using a masking strategy in the sparse representation
of the dictionary.

5.1.2 A novel method based on CNNs

In recent years, outstanding advancements brought by deep learning and
CNNs have greatly impacted whole signal and image processing commu-
nity. In this context, innovative strategies for data interpolation and denois-
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ing based on deep learning have been proposed in many image processing
tasks. Indeed, solutions based on CNNs are nowadays often exceeding
state-of-the-art results. However, these methods have barely started to be
explored by the geophysical community for the problems of denoising and
interpolation. Promising results for the aforementioned tasks have been re-
ported through residual neural networks [145,/146], generative adversarial
networks [147]] and convolutional autoencoders [21},[148]].

In the following lines, we present our method to interpolate and denoise
corrupted seismic data in the shot-gather domain. In particular, inspired
by the important contributions achieved in image processing problems, we
exploit a properly trained U-net [[149] as a strongly competitive strategy for
noise attenuation and reconstruction of missing traces in pre-stack seismic
gathers. We provide examples on synthetic and field data showing promis-
ing performances on either denoising, interpolation, or joint denoising and
interpolation problems.

5.2 Seismic data interpolation and denoising through CNNs

In this section, we first report details about the formulation of the tackled
problems, namely interpolation and/or denoising of seismic data. Then, we
provide some background concepts on Convolutional Autoencoders (CAs)
and how to exploit them for our specific goals.

5.2.1 Problem formulation

We focus on the problem of reconstructing seismic gathers which have been
corrupted by irregular trace sampling and/or additional noise. Formally, we
represent each original non-corrupted seismic gather as I and its corrupted
version is denoted as I. Our goal is to estimate a clean and dense version
of the seismic data, namely I, as similar as possible to the original corre-
sponding gather I.

In order to solve this problem, we make use of a particular kind of convo-
lutional neural network named convolutional autoencoder (CA). Our choice
is motivated by the great capability of CA in learning compact representa-
tions of the data, and by the strong computational efficiency in reconstruct-
ing the corrupted ones. In the following, we report some backgrounds on
CAs, introducing the specific network architecture exploited for the pre-
scribed task.
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U{x,w}

Figure 5.1: Scheme of a Convolutional Autoencoder architecture.

5.2.2 Convolutional autoencoders for interpolation and denoising

Convolutional autoencoders (CAs) are convolutional neural networks
whose architecture can be logically split into two separate components: the
encoder and the decoder. The CA structure is sketched in Figure [5.1}

(i) the encoder, represented by the operator E{-}, maps the input x into
the so called hidden (or latent) representation h = E{x}, which is the
innermost encoding layer of the autoencoder, compressing the input x
into a high-level representation [150];

(ii) the decoder, represented by the operator D{-}, transforms the hidden
representation into an estimate of the input x = D{h}.

For image processing problems, CA proves to be a very powerful instru-
ment for inpainting and denoising tasks [151,|152]. The rationale behind
the use of CA for inpainting and denoising shares some common concepts
with the transform-based and dictionary learning techniques. Indeed, CA
is trained so that the encoder part results in a compact representation of
clean data, where the interference due to noise and missing samples is not
mapped. Therefore, if the compact representation is correctly built, the
result of the decoder is a dense clean image without missing samples. Con-
sequently, it is possible to train a CA to learn a hidden representation of the
clean data in common shot gathers and then to recover clean and densely
sampled gathers from noisy and scattered ones.

In particular, in this work we exploit a CNN architecture known as U-
net. Originally designed for image segmentation problems and then used
for several different tasks [153]], the U-net is named after the shape it is
usually graphically represented with. Indeed, U-net shares a large part of
the architecture with classical CA. However, in a U-net, the representations
of the input obtained at different levels of the encoder are directly concate-
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nated to the corresponding decoder levels. This peculiarity typically allows
to preserve the structural integrity of the image and to enable a very pre-
cise reconstruction. For the sake of brevity, we refer to [149] for a detailed
explanation of these architectures.

Continuing the analogy with the transform-based methods, we can think
the trained U-net as an instrument implicitly providing a multi-scale/multi-
resolution compact representation, able to describe the complex features of
clean seismic data where noise and missing data are not modeled. We can
think at the interpolation and denoising task as an image transfer problem,
with the goal of transforming gathers corrupted by noise and/or missing
traces into regularly sampled clean gathers.

5.2.3 Reconstructing the Corrupted Gathers

In this section we report the technical details concerning the used network
architecture and then we describe two strategies for network training, to be
used according to the specific data corruption. Finally, we describe the sys-
tem deployment, that is the procedure designed to process, after the training
stage, the actual gather we want to reconstruct.

Implementation of U-net

In order to focus on local portions of the gathers and to ensure a suffi-
ciently large amount of data under analysis, we work in a patch-wise fash-
ion. Specifically, we divide each shot gather into K patches of size NV x V.
Then, we always consider a single patch as input to the network. Notice
that, for what regards the U-net implementation, patches can be extracted
from the gather with or without overlap, being the U-net architecture inde-
pendent from the patch selection strategy.

The CNN we propose takes inspiration by our previous work regarding
the only interpolation task [21]], but introduces a few novelties in order to
simplify the network architecture at highest levels and enhance the system
efficiency without drops in performances. For instance, as seismic data typ-
ically has a value range very different from that of natural digital images for
which CNNs are typically studied, each patch is multiplied by a constant
gain G (i.e., G = 2000 in the following experiments), which proves to be an
effective data normalization procedure in terms of convergence speed and
achieved validation results. Moreover, we do not need to consider the gra-
dient computation and the batch normalization after the first convolutional
layer, thus making the proposed approach leaner.
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Figure 5.2: Architecture of the used U-net.

Considering that corrupted gathers are labeled as I, the generic k-th cor-
rupted patch given as input to the network is denoted as Py.

