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Abstract: Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time 

series over multiple temporal scales. Recent developments in the field have tried to extend the 

MSE technique in different ways. Building on these trends, we propose the so-called refined 

composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses 

variance (RCmvMFEσ
2) or mean (RCmvMFEµ). We investigate the behavior of these 

multivariate methods on multichannel white Gaussian and 1/f noise signals, and two publicly 

available biomedical recordings. Our simulations demonstrate that RCmvMFEσ
2 and 

RCmvMFEµ lead to more stable results and are less sensitive to the signals’ length in comparison 

with the other existing multivariate multiscale entropy-based methods. The classification results 

also show that using both the variance and mean in the coarse-graining step offer complexity 

profiles with complementary information for biomedical signal analysis. We also made freely 

available all the Matlab codes used in this paper. 
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1. Introduction 

Entropy is a prevalent method to quantify the regularity of physical systems and to compare time 

series. To quantify the degree of the irregularity, randomness, or unpredictability of signals, a 

number of entropy measures were introduced during the past few decades [1-5]. One of the most 

popular kinds of entropy methods is sample entropy (SampEn) that measures the degree of 

randomness or, inversely, the degree of orderliness of a signal [2]. Since SampEn is less sensitive 

to the signal length and noise than approximate entropy (ApEn), it has been broadly used in 

biomedical signal processing [2]. Despite its popular use, SampEn is very sensitive to the 

threshold value. To tackle this problem, fuzzy entropy (FuzEn) was proposed  [3]. These two 

entropy methods have attracted a great deal of attention over the recent years [6-11]. 

SampEn and FuzEn approaches, though powerful, are estimated only at a single temporal scale 

and therefore, may fail to account for the multiple time scales underlying nonlinear dynamics 

[12]. As an example, although the SampEn value of white Gaussian noise (WGN) signal is 

higher than that of 1/f  noise, 1/f noise is theoretically more complex than WGN because of the 

long-range correlations of the former [13]. To overcome this shortcoming, multiscale entropy 

(MSE) [13, 14] and multiscale FuzEn (MFE) [3, 15] were proposed to take into account the 

various scales of a signal. It is worth noting that, in this context, the “complexity” concept stands 

for “meaningful structural richness”, which may be in contrast with regularity measures defined 

from classical entropy approaches such as ApEn, SampEn, and FuzEn. For example, ApEn was 

proposed to quantify the degree of predictability of signals [16]. Thus, ApEn is primarily a 
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“regularity” statistic, not a direct index of physiological complexity. SampEn and FuzEn are 

based on the ApEn, leading to regularity measures [2, 3]. Thus, the entropy of 1/f noise is lower 

than that of WGN at scale factor 1 using MSE [13]. 

In fact, the least complexity illustrates either a completely ordered system with a small entropy 

value or a completely disordered system with maximum entropy value [13, 14, 16-18]. For 

instance, WGN is more irregular than 1/f noise although the latter is more complex, because 1/f 

noise contains long-range correlations and its 1/f decay produces a fractal structure in time. As 

another example, traditional entropy-based methods assign higher entropy values to certain 

pathologic cardiac rhythms that generate erratic outputs than to normal cardiac rhythms that are 

precisely regulated by multiple interacting control mechanisms [13, 14]. In the physiological 

complexity literature, healthy systems or people correspond to high complexity due to their 

ability to adapt themselves in response to adverse conditions, exhibiting long range correlations 

and complex variability at multiple scales, while aged and diseased systems or individuals 

present complexity loss, that is, they lose the capability to adapt to such adverse conditions [13, 

16, 19]. 

In the MSE and MFE approaches, the original signal is initially divided into non-overlapping 

segments of length β, termed the scale factor. Next, the average of each segment is estimated to 

obtain the coarse-grained signals. Finally, the SampEn or FuzEn measure is calculated for each 

segment [13]. Costa and Goldberger have very recently generalized the MSE method using the 

second moment (variance) rather than the first moment (mean), in the coarse graining step of 

MSE [20]. This was named MSEσ
2. It should be added that to discriminate MSEσ

2 and the basic 

MSE, we will show the latter as MSEµ.  
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MSEσ
2 quantifies the dynamical properties of volatility (variance) over multiple time scales. 

MSEσ
2 was applied to heartbeat signals from healthy young and older adults, and patients with 

congestive heart failure syndrome. The results showed that human heartbeat volatility signals 

depict complex bursting behaviours over a wide range of time scales. In addition, they found the 

multiscale complexity of both the volatility and mean degrades with aging [13, 20]. 

Multivariate signals, like multichannel recordings, are becoming more and more common in 

neuroscience and biomedical and mechanical science [21-23]. The MSE-based approaches, 

though powerful and widespread, are not able to reveal the dynamics across the channels. For 

such time series, evaluation of cross-statistical properties between multiple channels is essential 

for a complete understanding of the underlying signal-generating system [21, 24]. In this sense, 

Ahmed and Mandic proposed multivariate SampEn (mvSEµ) [21], leading to an extension of 

MSE to multivariate signals (mvMSEµ) [21]. The mvMSE analysis is interpreted based on 1) the 

multivariate signal X is more complex than the multivariate signal Y, if for the most time scales, 

the mvSE measures for time series X are larger than those for time series Y, 2) a monotonic fall 

in the multivariate entropy measures along the time scale factor demonstrates that the time series 

in hand only includes useful information at the smallest scales, and 3) a multivariate system 

illustrating long-range correlations and complex creating dynamics is characterized by either a 

constant mvSE or this declares a monotonic rise in mvSE with the time scale factor [21]. 

mvMSE has received much attention in the biomedical and mechanical fields [22, 23]. Labate 

and company employed the mvMSE and multivariate multiscale permutation entropy (mvMPE) 

[25] to predict the conversion from mild cognitive impairment to Alzheimer’s disease using EEG 

signals [22]. Gao et al. proposed a multiscale complex network and multiscale clustering 

coefficient entropy to analyze multivariate time series [26]. They also used the mvMSE method 



5 

 

to characterize flow behavior underlying horizontal oil–water flows from experimental 

measurements [27].  

