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[1] We test the response of the Oxford‐RAL Aerosol and Cloud (ORAC) retrieval
algorithm for Meteosat Second Generation Spinning Enhanced Visible and InfraRed
Imager (MSG SEVIRI) to changes in the aerosol properties used in the dust aerosol model,
using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in
August 2006. We find that using the observed DODO free tropospheric aerosol size
distribution and refractive index increases simulated top of the atmosphere radiance at
0.55 mm assuming a fixed aerosol optical depth of 0.5 by 10–15%, reaching a maximum
difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical
distribution of the aerosol and find that this is unimportant in determining simulated
radiance at 0.55 mm. We also test the ability of the ORAC retrieval when used to produce
the GlobAerosol data set to correctly identify continental aerosol outflow from the African
continent, and we find that it poorly constrains aerosol speciation. We develop spatially
and temporally resolved prior distributions of aerosols to inform the retrieval which
incorporates five aerosol models: desert dust, maritime, biomass burning, urban, and
continental. We use a Saharan Dust Index and the GEOS‐Chem chemistry transport model
to describe dust and biomass burning aerosol outflow and compare AOD using our
speciation against the GlobAerosol retrieval during January and July 2006. We find AOD
discrepancies of 0.2–1 over regions of intense biomass burning outflow, where AOD from
our aerosol speciation and GlobAerosol speciation can differ by as much as 50–70%.

Citation: Bulgin, C. E., et al. (2011), Quantifying the response of the ORAC aerosol optical depth retrieval for MSG SEVIRI to
aerosol model assumptions, J. Geophys. Res., 116, D05208, doi:10.1029/2010JD014483.

1. Introduction

[2] The magnitude and distribution of radiative forcing
from aerosols represents one of the largest uncertainties in
understanding Earth’s climate [Intergovernmental Panel
on Climate Change (IPCC ), 2007]. Aerosols affect climate
directly by scattering and absorbing solar radiation, and
indirectly bymodifying cloudmicrophysical properties. They
have a diverse range of natural and anthropogenic sources
including desert dust, sea salt, and incomplete fuel com-
bustion leading to different optical properties for each aerosol
type. The atmospheric lifetime of these aerosols, determined
by size (gravitational settling and uplift size distribution),
hygroscopicity (rainout and washout), chemical reactivity
(heterogenous chemistry), and meteorology, is of the order of

several days. The resulting large spatial and temporal varia-
tions in the loading and chemical composition of aerosols are
sampled only sparsely by surface and aircraft measurements
but are of significant climatic importance. We focus here on
aerosol observed by the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI), dominated by dust and biomass
burning outflow from the African continent. These aerosols
have direct and indirect effects on climate, altering the
radiative balance and cloud properties which can lead to a
reduction in precipitation and sea surface temperature [Huang
et al., 2009; Foltz and McPhaden, 2008]. Dust deposited
over the ocean can also stimulate phytoplankton production
[Mills et al., 2004]. Satellite observations provide global
measurements of aerosol optical properties (e.g., aerosol
optical depth) which are invaluable for improving global
quantitative understanding of aerosols and their climate
impacts. However, current instruments do not provide
enough information to fully constrain aerosol properties eg.
size and absorption capability and thus aerosol retrievals rely
heavily on a priori assumptions [Kokhanovsky et al., 2010].
[3] Aerosol optical properties are retrieved from satellites

by fitting simulated radiances to observed radiances. Sim-
ulated radiances are determined using a radiative transfer
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model that makes prior assumptions about the surface and
atmospheric state (e.g., surface reflectance, aerosol types
and associated size distributions). We examine aerosol opti-
cal depths (AODs) retrieved from SEVIRI aboard the geo-
stationary Meteosat Second Generation‐2 (MSG‐2) satellite
centered over Africa. We retrieve AOD using the Oxford‐
Ral Aerosol and Cloud (ORAC) optimal estimation scheme
(described in section 2), and use these data to understand
continental outflow of aerosols over the Atlantic. In recog-
nition of the fact that the assumed aerosol type will affect
the retrieved AOD, the ORAC scheme performs retrievals
for each scene for a range of different aerosol types. To
assign a “best type” a number of type‐specific quality control
measures are applied including the quality of fit to the
observed radiance (i.e., the cost function). However it was
recognized that the skill of this method in distinguishing
aerosol type (especially those with similar optical properties)
would be limited. Here, we develop a temporally and spa-
tially resolved speciation to inform the ORAC retrieval.
[4] The results we present are split into two complementary

sections: (1) in section 3 we use detailed aircraft observations
to evaluate the aerosol size distribution shape, refractive
index, and aerosol vertical distribution assumed by ORAC in
Saharan dust outflow over the Atlantic and quantify the
impact of these assumptions and solar geometry on the
simulated radiance and resulting AOD retrievals; and (2) in
section 4 we develop a new seasonal aerosol speciation
using the brightness temperatures from SEVIRI to provide
information about dust, and output from a chemistry trans-
port model to provide information on the transport of bio-
mass burning aerosol outflow. We quantify the impact of
these new speciation distributions on retrieved AOD in
section 5 and conclude the paper in section 6.

2. SEVIRI Instrument and Algorithm Description

2.1. SEVIRI

[5] SEVIRI aboard the MSG‐2 satellite was launched at
the end of 2005 in an equatorial geostationary orbit centered
over Africa and makes observations every 15 min. SEVIRI
measures reflected solar and infrared radiation in eleven
spectral channels centered near 0.6, 0.8, 1.6, 3.9, 6.2, 7.3,
8.7, 9.7, 10.8, 12, and 13.4 mm, with a spatial resolution of
3 × 3 km in the nadir which gets coarser with distance from
the nadir [Schmetz et al., 2002]. SEVIRI also has a broad-
band high‐resolution visible channel covering the 0.6 and
0.8 mm spectral bands giving data with a spatial resolution
of 1 × 1 km in the nadir.

