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Distributed Learning in
Wireless Sensor Networks

W
ireless sensor networks (WSNs) are a fortiori designed to make inferences about
the environments that they are sensing, and they are typically characterized by
limited communication capabilities due to tight energy and bandwidth con-
straints. As a result, WSNs have inspired a resurgence in research on decentral-
ized inference. Decentralized detection and estimation have often been

considered in the framework of parametric models, in which the statistics of phenomena under
observation are assumed known to the system designer. Such assumptions are typically motivated by
data or prior application-specific domain knowledge. However, when data is sparse or prior knowl-
edge is vague, robust nonparametric methods are desirable. In this article, nonparametric distributed
learning is discussed. After reviewing the classical learning model and highlighting the success of
machine learning in centralized settings, the challenges that WSNs pose for distributed learning are
discussed, and research aimed at addressing these challenges is surveyed.

INTRODUCTION
WSNs have attracted considerable attention in recent years [2]. Research in this area has focused on two
separate aspects of such networks: networking issues, such as capacity, delay, and routing strategies;

[Applications issues and the problem of distributed inference]
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and applications issues. This article is concerned with the sec-
ond of these aspects of WSNs and in particular with the problem
of distributed inference. WSNs are a fortiori designed for the
purpose of making inferences about the environments that they
are sensing, and they are typically characterized by limited com-
munication capabilities due to tight energy and bandwidth limi-
tations. Thus, decentralized inference is a major issue in the
study of such networks.

Decentralized inference has a rich history within the infor-
mation theory and signal processing communities, especially in
the framework of parametric models. Recall that in parametric
settings, the statistics of the phenomena under observation are
assumed known to the system designer. Under such assump-
tions, research has typically focused on determining how the
capacity of the sensor-to-fusion center channel fundamentally
limits the quality of estimates (e.g., rate-distortion tradeoffs [7],
[28], [36], [99]), on determining delay-sensitive optimal (under
various criteria) sensor decision rules and fusion strategies
under unreliable bandwidth constrained channels (e.g., [18],
[96], [98]), on characterizing the performance of large networks
relative to their centralized communication-unconstrained
counterparts (e.g., [16]), or on developing message-passing algo-
rithms through which globally optimal estimates are computed
with only local intersensor communications (e.g., [22]). As this
diverse yet nonexhaustive list of issues suggests, the literature
on decentralized inference is massive and growing. See, for
example, [9], [10], [20], [21], [44], [51], [69], [83], [87], [93], and
references thereto and therein for entry points.

From a theoretical perspective, parametric models enable a
rigorous examination of many fundamental questions for infer-
ence under communication constraints. Practically speaking,
such strong assumptions should be motivated by data or prior
application-specific domain knowledge. If, instead, data is sparse
and prior knowledge is limited, robust nonparametric methods
for decentralized inference are generally preferred. 

The anticipated applications for WSNs range broadly from
homeland security and surveillance to habitat and environmental
monitoring. Indeed, advances in microelectronics and wireless
communications have made WSNs the predicted panacea for
attacking a host of large-scale decision and information-process-
ing tasks. As the demand for these devices increases, one cannot
expect that the necessary data or domain knowledge will always
be available to support a parametric approach. Consequently,
applications of WSNs provide an especially strong motivation for
the study of nonparametric methods for decentralized inference.

Recognizing this demand, a variety of researchers have taken
a nonparametric approach to study decentralized detection and
estimation. For example, [60] and [97] consider decentralized
detection schemes based on the Wilcoxon signed-rank test statis-
tic, and [3] and [35] study the sign detector in a decentralized
setting. References [6] and [38] address constant-false-alarm-rate
detection in a distributed environment. Schemes for universal
decentralized detection and estimation are surveyed in [102] and
are studied in detail in [54], [55], [84], [100], and [101]. From a
practical perspective, these approaches are attractive not only

because they permit the design of robust networks with provable
performance guarantees but also because in principle, they sup-
port the design of “isotropic” sensors, i.e., sensors that may be
deployed for multiple applications without reprogramming. 

In this article, our focus is on an alternative nonparametric
approach, the learning-theoretic approach [95]. Frequently
associated with pattern recognition [23], [24], nonparametric
regression [34], and neural networks [4], learning-theoretic
methods are aimed precisely at decision problems in which data
is sparse and prior knowledge is limited. Researchers in com-
puter science, statistics, electrical engineering, and other com-
munities have been united in the field of machine learning, in
which computationally tractable and statistically sound methods
for nonparametric inference have been developed. Powerful
tools such as boosting [25] and kernel methods [86] have been
successfully employed in real-world applications ranging from
handwritten digit recognition to function genomics and are
quite well-understood statistically and computationally. A gener-
al research question arises: Can the power of these tools be
tapped for inference in WSNs? 

As we will discuss, the classical limits of and algorithms for
nonparametric learning are not always applicable in WSNs, in
part because the classical models from which they are derived
have abstracted away the communication involved in data acqui-
sition. This observation provides inspiration for distributed
learning in WSNs and leads to a variety of fundamental ques-
tions. How is distributed learning in sensor networks different
from centralized learning? In particular, what fundamental lim-
its on learning are imposed by constraints on energy and band-
width? In light of such limits, can existing learning algorithms
be adapted? These questions are representative of a larger thrust
within the sensor network community which invites engineers
to consider signal processing and communications jointly.

Though the impetus for nonparametric distributed learning
has been recognized in a variety of fields, the literature immedi-
ately relevant to sensor networks is small and is not united by a
single model or paradigm. Indeed, distributed learning is a rela-
tively young area, as compared to (parametric) decentralized
detection and estimation, WSNs, and machine learning. Thus,
an exhaustive literature review would necessarily focus on
numerous disparate papers rather than aggregate results organ-
ized by model. In the interest of space, this article decomposes
the literature on distributed learning according to two general
research themes: distributed learning in WSNs with a fusion
center, where the focus is on how learning is effected when
communication constraints limit access to training data; and
distributed learning in WSNs with in-network processing, where
the focus is on how intersensor communications and local pro-
cessing may be exploited to enable communication-efficient col-
laborative learning. We discuss these themes within the context
of several papers from the field. Though the result is a survey
unquestionably biased toward the authors’ own interests, our
hope is to provide the interested reader with an appreciation for
a set of fundamental issues within distributed signal processing
and an entree to a growing body of literature.



