

Edinburgh Research Explorer

Adaptive Optimizations for Stream-based Workflows

Citation for published version:
Liang, L, Filgueira, R & Yan, Y 2021, Adaptive Optimizations for Stream-based Workflows. in 2020
IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). Institute of Electrical and Electronics
Engineers (IEEE), pp. 33-40, 15th Workshop on Workflows in Support of Large-Scale Science, Virtual
workshop, 11/11/20. https://doi.org/10.1109/WORKS51914.2020.00010

Digital Object Identifier (DOI):
10.1109/WORKS51914.2020.00010

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Jun. 2024

https://doi.org/10.1109/WORKS51914.2020.00010
https://doi.org/10.1109/WORKS51914.2020.00010
https://www.research.ed.ac.uk/en/publications/23003455-8a4d-4131-91e1-41c3df923844

Adaptive Optimizations for Stream-based Workflows
Liang Liang

EPCC
University of Edinburgh

Edinburgh, UK
s1980912@ed.ac.uk

Rosa Filguiera
EPCC

University of Edinburgh
Edinburgh, UK

r.filgueira@epcc.ed.ac.uk

Yan Yan
Faculty of Medicine

Imperial College London
London, UK

y.yan20@imperial.ac.uk

Abstract—This work presents three new adaptive optimization
techniques to maximize the performance of dispel4py work-
flows. dispel4py is a parallel Python-based stream-orientated
dataflow framework that acts as a bridge to existing parallel
programming frameworks like MPI or Python multiprocessing.
When a user runs a dispel4py workflow, the original framework
performs a fixed workload distribution among the processes
available for the run. This allocation does not take into ac-
count workflows’ features, which can cause scalability issues,
specially for data-intensive scientific workflows. Therefore, our
aim is to improve the performance of dispel4py workflows by
testing different workload strategies that automatically adapt to
workflows. For achieving this objective, we have implemented
three new techniques, called Naive Assignment, Staging
and Dynamic Scheduling. The evaluations show that our
proposed techniques have significantly improved the performance
of the original dispel4py framework.

Index Terms—Scientific workflow, Stream-based workflow,
Workflow optimization, dispel4py.

I. INTRODUCTION

Many scientific fields have become highly data-driven with
recent advances in the computational sciences [1]. Areas such
as health, seismology, and social computing have come to
rely on data-intensive scientific discovery as large volumes of
data of various kinds are becoming available. A commonality
between all these disciplines is that they generate enormous
complex dataset that require automated analysis, which has
now become a key part of the scientific method, yet remains
a highly demanding data- and compute-intensive process.

Scientific communities nowadays have the possibility to
access a variety of computing resources and often have
computational problems that are best addressed using paral-
lel computing technology. However, successful use of these
technologies requires a lot of additional machinery whose use
is not straightforward for non-experts. Consequently, various
scientific workflow systems [2] designed for bridging the gap
between scientific problems and technologies by automatically
handling low-level data processing have recently emerged [3].

Among them, stream-based workflow systems have been
attracting growing attention from both industry and academia
by virtue of its abilities to process unlimited data flows as
well as providing lower latency [4]. Therefore, many stream-
based workflow systems have been implemented for solving
diverse objectives, including dispel4py [5]. dispel4py
is a python library for data-intensive processing which has
been well-developed and gained recognition of many scien-
tists from different disciplines varying from seismology to

astronomy [6], [7]. It offers mappings to several enactment
engines, such as MPI [8], Storm [9], or multiprocessing1,
and provides smooths transitions from local development to
scalable executions.

For constructing dispel4py workflows, users have to
design, compose and connect different processing elements
(PE). PEs represent the basic computational blocks of any
dispel4py workflow. So users, connect PEs as they desire
in graphs, also named abstract workflows. Then, dispel4py
automatically maps those abstract workflows to concrete ones,
depending on the selected enactment engine. Since the abstract
workflows are independent from the underlying communica-
tion mechanism, these workflows are portable among different
computing resources.

However, dispel4py performs a very basic and rigid
workload allocation by mapping PEs to a collection of
processes. Depending on the number of targeted processes,
which user specifies when executing a dispel4py workflow,
multiple instances of each PE are created to make use of
all available processes. The default workload allocation is
performed by dividing the number of processes between the
number of PEs, with the exception of first PE, which is always
assigned to one process to prevent the generation of duplicate
data-blocks. This default allocation neither takes into account
the date-rate consumed and produced per PE, the execution
time per PE, the number of times that a PE is executed nor
the connections between PEs, which could lead that a PE
needs to be mapped to more or fewer processes. Furthermore,
dispel4py adopts the static deployment, which means that
once a PE is assigned to a process, we can not do anything
about it apart from manually intervening to stop the current
execution and re-assign it.

