
ON THE RIEMANN-HARDY CONJECTURE FOR THE
RAMANUJAN ZETA-FUNCTION

XIAO-JUN YANG

Abstract. In this article we propose the integral, series and product representa-
tions for the Ramanujan zeta-function. We suggest a variant for the Conrey-Ghosh
product for the entire Ramanujan zeta-function. We present some variants for the
product for the Ramanujan Ξ-function. We prove that all of its zeros are real.
Along the way we obtain the truth of the Riemann-Hardy conjecture.
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1. Introduction

In his remarkable paper [1], Ramanujan in 1916 introduced the zeta-function
Lτ (s), that in his honor is now called the Ramanujan zeta-function, which is de-
fined as [2]

(1) Lτ (s) =
∞∑
k=1

τ (k)

ks
(Re (s) > 13/2) ,
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and conjectured the arithmetical function τ (n) that in his honor is now called the
Ramanujan’s tau-function, which is expressed by (for example, see [3], p.156)

(2) G (x) =
∞∑
n=0

τ (n) xn = x
∞∏
n=1

(1− xn)24 (|x| < 1) ,

which was proved by Mordell in 1917 [4, 5], where s ∈ C, x ∈ R and k ∈ N, if we
denote the sets of the complex numbers, natural numbers and real numbers by C , N
and C, and the real and imaginary parts of s ∈ C by Re (s) and Im (s), respectively.
Before the work of Deligne [6], Ramanujan conjectured an Euler product for Eq. (1),
which can be expressed as [2, 7, 8]

(3) Lτ (s) =
∏
p

(
1− τ (n) p−s + p11−2s

)−1
=

∞∏
p

(
1− α1p

−s)−1 (
1− α2p

−s)−1
,

where p is prime and Re (s) > 13/2. The second term of Eq. (3) (see [3], p.164)
was conjectured by Ramanujan [1] and proved by Mordell in 1917 [4], and the third
term of Eq. (3) was proved by Deligne [6]. Rankin in 1939 [9] suggested the entire
Ramanujan zeta-function ξτ (s) by

(4) ξτ (s) = (2π)−s Γ (s)Lτ (s) ,

which leads to the functional equation

(5) ξτ (s) = ξτ (12− s) ,

proved by Wilton [10] and denoted by Conrey and Ghosh [2]. By the result of the
Weierstrass and Hadamard work on the entire functions [11], Conrey and Ghosh
pointed out that the entire Ramanujan zeta-function of order α = 1 can be rewritten
in the form [2]

(6) ξτ (s) = ξτ (0) e
γs

∞∏
ϑ=1

(
1− s

ρϑ

)
es/ρϑ ,

where ρϑ run the nontrivial zeros of ξτ (s), ϑ ∈ N and γ is a constant. For ϖ ̸= 0
and i =

√
−1, Rankin in 1939 showed [9]

(7) ∆τ (ϖ) =
1

ϖ12
∆τ

(
− 1

ϖ

)
,

which implies that [12]

(8) ξτ (s) =

∞∫
0

ϖs−1∆τ (iϖ) dϖ,
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and (see [11, 12], which is the special case of Wilton [10])

(9) Ξτ (t) = ξτ (6 + it) =

∞∫
0

ϖ5+it∆τ (iϖ) dϖ =

∞∫
−∞

F (l) eiltdl,

where

(10) F (l) = ∆τ

(
iel
)
e6l

and [13]

(11) ∆τ (ϖ) = η (ϖ)24 = eϖ
∞∏
k=1

(
1− ekϖ

)24
=

∞∑
k=1

τ (k) e2πikϖ,

with

(12) η

(
− 1

ϖ

)
=

√
ϖ

i
η (ϖ) ,

which satisfies the Dedekind eta function [14]

(13) η (ϖ) = eϖ/24
∞∏
k=1

(
1− ekϖ

)
.

Following the idea of Chirre and Castañón [15], Ξτ (t) is called the Ramanujan Ξ-
function. Based on the above results mentioned, the interesting topics for the Ra-
manujan zeta-function have been conjectured by Hardy as follows (see [3], p.174):

• (Critical Strip)
The critical strip for the Ramanujan zeta-function is 11/2 < Re (s) < 13/2;

• (Trivial Zeros)
The trivial zeros for the Ramanujan zeta-function is s = −w with w ∈ N∪{0};

• (Riemann-Hardy Conjecture)

Conjecture 1. The nontrivial zeros for the Ramanujan zeta-function lie on
the critical line Re (s) = 6.

Hardy in 1940 (see [3], p.174) proposed the Riemann-Hardy conjecture for the Ra-
manujan zeta-function associated with the Ramanujan’s tau-function, that in his
honor is as an analogue of Riemann conjecture for the Riemann zeta-function. Up
to now, it remains an important unsolved problem in the analytic number theory.
Moreover, a great many of the interesting problems similar to the interesting topics
for the Riemann zeta-function have been reported by Hardy [3]. For example, an
analogue of the theorem of Hardy for the entire Ramanujan zeta-function was pro-
posed by Hardy (see [3], p.174) and proved by Lekkerkerker [16]. An analogue of
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the von Mangoldt-like formula for the entire Ramanujan zeta-function was conjec-
tured by Hardy (see [3], p.174) and proved by Ki [17]. Ferguson and coauthors [18]
reported 18 nontrivial zeros for the Ramanujan zeta-function. An analogue of the
Rieman-Siegel-like formula for the Ramanujan zeta-function (1) was conjectured by
Hardy (see [3], p.174) and proved by Keiper [19].