CLASSICAL LEARNING
In this section, we summarize the supervised learning model
that is often studied in learning theory, nonparametric statistics
and statistical pattern recognition. Then, we review kernel
methods, a popular and well-studied class of algorithms for
supervised learning. For a thorough introduction to classical
learning models and algorithms, we refer the reader to the
review paper [47] and references therein, and standard books
[4], [23], [24], [34], [37], [56].

THE SUPERVISED LEARNING MODEL
Let X and Y be X -valued and Y -valued random variables,
respectively. X is known as the feature, input, or observation
space; Y is known as the label, output, target, or parameter
space. Attention in this article is restricted to detection and esti-
mation, i.e., we consider two cases corresponding to binary clas-
sification (Y = {0, 1}) and regression (Y = IR). To ease
exposition, we assume that X ⊆ IRd. 

Given a loss function l : Y × Y → IR, we seek a decision rule
mapping inputs to outputs that achieves minimal expected loss.
In particular, we seek a function g : X → Y that minimizes

E{l(g(X), Y)}. (1)

In the binary classification setting, the criterion of interest is the
probability of misclassification, which corresponds to the zero-
one loss function l(y, y′) = 1{y�=y′}(y, y′); in the context of esti-
mation, the squared error l(y, y′) = |y − y′|2 is the metric of
choice. In parametric settings, one assumes prior knowledge of
a joint probability distribution PXY that describes the stochastic
relationship between inputs and outputs. Under this assump-
tion, the structure of the loss minimizing decision rule
g� : X → Y is well understood. In estimation, the regression
function g�(x) = E{Y |X = x} achieves the minimal expected
squared error; the maximum a posteriori (MAP) decision rule is
Bayes optimal for binary classification [23]. In the sequel, we
will use L� = E{l(g�(X), Y)} to denote the loss achieved by the
loss-minimizing decision rule.

In the learning framework, prior knowledge of the joint dis-
tribution PXY is not available, and thus computing the MAP
decision rule or the regression function is not possible. Instead,
one is provided a collection of training data
Sn = {(x, yi)}n

i=1 ⊂ X × Y , i.e., a set of exemplar input-output
pairs. The learning problem is to use this data to infer decision
rules with small loss, without making additional assumptions
on the data generating probability distribution. In short,
g(X) = g(X, Sn) is dependent on the training set but independ-
ent of PXY . Often, the training examples in Sn are assumed to
be random variables generated from some stochastic process;
for example, a standard assumption is that Sn = {(Xi, Yi)}n

i=1 is
independent and identically distributed (i.i.d.) with
(Xi, Yi) ∼ PXY ∀i ∈ {1, . . . , n}. Generally, such assumptions
are introduced to analyze the limits of learning or to character-
ize the statistical behavior of specific learning rules and are 
not necessary to define the learning problem in general. To 

simplify the exposition, we use the notation Sn = {(Xi, Yi)}n
i=1

(i.e., with capital letters), which suggests that the data is ran-
domly generated. However, unless otherwise noted, the discus-
sion will be independent of assumptions on the data-generating
stochastic process.

KERNEL METHODS
To aid the subsequent discussion, it will be helpful to have basic
familiarity with kernel methods, a popular class of algorithms
for supervised learning. The kernel approach to learning can be
summarized as follows. 

First, design a kernel, i.e., positive semidefinite function
K : X × X → IR, as a similarity measure for inputs. For exam-
ple, one might take K to be the linear kernel K(x, x′) = xTx′ ,
the naive kernel K(x, x′) = 1{‖x−x′‖≤rn}(x, x′), or perhaps the
Gaussian kernel Kσ (x, x′) = exp−(1/2σ 2)‖x−x′‖2

2 . Though kernel
design is an active area of research, it is generally an art, typi-
cally guided by application-specific domain knowledge. 

Given such a kernel, construct an estimate gn : X → IR of
E{Y |X} as follows:

gn(X) = gn(X, Sn)

=
{ ∑n

i=i
K(X,Xi)Yi∑n

i=i
K(X,Xi)

if
∑n

i=i K(X, Xi) > 0

0, otherwise.
(2)

gn(X) associates with each input X a weighted average of the
training data outputs, with the weights determined by how
“similar” the corresponding inputs are to X . With the naive
kernel, gn(X) is analogous to the Parzen-window rule for den-
sity estimation.

Though naive by the standards of state-of-the-art machine
learning, the wisdom behind the kernel approach can verified by
the following theorem proved originally by Stone [90] and
described in detail in [23] and [34].

THEOREM 1 [90]
Assume that Sn is i.i.d. with (Xi, Yi) ∼ PXY . Define
Ln � E{l(gn(X), Y) |Sn} with gn as in (2) with the naive kernel.
If rn → 0 and nr d

n → ∞, then the kernel rule is universally
consistent under the squared-error criterion. That is, with
l(y, y′) = |y − y′|2, E{Ln} → L� for all distributions PXY with
E{Y2} < ∞. 

In the context of regression under the squared-error criteri-
on, Theorem 1 says that in the limit of large amounts of data,
the kernel decision rule will perform as well as could be expected
if one had known PXY in advance. Stated in full generality,
Stone’s Theorem [90] establishes that a large class of “weighted
average” learning rules can be made universally consistent,
including kernel rules with a Gaussian kernel, nearest neighbor
rules, and histogram estimators. Interestingly, under identical
assumptions on {rn}, the decision rule induced by thresholding
gn(X) at one-half is universally consistent for binary classifica-
tion under the zero-one loss [23]. 

Though this seminal result is promising, there is a catch. It
is well-known that without additional assumptions on PXY , the
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convergence rate of E{Ln} may be arbitrarily slow. Moreover,
even with appropriate assumptions, the rate of convergence is
typically exponentially slow in d, the dimensionality of the input
space. These caveats have inspired the development of practical
learning algorithms that recognize the finite-data reality and
the so-called curse of dimensionality. 

Many popular learning algorithms are based on the principle
of (regularized) empirical risk minimization [95], which
requires the learning algorithm to minimize a data-dependent
approximation of the expected loss (1). For example, reproduc-
ing kernel methods constitute one popular approach in which
the estimator (classifier) is taken as the solution to the following
optimization problem: 

min
f∈HK

[
1
n

n∑
i=1

l( f(Xi), Yi) + λ‖ f‖2
HK

]
. (3)

The first term in the objective function (3) is the empirical loss
of an estimator f : X → IR and serves as measurement of how
well f fits the data; the second term acts as a complexity con-
trol and regularizes the optimization. (In practice, for various
statistical and computational reasons, the empirical loss is
often measured using a convex loss function which may bound
or otherwise approximate the loss criterion of interest. See [86]
for a discussion and examples.) λ ∈ IR+ is a constant parameter
that governs the tradeoff between these two terms. The opti-
mization variable (i.e., function) is f , which is constrained to be
in HK , the reproducing kernel Hilbert space induced by the
kernel K(·, ·); ‖ · ‖HK is the corresponding norm.