In this work, we have created two adaptive optimization
techniques for the static deployment of dispel4py, called
Naive Assignment and Staging. Both employ different
workload allocation strategies taking into account different
workflow’s features (e.g. data-rate consumed/produced per PE,
PEs execution time or PEs connectivity).

Another aspect of our work on optimisations is to enable
dynamic deployment of dispel4py workflow. Therefore,
we have developed the Dynamic Scheduling technique
to enable dispel4py to allocate resources dynamically while a
workflow is running.

1https://docs.python.org/3/library/multiprocessing.html

All three techniques have been compared with the default
dispel4py workload allocation, and evaluated in two com-
puter infrastructures: HPC Cluster (Cirrus) and Laptop.

The rest of the paper is structured as follows. Section II
presents the relevant background. Section III presents three
dispel4py workflows: Seismic Cross-correlation, Internal
Extinction of Galaxies and Window Join. Section IV presents
the different optimization techniques. Using the previous
dispel4py workflows as case-studies, we evaluate in Sec-
tion V the optimization techniques on different platforms. We
conclude in Section VI with a summary of achievements and
outline some future work.

II. BACKGROUND

This section explains the main dispel4py concepts and
introduces the related work about optimization techniques for
scientific workflows.

A. dispel4py concepts

There are some important dispel4py concepts [5] that need
to be explained first:

• Processing elements (PE) is the computational activity
for processing task or transforming data which can be
considered as the node in the workflow graph. PEs in
dispel4py are connected by specifying the input and
output; the data will be passed among connected PEs in
the manner of stream rather than using the file in the
task-based workflow system.

• Instance refers to the copy of PE that can be executed
by the compute process. A PE could be assigned to more
than one instances.

• Abstract Workflow defines the ways in which PEs are
connected and hence the paths taken by data. This is the
workflow defined by the user.

• Concrete Workflow is the directed acyclic graph that is
automatically built by dispel4py during the enactment
period, based on the abstract workflow. This is the
workflow executed by the compute infrastructures.

• Partition can be conducive to optimize the performance
of the workflow, which can co-allocated multiple PEs into
one process. Currently, the user should define partitions
manually. Otherwise, each PE is allocated to one partition
automatically.

• Grouping specifies, for an input connection, the commu-
nication pattern between PEs. Four different groupings
are available: shuffle, group-by, one-to-all, all-to-one.

One of dispel4py’s strengths is the level of abstrac-
tion that allows the creation and refinement of workflows
without knowledge of the hardware or middle-ware context
in which they will be executed. Users can therefore focus
on designing their workflows at an abstract level, describing
actions, input and output streams, and how they are connected.
The dispel4py system then maps these descriptions to the
selected enactment platforms.

Currently, dispel4py supports multiple mappings, such
as simple, MPI, multiprocessing, among others. dispel4py

creates automatically and at run-time different concrete work-
flows, depending on the mapping selected by users. For
example, when users select to execute their workflows with
the simple mapping, dispel4py executes them in sequence
within a single process. On the other hand, if users select
the MPI mapping, dispel4py assigns PEs to a collection
of MPI processes. And if the selection is the multiprocessing
mapping (also called multi), dispel4py creates a pool of
processes and assigns each PE instance to its own process.

During enactment and prior to execution, for both MPI and
multi mappings, dispel4py performs an equally and fixed
allocation of processes to PEs, in which each PE is translated
into one or more instances. The number of processes is divided
by the number of PEs, getting then the number of PE instances
which will be assigned to processes. The only exception is
the first PE, which will be only assigned to one process. An
example of the default allocation can be seen in Figure 1, in
which four PEs have been allocated to seven processes using
the mutli mapping.

It is important to highlight that for running a dispel4py
workflow using MPI and multi mappings, a user needs to
indicate a greater or equal number of processes than PEs.
Otherwise, dispel4py would rise an error.

In this work, we have selected the multi mapping to evaluate
our proposed techniques. This mapping is ideal for working
in shared-memory architectures.

