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Preface

The PYTHIA and JETSET programs are frequently used for event generation in high-energy
physics. The emphasis is on multiparticle production in collisions between elementary
particles. This in particular means hard interactions in e*e™, pp and ep colliders, although
also other applications are envisaged. The programs are intended to generate complete
events, in as much detail as experimentally observable ones, within the bounds of our
current understanding of the underlying physics. Many of the components of the programs
represent original research, in the sense that models have been developed and implemented
for a number of aspects not covered by standard theory. Although originally conceived
separately, the PYTHIA and JETSET programs today are so often used together that it
makes sense to present them here without too much distinction.

Both programs have a long history, and several manuals have come out. The former
round of PYTHIA/JETSET program descriptions appeared in 1987. Meanwhile a large
number of additions and changes have been made. Recently a new description therefore
appeared in

T. Sjostrand, Computer Physics Commun. 82 (1994) 74.

This is the one and only correct reference to the current versions of PYTHIA and JETSET.
The long writeup that you now have before you is an (unpublished) appendix to the
publication above, and need not be separately cited. Instead remember to cite the original
literature on the physics topics of particular relevance for your studies. (There is no reason
to omit references to good physics papers simply because some of their contents have also
been made available as program code.)

Event generators often have a reputation for being ‘black boxes’; if nothing else, this
report should provide you with a glimpse of what goes on inside the programs. Some such
understanding may be of special interest for new users, who have no background in the
field. An attempt has been made to structure the report sufficiently well that many of
the sections can be read independently of each other, so you can pick the sections that
interest you. I have tried to keep together the physics and the manual sections on specific
topics, where practicable, which represents a change of policy compared with previous
manual versions. Any feedback on this and other aspects is welcome.

A large number of persons should be thanked for their contributions. Hans-Uno
Bengtsson is the originator of the PYTHIA program, and for many years we worked in
parallel on its further development. Mats Bengtsson is the main author of the final-state
parton-shower algorithm. Bo Andersson and Gosta Gustafson are the originators of the
Lund model, and strongly influenced the early development of the programs. Further
comments on the programs have been obtained from users too numerous to be mentioned
here, but who are all gratefully acknowledged. To write programs of this size and com-
plexity would be impossible without a strong user feedback.

The moral responsibility for any remaining errors clearly rests with me. However,
kindly note that this is a ‘University World’ product, distributed ‘as is’, free of charge,
without any binding guarantees. And always remember that the programs do not repre-
sent a dead collection of established truths, but rather one of many possible approaches to
the problem of multiparticle production in high-energy physics, at the frontline of current
research. Be critical!
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1 Introduction

Multiparticle production is the most characteristic feature of current high-energy physics.
Today, observed particle multiplicities are typically between ten and a hundred, and with
future machines this range will be extended upwards. The bulk of the multiplicity is
found in jets, i.e. in bunches of hadrons (or decay products of hadrons) produced by the
hadronization of quarks and gluons.

The Complexity of High-Energy Processes

To first approximation, all processes have a simple structure at the level of interactions
between the fundamental objects of nature, i.e. quarks, leptons and gauge bosons. For
instance, a lot can be understood about the structure of hadronic events at LEP just from
the ‘skeleton’ process ete™ — Z° — qq. Corrections to this picture can be subdivided,
arbitrarily but conveniently, into three main classes.

Firstly, there are bremsstrahlung-type modifications, i.e. the emission of additional
final-state particles by branchings such as e — ey or ¢ — qg. Because of the largeness
of the strong coupling constant a,, and because of the presence of the triple gluon ver-
tex, QCD emission off quarks and gluons is especially prolific. We therefore speak about
‘parton showers’, wherein a single initial parton may give rise to a whole bunch of par-
tons in the final state. Also photon emission may give sizeable effects in eTe™ and ep
processes. The bulk of the bremsstrahlung corrections are universal, i.e. do not depend
on the details of the process studied, but only on one or a few key numbers, such as the
momentum transfer scale of the process. Such universal corrections may be included to
arbitrarily high orders, using a probabilistic language. Alternatively, exact calculations
of bremsstrahlung corrections may be carried out order by order in perturbation the-
ory, but rapidly the calculations then become prohibitively complicated and the answers
correspondingly lengthy.

Secondly, we have ‘true’ higher-order corrections, which involve a combination of loop
graphs and the soft parts of the bremsstrahlung graphs above, a combination needed to
cancel some divergences. In a complete description it is therefore not possible to consider
bremsstrahlung separately, as assumed here. The necessary perturbative calculations are
usually very difficult; only rarely have results been presented that include more than one
non-‘trivial’ order, i.e. more than one loop. As above, answers are usually very lengthy,
but some results are sufficiently simple to be generally known and used, such as the
running of ag, or the correction factor 1 + a;/m + --- in the partial widths of Z° — qq
decay channels. For high-precision studies it is imperative to take into account the results
of loop calculations, but usually effects are minor for the qualitative aspects of high-energy
processes.

Thirdly, quarks and gluons are confined. In the two points above, we have used a
perturbative language to describe the short-distance interactions of quarks, leptons and
gauge bosons. For leptons and colourless bosons this language is sufficient. However, for
quarks and gluons it must be complemented with a picture for the hadronization process
(which can be subdivided into fragmentation and decays), wherein the coloured partons
are transformed into jets of colourless hadrons, photons and leptons. This process is
still not yet understood from first principles, but has to be based on models. In one
sense, hadronization effects are overwhelmingly large, since this is where the bulk of the
multiplicity comes from. In another sense, the overall energy flow of a high-energy event is
mainly determined by the perturbative processes, with only a minor additional smearing
caused by the hadronization step. One may therefore pick different levels of ambition,
but in general detailed studies require a detailed modelling of the hadronization process.

The simple structure that we started out with has now become considerably more
complex — instead of maybe two final-state partons we have a hundred final particles.



The original physics is not gone, but the skeleton process has been dressed up and is no
longer directly visible. A direct comparison between theory and experiment is therefore
complicated at best, and impossible at worst.