For those unfamiliar with reproducing kernel Hilbert spaces,
it is sufficient for the subsequent discussion to note that HK is a
vector space of functions equipped with a particularly 
convenient inner-product. If K(·, ·) is the linear kernel, for
example, then HK is the space of linear functions on X , i.e.,
HK = { f : X → IR : ∃w ∈ IRd s.t. f(x) = wTx} . Under minimal
regularity [86], the inner-product structure implies that the
minimizer fλ ∈ HK to (3) satisfies

fλ(·) =
n∑

i=1

cλ,iK(·, Xi), (4)

for some cλ ∈ IRm. This well-known fact is often termed the “rep-
resenter theorem” [42]; it is significant because it highlights that
while the optimization in (3) is defined over a potentially infinite
dimensional Hilbert space, the minimizer must lie in a finite
dimensional subspace. It also highlights a sense in which repro-
ducing kernel methods generalize their more naive counterpart,
since (2) can be expressed as (4) for a particular choice of cλ. To
emphasize the significance of the representer theorem, note that
in least-squares estimation it implies that cλ is the solution to a
system of n linear equations. In particular, it satisfies 

cλ = (K + λI)−1y, (5)

where K = (kij) is the kernel matrix (kij = K(Xi, Xj)). 

Intuitively, when n is large and λ is small, the objective
function will closely approximate the expected loss; the hope is
that the solution to (3) will then approximately minimize the
expected loss. Rigorously, the statistical behavior of reproduc-
ing kernel methods is well understood under various assump-
tions on the stochastic process that generates the examples in
Sn [34], [86]. This highly successful technique has been verified
empirically in applications ranging from bioinformatics to
handwritten digit recognition. 

As the reader may well be aware, the scope of algorithms for
supervised learning extends far beyond kernel methods and
includes, for example, neural networks [4], nearest-neighbor
rules [34], decision-trees [80], Bayesian and Markov networks
[40], [73], and boosting [25]. Many of these algorithms are well
understood computationally and statistically; together they form
an indispensable toolbox for nonparametric learning. At this
point, we leave classical learning in general and kernel methods
in particular, referring the interested reader to previously cited
references for additional information.

DISTRIBUTED LEARNING IN WSNS
To illustrate how learning is relevant to decentralized inference
and to discuss the challenges that WSNs pose, it will be helpful
to have a running example at hand. Suppose that the feature
space X models the set of measurements observable by sen-
sors in a wireless network. For example, the components of an
element x ∈ X = IR3 may model coordinates in a (planar)
environment, and time. Y = IR may represent the space of
temperature measurements. A fusion center, or the sensors
themselves, may wish to know the temperature at some point
in space-time; to reflect that these coordinates and the corre-
sponding temperature are unknown prior to the network’s
deployment, let us model them with the random variable
(X, Y). A joint distribution PXY may model the spatiotemporal
correlation structure of a temperature field. If the field’s struc-
ture is well understood, i.e., if PXY can be assumed known a
priori, then an estimate may be designed within the standard
parametric framework. However, if such prior information is
unavailable, an alternative approach is necessary.

Suppose instead that sensors are randomly deployed about
the environment, and collectively acquire a set of data
{(Xi, Yi)}n

i=1 ⊂ X × Y , which represents the sensors’ tempera-
ture measurements at various points in space-time. (A host of
localization algorithms have been developed to enable sensors to
measure their location; see, for example, [29], [63], and [73].)
The set {(Xi, Yi)}n

i=1 of measurements is akin to the training
data described earlier, and the theory and methods described
seem naturally applicable. However, the supervised learning
model has abstracted away the process of data acquisition and
generally does not incorporate communication constraints that
may limit a learner’s access to the data. Indeed, the theory and
methods discussed depend critically on the assumption that the
training data is entirely available to a single processor.

In WSNs, of course, the energy and bandwidth required to
pool the sensors’ measurements may be prohibitively large.



Thus, employing centralized learning strategies may limit the
sensors’ battery life and may ultimately preclude one from real-
izing the potential of WSNs. Are there more communication-
efficient methods for distributed learning? In particular, can we
design learning algorithms that respect constraints on energy
and bandwidth?

Before proceeding, note that the simplicity of the running
example should not mask the generality of the model. Indeed, X
may model more than position and may represent a space of
multimodal sensor measurements that commonly occur in WSN
applications. Moreover, Y may model any number of quantities
of interest, for example the strength of a signal emitted from a
target, a force measured by a strain gauge, or an intensity level
assessed by an acoustic sensor. In general, each sensor or the
fusion center seeks a decision rule f : X → Y that predicts out-
put measurements using input measurements. And they wish to
do so using only the data observed by the sensor network.

A GENERAL MODEL FOR DISTRIBUTED LEARNING
Now let us pose a general model for distributed learning that
will aid in formulating the problem and categorizing work with-
in the field. Suppose that in a network of m sensors, sensor i has
acquired a set of measurements, i.e., training data, Si ⊂ X × Y .
In the running example above, Si may represent a stationary
sensor’s measurements of temperature over the course of a day
or a mobile sensor’s readings at various points in space-time.
Suppose further that the sensors form a wireless network,
whose topology is specified by a graph. For example, consider
the models depicted pictorially in Figure 1. 

Each node in the graph represents a sensor and its locally
observed data; an edge in the graph posits the existence of a
wireless link between sensors. Note that the fusion center can be
modeled as an additional node in the graph, perhaps with larger
capacity links between itself and the sensors, to reflect its larger

energy supply and computing power. A priori, this model makes
no assumptions on the topology of the network (e.g., the graph
is not necessarily connected); however, the success of distrib-
uted learning may in fact depend on such properties.

Much of the work in distributed learning differs in the way
that the capacity of the links is modeled. Given the complexity
of nonparametric learning, simple application-layer abstrac-
tions are typically preferred over detailed physical layer models.
As we shall see, often the links are assumed to support the
exchange of “simple” real-valued messages, where simplicity is
defined relative to the application (e.g., sensors communicate
summary statistics rather than entire data sets). Note that this
general model is consistent with a pervasive intuition within
the WSN community, which views WSNs as distributed sam-
pling devices with a wireless interface.

