10.1071/AN24309

Animal Production Science

Supplementary Material

Modelling the impact of increasing supplementary feed allowance on predicted sheep enterprise production, profit and financial risk across southern Australia

A. L. Bates^{A,*}, S. M. Robertson^{B,C}, S. R. McGrath^{B,C}, M. B. Allworth^{B,C}, and G. Refshauge^D

^AInstitute for Future Farming Systems, Central Queensland University, Rockhampton, Qld 4701, Australia.

^BSchool of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.

^cGulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.

^DNew South Wales Department of Primary Industries and Rural Development, Cowra, NSW 2794, Australia.

^{*}Correspondence to: A. L. Bates Institute for Future Farming Systems, Central Queensland University, Rockhampton, Qld 4701, Australia Email: a.bates@cqu.edu.au

Supplementary Tables

Table S1: Soil, crop and pasture characteristics, rotation, and validation reference for each model location. At each location, land use sequences ^A were employed, separated by a comma (,); P = permanent pasture, L = long fallow rotation (no cropping or grazing), W = wheat crop rotation, B = barley crop rotation, C = canola crop rotation and A = annual clover. A dash ('-') represents not applicable.

Location	Soil type	Land use sequence	Crop area proportion	Pasture area proportion	Crop species	Pasture species		
				NSW				
Bookham	Sandy to sandy loam	P,P	-	1.00	-	Micolaena spp., Trifolium subterraneum (Seaton Park) and Lolium rigidum		
Bungarby	Basalt	P,P	-	1.00	-	Austrostipa spp., Poa sieberiana and Trifolium subterraneum (Seaton park)		
Condobolin	Sandy loam over sand to light clay	PPPLWWBW, P	0.31	0.69	Wheat, barley,	Trifolium subterraneum (Dalkeith), Medicago truncatula (paraggio), annual grass		
Glen Innes	Sandy clay-loam	P,P	-	1.00	-	Festuca arundinacea, Austrodanthonia spp. and Trifolium repens		
Narrandera	Brown Chromosol	P,P	-	1.00	-	Austrostipa spp., Trifolium subterraneum (Seaton park) and Lolium rigidum		
Trangie	light over medium clay, sandy at depth	PPPLWWWB, P	0.31	0.69	Wheat, barley,	Medicago sativa (winter active), Trifolium subterraneum (Dalkeith) and annual grass		
	· · ·			VIC				
Hamilton	Sandy loam over clay	PPWBW, P, P	0.20	0.80	Wheat, barley,	Medicago sativa (winter active), Lolium perenne, Trifolium subterraneum (Leura) and Phalaris aquatica L.		
				SA				
Keith	Shallow sandy loam on calcrete	AAWCW, P, P	0.20	0.80	Clover, wheat, canola.	Medicago sativa (semi winter active), annual grass Trifolium subterraneum (Leura) and Phalaris aquatica L.		

^A Land use sequence: at each location simulated paddocks (n = 16) were rotated through a series or pasture or cropping rotations (if applicable), allowing land to be divided and used for a certain purpose in sequence.

		Composite			Maternal			Merino		
		Spring	Summer	Autumn	Spring	Summer	Autumn	Spring	Summer	Autumn
Location	Grain allowance ^A					NSW				
Bookham	LGA	478	502	494	514	558	451	378	327	295
	HGA	504	567	494	543	620	451	392	338	312
D	LGA	-	-	-	-	-	-	-	86	55
Bungarby	HGA	-	-	-	-	-	-	-	98	114
Constate the	LGA	84	81	78	99	144	88	43	65	44
Condobolin	HGA	84	152	177	99	188	165	43	65	100
Glen Innes	LGA	576	486	617	618	590	661	442	403	495
	HGA	576	486	617	618	590	661	442	403	495
NT	LGA	91	114	99	106	97	77	93	78	52
Narranuera	HGA	134	114	99	106	97	77	93	78	52
Trancia	LGA	-	111	111	-	138	124	63	81	100
Trangle	HGA	-	111	111	-	138	124	63	81	100
						VIC				
Usmilton	LGA	87	165	237	195	209	274	116	167	198
namilion	HGA	162	205	237	195	259	309	155	167	198
						SA				
Keith	LGA	182	178	169	181	222	194	112	125	112
	HGA	182	178	169	181	222	194	112	125	112

Table S2: Income (AUD \$/ha) from lamb production (combined male and female production) for each simulated enterprise at the low grain allowance (LGA) and high grain allowance (HGA). A simulation that did not meet at least one sustainability index is represented by a dash ('-').

