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Abstract

The environmental context of a mobile device determines
how it is used and how the device can optimize operations for
greater efficiency and usability. We consider the problem of
detecting if a device is indoor or outdoor. Towards this end,
we present a general method employing semi-supervised ma-
chine learning and using only the lightweight sensors on a
smartphone. We find that a particular semi-supervised learn-
ing method called co-training, when suitably engineered, is
most effective. It is able to automatically learn characteris-
tics of new environments and devices, and thereby provides
a detection accuracy exceeding 90% even in unfamiliar cir-
cumstances. It can learn and adapt online, in real time, at
modest computational costs. Thus the method is suitable for
on-device learning. Implementation of the indoor-outdoor
detection service based on our method is lightweight in en-
ergy use — it can sleep when not in use and does not need
to track the device state continuously. It is shown to outper-
form existing indoor-outdoor detection techniques that rely
on static algorithms or GPS, in terms of both accuracy and
energy-efficiency.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Sys-
tems]: Real-time and Embedded systems, Signal processing
systems
Keywords

Mobile sensing, context detection, semi-supervised learn-
ing, co-training
1 Introduction

Context sensing or detection is a key component of mo-
bile and ubiquitous computing systems for enabling context-
aware applications [7]. The term ‘“context” encompasses a
variety of aspects of a mobile user including location, time,
environment, device and activity. Some of these aspects

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.

SenSys’14, November 3-6, 2014, Memphis, TN, USA.

Copyright is held by the owner/author(s). Publication rights licenced to ACM.
ACM 978-1-4503-3143-2/14/11 ...$15.00
http://dx.doi.org/10.1145/2668332.2668347

such as time are straightforward to identify whereas others
are relatively more challenging to detect. The emergence
of smartphones and their rapid adoption have created great
interest in context-aware mobile applications. At the same
time, the many sensors built into modern smartphones (e.g.,
accelerometers, compass, light) aid in the context detec-
tion task. For example, the accelerometer on a smartphone
is used for sensing the device orientation and accordingly
aligning the screen to switch between portrait and landscape
modes. In recent years, there has been considerable research
on context sensing with smartphones, mostly focused around
(indoor) location tracking [21, 16, 26, 14] but also looking at
other aspects of context such as activity recognition [9] and
transportation mode [20].

In this paper, our focus is on detecting whether a mobile
user is indoor or outdoor, which we refer to as the Indoor-
Outdoor (I0) Detection problem. 10 detection is an envi-
ronment related aspect of user context that is important for
enabling context-aware applications. For example, personal-
ization applications can use the IO state to provide better us-
ability — trigger reminders, change volume and screen bright-
ness, change application shortcuts and make other adapta-
tions when a user moves from outdoor to indoors or vice
versa. To save power, the phone itself may be able to turn
on or off certain sensors depending on their usefulness. For
example, GPS is mainly useful outdoors and can be turned
off when inside a building. IO detection can also assist in
better detection of other aspects of context such as loca-
tion. Recent advances in mobile location tracking clearly
indicate that the solutions suitable for outdoor tracking are
distinct from those considered effective for indoor localiza-
tion — localization outdoors is typically based on GPS, while
indoor localization approaches are largely GPS-less, and ex-
ploit the prevalent WiFi infrastructure in combination with
other phone sensors. Thus knowing whether the user is in-
door or outdoor is useful in invoking the appropriate location
tracking solution.

There are two existing techniques for IO detection. One
is to use GPS and its drop in confidence or inability to obtain
a fix as a cue to infer that the user is indoors (e.g., [17, 21]).
The other called IODetector [27] combines separate estima-
tions from cell signal, light and magnetic intensity based fea-
tures to infer whether the environment state is indoor, out-
door or semi-outdoor. In this paper, we first conduct an in-
depth experimental investigation of the effectiveness of these



two techniques in different real-world scenarios with differ-
ent devices and find that neither of them provides satisfactory
results. GPS is too expensive from an energy consumption
viewpoint; it is also unreliable because it is sometimes possi-
ble to get a GPS fix while indoors and not get it in some out-
door locations. On the other hand, the accuracy with IODe-
tector can be poor because it performs detection using an al-
gorithm with hard-coded thresholds, that do not hold across
different environments and devices.

We approach the IO detection problem from a machine
learning point of view. With a supervised learning frame-
work and considering a range of different classification algo-
rithms, we find that it is possible to achieve an accuracy up to
97% when using classifiers in environments similar to those
seen during model training phase. In comparison, IODetec-
tor has an accuracy in the range of 55-70% and GPS based
technique gives an accuracy around 70% to 80%. However
when supervised classifier models are used in unfamilar en-
vironments, their accuracy drops to around 80%; the alterna-
tives also do quite poorly in such situations — for instance,
the accuracy with IODetector can be as low as 35% to 50%,
even when given suitable thresholds based on the data. The
fundamental issue is that when a user encounters a new envi-
ronment or the classifier is applied on a device different from
the one used in its training, the model needs to adapt to the
new environment/device. Doing so naively by collecting ad-
ditional labeled training data with ground truth information
requires user involvement, which is intrusive and impracti-
cal.

Our main contribution is the use of a semi-supervised
learning approach that can continuously learn in new en-
vironments, and adapt to them for indoor-outdoor detection,
without user involvement. Existing works on learning from
mobile sensing data have largely utilized offline methods
where all the data is available for analysis. Our method in-
stead works online — learning in real time — and on the device
itself, at a modest computational cost.

Our system works as follows. We start with a small
amount of labeled sensor data, for which the true in-
door/outdoor state (ground truth) is known accurately — for
example, supplied manually by the developer. Using this
data, in the preprocessing stage, we train a classifier system.
This classifier is capable of accurate IO detection in the en-
vironment where the training data was collected. To produce
accurate detection in new unfamiliar environments — for ex-
ample for a different user — the classifier needs to learn with-
out the help of labeled data. This learning is achieved with
semi-supervised learning.

We studied three different semi-supervised learning meth-
ods, namely clustering, self-training and co-training, and
found that that a well-designed co-training model is most ef-
fective providing greater than 90% accuracy across diverse
and previously unseen environments. A choice of Naive
Bayes classifiers gives the highest accuracy in this adaptive
setting.

Our co-training based indoor-outdoor detection system
has several attractive properties. Naive bayes classifiers can
be designed to update online at negligible computation and
memory costs, thus it can update and learn on the mobile

device itself without communication costs and delay. There-
fore it is also privacy preserving. The method is stateless: it
does not need temporal history and can be run on-demand;
thus the sensors can sleep except when responding to a query.
The approach is lightweight and uses only low power sen-
sors. A single state estimation costs only about 0.73 Joules,
and our experiments show it to be significantly more efficient
than other methods. We also show the value of our system
with a case study focusing on avoiding wasteful WiFi scans
while outdoors, thereby achieve substantial power savings.
To summarize, the contributions of this paper are:

1. We experimentally highlight the limitations of existing
approaches for indoor-outdoor detection: IODetector
and GPS based method (§3). We highlight an inherent
limitation of the state-of-the-art IODetector approach,
which is that it is non-adaptive to different environ-
ments that a mobile user may encounter. Moreover, the
subjectively defined semi-outdoor state is a key element
of the IODetector approach. In this paper we tackle a
harder and more precisely defined problem: IO detec-
tion without a fallback semi-outdoor state. GPS based
approach, on the other hand, is found to be power hun-
gry and also unreliable.