Fig. 1. Example of the default workload allocation. In this example, the
user has indicated to run the workflow using the multi mapping with seven
processes. Each PE instance runs in a different process.

B. Related Work
There are many optimization techniques proposed for improv-
ing the performance of scientific workflows [10], [11]. We
have classified those into two groups: a) optimization methods
and b) scheduling techniques. Among the optimization meth-
ods we can find: heuristic, meta-heuristic, greedy, partitioning,
fuzzy and modelling. Whereas, scheduling techniques are
usually classified either static or dynamic deployment.

We have noticed that scientific workflows mostly use heuris-
tics and meta-heuristics as the optimization method to improve
their performance [12], [13], being Dynamic Constraint Algo-
rithm (DCA) [14] and Workflow Orchestrator for Distributed
Systems (WORDS) [15] two representative examples. DCA
is a user-friendly method for handling issues of bi-criteria
of dynamic scheduling. However, the performance of DCA
may decay when some criteria require more time to meet. As

for WORDS, this approach detects the discrepant features of
Cloud computing, and provides an effective orchestration to
achieve a moderate quality of service over different resources.

Furthermore, partitioning methods, such as Multi-Constraint
Graph Partitioning (MCGP) [16], are also very often used
to minimise the communication cost of scientific workflows.
Partitioning methods are not only used in Scientific work-
flows, as well in other Big-Data Frameworks, such as Apache
Spark [17]. Apache Spark applies a partitioning method [18]
for grouping a set of independent tasks into the same Spark
job, where all the tasks have the same shuffle dependencies,
reducing the communications across processes.

Regarding the scheduling techniques, most of scientific
workflows apply a static deployment [12], since this technique
is usually lightweight and easy to implement. However, to
re-balance the allocation performed by a static scheduling
technique, we need to stop the current execution and re-assign
the workload either manually or by applying an assignment
algorithm based on previous executions.

On the contrary, dynamic deployment can re-balance the
workload of scientific workflow on-the-fly, meaning that if a
task needs more or less resources, it dynamically up-scale or
down-scale, without stopping the workflow execution.

In this work, we have employed two optimization methods
to improve the current static deployment in dispel4py. The
first one is the Naive Assignment technique for which we
have implemented two new heuristics. While in the Staging
technique, we have employed a partitioning method. Both
optimization methods presented in this paper aim to reduce
the overall workflow execution time by minimizing the com-
munication time among PEs. Furthermore, we have also devel-
oped a new scheduling technique, Dynamic Scheduling,
to enable dynamic deployment in dispel4py. These are
introduced in Section IV.

III. USE CASES

The following subsections describe the dispel4py work-
flows used to evaluate our optimization techniques.

A. Seismic Cross-Correlation

The workflow has been designed to monitor and analyse the
geological waveform data from several seismic stations 2. Its
main goal is to assess and forecast the risk and probability of
volcanic eruptions and earthquakes in real-time [6].

Figure 2 illustrates all components of the workflow, which
can be classified into two phases, prepossessing the data
collected from stations and calculating the cross-correlation.
Each phase has been implemented as a dispel4py work-
flow. During Phase One, each continuous time series from a
given seismic station (called a trace) is subject to a series of
treatments (all of them included in the Prep composite PE).
The processing of each trace is independent from any other,
making this phase embarrassingly parallel. Phase Two pairs
all stations and calculates the cross-correlation for each pair.

2https://www.fdsn.org

In this work, we have selected the Phase One of this
application and decomposed the Prep Composite PE into
several PEs.

Fig. 2. A simplified abstract workflow for seismic cross-correlation.

B. Internal Extinction of Galaxies

This workflow has been implemented to calculate the extinc-
tion within the galaxies, which is a significant property in
astrophysics [19]. This property reflects the dust extinction
of the internal galaxies, and is used for measuring the optical
luminosity3. This workflow is reusable since it can be regarded
as a prior step for other complex tasks which require this
property.

As we can see in Figure 3, this workflow has four PEs.
Read PE loads the input file which stores the coordinates
data of interest. Then, Votab downloads the corresponding
VOTable 4 from Virtual Observatory website 5 based on those
coordinates. Afterwords, Filt PE parses the VOTable by
using astropy library and filters the parsed data by selecting
needed columns. Finally, Intext PE calculates the internal
extinction based on data from Filt PE.

Fig. 3. Workflow for calculating the internal extinction of galaxies.

