Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Target Nanoparticles Against Pancreatic Cancer: Fewer Side Effects in Therapy

Version 1 : Received: 10 October 2021 / Approved: 12 October 2021 / Online: 12 October 2021 (20:45:44 CEST)

A peer-reviewed article of this Preprint also exists.

Roacho-Pérez, J.A.; Garza-Treviño, E.N.; Delgado-Gonzalez, P.; G-Buentello, Z.; Delgado-Gallegos, J.L.; Chapa-Gonzalez, C.; Sánchez-Domínguez, M.; Sánchez-Domínguez, C.N.; Islas, J.F. Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy. Life 2021, 11, 1187. Roacho-Pérez, J.A.; Garza-Treviño, E.N.; Delgado-Gonzalez, P.; G-Buentello, Z.; Delgado-Gallegos, J.L.; Chapa-Gonzalez, C.; Sánchez-Domínguez, M.; Sánchez-Domínguez, C.N.; Islas, J.F. Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy. Life 2021, 11, 1187.

Abstract

Pancreatic cancer leads the most common lethal tumor in America. This lethality is related to limited treatment options. Conventional treatments involve a non-specific use of chemotherapeutical agents like 5-FU, capecitabine, gemcitabine, cisplatine, oxaliplatine, or irinotecan, that produce several side effects. This review we focus on the use of targeted nanoparticles as an alternative to the standard treatment for the pancreatic cancer. The principal objective of the use of nanoparticles is the reduction in side effects that conventional treatments produce, mostly because of their nonspecificity. Currently, several molecular markets of pancreatic cancer cells have been studied to target nanoparticles and improve the actual treatment. Therefore, properly functionalizated nanoparticles with specific aptamers or antibodies can be used to recognize pancreatic cancer cells and once cancer is recognized, these nanoparticles can attack the tumor by drug delivery, hyperthermia, or gene therapy.

Keywords

pancreatic cancer; molecular markers; target therapy; nanomedicine

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.