Although mvSE is a powerful and popular algorithm, when applied to short time series, the 

results may be undefined or unreliable. To alleviate this limitation, we extend the refined 

composite MSE (RCMSE) [28], which was proposed for univariate signals, to multivariate time 

series. The mvMFEµ method has been recently proposed to improve the stability of mvMSEµ 

[15]. However, this approach, though powerful, is slow. In this paper, using another fuzzy 

membership function, the running time of mvMFEµ is noticeably improved. Finally, we extend 

and investigate the new moment for coarse-graining process, variance, proposed for univariate 

signals, to multivariate signals. These methods are named as RCmvMFEµ and RCmvMFEσ
2.   

This paper is organized as follows. In the next section, RCmvMFEσ
2 and RCmvMFEµ are 

presented in detail. In Section 3, the synthetic and real biomedical signals, employed in this piece 

of research, are described. The results and discussion are provided in Section 4. Finally, a 

conclusion is presented in Section 5. 

 

2. Refined Composite Multivariate Multiscale Fuzzy Entropy 

All multivariate multiscale sample/fuzzy entropy-based algorithms include two main steps as 

follows: 

2.1. Coarse-graining for Multiscale Evaluation of Multivariate Entropy  

A “coarse-graining” process is applied to a p-variate (channel) time series  

, 1{ }  C

k b byY , k=1,…,p 

, where C is the length of the signal at each channel. According to (1), each element of the 

coarse-grained signal is defined as: 
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( )

, ,

( 1) 1

1
         1 ,   1


 

   

 
      

 

i

k i k b

b i

C
x y i N k p                                       (1) 

where   is the time scale factor [14, 29]. Costa et al. [20] has recently proposed to use the 

variance, instead of mean value, in coarse-graining step in univariate signals. As an extension of 

this technique, we use variance in coarse-graining step for multi-channel time series as follows: 

2 ( ) ( ) 2

, , ,

( 1) 1

1
 ( )          1 ,   1


   

   

 
       

 

i

k i k b k i

b i

C
x y x i N k p                      (2) 

The procedure of coarse-graining process is shown in Figure 1.  

The coarse graining process has two main limitations. First, this process is not symmetric. 

According to Figure 1, for instance in scale 3, we could rationally expect the measure to behave 

the same for yk,3 and yk,4, in comparison with yk,2 and yk,3. However, at scale 3, yk,1, yk,2 and yk,3 

are separated from yk,4, yk,5 and yk,6.  Second, when the coarse graining process is computed, the 

number of samples of the resulting coarse-grained sequence is 


 
 

 

C
N . When the scale factor 

β is high, for each channel, the number of time sample points in the coarse-grained sequence 

decreases. This may yield unstable or undefined entropy values [30, 31]. To tackle these 

shortcomings, we propose the refined composite technique for multi-channel time series 

extending the previous definition for univariate signals [28]. The first step of refined composite 

multivariate multiscale entropy-based approaches is generating β coarse-grained multivariate 

time series ( ) ( )

, ,{ }   1



    k iz x  where 

 

1
( )

, , ,

( 1)

1
   1 ,   1 ,   1

 
 




 
 

 

 

 
        

 


i

k i k b

b i

C
x y i N k p                          (3) 

and 
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2

1
( ) ( ) 2

, , , , ,

( 1)

1
( )     1 ,   1 ,   1

 
   

 
 

 
 

 

  

 
         

 


i

k i k b k i

b i

C
x y x i N k p           (4) 

were respectively used for RCmvMFEµ and RCmvMFEσ
2.  As can be seen in Figure 2, in 

RCmvMFEµ/RCmvMFEσ
2, for each scale factor β, we have β different multivariate signals ( )


Z , 

while in the mvMFEµ/mvMFEσ
2 methods, only 

( )

1

Z  is considered. The second step of 

multivariate multiscale techniques is calculating multivariate fuzzy/sample entropy for each scale 

factor.  

 

2.2. Multivariate Fuzzy Entropy 

One of the most important shortcomings of the mvSE is that the method ignores every distance 

between two composite delay vectors (d) that is larger than a defined threshold r [15]. To 

alleviate this problem, a fuzzy membership function ( , ) d r [15] was proposed as follows:  

 2

ln(2)

1   ,                    

( , )

e ,        

  
  

 




 
 

d r

r

d r

d r

d r

                                                (5) 

Although the above-mentioned problem is solved by using this function [15], this method is 

noticeably slower than the mvSE, especially when the number of channels or sample points of 

every channel, or the value of embedding dimension m is high. To tackle this deficiency, we 

propose to use another well-known fuzzy membership function as: 

  ( , ) exp ( ) /   pf
d r d r                                                          (6) 

where fp shows the fuzzy power and is usually equal to 2.  

To calculate mvFE, multivariate embedded vectors are initially generated based on the Takens 

embedding theorem [15, 21, 32]. The multivariate embedded reconstruction is defined as: 
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1 1 1 2 2 21, 1, 1, ( 1) 2, 2, 2, ( 1) , , , ( 1)( ) [ , ,..., , , ,..., ,... , ,..., ]             
P P Pm i i i m i i i m P i P i P i mX i x x x x x x x x x        (7)  

where 
1 2[ , ,..., ] pM m m m and 

1 2[ , ,..., ]   pτ are the embedding and the time lag vectors, 

respectively [29].  

For p-variate time series  

1{ } 

p

k kx , the mvFE algorithm, as a natural extension of the standard 

univariate fuzzy entropy, includes the following steps: 

1. For each scale factor 1    , form multivariate embedded vectors ( ) m

mX i R  where  

i=1,2,...,N-n and n=max{M}×max{τ}. 

2. Calculate the distance between any two composite delay vectors ( )mX i  and ( )mX j  as the 

maximum norm. 