2. We thoroughly examine the commonly used supervised
machine learning approach for IO detection problem
(§4) and argue that it shares the same non-adaptive na-
ture as IODetector approach, though to a slightly lesser
extent.

3. We show that semi-supervised learning approach (and
co-training technique in particular) is more effective
than existing approaches by adapting automatically
to new environments. This is the first time semi-
supervised learning methods are employed for context
detection on mobile phones. We present an implemen-
tation of our co-training based 10 detector that outper-
forms alternative methods in terms of both accuracy
and energy-efficiency as a result of its adaptive learning
ability and on-demand sampling of lightweight sensors.
(§5-87)

2 Motivation for Indoor-Outdoor Detection

In this section, we outline some use cases that can benefit
from indoor-outdoor (I0) detection. [27] discusses several
other applications that can benefit from IO detection capa-
bility, including activity recognition, logical localization and
automatic image annotation.

I0 Context Aware Device Adaptation and Personal As-
sistants. Device usage patterns and environment charac-
teristics tend to differ between indoors and outdoors. For
example, indoors, a user may want to interact with smart
TVs and appliances, whereas outdoors a user may want to
use maps. Indoors are likely to have low light and WiFi,
whereas outdoors connectivity would likely be via cellular
and increased screen brightness may also be helpful for bet-
ter visibility in sunlight. Adapting the phone interface and
behavior based on 10 detection could potentially lead to bet-
ter usability. Examples of other such adaptations include:
triggering reminders; changing device volume; updating the



app shortcuts and home screen apps.

10 Context Aware Power Management. Some phone sen-
sors like GPS and WiFi interface are power hungry. There is
also diversity between environments when these sensors are
useful. For example, GPS is unlikely to be available while
indoors so keeping the GPS on and repeatedly trying to ob-
tain a fix is bound to be wasteful from device battery power
consumption perspective. Similarly, WiFi likely may not be
available while outdoors so repeated scanning for WiFi net-
works would also be wasteful. In fact, systems like [24] aim
to avoid such unnecessary WiFi scans to save energy.

Triggering Indoor/Outdoor Localization Services. As
mentioned at the outset, IO detection can aid with the de-
tection of other aspects of user context. As a case in point,
indoor localization systems differ widely from those used for
outdoor location tracking and need to be invoked when a user
enters/exits an indoor environment (e.g., office building or
shopping center). Having an energy-efficient IO detection
service running on the phone can help in such situations to
start/stop the appropriate localization service.

Reliable Crowdsourced Mobile Network Measurement.
Crowdsourcing based measurement leveraging real user de-
vices has emerged as a cost-effective method for continual
monitoring of mobile cellular networks as evident from the
plethora of mobile measurement apps (e.g., OpenSignal®).
However such apps lack the crucial context information for
reliable mobile coverage and quality assessments. We have
found in past experiments’ that not distinguishing indoor
measurements from those obtained while users were out-
doors can introduce significant errors in coverage estimation
with crowdsourced mobile network measurements.

3 Critique of Existing Indoor-Outdoor Detec-
tion Techniques

In this section, we study the characteristics of sensor sig-
nals in indoor and outdoor environments, and how existing
approaches perform with respect to detecting those environ-
ments. The natural subjects of study are detection using GPS
based method (as in [17, 21]) and using IODetector [27].
We developed an Android application that records all sen-
sor values on the phone, and has an interface where users
can input the ground-truth environment state (indoor or out-
door) as they transition from one to the other, which is also
recorded. In this initial study, we use data collected using
this application in our university campus to evaluate the two
IO detection methods mentioned above.

3.1 GPS based IO Detection

GPS signals are usually available outdoors where the sky
is directly visible, and are often weak or unavailable indoors
when the sky is obscured by ceiling and walls. Thus, the
estimated accuracy of GPS localization can be used to infer if
a user has moved from outdoors to indoors or vice versa [21].

The main drawback of GPS is its high power consump-
tion — it is the most power hungry sensor on a smartphone.
We evaluated the power consumption of different sensors on
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Figure 1. Power consumption of various sensors on a
modern smartphone (Samsung Galaxy S3).

a Samsung Galaxy S3 phone, using a custom application
to enable each sensor on demand and the Monsoon Power
Monitor® device to measure precisely how much power the
phone needs from the battery. We found that GPS consumes
370mW in operation (Figure 1) — much higher than most
other sensors. Note that power consumption for WiFi in-
terface in Figure 1 refers to the average over one WiFi scan
while the power consumption for the cellular interface is for
obtaining a passive signal strength measurement. Though
not reported here, other smartphones have similar power
consumption of sensors.
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Figure 2. GPS accuracy at outdoor-indoor transition:
GPS continues to provide fixes indoors; localization ac-
curacy worsens gradually. Gaps indicate that GPS fix
was not obtained at those instances.

We also evaluated GPS based localization as a method to
detect indoor/outdoor state, and found that it is not particu-
larly reliable. GPS can sometimes get a satellite fix indoors,
for example when the user is close to a door or window,
which can be beneficial in localization [5], but reduces its
reliability as an indoor-outdoor classifier. From our experi-
ments, we find that GPS often continues to report fixes for up
to 10-35 seconds after the transition from outdoor to indoors
has happened; this is illustrated in Figure 2. Consequently,
as shown in the following sections, we only get an accuracy
around 70% to 80% when GPS localization inaccuracy (in
comparison with an appropriately chosen threshold) is used
as an indicator to detect indoor/outdoor state.

3.2 IODetector

IODetector [27] is a recent work using primarily the cell,

light and magnetic field sensors to determine indoor/outdoor

3https://www.msoon.com/LabEquipment /PowerMonitor



state. Based on experimental data, IODetector establishes
some characteristics of these quantities from empirical ob-
servation: (1) In daytime, in outdoors, light intensity is typi-
cally much higher than indoors; (2) When the user’s context
changes from outdoors to indoors, the cell signal strength
drops rapidly due to attenuation from walls and ceilings; and
(3) Magnetic field intensity measured on phone tends to fluc-
tuate rapidly when the user is moving indoors due to ap-
pliances, electric currents and metallic objects nearby, com-
pared to open spaces outdoors. IODetector correspondingly
runs 3 primary detectors which provide their individual es-
timates for three environment states (indoor, outdoor, semi-
outdoor), and corresponding confidence in those estimates.
Then IODetector aggregates these results together. The state
that receives the most overall confidence in estimations, is
output as the current state.

The semi-outdoor state in IODetector is intended to cover
the situation when a user is close to a building but still out-
side, or is in a semi-open environment, and the signals from
the sensors do not easily distinguish between indoor and out-
door. We are however interested mainly in the basic states,
which are indoor and outdoor, since these are the ones most
relevant to context adaptive applications. An uncertain state
like semi-outdoor is difficult for many applications to inter-
pret since the environment characteristics there are not de-
fined. Indoor/outdoor transitions are relatively objectively
defined, by crossing a threshold such as a door, but the de-
termination of a state to be semi-outdoor is subjective, since
in absence of a precise definition, any state can be treated
as semi-outdoor. This makes it difficult to obtain meaning-
ful ground truths from users to evaluate the accuracy of a
method using semi-outdoor state. As we shall show later,
even though more challenging, it is possible to design a sys-
tem that produces accurate indoor/outdoor detection without
relying on uncertain intermediate states.