C. Synthetic Workflow - Window Join

We have developed this new synthetic workflow6, which has
a more complex topology than both previous workflows. The
Window Join workflow aims to simulate a fundamental query
operation, window join, in the streaming processing, which
produces the result from unbounded streams by using concepts
of the window to limit the scope of data for join [20].

As we can see in Figure 4, this workflow consists of six
PEs connected via a fork-join manner. Read PE loads the data
from Customer and Supplier TPC-H Tables7. Then, data is sent
to FilterCus and FilterSup PEs. FilterCus selects

3http://amiga.iaa.es/p/1-homepage.html
4http://www.ivoa.net/documents/PR/VOTable/VOTable-20040322.html#

ToC9
5http://ivoa.net
6https://git.ecdf.ed.ac.uk/msc-19-20/s1980912/tree/master/workflows/join
7http://www.tpc.org/tpch

the data from Customer table, whereas FilterSup retains
the data from Supplier table. CleanCus and CleanSup
clean their corresponding data received from FilterCus
and FilterSup respectively. Finally, the data are joined by
Join, which exploits tuple-slide window to restrict the range
of the unbounded data to perform the join.

Fig. 4. Workflow for representing the Window Join synthetic application.

This workflow uses the all-to-one grouping for joining
the data from previous PEs. This means, that all instances of
CleanCus and CleanSup send their data to one instance
Join PE. Although Join PE can be assigned to more than
one process, data are only sent to one instance.

IV. OPTIMIZATIONS

This section presents three new adaptive optimization
techniques developed to improve the performance of
dispel4py workflows. Although, we have developed them
for dispel4py, they are expected to be applicable to other
stream-based workflow systems.

A. Naive Assignment Technique
dispel4py includes a monitoring framework, which collects
the following information while a workflow is being executed:
a) execution and communication times per PE b) number of
PEs c) number of iterations d) data size e) mapping used.

We have developed a new technique, called Naive
Assignment, which calculates the most efficient allocation
parameters to run a workflow. Those are the number of
partitions to divide the workflow and the number of processes
to assign to each partition. Notice, that by default, when
partitions are not indicated by the user, each PE runs in a
single partition.

This technique relays on the information recorded in the
monitoring framework, from a previous execution of the same
workflow under the same conditions (same mapping, comput-
ing infrastructure, and number of processes). Therefore, after
running a workflow with the monitoring framework activated,
this technique analyses the execution times and communica-
tion times to discover which is the best workload allocation
for that specific workflow under the same circumstances.

To calculate the most suitable number of partitions, we
developed the Algorithm 1. This algorithm aims to to re-
duce the overall workflow execution time by minimizing the
communication time among PEs. For achieving this goal,
Algorithm 1 maximises the number of PEs assigned into the
same partition. It groups into the same partition all connected
PEs which their communication times are higher than their

Fig. 5. Application of the Naive assignment technique over the Seismic
Cross-correlation workflow using 16 processes.

execution time. With the exception of the first PE, where the
algorithm assigns a single partition to it.

Figure 5 shows an example of the Naive Assignment
technique over the Seismic Cross-correlation workflow intro-
duced in Section III-A.

Algorithm 1: Assigning Partition
1: Require: Workflow consisting of N PEs (PE0, PE1 ...

PEN−1)
2: Require Execution time of each PE as E(PEi)
3: Require: Communication time between adjacent PEs as

C(PEi, PEi+1)
4: for i = 0 to i = N-2 do
5: if i = 0 then
6: PEi is assigned to single partition
7: else
8: if C(PEi, PEi+1) > MIN(E(PEi), E(PEi+1)) then
9: PEi and PEi+1 are assigned to the same partition or

PEi+1 is added into the existing partition which PEi

is in
10: end if
11: end if
12: end for

The next step is to calculate the number of processes
assigned to each partition previously calculated. As the de-
fault dispel4py allocation, the first partition (for the first
PE), only one process is assigned to it. For calculating the
remaining processes, we have developed the Algorithm 2.
This algorithm calculates the execution time of each parti-
tion (adding the execution time of all PEs included in each
partition) and divides it among the total execution time of all
partitions (except the first partition). This result is multiplied
by the number of processes available (minus one, which is
assigned to the first PE), obtaining then the suitable number
of processes per partition.