3. For a given threshold r and fuzzy power fp, define a global quantity ( ) m r , as the average 

membership grade as: 

 

1,

1

[ ( ), ( )]
exp

1
( )

( ) 1





 



 
 
 
 

  




pN n
m m

N n
j i

m

i

f

j

d X i X j

r
r

N n N n
                      (8) 

4. Extend the dimensionality of the multivariate delay vector in (8) from m to (m+1). This can 

be done in p different ways, as from 1 2[ , ,..., ,..., ] h pm m m m  to 

1 2 1[ , ,..., ,..., ] ( 1,..., ) h pm m m m h p . In the process, the dimension of the other variables are 

unchanged. 

5. Calculate 
( 1) ( ) m r which denotes the average over all ( 1) ( ) hm r  values in an (m+1)-

dimensional space. 

6. Finally, mvFE is defined as: 
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( 1) ( )
mvFE( , , , ) ln

( )





 
   

 

m

m

r
r n

r
X τ                                         (9) 

3.3. Refined Composite Multivariate Fuzzy Entropy 

As mentioned earlier, based on the proposed refined composite technique, for each scale factor 

 , we have   different multivariate signals ( )
Z . For each of ( )

Z , , | ( 1,..., )   m
 and 

1

, | ( 1,. , )..     m
 are separately calculated. Next, the average of values of , 

m

 and 
1

, 
m

 

on 1 ≤ α≤ β are computed. Finally, the RCmvMFE is computed as follows: 

,

,

1

RCmvMFE( , , , , ) ln  

 






 
  
 
 

m

mM n rY                              (10) 

It should be added that because multi-channel signals may have different amplitude ranges, the 

distances calculated on embedded vectors may be biased toward the largest amplitude ranges 

variates. For this reason, we scale all the data channels to the same amplitude range and we 

normalize each data channel to unit standard deviation so that the total variation becomes equal 

to the number of channels or variables [21]. 
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factors 2 and 3. For each scale factor, one time series is computed. 

 

 



11 

 

         

 

  

 

  

 

  

 

  

y1,1

. . .

x1,1,1
(2) x1,1,(i+1)/2

(2)

. . .
y1,2 y1,3 y1,4 y1,5 y1,6 y1,i y1,i+1 y1,i+2

x1,1,2
(2) x1,1,3

(2)

         

 

  

 

  

 

  

 

  

y2,1

. . .

x1,2,1
(2) x1,2,(i+1)/2

(2)

. . .
y2,2 y2,3 y2,4 y2,5 y2,6 y2,i y2,i+1 y2,i+2

x1,2,2
(2) x1,2,3

(2)

         

 

  

 

  

 

  

 

  

. . .

x1,p,1
(2) x1,p,(i+1)/2

(2)

. . .

x1,p,2
(2) x1,p,3

(2)

Scale 2

Z1
(2)

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.
yp,1 yp,2 yp,3 yp,4 yp,5 yp,6 yp,i yp,i+1 yp,i+2

         

 

  

 

  

 

  

y1,1

x2,1,1
(2) x2,1,i/2

(2)

. . .
y1,2 y1,3 y1,4 y1,5 y1,6 y1,i y1,i+1 y1,i+2

x2,1,2
(2)

         

y2,1

. . .

x2,2,1
(2)

x2,2,i/2
(2)

. . .
y2,2 y2,3 y2,4 y2,5 y2,6 y2,i y2,i+1 y2,i+2

x2,2,2
(2)

         

 

  

 

  

 

  

. . .

x2,p,1
(2) x2,p,i/2

(2)

. . .

x2,p,2
(2)

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

 

  

 

  

 

  

Z2
(2)

. 

. 

.
yp,1 yp,2 yp,3 yp,4 yp,5 yp,6 yp,i yp,i+1 yp,i+2

 



12 

 

         

y1,1 . . .

x3,1,1
(3)

. . .y1,2 y1,3 y1,4 y1,5 y1,6 y1,i y1,i+1 y1,i+2

         

y2,1 . . .y2,2 y2,3 y2,4 y2,5 y2,6 y2,i y2,i+1 y2,i+2

         . . .

. 

. 

.

. 

. 

.

. 

. 

.

 

    

. . . . . .

x3,2,1
(3)

 

    

. . .

x3,p,1
(3)

 

    

. . . . . .

. . .

. . .

yp,1 yp,2 yp,3 yp,4 yp,5 yp,6 yp,i yp,i+1 yp,i+2

Z3
(3)

         

y1,1 . . .

x1,1,1
(3) x1,1,(i+2)/3

(3)

. . .y1,2 y1,3 y1,4 y1,5 y1,6 y1,i y1,i+1 y1,i+2

x1,1,2
(3)

         

y2,1 . . . . . .y2,2 y2,3 y2,4 y2,5 y2,6 y2,i y2,i+1 y2,i+2

         . . . . . .

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

Scale 3

 

  

  

    

. . . . . .

x1,2,1
(3) x1,2,(i+2)/3

(3)x1,2,2
(3)

 

  

  

    

. . . . . .

x1,p,1
(3) x1,p,(i+2)/3

(3)
x1,p,2

(3)
 

  

  

    

. . . . . .

yp,1 yp,2 yp,3 yp,4 yp,5 yp,6 yp,i yp,i+1 yp,i+2

Z1
(3)

         

y1,1 . . .

x2,11
(3) x2,1,(i+1)/3

(3)

. . .y1,2 y1,3 y1,4 y1,5 y1,6 y1,i y1,i+1 y1,i+2

x2,1,2
(3)

         

y2,1 . . . . . .y2,2 y2,3 y2,4 y2,5 y2,6 y2,i y2,i+1 y2,i+2

         . . . . . .

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

 

  

  

    

. . . . . .

x2,2,1
(3)

x2,2,(i+1)/3
(3)x2,2,2

(3)
 

  

  

    

. . . . . .

x2,p,1
(3) x2,p,(i+1)/3

(3)x2,p,2
(3)

 

  

  

    

. . . . . .

yp,1 yp,2 yp,3 yp,4 yp,5 yp,6 yp,i yp,i+1 yp,i+2

Z2
(3)

 



13 

 

Figure 2. Illustration of the proposed coarse-graining process (refined composite technique) for 

multivariate time series for scale factors 2 and 3. For scale factor  , there are   different time 

series. 