Event Generators

It is here that event generators come to the rescue. In an event generator, the objective
strived for is to use computers to generate events as detailed as could be observed by a
perfect detector. This is not done in one step, but rather by ‘factorizing’ the full prob-
lem into a number of components, each of which can be handled reasonably accurately.
Basically, this means that the hard process is used as input to generate bremsstrahlung
corrections, and that the result of this exercise is thereafter left to hadronize. This sounds
a bit easier than it really is — else this report would be a lot thinner. However, the basic
idea is there: if the full problem is too complicated to be solved in one go, try to subdivide
it into smaller tasks of manageable proportions. In the actual generation procedure, most
steps therefore involve the branching of one object into two, or at least into a very small
number, each of which being free to branch in its turn. A lot of bookkeeping is involved,
but much is of a repetitive nature, and can therefore be left for the computer to handle.
As the name indicates, the output of an event generator should be in the form of
‘events’, with the same average behaviour and the same fluctuations as real data. In
the data, fluctuations arise from the quantum mechanics of the underlying theory. In
generators, Monte Carlo techniques are used to select all relevant variables according to
the desired probability distributions, and thereby ensure randomness in the final events.
Clearly some loss of information is entailed: quantum mechanics is based on amplitudes,
not probabilities. However, only very rarely do (known) interference phenomena appear
that cannot be cast in a probabilistic language. This is therefore not a more restraining
approximation than many others.
Once there, an event generator can be used in many different ways. The five main
applications are probably the following;:
e To give physicists a feeling for the kind of events one may expect/hope to find, and
at what rates.
e As a help in the planning of a new detector, so that detector performance is opti-
mized, within other constraints, for the study of interesting physics scenarios.
e As a tool for devising the analysis strategies that should be used on real data, so
that signal-to-background conditions are optimized.
o As a method for estimating detector acceptance corrections that have to be applied
to raw data, in order to extract the ‘true’ physics signal.
e As a convenient framework within which to interpret the observed phenomena in
terms of a more fundamental underlying theory (usually the Standard Model).
Where does a generator fit into the overall analysis chain of an experiment? In ‘real
life’, the machine produces interactions. These events are observed by detectors, and the
interesting ones are written to tape by the data acquisition system. Afterwards the events
may be reconstructed, i.e. the electronics signals (from wire chambers, calorimeters, and
all the rest) may be translated into a deduced setup of charged tracks or neutral energy
depositions, in the best of worlds with full knowledge of momenta and particle species.
Based on this cleaned-up information, one may proceed with the physics analysis. In the
Monte Carlo world, the role of the machine, namely to produce events, is taken by the
event generators described in this report. The behaviour of the detectors — how particles
produced by the event generator traverse the detector, spiral in magnetic fields, shower
in calorimeters, or sneak out through cracks, etc. — is simulated in programs such as
GEANT [Bru89]. Traditionally, this latter activity is called event simulation, which is
somewhat unfortunate since the same words could equally well be applied to what, here,
we call event generation. A more appropriate term is detector simulation. Ideally, the



output of this simulation has exactly the same format as the real data recorded by the
detector, and can therefore be put through the same event reconstruction and physics
analysis chain, except that here we know what the ‘right answer’ should be, and so can
see how well we are doing.

Since the full chain of detector simulation and event reconstruction is very time-
consuming, one often does ‘quick and dirty’ studies in which these steps are skipped
entirely, or at least replaced by very simplified procedures which only take into account
the geometric acceptance of the detector and other trivial effects. One may then use the
output of the event generator directly in the physics studies.

There are still many holes in our understanding of the full event structure, despite
an impressive amount of work and detailed calculations. To put together a generator
therefore involved making a choice on what to include, and how to include it. At best,
the spread between generators can be used to give some impression of the uncertainties
involved. A multitude of approximations will be discussed in the main part of this report,
but already here is should be noted that many major approximations are related to the
almost complete neglect of the second point above, i.e. of the non-‘trivial’ higher-order
effects. It can therefore only be hoped that the ‘trivial’ higher order parts give the bulk of
the experimental behaviour. By and large, this seems to be the case; for ete™ annihilation
it even turns out to be a very good approximation.

The necessity to make compromises has one major implication: to write a good event
generator is an art, not an exact science. It is therefore essential not to blindly trust
the results of any single event generator, but always to make several cross-checks. In
addition, with computer programs of tens of thousands of lines, the question is not whether
bugs exist, but how many there are, and how critical their positions. Further, an event
generator cannot be thought of as all-powerful, or able to give intelligent answers to ill-
posed questions; sound judgement and some understanding of a generator are necessary
prerequisites for successful use. In spite of these limitations, the event generator approach
is the most powerful tool at our disposal if we wish to gain a detailed and realistic
understanding of physics at current or future high-energy colliders.

The Origins of the JETSET and PYTHIA Programs

Over the years, many event generators have appeared. Surveys of generators for ete”
physics in general and LEP in particular may be found in [Kle89, Sj689], for high-energy
hadron-hadron (pp) physics in [Ans90, Sj692, Kno93], and for ep physics in [HER92]. We
refer the reader to those for additional details and references. In this particular report,
the two closely connected programs JETSET and PYTHIA will be described.

JETSET has its roots in the efforts of the Lund group to understand the hadroniza-
tion process, starting in the late seventies [And83]. The so-called string fragmentation
model was developed as an explicit and detailed framework, within which the long-range
confinement forces are allowed to distribute the energies and flavours of a parton config-
uration among a collection of primary hadrons, which subsequently may decay further.
This model, known as the Lund string model, or ‘Lund’ for short, contained a number of
specific predictions, which were confirmed by data from PETRA and PEP, whence the
model gained a widespread acceptance. The Lund string model is still today the most
elaborate and widely used fragmentation model at our disposal. It remains at the heart
of the JETSET/PYTHIA programs.

In order to predict the shape of events at PETRA /PEP, and to study the fragmentation
process in detail, it was necessary to start out from the partonic configurations that
were to fragment. The generation of complete ete™ hadronic events was therefore added,
originally based on simple v exchange and first-order QCD matrix elements, later extended
to full v*/Z° exchange with first-order initial-state QED radiation and second-order QCD
matrix elements. A number of utility routines were also provided early on, for everything



from event listing to jet finding.

By the mid-eighties it was clear that the matrix-element approach had reached the
limit of its usefulness, in the sense that it could not fully describe the multijet topologies of
the data. (Later on, the use of optimized perturbation theory was to lead to a resurgence
of the matrix-element approach, but only for specific applications.) Therefore a parton-
shower description was developed [Ben87a] as an alternative to the matrix-element one.
The combination of parton showers and string fragmentation has been very successful,
and forms the main approach to the description of hadronic Z° events.

In recent years, JETSET has been a fairly stable product, covering the four main areas
of fragmentation, final-state parton showers, eTe™ event generation and general utilities.

The successes of string fragmentation in ete™ made it interesting to try to extend this
framework to other processes, and explore possible physics consequences. Therefore a
number of other programs were written, which combined a process-specific description of
the hard interactions with the general fragmentation framework of JETSET. The PYTHIA
program evolved out of early studies on fixed-target proton—proton processes, addressed
mainly at issues related to string drawing.

With time, the interest shifted towards higher energies, first to the SPS pp collider,
and later to SSC and LHC, in the context of a number of workshops in the USA and
Europe. Parton showers were added, for final-state radiation by making use of the JETSET
routine, for initial-state one by the development of the concept of ‘backwards evolution’,
specifically for PYTHIA [Sjo85]. Also a framework was developed for minimum-bias and
underlying events [Sj687a].

Another main change was the introduction of an increasing number of hard processes,
within the Standard Model and beyond. A special emphasis was put on the search for
the Standard Model Higgs, in different mass ranges and in different channels, with due
respect to possible background processes.

