Dai, Y.; Cha, H.; Nguyen, N.-K.; Ouyang, L.; Galogahi, F.; Yadav, A.S.; An, H.; Zhang, J.; Ooi, C.H.; Nguyen, N.-T. Dynamic Behaviours of Monodisperse Double Emulsion Formation in a Tri-Axial Capillary Device. Micromachines2022, 13, 1877.
Dai, Y.; Cha, H.; Nguyen, N.-K.; Ouyang, L.; Galogahi, F.; Yadav, A.S.; An, H.; Zhang, J.; Ooi, C.H.; Nguyen, N.-T. Dynamic Behaviours of Monodisperse Double Emulsion Formation in a Tri-Axial Capillary Device. Micromachines 2022, 13, 1877.
Dai, Y.; Cha, H.; Nguyen, N.-K.; Ouyang, L.; Galogahi, F.; Yadav, A.S.; An, H.; Zhang, J.; Ooi, C.H.; Nguyen, N.-T. Dynamic Behaviours of Monodisperse Double Emulsion Formation in a Tri-Axial Capillary Device. Micromachines2022, 13, 1877.
Dai, Y.; Cha, H.; Nguyen, N.-K.; Ouyang, L.; Galogahi, F.; Yadav, A.S.; An, H.; Zhang, J.; Ooi, C.H.; Nguyen, N.-T. Dynamic Behaviours of Monodisperse Double Emulsion Formation in a Tri-Axial Capillary Device. Micromachines 2022, 13, 1877.
Abstract
We investigated experimentally, analytically and numerically the formation process of double emulsion formations under dripping regime in a tri-axial co-flow capillary device. The results show that mismatches of core and shell droplets under a given flow condition can be captured both experimentally and numerically. We propose a semi-analytical model using the match ratio between the pinch-off length of the shell droplet and the product of the core growth rate and its pinch-off time. The mismatch issue can be avoided if the match ratio is lower than unity. We considered a model with the wall effect to predict the size of the matched double emulsion. The model shows slight deviations with experimental data if the Reynolds number of continuous phase is lower than 0.06, but asymptotically approaches to good agreement if the Reynolds number increases from 0.06 to 0.14. The numerical simulation generally agrees with the experiments under various flow conditions.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.