B. Staging Technique

Our next technique has been inspired by Apache Spark Stage
method8. As, we introduced in Section II-B, Apache Spark
uses a DAG to represent an the execution plan (job) of a
program. In other words, this DAG represents the logical plan
of operations. Once the DAG is created, Apache Spark divides

8https://spark.apache.org/docs/1.2.1/api/java/org/apache/spark/scheduler/
Stage.html

Algorithm 2: Assigning Process
1: Require: Workflow consisting of M PARTs (PART0,

PART1 ... PARTM−1) or including N PEs (PE0, PE1 ...
PEN−1)

2: Require: Total number of processes TotalNumProcess
3: Require: Execution time of each PE as E(PEi)
4: Define: Execution time of each partition as E(PARTi)
5: Define: Number of processes for each partition

NumProcess(PARTi)
6: Define: Total execution time E(TOTAL)
7: for i = 1 to i = N-1 do
8: E(TOTAL) = E(TOTAL) + E(PEi)
9: end for

10: for i = 0 to i = M-1 do
11: if i = 0 then
12: NumProcess(PARTi) = 1
13: else
14: for PE in PARTi do
15: E(PARTi) = E(PARTi) + E(PE)
16: end for
17: NumProcess(PARTi) =

(TotalNumProcess− 1)× E(PARTi)
E(TOTAL)

18: end if
19: end for

this DAG into a number of stages. These stages are then
divided into smaller tasks and all the tasks are given to the
executors (processes) for execution.

Apache Spark’s Resilient Distributed Datasets (RDD) are
a collection of various data that are so big in size, that they
cannot fit into a single node and should be partitioned across
various nodes. Apache Spark automatically partitions RDDs
and distributes the partitions across different nodes.

Spark aggregates into a same stage all operations which do
not require shuffling the data 9.
Staging aims to allocate the maximum number of PEs

into the same partitions to reduce the communication cost, and
therefore, the total execution time of dispel4py workflows.
But unlike the Naive Assignment technique, Staging
automatically creates the number of partitions by analysing the
dependencies between PEs specified in the abstract workflow.
In order to allocate a PE into the previous partition the
following conditions need to be met: a) one-to-one relations
between PEs (source PE only connect to a destination PE); b)
there is no grouping in the destination PE. c) the first PE is
always assigned to its own partition.

To calculate the number of processes allocated to each
partition, we applied the default method of dispel4py.
The number of partitions is equally distributed among the
processes, with the exception of the first partition, which will
be allocated to just one process.

We can see an example of this technique applied to the Win-
dow Join workflow (introduced in Section III-C) in Figure 6.

9The process of moving the data from partition to partition in order to
aggregate, join, match up, or spread out in some other way, is known as
shuffling. The aggregation/reduction that takes place before data is moved
across partitions is known as a map-side shuffle.

Fig. 6. Example of the Staging technique applied to Window-Join work-
flow.

C. Dynamic Scheduling Technique

The last technique proposed in this work is Dynamic
Scheduling. This technique aims to enable dynamic de-
ployment to dispel4py. In this case, processes are not
locked to specific PEs, scheduling PE instances on-the-fly,
meaning that if a PE needs more or less “resources”, this
technique dynamically up-scale or down-scale, re-balancing
automatically the graph, without stopping the workflow exe-
cution.

The implementation of this technique is based on the Python
multiprocessing10 package, meaning that we can only deploy
workflows dynamically on shared-memory architectures, using
the dispel4py multi mapping.

When a dispel4py workflow is executed using the dy-
namic deployment, all processes receive a copy of the abstract
workflow (so all are aware of the dependencies between
PEs) at the beginning of the workflow execution. Dynamic
scheduling uses a global queue to keep PEs and data
coming up, which is available to all processes. The main idea
is that each process as soon as is “free”, goes to the global
queue to pull the next PE to execute along with the necessary
data. And then, after finishing the execution of the PE, it
returns to the global queue to push the output data.

This technique is currently not compatible with a workflow
with groupings. The reason is that if a user uses a grouping
over a PE, all data received by this particular PE has to go to
a particular PE instance running always in the same process.
The current implementation of the Dynamic Scheduling
technique, can not guarantee such behaviour.

An example of Dynamic Scheduling applied to the
Internal Extinction of Galaxies workflow (introduced in Sec-
tion III-B) can be seen in Figure 7.