Generally speaking, research in distributed learning can 
be categorized within two classes of networks. Depicted in
Figure 1(a), the parallel network supposes a network of sensors
that communicate directly with a fusion center. In this setting,
the question is: How is the fusion center’s ability to learn funda-
mentally effected when communication constraints limit its
access to the data? This architecture is relevant to WSNs whose
primary purpose is data collection. A second class of networks
may be modeled with an ad hoc structure such as the network
in Figure 1(b). The typical assumption is that the topology of
these networks is dynamic and perhaps unknown prior to
deployment; a fusion center may exist, but the sensors are large-
ly autonomous and may make decisions independently of the
fusion center (e.g., to track a moving object). Here, we might
ask how can local intersensor communication and 
in-network processing be exploited to enable communication-
efficient collaborative learning?

In the next few sections, we review recent work aimed at
addressing these questions in the context of WSNs. Though sta-

tistical and machine learning are rife
with results relevant to distributed
learning in general, to our knowledge
suprisingly little research has
addressed learning in WSNs in partic-
ular. Thus, before proceeding, let us
highlight several areas of machine
learning research that are relevant to
distributed learning, if not WSNs, and
that may bear on future studies in dis-
tributed signal processing.

RELATED WORK
Within the context of WSNs, [64]
developed a nonparametric kernel-
based methodology for designing
decentralized detection systems. As in
centralized learning, a training set
was assumed available offline to a sin-
gle processor. The data was used to
find a decision rule that solved an

[FIG1] (a) A parallel network with a fusion center. (b) An ad hoc network with in-network
processing.
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optimization problem similar to (3), with the additional con-
straint that the rule lie within a restricted class of estimators
that were deployable across a
sensor network; the powerful
notion of a marginal kernel was
exploited in the process. This
setting is fundamentally differ-
ent from the present context in
that the data is centralized.
Thus, one might distinguish the
former topic of centralized
learning for decentralized inference from the present topic of
distributed learning for decentralized inference.

Ensemble methods have attracted considerable attention
within machine learning. Examples of these techniques include
bagging, boosting, mixtures of experts, and others [12], [25],
[26], [39], [43]. Intuitively, these methods allocate portions of
the training database to different classifiers that are independ-
ently trained. The individual classifiers are subsequently aggre-
gated, sometimes through a different training algorithm and
sometimes using feedback from the training phase of the indi-
vidual classifiers. One might cast these algorithms within the
framework of distributed learning in a parallel network, but
ensemble methods are generally designed within the classical
model for supervised learning and fundamentally assume that
the training set Sn is available to a single coordinating proces-
sor. In general, the focus of ensemble learning is on the statisti-
cal and algorithmic advantages of learning with an ensemble
and not on the nature of learning under communication con-
straints. Nevertheless, many fundamental insights into learning
have arisen from ensemble methods; future research in distrib-
uted signal processing stands to benefit.

Inspired by the availability of increasingly large data sets, an
active area of machine learning research focuses on “scaling up”
existing learning algorithms to handle massive training data-
bases; see, for example, [11], [17], [31], and [79] and references
thereto and therein. One approach is to decompose the training
set into smaller “chunks” and subsequently parallelize the learn-
ing process by assigning distinct processors/agents to each of
the chunks. In this setting, sometimes termed parallel learning,
the communication constraints arise as parameters to be
tweaked, rather than from resources to be conserved; this differ-
ence in perspective often limits the applicability of the underly-
ing communication model to applications like sensor networks.
However, in principle, algorithms for parallelizing learning may
be useful for distributed learning and vice-versa. 

Population learning is an early model for distributed learn-
ing [41], [59], [105]. In that setting, a parallel network is consid-
ered; it is assumed that the “sensors” locally train estimators
before transmitting a complete description of their learned rules
to the fusion center. The fusion center’s task is to observe the
response of the network to infer a more accurate rule. The origi-
nal model [41] was parametric (i.e., “distribution specific” learn-
ing) and was constructed in the spirit of the “probably
approximately correct” (PAC) framework [94]. Generalizations

such as [59] relaxed such assumptions, but the results ultimate-
ly depend on strong assumptions about a class of hypotheses

that generate the data. The utili-
ty of these results to WSNs may
be limited by these strong
assumptions or by the fact that
sensors must communicate a
complete description of the
rule. Nevertheless, population
learning appears to have moti-
vated a host of other studies in

distributed learning, and may provide insights for distributed
signal processing. 

The online learning framework also appears relevant to dis-
tributed learning in WSNs with a fusion center [14], [26], [52]. In
that setting, a panel of experts (i.e., a network of sensors) provides
predictions (one can imagine that predictions arose from inde-
pendently trained estimators, but such assumptions are unneces-
sary). A central agent (i.e., a fusion center) receives these forecasts
and bases its own prediction on a weighted average of the experts’
predictions. Upon learning the “truth” (i.e., Y), the agent suffers a
loss (e.g., squared error). In repeated trials, the agent updates the
weights of its weighted average by taking into account the per-
formance of each expert. Under minimal assumptions on the evo-
lution of these trials, bounds are derived that compare the
trial-averaged performance of the central agent with that of the
best (weighted combination of) expert(s). This framework may be
relevant to aggregation problems that arise in WSNs, however to
our knowledge such applications have not been made.

Finally, the field of data mining has explored distributed
learning in the context of distributed databases. Here, various
agents have access to training databases and wish to collabo-
rate with each other to maximize the accuracy of their deci-
sion rules. Consider, for example, the fraud detection
application, where corporations have access to large databases
of consumer transactions that they wish to use to identify
fraudulent interactions. In this setting, communication con-
straints between agents arise due to security, privacy, or legal
concerns, not from limitations on energy or bandwidth.
Nonetheless, the problem bears a striking resemblance to the
ad hoc structure of distributed learning in sensor networks. In
the data mining context, a distributed boosting algorithm is
studied in reference [50]; a similar algorithm is analyzed in the
framework of secure multiparty computation in [27]. 

DISTRIBUTED LEARNING IN WSNS 
WITH A FUSION CENTER
In this section, we discuss distributed learning in WSNs with a
fusion center, which focuses on the parallel network depicted in
Figure 1(a). Recall that in this setting, each sensor in the net-
work acquires a set of data. In the running example, the data
may constitute the sensors’ temperature measurements at dis-
crete points in space-time. The fusion center would like to use
the locally observed data to construct a global estimate of the
continuously varying temperature field. 