2.2. The ORAC Retrieval Scheme

[6] ORAC retrieves AOD, aerosol effective radius and
surface albedo using the 0.6, 0.8 and 1.6 mm SEVIRI
radiances. It uses an optimal estimation approach, varying all
retrieved parameters simultaneously (aerosol optical depth,
aerosol effective radius and surface reflectance), to calculate
the retrieved state with the maximum probability, whilst
accounting for both measurements and a priori data and
uncertainties in both [Rodgers, 2000]. It uses the DIScrete
Ordinances Radiative Transfer model (DISORT) [Stammes
et al., 1988] to calculate top of the atmosphere (TOA) radi-
ance as a function of the properties of a plane parallel
aerosol or cloud layer with an assumed height distribution.

The retrieval scheme was originally developed for clouds
[Watts et al., 1998] and applied to data from the Along
Track Scanning Radiometer (ATSR), and later extended to
aerosol retrievals from ATSR [Marsh et al., 2004] and other
instruments. A full description of the ORAC retrieval
scheme is provided by Thomas et al. [2009a].
[7] The ORAC forward model, F, consists of four sepa-

rate elements: (1) a model of aerosol scattering and
absorption; (2) a model of atmospheric gas absorption; (3) a
model of atmospheric radiative transfer; and (4) a model
of surface reflectance [Thomas et al., 2007], which uses
aerosol optical properties calculated offline to interpret the
observed radiances. The optical properties used in the
aerosol model (aerosol phase function, extinction and scat-
tering coefficients) are calculated using Mie theory from
prior information about aerosol size distributions and
refractive indices from observations and modeling studies
[Hess et al., 1998; Dubovik et al., 2002]. These properties
are calculated as a function of aerosol effective radius,
ranging between 0.01 and 10 mm, by varying the mixing
ratio of the different components within each aerosol type.
These are collected together within the model in a series of
look‐up tables (LUTs) describing atmospheric transmission
and reflectance, for radiance and AOD calculations.
[8] The forward model is fitted to the observed radiances

by minimizing a cost function J(x) which describes the
quality of fit between the observed radiances (the measure-
ment vector y) and modeled radiances, the state vector x and
the a priori state vector xa,

J xð Þ ¼ F xð Þ � yð ÞS�1
y F xð Þ � yð ÞTþ x� xað ÞS�1

a x� xað ÞT; ð1Þ

where Sy and Sa are the error covariance matrices for the
measurement vector and the a priori state vector, respec-
tively. A priori and measurement errors are assumed to be
normally distributed with zero mean, and variance deter-
mined by measurement and forward model noise (Sy) and
a priori error (Sa) [Thomas et al., 2007]. ORAC uses the
Levenberg‐Marquardt algorithm to minimize the cost func-
tion and subsequently identify the state vector that is most
consistent with xa, y, Sy, and Sa [Thomas et al., 2009a]. The
problem is moderately nonlinear with the number of required
iterations generally below the upper limit of 25, a number
indicative of a failed retrieval [Thomas et al., 2009b].
[9] We limit our analysis of AOD to ocean scenes where

low surface albedo at wavelengths of interest make it easier
to separate surface reflectance from the aerosol signal in the
retrieval and we use a fixed spectral shape to describe ocean
reflectance [Thomas et al., 2005]. Cloudy scenes are removed
prior to fitting using the EUMETSAT cloud mask derived
using reflectance, temperature, snow and ice tests at the
full SEVIRI spatial resolution [Thomas et al., 2005], and a
spatial coherence test is used to remove spatially isolated
high AOD under the assumption that this is cloud.
[10] The ORAC scheme uses five aerosol models: conti-

nental, urban, maritime, desert dust and biomass burning.
Each model is constructed from a number of lognormally
distributed aerosol components with different modal radii
and spread. The mixing ratios of each component of the
aerosol a priori are varied to allow aerosol effective radius to
range between 0.01 and 10 mm in the retrieval. Desert dust,
maritime, urban and continental aerosol are defined using
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refractive index and component size distribution data from
the Optical Properties of Aerosols and Clouds (OPAC)
package [Hess et al., 1998]. For biomass burning aerosol,
these properties are defined from three years of in situ data
from the AErosol RObotic NETwork (AERONET) [Dubovik
et al., 2002].
[11] The retrieval assumes spherical particles for all

aerosol classes and aerosol optical properties are derived
using Mie theory. Previous research has shown that this
assumption is unlikely to be correct for dust particles eg.
[Otto et al., 2009; Zhao et al., 2003], although dust particle
shape is at present poorly constrained and the information
content of current retrievals is often insufficient to distin-
guish between spherical and nonspherical particles [Wang
et al., 2003]. The assumption of spherical dust particles
was used in the GlobAerosol product (section 2.3) and
provides consistency with the derivation of aerosol optical
properties from DODO measurements. It is also used in
most other well‐known aerosol retrieval schemes for instru-
ments such as the Moderate Resolution Imaging Spectro-
radiometer (MODIS) [Remer et al., 2006], with the exception
of the Multiangle Imaging SpectroRadiometer (MISR) which
has the ability to resolve scattering at multiple angles [Diner
et al., 2008].

2.3. GlobAerosol Data Product

[12] GlobAerosol was a project to develop a merged global
AOD data set between 1995 and 2007 using instruments on
a number of European satellite platforms; ATSR‐2, the
Advanced Along Track Scanning Radiometer (AATSR), the
Medium Resolution Imaging Spectrometer (MERIS) and
SEVIRI. The SEVIRI AOD is derived using the ORAC
retrieval algorithm on a 10 × 10 km sinusoidal grid.
GlobAerosol uses the retrieved aerosol optical properties for
each of the five aerosol models included in the ORAC
retrieval because there is not sufficient information in the
retrieval to unambiguously identify aerosol type. The “best”
retrieved aerosol type is determined by the smallest retrieval
cost following quality control, as defined above. Costs for
different aerosol classes can be similar thereby compro-
mising this approach.
[13] In section 3 we test the sensitivity of the retrieval to

the defined aerosol a priori, a requirement for evaluating the
robustness of long‐term data sets used to define aerosol
radiative forcing. Other well‐known retrieval schemes for
instruments including MODIS and MISR take a similar
approach to ORAC using predefined aerosol models and
prior climatological probabilities [Diner et al., 1999, 2008]
or a mixture of coarse and fine mode particles [Remer et al.,
2006] to model retrieved radiance. Our work therefore has a
wider application beyond the ORAC scheme to many sat-
ellite retrieval schemes.

