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In this paper, we find the optimal suppression resource allocation for one or several simultaneous 

wildfires. We utilise a wildfire simulation, HFire, to assess how the suppression resources affect 

the final size of the fire. This supplement contains a more complete description of HFire (see also 

Morais 2001; Peterson et al. 2009) and our parameter choices. 

Details of HFire simulation 

HFire is a spatially explicit, raster-based simulation that individually propagates each fire in a 

season. Raster schemes of two-dimensional fire growth partition the modelling domain into a 

regular grid, and fire spreads from cell to neighbouring cell, using cell contact or heat 

accumulation (HFire combines both methods). Each cell contains information about spatial 

variables that affect the progression of the fire, such as vegetation (fuel type, structure and 

accumulation) as well as topography (slope and aspect). At each time step, the wind speed, 

direction and humidity are stochastically sampled from an empirical distribution. These variables 

are inputs for Rothermel’s one-dimensional equation of fire spread (Rothermel 1983). The 

empirical double-ellipse formulation of Anderson (Anderson 1982) is used to generalise the fire 

spread to a two-dimensional grid and dictate how fast the fire spreads from burning cells to 

adjacent unburned cells. As Rothermel’s equation does not include an explicit parameter for 

stopping the fire (outside of burning all available cells), a stopping criterion is implemented to 

perform this function at the cell level. The fire terminates in any cell with a spread rate lower than 

a user-defined extinction threshold. 

HFire is similar to FARSITE, the model used by the US Forest Service (Finney 1998), in its 

use of the Rothermel equation and the two models have been confirmed to yield comparable 

results for individual fires. However, FARSITE uses a vector-based approach and simulates fire 

as a continually expanding fire polygon. HFire’s raster-based algorithm is more computationally 

efficient and allows for multicentury fire regime modelling (Peterson et al. 2009). HFire produces 
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fire catalogues that have good statistical agreement with available data (Moritz et al. 2005; 

Peterson et al. 2011). Therefore, the statistical data generated by HFire can be used to study the 

effect of long-term wildfire response strategies. 

To generate Fig. S1a, we run a simplified version of HFire for 10 different values of stopping 

criterion or extinction threshold. The landscape is a flat square, 315 × 315 ha in size, with a 

random sampling of 80% chaparral and 20% grass, and four ignitions and four Santa Anas per 

year. The fuel mix is chosen to model National Forests in southern California at the wildland–

urban interface, which are primarily composed of chaparral. The fast-burning grass emulates the 

effect of younger chaparral. Each distribution in Fig. S1a is generated by fixing an extinction 

threshold and running a large ensemble of fires over many years, sampling different conditions 

for ignitions and weather. To obtain statistically averaged behaviour, we run 10 realisations of the 

simulation with different random number seeds and find the average size for each rank. 

 

Fig. S1. HFire simulation data. (a) 1000-year synthetic catalogues generated for 10 different threshold 

values. Fire areas are ordered from largest to smallest and plotted as rank v. area. (b) Relationship between 

threshold value and the final fire size for five fires chosen from the HFire catalogue by rank. In general, this 

relationship is not linear. 

In Fig. S1a, the lower the threshold, the larger the average fire size. For comparison, we also 

plot fires recorded in Los Padres National Forest in 1911–2007, one of the most complete 

available datasets. The 0.05-m s
–1

 threshold distribution most closely matches the data for Los 

Padres National Forest. The slight dip in the middle of the HFire distributions is due to the 

simplicity of the landscape and is eliminated when more realistic elements (fuel map, slope 

variation) are added. It was found that the simplified version of HFire produces wildfire 

catalogues with similar statistical characteristics to real data and to catalogues produced by 



International Journal of Wildland Fire ©IAWF 2012 

doi:10.1071/WF11140_AC 

 

Page 3 of 6 

versions with realistic topography and vegetation obtained from GIS measurements (E. D. 

Sherwin, J. M. Carlson, N. Petrovic, unpubl. data). 

Selection of threshold range for suppression model 

HFire is used to compute optimal suppression allocations in several scenarios. In particular, the 

extinction threshold parameter is used as a proxy for suppression; the higher the threshold, the 

greater the suppression response, and the smaller the average size of the fire. The extinction 

threshold acts uniformly on the fire perimeter; we therefore define the level of suppression 

resources to be measured per unit length on the perimeter. We consider three response levels r: 

low (r = 1), intermediate (r = 2) and high (r = 3), which correspond to extinction thresholds 0.04, 

0.05 and 0.06 m s
–1

. We select a value of fire rank that serves as a proxy for external conditions 

and, using the HFire catalogue in Fig.S1a, determine average fire area A(r) based on resource 

allocation r. 