As U-net like architectures turn out to be the state-of-the-art for the tasks
of image inpainting [154}/155]] and denoising of medical images [156], we
follow the trend started by [149]], exploiting a U-net architecture composed
by the blocks shown in Figure[5.2}

1. A number of stages where a 2D Convolution with filter size 4 x 4
and stride 2 x 2, sometimes followed by Batch Normalization (BN)
and/or Leaky ReLU, is performed. These stages lead to the hidden
representation (i.e., the result of the encoding part). Specifically, we
do not include the BN stage in the outermost layer and after the 2D
Convolution leading to h. It is worth noting that the number of filters
increases from 64 to 512 as we go deep into the network.

2. The same number of stages as before where a ReLLU, a 2D Transposed
Convolution with filter size 4 x 4 and stride 2 X 2 and a 2D cropping,
possibly followed by BN and Dropout are performed. In this case, we
use BN on all layers except from the last one, while Dropout is used
only in the initial layers, until we reach a patch dimension of % X %.

In each stage we concatenate the result of the corresponding encoding

stage as in a typical U-net fashion. Note that the number of filters is

gradually diminished as we go up in the right path of the network (i.e.,

decoding path). The last stage outputs the patch Py, of the same size

of the input patch.

Additionally, the overall architecture scales according to the patch di-
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Figure 5.3: Sketch of the training phase.

mension NV, which can be selected depending on possible application-driven
constraints. Anyway, as the network can be characterized by more than 40
million parameters, it needs to be trained on a significant amount of seismic
images as any typical deep learning solutions.

5.2.4 U-net training

Once defined the network architecture, the key point is the design of the
training strategy through a proper definition of the cost function tailored
to our specific problem. Indeed, the U-net defines a parametric model
x = U{x,w}, between the output X and the input x and network weights
w. The training phase consists in estimating the network weights w through
the minimization of a distance metrics between the network input and its
output. This distance is usually referred as loss function, and its mini-
mization is carried out using iterative techniques (e.g., stochastic gradient
methods, etc.).

Specifically, as shown in Figure [5.3] we train the network in order to
transform patches P, extracted from gathers corrupted by noise and/or
missing traces, into regularly sampled and clean patches Py. As in any
supervised learning problem, we assume to have a training dataset D and
a validation dataset Dy, each one composed by pairs of corrupted/uncor-
rupted gathers (I, I).

These datasets are exploited for estimating the network parameters w
and to decide when to stop the cost function minimization process. Actu-
ally, the training stage slightly differs depending of the specific problem:
denoising only, interpolation only, and joint denoising/interpolation.

For denoising only and joint denoising/interpolation, model weights are
estimated by minimizing the loss function between P} and Py, defined as
the squared error over all patches belonging to gathers in the training set
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Dy. Formally,

. 2
W:argmvin Z HPk—Pk(W)HF, (5.1)

PrLeDr

where ||-||;; represents the Frobenius norm and, with a slight abuse of nota-
tion, Py, € Dy denotes patches extracted from gathers belonging to training
dataset.

However, for the task of interpolation only, we a-priori know that only
some samples need to be reconstructed by the network (i.e., the missing
ones), whereas the others can be left untouched. For this reason, the loss is
evaluated only on reconstructed samples. This is implicitly performed by
adding a masking stage that sets to zero all uncorrupted traces. Network
weights are then estimated as

i P,—P M| 5.2
W—argmvinpz H( v — Pr(w))o HF, (5.2)

rE€DT

where M is a binary mask of size N x NN defined as

‘ (5.3)

M 1 iaf [Pk] jis a missing sample
“ 10 otherwise.

As in standard neural network training, we follow an iterative procedure
to minimize either (5.1) or (5.2), stopping at the iteration where the mean
squared error over all the patches P, € Dy, is minimum.

Specifically, we use Adam optimization algorithm [48]], with learning
rate and patience (i.e., the number of epochs with no improvement after
which training will be stopped) initialized at 0.01 and 10, respectively. The
former is decimated while the latter is halved in presence of plateau of the
cost function. In general, we train the network for a maximum number of
100 epochs, although we verified the smallest loss on validation patches is
often achieved within the first 30 training epochs.

System Deployment

When a new corrupted gather I belonging to evaluation set Dy is under
analysis, its recovered version is estimated following the scheme depicted
in Figure

First of all, a set of K patches is extracted from image I as described
in the previous Section. Then, each patch P, is processed by the U-net
architecture in order to estimate the patch Py.
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Figure 5.4: Sketch of the proposed procedure for recovering each corrupted gather 1.

Following the same logic of the training phase, the estimated patches
are post-processed in slightly different ways according to the specific goal.
For denoising only and joint denoising/interpolation, each patch P sim-
ply undergoes a denormalization step, thus it is divided by the gain G to
obtain the output patch P;. Concerning the task of interpolation only, it
is reasonable to leave the known samples untouched in the final estimated
patch. Therefore, exploiting the binary mask defined in (5.3)), each patch
P, is obtained as

15 Pk O 1\_/[ + ]_Sk oM
k — G )
being M the the logical complement (i.e., the negation) of M.
Eventually, in order to reconstruct the image gather I, all the estimated
patches P,, are re-assembled together, sample-wise averaging the overlap-
ping portions if some overlap between patches was used during patch ex-
traction procedure.

(5.4)

5.3 Experimental results

In this section we present the result of our experiments, obtained on well-
known public datasets. Specifically, we evaluate our methodology over
both synthetic and field data. First, we introduce the accuracy metrics we
exploit for evaluating the results, and we show a tutorial example consid-
ering a very simple case of study. Second, we separately validate the per-
formances of the proposed interpolation and denoising strategies on both
synthetic and field data. Finally, we investigate the combined interpolation
and denoising problem also comparing our method against a recent solu-
tion.