The bulk of the machinery developed for hard processes actually depended little on the
choice of initial state, as long as the appropriate parton distributions were there for the
incoming partons and particles. It therefore made sense to extend the program from being
only a pp generator to working also for ete™ and ep. This process was only completed in
1991, again spurred on by physics workshop activities. Currently PYTHIA should therefore
work equally well for a selection of different possible incoming beam particles.

The tasks of including new processes, and of improving the simulation of already
present ones, are never-ending. Work therefore continues apace.

While JETSET still is formally independent of PYTHIA, their ties have grown much
stronger over the years, and the border-line between the two programs has become more
and more artificial. It is no coincidence that the two are presented together here; this
way a lot of repetition of common material can be avoided. The price to be paid is that
some differences in philosophy will have to be discussed.

About this Report

As we see, JETSET and PYTHIA started out as very ideologically motivated programs, de-
veloped to study specific physics questions in enough detail that explicit predictions could
be made for experimental quantities. As it was recognized that experimental imperfec-
tions could distort the basic predictions, the programs were made available for general use
by experimentalists. It thus became feasible to explore the models in more detail than
would otherwise have been possible. As time went by, the emphasis came to shift some-
what, away from the original strong coupling to a specific fragmentation model, towards a
description of high-energy multiparticle production processes in general. Correspondingly,
the use expanded from being one of just comparing data with specific model predictions,
to one of extensive use for the understanding of detector performance, for the deriva-
tion of acceptance correction factors, for the prediction of physics at future high-energy



accelerators, and for the design of related detectors.

While the ideology may be less apparent, it is still there, however. This is not some-
thing unique to the programs discussed here, but inherent in any event generator, or at
least any generator that attempts to go beyond the simple parton level skeleton descrip-
tion of a hard process. Do not accept the myth that everything available in Monte Carlo
form represents ages-old common knowledge, tested and true. Ideology is present by
commissions or omissions in any number of details. Programs like PYTHIA and JETSET
represent a major amount of original physics research, often on complicated topics where
no simple answers are available. As a (potential) program user you must be aware of this,
so that you can form your own opinion, not just about what to trust and what not to
trust, but also how much to trust a given prediction, i.e. how uncertain it is likely to
be. JETSET and PYTHIA are particularly well endowed in this respect, since a number of
publications exist where most of the relevant physics is explained in considerable detail.
In fact, the problem may rather be the opposite, to find the relevant information among
all the possible places. One main objective of the current report is therefore to collect
much of this information in one single place. Not all the material found in specialized
papers is reproduced, by a wide margin, but at least enough should be found here to
understand the general picture and to know where to go for details.

The current report is therefore intended to replace the previous round of published
physics descriptions and program manuals [Sj686, Sj687, Ben87]. The formal new stan-
dard reference is [Sj694], which is a fairly brief summary of this report — for obvious
reasons the full description is too long to be published in its entirety. Further specification
could include a statement of the type ‘We use PYTHIA version X.x and JETSET version
Y.y’. (If you are a BWTEX fan, you may want to know that the program names in this
report have been generated by the commands \textsc{Jetset} and \textsc{Pythia}.)
Kindly do not refer to JETSET/PYTHIA as ‘unpublished’, ‘private communication’ or ‘in
preparation’: such phrases are only creating unnecessary confusion.

In addition, remember that many of the individual physics components are docu-
mented in separate publications. If some of these contain ideas that are useful to you,
there is every reason to cite them. A reasonable selection would vary as a function of the
physics you are studying. The criterion for which to pick should be simple: imagine that
a Monte Carlo implementation had not been available. Would you then have cited a given
paper on the grounds of its physics contents alone? If so, do not punish the extra effort
of turning these ideas into publicly available software. (Monte Carlo manuals are good
for nothing in the eyes of many theorists, so often only the acceptance of ‘mainstream’
publications counts.) Here follows a list of some main areas where the PYTHIA /JETSET
programs contain original research:

e The string fragmentation model [And83].

The string effect [And80].

Baryon production (diquark/popcorn) [And82, And85].
Fragmentation of multiparton systems [Sj684].
Fragmentation effects on a, determinations [Sj684al].
Initial state parton showers [Sjo85].

Final state parton showers [Ben87a).

Photon radiation from quarks [Sj692c]

Deep inelastic scattering [And8la, Ben88].
Photoproduction [Sch93a] and 4+ physics [Sch94a].
Parton distributions of the photon [Sch95].

Colour flow in hard scatterings [Ben84].

Elastic and diffractive cross sections [Sch94].

Minijets (multiple parton—parton interactions) [Sj687a).

Rapidity gaps [Dok92].



e Jet clustering in k; [Sj683].

In addition to a physics survey, the current report also contains a complete manual
for the two programs. Such manuals have always been updated and distributed jointly
with the programs. To a first approximation, we therefore do not have much new to offer
here. However, an attempt has been made to group the material more logically according
to physics topics than in previous distributions, to tie it closer to the physics description,
and to improve the layout and therefore the readability. Any feedback is welcome.

A word of warning may be in place. The program description is fairly lengthy, and
certainly could not be absorbed in one sitting. This is not even necessary, since all switches
and parameters are provided with sensible default values, based on our best understanding
(of the physics, and of what you expect to happen if you do not specify any options). As
a new user, you can therefore disregard all the fancy options, and just run the program
with a minimum ado. Later on, as you gain experience, the options that seem useful can
be tried out. No single user is ever likely to find need for more than a fraction of the total
number of possibilities available, yet many of them have been added to meet specific user
requests.

In some instances, not even this report will provide you with all the information you
desire. You may wish to find out about recent versions of the program, know about related
software, pick up a few sample main programs to get going, or get hold of related physics
papers. Some such material can be found if you link to my World Wide Web homepage:
http://thep.lu.se/tf2/staff/torbjorn/Welcome.html
and study the contents there.

Disclaimer

At all times it should be remembered that this is not a commercial product, developed
and supported by professionals. Instead it is a ‘University World’ product, developed
by a very few physicists (mainly the current author) originally for their own needs, and
supplied to other physicists on an ‘as-is’ basis, free of charge. No guarantees are therefore
given for the proper functioning of the programs, nor for the validity of physics results.
In the end, it is always up to you to decide for yourself whether to trust a given result
or not. Usually this requires comparison either with analytical results or with results of
other programs, or with both. Even this is not necessarily foolproof: for instance, if an
error is made in the calculation of a matrix element for a given process, this error will be
propagated both into the analytical results based on the original calculation and into all
the event generators which subsequently make use of the published formulae. In the end,
there is no substitute for a sound physics judgement.