3. Sensitivity of ORAC Scheme to the a Priori
Optical Properties, Vertical Distribution
of Aerosols, and the Viewing Geometry

[14] The purpose of this section is to test the robustness of
the assumptions about dust aerosol used in the ORAC
scheme, including size distribution, refractive index, phase
function and vertical distribution; and how sensitive the

simulated radiance is to changing these assumptions. Pre-
vious studies have highlighted the importance of particle
size distribution and refractive index to simulated top of
the atmosphere (TOA) radiance and retrieved aerosol optical
depth [Liao and Seinfeld, 1998; Durant et al., 2009;
Martonchick et al., 2002]. Retrieval sensitivity to these
parameters is dependent on the aerosol model assumption
used and needs to be evaluated independently for any
algorithm from which aerosol forcing is to be calculated. We
achieve this for the ORAC scheme using relatively sparse
but detailed data from the Dust Outflow and Deposition to
the Ocean (DODO) aircraft campaign described below. We
also assess the sensitivity of the retrieved AOD to the
viewing geometry, and compare the DODO AOD and
aerosol effective radius with data from the retrieval.

3.1. Description of the DODO Aircraft Campaign Data

[15] The DODO aircraft campaign took place overWestern
Africa and the Eastern tropical Atlantic during February
and August 2006 with the aim of quantifying iron deposition
to the ocean, and was affiliated with the African Monsoon
Multidisciplinary Analysis (AMMA) project [McConnell
et al., 2008; Rajot et al., 2008]. We use data collected
during August 2006 when the FAAM BAe146 aircraft was
based in Dakar, Senegal, making in situ and remote airborne
measurements of dust aerosol. Aerosol size distribution was
measured using the Passive Cavity Aerosol Spectrometer
Probe (PCASP) and the Cloud Droplet Probe (CDP) and we
refer the reader elsewhere for a more detailed description of
the data collection [McConnell et al., 2008].
[16] We use DODO aircraft measurements of aerosol

properties averaged across horizontal flight paths (referred
to as “runs” abbreviated to “R”) covering between 30 and
200 km, or as vertical profile data (abbreviated to “P”)
extending from ∼50 m to a maximum altitude of 6 km,
above which aerosol concentrations were negligible. Data
from the PCASP and CDP instruments together provide
aerosol size distributions at 0.55 mm over the 0.05–20 mm
radius size interval in both the horizontal runs and vertical
profiles. We also use refractive indices from DODO, inferred
from Mie scattering calculations, which are only available at
0.55 mm [McConnell et al., 2008, 2010]. We use the size
distributions and refractive indices in offline Mie scattering
calculations to generate aerosol optical properties including
aerosol effective radii, phase function and extinction coef-
ficients from both the horizontal run and vertical profile
data.
[17] For this paper, we use data from three flying days

during the DODO campaign and focus first on the horizontal
run data. Flights are labeled with a prefix “b” and a flight
number. We use data from flight b237 (22 August 2006) runs
R1, R3, R4, R5, R6, R7; flight b239 (24 August 2006) runs
R1, R2‐4, R5, R6; and flight b241 (25 August, 2006) R2.
All flights sampled free tropospheric aerosol between 800
and 500 hPa, with the exception of flight b237 runs R4 and
R5, which sampled boundary layer aerosol at approximately
1000 hPa. From this point on we will distinguish between
the free troposphere (FT) and the boundary layer (BL) data.
Further details of the flight tracks are given by McConnell
et al. [2008].
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3.2. Aerosol Size and Mass Distribution

[18] Figure 1a shows observed FT and BL aerosol size
distributions, and Figure 1b shows mass distributions calcu-
lated assuming a dust density of 2.65 g cm−3 [Tegen and
Fung, 1995], on 22 August 2006 during DODO. The aero-
sol modal radii in the FT is <0.1 mm, above which number
concentration decreases with increasing aerosol radius. BL
number concentrations of fine mode aerosol (<0.1 mm radius)
are 5 times larger than those in free tropospheric air; there
are also more large particles (2.5–4 mm radius) present in the
BL although total aerosol number concentrations are greater
in the FT. Figure 1b shows that BL aerosol mass distribution
peaks below 0.2 mm radius and between 2 and 5.5 mm
radius; in contrast, most of the FT aerosol mass is between
0.2 and 2 mm radius. Coarse mode aerosol (>1 mm radius) is
lost from the FT due to gravitational settling. Observed
variations in aerosol distribution may also reflect different
source regions. Ten day back trajectories from the location
of the DODO flights using the NOAA HYSPLIT model
(R. R. Draxler and G. D. Rolph, HYSPLIT (HYbrid Single‐
Particle Lagrangian Integrated Trajectory) model, 2010, http://
ready.arl.noaa.gov/HYSPLIT.php) (not shown), and 5 day

back trajectories using the NAME model [McConnell et al.,
2010] indicate that sampled air masses over the Atlantic
have a range of potential geographical sources including
Libya, Algeria, Mauritania and the western Sahara.
[19] Figure 1c compares typical observed DODO and

ORAC aerosol model size distributions in the FT and BL
matched on the basis of the DODO aerosol number con-
centration and effective radius. Effective radius is not fixed
in the retrieval; however the lognormal distribution n(r) for
each of the components in the assumed aerosol model is
defined as

n rð Þ ¼ N0ffiffiffiffiffiffi
2�

p 1

ln sð Þ
1

r
exp � ln rð Þ � ln rmð Þð Þ2

2ln2 sð Þ

" #
; ð2Þ

where N0 is the total number concentration, rm the median
radius of the aerosol, and s is the spread of the distribution.
We find that the observed DODO number distributions at
radii >0.05 mm, based on data from a FT and a BL flight, are
greater than the ORAC aerosol models. The ORAC dust and
maritime aerosol size distributions are similar, whilst the
biomass burning aerosol is characterized by fewer fine mode

Figure 1. Observed (a) aerosol number (cm−3) and (b) mass distributions (mg mm−1 cm−3) as a function
of aerosol radius (mm) for DODO flight b237, 22 August 2006, and (c) observed aerosol size distributions
for typical boundary layer and free troposphere conditions during DODO, with the corresponding OPAC
model values for dust (red), maritime (blue), and biomass burning (green) aerosol. OPAC aerosol model
data are matched to the DODO data using the DODO aerosol effective radii and number distribution.
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particles (<0.045 mm) and higher number concentrations
between 0.045 and 0.3 mm radius. We acknowledge that the
lower detection limit of 0.05 mm radius in the DODO data
may bias these comparisons as they are based on the total
aerosol number concentration.

