Lee, S.; Koo, H.; Kang, H.S.; Oh, K.-H.; Nam, K.W. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators. Polymers2023, 15, 4477.
Lee, S.; Koo, H.; Kang, H.S.; Oh, K.-H.; Nam, K.W. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators. Polymers 2023, 15, 4477.
Lee, S.; Koo, H.; Kang, H.S.; Oh, K.-H.; Nam, K.W. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators. Polymers2023, 15, 4477.
Lee, S.; Koo, H.; Kang, H.S.; Oh, K.-H.; Nam, K.W. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators. Polymers 2023, 15, 4477.
Abstract
Lithium-ion batteries (LIBs) have become indispensable energy storage devices for various applications, ranging from portable electronics to electric vehicles and renewable energy systems. The performance and reliability of LIBs depend on several key components, including the electrodes, separators, and electrolytes. Among these, the choice of binder materials for the electrodes plays a critical role in determining the overall performance and durability of LIBs. This review introduces polymer binders that have been traditionally used in the cathode, anode, and separator materials of LIBs. Furthermore, it explores the problems identified in traditional polymer binders and examines the research trends in next-generation polymer binder materials for lithium-ion battery as alternatives.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.