This does not mean that you are all on your own, with a program nobody feels re-
sponsible for. Attempts are made to check processes as carefully as possible, to write
programs that do not invite unnecessary errors, and to provide a detailed and accurate
documentation. All of this while maintaining the full power and flexibility, of course,
since the physics must always take precedence in any conflict of interests. If nevertheless
any errors or unclarities are found, please do communicate them to me, e.g. on phone
+46 — 46 — 222 48 16 or e-mail torbjorn@thep.lu.se. Every attempt will be made to solve
problems as soon as is reasonably possible, given that this support is by one person alone,
who also has other responsibilities.

Appendix: The Historical Pythia

While the origin and connotations of the ‘JETSET’ program name should be commonly
known, the ‘PYTHIA’ label may need some explanation.

The myth tells how Apollon, the God of Wisdom, killed the powerful dragon-like

monster Python, close to the village of Delphi in Greece. To commemorate this victory,



Apollon founded the Pythic Oracle in Delphi, on the slopes of Mount Parnassos. Here
men could come to learn the will of the Gods and the course of the future. The oracle
plays an important role in many of the other Greek myths, such as those of Heracles and
of King Oedipus.

Questions were to be put to the Pythia, the ‘Priestess’ or ‘Prophetess’ of the Oracle. In
fact, she was a local woman, usually a young maiden, of no particular religious schooling.
Seated on a tripod, she inhaled the obnoxious vapours that seeped up through a crevice in
the ground. This brought her to a trance-like state, in which she would scream seemingly
random words and sounds. It was the task of the professional priests in Delphi to record
those utterings and edit them into the official Oracle prophecies, which often took the
form of poems in perfect hexameter. In fact, even these edited replies were often less than
easy to interpret. The Pythic oracle acquired a reputation for ambiguous answers.

The Oracle existed already at the beginning of the historical era in Greece, and was
universally recognized as the foremost religious seat. Individuals and city states came to
consult, on everything from cures for childlessness to matters of war. Lavish gifts allowed
the temple area to be built and decorated. Many states supplied their own treasury halls,
where especially beautiful gifts were on display. Sideshows included the Omphalos, a
stone reputedly marking the centre of the Earth, and the Pythic games, second only to
the Olympic ones in importance.

Strife inside Greece eventually led to a decline in the power of the Oracle. A serious
blow was dealt when the Oracle of Zeus Ammon (see below) declared Alexander the Great
to be the son of Zeus. The Pythic Oracle lived on, however, and was only closed by a
Roman Imperial decree in 390 AD, at a time when Christianity was ruthlessly destroying
any religious opposition. Pythia then had been at the service of man and Gods for a
millenium and a half.

The role of the Pythic Oracle replies on the course of history is nowhere better de-
scribed than in ‘The Histories’ by Herodotus [HerBc], the classical and captivating de-
scription of the Ancient World at the time of the Great War between Greeks and Persians.
Especially famous is the episode with King Croisus of Lydia. Contemplating a war against
the upstart Persian Empire, he resolves to ask an oracle what the outcome of a potential
battle would be. However, to have some guarantee for the veracity of any prophecy, he
decides to send embassies to all the renowned oracles of the known World. The messengers
are instructed to inquire the various divinities, on the hundredth day after their depar-
ture, what King Croisus is doing at that very moment. From the Pythia the messengers
bring back the reply

I know the number of grains of sand as well as the expanse of the sea,
And I comprehend the dumb and hear him who does not speak,

There came to my mind the smell of the hard-shelled turtle,

Boiled in copper together with the lamb,

With copper below and copper above.

The veracity of the Pythia is thus established by the crafty ruler, who had waited until
the appointed day, slaughtered a turtle and a lamb, and boiled them together in a copper
cauldron with a copper lid. Also the Oracle of Zeus Ammon in the Libyan desert is able
to give a correct reply (lost to posterity), while all others fail. King Croisus now sends a
second embassy to Delphi, inquiring after the outcome of a battle against the Persians.
The Pythia answers

If Croisus passes over the Halys he will dissolve a great Empire.

Taking this to mean he would win, the King collects his army and crosses the border river,
only to suffer a crushing defeat and see his Kingdom conquered. When the victorious King
Cyrus allows Croisus to send an embassy to upbraid the Oracle, the God Apollon answers



through his Prophetess that he has correctly predicted the destruction of a great empire
— Croisus’ own — and that he cannot be held responsible if people choose to interpret
the Oracle answers to their own liking.

The history of the PYTHIA program is neither as long nor as dignified as that of
its eponym. However, some points of contact exist. You must be very careful when
you formulate the questions: any ambiguities will corrupt the reply you get. And you
must be even more careful not to misinterpret the answers; in particular not to pick the
interpretation that suits you before considering the alternatives. Finally, even a perfect
God has servants that are only human: a priest might mishear the screams of the Pythia
and therefore produce an erroneous oracle reply; the current author might unwittingly let
a bug free in the program PYTHIA.



2 Physics Overview

In this section we will try to give an overview of the main physics features of JETSET
and PYTHIA, and also to introduce some terminology. The details will be discussed in
subsequent sections.

For the description of a typical high-energy event, an event generator should contain
a simulation of several physics aspects. If we try to follow the evolution of an event in
some semblance of a time order, one may arrange these aspects as follows:

1. Initially two beam particles are coming in towards each other. Normally each par-
ticle is characterized by a set of parton distribution functions, which defines the
partonic substructure in terms of flavour composition and energy sharing.

2. One shower initiator parton from each beam starts off a sequence of branchings,
such as ¢ — qg, which build up an initial-state shower.

3. One incoming parton from each of the two showers enters the hard process, where
then a number of outgoing partons are produced, usually two. It is the nature of
this process that determines the main characteristics of the event.

4. Also the outgoing partons may branch, to build up final-state showers.

5. When a shower initiator is taken out of a beam particle, a beam remnant is left
behind. This remnant may have an internal structure, and a net colour charge that
relates it to the rest of the final state.

6. The QCD confinement mechanism ensures that the outgoing quarks and gluons are
not observable, but instead fragment to colour neutral hadrons.

7. Many of the produced hadrons are unstable and decay further.

Conventionally, only quarks and gluons are counted as partons, while leptons and
photons are not. If pushed ad absurdum this may lead to some unwieldy terminology. We
will therefore, where it does not matter, speak of an electron or a photon in the ‘partonic’
substructure of an electron, lump branchings e — ey together with other ‘parton shower’
branchings such as q — qg, and so on. With this notation, the division into the above
seven points applies equally well to an interaction between two leptons, between a lepton
and a hadron, and between two hadrons.

In the following subsections, we will survey the above seven aspects, not in the same
order as given here, but rather in the order in which they appear in the program execution,
i.e. starting with the hard process.

