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Transport of air from the troposphere to the stratosphere occurs primarily in the tropics, 

associated with the ascending branch of the Brewer-Dobson circulation. Here we identify 

the transport of air masses from the surface, through the Asian monsoon, and deep into the 

stratosphere, using satellite observations of hydrogen cyanide (HCN), a tropospheric 

pollutant produced in biomass burning.  A key factor in this identification is that HCN has 

a strong sink from contact with the ocean; much of the air in the tropical upper 

troposphere is relatively depleted in HCN, and hence broad tropical upwelling cannot be 

the main source for the stratosphere.  The monsoon circulation provides an effective 

pathway for pollution from Asia, India and Indonesia to enter the global stratosphere. 
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The Asian summer monsoon circulation contains a strong anticyclonic vortex in the 

upper troposphere and lower stratosphere (UTLS), spanning Asia to the Middle East.  The 

anticyclone is a region of persistent enhanced pollution in the upper troposphere during boreal 

summer, linked to rapid vertical transport of surface air from Asia, India and Indonesia in deep 

convection, and confinement by the strong anticyclonic circulation (1-6). A mean upward 

circulation on the eastern side of the anticyclone extends the transport into the lower 

stratosphere, as evidenced by satellite observations of water vapor (7) and ozone (8), plus carbon 

monoxide and other pollution tracers (1,4,5).  Model calculations have suggested that transport 

from the monsoon region could contribute significantly to the budget of stratospheric water 

vapor (8,9), but this effect has not been isolated from broader-scale tropical upwelling in 

observational data. 

Hydrogen cyanide (HCN) is produced primarily as a result of biomass and biofuel 

burning, and is often used as a tracer of pollution originating from fires (10-12).  In the free 

atmosphere HCN has a long photochemical lifetime of over 4 years (12,13), but it has a strong 

sink resulting from contact with the ocean surface (11,12).  In the tropics this behavior results in 

relatively low values of HCN in the troposphere apart from seasons with local biomass burning 

(10,14).  Global satellite observations of HCN in the upper troposphere from the Atmospheric 

Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite instrument (15,16) 

(Fig. 1a) reveals the signature of air depleted in HCN over the tropical oceans, together with 

enhanced values isolated within the Asian monsoon anticyclone during boreal summer (June-

August).  The tropical minimum for HCN is a distinctive signature which is very different from 

most other tropospheric pollution tracers, such as carbon monoxide (17).  The overall structure of 

HCN is accurately simulated by a three-dimensional chemical transport model (Fig. 1b), 
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incorporating HCN sources from wildfires and biofuel combustion, plus an imposed sink from 

contact with the ocean surface (18).  The realistic structure in this simulation suggests a 

reasonable understanding of the processes leading to the observed global-scale HCN behavior, 

especially the role of the oceanic regions in depleting HCN, and the Asian monsoon circulation 

in transporting HCN from the surface to the upper troposphere. 

The relative minimum in HCN over the tropical Pacific ocean is a feature that is observed 

throughout the year (Fig. S1).  In addition to the maximum associated with the Asian monsoon 

during boreal summer, seasonally-varying sources of HCN include burning over Indonesia and 

Africa during boreal spring (March-May), and burning over Africa and South America during 

austral spring (September-November), with these emissions transported to the upper troposphere 

by deep convection.  However, the upper tropospheric circulation associated with the Asian 

summer monsoon is more coherent and vigorous than the monsoonal circulations in these other 

regions and seasons, with a vertical extent that reaches across the tropopause into the lower 

stratosphere.  A longitudinally averaged cross section of the satellite measurements during boreal 

summer (Fig. 2) shows high HCN values throughout the extratropical Northern Hemisphere, 

extending across the tropopause into the lower stratosphere; the pronounced cross-tropopause 

maximum near 30
o
 N is associated with the monsoon anticyclone shown in Fig. 1.  The high 

HCN values in the stratosphere extend to low latitudes and vertically over the equator, and are 

transported into the middle stratosphere in the upward Brewer-Dobson circulation, within the so-

called tropical pipe (19).  The enhanced summer HCN values are observed to persist in the 

Northern Hemisphere lower stratosphere through the following seasons (Fig. S2).  

