Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Associating Stochastic Modelling of Flow Sequences With Climatic Trends

Version 1 : Received: 12 May 2021 / Approved: 14 May 2021 / Online: 14 May 2021 (11:43:06 CEST)

A peer-reviewed article of this Preprint also exists.

Patidar, S.; Tanner, E.; Soundharajan, B.-S.; SenGupta, B. Associating Climatic Trends with Stochastic Modelling of Flow Sequences. Geosciences 2021, 11, 255. Patidar, S.; Tanner, E.; Soundharajan, B.-S.; SenGupta, B. Associating Climatic Trends with Stochastic Modelling of Flow Sequences. Geosciences 2021, 11, 255.

Abstract

Water is essential to all life-forms including various ecological, geological, hydrological, and climatic processes/activities. With changing climate, associated El Nino/Southern Oscillation (ENSO) events appear to stimulate highly uncertain patterns of precipitation (P) and evapotranspiration (EV) processes across the globe. Changes in P and EV patterns are highly sensitive to temperature variation and thus also affecting natural streamflow processes. This paper presents a novel suite of stochastic modelling approaches for associating streamflow sequences with climatic trends. The present work is built upon a stochastic modelling framework HMM_GP that integrates a Hidden Markov Model with a Generalised Pareto distribution for simulating synthetic flow sequences. The GP distribution within HMM_GP model is aimed to improve the model's efficiency in effectively simulating extreme events. This paper further investigated the potentials of Generalised Extreme Value Distribution (EVD) coupled with an HMM model within a regression-based scheme for associating impacts of precipitation and evapotranspiration processes on streamflow. The statistical characteristic of the pioneering modelling schematic has been thoroughly assessed for their suitability to generate/predict synthetic river flows sequences for a set of future climatic projections. The new modelling schematic can be adapted for a range of applications in the area of hydrology, agriculture and climate change.

Keywords

Stochastic modelling; Climate change; Streamflow; El Nino/Southern Oscillation (ENSO), Extreme events modelling

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.