Let φϑ run the positive zeros for Ξτ (t). In 1983, Hafner [13] proposed the equiva-
lent form of Conjecture 1, which states that

(14) N0 (T ) = N (T ) ,

where

(15) N0 (T ) = # {s = 6 + it : 0 ≤ t ≤ T,Ξτ (s) = 0}

and

(16) N (T ) = # {s = σ + it : 0 ≤ t ≤ T, 11/2 < σ < 13/2, ξτ (s) = 0} .

Moreover, other statements equivalent to Conjecture 1 were reported in Moreno [7].
The main targets of our article are to proceed to prove Conjecture 1, and to propose
the series and product formulas to give the structure of the product formulas to
obtain this conjecture. The structure of this article is given as follows. In Section
2 we propose the integral and series representations for (1) and the Lekkerkerker
theorem. In Section 3 we suggest the product formulas for (1) and (4). In Section
4 we prove that all zeros of the Ramanujan Ξ-function (9) are real. In Section 5 we
also prove the truth of Conjecture 1. Finally, we propose some equivalent theorems
in Section 6.

2. The integral and series representations

In this section we consider the integral and series representations for the Ramanu-
jan zeta-function.

Now we consider the remark on the work of Wilton to consider the integral repre-
sentations of them.

Remark. In 1929, Wilton (see [10], formula (5.2)) proved that

ξτ (s) =

∞∫
1

(
ϖs−6 +ϖ6−s)ϖ6G

(
e−2πϖ

) dϖ
ϖ
,
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which leads to

ξτ (s)

=
∞∫
1

(ϖs−6+ϖ6−s)ϖ6G (e−2πϖ) dϖ
ϖ

= 2
∞∫
1

(
e(s−6) logϖ+e−(s−6)

2

)
ϖ6G (e−2πϖ) dϖ

ϖ

= 2
∞∫
1

cosh ((s− 6) logϖ)ϖ5G (e−2πϖ) dϖ.

Thus, we have

ξτ (s) = 2

∞∫
1

cosh ((s− 6) logϖ)X (ϖ) dϖ,

where

(17) X (ϖ) = ϖ5G
(
e−2πϖ

)
.

Theorem 1. Let ∆τ (ϖ) =
∞∑
k=1

τ (k) ekϖ. If ξτ (s) is defined in (4), then we have for

s ∈ C,

(18) ξτ (s) = 2

∞∫
1

cosh ((s− 6) logϖ)X (ϖ) dϖ,

where

X (ϖ) = ϖ5G
(
e−2πϖ

)
= ϖ5∆τ (iϖ) .

Proof. By the definition of the entire Ramanujan zeta-function and (7), we have

(19)

ξτ (s)

=
∞∫
0

ϖs−1∆τ (iϖ) dϖ

=
∞∫
1

ϖs∆τ (iϖ) dϖ
ϖ

+
1∫
0

ϖs∆τ (iϖ) dϖ
ϖ

=
∞∫
1

ϖs∆τ (iϖ) dϖ
ϖ

−
∞∫
1

ϖ12−s∆τ (iϖ) dϖ
ϖ

=
∞∫
1

(ϖs −ϖ12−s)∆τ (iϖ) dϖ
ϖ

=
∞∫
1

(ϖs−6 −ϖ6−s)ϖ6∆τ (iϖ) dϖ
ϖ
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and

(20)

1∫
0

ϖs∆τ (iϖ)
dϖ

ϖ
= −

∞∫
1

ϖ12−s∆τ (iϖ)
dϖ

ϖ
,

where

∆τ (iϖ) =
∆τ (−1/iϖ)

ϖ12
.

By (2) and (11), we arrive at the identity

(21) G
(
e−2πϖ

)
= ∆τ (iϖ) ,

which leads to

X (ϖ) = ϖ5G
(
e−2πϖ

)
= ϖ5∆τ (iϖ) .

It follows that

(22)

ξτ (s)

=
∞∫
1

(ϖs−6 −ϖ6−s)ϖ6∆τ (iϖ) dϖ
ϖ

=
∞∫
1

(
e(s−6) logϖ − e−(s−6)

)
ϖ5∆τ (iϖ) dϖ

= 2
∞∫
1

(
e(s−6) logϖ−e−(s−6)

2

)
ϖ5∆τ (iϖ) dϖ

= 2
∞∫
1

cosh ((s− 6) logϖ)ϖ5∆τ (iϖ) dϖ

= 2
∞∫
1

cosh ((s− 6) logϖ)X (ϖ) dϖ.