10https://docs.python.org/3/library/multiprocessing.html

Fig. 7. Example of the Dynamic Scheduling technique applied to the
Internal Extinction of Galaxies workflow.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluations for the
proposed techniques in Section IV. For each experiment, we
have run one of the workflows introduced previously using
the multi mapping, modifying the number of processes, and
selecting one of the follow allocations techniques:

• Default: We apply the default dispel4py workload
allocation. Each PE runs in a single partition, and the
number of processes allocated to each PE (or partition)
is calculated by dividing the number of processes between
the number of PEs (or partitions).

• Naive 1: We apply just the first algorithm (Algorithm 1)
of Naive Assignment to calculate the most suitable
number of partitions. The number of processes assigned
to each partition is calculated using the default method:
dividing the number of processes between the number
of partitions previously calculated by Algorithm 1. This
technique implies to run previously the same workflow
under the same conditions collecting the necessary infor-
mation using the monitoring framework of dispel4py.

• Naive 2: We apply the full Naive Assignment tech-
nique, which includes Algorithm 1 to calculate the num-
ber of partitions, and Algorithm 2 to calculate the number
of processes assigned to each partition. This method also
implies to run the same workflow previously using the
monitoring framework of dispel4py.

• Stage: We apply Staging to calculate the number of
partitions. The number of processes assigned to each
partition is calculated by applying the default method:
dividing the number of processes between the number of
partitions previously calculated by the Staging tech-
nique.

• Dynamic: We apply Dynamic scheduling, enabling
the dynamic deployment of workflows. Since, this tech-
nique currently is not compatible with groupings, we have
not used it for the Window Join workflow.
Note that Default, Naive 1 and Naive 2 techniques require
to use a greater or equal number of processes as PEs.

A. Evaluation Platforms: Computing Infrastructures features

We have selected the following computing infrastructure:
• Cirrus: it is a state-of-the art SGI ICE XA system with

280 compute nodes with Lustre as the file system and
CentOS Linus as the OS11. Since, we have selected the
multi mapping, our experiments only just use a Cirrus
node. Cirrus standard compute nodes each contain two
2.1 GHz, 18-core Intel Xeon E5-2695 (Broadwell) series
processors. Each of the cores in these processors supports
2 hardware threads (Hyperthreads), which are enabled
by default. The standard compute nodes on Cirrus have
256 GB of memory shared between the two processors.
This means that we can use up to 72 processes for our
experiments in Cirrus.

• Laptop (Local): it uses macOS Catalina as the OS, and it
has a 2.3 GHz 8-Core i9 processor with 16 GB memory.
This means we can use up to 16 processes for our
experiments using this laptop.

B. Analysis Based on the Seismic Cross-correlation Workflow

Figure 8 shows the execution times (Run-time) of the different
experiments conducted using the Seismic Cross-correlation
workflow in Cirrus (Figure 8.A and Figure 8.B), and in the
laptop (Figure 8.C and Figure 8.D). In this experiment we
have varied the number of cores from 4 to 64 in Cirrus, and 4
to 16 in the Laptop. However, since the workflow has 10 PEs,
all experiments conducted with Default, Naive 1 and Naive 2
techniques start with 16 processes12.

First, we evaluated all static deployment techniques (De-
fault, Naive 1, Naive 2 and Stage) in both computing infras-
tructures. And then we selected the best static technique(s)
(which is the one that has lower execution time across different
number of processes) and compared it/them with the Dynamic
technique.

For Cirrus, the best static technique is Stage. Whereas for
the laptop Naive 2 and Stage have found the same allocation,
being this one the best one according to the results.

The Dynamic technique has a very similar performance than
the selected static techniques for both infrastructures.

C. Analysis Based on Internal Extinction of Galaxies

Figure 9 shows the execution times (Run-time) of the different
experiments conducted using the Internal Extinction of Galax-
ies workflow in Cirrus (Figure 9.A and Figure 9.B), and in the
laptop (Figure 9.C and Figure 9.D). In this experiment we have
varied the number of cores from 4 to 64 in Cirrus, and 4 to
16 in the Laptop. Note that this workflow has four PEs, so all
experiments across techniques start with four processes.

Once again, we evaluated all static techniques in both
platforms. For this workflow, Stage, Naive 1 and Naive 2
agreed in the most suitable allocation of resources (number of
partitions and number of processes assigned to each of them).
Figure 9.A and 9.C show that this allocation performs better

11https://www.cirrus.ac.uk/about/
12The minimum number of processes required by this workflow is 10.