 

2.3. Multivariate Entropy Parameters  

The time lag is an important parameter for (multivariate) multiscale entropy-based methods, 

since an appropriate choice of time lag can make the necessary embedding dimension lower [13, 

21, 32]. There is not any proven criterion for choosing this parameter. Generally, we have a fixed 

time lag and then, adjust the embedding dimension accordingly [24]. There exist a few 

approaches to choose the time lag for a univariate signals, such as mutual information and 

autocorrelation [32-34]. For multivariate signals, we can also use these approaches to find τ for 

each channel separately. Moreover, we can extend these methods for multivariate time series 

[32]. Nevertheless, for simplicity, we, like the proposers of the mvMSEµ [21, 29], choose τk=1. 

The sensitivity of mvMSEµ and the proposed method RCmvMFEµ to the signal length will be 

described in Section 4. mk, fp and r for all of the approaches are respectively chosen 2, 2 and 0.15 

multiplied by the standard deviation (SD) of the original time series according to [2, 21]. Our 

choice of the value of r is further supported by the fact that the behavior of the results obtained 

with a different value of r, as in [20], is similar to ours [21].  

 

3. Evaluation Signals 

White Gaussian (discrete-time) noise (WGN) and 1/f noise are two most important signals to 

evaluate the multiscale entropy-based approaches for univariate and multivariate signals [13, 21, 

24].  



14 

 

 

3.1. Synthetic Signals 

WGN is a random signal which has equal energy at all frequencies. The name white originates 

from the fact that this kind of signal has a constant power spectral density ( )S f  as follows: 

( )  wS f C                                                                 (11) 

where Cw is a constant number [35]. WGN signal is defined as a sequence of consecutively 

uncorrelated random variables with zero mean and finite variance [36].  

A stochastic process that is appropriate to model evolutionary or developmental systems, 

characterized by equal energy per octave, is called pink noise with power spectral density as 

follows: 

( ) 
fC

S f
f

                                                                  (12) 

where Cf  is a constant. As can be seen in Equation 12, the power spectrum density of pink noise 

is inversely proportional to frequency [35].  

To generate the correlated 2-channel noise signals, first we created a two-channel uncorrelated 

random signals H. Multiplying H with the standard deviation (hereafter, sigma) and adding the 

value of the mean (hereafter, mu) was the next step. Then, we multiplied H with the upper 

triangular matrix L obtained from the Cholesky decomposition of a defined correlation matrix R 

(which is symmetric and positive) to set the correlation. A comprehensive study on the effect of 

correlated and uncorrelated WGN and 1/f noise on multiscale entropy-based methods was done 

in [13, 37].  

3.2. Real Signals 
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The proposed methods RCmvMFEσ2 and RCmvMFEµ are next assessed by using two publicly 

available datasets: bivariate intracranial focal and non-focal EEG time series and trivariate 

Fantasia signals from young and elderly subjects.  

  

3.2.1. Intracranial EEG Data 

The intracranial EEG signals were recorded from five patients suffering from pharmacoresistant 

focal-onset epilepsy leading to two main separate sets of signals. The first one was recorded from 

brain regions where the primarily ictal EEG recordings changes were detected as judged by 

expert visual inspection (“focal signals”). The second set of signals was recorded from brain 

regions not involved at seizure onset (“non-focal signals”). The focal and non-focal EEG time 

series are recorded from patients affected by focal epilepsy. Focal epilepsy influences on only a 

limited part of the patient’s brain. The focal EEG recording are acquired outside of seizures from 

the channels that first detected ictal EEG time series changes by visual inspection. The remaining 

EEGs are termed as non-focal EEGs [38, 39]. For each patient, there are 750 focal and 750 non-

focal bivariate time series. The length of each signal was 10240 sample points: 20 seconds at a 

sampling frequency of 512 Hz. Each pair includes two EEG time series recorded from adjacent 

channels. For more information about the dataset, please, refer to [38]. Before computing the 

existing and proposed approaches, all signals were digitally filtered employing an FIR band-pass 

filter with cut-off frequencies at 0.5 Hz and 40 Hz. 

 

3.2.2. Fantasia Database 

A subset of the Fantasia database was chosen which includes 10 young (21 - 34 years old) and 10 

old (68 - 85 years old), rigorously-screened healthy individuals underwent 120 minutes of 
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continuous supine resting while continuous electrocardiographic (ECG), respiration signals, and 

uncalibrated continuous non-invasive blood pressure recordings, were collected. Each group 

consisted of 5 women and 5 men [40]. All 20 individuals remained in an inactive state in sinus 

rhythm when watching the movie Fantasia (Disney, 1940) to help to maintain wakefulness. For 

each subject, all three time series were digitized at 250 Hz [40].  

 

4. Results and Discussions 

4.1. Synthetic Signals 

We first apply the proposed and conventional approaches to white and 1/f  noise as two kinds of 

signals that are used to evaluate the performance of multivariate/univariate multiscale entropy-

based methods [21, 29, 41]. The results are shown in Figures 3 to 5. The number of sample 

points of each of the WGN and 1/f noise was 20000.  

Figures 3(a) and (b) illustrate the results obtained for mvMSEµ using 40 different 2- and 5-

channel WGN and 1/f noise signals, respectively. The results are consistent with the fact that 1/f 

noise has more complex structure than WGN [13, 17, 21]. For 2-channel noise time series and 

for scales 1 and 2, the entropy values of WGN signals are higher than those of 1/f noise. 