THE ANTICIPATED APPLICATIONS FOR
WIRELESS SENSOR NETWORKS RANGE
BROADLY FROM HOMELAND SECURITY
AND SURVEILLANCE TO HABITAT AND

ENVIRONMENTAL MONITORING.



A CLUSTERED APPROACH
The naive approach in this setting would require the sensors to
send all of their data to the fusion center. As has been discussed,
this approach would be costly in terms of energy and bandwidth.
A more principled methodology might designate a small subset
of nodes to send data. If the number of nodes is small, and the
data (or the nodes) are wisely chosen, then such a strategy may
be effective in optimizing learning performance while keeping
communication costs to a minimum.

For example, one may partition the sensors into sub-
groups, and assign each a “cluster head.” (Distributed clus-
tering algorithms have been developed with such applications
in mind; see [5], for example.) Cluster heads may retrieve the
data from sensors within its group; since the sensors within a
cluster are nearby, this exchange may be inexpensive since
communication occur over short distances can be done effi-
ciently. Then, the cluster head may filter this data and send
the fusion center a summary, which might include a locally
learned rule or data that is particularly informative (e.g., sup-
port vectors). Clustered approaches has been considered fre-
quently within parametric frameworks for detection and
estimation [20].

Reference [63] considered a clustered approach to address
sensor network localization. There, the feature space X = IR2

models points in a planar terrain, and the output space
Y = {0, 1} models whether or not a point belonged to (specifi-
cally designed) convex region within the terrain. Training data
is acquired from a subset of sensors (base stations) whose
positions were estimated using various physical measure-
ments. The fusion center uses reproducing kernel methods

for learning, with a kernel designed using signal-strength
measurements. The output is a rule for determining whether
any sensor (i.e., nonbase stations) lay in the convex region
using only a vector of signal-strength measurements. We refer
the reader to the paper for additional details and reports on
several real-world experiments. We highlight this as an exam-
ple of the clustered approach to distributed learning with a
fusion center, a methodology which is broadly applicable.

STATISTICAL LIMITS OF DISTRIBUTED LEARNING
Stone’s theorem is a seminal result in statistical pattern recog-
nition which established the existence of universally consistent
learning rules (see Theorem 1). Many efforts have extended this
result to address the consistency of Stone-type learning rules
under various sampling processes; for example, [23], [34] and
references therein, [19], [32], [45], [48], [49], [58], [65], [66],
[67], [85], [90], [103], and [104]. These results extend Theorem
1 by considering various dependency structures within the
training data (e.g., Markovian data). However, all of these works
are in the centralized setting and assume that the training data-
base is available to a single processor.

Reference [77] attempted to characterize the limits of distrib-
uted learning with a fusion center, by overlaying several simple
communication models onto the classical model for supervised
learning. In particular, [77] sought to extend Stone’s theorem by
addressing the following question: with sensors that have each
acquired a small set of training data and that have some limited
ability to communicate with the fusion center, can enough infor-
mation be exchanged to enable universally consistent learning?

To address this question, [77] supposes that each sensor
acquires just one training example, i.e., Si = {(Xi.Yi)}. Com-
munication was modeled as follows: when the fusion center
observes a new observation X ∼ PX , it broadcasts the observation
to the network in a request for information. At this time, band-
width constraints limit each sensor to responding with at most 1
b. That is, each sensor chooses whether or not to respond to the
fusion center’s request for information; if it chooses to respond, a
sensor sends either a 1 or a 0 based on its local decision algo-
rithm. Upon observing the response of the network, the fusion
center combines the information to create an estimate of Y. 

A refined depiction of the architecture of this model is depict-
ed in Figure 2. To emphasize its structure, note that the fusion
center has a broadcast channel back to the sensor (for requesting
information on X), and each sensor has a point-to-point wireless
uplink channel over which they can send 1 b. Since each sensor
may abstain from voting altogether, the sensors’ uplink channels
have a slightly larger capacity than is suggested by this mere 1 b
that we have allowed them to physically transmit to the fusion
center. Indeed, sensor-to-fusion center communication occurs
even when a sensor abstains from voting.

Despite the simplicity of the model, fundamental questions
arise. In particular, can the sensors communicate enough 
information to the fusion center to enable universally consistent
learning? Proved in [77], the following theorem settles the ques-
tion in this model for distributed learning with abstention.
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[FIG2] The model studied in [75] and [77].
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THEOREM 2 [77] (CLASSIFICATION AND ESTIMATION 
WITH ABSTENTION)
Suppose that 

1) the sensors’ data ∪m
i=1Si are i.i.d. with (Xi, Yi) ∼ PXY∀i ∈

{1, . . . , m}
2) each sensor knows m, the size of the sensor network.

Then, in binary classification under the zero-one loss, and in
estimation under the squared-error criterion, there exist sensor
decision rules and a fusion rule that enable universally consis-
tent distributed learning with abstention.

In this model, each sensor decision rule can be viewed as a
selection of one of three states: abstain, vote and send 0, and vote
and send 1. With this observa-
tion, Theorem 2 can be inter-
preted as follows: log2(3) bits
per sensor per decision is suffi-
cient to enable universally
consistent learning in this
model for distributed learning with abstention. In this view, it is
natural to ask whether these log2(3) bits are necessary. That is,
can consistency be achieved by communicating at lower bit rates? 

To answer this question, [77] considered a revised model, pre-
cisely the same as above, except that in response to the fusion
center’s request for information, each sensor must respond with
1 or 0; abstention is not an option and thus, each sensor
responds with exactly 1 b per decision. Can the sensors commu-
nicate enough information to the fusion center to enable univer-
sally consistent distributed learning without abstention? Also
proved in [77], the following theorems settle this question.

THEOREM 3 [77]
(CLASSIFICATION WITHOUT ABSTENTION) 
Suppose that

1)  the sensors’ data ∪m
i=1Si are i.i.d. with (Xi, Yi) ∼ PXY∀i ∈

{1, . . . , m}
2)  each sensor knows m, the size of the sensor network.

Then, in binary classification under the zero-one loss, there
exist sensor decision rules and a fusion rule that enable univer-
sally consistent distributed learning without abstention.

THEOREM 4 [77] ( ESTIMATION WITHOUT ABSTENTION) 
Suppose that 

1) the sensor’s data ∪m
i=1Si is i.i.d. with (Xi, Yi) ∼ PXY∀i ∈

{1, . . . , m}
2) each sensor knows m
3) the fusion rule satisfies a set of regularity conditions.
(Reference [77] assumes that the fusion rule is invariant to
the order of bits received from the sensor network and
Lipschitz continuous in the average Hamming distance.)