3.3. Scattering Phase Functions

[20] Figure 2 compares aerosol phase functions calculated
using the DODO size distributions and refractive index, and
the ORAC dust model, matched using the DODO aerosol
effective radius. They have been compared for aerosol
effective radii from two flights indicative of FT and BL data
at 0.55 mm. We accept that FT and BL aerosol properties
cannot be distinguished between in the retrieval and only
column values can be determined, but separating these data
here gives a range of observed size distributions to test
retrieval sensitivity. In the FT, ORAC and DODO phase
functions are almost identical except at near‐backscattering
angles (160°–180°) where DODO data shows a double peak
in scattered light intensity with a maximum difference in
magnitude of 0.3. The additional observed peaks in the phase
function may reflect the noisier distribution of aerosol par-
ticles with radii <0.1 mm than described by the ORAC dis-
tribution. DODO backscattered radiation intensity may also
be limited by the lower observation limit of 0.05 mm radius.
In the BL, a similar feature is seen a near‐backscattering
angles. DODO data also shows greater scattering between
50° and 100° with an absolute difference of 0.1, and a
sharper forward scattering peak observed between 0° and
8° compared with 0°–15° for the DODO data. We also find
that the DODO observations have a significantly higher
single scattering albedo (0.94–0.98) than the ORAC model
(0.87–0.89) which is taken from OPAC [Hess et al., 1998].

We recalculate the phase function using the DODO size
distribution and the ORAC complex refractive index (not
shown). For both distributions the real part of the refractive
index is the same with a value of 1.53. We find that the
discrepancy in the single scattering albedo can be attrib-
uted to the much lower DODO imaginary refractive index
(0.0018(R3), 0.0003(R4)) compared to 0.0055 in the ORAC
model. In the retrieval the dust aerosol is assumed to be
more absorbing than the dust sampled during DODO and
other aircraft campaigns [McConnell et al., 2008; Osborne
et al., 2007].

3.4. Viewing Geometry

[21] Observed aerosol radiances are influenced by the Sun
instrument geometry because the aerosol phase function is
dependent on the angle of observation. Here we use the
ORAC forward model (section 2.2) to test the sensitivity of
the simulated radiance to scattering angle as a function of
solar zenith angle (SZA). Figures 3 and 4 show TOA model
radiances simulated using DODO observations and the
ORAC dust aerosol model between 0800 and 1745 local
time (LT). We match the ORAC aerosol effective radius to
the observed DODO effective radius and assume a fixed
aerosol optical depth of 0.5. We compare the difference in
simulated TOA radiance between the ORAC and DODO
models using the DODO size distribution and DODO
refractive index (Figure 3), and the DODO size distribution
with the ORAC refractive index (Figure 4). Radiances are
calculated in a pseudo 0.55 mm channel, generated to match
DODO observations with the ORAC model, as SEVIRI
does not make observations at this wavelength. Profiles of
atmospheric temperature, water vapor and ozone for each
retrieval are taken from the European Centre for Medium‐

Figure 2. Phase functions at 0.55 mm derived from DODO observations (solid line) and ORAC dust
model (dashed line) phase functions on 22 August 2006, which is representative of the conditions found
for the boundary layer and the free troposphere during the DODO aircraft campaign. The model corre-
spondence to the data is determined by the observed aerosol effective radii. The single scattering albedo
is given for the DODO and ORAC data.
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range Weather Forecasting (ECMWF). In both cases, simu-
lated radiances peak between 1200 and 1400 LT at a scat-
tering angle of ∼150°, which is as expected given that the
phase function intensity peaks at near‐backward scattering
angles.
[22] Figure 3 shows that radiances simulated using the

DODO size distribution and refractive index are generally
larger than those derived using the ORAC dust model. In the
FT, the DODO observations are ∼10% higher than the
ORAC values before midday and after 1400, increasing to
∼15% between those times. In the BL, the bias is ∼25%
during the morning and afternoon, decreasing to ∼20%
when the Sun is overhead. FT phase function differences
between DODO and ORAC are most pronounced at near‐
backscattering angles. BL data shows greater scattering by
DODO aerosol between 100° and 150° as well as between
160° and 180° explaining the larger DODO radiances
throughout the day. We find that this difference in retrieved
radiance is sensitive to changes in AOD, increasing by
∼2–4% between an optical depth of 0.4 and 0.6. We
acknowledge that Mie code assuming spherical particles

may not define the dust phase function correctly and suggest
that variance in modeled radiance with SZA using this
regime should not be overinterpreted.
[23] From the comparison using the ORAC refractive

index with the DODO size distribution (Figure 4) we find
that the systematic high bias in the DODO simulated radi-
ance can be attributed to the lower imaginary refractive
index. When we use the ORAC refractive index we find that
TOA radiance is similar for both size distributions in the FT
data. Differences are less marked at high scattering angles as
we find that combining the ORAC refractive index with the
DODO size distribution data lowers the phase function at
near‐backscattering angles to values comparable with the
ORAC dust model (not shown). In the BL, the DODO
aerosol retains its larger scattering feature between 100° and
150° and flatter diurnal response to changes in SZA.
[24] We assess the sensitivity of the simulated radiances in

the retrieval to changes in the assumed vertical distribution
of aerosol by comparing the ORAC extinction coefficient
profile shape and the observed DODO extinction coefficient
profile. The ORAC dust profiles assume that most of the

Figure 3. (top) Forward model Sun normalized radiances
(sr−1) corresponding to DODO (solid line) and ORAC dust
(dashed line) a priori, matched by aerosol effective radius
and using DODO and ORAC refractive indices described
as a function of time of day, and (bottom) their percentage
difference. Radiances are shown for different flights and
for the free troposphere (FT) and the boundary layer (BL).
All calculations assume an aerosol optical depth of 0.5.