Then, the desired result follows.
Hence, we finish the proof of Theorem 1. �

Theorem 2. Let ∆τ (ϖ) =
∞∑
k=1

τ (k) ekϖ. If ξτ (s) is defined in (4), then we have for

m ∈ N ∪ {0} and s ∈ C,

(23) ξτ (s) =
∞∑
m=0

βm (s− 6)2m,

where

(24) βm =
2

Γ (2m+ 1)

∞∫
1

(logϖ)2mX (ϖ) dϖ.
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Proof. By Theorem 1, we now show that

(25)

ξτ (s)

= 2
∞∫
1

cosh ((s− 6) logϖ)X (ϖ) dϖ

= 2
∞∫
1

∞∑
m=0

((s−6) logϖ)2m

Γ(2m+1)
X (ϖ) dϖ

=
∞∑
m=0

(
2

∞∫
1

(logϖ)2m

Γ(2m+1)
X (ϖ) dϖ

)
(s− 6)2m

=
∞∑
m=0

(
2

Γ(2m+1)

∞∫
1

(logϖ)2mX (ϖ) dϖ

)
(s− 6)2m

=
∞∑
m=0

βm (s− 6)2m,

where

(26) βm =
2

Γ (2m+ 1)

∞∫
1

(logϖ)2mX (ϖ) dϖ.

Thus, the result follows. �

Theorem 3. Let ∆τ (ϖ) =
∞∑
k=1

τ (k) ekϖ. If Ξτ (t) is defined in (9), then we have for

t ∈ R,

(27) Ξτ (t) = 2

∞∫
1

cos (t logϖ)X (ϖ) dϖ.

Proof. Making use of (9) and Theorem 1, we give

(28)

Ξτ (t) = ξτ (6 + it)

= 2
∞∫
1

cosh {[(6 + it)− 6] logϖ}X (ϖ) dϖ

= 2
∞∫
1

cosh (it logϖ)X (ϖ) dϖ

= 2
∞∫
1

cos (t logϖ)X (ϖ) dϖ,

and the result follows. �
Remark. In 1929, Wilton (see [10], formulas (5.31) and (5.32)) proved that

Ξτ (t) =

∞∫
−∞

Λ (l) eiltdl,
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where

Λ (l) = e6lG
(
e−2πel

)
.

It has been proved by Ferguson and coauthors [18] that

Ξτ (t) = 2

∞∫
0

e6x∆τ (ie
x) cos (tx) dx,

which can be rewritten as (27) when x = logϖ.
Thus, we find that

Ξτ (t)

=
∞∫

−∞
e6lG

(
e−2πel

)
eiltdl

= 2
∞∫
0

e6x∆τ (ie
x) cos (tx) dx

= 2
∞∫
1

cos (t logϖ)X (ϖ) dϖ.

Theorem 4. Let ∆τ (ϖ) =
∞∑
k=1

τ (k) ekϖ. If Ξτ (t) is defined in (9), then we have for

m ∈ N ∪ {0},

(29) Ξτ (t) =
∞∑
m=0

(−1)m βmt
2m,

where

(30) βm =
2

Γ (2m+ 1)

∞∫
1

(logϖ)2mX (ϖ) dϖ.

Proof. By Theorem 2 and (9), one obtains

(31) Ξτ (t) = ξτ (6 + it) =
∞∑
m=0

βm [(6 + it)− 6]2m =
∞∑
m=0

(−1)m βmt
2m,

where

(32) βm =
2

Γ (2m+ 1)

∞∫
1

(logϖ)2mX (ϖ) dϖ.

Thus, we finish the proof. �
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Remark. It is clearly seen that Theorem 3 also reduces to the desired result.
By (27) and (29), we find that

(33) Ξτ (−t) = Ξτ (t) ,

which is in agreement with the result of Conrey and Ghosh [12].
Moreover, there exist

(34) βm =

[
d2mΞτ (t)

dt2m

]
t=0

= Ξ(2m)
τ (0)

such that

(35) Ξτ (t) =
∞∑
m=0

(−1)m Ξ(2m)
τ (0) t2m.

In view of (34) and (30), we arrive at

(36) βm =

[
d2mΞτ (t)

dt2m

]
t=0

= Ξ(2m)
τ (0) =

2

Γ (2m+ 1)

∞∫
1

(logϖ)2mX (ϖ) dϖ.

Similarly, we also present

(37) βm = (−1)m
[
d2mξτ (s)

ds2m

]
s=6

= (−1)m ξ(2m)
τ (6) .

By using the above remark, one has the following corollaries:

Corollary 1. If Ξτ (t) is defined in (9), then we have for m ∈ N ∪ {0},

(38) Ξτ (t) =
∞∑
m=0

(−1)m βmt
2m,

where

(39) βm = Ξ(2m)
τ (0) .

Corollary 2. If ξτ (s) is defined in (4), then we have for m ∈ N ∪ {0},

(40) ξτ (s) =
∞∑
m=0

βm (s− 6)2m,

where

(41) βm = (−1)m ξ(2m)
τ (6) .