We evaluated the individual primary detectors as well as
combined IODetector on our dataset, collected as described
at the beginning of this section. This data was collected in
the ideal way for IODetector, with the phone in hand and in
front of the user, exposed to the light and electromagnetic
signals. Note that IODetector paper also describes a stateful
detector based on a Hidden Markov Model. As the stateful
scheme was shown to provide only a marginal improvement
in accuracy over the simpler stateless scheme outlined above,
so we focus only on the latter in our detailed examination
below.

Light Detector. Broadly speaking, the light component of
IODetector operates using two thresholds. If it is daytime
then it checks for light intensity L > 2000Lux, in which case
it outputs Outdoor, else it outputs Indoor, with high confi-
dence. At night time, it checks for L < 50Lux to produce a
low confidence output of Outdoor, else it outputs Indoor.
We tested this light detector on our dataset, and found
that even the high confidence results do not always hold due
to differences in climate and weather conditions. In 4 out of
5 cases we examined, the light intensity did not go beyond
2000Lux even in the plain open area outdoors. We observed
that this behaviour is closely tied to the weather: in a day

with heavy clouds, the value of 2000Lux is never reached.
The observation was tested on multiple phones. The discrep-
ancy is clearly a result of testing in a different place and in
different weather conditions.
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Figure 3. Light intensity at outdoor-indoor transition:
light intensity drops on move to indoors, but outdoor in-
tensity can be lower than IODetector threshold to detect
outdoor state.
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Figure 3 shows variation in light intensity at an outdoor
to indoor transition, where a different threshold could have
easily detected the state change. This suggests that light in-
tensity is in fact a good feature to consider, provided we can
determine the threshold suitably. But light sensor has the
drawback that it is easily obstructed. If the phone is in a
pocket or handbag, light does not help. IODetector uses the
proximity sensor to detect when the phone may be in pocket
or bag, and thus disregard the light sensor readings at those
times.

Cell Detector. The cell detector component of IODetector
looks for change of cellular signal strengths by 15 dBm (7.5
ASU) in an interval of 10 seconds, to detect transitions be-
tween indoor and outdoor. IODetector uses aggregate signal
strengths of multiple towers, which on Android will require
the phone to operate in GSM mode disrupting its normal use.
Thus in our experiments we use the signal strength from the
cell tower phone is associated with at the time of measure-
ment.

We find that in many cases, transitions do not have this
slope. Figure 4(a) shows such a case where the change in
signal strength is slower than the threshold at the transitions.
On the other hand, when the user is moving from room to
room inside a building, the presence of walls can cause the
signal to change rapidly (Fig. 4(b)).

Derivatives (slopes, rate of change etc) of signals, while
useful in principle, are sensitive quantities susceptible to
noise, and as a result, can produce erroneous results as shown
in Figure 4. Further, such quantities can only detect transi-
tions; they cannot detect the state when the user is static.
To make use of the cell signal derivative, the detection sys-
tem has to be running continuously, since it cannot provide
any information until a transition happens. Thus it cannot be
used for a power efficient detector that can be activated on
demand.

Magnetic Detector. The magnetic detector component of
IODetector works by inspecting the variance of magnetic
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field strength measured in u7T in a time window of 10 sec-
onds. If this variance is above 18 then the environment state
is determined to be indoors, otherwise the component out-
puts an outdoor state.
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Figure 5. Magnetic variance fails to detect an indoor state
with given threshold.

We found this component to have the lowest accuracy of
all at 40% or lower. One example is shown in Figure 5, show-
ing that outdoors the magnetic variance is usually below the
threshold but indoors there are very few situations when the
variance in a 10 second time window goes above the thresh-
old of 18.

IODetector with all components. The results of all com-
ponents combined can be seen in Table 1, for data from our
campus with the user entering and leaving 5 different build-
ings. The overall accuracy is about 71.30%. The data was
collected in partially cloudy weather, and included approxi-
mately equal volumes of indoor and outdoor samples. This
table shows results for a single device (a Galaxy S3 phone),
results are in the same range with those obtained by other
devices (Nexus 4 and Nexus 5).

Since light sensor tends to be often unavailable due to
the phone being inside a pocket or handbag, we separately
show results for detection without light information in Ta-
ble 1. The overall accuracy falls to 55.45%, which suggests
that IODetector is in fact heavily dependent on light for ac-
curate detection.

We also show the results for a specific time slice in Fig-
ure 6, where the IODetector is first confused by the Light
Detector that the environment state is indoors for the first 30

(b) Cell signal variations in-

Table 1. Accuracy of IODetector inside/outside 5 differ-
ent buildings in our campus.
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Figure 6. Decisions of all components, IODetector, and
ground truth in a specific case. Blue: Indoors, Red: Out-
doors, Gray: Undetermined. Cell signal derivative fails
to produce results until the second transition.

seconds, whereas the Cell detector reacts only at around 110
seconds mark to detect the outdoor transition.

3.3 Summary

In summary, the GPS based method is impractical due to
its high power requirements, and is also not very accurate.
IODetector is lightweight, but the plots shown above suggest
that a difference in environment between where IODetector
was designed and where we tested them causes it to produce
poor results. While the essential trends utilized by 10De-
tector were clearly present, the hard-coded thresholds it uses
to estimate the indoor/outdoor states do not hold. The use of
different phones is also a contributor to the poor performance
observed with IODetector.

4 Indoor-Outdoor Detection via Supervised
Classification

Indoor-outdoor detection is essentially a classification
type problem in machine learning: given a tuple of features
based on measured sensor values, we wish to classify the
current state as either Indoor or Outdoor. The most common
classification technique — called supervised classification —
works as follows. It is first provided some feature tuples
with associated class labels (i.e., in our case, ground truth
environment state — indoor or outdoor), from which a clas-
sifier is built or trained. This classifier essentially encodes
the pattern of classes found in the labeled data. Afterwards,
this encoded pattern or classifier can be used to deduce labels
of new data with unknown class. This works, provided the
fresh data follows the same pattern as the pre-labeled data
used to build the classifier. Supervised classification can de-
duce relatively complex relations between different features



(attributes) in the labeled data. Thus classifiers are more gen-
eral and powerful than methods that treat features separately
(e.g., [27]).

4.1 Experimental Setup

Data collection. We collected indoor and outdoor data from
several different types of environments such as university
campus, city center and residential areas, with two different
types of phones (Nexus 5 and Galaxy S3). Two participants
took part in this experiment and they were asked to move
freely in those environments with normal use of the phone,
including putting them in pocket or handbag when not in use.
The only constraint was to input their transition between in-
door and outdoor, which is necessary for having ground truth
to generate labeled training data as well as for assessing the
accuracy of different classification techniques.

Data consisted of sensor readings from the set of sensors
available on smartphones (light, proximity, magnetic, mi-
crophone, cell, Wi-Fi, GPS, battery thermometer). We also
noted the type of environment where the data was collected.

e Campus area — buildings of university, concentrated in
a small area inside the city.

o City center — downtown area with public buildings (like
shopping centers, train stations, restaurants etc.) situ-
ated in the city center.

e Residential area — private buildings in residential area,
i.e. homes of participants and friends.