2.1 Hard Processes and Parton Distributions

In JETSET, only two hard processes are available. The first and main one is ete™ —
v*/Z® — qq. Here the ‘*’ of 4* is used to denote that the photon must be off the mass
shell. The distinction is of some importance, since a photon on the mass shell cannot
decay. Of course also the Z° can be off the mass shell, but here the distinction is less
relevant (strictly speaking, a Z° is always off the mass shell). In the following we may not
always use ‘x’ consistently, but the rule of thumb is to use a ‘x*’ only when a process is
not kinematically possible for a particle of nominal mass. The quark q in the final state
of efe™ — 4*/Z° — qq may be u, d, s, ¢, b or t; the flavour in each event is picked at
random, according to the relative couplings, evaluated at the hadronic c.m. energy. Also
the angular distribution of the final qq pair is included. No parton-distribution functions
are needed.

The other JETSET process is a routine to generate ggg and vgg final states, as expected
in onium 17~ decays such as T. Given the current limits on the top mass, toponium will
decay weakly much too fast for these processes to be of any interest, so therefore no new
applications are expected.



PYTHIA contains a much richer selection, with close to a hundred different hard pro-
cesses. These may be classified in many different ways.
One is according to the number of final-state objects: we speak of ‘2 — 1’ processes,

‘2 — 2’ ones, ‘2 — 3’ ones, etc. This aspect is very relevant from a programming point

of view: the more particles in the final state, the more complicated the phase space and

therefore the whole generation procedure. In fact, PYTHIA is optimized for 2 — 1 and

2 — 2 processes. There is currently no generic treatment of processes with three or more

particles in the final state, but rather a few different machineries, each tailored to the

pole structure of a specific class of graphs. This may be seen as a major limitation, and
indeed is so at times. However, often one can come quite far with only one or two particles
in the final state, since showers will add the required extra activity. The classification
may also be misleading at times, since an s-channel resonance is considered as a single
particle, even if it is assumed always to decay into two final-state particles. Thus the
process ete™ — WTW~ — q;,q} q2q, is classified as 2 — 2, although the decay treatment
of the W pair includes the full 2 — 4 matrix elements.

Another classification is according to the physics scenario. This will be the main theme
of section 8. The following major groups may be distinguished:

e Hard QCD processes, e.g. qg — qg.

o Soft QCD processes, such as diffractive and elastic scattering, and minimum-bias
events.

Heavy-flavour production, e.g. gg — tt.

Prompt-photon production, e.g. qg — q7.

Photon-induced processes, e.g. vg — qq.

Deep inelastic scattering, e.g. qf — qZ.

W /Z production, such as the ete™ — 4*/Z° already found in JETSET, or qq —

WHW-.

e Standard model Higgs production, where the Higgs is reasonably light and narrow,
and can therefore still be considered as a resonance.

e Gauge boson scattering processes, such as WW — WW, when the Standard Model
Higgs is so heavy and broad that resonant and non-resonant contributions have to
be considered together.

e Non-standard Higgs particle production, within the framework of a two-Higgs-

doublet scenario with three neutral and two charged Higgs states.

Production of new gauge bosons, such as a Z'.

Production of fourth-generation fermions.

Leptoquark production.

Deviations from Standard Model processes, e.g. due to contact interactions or a

strongly interacting gauge boson sector. These scenarios do not always appear as

separate processes, but may just be options to some of the processes above.

This is by no means a survey of all interesting physics. Most notable is the absence

of supersymmetric particle production and decay, but many other examples could be

found. Also, within the scenarios studied, not all contributing graphs have always been
included, but only the more important and/or more interesting ones. In many cases,
various approximations are involved in the matrix elements coded.

The cross section for a given process ¢ — k is given by

Tij—k = /dwl/dwz fi(z1) f7(22) Gijn - (1)

Here & is the cross section for the hard partonic process, as codified in the matrix elements
for each specific process. For processes with many particles in the final state it would
be replaced by an integral over the allowed final-state phase space. The f?(z) are the
parton-distribution functions, which describe the probability to find a parton ¢ inside

10



beam particle a, with parton ¢ carrying a fraction z of the total @ momentum. Actually,
parton distributions also depend on some momentum scale Q2 that characterizes the hard
process.

Parton distributions are most familiar for hadrons, such as the proton. Hadrons are
inherently composite objects, made up of quarks and gluons. Since we do not understand
QCD, a derivation from first principles of hadron parton distributions does not yet exist,
although some progress is being made in lattice QCD studies. It is therefore necessary
to rely on parametrizations, where experimental data are used in conjunction with the
evolution equations for the Q? dependence, to pin down the parton distributions. Several
different groups have therefore produced their own fits, based on slightly different sets of
data, and with some variation in the theoretical assumptions.

Also for fundamental particles, such as the electron, is it convenient to introduce parton
distributions. The function f$(z) thus parametrizes the probability that the electron that
takes part in the hard process retains a fraction & of the original energy, the rest being
radiated (into photons) in the initial state. Of course, such radiation could equally well be
made part of the hard interaction, but the parton-distribution approach usually is much
more convenient. If need be, a description with fundamental electrons is recovered for
the choice f¢(z,Q?) = §(z — 1). Note that, contrary to the proton case, electron parton
distributions are calculable from first principles, and reduce to the § function above for
Q? — 0.

The electron may also contain photons, and the photon may in its turn contain quarks
and gluons. The internal structure of the photon is a bit of a problem, since the pho-
ton contains a point-like part, which is perturbatively calculable, and a vector-meson
dominance part, which is not. Normally, the photon parton distributions are therefore
parametrized, just as the hadron ones. Since the electron ultimately contains quarks and
gluons, hard QCD processes like qg — qg therefore not only appear in pp collisions,
but also in ep ones (‘resolved photoproduction’) and in ete™ ones (‘doubly resolved 2y
events’). The parton distribution function approach here makes it much easier to reuse
one and the same hard process in different contexts.

There is also another kind of possible generalization. The two processes qq — v*/Z°,
studied in hadron colliders, and eTe™ — 4*/Z°, studied in ete™ colliders, are really special
cases of a common process, ff — 7*/Z°, where f denotes a fundamental fermion, i.e. a
quark, lepton or neutrino. The whole structure is therefore only coded once, and then
slightly different couplings and colour prefactors are used, depending on the initial state
considered. Usually the interesting cross section is a sum over several different initial
states, e.g. um — v*/Z° and dd — 7*/Z° in a hadron collider. This kind of summation is
always implicitly done, even when not explicitly mentioned in the text.

2.2 Initial- and Final-State Radiation

In every process that contains coloured and/or charged objects in the initial or final state,
gluon and/or photon radiation may give large corrections to the overall topology of events.
Starting from a basic 2 — 2 process, this kind of corrections will generate 2 — 3, 2 — 4,
and so on, final-state topologies. As the available energies are increased, hard emission
of this kind is increasingly important, relative to fragmentation, in determining the event
structure.

