Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Multiple Fault Location in a Photovoltaic Array Using Bidirectional Hetero-Associative Memory Network in Micro-distribution Systems

Version 1 : Received: 24 May 2018 / Approved: 24 May 2018 / Online: 24 May 2018 (16:27:31 CEST)

A peer-reviewed article of this Preprint also exists.

Chang, L.-Y.; Pai, N.-S.; Chou, M.-H.; Chen, J.-L.; Kuo, C.-L.; Lin, C.-H. Multiple Fault Location in a Photovoltaic Array Using Bidirectional Hetero-Associative Memory Network in Micro-Distribution Systems. Crystals 2018, 8, 327. Chang, L.-Y.; Pai, N.-S.; Chou, M.-H.; Chen, J.-L.; Kuo, C.-L.; Lin, C.-H. Multiple Fault Location in a Photovoltaic Array Using Bidirectional Hetero-Associative Memory Network in Micro-Distribution Systems. Crystals 2018, 8, 327.

Abstract

In manual maintenance inspections of large-scaled photovoltaic (PV) or rooftop PV systems, several days are required to survey the entire PV field. To improve reliability and shorten the amount of time involved, this study proposes an electrical examination based method for locating multiple faults in the PV array. The maximum power point tracking (MPPT) algorithm is used to estimate the maximum power of each PV panel; this is then compared with metering the output power of PV array. Power degradation indexes are parameterized to quantify the degradation between maximum power and metered output power. Bidirectional hetero-associative memory (BHAM) networks are then used to locate multiple faults within the entire PV field. For a rooftop PV system with two strings, as seen in Figure 1, experimental results demonstrate that the proposed model has computational efficiency for real-time applications and that its algorithm is easily implemented in a mobile intelligent vehicle.

Keywords

Rooftop Photovoltaic (PV) System, Maximum Power Point Tracking (MPPT), Power Degradation Index, Bidirectional Hetero-Associative Memory Network (BHAM).

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.