The distribution of the collected data across environments
is presented in Table 2. Dataset_1 and Dataset_2 were col-
lected at the same time of the year, in similar weather condi-
tions, with Google Nexus 5 and Samsung Galaxy S3 phones
respectively. Dataset_3 was collected two months earlier in
different weather conditions using Galaxy S3. Unlesss men-
tioned otherwise, for the most part we’ll focus on Dataset_1,
the largest of these 3 datasets, for simpler exposition. The
results on other datasets were analogous.

Classification techniques and tools. We use WEKA [23],
the open source machine learning software suite. WEKA
includes several classification libraries categorized into eight
types: Bayes, Functions, Lazy, Meta, Mi, Misc, Rules, Trees.

Based on popularity in applied machine learning and best
performance seen with our datasets, we focus on a smaller
set of classifiers in our analysis. The set of classifers we
consider are: J48 decision tree, NaiveBayes, BayesNet, Lo-
cally Weighted Learning (LWL) and Sequential Minimal Op-
timization (SMO). Among these classifiers, decision trees,
Naive Bayes and BayesNet are popular classifiers used in
machine learning and classification tasks, because they are
simple to understand and use, and in practice often outper-
form more complex methods.

J48 decision tree works with a sorting of features by im-
portance, and thus works well where some features are more
discriminative than others. Naive Bayes assumes that fea-
tures of a data instance contribute independently to deter-
mine the class of the instance, and performs well where this
holds. Note that for sensor data on mobile phones, both these
can be expected to hold to some extent. BayesNet classifier
represents information as a probabilistic network of depen-
dencies in an acyclic graph.

I0ODetector
GPS

LWL

J48

SMO 97.27% .
Bayes Net

Naive Bayes

60 70 80 90 100
Accuracy (%)
Figure 7. Accuracy with supervised classifiers relative to
IODetector and GPS with dataset_3. Supervised classifi-
cation methods easily outperform the two existing meth-
ods.

As per other methods, LWL uses an instance-based algo-
rithm to assign instance weights and then performs classifi-
cation with the use of Naive Bayes, and is effective in fil-
tering noise. Finally, SMO is a training method for support
vector machines, which are effective in binary classification
tasks for datasets with unknown distribution or non-regular
distribution, as is the case with our datasets. These latter
methods however are computationally more expensive.

4.2 Evaluation of Supervised Classification
We separately investigate the classifier performance for 2
sets of features (sensor data):

1. Primary features: Light intensity, Cellular signal
strength and magnetic variance. (This is analogous to
IOdetector, but we use cell signal strength instead of its
derivative.)

2. Extended feature set: light intensity, sound inten-
sity from microphone, temperature from battery ther-
mometer, magnetic variance, cellular signal strength

and proximity sensor value.
The extended set of features intuitively contains elements

to detect important physical variations we can expect be-
tween indoor and outdoor — light, sound, electromagnetic
signal in different bands etc. We keep the primary set of
sensors used by IODetector for reference and to gain better
understanding of benefit of using multiple sensors. We have
also considered the feature set that augments the extended
feature set with WiFi related features but found it to pro-
vide only marginal accuracy improvements (not reported for
brevity). As WiFi is an expensive sensor from a power con-
sumption viewpoint (see Figure 1), we exclude it from the
set of sensors (features) used for IO detection.

We first study the accuracy with supervised classifiers
for IO detection using a smaller and homogeneous dataset
(Dataset_3). To enable direct comparison with IODetector
that we closely examined in section 3, we consider only the
primary features for classifiers. The only difference with
IODetector is that cell signal strength was used instead of its
slope. For the GPS method, location inaccuracy threshold to
distinguish between indoor and outdoor states was obtained
with a decision tree classifier. Specifically, a decision tree
classifier with GPS location inaccuracy as the only feature
was trained using 300 labeled instances from campus subset
of Dataset_1, which yielded a threshold of 8 meters separat-



| Dataset | Campus Area | City Center | Residential Area |

Dataset_1 1259 1337 1271
Dataset_2 1047 552 305
Dataset_3 735 0 0

Table 2. Number of instances in each dataset collected from various environments.
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Figure 8. Accuracy with supervised classification on the
larger and diverse dataset_1 but using labeled data for
training from all environments.

ing indoor and outdoor environments. Also note that in our
implementation of the GPS method, all instances without a
GPS fix after one minute are estimated as indoor.

Results presented in Figure 7 show that supervised
classification techniques produce better detections of in-
door/outdoor state than GPS based method and IODetector.
While existing methods detect the environment with an accu-
racy of at most 80%, the use of popular supervised classifiers
gives results approximately 97%.

Since our main concerning is multi-environment learn-
ing, we now tested supervised learning on dataset_1, which
has data from all environments, with 10-fold cross validation
over the whole dataset, and achieved accuracy typically over
90% (Fig. 8).

The results in Figure 8 are deceptive though, as the use
of 10-fold cross validation implicitly means that labeled data
for training the classifiers spans all the environments across
which they are tested. It is impractical to ensure labeled
data from all possible environments that a mobile user may
encounter. What the results suggest, however, is that sen-
sor data from mobile phones contains sufficient information
that good detectors based on classification are possible, pro-
vided the training data is representative of the overall dataset.
They also show that extended feature set is beneficial in most
cases, though marginally.

What we actually need to verify is whether a classifier
trained on labeled data from a subset of environments is ef-
fective when used for IO detection in a new previously un-
seen type of environment. We emulated this situation using
dataset_1 by training the classifiers on one of the three en-
vironments and evaluating them on the other two for classi-
fying indoor/outdoor states. The results of this experiment
are presented in Figure 9. Quite clearly, the performance of
supervised classification fails to transfer to unfamiliar envi-
ronments, giving results well below 90%.

Environment Diversity The cause of this drop is the diver-
sity inherent in the three environments as shown in Figure

10 (for some of the sensors). The main observations from
the box plots in Figure 10 are:

e The dataset is diverse — sensor value ranges (either in-
door or outdoor) vary between environments, which
makes it difficult to benefit from training on one envi-
ronment in another environment.

e The value ranges overlap significantly.

These properties, which commonly hold in practice, make
the classification problem harder, and in part is responsible
for the poor performance of fixed threshold methods like
IODetector as well as supervised classification. In fact, ac-
curacy with IODetector for the diverse dataset_1 is a mere
35.74%, whereas GPS based method is relatively more ro-
bust providing an accuracy of 75.23%.

Main conclusions from supervised classification study:

1. Learning based classification produces substantially
better results (with over 90% accuracy) than static de-
tection algorithms.

2. Using more sensors or features typically produces bet-
ter classification. Henceforth, we will focus on the case
with extended set of features.

3. Removing WiFi features generally causes a drop in ac-
curacy, but not by a significant amount.
4. Supervised learning on one environment does not trans-

late to unfamiliar environments.
These results are promising: they show that sensor signal

data contains enough information to effectively discriminate
indoor vs. outdoor. But they also imply that we need a more
adaptive method that can continue to automatically learn the
properties of new environments. We will investigate such
methods in the next section.

S Robust Indoor-Outdoor Detection with
Semi-Supervised Learning

We now look at ways to continuously improve our learn-
ing system while the phone is used across different environ-
ments. We need a method that can continue to learn in a
new environment but without the need to involve the user
to gather ground-truth indoor/outdoor state information (for
labeling training data).