5.3.1 Accuracy metrics

We evaluate the performances of our method in reconstructing each entire
seismic image belonging to the evaluation set Dy, namely the corrupted
gathers which have never been seen by the U-net. The accuracy metrics is
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the same used by [[146] and [147], i.e., the SNR, defined as the ratio be-
tween the power of the original gather and the power of the reconstruction
eITor:

IRSIR

SNR =10 loglo T e—
IT-T[%

€ Dg. (5.5)

5.3.2 Problem 1: Interpolation of missing traces

In this section we present the network performances in interpolating gathers
with missing traces. In particular, we start showing results achieved over a
synthetic dataset, considering various interpolation situations. Finally, we
evaluate the proposed strategy on real field data.

Synthetic data set

The reference dataset used to systematically explore the results is extracted
from the well known synthetic BP-2004 benchmark [157]. In particular,
we work with 1348 shot gathers, cropped at the first 1152 traces (taking
the source as reference) and at the first 1920 time samples/trace. The cen-
tral frequency of each trace is 27Hz, sampled every J; = 6 - 10~ 3seconds,
and the group spacing is 12.5m. In order to properly evaluate the proposed
method, we randomly split the dataset into training, validation and eval-
uation, using 250 shot gathers for training and validation (further split on
75% of images for training set Dy, and 25% for validation set Dy/), and the
remaining for evaluation set Dg.

Interpolation of uniformly distributed missing traces

The first experiment investigates the situation of randomly located missing
traces with uniform distribution. This choice follows the main reasoning of
the works proposed in literature [21,(132,|144].

In order to simulate a seismic acquisitions with randomly missing traces,
we extract 3 different datasets from the reference one, deleting a percentage
H of the available data traces. To be precise, for each shot gather I, we
randomly delete the H% of its traces, H € {10, 30,50}, obtaining a holed
gather I.

As shown in the Section regarding the U-net implementation, we work
in patch-wise fashion for reconstructing the corrupted gathers. Specifically,
each gather entering the network is initially split into a plurality of squared
patches, with dimensions N x N. In light of this, we perform an initial
experiment to analyze the behaviour of network output as a function of the
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Figure 5.5: Average SNR [dB] achieved on gathers belonging to Dg, as a function of
patch dimension N and overlap.

specific input data. The goal of this primary investigation is to select a
good patch extraction method, that is, the strategy leading to the highest
reconstruction accuracy on the evaluation set. We consider different values
for N, namely N € {16,32,64,128,256}, and we evaluate the cases of
non-overlapping patches and of patches extracted with an overlap of N/2
in both directions.

To evaluate the U-net performances according to the chosen patch ex-
traction method, we use SNR defined in (5.5)). Figure[5.5|shows the average
SNR achieved over gathers belonging to evaluation set, with and without
the overlap between the extracted patches. Note that the case N = 256
does not include results without overlap because the gather dimensions are
not integer multiples of this value. It is noticeable that small values of NV
are not good solutions for reconstructing the corrupted images, probably
because the U-net needs to analyze more samples together in order to find
a significant hidden representation of the input patch. As expected, intro-
ducing some overlap during patch extraction always returns better perfor-
mances than just selecting adjacent patches. This is due to two main factors:
first, selecting overlapped patches increases the amount of data seen by the
network and reasonably improves its performances; second, in the image
reconstruction phase, the overlapping portions of the patches are sample-
wise averaged, decreasing the possibility to generate undesired edge/border
effects.
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Even if selecting an overlap of N/2 gives slightly better results, one
consideration must be done. At training stage, we found out that a good
strategy is to group in a single batch all the patches extracted from the
same shot gather, ending up with a batch size (i.e., the amount of patches
in a batch) strictly dependent on V. Notice that the number of samples per
batch does not change with [V, if patches are not overlapped. Conversely, in
case of overlapped patches, the number of samples per batch increases, as
some samples belong to multiple patches. Therefore, the higher the over-
lap, the larger the amount of GPU memory required in training phase. If
the absence of overlap requires a GPU memory usage more or less equal
to 4GB for every N, in case of overlap the required space increases in a
quadratic fashion.

Therefore, considering that the achieved SNR performances of the two
methodologies (overlapped and non-overlapped patches) are not so far, we
choose the patch extraction strategy which selects only adjacent and non-
overlapping patches. For this reason, hereinafter we only investigate the
network behavior considering non-overlapping patches, as overlapping ones
would make the solution impractical in the majority of cases.

Regarding the patch dimension N, as the SNR curve monotonically in-
creases with the patch dimension but without dropping performances in
terms of memory usage, we select N = 128 for all the experiments. We end
up with batches of 135 non overlapping patches with dimensions 128 x 128
extracted from each shot gather. The process involves more than 25000
training patches, more than 8 500 validation patches, and more than 145 000
testing patches for each dataset.

Regarding the results, we are able to achieve SNR of 32.8dB, 24.2dB
and 18.8dB for H = 10, 30 and 50, respectively. The processed gathers do
not visually show any artifacts due to the interpolation method, even with
H = 50, as depicted by the example in Figure [5.6, For what concerns the
required computational time, we need more or less 75 minutes for training
and validate the network over 100 epochs. Despite this could seem a quite
huge amount of time, once training has been done, we are able to recover
a corrupted shot gather belonging to the test set in less than 0.3 seconds.
Specifically, we run our tests on a Workstation equipped with Intel Xeon
E5-2687W v4 (48 Cores @ 3 GHz), RAM 252 GB and 1 TITAN V (5120
CUDA Cores @ 1455MHz), 12 GB.