Two traditional approaches exist to the modelling of perturbative corrections. One is
the matrix-element method, in which Feynman diagrams are calculated, order by order.
In principle, this is the correct approach, which takes into account exact kinematics,
and the full interference and helicity structure. The only problem is that calculations
become increasingly difficult in higher orders, in particular for the loop graphs. Only in
exceptional cases have therefore more than one loop been calculated in full, and often
we do not have any loop corrections at all at our disposal. On the other hand, we have
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indirect but strong evidence that, in fact, the emission of multiple soft gluons plays a
significant réle in building up the event structure, e.g. at LEP, and this sets a limit to
the applicability of matrix elements. Since the phase space available for gluon emission
increases with the available energy, the matrix-element approach becomes less relevant
for the full structure of events at higher energies. However, the perturbative expansion by
itself is better behaved at higher energies, owing to the running of a;. As a consequence,
inclusive measurements, e.g. of the rate of well-separated jets, should yield more reliable
results.

The second possible approach is the parton-shower one. Here an arbitrary number of
branchings of one parton into two (or more) may be put together, to yield a description
of multijet events, with no explicit upper limit on the number of partons involved. This is
possible since the full matrix-element expressions are not used, but only approximations
derived by simplifying the kinematics, and the interference and helicity structure. Parton
showers are therefore expected to give a good description of the substructure of jets, but in
principle the shower approach has limited predictive power for the rate of well-separated
jets (i.e. the 2/3/4/5-jet composition). In practice, shower programs may be patched
up to describe the hard-gluon emission region reasonably well, in particular for the eTe”
annihilation process. Nevertheless, the shower description is not optimal for absolute a;
determinations.

Thus the two approaches are complementary in many respects, and both have found
use. However, because of its simplicity and flexibility, the parton-shower option is gener-
ally the first choice, while the matrix elements one is mainly used for a, determinations,
angular distribution of jets, triple-gluon vertex studies, and other specialized studies. Ob-
viously, the ultimate goal would be to have an approach where the best aspects of the
two worlds are harmoniously married.

2.2.1 Matrix elements

Matrix elements are especially made use of in the JETSET implementation of the process
ete™ — v*/7Z° — qq.

For initial-state QED radiation, a first order (unexponentiated) description has been
adopted. This means that events are subdivided into two classes, those where a photon
is radiated above some minimum energy, and those without such a photon. In the latter
class, the soft and virtual corrections have been lumped together to give a total event rate
that is correct up to one loop. This approach worked fine at PETRA /PEP energies, but
does not do so well for the Z° line shape, i.e. in regions where the cross section is rapidly
varying and high precision is strived for.

For final-state QCD radiation, several options are available. The default is the parton-
shower one (see below), but the matrix-elements options are also frequently used. In the
definition of 3- or 4-jet events, a cut is introduced whereby it is required that any two
partons have an invariant mass bigger than some fraction of the c.m. energy. 3-jet
events which do not fulfill this requirement are lumped with the 2-jet ones. The first-
order matrix-element option, which only contains 3- and 2-jet events therefore involves
no ambiguities. In second order, where also 4-jets have to be considered, a main issue is
what to do with 4-jet events that fail the cuts. Depending on the choice of recombination
scheme, whereby the two nearby partons are joined into one, different 3-jet events are
produced. Therefore the second-order differential 3-jet rate has been the subject of some
controversy, and JETSET actually contains two different implementations.

By contrast, PYTHIA does not contain any full higher-order matrix elements, with
loop contributions included. There are a few cases where higher-order matrix elements are
included at the Born level. Consider e.g. the case of W production at a hadron collider,
which is contained in the lowest-order process q@’ — W. In an inclusive description,
additional jets recoiling against the W may be generated by parton showers. PYTHIA
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also contains the two first-order processes qg — Wq' and q@' — Wg. The cross sections
for these processes are divergent when the p; — 0. In this region a correct treatment
would therefore have to take into account loop corrections, which are not available in
PyTHIA. Depending on the physics application, one could then use PYTHIA in one of
two ways. In the region of small p, , the preferred option is lowest-order matrix elements
combined with parton showers. For the production of a W at large p, , on the other hand,
the shower approach is too imprecise to give the right cross section; additionally the event
selection machinery is very inefficient. Here it is advantageous to generate first-order
events, and then add showers only to describe additional softer radiation.

2.2.2 Parton showers

The separation of radiation into initial- and final-state showers is arbitrary, but very
convenient. There are also situations where it is appropriate: for instance, the process
ete™ — Z° — qq only contains final-state QCD radiation (QED radiation, however, is
possible both in the initial and final state), while qq — Z° — eTe™ only contains initial-
state QCD one. Similarly, the distinction of emission as coming either from the q or from
the q is arbitrary. In general, the assignment of radiation to a given mother parton is a
good approximation for an emission close to the direction of motion of that parton, but
not for the wide-angle emission in between two jets, where interference terms are expected
to be important.

In both initial- and final-state showers, the structure is given in terms of branchings
a — be, specifically e — ey, q — qg,q — q7, g — gg, and g — qq. Each of these processes
is characterized by a splitting kernel P,_;.(2). The branching rate is proportional to the
integral [ P,_4.(2)dz. The z value picked for a branching describes the energy sharing,
with daughter b taking a fraction z and daughter ¢ the remaining 1 — z of the a energy.
Once formed, the daughters b and ¢ may in turn branch, and so on.

Each parton is characterized by some virtuality scale %, which gives an approximate
sense of time ordering to the cascade. In the initial-state shower, Q? values are gradually
increasing as the hard scattering is approached, while Q? is decreasing in the final-state
showers. Shower evolution is cut off at some lower scale )¢, typically around 1 GeV for
QCD branchings. The same cut-off scale is also used to regularize the soft gluon emission
divergences in the splitting kernels. From above, a maximum scale Q)p,ax is introduced,
where the showers are matched to the hard interaction itself. The relation between ().«
and the kinematics of the hard scattering is uncertain, and the choice made can strongly
affect the amount of well-separated jets.

Despite a number of common traits, the initial- and final-state radiation machineries
are in fact quite different, and are described separately below. For historical reasons, the
final-state shower is found in JETSET and the initial-state one in PYTHIA.

Final-state showers are time-like, i.e. partons have m? = E? — p%? > 0. The evolution
variable @ of the cascade is therefore in JETSET associated with the m? of the branching
parton, but this choice is not unique. Starting from Q2 __, an original parton is evolved
downwards in Q% until a branching occurs. The selected Q% value defines the mass of the
branching parton, and the z of the splitting kernel the parton energy division between
its daughters. These daughters may now, in turn, evolve downwards, in this case with
maximum virtuality already defined by kinematics, and so on down to the @y cut-off.

In QCD showers, corrections to the leading-log picture, so-called coherence effects,
lead to an ordering of subsequent emissions in terms of decreasing angles. This does
not follow automatically from the mass-ordering constraint, but is implemented as an
additional requirement on allowed emissions. Photon emission is not affected by angular
ordering. It is also possible to obtain non-trivial correlations between azimuthal angles in
the various branchings, some of which are implemented as options. Finally, the theoretical
analysis strongly suggests the scale choice ay = a,(p%) = ay(z(1 — 2)m?), and this is the
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default in the program.