However, for 2 < β, when the entropy value for the coarse-grained 1/f noise signal stays almost 

constant, that for the coarse-grained WGN signal monotonically decreases. For WGN, when the 

length of the signal, obtained by the coarse-graining process, decreases (i.e., the scale factor 

increases), the mean value of inside each signal converges to a constant value and the SD 

becomes smaller. Therefore, no new structures are revealed on higher scales. This demonstrates 

WGN time series has information only in small time scales [13]. In contrast, for 1/f noise time 

series, the mean value of the oscillations inside each signal does not converge to a constant value 
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[13, 14]. Figure 3(b) shows that for 5-channel noise time series and for each of 1<β, the mean of 

entropy values for 1/f noise is larger than that for WGN. This fact may be considered as a 

relative advantage of the larger number of channels. 

To demonstrate the importance of refined composite technique for mvMSEµ, the results obtained 

by RCmvMSEµ algorithm for 40 different 2- and 5-channel noise time series are shown in 

Figures 3(c) and (d), respectively. To compare the results obtained by the multivariate 

approaches, we used the coefficient of variation (CV) defined as the SD divided by the mean 

[42]. The main reason to use this measure is that the SDs of some signals generally increase or 

decrease proportionally as the mean increases or decreases. Therefore, the CV, as a 

standardization of the SD, allows comparison of variability estimates regardless of the magnitude 

of analyte concentration [42]. We consider only the 1/f noise time series results at the highest 

scale factor, i.e. 60, because the average values of WGN results at this scale are near 0 and it 

may lead to unreliable CV values. As can be seen in Figures 3(a) to (d), the results obtained by 

RCmvMSEµ are more stable than those obtained by mvMSEµ. This fact is also confirmed by the 

smaller CV values for RCmvMSEµ, shown in Table 1.   

To depict the importance of FuzEn in multivariate multiscale methods, the behavior of mvMFEµ
 

is considered using WGN and 1/f noise time series. Figures 3(e) and (f) demonstrate, 

respectively, the results obtained by 2- and 5-channel signals using mvMFEµ. Comparing Figures 

3(a) and (b) with Figures 3(e) and (f) shows that the FuzEn improves the stability of mvMSEµ. 

RCmvMFEµ results using 2- and 5-channel WGN and 1/f noise time series are shown in Figures 

3(g) and (h), in that order. The results illustrate that RCmvMFEµ, like RCmvMSEµ, can improve 

the stability of its basic method (mvMFEµ). It is worth mentioning that although the results 

obtained by the fuzzy membership function used in this paper is similar to those achieved by the 
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fuzzy membership function proposed in [15], the running time for the existing mvMFEµ is about 

six times more than that for the proposed one. As expected, the CV values of the mvMFEµ 

results are noticeably smaller than those of mvMSEµ ones. Comparing RCmvMFEµ- and 

mvMFEµ-based CV values demonstrates the importance of refined composite technique in multi-

channel signals. 

The results obtained by the mvMPEµ method for 2- and 5-channel 1/f noise and WGN signals are 

shown in Figures 4(a) and (b), respectively. The results demonstrates the mvMPEµ method, 

though powerful and widely-used, do not follow the concept of complexity about 1/f and WGN 

[13, 17, 18]. Note that, we chose m=5 for the mvMPEµ according to [43]. 

As a recent interest in using other statistical moments, we employ variance, instead of mean, in 

the coarse-graining process. The results are shown in Figures 5(a) and (b) using mvMSEσ
2 for 

respectively 2- and 5-channel WGN and 1/f noise time series. Although the crossing points of the 

curves of WGN and 1/f noise results appear in higher scale factors in comparison with mvMSEµ, 

the general behaviors of curves obtained by mvMSEµ and mvMSEσ
2 are similar. In addition, the 

results for 5-channel time series have smaller SD and the profiles for both conditions crossed at 

lower scale, compared with 2-channel time series. This again demonstrates the importance of 

using multivariate signals. As mentioned before, the signal X is more complex than the signal Y, 

if for most time scales, the mvSE/mvFE values for time series X are higher than those for time 

series Y [21, 24]. Thus, the number of scales at which the multivariate entropy value of X is 

higher than that of Y is relevant. In this particular case, WGN is less irregular than 1/f noise for 

2- and 5-channel noise signals from scale factor 59 and 44, respectively. Thus, a smaller number 

of temporal scales are needed to reveal the multiscale complexity of the signal for the 5-channel 

noise signals in comparison with the 2-chanel noise. Thus, this fact and the smaller SD values 
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obtained for the 5-channel signal support the use of a larger number of channels for variance-

based coarse-graining. 

It is worth mentioning that for each scale factor, the SD of results using mvMSEµ is noticeably 

larger than mvMSEσ
2

. Figures 5(c) and (d) show the results obtained by RCmvMSEσ
2 for 2- and 

5-channel signals, respectively. As can be seen in Table 1, the CV values of the RCmvMSEσ
2 

results are smaller than those of mvMSEσ
2 ones, something that shows the importance of refined 

composite algorithm to increase the stability of the results. 

Figures 5(e) and (f) respectively show the results obtained by 2- and 5-channel signals based on 

mvMFEσ
2. The general trends of these results are the same as Figures 5(a) and (b), although 

fuzEn-based results are noticeably more stable than SampEn-based ones. This is further 

supported by the CV vales depicted in Table 1. In addition, the crossing points between the 

WGN and 1/f noise results using mvMFE methods are placed in smaller scale factors in 

comparison with those using mvMSEσ
2. To improve the stability of the mvMFEσ

2 method, we 

propose to use refined composite technique. The results are shown in Figures 5(g) and (h). As 

can be seen in these figures, for each time scale, the CV of RCmvMFEσ
2 values is smaller than 

that of mvMFEσ
2 measures. It is worth noting that the advantages of mvMFE over the exiting 

method mvMSE are still into account for RCmvMFE.  
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          (a) mvMSEµ (number of channels=2)                  (b) mvMSEµ (number of channels=5) 

      

         (c) RCmvMSEµ (number of channels=2)              (d) RCmvMSEµ (number of channels=5) 

       

          (e) mvMFEµ (number of channels=2)                  (f) mvMFEµ (number of channels=5) 

      

        (g) RCmvMFEµ (number of channels=2)               (h) RCmvMFEµ (number of channels=5) 
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Figure 3. Mean value and SD of results of the (a) mvMSEµ (number of channels=2), (b) 

mvMSEµ (number of channels=5), (c) RCmvMSEµ (number of channels=2), (d) RCmvMSEµ 

(number of channels=5), (e) mvMFEµ (number of channels=2), (f) mvMFEµ (number of 

channels=5), (g) RCmvMFEµ (number of channels=2), and (h) RCmvMFEµ (number of 

channels=5) computed from 40 different multichannel WGN and 1/f noise times series. Red and 

blue indicate 1/f and WGN results, respectively. 