Figure 4. (top) Forward model Sun normalized radiances
(sr−1) corresponding to DODO (solid line) and ORAC dust
(dashed line) a priori, matched by aerosol effective radius
and using only ORAC refractive indices described as a func-
tion of time of day, and (bottom) their percentage difference.
Radiances are shown for different flights and for the free
troposphere (FT) and the boundary layer (BL). All calcula-
tions assume an aerosol optical depth of 0.5.
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dust aerosol is concentrated below 2 km altitude with a
linear decrease in aerosol burden between 2 and 3 km. In
dusty regions in summer months this is a poor assumption
as dust laden air from the BL is frequently lofted to 4–6 km
[Z. Liu et al., 2008; D. Liu et al., 2008]. When we test the
forward model using both vertical profiles we find a dif-
ference of <1% in simulated radiance at 0.55 mm. At other
wavelengths the vertical distribution of aerosol may be
more important, particularly in the 0.8 mm channel where
absorption by water vapor in the BL may enhance or
dampen the aerosol signal depending on the relative location
of the aerosol.

4. Development of Seasonal Information
to Constrain Aerosol Type

[25] We described previously the approach taken in the
ORAC retrieval for the GlobAerosol data set to determine
aerosol speciation (section 2.3). Without making assump-
tions about aerosol a priori it is not possible to infer aerosol
optical properties from current satellite retrievals. The work
we showed in section 3 clearly indicates that accurate details
of aerosol type and optical properties are critical to making
an informed interpretation of aerosol properties from mea-
sured radiance. Here we test the ability of the ORAC
retrieval to accurately classify aerosol type by choosing the
correct aerosol model given no prior information about
aerosol spatial distribution, i.e., using the retrieval cost
function to decide after applying quality control criteria to
each aerosol type. We use a Saharan Dust Index (SDI) and
the GEOS‐Chem chemistry transport model as tools to
describe distributions of dust and biomass burning aerosol
and assess the response of the retrieved AOD to the assumed
aerosol speciation. The three major aerosol types observed
across the SEVIRI field of view are marine aerosol over the
ocean, and dust and biomass burning emissions both over
the African continent and advected across the Atlantic. We
examine dust and biomass burning aerosol in turn below.

4.1. Desert Dust Aerosol

[26] Desert dust aerosol is a mixture of minerals lofted
into the atmosphere by the action of wind over arid regions
[Haywood and Boucher, 2000]. We use a Saharan Dust
Index (SDI), originally developed to identify aerosol con-
tamination in nighttime sea surface temperature retrievals
[Merchant et al., 2006], to determine dust distributions as a
function of season and time of day. The SDI is calculated at
the native SEVIRI spatial resolution of 3 × 3 km using data
supplied by EUMETSAT (EUropean organisation for the
exploitation of METeorological SATellites Unified Meteo-
rological Archive and Retrieval Facility (U‐MARF) online
ordering, 2009, http://archive.eumetsat.int/umarf/) (herein-
after EUMETSAT Web site, 2009).
[27] The SDI uses variance in 3D brightness temperature

difference space to indicate dust in satellite retrievals.
Nighttime SDI values are calculated through principal
component analysis (PCA) of brightness temperatures in
different channels (3.9–8.7 mm, 3.9–12 mm and 11–12 mm),
separating the variance caused by changing atmospheric
variables such as water vapor identified along PC1, from
variance induced by aerosol presence identified by PC2

[Merchant et al., 2006]. During the daytime this algorithm
has to be adapted because the 3.9 mm channel is contami-
nated by solar radiation. We do this by using a local
regression between daytime radiance in the three available
channels and nighttime SDI values. The regression coeffi-
cients for estimating SDI without this channel are found to
be valid over a length scale of ∼200 km and time scale of
∼1 day; beyond which they are decorrelated [Merchant,
2006]. To calculate SDI during the day we split the 0000 LT
SEVIRI nighttime image into 3364 boxes (∼192 × 192 km
resolution in the nadir) to generate these local regression
constants between observed brightness temperatures in the
8.7, 11 and 12 mm channels and the calculated nighttime
SDI for cloud‐free pixels. We interpolate this information to
the higher‐resolution retrieval grid (3 × 3 km in the nadir).
We perform the daytime SDI calculation using the local
regression constants from the 0000 LT nighttime SDI from
the preceding and succeeding days to generate two dis-
tributions. The SDI for any intervening hour is calculated
from these two distributions and is weighted according to
the time of day. The SDI is scaled for convenience to be
comparable to observed AOD so that dust is identified when
SDI is in the range 0.25–2.0. Further details of the SDI
derivation are provided by Merchant et al. [2006] and
Merchant [2006].
[28] We identify cloud‐free scenes using the EUMETSAT

cloudmask (EUMETSAT Web site, 2009). Optically thin
cirrus cloud or cloud edges incorrectly classified as aerosol
can result in erroneous SDI values. To reduce the cloud edge
error we extend the cloudmask one pixel in each direction.
To remove noisy scenes indicative of contamination due to
isolated subpixel or incorrectly classified cloud, we discard
scenes where the local standard deviation in the SDI over a
moving 3 × 3 pixel window, on the 3 × 3 km grid, exceeds
0.2 for nighttime values and 0.1 for daytime values, as
aerosol properties are coherent over relatively long spatial
scales in clear skies in comparison with clouds. The local
regression tends to dampen extreme values reducing data
noise, hence the lowered daytime threshold value for dis-
carding noisy scenes.
[29] We calculate the probability of dust aerosol as the