Semi-supervised learning [29] is such an idea: using the
available “unlabeled” data to improve classification tasks
when labeled data is scarce or expensive, as it is the case
for the IO detection problem.

We consider three different ways of learning from unla-
beled data: (1) clustering which tries to group completely
unlabeled data, then associate class labels to groups using
small amount of labeled data; (2) self-training where a classi-
fier built from some labeled data, tries to learn subsequently
from its own outputs on unlabeled data; and (3) co-training
where multiple classifiers learn from each other’s outputs.
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diverse. The red lines correspond to the median values. The whiskers on the top and below the boxes correspond to the
maximum and minimum values respectively, without the outliers. The boxes show the upper and lower quartiles.
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Figure 9. Accuracy with supervised classifers when
training and evaluation on different environments using
dataset_1.

These methods fall under the category of semi-supervised
learning since they make use of both labeled and unlabeled
data, and we show in the following that in fact these meth-
ods work well for indoor-outdoor detection. See [28] for a
survey of semi-supervised learning techniques.

5.1 Cluster-then-Label

Clustering methods (also sometimes referred to as unsu-
pervised learning) group input data points into subsets of
similar items. Clustering methods do not need any labeled
data, and are thus useful in uncovering unsuspected pat-
tern/structure in the data. See [13] for more discussion of
clustering. However, when clustering is applied for classi-
fication problems, the absence of any supervision might re-
sult in wrong association between clusters and classes. This
is where some (even if small) amount of labeled data can
help. We are essentially referring to a semi-supervised learn-
ing method called “Cluster-then-Label” [29]. This method
works in two steps. In the first step, all available data in-
stances are clustered using a clustering technique (e.g., K-
Means). In the second step, labeled data instances within
each cluster are used to train a supervised classifier (e.g.,
Naive Bayes) which is then used for inferring the class la-
bels of remaining instances of each cluster. In other words,
classification is done using a set of supervised classifiers (one
per each cluster).

We evaluated this cluster-then-label method considering
two different clustering algorithms (K-Means and Expecta-
tion Maximization (EM)) and three different supervised clas-
sification techniques (Naive Bayes, LWL and J48 decision
tree). We use dataset_1 for this evaluation. Specifically, we
use the whole dataset_1 with around 3000 data instances and
spanning three different environments (campus, city, home);
of these, 300 instances taken from one of the environments
(campus) make up the labeled data. Results from this inves-
tigation are presented in Figure 11 which shows detection
accuracies in the region of 70%. This result, while confirm-
ing the earlier observation from supervised classification that
there is some information in the data to aid classification,
also indicates that the cluster-then-label method cannot ef-
fectively learn across environments.

5.2 Self-Training

We now consider another semi-supervised learning
method called self-training. In this method, a classifier is
first built with the available labeled data using a standard
supervised learning technique (e.g., Naive Bayes, decision
tree). Afterwards, as the system generates class labels for
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Figure 11. Indoor-outdoor detection accuracy with
cluster-then-label method. Performance not good enough
for our problem.

new unlabeled input, these output labels are used to re-train
the classifier. The idea is illustrated in Figure 12. The clas-
sifier thus attempts to learn over time as it incorporates more
data into its model. More detailed discussion can be found
in [4, 28].

unlabeled datal

Labeled data Classifier

> Classifier
construction

output=
(input, class)

Figure 12. Self training. The output of the classifier is
treated as labeled data to build improved classifier.

We applied this strategy with different classifiers and the
extended feature set, and using dataset_1. In each case, we
trained the initial classifier on labeled data from one partic-
ular environment, then let it self-train with some unlabeled
data from the unfamiliar environments. The evaluation was
done on the remaining instances from the unfamiliar envi-
ronments in the dataset.

We found (Table 3) that compared to the previous cluster-
ing based method accuracy improves only by around 5% in
most cases and the best performance is ~ 90% in one case,
but usually lower. Thus self-training does not perform to the
levels we would like.

5.2.1 Online learning with a ground truth provider

We need to know if the failure of self training to learn
from unlabeled data is simply due to its own created labels
being unreliable or due to some more complex reason related
to the nature of the inaccuracy.

We investigate this issue using unreliable ground truth
provider (UGP); it is built using our manually obtained
ground truth information in our datasets*. UGP works as
follows: it returns the correct label with a specified proba-
bility p, and with probability 1 — p it returns the incorrect
label. After building the initial classifier with labeled data
as also done in self-training, we let it continue to train on a
small set of data labeled probabilistically by the unreliable
ground truth provider. The results are shown in Figure 13 as
a function of the probability p.

4This is unrealistic in practice. We are using this ground-truth informa-
tion simply to understand the shortcomings of self-training.
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Figure 13. Accuracy using unreliable ground truth

provider (UGP) on dataset_1. 300 correct labels for initial
training from a training environment, 1000 unreliable la-
bels with probability p from other environments, and rest
for evaluation; averaged over all training environments.
Results show very good performance even with small val-
ues of p ~ 0.65 to 0.80.

Even with a very unreliable ground truth provider — one
that gives correct labels only 65 to 80 percent of the time, the
results are very good at about 90% or more. But self training
fails to get comparable results with an underlying classifier
that produces the similar quality of data.

The quality of ground truth provider output that distin-
guishes it from the classifier output in that its unreliability is
completely random, and therefore unbiased, while the clas-
sifier output suffers from biases.

Thus, if we can find a source of probabilistically labeled
data other than the classifier’s own output, we may be able to
get better results as that source and the classifier would not
then have same biases. This observation naturally takes us to
the next semi-supervised learning method we investigate.

5.3 Co-Training

Co-training [2] is a method where we use 2 classifiers in
parallel to improve predictions. The classifiers work with
different features (sensors) to gain different perspectives and
uncover different patterns. Each data instance is classified by
the two different classifiers and the result with higher confi-
dence is used to retrain and improve both classifiers’. The
idea is shown in schematically in Figure 14. See [28, 4, 2]
for more details on co-training.

As we concluded in the previous subsection, IO classifi-
cation methods can do well even with erroneous input, pro-
vided the error in the input does not have the same bias as the
classifier itself. Co-training is a natural choice for such input.
We hypothesize that classifiers working with different sets of
features (sensors) may be able to complement each other in
online training of indoor-outdoor classification system.

5.3.1 Feature ranking and selection for co-training
In building the two classifiers for co-training, it is impor-
tant to balance the feature sets in terms of quality. Some fea-
tures like cellular signal or light are clearly good predictors
of indoor/outdoor state, while features like magnetic vari-
ance and proximity sensor value are not so effective. Each
classifier needs to have its fair share of effective features to

3Co-training refers to the general idea of two classifiers learning from
each other. The implementation can have many variations. See the cited
references.



