Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease

Version 1 : Received: 6 December 2019 / Approved: 7 December 2019 / Online: 7 December 2019 (16:55:39 CET)

A peer-reviewed article of this Preprint also exists.

Crispino, M.; Volpicelli, F.; Perrone-Capano, C. Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. Int. J. Mol. Sci. 2020, 21, 505. Crispino, M.; Volpicelli, F.; Perrone-Capano, C. Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. Int. J. Mol. Sci. 2020, 21, 505.

Abstract

Our knowledge on the plastic functions of the serotonin (5-HT) receptor subtype 7 (5-HT7R) in the brain physiology and pathology considerably advanced in the last few years. A wealth of data show that the 5-HT7R is a key player in the establishment and remodeling of neuronal cytoarchitecture during development and in the mature brain, and its dysfunction is linked to neuropsychiatric and neurodevelopmental diseases. The involvement of this receptor in synaptic plasticity is further demonstrated by data showing that its activation allows to rescue long term potentiation (LTP) and long term depression (LTD) deficits in various animal models of neurodevelopmental diseases. In addition, it is becoming clear that the 5-HT7R is involved in inflammatory intestinal diseases, possibly playing a role in the gut-brain axis, and modulates the function of immune cells. In this review, we will mainly focus on recent findings on this receptor’s role in the structural and synaptic plasticity of the mammalian brain, although we will also illustrate novel aspects highlighted in gut and immune system.

Keywords

brain connectivity; brain development; gut-brain axis; neurodevelopmental diseases; neuronal cytoarchitecture; neuroplasticity; regulatory T cells; serotonin (5-HT)

Subject

Biology and Life Sciences, Neuroscience and Neurology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.