The final-state radiation machinery is applied in the c.m. frame of the hard scattering.
The total energy and momentum of the hard-scattering subsystem is preserved, as is the
direction of the outgoing partons (in that frame).

In contrast to final-state showers, initial-state ones are space-like. This means that,
in the sequence of branchings a — bc that lead up from the shower initiator to the hard
interaction, particles a and b have m? = E? — p? < 0. The ‘side branch’ particle ¢, which
does not participate in the hard scattering, may be on the mass shell, or have a time-like
virtuality. In the latter case a time-like shower will evolve off it, rather like the final-state
radiation described above. To first approximation, the evolution of the space-like main
branch is characterized by the evolution variable 2 = —m?, which is required to be
strictly increasing along the shower, i.e. Q% > Q2. Corrections to this picture have been
calculated, but are basically absent in PYTHIA.

Initial-state radiation is handled within the backwards evolution scheme. In this ap-
proach, the choice of the hard scattering is based on the use of evolved parton distributions,
which means that the inclusive effects of initial-state radiation are already included. What
remains is therefore to construct the exclusive showers. This is done starting from the
two incoming partons at the hard interaction, tracing the showers ‘backwards in time’,
back to the two shower initiators. In other words, given a parton b, one tries to find the
parton a that branched into b. The evolution in the Monte Carlo is therefore in terms
of a sequence of decreasing space-like virtualities Q% and increasing momentum fractions
z. Branchings on the two sides are interleaved in a common sequence of decreasing Q?
values.

In the above formalism, there is no real distinction between gluon and photon emission.
Some of the details actually do differ, as will be explained in the full description.

The initial- and final-state radiation shifts around the kinematics of the original hard
interaction. In deep inelastic scattering, this means that the z and Q? values that can be
derived from the momentum of the scattered lepton do not agree with the values originally
picked. In high-p, processes, it means that one no longer has two jets with opposite and
compensating p,, but more complicated topologies. Effects of any original kinematics
selection cuts are therefore smeared out, an unfortunate side-effect of the parton-shower
approach.

2.3 Beam Remnants

In a hadron-hadron collision, the initial-state radiation algorithm reconstructs one shower
initiator in each beam. This initiator only takes some fraction of the total beam energy,
leaving behind a beam remnant which takes the rest. For a proton beam, a u quark
initiator would leave behind a ud diquark beam remnant, with an antitriplet colour charge.
The remnant is therefore colour-connected to the hard interaction, and forms part of
the same fragmenting system. It is further customary to assign a primordial transverse
momentum to the shower initiator, to take into account the motion of quarks inside the
original hadron, basically as required by the uncertainty principle. This primordial &, is
selected according to some suitable distribution, and the recoil is assumed to be taken up
by the beam remnant.

Often the remnant is more complicated, e.g. a g initiator would leave behind a uud
proton remnant system in a colour octet state, which can conveniently be subdivided into
a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected
to the hard interaction. The energy sharing between these two remnant objects, and their
relative transverse momentum, introduces additional degrees of freedom, which are not
understood from first principles.

Naively, one would expect an ep event to have only one beam remnant, and an eTe”
event none. This is not always correct, e.g. a 4y — qq interaction in an ete™ event
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would leave behind the e™ and e~ as beam remnants, and a qq — gg interaction in
resolved photoproduction in an ete™ event would leave behind one e* and one q/q in
each remnant. Corresponding complications occur for photoproduction in ep events.

There is another source of beam remnants. If parton distributions are used to resolve
an electron inside an electron, some of the original energy is not used in the hard interac-
tion, but is rather associated with initial-state photon radiation. The initial-state shower
is in principle intended to trace this evolution and reconstruct the original electron before
any radiation at all took place. However, because of cut-off procedures, some small amount
may be left unaccounted. Alternatively the user may have chosen to switch off initial-
state radiation altogether, but still preserved the resolved electron parton distributions.
In either case the remaining energy is given to a single photon of vanishing transverse
momentum, which is then considered in the same spirit as ‘true’ beam remnants.

So far we have assumed that each event only contains one hard interaction, i.e. that
each incoming particle has only one parton which takes part in hard processes, and that all
other constituents sail through unaffected. This is appropriate in ete™ or ep events, but
not necessarily so in hadron—hadron collisions. Here each of the beam particles contains
a multitude of partons, and so the probability for several interactions in one and the
same event need not be negligible. In principle these additional interactions could arise
because one single parton from one beam scatters against several different partons from
the other beam, or because several partons from each beam take place in separate 2 — 2
scatterings. Both are expected, but combinatorics should favour the latter, which is the
mechanism considered in PYTHIA.

The dominant 2 — 2 QCD cross sections are divergent for p; — 0, and drop rapidly
for larger p,. Probably the lowest-order perturbative cross sections will be regularized
at small p; by colour coherence effects: an exchanged gluon of small p;, has a large
transverse wave function and can therefore not resolve the individual colour charges of
the two incoming hadrons; it will only couple to an average colour charge that vanishes
in the limit p; — 0. In the program, some effective p, i, scale is therefore introduced,
below which the perturbative cross section is either assumed completely vanishing or at
least strongly damped. Phenomenologically, p|min comes out to be a number of the order
of 1.5-2.0 GeV.

In a typical ‘minimum-bias’ event one therefore expects to find one or a few scatterings
at scales around or a bit above pjmi,, while a high-p, event also may have additional
scatterings at the p) i, scale. The probability to have several high-p, scatterings in the
same event is small, since the cross section drops so rapidly with p, .

The understanding of multiple interaction is still very primitive, and even the exper-
imental evidence that it exists at all is rather weak. PYTHIA therefore contains several
different options, with a fairly simple one as default. The options differ in particular on
the issue of the ‘pedestal’ effect: is there an increased probability or not for additional
interactions in an event which is known to contain a hard scattering, compared with one
that contains no hard interactions?

2.4 Fragmentation

QCD perturbation theory, formulated in terms of quarks and gluons, is valid at short
distances. At long distances, QCD becomes strongly interacting and perturbation theory
breaks down. In this confinement regime, the coloured partons are transformed into
colourless hadrons, a process called either hadronization or fragmentation. In this paper
we reserve the former term for the combination of fragmentation and the subsequent decay
of unstable particles.

The fragmentation process has yet to be understood from first principles, starting from
the QCD Lagrangian. This has left the way clear for the development of a number of
different phenomenological models. Three main schools are usually distinguished, string

15



fragmentation (SF), independent fragmentation (IF) and cluster fragmentation (CF), but
many variants and hybrids exist. Being models, none of them can lay claims to being
‘correct’, although some may be better founded than others. The best that can be aimed
for is internal consistency, a good representation of existing data, and a predictive power
for properties not yet studied or results at higher energies.