Then, for any sensor decision rule that obeys the constraints of
distributed learning without abstention, there does not exist a
regular fusion rule that is consistent for every distribution PXY

with E{Y2} < ∞ under the squared-error criterion.
In [77], Theorems 2 and 3 are proved by construction; sen-

sor decision rules and fusion rules are specified that simultane-

ously satisfy the communication constraints of the respective
models and are provably universally consistent. Theorem 4 is
proved via a counterexample and thereby establishes the impos-
sibility of universal consistency in distributed regression with-
out abstention for a restricted, but reasonable, class of WSNs. 

Theorems 2–4 establish fundamental limits for distributed
learning in WSNs by addressing the issue of whether or not the
guarantees provided by Stone’s theorem in centralized environ-
ments hold in distributed settings. However, the applicability of
these results may be limited by the appropriateness of the model.
For example, in practice, the training data observed by a sensor
network may not be i.i.d; in the field estimation problem, data

may be corrupted by correlat-
ed noise [89], [91], [92].
Moreover, the process by
which sensors acquire data
may differ from the process
observed by the fusion center;

for example, sensors may be deployed uniformly about a city,
despite the fusion center’s interest in a particular district. In the
context of binary classification, [75] established the achievability
of universally consistent distributed learning with abstention
under a class of sampling processes which model such an asym-
metry. In general, extending the above results to realistic sam-
pling processes is of practical importance. 

In these models, the assumption that each sensor acquires
only one training example appears restrictive. However, the
results hold for training sets of any finite (and fixed) size.
Thus, these results have examined an asymptote not often con-
sider in machine learning, corresponding to the limit of the
number of learning agents. One can argue that if the number
of examples per sensor grows large, then universally consistent
learning is possible within most reasonable communication
models. Thus, communication-constrained sensor networks
with finite training sets is an interesting case.

Finally, note that these models generalize, in a sense, mod-
els recently considered in universal decentralized detection
and estimation [54], [55], [84], [100], [101]. The communica-
tion and network models in that setting are nearly identical to
those considered here. However, there the fusion center is
interested in making a binary decision or in estimating a real-
valued parameter, whereas in the present setting, the fusion
center estimates a function.

DISTRIBUTED LEARNING IN AD HOC WSNS 
WITH IN-NETWORK PROCESSING
In this section, we turn our attention to distributed learning in
WSNs with in-network processing, considering networks with the
ad hoc structure depicted in Figure 1(b). One should note that in
doing so, we do not exclude the possibility of there being a fusion
center. Our shift represents a change in focus. We consider how
in-network processing and local intersensor communication may
enable communication-efficient collaborative learning. 

Much of the work in distributed learning differs in the way
that the capacity of the links is modeled. Given the complexity of

THIS ARTICLE SURVEYS THE PROBLEM 
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nonparametric learning, simple application-layer abstractions are
typically preferred over detailed physical layer models. The links
are typically assumed to support the exchange of “simple” real-
valued messages, where simplicity is defined relative to the appli-
cation (e.g., sensors communicate summary statistics rather than
entire data sets). Lacking a formal communication model, quanti-
fying the efficiency of various methods from an energy and band-
width perspective is not always straightforward. The key intuition,
which generally requires a formal justification, is that local com-
munication is more efficient since it requires less energy and
bandwidth than communicating globally.

Message-passing algorithms are a hot topic in many fields,
wireless communications and machine learning notwithstanding.
This surge in popularity is inspired in part by the powerful graphi-
cal model framework that has enabled many exciting applications
and inspired new theoretical tools [1], [40], [46], [53], [70], [73],
[74]. These tools are often applicable to signal processing in WSNs,
since often the correlation structure of the phenomenon under
observation (e.g., a temperature field) can be represented using a
graphical model (e.g., Markov networks) and since intersensor
communications are envisioned to occur over similar graphical
structures. Indeed, graphical models form a broad topic in their
own right, and applications to sensor networks are deserving of a
separate article (e.g., [15]). Here, our focus is specifically on how
message-passing algorithms, broadly construed, may be applied to
address distributed learning in WSNs. The learning formalism
aside, various connections may exist between the work we now dis-
cuss and the previously cited studies. 

MESSAGE-PASSING ALGORITHMS 
FOR LEAST-SQUARES REGRESSION
To simplify the exposition, let us restrict ourselves to a least-
squares estimation problem and consider the reproducing ker-
nel estimator discussed earlier. Also to simplify our discussion,
assume that each sensor measures a single training example,
i.e., Si = (Xi, Yi). Finally, assume that each sensor has been
preprogrammed with the same kernel K.

Recall, reproducing kernel methods take as input a training
set ∪m

j=1Si = S = {(Xi, Yi)}m
i=1 and in the least-squares regres-

sion setting output a function fλ : X → Y which solves the
optimization problem

min
f∈HK

[
1
m

m∑
i=1

( f(Xi) − Yi)
2 + λ‖ f‖2

HK

]
. (6)

As discussed earlier, solving (6) is infeasible in WSNs, since the
data in S is distributed about the network of sensors. 

Through (6) (and other implementations of the principle
of empirical risk minimiziation), learning has been reduced
to solving an optimization problem. Thus, distributed and
parallel optimization, fields with rich histories in their own
right [8], [13], have an immediate bearing on problems of
distributed learning. Indeed, tools from distributed and par-
allel optimization have recently been considered in the con-
text of WSNs [22], [57], [76], [78], [81], [82], [88]. Here, we

discuss three approaches that differ by the structure that
they exploit and by the messages that sensors exchange.

TRAINING DISTRIBUTIVELY BY EXPLOITING SPARSITY
The first method that we consider exploits an intuition that is
upheld in many sensor network applications: in WSNs, nearby
sensors can communicate efficiently and are expected to have
correlated measurements. In the running example, for example,
the temperature field may be slowly varying and thus it may be
reasonable to assume that nearby sensors have similar tempera-
ture measurements. This intuition implicitly assumes a rela-
tionship between topology of the wireless network and the
correlation structure of the field; note that the network topology
arises from the same notion of “nearby.” Many algorithms for
distributed estimation using graphical models rely on formaliza-
tions of this powerful intuition, e.g., [22].