In 1955, Lekkerkerker [16] showed that Ξτ (t) has infinitely many zeros by Lekkerk-
erker theorem.
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Lemma 1. (Lekkerkerker theorem) If Ξτ (t) is defined in (9) and

N0 (T ) = # {s = 6 + it : 0 ≤ t ≤ T, ξτ (s) = 0} ,
then we have

(42) N0 (T ) > AT

such that Ξτ (t) has infinitely many zeros, where A is a positive constant.

Proof. See [16]. �

3. The product formulas

In this section we propose a variant for the Conrey-Ghosh product for the entire
Ramanujan zeta-function and some product for Ramanujan zeta-function.

Now, we introduce the Conrey-Ghosh product by applying the result of the Weier-
strass and Hadamard [11].

Lemma 2. (Conrey-Ghosh product)
Let ρϑ ∈ C, s ∈ C and ϑ ∈ N. Suppose that ρϑ run the nontrivial zeros of ξτ (s)

and γ is a constant. If ξτ (s) is defined in (4), then we have

(43) ξτ (s) = ξτ (0) e
γs

∞∏
ϑ=1

(
1− s

ρϑ

)
es/ρϑ .

Proof. For the proof of the Conrey-Ghosh product, see [2]. �
Theorem 5. Let ρϑ ∈ C, s ∈ C and ϑ ∈ N. Suppose that ρϑ run the nontrivial zeros
of ξτ (s) and γ is a constant defined in (6). If ξτ (s) is defined in (4) and ξτ (0) ̸= 0,
then we have

(44) ξτ (6) ̸= 0

and

(45) ξτ (12) ̸= 0.

Proof. By (5) and Lemma 2, one has

(46) ξτ (s) = ξτ (12− s)

such that

(47) ξτ (12) = ξτ (0) ̸= 0

and

(48) ξτ (6) = ξτ (0) e
6γ

∞∏
ϑ=1

(
1− 6

ρϑ

)
e6/ρϑ ̸= 0
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since ρϑ ̸= 6 ∈ R.
Thus, we complete the proof of Theorem 5. �

Theorem 6. Let ρϑ ∈ C and ϑ ∈ N. Suppose that ρϑ run the nontrivial zeros of
ξτ (s) and γ is a constant. If ξτ (s) is defined in (4) and Ξτ (t) is defined in (9), then
we have

(49) ξτ (s) = ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s− 6

ρϑ − 6

)
e(s−6)/ρϑ

where s ∈ C, and

(50) Ξτ (t) = ξτ (6) e
iγt

∞∏
ϑ=1

(
1− it

ρϑ − 6

)
eit/ρϑ ,

where t ∈ R.

Proof. With Lemma 2 and (48) one gives

(51)

ξτ (s)

= ξτ (0) e
γs

∞∏
ϑ=1

(
1− s

ρϑ

)
es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

ρϑ−s
ρϑ

es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

(
ρϑ−6
ρϑ−6

· ρϑ−s
ρϑ

)
es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

(
ρϑ−6
ρϑ

· ρϑ−s
ρϑ−6

)
es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

(
ρϑ−6
ρϑ

· ρϑ−s
ρϑ−6

)
es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

ρϑ−6
ρϑ

∞∏
ϑ=1

ρϑ−s
ρϑ−6

es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

(
1− 6

ρϑ

) ∞∏
ϑ=1

ρϑ−6−(s−6)
ρϑ−6

es/ρϑ

= ξτ (0) e
γs

∞∏
ϑ=1

(
1− 6

ρϑ

) ∞∏
ϑ=1

(
1− s−6

ρϑ−6

)
es/ρϑ

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s−6

ρϑ−6

)
e(s−6)/ρϑ ,

which completes the proof of (49).
Putting s = 6 + it into (49), one obtains (50).
Thus, we finish the proof of Theorem 6. �
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Theorem 7. Let ρϑ ∈ C and ϑ ∈ N. Suppose that ρϑ run the nontrivial zeros of
ξτ (s) and γ is a constant. Then we have for s ∈ C,

(52) Lτ (s) =
ξτ (0) (2π)

s eγs

Γ (s)

∞∏
ϑ=1

(
1− s

ρϑ

)
es/ρϑ ,

and

(53) Lτ (s) =
ξτ (6) (2π)

s eγ(s−6)

Γ (s)

∞∏
ϑ=1

(
1− s− 6

ρϑ − 6

)
e(s−6)/ρϑ .

Proof. By (4) and Lemma 2, one obtains

(54) Lτ (s) =
ξτ (0) (2π)

s eγs

Γ (s)

∞∏
ϑ=1

(
1− s

ρϑ

)
es/ρϑ ,

and by (4) and Theorem 6, one gives

(55) ζτ (s) =
ξτ (6) (2π)

s eγ(s−6)

Γ (s)

∞∏
ϑ=1

(
1− s− 6

ρϑ − 6

)
e(s−6)/ρϑ .

Thus, we finish the proof of Theorem 7. �
Remark. By Theorem 7, it is clearly shown that Lτ (s) has the trivial zeros s = −w
with w ∈ N ∪ {0}, controlled by poles of Γ (s), and that ρϑ run the nontrivial zeros
of Lτ (s) (for more details, see [3], p.174). Hardy proved in 1940 (see [3], p.174) that
Lτ (11/2 + it) ̸= 0 and that Lτ (13/2 + it) ̸= 0 for t ∈ R.