fraction of SEVIRI clear‐sky scenes where the calculated
SDI is between 0.25 and 2.0. For these calculations, we use
hourly SDI values between 0800 and 1600 LT every day
during 2006, which is limited by measurement availability
on only a few days. To reduce contamination from persistent
cloud we discard pixels where fewer than 20% of the total
scenes are clear. Figure 5 shows the seasonal probability of
dust aerosols during the morning (0800–1000), midday
(1100–1300), and afternoon (1400–1600). Figure 5 shows
that the SDI captures the seasonal variation in dust outflow
over the Atlantic, Mediterranean and Red sea, peaking in
JJA [Engelstaedter and Washington, 2007]. The data shows
that dust emissions migrate northward with the Intertropical
Convergence Zone from DJF to JJA. We also find persistent
dust emissions around the south west African coast likely
originating from the Namibian and Kalahari deserts. Our
analysis indicates that the flux of dust aerosols across the
Atlantic shows no diurnal dependence. High dust proba-
bilities in the polar regions are likely to be an artifact of the
high viewing zenith angle.
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Figure 5. The independent seasonal probability of (a) dust and (b) black carbon, during the morning
(0800–1000), midday (1100–1300), and afternoon (1400–1600) for 2006. The probability of dust aerosols
was determined by the SDI, and the probability of black carbon determined by the GEOS‐Chem
chemistry transport model. SDI is calculated at the native SEVIRI resolution of 3 × 3 km in the nadir.
GEOS‐Chem simulations are at 2 × 2.5° resolution.
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4.2. Biomass Burning Aerosol

[30] Biomass burning generates black carbon (BC), a
highly absorbing aerosol via incomplete combustion [e.g.,
Haywood and Boucher, 2000]. We use the BC tracer in the
GEOS‐Chem chemistry transport model (CTM, described in
Appendix A) to identify the distribution of biomass burning
aerosol, using model carbon monoxide (CO), another tracer
of incomplete combustion, to help evaluate BC transport
in the model. CO and BC are emitted primarily through
incomplete combustion processes and share many similar
sources, including biomass burning, and show similar dis-
tributions. First, we evaluate the global model CO using
column observations from the NASA Tropospheric Emis-
sion Spectrometer (TES). The model captures 45–81% of
monthly variation in CO observed by TES, with the exception
of JJA, where the correlation is <0.6. We include a more
detailed description of GEOS‐Chem, TES, and their com-
parison including evaluation of CO and BC distributions
and model performance in Appendix A.
[31] We calculate the probability of BC emissions using a

column optical depth threshold of 0.015 to identify BC
aerosol within the troposphere, accounting for aerosol
transport from the surface layer. We acknowledge that this
threshold may seem low for identifying enhanced aerosol
loading but is appropriate given the optical depth output
from the model. A similar probability measure is used to
identify CO emissions where concentrations in an individual
layer exceed background levels of 200 ppbv [Sinha et al.,
2003]. Figure 6 shows CO and BC fields sampled from
the model at midday (1100–1300). There is little variation
within each season in the CO and BC distribution with time
of day. The distributions of CO and BC are similar, as
expected, but there are differences which reflect the different
residence times of CO and BC. We find a strong near‐source
relationship between CO and BC reflecting the commonality
of their source. BC is removed from the atmosphere more
rapidly than CO which has a lifetime of 1–4 months,

removed primarily through oxidation by the OH radical.
Figure 5 shows the seasonal probability distributions of BC
for morning (0800–1000), midday (1100–1300), and after-
noon (1400–1600) calculated from hourly samples corre-
sponding to the SEVIRI SDI. The seasonal distribution
describes the southward migration of African fires as the
year progresses, consistent with fire count data [Collatz et al.,
2007]. Similar calculations were done for organic carbon
(not shown), another possible proxy for biomass burning,
but we found less agreement with CO than BC due to
widespread noncombustion organic carbon sources.

4.3. Combined Aerosol Classification

[32] Figure 7 shows “best type” SEVIRI AOD for 1012,
1312, and 1612 GMT on 22 24, and 25 August 2006,
corresponding to flights from the DODO aircraft campaign
(described in section 3.1). According to GlobAerosol the
“best type” aerosol over the majority of the Atlantic is dust,
despite JJA being the peak burning season over southern
Africa [Collatz et al., 2007] fueling transport of biomass
burning aerosol across the Atlantic.
[33] As shown above the SDI and GEOS‐Chem model

predict a distinct seasonal variation in the distribution of
aerosol over the Atlantic. Figure 7 shows no evidence of the
coherent dust or biomass burning plumes expected during
JJA in the retrieval, which contains no spatially or temporally
resolved prior information about aerosol type and distribu-
tion. We suggest here a new approach to selecting aerosol
type, using this information from the SDI and GEOS‐Chem
to inform the ORAC retrieval. We combine the individual
probabilities from the desert dust and biomass burning
aerosol distributions described above to give a conditional
probability given the aerosol is present, of each single
aerosol type or combination as a function of location, sea-
son and time of day. We use one minus the total probability
of all other aerosol classes to determine where “no aerosol”
is most likely. In these regions we assume that background

Figure 6. The independent seasonal probability of the presence of CO and black carbon aerosols
between 1100 and 1300 LT for 2006. The probability, determined by the GEOS‐Chem model, is evalu-
ated on the 2 × 2.5° model grid.
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marine aerosol is present and that the maritime aerosol
model should be used in the retrieval.
[34] Figure 8 shows the most likely aerosol class con-

structed from the probabilities across the SEVIRI disk as a
function of season. In DJF we find that the biomass burning
aerosol plume over the eastern equatorial Atlantic is com-
monly collocated with dust. In MAM, dust is the dominant
aerosol outflow from the African continent. In JJA dust and
biomass burning aerosol outflow form two distinct plumes.
In SON aerosol outflow from the African continent is sig-
nificantly reduced. This information could be used to inform
the retrieval and reduce the number of aerosol models pro-
cessed for each pixel. We suggest that these distributions
along with their associated error could be used as a statis-
tical constraint in the ORAC retrieval for a Bayesian infer-
ence of aerosol optical properties from observed radiance.
In this approach the cost function may be used to help
differentiate between aerosol classifications with similar
probabilities.
[35] In DJF we find a region where dust and biomass

burning aerosol are consistently collocated just off the west
African coast. We have no evidence to suggest that these
aerosol types are directly mixed and they would likely be
found at different altitudes as observed during the Dust and
Biomass Experiment (DABEX) campaign [Johnson et al.,

2008]. In this instance a two layer model is needed to
accurately simulate the radiative transfer of the aerosol
present which is not currently available in the SEVIRI
ORAC retrieval. We acknowledge that Figure 8 does not
indicate how close the probability of the most likely class is to
that of other classes and whether the additional information
from the cost function would be needed to distinguish
between aerosol class, but this is available for inclusion in
the retrieval.