To illustrate how such structure may be useful for solving
(6), recall from (5) that in least-squares kernel estimation, the
solution to (6) is implied by the solution to the following system
of linear equations

(K + λI )cλ = y, (7)

where K = (Kij) is the kernel matrix with Kij = K(Xi, Xj). If
each sensor acquires a single training datum, then K represents
a matrix of sensor-to-sensor similarity measurements. For many
kernels, K is sparse. Various algorithms are available for effi-
ciently solving sparse systems of linear equations, some of
which permit message-passing implementations [30], [70].
When the sparsity “corresponds” with the topology of the net-
work—as the intuition suggests—often these messages are
passed between neighboring nodes; in that event, the algorithms
imply a distributed, often energy-efficient, training algorithm.

Along these lines, [33] developed a distributed algorithm
based on a distributed Gaussian elimination algorithm executed
on a cleverly engineered junction tree. A detailed description of
this algorithm requires familiarity with the junction tree for-
malism and knowledge of a distributed Gaussian elimination
algorithm, which unfortunately are outside the scope of the
present article. Notably, the algorithm has provable finite-time
convergence guarantees and arrives at the globally optimal solu-
tion to (6). Because their system in [33] is developed within a
very general framework for distributed inference in sensor net-
works [71], this approach is applicable in many cases when the
intuition we have described fails (e.g., when sparsity is prevalent
but may not “correspond” in an intuitive way the network topol-
ogy). Nevertheless, the approach appears maximally efficient
from an energy and bandwidth perspective when the intuition
bears credibility. We refer the reader to [33] for additional detail
and a description of several interesting experiments.

TRAINING DISTRIBUTIVELY USING
INCREMENTAL SUBGRADIENT METHODS
A second approach to distributively solving (6) exploits the fact
that the sensor measurements are decoupled in the additive
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objective function. For reasons that will soon become clear, let
us rewrite (6) as 

min
f∈HK

[
1
m

m∑
i=1

( f(Xi) − Yi)
2 +

m∑
i=1

λi‖ f‖2
HK

]
. (8)

When 
∑m

i=1 λi = λ, (8) is clearly equivalent to (6).
Gradient and subgradient methods (e.g., gradient descent)

are popular iterative algorithms for solving optimization prob-
lems. In a centralized setting, the gradient descent algorithm for
solving (6) defines a sequence of estimates

f̂ (k+1) = f̂ (k) − αk
∂F
∂ f

(
f̂ (k)

)
, (9)

where F( f) = ∑m
i=1( f(Xi) − Yi)

2 + λ‖ f‖2
HK

is the objective
function, and ∂F/∂ f denotes its functional derivative. Note that
(∂F/∂ f)( f (k)) factors due to its additive structure. Incremental
subgradient methods exploit this additivity to define an alterna-
tive set of update equations:

j =k mod m (10)

f̂ (k+1) = f̂ (k) − αk
∂Gj

∂ f

(
f̂ (k)

)
, (11)

where Gj = ( f(Xj) − Yj)
2 + λ j‖ f‖2

HK
. In short, the update

equations iterate over the m terms in F. Incremental subgradi-
ent algorithms have been studied in detail in [61] and [62].
Under reasonable regularity (e.g., ‖∂Gj/∂ f‖ must be bounded),
one can show that if αk → 0, then ‖ f̂ (k+1) − fλ‖HK → 0; with
a constant step size (i.e., αk = α), one can bound the number of
iterations required to make ‖ f̂ (k) − fλ‖HK ≤ ε .

These facts were exploited in [81] and [82] to derive a mes-
sage-passing algorithm for distributed parameter estimation. In
particular, they note that the update equation at iteration k
depends only on the data observed by sensor k mod m. With this
insight, they propose a two-step process to distributed estimation.
First, establish a path through the network that visits every sen-
sor. Then, the incremental subgradient updates are executed by
iteratively visiting each sensor along the path. For example, sen-
sor one may initialize f̂ (0) = 0 ∈ HK and then compute f̂1

according to the update equations (which depends on sensor
one’s only training datum). Once finished, sensor one passes f̂1

on to the second sensor in the path, which performs a similar
update before passing its estimate onto the third sensor. The
process continues over multiple passes through the network, at
each stage, data is not exchanged, only the current estimates. By
the comments above, only a finite number of iterations are
required for each sensor to arrive at an estimate f with
‖ f − fλ‖HK ≤ ε. The algorithm is depicted pictorially in Figure 3.

Notably, the present setting is slightly different than the one
originally conceived in [81] and [82]. First, [81] and [82] consider
more general nonquadratic objective functions. Second, there the
optimization variable was a real valued (i.e., real-valued parameter
estimation); here we estimate a function. From a theoretical per-

spective, the differences are primarily technical. However, practi-
cally speaking the second difference is important. In particular,
one can show that the functional derivative is given by

∂Gj

∂ f
= 2

m
( f(Xj) − Yj)K(·, Xj) + 2λ j f(·). (12)

In consequence, all the data will ultimately propagate to all the
sensors, since exchanging (Xj, Yj) is necessary to compute
∂Gj/∂ f and hence to share f̂ (k) (assuming that the sensors are
preprogrammed with the kernel). This is precisely what we were
trying to avoid in the first place. Thus, in the general case, the
incremental subgradient approach may have limited use for
reproducing kernel methods. However, often Hκ admits a lower
dimensional parameterization; for example, this is the case for
the linear kernel when Hκ is the space of linear functions on
X = IRd . In that case, messages may be communicated more
efficiently to the tune of considerable energy savings. The ener-
gy-accuracy tradeoff is discussed in [81].

Note that unlike the sparsity-driven approach, the algorithm
is independent of modeling assumptions that link the kernel to
the topology of the network. Indeed, the distributed training
algorithms depend only on there being a path through the net-
work; the kernel and the network are distinct objects. Finally,
note that [88] addressed a generalization of the incremental
subgradient message-passing methodology by considering a
clustered network topology.