Interpolation of bursts of missing traces

Uniform distribution of missing traces, described by the percentage H,
allows the evaluation of average reconstruction performances of the in-

123



Chapter 5. Geophysical applications

0.01

0.008
800
0.006
0.004

0.002

Time sample index

500 600 700 500 600 700

0.008

0.006

800 ml

900 :
|
l

gl |
N

!
il II

j
i
bl
‘

i

0.004

0.002

1000 -0.002

Time sample index

-0.004
1100 4] -0.006

-0.008

-0.01

500 600 700
Trace index Trace index

(b) (d)

Figure 5.6: Example of data interpolation considering one gather of the synthetic dataset.
(a) depicts the original gather 1, cropped in its central portion with size 450 x 300,
(b) reports the corrupted gather 1, with 50% of randomly missing traces, (c) shows
the reconstructed gather I; (d) depicts the reconstruction error, which is the difference
between reconstructed and original shot gather.
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1—g¢q

Figure 5.7: Markov chain of the burst corruption model.

terpolation. However, in order to have a more detailed description, here
we study the performances of the proposed U-net-based interpolation on
a more sophisticated corruption model. Basing on the consideration that
missing traces (due for instance to spatial obstacles) are likely to appear in
groups, we propose a bursty missing traces model inspired by the packet
loss models of telecommunication networks [[158]]. The term burst is taken
from the field of telecommunication networks, and refers to groups of con-
secutive events (in this case, groups of consecutive missing traces). The
more bursty a distribution of missing traces is, the more the missing traces
are likely to cluster.

In particular, the model is a two states Markov model described by two
parameters, « and 3: « refers to the probability of a missing trace, while (3
is the average length of the burst, i.e., the average number of missing traces
which are adjacent one another.

The Markov chain of the model is depicted in Figure where N M
represents the non-missing trace state whereas M is the state for missing
trace. The probability to find a corrupted trace, given that the previous one
(in the spatial dimension) was missing, is ¢, while the probability to pass
from a non missing trace to a missing one is p. These probability values
can be derived from « and /3, formally,

1 o
B Bl —a)
Exploiting this model, we can simulate more realistic scenarios, where
clusters of adjacent missing traces can occur, due for instance to environ-
mental constraints or sudden interruptions during acquisitions. In order to
test our method on this missing trace distribution, we select various per-
centage of missing traces « € {10,30,50}% with average burst length
B € {1,2,3}, corresponding to 12.5m, 25m and 37.5m respectively. Notice
that, the larger the average gap, the greater the gap size dispersion. Indeed,
for 5 = 1 the standard deviation is equal to O traces (isolated missing traces

g=1—> p= (5.6)
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Table 5.1: Average SNR [dB] achieved on gathers belonging to Dg, for different values
of a and .

a61 2 3

10 | 384 253 21.9

30 | 32.8 21.7 18.1

50 [ 299 187 15.7

only); on the contrary, for 5 = 2 and § = 3 the standard deviations are
o = 1.14 and 0 = 2.44 traces, respectively. For instance, in the datasets
under examination, S = 3 provides a maximum gap up to 30 traces (corre-
sponding to 375m), which simulates a quite large physical obstacle.

Table [5.1] depicts the average results achieved by the U-net on the eval-
uation set. Notice that, the larger the burst length, the lower the resulting
SNR. This enlightens the need of further investigations for interpolating
bursts of many traces: as a matter of fact, as the size of the group of ad-
jacent missing traces increases, the ability of the network in reconstruct-
ing the unknown samples diminishes. Nonetheless, notice that even in the
worst case, i.e., (a, ) = (50, 3), the U-net is able to maintain acceptable
reconstruction performances.

Interpolation by transfer learning

In order to test the robustness of the proposed method in interpolating miss-
ing data, we generate two further synthetic datasets, exploiting the very
same acquisition geometry and model of the dataset previously presented,
but with different sampling rates 4ms and 8ms. The goal of this experiment
is to check if the U-net architecture, when trained on data sampled every
6ms, is able to reconstruct differently-sampled data. This is an example of
the well-known transfer learning strategy [[150]. Namely, it corresponds to
analyzing the performances of one network which has already been trained
over a dataset having different features from the testing one.

To this purpose, we propose to select as test case the uniform miss-
ing traces framework, randomly deleting the 30% of traces from these new
datasets. Then, we evaluate the reconstruction results on gathers belong-
ing to the evaluation set Dy of these datasets, with the difference that we
exploit the network trained on the dataset sampled every §; = 6ms.

Average results of the interpolation are shown in Table [5.2] Notice that

126



5.3. Experimental results

Table 5.2: Average SNR. [dB] achieved on Dg, for sampling time 6; = 4ms and 6; = 8ms.

Ot 4ms  8ms

Train on 6ms | 10.1 10

Train on d; 25.3 23.8

we report also the interpolation results we can achieve if following the stan-
dard training procedure, that is, training the network using data with the
same sampling time of the evaluation set. Even if the difference between
the results is noticeable, Figure shows an example of 6, = 8ms data
reconstruction exploiting the U-net trained on J; = 6ms.

Interpolation of regularly missing traces

The last case we investigate for the synthetic dataset is that of recovering
regularly missing traces, which can be considered as upsampling the acqui-
sition geometry and has several practical implications, e.g., interpolation in
the cross-line direction. This case has its own peculiarities, and it is often
the most challenging interpolation problem, especially when the dips are
aliased. As a matter of fact, methods based on sparse transformations and
low-rank constraints have limited application in this case because of the
strong spatial aliased energies. We want to test the conjecture that network
training extracts some high-level characteristics of seismic data which are
more robust to alias than linear events or low rank assumptions, therefore
implicitly including an anti-aliasing strategy.

We consider two scenarios. The first one consists in training the U-net
with new data, generated by regularly deleting the 50% of the shot gathers
traces, and then following the same procedure previously shown for the shot
gather reconstruction. The second solution emulates the transfer learning
technique presented above: we use the network trained on data with 50%
randomly missing traces to reconstruct the shot gathers with 50% regularly
missing traces.