Classifier Environment | Accuracy(%) | Accuracy(%) | Accuracy(%) | Accuracy(%) | Accuracy(%)
Unlabeled data 100 200 300 400 500
NaiveBayes home+city 76.6 76.83 76.91 79.16 82

campus+city 75.58 75.58 75.58 7791 80.58

campus+home 89.4 92.3 92.5 91.5 923

J48 home-+city 77.16 77.16 77.16 79.5 82.16
campus+city 75.58 75.58 75.58 77.9 80.58

campus+home 79.16 80.25 81.91 79.16 80.58

Table 3. Self-training accuracy performance with the indicated environments being the ones from which the unlabeled
data come from, while labeled data was taken from the other (third) environment. The number of labeled data is 300
in all cases, the number of unlabeled data varies as shown, and a separate set of 1200 instances (drawn equally from all
environments) are used for evaluation in all cases. Self training makes some improvement, but not enough.

unlabeled data

Labeled data Labeled data‘

Classifier 1 Classifier 2
construction P Classifier 1 Classifier 2 [<&—] construction
& Update & Update
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result

Figure 14. Co-training with 2 classifiers operating with
different feature sets. The higher confidence classifica-
tion for each data is used as the training label to improve
classification.

produce meaningful results. We analyzed the features in con-
sideration with respect to different machine learning tech-
niques and ranked them according to effectiveness. This was
done using tools provided in WEKA for attribute selection
based on different classification techniques. The rankings
are shown in Table 4.

Rank Naive Bayes SVM Attribute
precision Evaluation

1 light intensity cell signal strength

2 sound amplitude battery temperature

3 time of day light intensity

4 proximity sound amplitude

5 cell signal strength time of day

6 battery temperature proximity

7 magnetic variance | magnetic variance

Table 4. Ranking of features by their importance with
different methods.

We then split the features into disjoint pairs of sets, and

assign them to underlying classifiers of co-training method
as shown in Table 5. Note that for each ranking of fea-
tures (Naive Bayes or SVM), we have a different distribution
of features to classifiers, which are comparatively evaluated
shortly.
5.3.2  Evaluation of co-training

We evaluate the co-training method described above using
dataset_1 as follows. We choose 300 labeled instances from

| Naive Bayes based selection ]

Classifier 1 Classifier 2
light intensity, time of | sound amplitude, cell
the day, proximity value, | signal strength, magnetic

battery temperature variance

| SVM based selection ]
Classifier 1 Classifier 2
cell signal strength, light | battery temperature,

intensity, time of day, | sound amplitude, mag-
proximity value netic variance

Table 5. Assignment of features (sensors) to co-training
classifiers with the two different feature ranking meth-
ods.

the campus environment for initial training of the two un-
derlying classifiers. Then we take 1000 unlabeled instances
from the other two unfamiliar environments. Each such un-
labeled instance is classified using the two classifiers and the
higher confidence classification of the two is taken as the
“label” for online automatic re-training of both classifiers.
This process is repeated for each unlabeled instance. The
classiefers system so built are then evaluated using a separate
set of 1200 instances in the dataset with equal representation
from all environments.

Figure 15 shows the results of this approach. Clearly,
co-training performs better than self-training with the right
choice of classifiers. Naive Bayes and J48 decision tree out-
perform the others, with Naive Bayes providing more than
90% accurate detections with both distributions of features,
and better accuracy with SVM based feature ranking.

5.4 Learning Curve

To get a better insight on the process of learning with co-
training that was found to be effective, we looked into the
learning curve showing the improvement of classifier perfor-
mance with increasing labeled/unlabeled data. We focus on
Naive Bayes classifers and SVM based feature ranking, the
combination that provided the best accuracy results overall.
Like before we report results only for dataset_1.

First we look at the impact of unlabeled data. We take the
two classifiers in co-training that are initially trained with
300 labeled instances from campus environment, then vary
the number of unlabeled instances taken from the three en-
vironments in the following order: first 500 instances from
home environment, next 500 instances from campus and the
last 500 instances from city environment. Figure 16 shows
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Figure 15. Co-training of two classifiers working with
different sets of features. Initial training of the two clas-
sifiers was done with 300 labeled data instances from
the campus environment, then co-training on 1000 unla-
beled instances from the other two environments; evalua-
tion was done using a separate set of 1200 data instances
equally drawn from all environments. NB in the plots
refers to Naive Bayes classifier. Co-training produces
better performance than self-training, with Naive Bayes
classifiers and SVM based ranking/distribution provid-
ing best results — accuracy around 93 %.

the resulting learning curve from using a separate but iden-
tical 1200 instances taken from all three environments for
each data point (number of unlabeled instances) on the x-
axis. We clearly see the learning of the co-training model in
action, especially in the final third of data points. With un-
labeled data from home environment (initial part), learning
is modest as we found most of the data from this environ-
ment is from indoors. The middle part of the graph shows
a somewhat flat learning curve as there is not much more
to learn from unlabeled campus data beyond what is already
learned from labeled campus data used for initial training.
Ultimately, the co-training model achieves an accuracy over
90% after seeing sufficient unlabeled data from all different
environments.
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Figure 16. Learning curve of co-training as a function of
number of unlabeled instances.

Next, we look at the impact of labeled instances on the
accuracy performance of co-training in Figure 17. For this,
we vary the number of labeled instances (from campus envi-
ronment) and for each data point (on the x-axis in Figure 17)
we use the same 1000 unlabeled instances from other two
environments and 1200 instances evaluation set as in sec-
tion 5.3.2. We see that after about only around 50 labeled
instances, co-training model accuracy improves rapidly and
stabilizes to peak levels. This suggests that a fairly small
amount of labeled training data is needed up front for the
co-training method to function effectively.
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Figure 17. Learning curve of co-training as a function of
number of labeled instances.

5.5 Learning across Devices

Till now we have evaluated learning methods using
dataset_1 which was all collected with one type of phone
(Nexus 5). In practice, it will be useful to have a method that
operates well across different phone device types. For ex-
ample, a developer can train and deploy a detection system



using their own devices, while users may run it on different
devices with possibly different sensor characteristics.

For evaluation of co-training across devices, we consider
the following experiment setup. For initial training of clas-
sifiers, we use the labeled data from one environment (city)
collected on one phone, then we conduct the remainder of
co-training and testing on data collected from the same city
environment but using a different phone. The results in Fig-
ure 18 show that co-training can successfully learn across de-
vices, with a small drop in performance (compared to learn-
ing on the same device) due to different make and qualities
of sensors on different phones.
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Figure 18. Performance of co-training across devices. We
used the SVM based feature ranking. Naive Bayes classi-
fiers again provide the best accuracy.

6 Co-Training based 10 Detector: Implemen-
tation and Evaluation on Phone

A context detection service needs to have fast response
time, and needs to be lightweight — both in terms of sensing
energy requirements and computational needs. It also needs
to have fair degree of accuracy. While perfect accuracy may
not be possible, we would like its output to correspond to
our expectations most of the time. As we saw above, a ma-
jor challenge in accurate context detection is variability in
sensor signal characteristics across environments, and thus
context detection needs to be adaptive and continue to learn
in new environments that it encounters.

The results from the previous sections show that such an
efficient, accurate and adaptive IO detection system can be
built based on semi-supervised learning, and co-training in
particular. Co-training produces excellent results without us-
ing expensive sensors like GPS and WiFi. Using only the
lightweight sensors makes the system energy efficient. It is
stateless and also does not require derivative based transi-
tion detections such as rate of drop of cell signal strength
at the transition from outdoor to indoor. As discussed be-
fore, derivatives tend to be susceptible to noises and the need
to detect transitions force services to run all the time. In-
stead, by using only current sensor values to detect purely
the states and not transitions, our service can return results
on demand®. The IO detection service based on our ap-

SMagnetic variance is the only feature that needs measurements over
several seconds. But note that it is the least influential of features (Table 4),
and in experiments we found that its removal does not change the results of
Figure 15 in any significant measure.

proach can thus turn off the sensors and sleep most of the

time. When some other application requests indoor-outdoor

context information, the service can wake up and go back to

sleep immediately after returning results.