TRAINING DISTRIBUTIVELY USING
ALTERNATING PROJECTION ALGORITHMS
A final approach to solving (6) distributively relies on sensors to
locally (and iteratively) share data, not entire functions, and
thereby addresses the practical weakness that sometimes limits

[FIG3] An incremental subgradient approach to training
distributively [81], [82].
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the incremental subgradient approach. To construct the algo-
rithm, assume that sensor i can query its neighbors’ data
(Xj, Yj) for all j ∈ Ni (where Ni ⊆ {1, . . . , m} denotes the
neighbors of sensor i ), and may use this local data to compute a
global estimate for the field by solving 

min
f∈HK

[ ∑
j∈Ni

( f(x j) − yj)
2 + λi‖ f‖2

HK

]
. (13)

Presumably, each sensor can compute such an estimate;
thus, in principle, one could iterate through the network allow-
ing each sensor to compute a global estimate using only local
data. The key idea behind an algorithm presented in [76] and

[78] is to couple this iterative process using a set of message
variables. Specifically, sensor i maintains an auxiliary message
variable zi ∈ IR, which is interpreted as an estimate of the field
at Xi. Each sensor initializes its message variable according to
its initial field measurement, i.e., zi = Yi to start. 

Subsequently, the sensors perform a local computation in
sequential order. At its turn, sensor i queries its neighbors’ mes-
sage variables and computes fi ∈ HK as the solution to (13)
using {(Xj, zj)} j∈Ni as training data. Then, sensor i updates its
neighbors’ message variables, setting zj = fi(Xj) for all j ∈ Ni.
Since sensor i ’s neighbors may pass along their newly updated
message variables to other sensors, the algorithm allows local
information to propagate globally.

Two additional modifications are needed to fully specify
the algorithm. First, multiple passes (in fact, T iterations)
through the network are made; for convenience, denote sen-
sor i ’s global estimate at iteration t by fi,t ∈ HK . Secondly,
each sensor controls the “intertia” of the algorithm, by modi-
fying the complexity term in (13). Specifically, at iteration t,
fi,t ∈ HK is found to minimize

min
f∈HK

[ ∑
j∈Ni

( f(Xj) − zj)
2 + λi‖ f − fi,t−1‖2

HK

]
. (14)

The resulting algorithm is summarized more concisely in Table I
and depicted pictorially in Figure 4. 

Here, the algorithm has been derived through an intuitive
argument. However, [76], [78]
introduces this approach as an
application of powerful successive
orthogonal projection (SOP) algo-
rithms [13] applied to a geometric
topology-dependent relaxation of
the centralized kernel estimator
(14). Using standard analysis of SOP
algorithms, [76] proves that the
algorithm converges in the limit of
the number of passes through the
network (i.e., as T → ∞) and char-
acterizes the point of convergence
as an approximation to the globally
optimal solution to the centralized
problem (6). In [78], the perform-
ance of this algorithm is discussed
in a simplified statistical setting.
For additional detail on this general
approach, we refer the interested
reader to the full paper [76], [78].

A few comments are in order.
First, note that as was the case for
the incremental subgradient
approach, this algorithm is inde-
pendent of assumptions that couple
the kernel matrix K with the net-
work topology. Thus, prior domain
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[FIG4] Training distributively with alternating projections [76], [78]. 
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INITIALIZATION: NEIGHBORING SENSORS SHARE TRAINING DATA INPUTS: 
SENSOR s STORES {Xj}j∈Ns

SENSOR s INITIALIZES zs = ys, fs,0 = 0 ∈ HK

TRAIN: FOR t = 1, . . . , T
FOR s = 1, . . . , m

SENSOR s
QUERIES zj ∀j ∈ Ns

fs,t := arg minf∈HK[∑
j∈Ns

(f(Xj) − zj)
2 + λs‖f − fs,t−1‖2

HK

]
UPDATES zj ← fs,t(Xj) ∀j ∈ Ns

END
END

[TABLE 1]  TRAINING DISTRIBUTIVELY 
WITH ALTERNATING PROJECTIONS.
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knowledge about PXY can be encoded in the kernel; the train-
ing algorithm approximates the centralized estimator as well
as the communication con-
straints allow. Second, in
contrast to the previous
approach, sensors share
data, i.e., real-valued evalua-
tions of functions, and not
the functions themselves.
This significantly broadens
the scope of problems where
the approach is applicable.

Notably, just as in the incremental approach, each sensor
derives a global estimate, despite having access to only local
data; this is useful when the sensors are autonomous (e.g.,
mobile) and may make predictions on their own independent
of a fusion center. Next, as demonstrated in [76] and [78], sen-
sor i can compute fi,t ∈ HK in a manner similar to (5); the
calculation requires solving an |Ni|-dimensional system of lin-
ear equations. As stated in Table 1, the algorithm assumes
that the sensors perform their local computations in
sequence. As discussed in the full paper, the computations can
be parallelized, insofar as none of the message variables is
updated by multiple sensors simultaneously. Finally, experi-
ments in [76] demonstrate that the algorithm converges
quickly in practice; this is promising since for energy efficien-
cy, the number of iterations (i.e., T ) must be bounded.
Additional experiments suggest that this approach to passing
data considerably enhances the accuracy of the individual sen-
sors’ estimates. 

OTHER WORK
Many other learning algorithms implicitly solve (or approxi-
mately solve) an optimization problem similar to (6), perhaps
with a different loss function and perhaps over a different class
of functions. Thus, though the discussion has focused exclusively
on least-squares kernel regression, the key ideas are more
broadly applicable, increasing their relevance to distributed
learning in sensor networks.

In the context of boundary estimation in WSNs, [68]
derived a hierarchical processing strategy by which sensors
collaboratively prune a regression tree. The algorithm exploits
additivity in the objective function of the complexity penal-
ized estimator [i.e., an optimization similar in structure to
(6)] and enables an interesting energy-accuracy analysis.
Reference [69] derives a distributed EM algorithm for density
estimation in sensor networks. Though formally parametric,
EM is popular for clustering problems and thus the approach
may be broadly applicable. 

CONCLUSIONS
This article has surveyed the problem of distributed learning in
WSNs. Motivated by the anticipated breadth of applications of
WSNs, we first discussed how parametric methods for distrib-
uted signal processing may be inappropriate in those applica-

tions where data is sparse and prior knowledge is limited. Then,
inspired by the success of machine learning in classical, central-

ized signal processing appli-
cations, we sought to
understand whether and how
the power of existing learning
models and algorithms could
be leveraged for nonparamet-
ric distributed signal process-
ing in wireless sensors
networks. After identifying

the challenges that bandwidth and energy constraints impose on
learning and posing a general model distributed learning, we
considered two general themes of existing and future research:
distributed learning in networks with a fusion center, and dis-
tributed learning in ad hoc networks with in-network process-
ing. Subsequently, we discussed recent research within these
themes. In doing so, we hope that this article has usefully
described a set of fundamental issues for nonparametric distrib-
uted signal processing and provided an entry point to a larger
body of literature.
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