4. Real zeros

In this section we will prove that all of the zeros for the Ramanujan Ξ-function
Ξτ (t) are real by the Lekkerkerker theorem and Theorem 6.

Corollary 3. Let t ∈ R. If Ξτ (t) is defined in (9), then all of the zeros of Ξτ (t) are
real.

Proof. Applying Theorem 6, we have

(56) Ξτ (t) = Ξτ (0) e
iγt

∞∏
ϑ=1

(
1− it

ρϑ − 6

)
eit/ρϑ ,

where t ∈ R, ϑ ∈ N, and the product runs over zeroes ρϑ of the entire Ramanujan
zeta-function ξτ (s).

In order to investigate the zeros of Ξτ (t), we now rewrite (56) as

(57) Ξτ (t) = Ξτ (0) e
iγt

∞∏
ϑ=1

(
1− it

ψϑ

)
eit/ρϑ ,
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where t ∈ R, ϑ ∈ N, and the product runs over the zeroes ψϑ of Ξτ (t) and the zeroes
ρϑ of the entire Ramanujan zeta-function ξτ (s).

Now, let us consider the first hypothesis that all zeros of Ξτ (t) are given by

(58) ψϑ = σ̃ϑ + iτ̃ϑ,

where σ̃ϑ ∈ R\ {0} and τ̃ϑ ∈ R\ {0}, and the second hypothesis that all zeros of
Ξτ (t) are

(59) ψϑ = ℓϑ ,

where ℓϑ ∈ R\ {0}. Our idea is that if two cases are false, then we have that all zeros
of Ξτ (t) are real.

We now start to prove that they are false.
Hypothesis 1.
Now, we consider the first hypothesis that the complex zeros for Ξτ (t) can be

expressed in the form

(60) ψϑ = σ̃ϑ + iτ̃ϑ

where σ̃ϑ ∈ R\ {0} and τ̃ϑ ∈ R\ {0}.
By (57) and (60), we now consider

(61)

Ξτ (t)

= Ξτ (0) e
iγt

∞∏
ϑ=1

(
1− it

σ̃ϑ+iτ̃ϑ

)
eit/ρϑ

= Ξτ (0) e
iγt

∞∏
ϑ=1

(
1− it

ψϑ

)
eit/ρϑ .

Putting t = (s− 6) /i into (6), we now give

(62)

ξτ (s) = Ξτ ((s− 6) /i)

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s−6

σ̃ϑ+iτ̃ϑ

)
e(s−6)/ρϑ

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s−6

ψϑ

)
e(s−6)/ρϑ

since Ξτ (0) = ξτ (6).
Let ρϑ = Re (ρϑ) + iψϑ run all roots of ξτ (s) = 0, where Re (ρϑ) ∈ R\ {0} and

ψϑ ∈ R\ {0}. Then, we have from (62) that

(63) ξτ (ρϑ) = ξτ (6) e
γ(ρϑ−6)

∞∏
n=1

(
1− ρϑ − 6

σ̃ϑ + iτ̃ϑ

)
e(ρϑ−6)/ρϑ = 0,

where ξτ (6) ̸= 0.
From (63) we show

(64) σ̃ϑ + iτ̃ϑ − (ρϑ − 6) = 0
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since ξτ (6) ̸= 0 and eγ(ρϑ−6)
∞∏
n=1

e(ρϑ−6)/ρϑ ̸= 0.

By (64), we present

(65) sϑ = Re (ρϑ) + iψϑ = σ̃ϑ + 6 + iτ̃ϑ,

where σ̃ϑ ∈ R\ {0} and τ̃ϑ ∈ R\ {0}.
By σ̃ϑ ∈ R\ {0} and (65), that the critical line is expressed as

(66) Re (sϑ) = σ̃ϑ + 6,

which is in contradiction with Lemma 1 (Lekkerkerker theorem), which states infin-
itely many zeros for ξτ (s) lie on the critical line Re (s) = 6.

Hypothesis 2.
Now, we give the hypothesis that Ξτ (t) has zeros

(67) ψϑ = ℓϑ,

where ℓϑ ∈ R\ {0}.
By inserting (67) into (57), we suggest that

(68) Ξτ (t) = Ξτ (0) e
iγt

∞∏
ϑ=1

(
1− it

ℓϑ

)
eit/ρϑ .

Substituting t = (s− 6) /i and (68), we give

(69)

ξτ (s)
= Ξτ ((s− 1/2) /i)

= Ξτ (0) e
iγt

∞∏
ϑ=1

[
1− i[(s−6)/i]

ℓϑ

]
eit/ρϑ

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s−6

ℓϑ

)
e(s−6)/ρϑ

since Ξτ (0) = ξτ (6).
Let ρϑ = Re (ρϑ) + iψϑ such that ξτ (sϑ) = 0, where Re (ρϑ) ∈ R\ {0} and ψϑ ∈

R\ {0}.
From (69), we show that

(70) ξτ (ρϑ) = ξτ (6) e
γ(ρϑ−6)

∞∏
ϑ=1

(
1− ρϑ − 6

ℓϑ

)
e(ρϑ−6)/ρϑ = 0.