Discrete levels of suppression response are motivated by possible decisions made in a realistic 

situation. For example, when a fire is detected, a fleet of a standard size consisting of several 

engines or aircraft is sent to the site. It can be supplemented with reinforcements if the fire grows 

out of control; this would also occur in discrete steps. For this initial study, specific choices were 

made for the sake of clarity and computational feasibility. Three suppression levels allow clear 

visual representation and subsequent discussion of solutions for two fires. The level of realism 

could be increased in several ways (e.g. spatially localised resource assignments or different types 

of resources), as discussed in the Conclusion. For a particular situation and set of suppression 

resources, a finer gradation for r may be necessary and meaningful. However, for more than three 

threshold levels, finding the optimal solution for 10 fires via brute-force methods becomes 

computationally lengthy. 

From a mathematical perspective, it is appealing to minimise cost based on a continuous r and 

to find the minimum by taking derivatives with respect to r. However, owing to the complexity of 

the problem and the number of inputs, an analytic form for A(r) cannot be easily derived. 

Additionally, although HFire is more efficient than its predecessors in performing statistical runs 

with multiple fires, dynamically rerunning this program during the optimisation procedure itself 

would be computationally overwhelming. The only feasible way to obtain a continuous 

relationship between fire area and suppression is to run HFire for some discrete set of threshold 

values and then interpolate a functional form for A(r). This would create an added layer of 

assumptions. Therefore, discrete resource allocations alleviate computational issues. 
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The threshold range was chosen using figure IV-2 in Rothermel’s 1983 paper ‘How to predict 

the spread and intensity of forest and range fires’ (Rothermel 1983). In this figure, empirical data 

determine which fires can be contained by various suppression mechanisms given their heat 

release per unit area and rate of spread. Heat per unit area varies widely depending on 

environmental factors such as fuel moisture. For chaparral fires, it may range from 1500 to 3000 

Btu foot
–2

 (1.7 × 10
7
 to 3.4 × 10

7
 J m

–2
) (Pyne et al. 1996). Hence, according to figure IV-2 in 

Rothermel (1983), a broad range of fire spread rates from 0.01 to 0.1 m s
–1

 approximately 

corresponds to fires that can potentially be controlled by human suppression. 

Fig. S1a contains fire size distributions with thresholds ranging from 0.01 to 0.1 m s
–1

. High 

values of threshold (0.07 to 0.1 m s
–1

) are closely spaced and indicate diminishing returns. Low 

values of threshold (0.01 and 0.02) result in an excess of large fires that burn to the system size. 

Thus, the relationship between fire size and threshold is non-linear. This is further illustrated in 

Fig. S1b, where the relationship between threshold and fire area is shown for five representative 

fires. In general, fire area decreases steeply with threshold in the middle range, whereas the 

relationship between threshold and fire area levels out for low and high threshold values, 

indicating decreased sensitivity of area to resource allocation in this range. 

From the broader range of thresholds in Fig. S1, we select thresholds that: (1) lie within a 

plausible range for chaparral fires, (2) are not affected by system size effects and (3) are not 

affected by diminishing returns. The range 0.04 to 0.06 m s
–1

 fits all of these criteria. 

Additionally, the middle threshold value of 0.05 m s
–1

 corresponds closely to Los Padres National 

Forest data. 

Cost function behaviour in threshold range 

Using the range of thresholds selected, the cost function: 

Total cost ( ) ( )A r c r A r      (1) 

is minimised for a progressive set of scenarios. The first term, or loss due to the fire, scales with 

area and will clearly decrease as r increases. However, it is less clear whether the second term, or 

total resource cost per fire, will increase or decrease with r. In principle, resources may be so 

effective that a small increase in resource allocation significantly decreases the final fire 

perimeter, and allocating the maximum r minimises both terms. However, Fig. S2a demonstrates 

that this is not the case in the chosen threshold range. Fig. S2a contains data for thresholds 0.04, 

0.05 and 0.06 m s
–1

 (corresponding to r = 1, 2 and 3). In contrast to Fig. S1a, the horizontal axis is 

the total resource cost for each fire ( ( )c r A r  ), which is computed using the stated 
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relationship between threshold and r. For each horizontal slice (fire selected by rank), the total 

resource cost per fire increases monotonically with threshold and therefore with r. Fig. S2b 

illustrates this relationship for five representative fires. 

 

Fig. S2. Examination of total resource costs per fire using HFire simulation data. (a) For each fire rank 

selected from a distribution with a given threshold value, we compute the total resource cost 

( ( )c r A r  ) where c is cost per unit resource, r is resource allocation per unit perimeter and A(r) is fire 

size. Thresholds 0.04, 0.05 and 0.06 m s
–1

 correspond to r = 1, 2 and 3. We assume c = US$1 per unit 

resource. Resource costs are ordered from largest to smallest and plotted as rank v. resource cost per fire. 

For each fire rank (horizontal cut), the total resource cost per fire increases monotonically with threshold 

and therefore with r. (b) Total resource cost per fire v. resource allocation per unit perimeter for five 

representative fires chosen from the HFire catalogue by rank. For all fires, the resource cost increases 

with r. 
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