5. Retrieval Sensitivity to Constraining Aerosol
Type

[36] We test here the sensitivity of theORACAOD retrieval
to aerosol speciation, comparing selection based on the
cost function as implemented in the GlobAerosol retrieval,
with aerosol selection based on our speciation maps. As
described above, our aerosol classification contains an
additional aerosol class, ‘dust and biomass burning’ which is
not currently included in the GlobAerosol retrieval. To make
a comparison at present between the two schemes, where
dust and biomass burning are collocated in our speciation
we assign no aerosol class and no retrieval is made. At 1312,
the retrieval time used for this comparison this region often
coincides with regions of Sun glint where no aerosol

Figure 7. GlobAerosol “best aerosol type” for SEVIRI radiances at 10 × 10 km resolution at 1012, 1312,
and 1612 on 22, 24, and 25 August 2006, corresponding to the days of data collection during the DODO
campaign. The “best type” is determined from the retrieval cost following quality control for different
aerosol types: maritime (1), urban (2), continental (3), biomass burning (4), and desert dust (5).
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retrieval can be made. We assign a marine aerosol classifi-
cation to areas classified as neither dust nor biomass burning
aerosol.
[37] Figure 9 shows comparisons of monthly mean AOD

in January and July 2006 which shows that background
AOD is similar, independent of the aerosol classification
used. In January we find AOD is generally 0.2–1 higher off
the west coast of northern Africa when using the new

aerosol classification, and in July a similar discrepancy is
observed farther south. In these regions the GlobAerosol
retrieval underestimates by 50–70% the total AOD observed
using our speciation. Both of these regions correspond to
areas of biomass burning outflow (Figure 5) suggesting that
this is not captured well in the current GlobAerosol SEVIRI
AOD. In July, evidence of dust transport across the Atlantic
toward South America observed in the SDI data (Figure 5) is

Figure 8. Aerosol type or combination with the highest probability as a function of season for 2006.
White areas indicate background marine aerosol. Two classes refers to instances where two individual
aerosol classifications share a maximum probability.

Figure 9. Monthly mean AOD in January and July 2006 retrieved from (left) speciation assigned using
prior prescribed by the GlobAerosol algorithm assigned using retrieval cost and other quality control tests,
(middle) speciation assigned using our aerosol distribution maps, and (right) the difference between the
monthly mean. White areas denote persistent cloud or Sun glint where no retrieval is made. Continents
where we are not examining the aerosol retrieval are colored black.
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evident in both classifications and from this we determine
that the ORAC dust and maritime aerosol models are similar
enough to capture dust advection even if the wrong classi-
fication is made. This occurs because the refractive indices
for the marine and dust OPAC aerosol models are similar.
[38] We also compare the satellite AOD and Angström

Exponent over Ascension Island (7S, 14W) and Cape Verde
(16°N, 22°W) with Aerosol RObotic NETwork (AERONET)
data [Holben et al., 1998] between January 2004 and January
2008. Table 1 shows comparative statistics between the
satellite observations using our speciation, the lowest cost
speciation and AERONET data. We exclude GlobAerosol
retrievals where AOD is >2, indicative of cloud shadow-
ing, and where the convergence cost is >10. To ensure no
cloud contamination we only include days with more than
10 observations, and an AOD standard deviation below
0.2. The statistics are generated from daily mean values.
[39] Over Ascension Island we find that the Angström

Exponent is more consistent with AERONET data when
using our new speciation (r = 0.4 compared with r = 0.26).
The AERONET Angström exponent is indicative of bio-
mass burning aerosol during summer months which is rarely
selected using the GlobAerosol “best type.” We also find
that our speciation increases the AOD correlation from 0.52
to 0.55 (not shown). Over Cape Verde there is poor corre-
lation between the satellite observations and AERONET
values using both speciations. In this case using our speci-
ation does not improve the Angström Exponent correlation,
but does improve the root mean square and mean difference
statistics. Introducing our speciation prior has the greatest
impact in regions of biomass burning aerosol where the
aerosol properties are significantly different from those in
other classes (e.g., dust and maritime aerosol). Over Cape
Verde, improvements using our speciation are less marked as
the OPAC descriptions of maritime and desert dust aerosol
are similar. We acknowledge that comparing satellite and
ground based observations is difficult given their different
spatial scales. Significant work still remains to improve the
correlation between satellite and ground‐based observations
of AOD reinforcing the statement that some caution must be
exerted when using long‐term satellite records of aerosol
optical properties to determine aerosol forcing.

6. Summary and Concluding Remarks

[40] We used detailed observations from the DODO flight
campaign in August 2006 to test the sensitivity of the
ORAC dust retrieval to prior assumptions about aerosol
size distribution, refractive index, and vertical distribution.
We find that implementing the DODO size distribution and

refractive index data into the retrieval at 0.55 mm with a
fixed AOD of 0.5 increases simulated radiance by 10–20%
with a larger bias observed at low solar zenith angles. We
find that this discrepancy can be largely attributed to dif-
ferences in the complex refractive index in the DODO and
ORAC data, particularly within the FT. We test the sensi-
tivity of the retrieval to the shape of the aerosol vertical
distribution and find that given a fixed AOD this is unim-
portant in determining simulated radiance at 0.55 mm.
[41] We also provide time‐dependent information to