6.1 Efficient Implementation via Incremental
Learning

We saw that the use of Naive Bayes classifiers with fea-
tures partitioned according to the SVM ranking is the most
effective configuration of co-training. As it turns out, this
is also an ideal option from an implementation perspective.
Bayesian classification is extremely efficient and can be done
in constant time once the classifier has been trained (since
we have a constant number of sensors). In classical bayesian
classifiers for discrete parameters [13], it is trivial to design
an incremental version that updates the probabilities of the
variables on each input. For real valued data such as sensor
readings, it is possible to discretize the values into suitably
sized bins and apply Naive Bayes as usual. Alternatively, we
can maintain gaussian distributions for each sensor for each
class and obtain probabilities from these distributions [18].
Since both mean and variance can be maintained efficiently
for streaming data, this method can keep the parameters up
to date using no additional storage and at constant computa-
tional cost per update.

We implemented our co-training based IO detector for
Android smartphones, leveraging the WEKA implementa-
tion for updateable Naive Bayes using gaussian distribu-
tions. We successfully used this implementation on Samsung
Galaxy S3 phone in a trace based evaluation emulating the
offline setup used for co-training evaluation in section 5.3.2.
We obtained 92.33% accuracy for the same setup but in on-
line mode using our Android implementation. This result
is compared with alternative methods in Figure 19. In the
figure, [ODetector (old thresholds) corresponds to the IODe-
tector with thresholds provided by authors in [27]; the new
thresholds variant, on the other hand, corresponds to the case
where we use the same 300 labeled data instances used in
section 5.3.2 to obtain a new set of thresholds using decision
tree classifiers for each of IODetector features, just as we
did for obtaining inaccuracy threshold for GPS based method
(see section 4.2). We can see that re-tuning the [ODetector
thresholds helps but not much as any one set of thresholds
do not guarantee good performance across diverse environ-
ments. Overall, we observe that our co-training provides
the highest accuracy detection in comparison with existing
methods including supervised classifier.

GPS method 75.23%
I0Detector (old thresholds) [EENE

|ODetector (new thresholds)

4%
48.51%

Supervised learning (Naive Bayes) | 81.29% |

Our method (Co-training)

20 40 60 80 100
Accuracy (%)
Figure 19. Accuracy comparison of co-training imple-
mentation on phone with alternative 10 detection ap-
proaches.
Observe that co-training learns new environments quite



rapidly and automatically without user involvement — using
only a few hundred unlabeled data instances. For example,
in Figure 15, it learns 2 new environments from 1000 unla-
beled data points. Section 5.4 shows similar results. This im-
plies that in general, we do not need to retrain our classifiers
whenever a new unlabeled data instance becomes available.
It will generally suffice to randomly record a small number of
points to boost the classifier sufficiently for any environment
where the user spends time. The feature of learning from few
inputs further helps the energy efficiency of the algorithm.
Since our method is capable of learning across devices, it
is easer to deploy it — the developer can ship the software
with the supervised training done on her device, while the
software once installed on the user’s device can continue to
learn new environments through co-training.

6.2 Power Consumption

We now study power consumption characteristics of our
co-training implementation relative to GPS based method
and IODetector. Like the accuracy comparison in the previ-
ous subsection, power consumption measurements were ob-
tained using Galaxy S3 phone and with the help of Monsoon
Power Monitor. We first evaluate the power consumption
with these different methods for a one-time use, and then
evaluate the energy cost of using them for use over a longer
period (30 minutes).

IODetector power use. IODetector’s power use sums up
to about 121mW counting light sensor, the cellular interface
and the magnetometer. The computation costs are negligible
in comparison. IO detector keeps the sensors active continu-
ously.

GPS Energy use per fix. We observed that the phone re-
quired between 5 seconds to 45 seconds to obtain a GPS fix
outdoors, whereas indoors and close to the windows between
15 seconds and 1 minute if it can obtain one. On a set of 20
random outdoor measurements, the GPS obtains a fix in a
median time of 12 seconds, whereas for the indoor case in
25 seconds. The GPS uses 379.94mW for continuous scans,
therefore obtaining a GPS fix outdoor for the median case
would require 4559.28 mJoules. In the optimist view that
the GPS obtains a fix indoors, the energy required for the
median case is 9498.5 mJoules. Computation costs are neg-
ligible — simply comparing the measured location inaccuracy
against a threshold.

Co-training energy use per estimation. For our implemen-
tation with Co-training the power consumption of all sen-
sors sampling for one second is one average 136mW (light,
microphone, cell, proximity sensors and battery thermome-
ter), whereas for the magnetic sensor which samples for 10
seconds is 60mW. Thus, cost of sampling the sensors is
736mJoules.

Co-training method requires additional costs for com-
putation. Inferring the state consumes 192mW for 0.01
seconds, increasing the cost of estimating a state by 1.92
mJoules. Note that the energy consumed for this operation
is dominated by preparing the measured sensor values (fea-
tures) in a form that WEKA requires (as our implementa-
tion of co-training reuses WEKA code for updateable Naive

Bayes); this could be drastically reduced by a clean-slate im-
plementation. Updating the classifiers incurs marginal en-
ergy consumption, in essence changing just a few variables
in the model of the two classifiers, the means and the stan-
dard deviations. In total, the energy consumption for esti-
mating a single state is 738mJoules

We also evaluated the one time preprocessing cost of the
initial training of the classifier. It took about 11.4 seconds to
train the classifiers at an average cost of 915.76mW, thus tak-
ing 10.35 Joules. This covers the costs of reading the training
file, parsing it, initializing the classifiers and training them,
and is dominated by the first two costs.

Continuous use over 30 minutes. IODetector needs to op-
erate continuously to detect the state, since its cellular com-
ponent detects only transitions. The other two methods (us-
ing the GPS inaccuracy and our implementation with Co-
training) are stateless, meaning they can operate just when
they are needed. For continuous estimation, stateless ser-
vices can be activated periodically. The overall energy use
will depend on the periodicity of this sampling.

Based on the energy requirements measured above, we
present in Figure 20 the energy consumption of these three
methods over a 30 minute period for different IO detection
sampling intervals. IO detector runs continuously at 121mW,
thus consumes a fixed 217.8 Joules in 30 mins. The energy
use of GPS and co-training decreases with the increase in
interval between invocations of IO detection service. For
a sampling interval of 10 minutes, the energy consumption
of the GPS is 13.6 Joules outdoors (and 28.5 Joules for the
indoors case), while for the co-training it is lower at 12.56
Joules. We also observe that co-training is energy-efficient
compared to other methods for any practical sampling inter-
val.

—— GPS outdoor
—— GPS indoor
—— |ODetector
—— Co-training

7 10°}

2

=}

o

2

>

f=

g

w 107F

101 i i i i
0 2 4 6 8 10

Sampling interval (minutes)

Figure 20. Energy consumption comparison between co-
training and other methods for various intervals of 10
detection service invocation. GPS based method is repre-
sented separately for outdoor and indoor (near window).