Fig. 8. Evaluations with Seismic Cross-correlation. A: Cirrus execution times
employing all static techniques; B: Cirrus execution times employing the
dynamic technique and best static deployment(s). C: Laptop execution times
employing all static techniques; D: Laptop execution times using the dynamic
technique and best static deployment(s).

than the default allocation across platforms and number of
processes.

The Dynamic technique, however does not perform better
than the static techniques (Stage, Naive 1 and Naive 2),
for both platforms. Therefore, static optimization methods
significantly outperform the Dynamic technique.

D. Analysis Based on Window Join Workflow

Figure 10 shows the execution times (Run-time) of the differ-
ent experiments conducted using the Window Join workflow
in Cirrus (Figure 9.A), and in the laptop (Figure 9.B a). In
this experiment, we have varied the number of cores from 4
to 64 in Cirrus, and 4 to 16 in the Laptop. However, since this
workflow has six PEs, all experiments conducted with Default,
Naive 1 and Naive 2 techniques start with eight processes13.

This workflow has a grouping in the last PE. Therefore,
we have not run the Dynamic technique in this case, since
Dynamic Scheduling does not support groupings.

We can also observe that this workflow does not scale
very efficiently. This is due to Read and Join PEs, which
are not parallelizable. So adding more processes implies to
add overhead in the execution of the workflow. Even so,
our proposed techniques outperform the default allocation
technique employed by dispel4py for both computing
infrastructures. Note that the Stage and Naive 1 have made
the same allocation of resources for this workflow.

13The minimum number of processes required by this workflow is 6.

Fig. 9. Evaluations with Internal Extinction of Galaxies. A: Cirrus execution
times employing all static techniques; B: Cirrus execution times employing
the dynamic technique and best static deployment(s). C: Laptop execution
times employing all static techniques; D: Laptop execution times using the
dynamic technique and best static deployment(s).

Fig. 10. Evaluations with Window Join. A: Cirrus execution times employing
all static techniques; B: Laptop execution times employing all static tech-
niques.

E. Observations

A summary of the different evaluations across techniques,
use cases, and platforms can be seen in Figure 11.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented three adaptive optimization
techniques for improving the performance and scalability of
stream-based dispel4py workflows. Two of them have
been proposed for the static deployment of dispel4py
workflows: Naive Assignment and Staging. And the
third technique, Dynamic Scheduling, enables to run
dispel4py workflow with a dynamic deployment. The
Naive Assignment static technique has been divided into
two sub-techniques: Naive 1, in which we only apply the

Fig. 11. Overall Evaluation

Algorithm 1; and Naive 2, in which we apply both algorithms
of this technique.

Our proposed techniques have been evaluated in two dif-
ferent computing infrastructures to test their effectiveness and
adaptivity across platforms with different features (number of
processes, hardware components, network, etc.). Furthermore,
we have selected three use cases, two from real domains and
another synthetic application, with different features (number
of PEs, connectivity, groupings, etc.).

The evaluations shown in Section V, demonstrate that all
our proposed techniques outperform the default allocation
of resources performed by dispel4py. Among the static
techniques, the Staging technique usually gives us the best
allocation parameters, allowing workflows to scale up better.

The Dynamic Scheduling technique usually gives us
similar execution times than the proposed static methods, still
performing better than the default dispel4py allocation.

As future work, we plan to test our techniques using other
dispel4py mappings, such as MPI [8], and also com-
pare them with other state-of-the-art algorithms for workflow
scheduling in IaaS clouds 10.1145/3041036. Both static tech-
niques are applicable across mappings. But, for the Dynamic
Scheduling technique, we will need to modify it first to
adapt it to distributed-memory architectures. This change will
require to apply another type of global queue, such as Apache
Kafka, RabbitMQ or ZeroMQ messaging frameworks. We plan
to work in this technique, so workflows with groupings will be
able to be enacted dynamically. Our next immediate step is to
evaluate the presented optimizations using the data-intensive
dispel4py workflows (from Seismology and Climate scientific
communities) developed within the DARE project14, using the
DARE computing infrastructure (Cloud system).

14http://project-dare.eu

REFERENCES

[1] F. J. Montáns, F. Chinesta, R. Gómez-Bombarelli, and J. N. Kutz,
“Data-driven modeling and learning in science and engineering,”
Comptes Rendus Mécanique, vol. 347, no. 11, pp. 845 – 855, 2019,
data-Based Engineering Science and Technology. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1631072119301809

[2] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175,
2018. [Online]. Available: https://doi.org/10.1177/1094342017704893

[3] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, “Scientific work-
flows: Past, present and future,” 2017.