The achieved SNR are 30dB and 22.8dB for the first and second solu-
tion, respectively. Results achieved over a shot gather region characterized
by steep dips are shown in Figure 5.9 Notice that, by training and testing
the U-net with the same data, the reconstruction error is very low, while
with the transfer learning technique the error contains again some signal
content. Nonetheless, this is an expected results and both errors seem ac-
ceptable at visual inspection. Indeed, we select as a reference a recent in-
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Figure 5.8: Example of transfer learning data interpolation. (a) depicts the original
gather 1, sampled every 8ms and cropped in its central portion with size 450 x 300;
(b) shows the corrupted gather, with 30% of randomly distributed missing traces; (c)
reports the reconstructed gather I exploiting the U-net trained on data sampled every
6ms, (d) shows the reconstruction error, i.e., (c) - (a).
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Figure 5.9: Interpolation of regularly missing traces. (a) depicts the original gather,
cropped around samples (1100 — 1400, 100 —300); (b) shows the corrupted gather
which contains half the original traces; (c) depicts the reconstructed gather by training
the U-net on data with regularly missing traces; (d) reports the reconstructed gather
by transfer learning; (e) shows the reconstruction error of the standard strategy, i.e.,
(c) - (a); (f) is the reconstruction error of the transfer learning approach, i.e., (d) - (a).
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Figure 5.10: Absolute value of Fourier spectrum of shot gathers for the problem of inter-
polation of regularly missing traces. (a) depicts the spectrum of the original gather
cropped around samples (1100 — 1400, 100 —300); (b) shows the spectrum of the cor-
rupted gather which contains half the original traces; (c) depicts the spectrum of the
reconstructed gather by training the U-net on data with regularly missing traces.

dustrial software based on f-x deconvolution which does not require train-
ing data (hence can be considered more or less analogous to the transfer
learning technique), and it achieves S/N = 22.7dB on the same data.

For the sake of clarity, Figure includes the absolute value of the
Fourier spectrum computed for the original shot gather, for the corrupted
one, and for the estimated one by means of the first proposed strategy. It
is worth noting that the alias introduced in the corrupted shot gather can be
deleted by our reconstruction method.

Field data

In this section, we apply the U-net for reconstructing corrupted real seismic
data and compare the result with those obtained by us in one preliminary
work regarding interpolation only [21]]. To this purpose, we exploit as field
data the well known Mobil Avo Viking Graeben Line 12 dataset [159].
Specifically, this dataset consists of 1001 marine shot gathers. Each gather
is composed of 128 traces of 1408 time samples, with temporal sampling
of 4ms and receiver sampling of 25m.

In order to compare our results with those obtained in [21]], we simulate a
seismic acquisition with a uniform distribution of randomly missing traces.
Therefore, for each acquired gather I, we randomly delete the H% of its
traces, H € {10, 30, 50}, obtaining a scattered sampled gather I.
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Table 5.3: Average SNR [dB] achieved on gathers from dataset in [|159].

H 10 30 50

New U-net | 25.7 20.5 16.7

Old U-net | 22.5 15.1 10.2

Following the same rationale of the synthetic example, we split each
dataset into 250 gathers for training and validation and leave the remaining
to evaluation set. Then, in order to achieve a similar number of patches
per gather (i.e., 135 in the synthetic case), we extract 129 patches with size
128 x 128, overlapped only on the temporal dimension, specifically with
patch-stride of 10 samples. Notice that, in this case, the presence of patch
overlap does not cause issues in memory usage, as the number of samples
entering the network is similar to the chosen configuration for the synthetic
example.

Results obtained on the evaluation dataset D are reported in Table [5.3]
while Figure shows an example of gather reconstruction where 50%
of traces is missing. It is noticeable the improvement in performances of
the proposed architecture, This achievement is due to the specific changes
performed on the U-net architecture as described in the U-net implementa-
tion Section. As a matter of fact, even with a reduced amount of gathers for
training and validation (i.e., 25% of the whole dataset instead of 75%), the
resulting SNR always exceeds the past performances.

In order to build a preliminary evaluation of the results which would be
obtained by seismic imaging algorithms on data reconstructed by U-net, we
migrate the sections of the original Viking Graben dataset, of the corrupted
dataset with 50% randomly missing traces and of the dataset reconstructed
by the proposed methodology. As a comparison, we migrate also the dataset
reconstructed using the nonlinear shaping regularization method proposed
by [132]. The images depicted in Figure [5.12] show that, in case of data
reconstructed with U-net, noise is attenuated and loss of continuity is al-
most perfectly recovered in the migrated section. This occurs also for the
reconstruction of [[132], however, contrarily to that of U-net, the migrated
section shows some spurious events which are not present in the original
image.
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Figure 5.11: Example of data interpolation, considering one gather of the field dataset
. (a) depicts the original gather 1; (b) reports the corrupted gather I, with 50%
of randomly missing traces; (c) shows the reconstructed gather I; (d) reports the re-
construction error, i.e., (c) - (a).
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Figure 5.12: Kirchhoff migrated section of the Viking Graben dataset: (a); migration of
original data; (b) migration of corrupted data; (c) migration of data reconstructed by
U-net; (d) migration of data reconstructed by the method proposed in [132]].

5.3.3 Problem 2: Denoising of corrupted gathers

In this section we report the results of the numerical experiments related to
denoising of corrupted gathers. We consider two kinds of additive noise,
the standard additive white Gaussian noise (AWGN), and a spike-like noise.
Concerning the patch extraction methodology to be applied, we select ex-
actly the same strategy of that presented in Section related to interpolation
of missing traces. As a matter of fact, the presence of randomly missing
traces as well as the additive random noise can be seen as two generic kinds
of gather corruption, which can be tackled by the U-net in a similar way.

133



Chapter 5. Geophysical applications

AWGN noise model

In order to test our method over a plurality of signal to noise ratios (SNR),
we add white gaussian noise for achieving SNR = S € {—3,0, 3}dB, de-
fined as the ratio between the signal and noise power. The average results
obtained on shot gathers belonging to the evaluation set Dy are the fol-
lowing: SNR = 12.8dB, 14.4dB and 16.3dB, correspondent to increasing
values of S. Indeed, these results can be considered an upper bound for
the achievable performances of the proposed strategy in realistic scenarios.
As a matter of fact, they are obtained on the assumption to have clean data
available for the training phase, which is never the case for field acquired
data.