7 Case Study

A natural example of indoor-outdoor context aware power
management is to reduce wasteful WiFi access point scan-
ning. Mobile phones regularly scan the WiFi spectrum for
available access points when disconnected from a network,
even when the user is outdoor or traveling with no possibil-
ity of connecting to a WiFi network; this is possibly the most



significant contributor to battery drain if the user is not mak-
ing any active use of the phone.

The power consumption of a Samsung Galaxy S3 while
trying to associate to a network is shown in Figure 21. The
power consumption for each scan is about 250 mW for ap-
proximately 3.3 seconds, repeated every 18 seconds (which
is pre-set and unchangeable). To put this in perspective, let
us compare with GPS power consumption. The power con-
sumption of WiFi card to keep scanning for a network for 5
minutes is approximately the same as what GPS consumes
when it tries to get a location fix continuously for a minute.

1000+

m MMWML

500 T T T RN ST

’ 13;53 14:33 14;10 14:20 WJSD
Time(s)
Figure 21. Power consumption of phone WiFi interface
when searching to find a network to connect to by scan-
ning the spectrum every 18 seconds.

Thus, switching off the WiFi interface while the user is
outdoors and switching it back on when indoors can lead to
significant power savings.

Evaluation. The scenario we considered was for our user
to travel from her residence to the university campus during
the regular hours of commute (9am and 5pm). The jour-
ney time between the two reference points was on average
about 25 minutes and route spanned three different environ-
ments (residential, city and campus areas). Having learnt
about these environments on first exposure to them, our co-
training method was able to reliably detect indoor-outdoor
state in both these environments.

The detection service scanned the sensors once every 2
minutes. The magnetic sensor needs to run for 10 seconds to
obtain variance results, while other sensors run for 1 second
or less. The sensing power consumption with these scan-
ning characteristics for an entire travel period, including the
CPU energy consumption, is about 25.8 Joules. On the other
hand, when the WiFi is on, it scans once every 18 seconds,
consuming a total of 69.3 joules. Thus, by simply disabling
the WiFi interface and scanning lower power sensors to de-
tect an indoor environment, we make an energy saving of
about 63%.

8 Related Work

As mentioned at the outset, much of recent focus in con-
text detection has been on location estimation, particularly
in indoor environments. Techniques like WiFi fingerprint-
ing has been developed over more than a decade for indoor
localization. The advent of smartphones has led to use of
other common sensors on phones (e.g., accelerometer, com-
pass) to complement WiFi based localization, thereby enable
more accurate, calibration-free and energy-efficient indoor
localization. Examples include UnLoc [21], Zee [16] and
others [11]. There is also some work on logical indoor lo-
calization exploiting phone sensors (e.g., SurroundSense [1]

makes combined use of camera, microphone and accelerom-
eter).

The focus of outdoor location tracking research on the
other hand has been to rely on GPS but to use it sparingly.
As with indoor localization, various proposals take advan-
tage of other phone sensors (e.g., accelerometer, compass,
cellular interface) [26, 6, 14]. Systems like Sensloc [10] aim
to go beyond raw physical location, in the spirit of Surround-
Sense mentioned above, to provide information about places
visited and paths traveled via combined and energy-efficient
use of GPS, WiFi interface and accelerometer on phones. A
related issue is dwelling detection, i.e., identifying when user
is in a confined area (e.g., home, shop, office) but not neces-
sarily stationary. Brouwers and Woehrle [3] present a study
of dwelling patterns of users based on three different sensors
(GPS, WiFi and phone’s location service)

There has also been work on sensing other aspects of con-
text with smartphones beyond location. Some research con-
siders detection of device position (whether in pocket, hand-
bag etc.). For example, [25] uses combination of light and
proximity sensors on the phone to infer if it is in pocket, in
bag or neither. For the same inference, a previous work [12]
has considered different set of phone sensors and a machine
learning based classification approach. Activity recognition
is another issue that has received fair amount of attention.
In [9], the authors present a system that leverages on-body
sensors and user interface of smartphone for reliably de-
tecting various daily user activities (e.g., walking, reading,
working, eating). In an earlier work, Wang et al. [22] pre-
sented a hierarchical sensor management strategy for energy
efficient sensing of mobile phone user activities. Somewhat
related to activity recognition is the issue of detecting user’s
transportation mode (walking, traveling on bike, train, car,
etc.). In [20], the authors present a system that fuses phone
GPS and accelerometer data with GIS information to in-
fer the user’s transportation mode. More recently, a more
energy-efficient approach that relies only on accelerometer
data is presented in [8].

Coming to IO detection, the subject of this paper, sev-
eral systems rely on low GPS confidence or inability to get
a fix as a hint to infer that the user is indoors. In [17],
the authors use such a GPS based indoor vs. outdoor hint
in a wireless protocol architecture that adapts to different
user contexts based on sensor hints. In [21] and [5], sim-
ilar approach is used to bootstrap indoor localization sys-
tems. IODetector [27] takes a different approach, relying
instead on light, magnetic and cell based sensor features. It
includes an intermediate semi-outdoor state that is subjective
and tricky to interpret/use in practice but has the positive ef-
fect of making the IO detection problem somewhat easier on
suitably labeled data from a single environment. More cru-
cially, IODetector uses fixed thresholds for sensor features
to distinguish between indoors, outdoors and semi-outdoors,
which as shown in the earlier sections can lead to inaccurate
estimations when used across different environment and de-
vice types. UPCASE [19] is a context detection system that
uses on-body sensors connected to the phone via Bluetooth,
somewhat similar to [9]. It does activity recognition using
a classifier based on various sensor features, also like [9].



From an IO detection perspective, UPCASE allows distin-
guishing between user walking (running) inside and outside
using accelerometer and temperature sensors. In contrast to
the above techniques, we propose a semi-supervised learning
approach for robust and adaptive IO detection across differ-
ent environments and devices. To the best of our knowledge,
this is the first time semi-supervised learning methods are
used for context detection with smartphones. Closest other
setting we know of where semi-supervised learning has been
applied before is for co-localization of sensors and access
points in a wireless sensor network [15].

9 Conclusions

In this paper, we have considered the problem of de-
termining whether a user is indoors or outdoors using low
power sensors readily available on modern smartphones. For
this IO detection problem, we first showed that existing so-
lutions are too energy hungry or fail to provide accurate re-
sults across a range of different environments user may typ-
ically encounter in practice, due to the use of fixed and en-
vironment agnostic thresholds in the underlying estimation
schemes. Then by viewing the IO detection as a machine
learning classification problem with 2 classes (indoor, out-
door), we obtained further evidence that adapting the clas-
sifier model to new environments and devices is essential to
achieve robust and accurate detection across diverse settings.

To address the fundamental issue of model adaptation on-
the-fly and transparent to the user, we adopted the semi-
supervised learning framework as our ultimate solution ap-
proach — the key contribution of this paper. Through our
investigation of different commonly used semi-supervised
learning methods, we have found that co-training method
yields most accurate results across a range of environments
and different devices. We have presented an implementation
of our co-training method on Android platforms using an in-
cremental version of Naive Bayes classifier and showed that
our approach outperforms other alternative methods in terms
of both accuracy and energy efficiency. Also, our implemen-
tation approach does not incur any communication overhead
(as it does not need to communicate with a backend/cloud)
and is privacy preserving. We have also demonstrated the
use of our proposed co-training based 10 detector through a
case study focusing on power savings with WiFi interface by
adaptively switching off WiFi scanning while outdoors.
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