From (70) we have that

(71) ρϑ − 6− ℓϑ = 0.

Since ℓϑ ∈ R\ {0}, (71) implies

(72) ρϑ = 6+ℓϑ ∈ R,
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which is in contradiction with the well-known fact

(73) ρϑ = Re (ρϑ) + iψϑ ∈ C,

where Re (ρϑ) ∈ R\ {0} and ψϑ ∈ R\ {0}.
Moreover, (72) and Lemma 1 (Lekkerkerker theorem) conflict with each other.
In sum, all zeros of Ξτ (t) are real since two cases are false.
Hence, we finish the proof. �

Remark. We have to point out that Corollary 3 is a sufficient condition for (9) to
have all infinitely many real zeros.

5. The nontrivial zeros

In this section we present the detailed account of the proof of Conjecture 1.
To begin with, we consider the product of the Ramanujan Ξ-function with the aid

of Corollary 3.
By Theorems 4 and 6, we now structure the entire Ramanujan Ξ-function by

(74) Ξτ (t) = ξτ (6) e
iγt

∞∏
ϑ=1

(
1− it

ρϑ − 6

)
eit/ρϑ =

∞∑
m=0

(−1)m βmt
2m,

where βm are the coefficients and γ is the constant.
In view of Corollary 3, the second term of (74) gives us to show that all of the

zeros of Ξτ (t) are real.
By (75), we have ψϑ ∈ C such that

(75) Ξτ (ψϑ) = 0,

which leads to

(76) ξτ (6) e
iγψϑ

∞∏
ϑ=1

(
1− iψϑ

ρϑ − 6

)
eit/ρϑ = 0,

or, alternatively,

(77)
∞∑
m=0

(−1)m βm (ψϑ)
2m =

∞∑
m=0

(−1)m βmψ
2m
ϑ = 0.

With (76) and Theorem 5 we arrive at

(78) 1− iψϑ
ρϑ − 6

= 0,

where ξτ (6) ̸= 0 and ϑ ∈ N.
From (78) one gets

(79) ρϑ = 6 + iψϑ
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for ϑ ∈ N.
Substituting (79) into (50) and (53), we have

(80)

Ξτ (t)

= ξτ (6) e
iγt

∞∏
ϑ=1

(
1− it

ρϑ−6

)
eit/ρϑ

= ξτ (6) e
iγt

∞∏
ϑ=1

[
1− it

(6+iψϑ)−6

]
eit/(6+iψϑ)

= ξτ (6) e
iγt

∞∏
ϑ=1

(
1− it

iψϑ

)
eit/(6+iψϑ)

= ξτ (6) e
iγt

∞∏
ϑ=1

(
1− t

ψϑ

)
eit/(6+iψϑ)

and

(81)

ξτ (s)

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s−6

ρϑ−6

)
e(s−6)/ρϑ

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

[
1− s−6

(6+iψϑ)−6

]
e(s−6)/(6+iψϑ)

= ξτ (6) e
γ(s−6)

∞∏
ϑ=1

[
1− s−6

iψϑ

]
e(s−6)/(6+iψϑ).

Similarly, by (79), (53) can be rewritten in the form

(82) ζτ (s) =
ξτ (6) (2π)

s eγ(s−6)

Γ (s)

∞∏
ϑ=1

[
1− s− 6

iψϑ

]
e(s−6)/(6+iψϑ).

From (81) and (82), one also has (78) and (79) once again.
Thus, we finish the proof of Conjecture 1.

6. The equivalent theorems

In this section we propose some equivalent theorems for the Ramanujan zeta-
function based on the true of Conjecture 1.

From (79) we find that ρϑ = 6 + iψϑ, ρϑ = 6 − iψϑ, 12 − ρϑ = 6 − iψϑ, and
1 − ρϑ = 6 + iψϑ are the zeros for the entire Ramanujan zeta-function and the
nontrivial zeros for the Ramanujan zeta-function.
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By (80) and φϑ = |ψϑ|, we have

(83)

Ξτ (t)

= ξτ (6) e
iγt

∞∏
ϑ=1

(
1− t

ψϑ

)
eit/(6+iψϑ)

= ξτ (6) e
iγt

∞∏
ϑ=1

(
1− t

φϑ

)
eit/(6+iφϑ)

∞∏
ϑ=1

(
1 + t

φϑ

)
eit/(6−iφϑ)

= ξτ (6) e
iγt

∞∏
ϑ=1

[(
1− t

φϑ

)(
1 + t

φϑ

)]
ei12t/(6+iφϑ)(6−iφϑ)

= ξτ (6) e
iγt

∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
ei12t/(36+φ

2
ϑ).

Because (83) is valid for t ∈ R and Ξτ (t) is the even function, one has

(84) Ξτ (−t) = ξτ (6) e
−iγt

∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
e−i12t/(36+φ

2
ϑ)

and

(85) Ξτ (t) = ξτ (6) e
iγt

∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
ei12t/(36+φ

2
ϑ)

such that

(86) ξτ (6) e
−iγt

∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
e−i12t/(36+φ

2
ϑ) = ξτ (6) e

iγt

∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
ei12t/(36+φ

2
ϑ).