Spike-like noise model

Pre-stack seismic data can be affected by different types of random noise
coming from various sources, such as wind motion, poorly planted geo-
phones or electrical noise, most of these being far more complex than
simple AWGN. For instance, some of these seismic noises exhibit spike-
like characteristics [160] and are lately gaining growing interest, as they
strongly affect the processing of simultaneous source data acquired from
recent seismic surveys [161]].

Therefore, we propose to use our network for denoising data corrupted
by additive spike-like noise. In order to simulate this noise, we add spiky
noise with variable density d%), namely the percentage of corrupted samples
in one gather. In particular, the binary values of this noise are set to the
minimum and maximum values of the original uncorrupted data. Then, we
convolve each noise trace with a Ricker wavelet having the same central
frequency of the data (i.e., 27Hz) and unit energy. This way, we generate
two corrupted datasets, corresponding to d € {1, 3}.

Figure [5.13] shows an example of spike-like corruption denoising for
d = 3. It is noticeable that, even if the corrupted image visually undergoes
a strong degradation, the reconstructed one presents almost all the features
of the original data. Moreover, Figure [5.13(d) reports the residual error
between corrupted and reconstructed gather. It is worth noting that a large
portion of the useful signal remains unaltered, except for very reduced ar-
eas. This trend is confirmed by Table [5.4] which reports the average results
achieved on set Dg.
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Figure 5.13: Example of spike-like noise attenuation. (a) reports the original gather, (b)
reports the corrupted gather, with noise density d = 3; (c) shows the reconstructed
gather; (c) shows the residual error, i.e., (b) - (c).
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Table 5.4: Initial SNR [dB] on corrupted gathers and final SNR, [dB] achieved by spike-
like denoising.

d 1 3

Initial | —34.8 —39.6

Final 16.8 12.3

Towards standard denoiser emulation

In order to highlight the U-net-based method versatility, we propose to ex-
ploit our denoising strategy as an emulator of some well known standard de-
noising algorithms. In particular, we select two noise attenuation strategies,
namely a Wavelet based denoising [ 162] and a f-x deconvolution method in-
cluded in a recent production software. To test the denoising performances,
we use the datasets corrupted by AWGN with SNR = S € {-3,0, 3}dB.

Initially, we process the whole datasets through the aforementioned stan-
dard denoising algorithms. Through this operation, we are generating de-
noised data which can be more or less considered in the same way as clean
uncorrupted gathers.

In a second phase, we train our network in a slightly different way than
the approach shown in U-net training Section. Indeed, we train the U-net
substituting to ground truth gathers those obtained through denoising by
Wavelet or by the industrial f-x deconvolution. Thus, the training step in-
cludes pairs of noisy gathers and gathers denoised by standard algorithms.
Eventually, we evaluate denoising results on shot gathers belonging to Dg,
comparing reconstructed gathers with the original ones, as described in
(3.5). Specifically, we compute the average results for U-net and for stan-
dard denoising algorithms as well.

From results depicted in Table [5.5]it is quite evident that performances
of U-net are comparable with those achieved through the denoising algo-
rithm used for training, showing that U-net is able to mimic their perfor-
mances. Moreover, the proposed method has a further advantage, which
is the low computational effort in denoising a generic gather. As a mat-
ter of fact, if a limited amount of time is needed for training the network
model parameters, the evaluation phase is very efficient: the optimized pro-
duction solution and the Wavelet denoising take respectively the same time
and 25% more than the time required by our strategy (i.e., approximately
0.3 seconds) for estimating each denoised gather.

These results pave the way towards one potential application of our
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Table 5.5: Average SNR [dB] on gathers belonging to Dg, training the U-net on gathers
denoised by Wavelet (a) and by the industrial software based on f-x deconvolution (b).

S 0 3 S -3 0 3
U-net | 48 5.7 6.9 U-net 7 86 10.3
Wavelet | 4.7 5.7 6.9 f-xdeconv | 7 87 10.3
(a) (b)

method in realistic situations. Indeed, as previously stated, having clean
gathers available for the training phase is not the case when dealing with
real data. Furthermore, denoising field acquisitions often require complex
and computationally expensive algorithms.

In order to overcome these issues, we recommend our strategy as a vi-
able alternative to many standard denoising algorithms. Specifically, when
a large field dataset is available, the following algorithm can be applied:

1. randomly select a subset of the acquired shot gathers;

2. perform an accurate and computationally expensive denoising on the
selected shot gathers;

3. train the U-net on the selected pairs of acquired/denoised gathers;
4. make use of the trained U-net to denoise the remaining data.

After a certain dimension of the dataset, due to the fixed computational cost
for denoising the selected subset and training the U-net, the application of
the U-net-based denoising becomes computationally cheaper than denois-
ing the whole dataset with the standard noise attenuation algorithm. Indeed,
the computational advantage of U-net increases with the dimension of the
dataset and the complexity of the denoising algorithm.

5.3.4 Complete problem: Joint interpolation and denoising

The last situation we propose is the more realistic case of study, implying
additive noise corruption jointly with missing traces. We investigate two
cases of study: the former exploits the same synthetic dataset of all the
previous experiments, while the latter uses a different dataset, comparing
our method with state-of-the-art techniques.
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Table 5.6: Average SNR. [dB] achieved on gathers belonging to Dg, for each dataset
extracted from BP-2004 [|157]].

HS—303

10 | 12.2 13.8 15.6

30 [ 11.5 129 144

50 | 104 11.6 12.9

AWGN and uniform missing traces

In order to investigate if the proposed method is able to retrieve the origi-
nal synthetic data, we consider the presence of AWGN and uniformly dis-
tributed missing traces. Likewise previously done, we add noise leading
into S € {3,0,—3}dB and delete a percentage H € {10, 30,50} of the
available data traces for simulating seismic acquisition with irregular re-
ceiver sampling and missing traces. This way, we generate 9 different
datasets, corresponding to various combinations of additive noise and miss-
ing traces. Table [5.6| resumes the average results obtained on shot gathers
belonging to the evaluation set D, considering all possible combinations
of missing traces and additive noise variances.