 

  
          (a) mvMPEµ (number of channels=2)                  (b) mvMPEµ (number of channels=5) 

 

Figure 4. Mean value and SD of results of the (a) mvMPEµ (number of channels=2), and (b) 

mvMPEµ (number of channels=5) computed from 40 different multichannel WGN and 1/f noise 

times series. Red and blue indicate 1/f and WGN results, respectively. 
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       (a) mvMSEσ
2 (number of channels=2)                  (b) mvMSEσ

2 (number of channels=5) 

 

      

           (c) RCmvMSEσ
2 (number of channels=2)           (d) RCmvMSEσ

2 (number of channels=5) 

                               

       

        (e) mvMFEσ
2 (number of channels=2)                  (f) mvMFEσ

2 (number of channels=5) 
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         (g) RCmvMFEσ
2 (number of channels=2)           (h) RCmvMFEσ

2 (number of channels=5) 

 

Figure 5. Mean value and SD of results of the (a) mvMSEσ
2 (number of channels=2), (b) 

mvMSEσ
2 (number of channels=5), (c) RCmvMSEσ

2 (number of channels=2), (d) RCmvMSEσ
2 

(number of channels=5), (e) mvMFEσ
2 (number of channels=2), (f) mvMFEσ

2, (number of 

channels=5), (g) RCmvMFEσ
2 (number of channels=2), (h) RCmvMFEσ

2, (number of 

channels=5) computed from 40 different multichannel WGN and 1/f noise times series. Red and 

blue indicate 1/f and WGN results, respectively. 

 

Table 1: The CV values of the proposed and existing multivariate multiscale entropy-based 

results to compare the normalized SD values at the scale factor 60. 

Methods 2-channel time series 5-channel time series 

mvMSEµ  0.1116 0.2272 

RCmvMSEµ 0.0719 0.1612 

mvMFEµ 0.0584 0.0961 



24 

 

RCmvMFEµ 0.0392 0.0778 

mvMSEσ
2 0.1826 0.1907 

RCmvMSEσ
2 0.0575 0.1019 

mvMFEσ
2 0.939 0.0966 

RCmvMFEσ
2 0.0522 0.0480 

 

 

Table 2 demonstrates that the running time values of the proposed and conventional methods for 

2- and 5-cahnnel signals with the length 1000, 3000, and 10000 sample points. In this paper, the 

simulations have been carried out using a PC with Intel (R) Xeon (R) CPU, E5420, 2.5 GHz and 

8-GB RAM by MATLAB R2010a. mvMSEµ is about 3 times faster than the RCmvMSEµ for 

either 2- or 5-channel time series with different sample points. The running time of the existing 

mvMFEµ [15] is around three and six times more than that of the proposed mvMFEµ with 

C=1000 and C=10000, respectively. This shows the far superiority of the mvMFEµ in terms of 

calculation time. The proposed mvMFEµ is comparatively as fast as mvMSEµ and therefore, the 

running time of RCmvMFEµ is near to that of RCmvMSEµ. Since the multivariate multiscale 

entropy algorithms based on variance starts from scale factor 2, the running time of this kind of 

methods is noticeably smaller than that of the multivariate multiscale entropy algorithms that use 

mean in their coarse-graining process. For variance-based multivariate multiscale algorithms, 

like the average-based ones, the running time values of the mvMSEσ
2 and mvMFEσ

2 are 

relatively equal. 
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Table 2: The computation time of the multivariate multiscale entropy-based proposed and 

existing methods with βmax=10. 

Methods 

1000 sample 

points          

(2 channels) 

1000 sample 

points         (5 

channels) 

3000 sample 

points (2 

channels) 

3000 sample 

points (5 

channels) 

10000 sample 

points (2 channels) 

10000 sample 

points (5 

channels) 

mvMSEµ  0.271 s 1.146 s 1.274 s 7.051 s 8.281 s 54.108 s 

RCmvMSEµ 0.982 s 3.316 s 3.807 s 16.71 s 22.18 s 124.251 s 

mvMFEµ [15] 0.753 s 3.846 s 4.459 s 28.28 s 50.65 s 269.160 s 

Proposed mvMFEµ 0.278 s 1.148 s 1.238 s 6.812 s 7.612 s 49.214 s 

RCmvMFEµ 1.001 s 3.329 s 3.796 s 16.21 s 18.147 s 105.16 s 

mvMSEσ
2 0.071 s 0.393 s 0.391 s 2.34 s 3.32 s 19.41 s 

RCmvMSEσ
2 0.306 s 1.564 s 1.481 s 9.512 s 12.301 s 67.421 s 

mvMFEσ
2 0.071 s 0.352 s 0.362 s 2.173 s 2.881 s 18.473 s 

RCmvMFEσ
2 0.310 s 1.546 s 1.451 s 8.691 s 9.26 s 60.365 s 

 

To evaluate the sensitivity of mvMSEµ and the proposed method RCmvMFEµ to the signal 

length, we consider 3-channel WGN and 1/f noise signals as functions of sample points size C, 

where m=2. Figures 6(a) to (F) show the mvMSEµ values for the signal length 100, 300, 1000, 

3000, 10000, and 30000, respectively, computed from 40 different multichannel WGN and 1/f 

noise times series. The corresponding RCmvMFEµ results are depicted in Figure 7. The results 
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show the greater the value of C, the more robust the both mvMSEµ and RCmvMFEµ estimates, as 

seen from the error bars. As expected theoretically [13], for each C, 1/f noise is more complex 

than WGN using both of the methods.  