Further evidence of the Asian monsoon-stratosphere coupling comes from examining 

interannual variations of HCN in the satellite record.  Measurements of HCN from the Aura 
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Microwave Limb Sounder (MLS) satellite instrument (20) complement the ACE-FTS 

observations, providing continuous space-time coverage for ~7 km thick layers covering the 

lower to middle stratosphere (but not below the tropopause).  Time series of the MLS data in the 

lower stratosphere (~16-23 km) from late 2004 to the end of 2009 (Fig. 3) show HCN maxima in 

the NH subtropics during each boreal summer (~June-October); this is a clear fingerprint of the 

Asian monsoon influence (consistent with the ACE-FTS observations in Figs. 2 and S2).  In this 

short time record, the HCN maxima extend most strongly to near-equatorial latitudes during 

2005 and 2007, and less-so in the other years.  Previous analyses (21) have demonstrated that 

these 2005 and 2007 equatorial HCN maxima propagate coherently upwards into the stratosphere 

with the tropical Brewer-Dobson circulation; this so-called ‘tape-recorder’ effect is evident in 

other stratospheric trace constituents (e.g. H2O) which have seasonal or interannual anomalies 

originating near the tropical tropopause (22).  Figure 3 demonstrates that these stratospheric 

anomalies are linked to enhanced boreal summer (Asian monsoon) maxima during 2005 and 

2007.  Figure 3 also shown isolated HCN maxima in the Southern Hemisphere subtropics (~0
o
 – 

20
o
 S) during late 2004 and late 2006, which result from enhanced austral spring burning over 

Indonesia during these years (23). However, direct transport to the stratosphere from these 

episodes appears smaller than the boreal summer sources linked to the Asian monsoon. 

The exact causes of the enhanced tropical lower stratospheric HCN during 2005 and 2007 

seen in Fig. 3 are difficult to determine from the limited sampling of the satellite observations.  

We have searched for systematic changes in transport or circulation of the Asian monsoon 

anticyclone during these years (or links to the stratospheric quasi-biennial oscillation, QBO), but 

do not find obvious links to the enhanced HCN anomalies. Rather, it is likely that these patterns 

reflect variations in tropospheric sources, subsequently transported through the monsoon 
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circulation; we note that the detailed attribution of such tropospheric sources is difficult based on 

the sparsely sampled ACE-FTS measurements.  Recent model simulations of global HCN 

variability (24) suggest enhanced sources linked to the Indonesian fires in late 2004 and 2006, 

and the persistence into the following years and entrainment into the Asian monsoon circulation 

is reasonable given the long HCN photochemical lifetime in the free atmosphere. 

These HCN observations demonstrate a large discernable chemical influence on the 

stratosphere from the Asian monsoon circulation. This pathway complements the large-scale 

troposphere to stratosphere transport that occurs in the deep tropics throughout the year (25), and 

there are likely distinct source regions for air within each pathway.  Upwelling over the deep 

tropics primarily transports air with recent contact with the ocean surface, and less concentrated 

anthropogenic influences. In contrast, transport in the monsoon region connects surface air with 

enhanced pollution (biomass and biofuel burning, plus urban and industrial emissions) to the 

lower stratosphere.  Model calculations (6) suggest that surface emissions over a broad region 

covering India to eastern Asia are entrained into the monsoon circulation and transported to the 

lower stratosphere. This air will have enhanced black and organic carbon, sulfur dioxide (SO2), 

reactive nitrogen species (NOx), and possibly short-lived halogen compounds from Asian 

industrial emissions, which have the potential to influence stratospheric ozone chemistry, aerosol 

behavior and associated radiative balances.  For example, a recent increase in background 

stratospheric aerosol concentrations has been observed, possibly linked to growth in sulfur 

dioxide emissions over China since 2002 (26), and the monsoon is an effective pathway for such 

transport.  The monsoon influence on the stratosphere is expected to become increasingly 

important given the ongoing growth of Asian emissions (27), with large continued increases over 

the next decades expected for SO2 and NOx. Furthermore, potential changes in the strength and 
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variability of the Asian monsoon circulation in an evolving climate
 
(linked to increased 

convection and rainfall (28)) could modify this transport pathway, with potential influence on 

composition and climate of the stratosphere.   
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Figure 1.  Time average mixing ratio (ppbv) of hydrogen cyanide (HCN) near 13.5 km during 

boreal summer (June-August) derived from (a) ACE-FTS observations and (b) WACCM 

chemical transport model calculations.  Arrows in both panels denote winds at this level 

derived from meteorological analysis, showing that the HCN maximum is linked with the 

upper tropospheric Asian monsoon anticyclone.  
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Figure 2.  Time and zonal average mixing ratio (ppbv) of hydrogen cyanide (HCN) during boreal 

summer (June-August) derived from ACE-FTS satellite measurements.  The white 

dashed line denotes the tropopause, and black lines denote isentropic levels. 
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Figure 3.  (a) Color contours show latitude-time variations of HCN mixing ratio (ppbv) for the 

lower stratosphere layer 16-23 km, measured by the Aura MLS satellite during 

September 2004 – November 2009. These MLS data are zonal mean values averaged 

over individual week periods, as described in (21).  Colored crosses indicate HCN for the 

16-23 km layer derived from the ACE satellite measurements, with each cross indicating 

an individual profile measurement. Comparison of the MLS and ACE-FTS data are 

shown in Fig. S3.  
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Supporting Online Material (SOM) for Randel et al, (“Asian monsoon transport of pollution to 

the stratosphere”). 