Comparison with a recent data-driven method

To compare our strategy with a recent learning-based algorithm, we con-
sider the Double-Sparsity Dictionary Learning method proposed by [|144]
and one strategy based on fixed dictionary transform used as baseline in
[144], i.e., the Curvelet method. In order to perform a fair comparison, we
reproduce exactly the same synthetic example provided in [144]].

Specifically, the dataset is extracted from the BP-1997 benchmark [[163]]
and includes 385 shot gathers, considering the last 240 receivers (taking the
source as reference) with 384 samples/trace. We add noise and delete some
traces in the dataset following the procedure described therein. In the first
stage, as done in [144], we normalize the range of each trace to 1. Then,
white gaussian noise is generated, low pass-filtered with a cut-off frequency
of 30Hz and finally added to the traces. We perform the same numerical
experiments proposed in [[144], testing plenty of noise standard deviations
o € {0.05,0.10,0.15,0.20,0.25} and missing traces’ percentages H €
{10, 20, 30, 33, 40, 50, 60}.
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For what concerns the training phase, we randomly select 250 shot gath-
ers for training and validation (split in 75% — 25%). In test phase, we
process exactly the same image of that used in [[144], namely the first shot
gather in the dataset. Note that, in order to be fair, we never use this shot
gather in the training phase.

During training, we extract from each image 153 overlapping patches
with size 128 x 128 and stride (16, 14) along rows and columns, respec-
tively. This operation has been done in order to achieve training and val-
idation sets with similar size (concerning the number of patches) to the
previously shown situations. Notice that we consider exactly the same
training-validation-evaluation procedure of that depicted in U-net training
and deployment Sections.

For comparing the results, we use the evaluation metrics proposed in
[144], namely the peak signal to noise ratio (PSNR), defined as

Smax
PSNR = 10 log,, 21— i), (5.7)
being s,.x the dynamic range of the clean signal, thus fixed to 1.

Figure [5.14{(a) shows the original shot gather without noise added and
missing traces (i.e., the ground truth of the experiment). The corrupted
version of the gather with 33% of missing traces and ¢ = 0.1 is shown in
Figure [5.14b).

Figures [5.14]c)-(d) show the recovered gathers obtained with double-
sparsity dictionary learning and U-net, respectively. We can notice that
there are some events which are well reconstructed by the U-net while are
missing in the retrieved shot gather via double-sparsity dictionary learning.
Specifically, Figures [5.14{(e)-(f) show the error panels (i.e., the difference
between the recovered images (c) and (d) and the ground truth (a)) for the
results obtained with the state-of-the-art technique and U-net respectively.
It is quite evident that the error corresponding to double-sparsity dictio-
nary learning is more affected by residual coherent events, meaning that
those are not correctly recovered. These qualitative considerations are con-
firmed by the corresponding PSNR values: 32.1 dB for double-sparsity
dictionary learning and 33.7 dB for U-net. Clearly, for both methods the
reconstruction error is not optimum and there is still room for improve-
ment. Nonetheless, it is worth noting that the limited size of the shot gath-
ers (only 240 x 384, versus the 1152 x 1920 of BP-2004 benchmark and
the 128 x 1408 of Mobil Avo Viking Graeben Line 12 dataset) could poten-
tially undermine the ability of U-net to learn how to describe the complex
features of the clean data without modeling noise and missing data. Indeed,
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Figure 5.14: Shot gather with 33% of missing traces and o = 0.1. (a) shows the original
gather; (b) depicts the corrupted version; (c) shows the recovered gather obtained
with double-sparsity dictionary learning, SNR = 32.1 dB; (d) shows the recovered
gather obtained with U-net, SNR = 33.7 dB; (e) illustrates the reconstruction error of
double-sparsity dictionary learning, i.e., (c) - (a); (f) depicts the reconstruction error
of our method, i.e., (d) - (a).
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Figure 5.15: Results of different reconstruction methods by varying the missing traces
ratio H and for 0 = 0.1.

to be trained, CNNs usually need a substantial amount of data for achieving
acceptable performances. Whether more data samples were accessible, we
expect the performances to improve accordingly.

Figure [5.15]displays the performances of different reconstruction meth-
ods by varying the missing traces ratio and selecting o = 0.1. In particular,
we compare results reported in [[144] with our results, averaged over 100
different realizations of the column pattern used for randomly deleting the
traces. It is noticeable that we significantly outperform both the dictionary
learning-based method and the Curvelet-based, gaining an average of 2.4
dB with respect to the former strategy and 6.1 dB to the latter one.

Figure [5.16] reports the achieved results for a plurality of noise standard
deviations. The performances of the U-net are significantly superior than
those of dictionary learning-based strategy, in all the examined cases.

Moreover, our method reveals to be more robust in presence of strong
noise. As a matter of fact, as noise standard deviation o increases, the
curves related to state-of-the-art method decay in a worse fashion than ours,
to the point that we can achieve PSNR = 30.3 dB for H = 50 and 0 =
0.25, against the 26.7 dB of the dictionary learning-based technique.
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Figure 5.16: Results of U-net and double-sparsity dictionary learning reconstruction
methods by varying the missing traces ratio H = {10,30,50} and for c = 0.05 :
0.05 : 0.25.

5.4 Conclusions

In this chapter, we propose a method for reconstruction of corrupted seismic
data, focusing on noise attenuation and interpolation of missing pre-stack
data traces in the shot-gather domain. In particular, we consider random
noise cases with different statistics and a variety of missing traces distri-
butions. Our approach makes use of a convolutional neural network archi-
tecture for interpolation and denoising of 2D shot gathers, showing perfor-
mance improvements, in terms of SNR, with respect to recent solutions for
joint denoising and interpolation.