describe dust and biomass burning outflow from the African
continent which we test in the ORAC retrieval during January
and July 2006. We find similar background AOD but find
discrepancies of 0.2–1 in AOD in regions of biomass burning
outflow, where selecting the aerosol speciation based on the
minimum cost function results in an underestimation of AOD
by as much as 50–70% in the standard ORAC retrieval in
comparison to our version. This indicates the importance of
assumed aerosol composition for an accurate estimate of the
AOD retrieval. Despite poorly identifying the “best type” in
a given scene, GlobAerosol partially addresses this problem
by providing optical depths for each of its assumed aerosol
models, so that better approaches to identifying type can be
applied post hoc. However, the extent to which such an
approach can be successful is of course limited by the
applicability of the assumed set of types. In particular, we
find that biomass burning aerosol and dust often coexist in
DJF meaning that none of the types in GlobAerosol may be
appropriate, and AOD in such scenes with multiple aerosol
layers cannot be correctly resolved.
[42] From the two pieces of complementary research

presented above we conclude that satellite AOD retrievals
are extremely sensitive to the properties assumed in the
aerosol model, particularly the refractive index. We test a
new method for classifying aerosol speciation, and suggest
that our seasonal aerosol speciation could be included in a
Bayesian retrieval which could use our probabilities, in
conjunction with other information in the retrieval, to dis-
tinguish between aerosol classes with similar probabilities.
This would improve the ability of the retrieval to capture
continental aerosol outflow, which we have shown is par-
ticularly important for calculating AOD in regions of bio-
mass burning.
[43] We acknowledge that this study is limited geo-

graphically and highlight the importance of field campaigns
to accurately measure aerosol properties to inform satellite
retrievals. Further research is necessary to quantify retrieval
sensitivity to a priori for other aerosol types and retrievals,
and this is of fundamental importance given the widespread
use of satellite data by the scientific community to determine

Table 1. Statistics Comparing the Satellite Angström Exponent Observations Using Lowest Cost Speciation (LC)
and Our New Speciation (NEW) Against Level 2 AERONET Ground‐Based Observations Between January
2004 and January 2008 Over Ascension Island and Cape Verdea

Location Speciation Correlation RMS
Mean Difference

(Retrieval ‐ AERONET)
Mean Absolute
Difference

Ascension Island LC 0.26 0.46 0.07 0.37
Ascension Island NEW 0.40 0.45 0.17 0.36
Cape Verde LC 0.13 0.48 0.30 0.35
Cape Verde NEW −0.10 0.33 0.22 0.29

aRetrieved daily mean Angström Exponent is averaged over a 0.25 degree box centered on the AERONET location.
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aerosol forcing. Future missions with instruments capable
of both AOD and trace gas retrievals, for example CO,
could help to better constrain the a priori data used in AOD
retrievals.

Appendix A: Description and Evaluation
of GEOS‐Chem Model CO Columns

[44] We use the GEOS‐Chem CTM (v08.02.01), driven
by assimilated GEOS‐5 meteorology from the NASA
Global Modelling and Assimilation Office (GMAO) at a 2 ×
2.5° horizontal resolution. Our calculations use 47 vertical
levels, extending from the Earth’s surface to an altitude of
80 km, 29 of which are below 10 km, and assumed to be
within the troposphere. Here, we describe only the details
pertinent to the CO evaluation and refer the reader to more
comprehensive model descriptions from P. Le Sager et al.
(GEOS‐Chem v8‐02‐01 online user’s guide, 2008, http://acmg.
seas.harvard.edu/geos/doc/man/). In this model, monthly CO
and BC emissions from biomass burning are from the Global
Fire Emission Database version 2 (GFEDv2) [Collatz et al.,
2007] and anthropogenic emissions of CO from the Emis-
sion Database for Global Atmospheric Research (EDGAR).
We spin up the model for 6 months from July 2005 to

January 2006, taking initial conditions from a full‐chemistry
run of the model.
[45] We use the Tropospheric Emission Spectrometer

(TES) to evaluate GEOS‐Chem CO columns from which we
evaluate the spatial distribution of BC aerosol, as described
in the main paper. The TES instrument, aboard the NASA
Aura satellite, was launched in July 2004 in a near‐polar
Sun‐synchronous orbit with an equator overpass time of
1345 LT, resulting in global coverage every 26 h. Here, we
evaluate GEOS‐Chem CO columns on the 2 × 2.5° model
grid between 1200 and 1500 LT. To directly compare
GEOS‐Chem column CO with TES data we sample the
model at the time and location of the TES retrieval and
interpolate the GEOS‐Chem profile onto the TES pressure
grid (GEOS). We then apply a scene‐dependent averaging
kernel (A), which accounts for the vertical sensitivity of
the TES instrument and the TES a priori (ya) to give a model
profile (ymodel) as shown below:

ymodel ¼ ya þ A GEOS � yað Þ: ðA1Þ

[46] Figure A1 shows monthly comparisons of CO col-
umns over the African continent, between TES observations
and ymodel measurements. Globally TES and GEOS‐Chem

Figure A1. Monthly mean scatterplot of GEOS‐Chem model and TES carbon monoxide column con-
centrations (molec cm−2) during 2006 over the African continent (5°N–20°S, 10°E–35°W) compared on
the model 2 × 2.5° grid. The correlation coefficient (r), the 1:1 line, and the line that best fits the data are
shown inset into each panel.
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show good agreement with GEOS‐Chem (not shown) cap-
turing 45–81% of the variation in TES CO in all but JJA
when the correlation coefficient (r) is <0.6, capturing <36%
of the variability with a positive bias in GEOS‐Chem CO. In
order to check the representation of biomass burning emis-
sions in our region of interest we reduce the comparison
domain to focus on fire emissions from the African conti-
nent across the Atlantic (Figure A1), and find that the cor-
relation increases between June and August (r = 0.71–0.88)
but decreases significantly (r = 0.14–0.24) in September and
October. In these months we find GEOS‐Chem under-
estimates total column CO in this region but does show CO
levels elevated above background values enabling us to use
the model to describe the spatial distribution of biomass
burning emissions. Underestimation of CO emissions in the
GFED database seems the most likely cause of this dis-
crepancy as the transport and chemistry in the model is
sufficient to give high CO correlations in other months.
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