Thus, by (86), one gets

(87) e2iγt
∞∏
ϑ=1

ei24t/(36+φ
2
ϑ) = 1,

which leads to

(88) 2iγt+ i24t
∞∑
ϑ=1

1

36 + φ2
ϑ

= 0.

Thus,

(89)
∞∑
ϑ=1

1

36 + φ2
ϑ

= − γ

12

and

(90) Ξτ (t) = ξτ (6)
∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
.
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Moreover, (85) reduces to

(91) Ξτ (0) = ξτ (6) ̸= 0.

Corollary 4. Suppose that Ξτ (t) is defined in (9), where t ∈ R. Let ϑ ∈ N such
that ψϑ run the zeros for Ξτ (t) and φϑ = |ψϑ|. Then we have

(92) Ξτ (t) = Ξτ (0)
∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
and

(93) Ξτ (t) = Ξτ (0)
∞∏
ϑ=1

(
1− t

ψϑ

)
.

Proof. Combining (90) and (85), we carry out (92).
In view of (92), we have

(94)

Ξτ (t)

= Ξτ (0)
∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
= Ξτ (0)

∞∏
ϑ=1

[(
1 + t

φϑ

)(
1− t

φϑ

)]
= Ξτ (0)

∞∏
ϑ=1

(
1− t

ψϑ

)
.

Thus, we finish the proof of Corollary 4. �

Theorem 8. Let ϑ ∈ N and t ∈ R. The following representations for Ξτ (t) are
equivalent:

(1A):

(95) Ξτ (t) =

∞∫
0

ϖ5+it∆τ (iϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
(2A):

(96) Ξτ (t) = 2

∞∫
1

cos (t)ϖ5∆τ (iϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
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(3A):

(97) Ξτ (t) =
∞∑
m=0

(−1)m βmt
2m,

where βm is defined in (36);
(4A):

(98) Ξτ (t) = ξτ (6) e
iγt

∞∏
ϑ=1

(
1− t

ψϑ

)
eit/(6+iψϑ),

where ψϑ run the zeros for Ξτ (t) and γ is defined in (89);
(5A):

(99) Ξτ (t) = Ξτ (0)
∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
,

where φϑ = |ψϑ|;
(6A):

(100) Ξτ (t) = Ξτ (0)
∞∏
ϑ=1

(
1− t

ψϑ

)
,

where ψϑ run the zeros for Ξτ (t).

Proof. Eq. (95) (see (9) in Section 1) was proved by Conrey and Ghosh [12]. (96)
is shown in Theorem 3, and (97) was presented in Theorem 4. (98) was given by
Theorem 6 and Conjecture 1. (99) and (100) were presented in Corollary 4. Thus,
we finish the proof of Theorem 8. These are what we wanted to show. �
Theorem 9. Let ϑ ∈ N and s ∈ C. The following representations for ξτ (s) are
equivalent:

(1B):

(101) ξτ (s) =

∞∫
0

ϖs−1∆τ (iϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
(2B):

(102) ξτ (s) = 2

∞∫
1

cosh (t)X (ϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
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(3B):

(103) ξτ (s) =
∞∑
m=0

βmt
2m,

where βm is defined in (36);
(4B):

(104) ξτ (s) = ξτ (6) e
γ(s−6)

∞∏
ϑ=1

(
1− s− 6

iψϑ

)
e(s−6)/(6+iψϑ),

where ψϑ run the zeros for Ξτ (t) and γ is defined in (89);
(5B):

(105) ξτ (s) = ξτ (6)
∞∏
ϑ=1

(
1 +

(s− 6)2

φ2
ϑ

)
,

where φϑ = |ψϑ|;
(6B):

(106) ξτ (s) = ξτ (6)
∞∏
ϑ=1

(
1− s− 6

iψϑ

)
,

where ψϑ run the zeros for Ξτ (t).

Proof. Eq. (101) (see (8) in Section 1) was proved in [12]. (102) was presented in
Theorem 1, and (103) was presented in Theorem 2. (104) was proved by Theorem 6
and Conjecture 1. Putting t = −i (s− 6) into (99) and (100), one obtains

(107) ξτ (s) = Ξτ (0)
∞∏
ϑ=1

(
1 +

(s− 6)2

φ2
ϑ

)
= ξτ (6)

∞∏
ϑ=1

(
1 +

(s− 6)2

φ2
ϑ

)
,

and

(108) ξτ (s) = Ξτ (0)
∞∏
ϑ=1

(
1− s− 6

iψϑ

)
= ξτ (6)

∞∏
ϑ=1

(
1− s− 6

iψϑ

)
,

since (91) is valid.
Hence we complete of the proof. �

Theorem 10. Let ϑ ∈ N and s ∈ C. The following representations for Lτ (s) are
equivalent:
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(1C):

(109) Lτ (s) =
(2π)s

Γ (s)

∞∫
0

ϖs−1∆τ (iϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
(2C):