Results achieved on controlled synthetic experiments demonstrate that
the proposed method is a promising strategy for seismic data pre-processing.
The method is capable of effectively and efficiently restore 2D corrupted
data, and it is also able to deal with the task of spatially upsampling the
shot gathers. Moreover, once the network training procedure is completed,
processing data with our strategy is also quite efficient in terms of compu-
tational effort.

We examine also the potential application of our methodology on field
data for production environments. In this situation, it is interesting to notice
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5.4. Conclusions

that the proposed algorithm can be used also to emulate the effect of more
time consuming classical data pre-processing strategies.
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CHAPTER

Conclusions

This thesis investigates the source device identification problem tackling
the issue from forensics and counter-forensics perspectives.

Chapters 2 and 3 present forensics investigations on source device iden-
tification for images and video sequences, while Chapter 4 focuses on
counter-forensics for image device anonymization.

More in detail, Chapter 2 develops a novel methodology to deal with
source device identification on images. We propose a CNN-based strategy
with the specific purpose of keeping computational complexity at bay in
case a large amount of provenance devices have to be tested over a query
image. We investigate different network architectures, training strategies
and loss functions, motivated by two primary goals: (i) saving important
storage and time; (ii) improving the accuracy achieved by statistical ap-
proaches. The proposed method has been tested over more than 80 different
devices taken from Dresden and Vision datasets. Our experimental cam-
paign shows that less query image content and reduced computation time
are needed to provide comparable accuracies with state-of-the-art, electing
our strategy as a viable alternative to standard model-based approaches.

In this vein, a forthcoming application could be the investigation of
source device identification among social networks images. However, the
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Chapter 6. Conclusions

multi-processing chain images usually undergo when circulating over In-
ternet could strongly hinder the performances of our CNN-based method,
as visual content is often severely compressed and tampered with. In the
last part of Chapter 2, we analyze the compression problem and propose
a method to estimate the number of JPEG compressions of an image. Ex-
ploiting the Task-driven Non-negative Matrix Factorization model, we con-
sider up to four compressions with multiple quality factors. We test the
method on different datasets showing results that can outperform state-of-
the-art.

In Chapter 3 we tackle source device identification on video sequences.
We thoroughly analyze the video stabilization technology, showing how
this can impede the video-camera attribution problem unless suitable coun-
termeasures are considered. Modeling the stabilization mechanism as a
similarity transformation applied on video frames, we propose two solu-
tions to estimate the reference fingerprint of a stabilized device and three al-
ternative strategies to identify the source device of a query stabilized video.
To perform these tasks, we investigate global optimization algorithms and
Fourier Mellin transform. Furthermore, we provide an interesting insight
about the stabilization effect on the first acquired video frame. Up to now,
we noticed this frame is usually not stabilized thus can be exploited to in-
crease identification performances, however future scenarios may include
video sequences whose totality of frames is motion compensated.

An application of source device identification on videos is described in
the last part of Chapter 3. Specifically, given a video compilation composed
by a plurality of video sequences coming from unknown devices, we aim
at blind detecting and localizing the splicing points. To this purpose, we
leverage sensor-related noise traces extracted from frames to group together
the portions of compilation generated from the same camera.

Chapter 4 is dedicated to counter-forensics investigations on images.
Precisely, we tackle the image anonymization problem, that is, removing
from images the traces related to the original source camera. To this pur-
pose, we modify the image pixel content fixing two objectives: (i) lowering
the cross-correlation test with the camera PRNU; (i1) maintaining a high
image quality level.

In the initial part of this chapter, we propose a model-based approach
which deletes some image pixels and inpaints them by means of regular-
ization and denoising techniques. Then, a solution leveraging CNNs is
presented as well. Opposite to the inpainting-based strategy which is blind,
namely it does not require the PRNU to remove being known at analyst
side, the CNN strategy trains a neural network using this specific PRNU. It
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is worthy of note the unfamiliar use we make of CNNss, seeing the network
as a parametric operator to overfit on each pair of input image-PRNU. Even
though this anonymization approach can be unmasked by an informed an-
alyst thus still requires efforts to achieve actual effectiveness, the proposed
method allows to keep computational complexity at bay and poses new
challenges towards deployment of completely data-driven and automatic
anonymization systems.

Chapter 5 includes further applications of interpolation and denoising
strategies on seismic images. Precisely, from an image processing perspec-
tive, 2D pre-stack seismic traces in the shot gather domain can be viewed as
double floating point format images without loss of generality. Given these
premises, we exploit a particular CNN architecture known as U-net for ex-
tracting a compact representation of these images, allowing to reconstruct
corrupted data with missing traces and additive random noise. Our strategy
proves to be effective also in dealing with transfer learning procedures and
with the issue of spatially upsampling the shot gathers.

Overall, the research done in this thesis paves the way for a set of fu-
ture perspectives. Being able to solve the image source device identifica-
tion problem with CNNs opens new challenges on video-camera attribution
as well. Since video stabilization introduces geometrical transformations
leading to frame misalignment, CNN-based strategies could be developed
as alternative efficient and faster approaches to those presented in Chapter
3. For instance, CNNs could be trained using a similar paradigm of that
shown in Chapter 2 to infer the coherence between a query stabilized se-
quence and a candidate device. Given a set of frames recorded by the same
camera, CNNs could be exploited to compute a reliable reference device
fingerprint. In other words, CNNs could act as a video de-stabilizer: given
a stabilized video, the network should learn how to follow the subtle sensor
traces left on frames to correctly realign them, in such a way as to delete
the effect of stabilization.

Given the unbridled growth of visual data flowing over the Internet, au-
tomatic and data-driven approaches are rapidly becoming the most sought-
after methods regarding forensics tasks. Developing model-based solutions
tailored to the specific problem might be yet ineffective when dealing with
large and heterogeneous databases. In this vein, it is clear that one valid
road for dealing with huge amount of resources is represented by deep
learning strategies. CNNs are purposely designed with the goal of learn-
ing the best data representation with high effectiveness and relatively low
computational effort, thus arousing forensics research in this direction.
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