Milis, G.R.; Gay, C.; Alvarez-Herault, M.-C.; Caire, R. Disaggregation Model: A Novel Methodology to Estimate Customers’ Profiles in a Low-Voltage Distribution Grid Equipped with Smart Meters. Information2024, 15, 142.
Milis, G.R.; Gay, C.; Alvarez-Herault, M.-C.; Caire, R. Disaggregation Model: A Novel Methodology to Estimate Customers’ Profiles in a Low-Voltage Distribution Grid Equipped with Smart Meters. Information 2024, 15, 142.
Milis, G.R.; Gay, C.; Alvarez-Herault, M.-C.; Caire, R. Disaggregation Model: A Novel Methodology to Estimate Customers’ Profiles in a Low-Voltage Distribution Grid Equipped with Smart Meters. Information2024, 15, 142.
Milis, G.R.; Gay, C.; Alvarez-Herault, M.-C.; Caire, R. Disaggregation Model: A Novel Methodology to Estimate Customers’ Profiles in a Low-Voltage Distribution Grid Equipped with Smart Meters. Information 2024, 15, 142.
Abstract
In a context of increasingly necessary energy transition, precise modelling of profiles for low-voltage (LV) network consumers is crucial to enhance hosting capacity. Typically, load curves for these consumers are estimated through measurement campaigns conducted by Distribution System Operators (DSO) for a representative subset of customers or through the aggregation of load curves from household appliances within a residence. With the instrumentation of smart meters becoming more common, a new approach to modelling profiles for residential customers is proposed to make the most of the measurements from these meters. The disaggregation model estimates the load profile of customers on a low-voltage network by disaggregating the load curve measured at the secondary substation level. By utilizing only the maximum power measured by Linky smart meters, along with the load curve of the secondary substation, this model can estimate the daily profile of customers. For 48 secondary substations in our dataset, the model obtained an average symmetric mean average percentage error (SMAPE) error of 4.91% in reconstructing the load curve of the secondary substation from the curves disaggregated by the model. This methodology can allow the estimation of the daily consumption behaviors of the low-voltage customers. In this way, we can safely envision solutions that enhance the grid hosting capacity.
Engineering, Electrical and Electronic Engineering
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.