 

1. Seasonal ACE-FTS HCN observations 

Seasonally averaged ACE-FTS measurements reveal climatological structure of HCN at 

different altitudes in the upper troposphere and lower stratosphere (Fig. S1).  In the upper 

troposphere (13.5 km) relative minimum values are observed over the tropical Pacific ocean 

during all seasons, resulting from the upwards convective transport of air depleted in HCN via 

contact with the ocean surface.  These minima extend to the lower stratosphere (17.5 km) during 

boreal winter and spring, reflecting the stronger mean upward Brewer-Dobson circulation during 

these seasons. Enhanced HCN values are observed at 13.5 km during boreal spring over 

Indonesia and Africa, during boreal summer in the Asian monsoon, and during austral spring in 

the SH subtropics over Indonesia, Africa and South America; these latter are the strongest 

seasonal HCN sources in the troposphere.  In the lower stratosphere (17.5 km) the maximum 

values are associated with the Asian monsoon; the tropospheric maxima from other seasons do 

not extend into the lower stratosphere.  Note that the enhanced stratospheric HCN during boreal 

summer over ~ 20
o
 – 40

o
 N persists in the same latitude band throughout autumn (as also seen in 

Fig. 3). 

Zonally averaged seasonal ACE-FTS observations of HCN over 7.5 – 27.5 km (Fig. S2) 

reveal further details of the chemical coupling between the troposphere and stratosphere, and 

highlight the importance of the Asian monsoon circulation.  The enhanced HCN in the lower 

stratosphere during boreal summer persists through the following seasons, with transport into the 

tropics subsequently entrained into the upward Brewer-Dobson circulation.  Note the upward 

propagation of the near-equatorial maximum throughout the year, so that by the following boreal 

summer there is a secondary tropical maximum near 22.5 km.  Figure S2 also highlights that the 

large HCN sources during austral spring (over ~10
o
-40 S) are mainly confined to the 

troposphere, with little direct extension above the tropopause.  There is evidence for transport of 

these HCN emissions into the extratropical lowermost stratosphere, with weak maxima observed 

during the following seasons, and possible links to the tropics.  However, the overall patterns 

clearly highlight the dominant role of transport to the stratosphere from the Asian summer 

monsoon. 
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2. Comparison of ACE-FTS and MLS observations 

Remote sensing measurements of HCN place stringent requirements on satellite observations and 

retrieval methodologies, because of the extremely low ambient mixing ratios (in the range of 0.1 

– 0.3 ppbv).  The ACE-FTS and MLS retrievals of HCN are preliminary science products, with 

less emphasis to date on validation (although the approximate values in the upper troposphere 

and lower stratosphere are in reasonable agreement with previous ground-based and aircraft 

observations
12,13

).  The ACE-FTS and MLS observations in the lower stratosphere (16-23 km, 

shown in Fig. 3) provide an opportunity for direct comparison between these data (Fig. S3), 

insofar as the measurements overlap in space and time. We note that there are substantial 

differences in space-time sampling between the ACE-FTS data (which represent individual 

profile measurements) and the MLS data (which are weekly zonal average amounts).  In spite of 

these differences, the comparisons (Figs. 3 and S3) show reasonable overall agreement for the 

magnitude and variability of HCN in the lower stratosphere, providing enhanced confidence in 

these observations. 
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Figure S1.  Climatological seasonal structure of HCN (ppbv) derived from ACE-FTS data, for 

measurements near 13.5 km (left) and 17.5 km (right).  
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Figure S2.  Climatological seasonal average zonal mean cross sections of HCN mixing ratio 

(ppbv) derived from ACE-FTS data.  The grey lines denote isentropic levels, and the 

thick dashed lines show the seasonally varying tropopause.  
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Figure S3.  Comparison of ACE-FTS and MLS measurements of HCN (ppbv) in the lower 

stratosphere (16-23 km) shown in Fig. 3.  The ACE-FTS data are individual profile 

measurements (with sampling shown in Fig. 3), while the MLS data are weekly zonal 

average values, sampled at the latitude of the corresponding ACE-FTS measurements. 

The correlation coefficient is r=0.68. 

 

 