It has been recommended that the number of sample points is at least 10m, or preferably at least 

30m, to robustly estimate ApEn or SampEn in univariate signals [44]. Because the coarse-

graining step decreases the signal length by the scale factor β, and here we have βmax=10 and 

m=2, the original signal should have at least 1000 sample points. Moreover, in mvMSE, the 

number of instances where [ ( ), ( )] ,    m md X i X j r j i  is counted. In case the signal length is 

too small, this number may be 0, leading to an undefined entropy value. Based on this fact, the 

results obtained by mvMSEµ for C=100 and 300, respectively shown in Figures 6(a) and (b), are 

not defined. In contrast, the fuzzy entropy-based methods do not count matches, but consider all 

possible range of distances between any two composite delay vectors ( )mX i  and ( )mX j . Thus, 

mvMFE avoids resulting in undefined entropy values in such situations.  

We now consider the case of RCmvMFEµ/RCmvMSEµ at scale factor β. Although the length of 

the signal decreases β times, we now consider β time coarse-grained time series, instead of only 

one time series as in existing multivariate multiscale entropy-based methods. Thus, in refined 

composite-based methods, we have β times more comparison than the number of instances in 

mvMFEµ/mvMSEµ, leading to more reliable results, especially for short signals. In fact, in the 

refined composite-based techniques, the effect of the shorter coarse grained sequences would 

tend to cancel out. All in all, using the fuzzy membership function and/or refined composite 

technique cause the RCmvMFEµ to be more reliable for short signals. The results obtained by the 

RCmvMFEµ
 have considerably smaller SD than those obtained by mvMSEµ. This shows the 

superiority of RCmvMFEµ over mvMSEµ. It is worth noting that the results obtained by 
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mvMSEσ
2 and RCmvMFEσ

2 are similar to Figures 6 and 7, although like the abovementioned 

results obtained by multivariate entropy methods based on the variance, the crossing points are 

different.   

The number of embedding vectors for multivariate- and univariate-based methods are equal. 

Given that in multivariate/univariate entropy methods, we consider the Euclidean difference 

between pairs of embedding vectors, the number of matches is similar to that obtained by its 

univariate methods. Based on this fact and the experimental study on different signals, Ahmed 

and Mandic recommended that multivariate signals should have 100 or preferably 300 sample 

points, regardless of their number of channels [21, 24, 29]. Note that, although the number of 

samples for each of these vectors for multivariate methods is p times larger than that for 

SampEn/FuzEn, this is not as much of a problem in Fuzzy approaches, but the phenomenon may 

still occur. 

 

     

                          (a)                                             (b)                                               (c)            
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                        (d)                                                (e)                                                 (f)            

Figure 6. mvMSEµ as a function of data length C, (a) C=100, (b) C=300, (c) C=1000, (d) 

C=3000, (e) C=10000, and (f) C=30000 computed from 40 different multichannel WGN and 1/f 

noise times series. Red and blue indicate 1/f and WGN results, respectively. 

      

                         (a)                                               (b)                                              (c)            

    
                        (d)                                              (e)                                                 (f)            

Figure 7. RCmvMFEµ as a function of data length C, (a) C=100, (b) C=300, (c) C=1000, (d) 



29 

 

C=3000, (e) C=10000, and (f) C=30000 computed from 40 different multichannel WGN and 1/f 

noise times series. Red and blue indicate 1/f and WGN results, respectively. 

 

Correlated noise has more structural complexity in comparison with uncorrelated noise and 

shows relatively higher regularity because the majority of entropy-based approaches fail to take 

into account the multiple temporal and spatial scales of the system [13, 37]. To this end, Costa et 

al. introduced multiscale entropy to measure the entropy values in different time scales [14]. As 

mentioned earlier, MSE- and MFE-based algorithms consider the long-term correlations within a 

univariate signal, but because of their univariate nature, they cannot model the cross-channel 

information existing in multivariate time series. In contrast, mvMSE and mvMFE are designed 

for multivariate time series. To show this fact, we created different combinations of bivariate 

WGN and 1/f noise signals (according to [21]), making the channels correlated. A brief algorithm 

to create uncorrelated noise signals was described in Section 3. Figures 8(a), (b), (c), and (d) 

respectively depict the ability of mvMSEµ, RCmvMFEµ, mvMSEσ
2, and RCmvMFEσ

2 to model 

both the within- and cross-channel properties in multivariate time series. As can be seen in 

Figure 8, the correlated bivariate 1/f noise is more complex at high scale factors using all four 

approaches, followed by the uncorrelated 1/f noise, and correlated and uncorrelated WGN, 

although the ordering of the entropy values are different in small scale factors. Thus, as desired, 

all mentioned multivariate multiscale entropy-based methods tackle both the cross- and within-

channel correlations. This fact is also in agreement with the results reported in [29]. Here, we 

chose 
1 0.95

0.95 1

 
  
 

R , according to [21] . It is worth noting that, if we change R to make the 

signals less correlated (e.g., 
1 0.65

0.65 1

 
  
 

R ), the entropy values decrease, as expected. We 
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consider the mvMSEµ and RCmvMFEµ curves until the scale factor 60, because the ordering of 

curves do not change after this scale factor. Another important point about Figure 8 is 

demonstrating the importance of refined composite technique and fuzzy-based entropy to 

improve the stability of the results.   

 

   

                               (a) mvMSEµ                                                         (b) RCmvMFEµ 

 

   

                              (c) mvMSEσ
2                                                    (d) RCmvMFEσ

2 
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Figure 8. Mean value and SD of results of the (a) mvMSEµ, (b) RCmvMFEµ, (c) mvMSEσ
2, and 

(d) RCmvMFEσ
2 computed from 40 different bivariate WGN and 1/f time series, each has 40000 

sample points.  

 

4.2. Real Signals 

We evaluate the suitability of the RCmvMFEµ and RCmvMFEσ
2 approaches to characterize the 

focal and non-focal EEG signals. We averaged the results over patients for each of two groups. 