[4] T. Akidau, “The world beyond batch: Streaming 101,” A High-Level
Tour of Modern Data-Processing Concepts. Blog entry, 2015.

[5] R. Filgueira, A. Krause, M. Atkinson, I. Klampanos, and A. Moreno,
“dispel4py: A python framework for data-intensive scientific comput-
ing,” International Journal of High Performance Computing Applica-
tions (IJHPCA), 2016.

[6] R. Filgueira, A. Krause, M. Atkinson, I. Klampanos, A. Spinuso, and
S. Sanchez-Exposito, “dispel4py: An agile framework for data-intensive
escience,” in 2015 IEEE 11th International Conference on e-Science.
IEEE, 2015, pp. 454–464.

[7] I. A. Klampanos, F. Magnoni, E. Casarotti, C. Pagé, M. Lindner,
A. Ikonomopoulos, V. Karkaletsis, A. Davvetas, A. Gemünd, M. Atkin-
son, A. Koukourikos, R. Filgueira, A. Krause, A. Spinuso, and A. Char-
alambidis, “Dare: A reflective platform designed to enable agile data-
driven research on the cloud,” 2019 15th International Conference on
eScience (eScience), pp. 578–585, 2019.

[8] “Openmpi: Open source high performance computing,” https://www.
open-mpi.org.

[9] “Apache storm,” http://storm.apache.org.
[10] Q. Jiang, Y. C. Lee, M. Arenaz, L. M. Leslie, and A. Y. Zomaya,

“Optimizing scientific workflows in the cloud: A montage example,”
in 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, 2014, pp. 517–522.

[11] H. A. Nguyen, Z. van Iperen, S. Raghunath, D. Abramson,
T. Kipouros, and S. Somasekharan, “Multi-objective optimisation in
scientific workflow,” in International Conference on Computational
Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, ser.
Procedia Computer Science, P. Koumoutsakos, M. Lees, V. V.
Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot, Eds.,
vol. 108. Elsevier, 2017, pp. 1443–1452. [Online]. Available:
https://doi.org/10.1016/j.procs.2017.05.213

[12] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost opti-
mization approaches for scientific workflow scheduling in cloud and
grid computing: A review, classifications, and open issues,” Journal of
Systems and Software, vol. 113, pp. 1–26, 2016.

[13] I. Pietri and R. Sakellariou, “Scheduling data-intensive scientific
workflows with reduced communication,” in Proceedings of the
30th International Conference on Scientific and Statistical Database
Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018,
D. Sacharidis, J. Gamper, and M. H. Böhlen, Eds. ACM, 2018,
pp. 25:1–25:4. [Online]. Available: https://doi.org/10.1145/3221269.
3221298

[14] R. Prodan and M. Wieczorek, “Bi-criteria scheduling of scientific grid
workflows,” IEEE Transactions on Automation Science and Engineering,
vol. 7, no. 2, pp. 364–376, 2009.

[15] L. Ramakrishnan, J. S. Chase, D. Gannon, D. Nurmi, and R. Wolski,
“Deadline-sensitive workflow orchestration without explicit resource
control,” Journal of Parallel and Distributed Computing, vol. 71, no. 3,
pp. 343–353, 2011.

[16] M. Tanaka and O. Tatebe, “Workflow scheduling to minimize data move-
ment using multi-constraint graph partitioning,” in 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012). IEEE, 2012, pp. 65–72.

[17] A. Spark, “Apache spark,” Retrieved January, vol. 17, p. 2018, 2018.
[18] M. Bertolucci, E. Carlini, P. Dazzi, A. Lulli, and L. Ricci, “Static and

dynamic big data partitioning on apache spark,” in PARCO, 2015.
[19] R. Filgueira, A. Krause, A. Spinuso, I. Klampanos, P. Danecek, and

M. Atkinson, “Dispel4py: An open-source python library for data-
intensive seismology,” EGUGA, p. 6790, 2015.

[20] H. G. Kim, Y. H. Park, Y. H. Cho, and M. H. Kim, “Time-slide window
join over data streams,” Journal of Intelligent Information Systems,
vol. 43, no. 2, pp. 323–347, 2014.