 A LGA = all ewes can consume up to a threshold 30 kg/head.year in all years, and in four out of ten years to consume more than this threshold. HGA = Merino ewes can consume up to a threshold 35 kg/head.year in all years and non-Merino ewes up to 42 kg/head.year in all years, and in four out of ten years for all ewes to consume more than these threshold levels.

-		Composite			Maternal			Merino		
		Spring	Summer	Autumn	Spring	Summer	Autumn	Spring	Summer	Autumn
Location	Grain allowance ^A					NSW				
Bookham	LGA	51	65	75	89	109	113	358	317	430
	HGA	55	74	75	98	130	113	386	342	473
Dun confere	LGA	-	-	-	-	-	-	-	126	68
Bullgarby	HGA	-	-	-	-	-	-	-	144	162
Condobalin	LGA	10	10	10	19	29	19	43	66	45
Condobolin	HGA	10	20	24	19	38	38	43	66	111
Glen Innes	LGA	78	75	88	118	117	139	491	481	573
	HGA	78	75	88	118	117	139	491	481	573
Narrandera	LGA	10	15	15	18	18	19	81	83	63
	HGA	15	15	15	18	18	19	81	83	63
Transis	LGA	-	15	14	-	29	28	64	86	109
Trangle	HGA	-	15	14	-	29	28	64	86	109
						VIC				
Hamilton	LGA	9	19	31	35	36	56	120	167	243
	HGA	19	25	31	35	45	66	182	167	243
						SA				
Keith	LGA	26	21	19	38	40	40	132	113	114
	HGA	26	21	19	38	40	40	132	113	114

Table S3: Income (AUD \$/ha) from ewe wool sales for each simulated enterprise for each breed, mating season and location at the low grain allowance (LGA) and high grain allowance (HGA). A simulation that did not meet at least one sustainability index is represented by a dash ('-').

 A LGA = all ewes can consume up to a threshold 30 kg/head.year in all years, and in four out of ten years to consume more than this threshold. HGA = Merino ewes can consume up to a threshold 35 kg/head.year in all years and non-Merino ewes up to 42 kg/head.year in all years, and in four out of ten years for all ewes to consume more than these threshold levels.

		Composite			Maternal			Merino		
		Spring	Summer	Autumn	Spring	Summer	Autumn	Spring	Summer	Autumn
Location	Grain allowance ^A					NSW				
Bookham	LGA	151	196	257	123	162	166	202	248	242
	HGA	163	234	257	135	188	166	214	260	266
Deve ester	LGA	-	-	-	-	-	-	-	66	35
Bullgarby	HGA	-		-	-	-	-	-	76	78
Condohalin	LGA	25	29	31	25	41	27	27	42	28
Condobolin	HGA	25	56	72	25	54	54	27	42	69
Class Issues	LGA	206	192	219	165	167	184	261	251	286
Gien innes	HGA	206	192	219	165	167	184	261	251	286
N 1	LGA	25	42	41	23	28	28	51	53	40
Inalfandera	HGA	37	42	41	23	28	28	51	53	40
Taraala	LGA	-	40	39	-	40	40	39	54	68
Trangle	HGA	-	40	39	-	40	40	39	54	68
						VIC				
Uamiltan	LGA	28	56	86	52	54	85	66	98	140
namilton	HGA	51	68	86	52	66	99	97	98	140
						SA				
Voith	LGA	58	59	68	39	56	60	78	72	72
Kelth	HGA	58	59	68	39	56	60	78	72	72

Table S4: Income (AUD \$/ha) from cast for age ewe sales for each simulated enterprise for each breed, mating season and location at the low grain allowance (LGA) and high grain allowance (HGA). A simulation that did not meet at least one sustainability index is represented by a dash ('-').

 A LGA = all ewes can consume up to a threshold 30 kg/head.year in all years, and in four out of ten years to consume more than this threshold. HGA = Merino ewes can consume up to a threshold 35 kg/head.year in all years and non-Merino ewes up to 42 kg/head.year in all years, and in four out of ten years for all ewes to consume more than these threshold levels.

References:

Bates, AL, McGrath, SR, Allworth, MB, Robertson, SM, Refshauge, G (2023) A cross-sectional study of commercial ewe management practices for different sheep breeds across southern Australia. *Animals* 13, 388.

NSW DPI (2021) 'Livestock gross margin budgets.' Available at https://www.dpi.nsw.gov.au/agriculture/budgets/livestock [Verified 8 October 2021]

Summary text

Supplementary feeding sheep is an important nutritional and reproductive management practice; however, can be expensive. Increased financial risk has often been associated with increased supplementary feeding and was apparent in the current study in association with mating season, but was not linked to breed. Producers may be able to improve the production, profit and financial risk of an enterprise through increased supplementary feeding, but this will be dependent on breed, input costs, commodity prices and location.