The error bars demonstrating the SD and mean of the RCmvMFEµ and RCmvMFEσ
2 values 

computed from focal and non-focal bivariate EEG time series are depicted in Figures 9(a) and 

(b), respectively. The average entropy of non-focal EEG time series is larger than that of focal 

ones at scale factors 1 to 23 and all scale factors for the RCmvMFEµ and RCmvMFEσ
2, 

respectively. This demonstrates that the focal EEG signals are generally less complex than the 

non-focal ones, something that is in agreement with [38] and [39].  

A student’s t-test was also run for focal vs. non-focal signals. We adjusted the false discovery 

rate (FDR) [45] independently for each multivariate measure. The significance level of p-value 

tests was 0.05 for the EEG signals. The results demonstrate that the RCmvMFEσ
2 approach 

achieves significant differences at all scale factors while the RCmvMFEµ algorithm yields 

significant differences at scale factors between 1 and 20.  

Using the RCmvMFEσ
2 and RCmvMFEµ values, we also employ a support vector machine 

(SVM) with linear kernel [46] to classify the focal and non-focal subjects in the WEKA data 

mining software [47]. We ran 100 repetitions of a 5-fold cross-validation applying at the subject 

level. The average classification accuracies were 96% and 100% for RCmvMFEµ and 
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RCmvMFEσ
2, respectively. The classification accuracy rates using mvMSEµ and mvMSEσ

2 were 

92% and 100%, respectively. Although both the mvMSEσ
2 and RCmvMFEσ

2 lead to 100% 

accuracy rate, RCmvMFEµ yields to higher accuracy in comparison with mvMSEµ. Note that the 

features were the values of entropy at each scale. To sum up, the refined composite-based 

techniques and/or variance-based coarse graining process has better performance to discriminate 

focal and no-focal signals. 

 

  
                                     (a)                                                                            (b) 

Figure 9. Error bars illustrating the mean ± SD of the (a) RCmvMFEµ and (b) RCmvMFEσ
2 

values computed from focal and non-focal EEG signals.  

 

We also apply the RCmvMFEµ and RCmvMFEσ
2 methods to the trivariate Fantasia time series to 

simultaneously analyze the complexity of continuous ECG, respiration, and blood pressure 

signals. The presence of long-range correlations in the ECG and respiration signals was earlier 

established using detrended fluctuation analysis [40, 48]. The univariate MSE method was 

applied separately to each of continuous electrocardiographic (ECG) and respiration signals [21]. 
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The results showed that a lack of long-term correlations in both cardiac and respiratory 

dynamics, demonstrating the univariate MSE method was not able to produce robust estimates. 

Thus, we employ multivariate entropy-based methods. The error bars illustrating the 

distributions of the RCmvMFEµ and RCmvMFEσ
2 values computed from young and old subjects 

are shown in Figure 10. For each scale factor, the average of entropy values for young people are 

larger than that for elderly subjects using both RCmvMFEµ and RCmvMFEσ
2. For Fantasia 

database, our results are in agreement with those obtained by the other entropy-based approaches 

[21, 49, 50]. In addition, a t-test was performed for the young and old groups. The significance 

level of p-value tests was 0.05. We adjusted the FDR independently for each of RCmvMFEµ and 

RCmvMFEσ
2. The results show the RCmvMFEσ

2 method achieves significant differences at 

scale factors 7 to 20 whereas the RCmvMFEµ algorithm does not yield significant differences at 

scale factors between 1 and 20. This demonstrates a better performance of the RCmvMFEσ
2 

algorithm over the RCmvMFEµ approach for the distinction of young and old subjects. We also 

applied the same classification scheme to discriminate the young and old groups. The average 

classification accuracies were 65% and 75% for RCmvMFEµ and RCmvMFEσ
2, respectively. 

This shows the importance of variance in coarse-graining process. The results obtained by the 

fuzzy membership function used in this paper are similar to those achieved by the function 

proposed in [15] but the proposed fuzzy membership function leads to a considerably faster 

method. 
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                                       (a)                                                                         (b) 

Figure 10. Error bars illustrating the mean ± SD of the (a) RCmvMFEµ and (b) RCmvMFEσ
2 

values computed from young and old subjects (Fantasia database). 

 

In future work, we will investigate the suitability of RCmvMFEσ
2 and RCmvMFEµ methods to 

characterize other physiological time series to characterize Alzheimer’s and Parkinson’s 

diseases.  Moreover, we intend to consider higher moments (e.g. the third moment or skewness) 

in the coarse-graining step of multivariate multiscale entropy-based methods.  

 

5. Conclusions 

This paper introduces RCmvMFEσ
2 and RCmvMFEµ to characterize the complexity of 

multivariate signals over multiple temporal scales that suits to consider the long-range within- 

and cross-channel correlations. These techniques are able to incorporate the simultaneous 

analysis of multichannel time series as a unique block within a multiscale framework. Extension 

of the MSEσ
2 to multichannel time series has led to generalize the conventional mvMSEµ to a 

family of statistics by using a different moment, i.e. variance, in the coarse-graining step. The 
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introduced fuzzy membership function has significantly decreased the running time in 

comparison with the existing mvMFEµ while increasing the stability of the results. The proposed 

refined composite technique for multivariate time series has also led to improve the stability of 

the results for noise signals, especially in high temporal scales. The (RC)mvMFEσ
2 and 

(RC)mvMFEµ methods extract different kinds of dynamical properties (or features) of spread and 

mean, respectively, over multiple time scales. Based on this fact, which has been supported by 

the classification results, we conclude that both the (RC)mvMFEσ
2 and (RC)mvMFEµ offer 

complementary complexity profiles in signal analysis.  

 

Appendix 

The codes for our analysis, including mvSE, mvFE, mvMSEµ, mvMFEµ, RCmvMSEµ, 

RCmvMFEµ, mvMSEσ
2, mvMFEσ

2, RCmvMSEσ
2, and RCmvMFEσ

2 are available online at 

http://dx.doi.org/10.7488/ds/1432. 
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