(110) Lτ (s) =
21+sπs

Γ (s)

∞∫
1

cosh (t)X (ϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
(3C):

(111) Lτ (s) =
(2π)s

Γ (s)

∞∑
m=0

βmt
2m,

where βm is defined in (36);
(4C):

(112) Lτ (s) =
ξτ (6) (2π)

s

Γ (s)
eγ(s−6)

∞∏
ϑ=1

(
1− s− 6

iψϑ

)
e(s−6)/(6+iψϑ),

where ψϑ run the zeros for Ξτ (t) and γ is defined in (89);
(5C):

(113) Lτ (s) =
ξτ (6) (2π)

s

Γ (s)

∞∏
ϑ=1

(
1 +

(s− 6)2

φ2
ϑ

)
,

where φϑ = |ψϑ|;
(6C):

(114) Lτ (s) =
ξτ (6) (2π)

s

Γ (s)

∞∏
ϑ=1

(
1− s− 6

iψϑ

)
,

where ψϑ run the zeros for Ξτ (t).

Proof. By (4), we have

(115) Lτ (s) =
(2π)s

Γ (s)
ξτ (s) ,

and by (115) and Theorem 9, we obtain the required results.
Thus, the proof of Theorem 10 is finished. �
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We now define

(116) Mτ (t) = Lτ (6 + it) =
(2π)6+it

Γ (6 + it)
ξτ (6 + it) =

(2π)6+it

Γ (6 + it)
Ξτ (t) ,

where (2π)6+it /Γ (6 + it) ̸= 0 for t ∈ R.

Theorem 11. Let ϑ ∈ N and t ∈ R. The following representations for Mτ (t) are
equivalent:

(1D):

(117) Mτ (t) =
(2π)6+it

Γ (6 + it)

∞∫
0

ϖ5+it∆τ (iϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
(2D):

(118) Mτ (t) =
27+itπ6+it

Γ (6 + it)

∞∫
1

cos (t)X (ϖ) dϖ,

where ∆τ (ϖ) is defined in (11);
(3D):

(119) Mτ (t) =
(2π)6+it

Γ (6 + it)

∞∑
m=0

(−1)m βmt
2m,

where βm is defined in (36);
(4D):

(120) Mτ (t) =
(2π)6+it ξτ (6) e

iγt

Γ (6 + it)

∞∏
ϑ=1

(
1− t

ψϑ

)
eit/(6+iψϑ),

where ψϑ run the zeros for Ξτ (t) and γ is defined in (89);
(5D):

(121) Mτ (t) =
Ξτ (0) (2π)

6+it

Γ (6 + it)

∞∏
ϑ=1

(
1− t2

φ2
ϑ

)
,

where φϑ = |ψϑ|;
(6D):

(122) Mτ (t) =
Ξτ (0) (2π)

6+it

Γ (6 + it)

∞∏
ϑ=1

(
1− t

ψϑ

)
,

where ψϑ run the zeros for Ξτ (t).
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Proof. Combining (116) and Theorem 10, we arrive at the desired results. �

Now, we consider that the Hafner theorem was conjectured by Hafner in 1983, as
a statement equivalent to Conjecture 1 [13].

Theorem 12. (Hafner theorem)
Let

(123) N0 (T ) = # {s = 6 + it : 0 ≤ t ≤ T, ξτ (s) = 0}

and

(124) N (T ) = # {s = σ + it : 0 ≤ t ≤ T, 11/2 < σ < 13/2, ξτ (s) = 0} .

Then we have

(125) N0 (T ) = N (T ) .

Proof. Let 0 ≤ t ≤ T and 11/2 < σ < 13/2. With the aid of (79), one has

(126) ρϑ = 6 + iφϑ

such that

(127) Ξτ (ρϑ) = 0.

Thus, the result follows. �

Remark. By the above results, we show the following comments.

• By theory of the entire functions [20], it is observed that Ξτ (t) is an even
entire function of order α = 1 with the exponent of convergence λ = 1 and
genus β = 0, and of growth (1, 0). ξτ (s) is an entire function of order α = 1
with the exponent of convergence λ = 1 and genus β = 0, and is of growth
(1, 0).

• It was proposed in 1940 by Hardy [3] that the nontrivial zeros ρϑ for Lτ (s) lie
on the critical line Re (s) = 6 and in the critical strip 11/2 < Re (s) < 13/2,
and that the trivial zeros for Lτ (s) are s = −w with w ∈ N ∪ {0}. The
trivial and nontrivial zeros, critical line and critical trip for the Ramanujan
zeta-function in the entire complex plane are shown in Fig. 1. Thus, it is
clear to see that Conjecture 1 is true.
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S 

Entire complex plane S 

Trivial zeros

Nontrivial zeros

Nontrivial zeros

Critical trip

Critical line

5.5 6.5-1 0-3 -2

Figure 1. The blue points are represented as the nontrivial zeros for
Lτ (s). The amaranth points are represented as the trivial zeros for
Lτ (s). All nontrivial zeros for Lτ (s) lie on the critical line Re (s) = 6
and in the critical strip 11/2 < Re (s) < 13/2.
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