Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Non-Archimedean Welch Bounds and Non-Archimedean Zauner Conjecture

Version 1 : Received: 27 August 2022 / Approved: 29 August 2022 / Online: 29 August 2022 (12:35:07 CEST)

How to cite: Krishna, K. M. Non-Archimedean Welch Bounds and Non-Archimedean Zauner Conjecture. Preprints 2022, 2022080492. https://doi.org/10.20944/preprints202208.0492.v1 Krishna, K. M. Non-Archimedean Welch Bounds and Non-Archimedean Zauner Conjecture. Preprints 2022, 2022080492. https://doi.org/10.20944/preprints202208.0492.v1

Abstract

Let $\mathbb{K}$ be a non-Archimedean (complete) valued field satisfying \begin{align*} \left|\sum_{j=1}^{n}\lambda_j^2\right|=\max_{1\leq j \leq n}|\lambda_j|^2, \quad \forall \lambda_j \in \mathbb{K}, 1\leq j \leq n, \forall n \in \mathbb{N}. \end{align*} For $d\in \mathbb{N}$, let $\mathbb{K}^d$ be the standard $d$-dimensional non-Archimedean Hilbert space. Let $m \in \mathbb{N}$ and $\text{Sym}^m(\mathbb{K}^d)$ be the non-Archimedean Hilbert space of symmetric m-tensors. We prove the following result. If $\{\tau_j\}_{j=1}^n$ is a collection in $\mathbb{K}^d$ satisfying $\langle \tau_j, \tau_j\rangle =1$ for all $1\leq j \leq n$ and the operator $\text{Sym}^m(\mathbb{K}^d)\ni x \mapsto \sum_{j=1}^n\langle x, \tau_j^{\otimes m}\rangle \tau_j^{\otimes m} \in \text{Sym}^m(\mathbb{K}^d)$ is diagonalizable, then \begin{align}\label{WELCHNONABSTRACT} \max_{1\leq j,k \leq n, j \neq k}\{|n|, |\langle \tau_j, \tau_k\rangle|^{2m} \}\geq \frac{|n|^2}{\left|{d+m-1 \choose m}\right| }. \end{align} We call Inequality (\ref{WELCHNONABSTRACT}) as the non-Archimedean version of Welch bounds obtained by Welch [\textit{IEEE Transactions on Information Theory, 1974}]. We formulate non-Archimedean Zauner conjecture.

Keywords

Non-Archimedean valued field; non-Archimedean Hilbert space; Welch bound; Zauner conjecture

Subject

Computer Science and Mathematics, Analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.