JETSET is intimately connected with string fragmentation, in the form of the time-
honoured ‘Lund model’. This is the default for all JETSET/PYTHIA applications, but
independent fragmentation options also exist, for applications where one wishes to study
the importance of string effects.

All current models are of a probabilistic and iterative nature. This means that the
fragmentation process as a whole is described in terms of one or a few simple underlying
branchings, of the type jet — hadron 4 remainder-jet, string — hadron + remainder-
string, and so on. At each branching, probabilistic rules are given for the production of
new flavours, and for the sharing of energy and momentum between the products.

To understand fragmentation models, it is useful to start with the simplest possible
system, a colour-singlet qq 2-jet event, as produced in e*e™ annihilation. Here lattice
QCD studies lend support to a linear confinement picture (in the absence of dynamical
quarks), i.e. the energy stored in the colour dipole field between a charge and an anticharge
increases linearly with the separation between the charges, if the short-distance Coulomb
term is neglected. This is quite different from the behaviour in QED, and is related to
the presence of a triple-gluon vertex in QCD. The details are not yet well understood,
however.

The assumption of linear confinement provides the starting point for the string model.
As the q and g partons move apart from their common production vertex, the physical
picture is that of a colour flux tube (or maybe colour vortex line) being stretched between
the q and the §. The transverse dimensions of the tube are of typical hadronic sizes,
roughly 1 fm. If the tube is assumed to be uniform along its length, this automatically
leads to a confinement picture with a linearly rising potential. In order to obtain a Lorentz
covariant and causal description of the energy flow due to this linear confinement, the most
straightforward way is to use the dynamics of the massless relativistic string with no
transverse degrees of freedom. The mathematical, one-dimensional string can be thought
of as parametrizing the position of the axis of a cylindrically symmetric flux tube. From
hadron spectroscopy, the string constant, i.e. the amount of energy per unit length, is
deduced to be k &~ 1 GeV/fm. The expression ‘massless’ relativistic string is somewhat
of a misnomer: « effectively corresponds to a ‘mass density’ along the string.

Let us now turn to the fragmentation process. Asthe q and @ move apart, the potential
energy stored in the string increases, and the string may break by the production of a
new q'q pair, so that the system splits into two colour-singlet systems qq’ and q'q. If the
invariant mass of either of these string pieces is large enough, further breaks may occur.
In the Lund string model, the string break-up process is assumed to proceed until only
on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with
a quark in one end and an antiquark in the other.

In order to generate the quark—antiquark pairs q'q’ which lead to string break-ups, the
Lund model invokes the idea of quantum mechanical tunnelling. This leads to a flavour-
independent Gaussian spectrum for the p, of q'q’ pairs. Since the string is assumed to
have no transverse excitations, this p, is locally compensated between the quark and the
antiquark of the pair. The total p, of a hadron is made up out of the p, contributions
from the quark and antiquark that together form the hadron. Some contribution of very
soft perturbative gluon emission may also effectively be included in this description.

The tunnelling picture also implies a suppression of heavy-quark production, u:d :s:
c~1:1:0.3:107!. Charm and heavier quarks hence are not expected to be produced
in the soft fragmentation, but only in perturbative parton-shower branchings g — qq.

When the quark and antiquark from two adjacent string breakings are combined to
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form a meson, it is necessary to invoke an algorithm to choose between the different
allowed possibilities, notably between pseudoscalar and vector mesons. Here the string
model is not particularly predictive. Qualitatively one expects a 1 : 3 ratio, from counting
the number of spin states, multiplied by some wave-function normalization factor, which
should disfavour heavier states.

A tunnelling mechanism can also be used to explain the production of baryons. This
is still a poorly understood area. In the simplest possible approach, a diquark in a
colour antitriplet state is just treated like an ordinary antiquark, such that a string can
break either by quark—antiquark or antidiquark—diquark pair production. A more complex
scenario is the ‘popcorn’ one, where diquarks as such do not exist, but rather quark—
antiquark pairs are produced one after the other. This latter picture gives a less strong
correlation in flavour and momentum space between the baryon and the antibaryon of a
pair.

In general, the different string breaks are causally disconnected. This means that it is
possible to describe the breaks in any convenient order, e.g. from the quark end inwards.
One therefore is led to write down an iterative scheme for the fragmentation, as follows.
Assume an initial quark q moving out along the +z axis, with the antiquark going out in
the opposite direction. By the production of a q;q; pair, a meson qq; is produced, leaving
behind an unpaired quark q;. A second pair q»q, may now be produced, to give a new
meson qiq,, etc. At each step the produced hadron takes some fraction of the available
energy and momentum. This process may be iterated until all energy is used up, with
some modifications close to the q end of the string in order to make total energy and
momentum come out right.

The choice of starting the fragmentation from the quark end is arbitrary, however.
A fragmentation process described in terms of starting at the q end of the system and
fragmenting towards the q end should be equivalent. This ‘left-right’ symmetry constrains
the allowed shape of the fragmentation function f(z), where z is the fraction of the
remaining light-cone momentum F + p, (4 for the q jet, — for the @ one) taken by
each new particle. The resulting ‘Lund symmetric fragmentation function’ has two free
parameters, which are determined from data.

If several partons are moving apart from a common origin, the details of the string
drawing become more complicated. For a qqg event, a string is stretched from the q
end via the g to the q end, i.e. the gluon is a kink on the string, carrying energy and
momentum. As a consequence, the gluon has two string pieces attached, and the ratio of
gluon to quark string force is 2, a number which can be compared with the ratio of colour
charge Casimir operators, No/Cr = 2/(1 — 1/N&) = 9/4. In this, as in other respects,
the string model can be viewed as a variant of QCD where the number of colours N¢
is not 3 but infinite. Note that the factor 2 above does not depend on the kinematical
configuration: a smaller opening angle between two partons corresponds to a smaller
string length drawn out per unit time, but also to an increased transverse velocity of the
string piece, which gives an exactly compensating boost factor in the energy density per
unit string length.

The qqg string will fragment along its length. To first approximation this means that
there is one fragmenting string piece between q and g and a second one between g and
q. One hadron is straddling both string pieces, i.e. sitting around the gluon corner.
The rest of the particles are produced as in two simple qq strings, but strings boosted
with respect to the overall c.m. frame. When considered in detail, the string motion
and fragmentation is more complicated, with the appearance of additional string regions
during the time evolution of the system. These corrections are especially important for
soft and collinear gluons, since they provide a smooth transition between events where
such radiation took place and events where it did not. Therefore the string fragmentation
scheme is ‘infrared safe’ with respect to soft or collinear gluon emission.

For events that involve many partons, there may be several possible topologies for
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their ordering along the string. An example would be a qqg:g» (the gluon indices are here
used to label two different gluon-momentum vectors), where the string can connect the
partons in either of the sequences q —g; — g2 —qand q — g2 — g1 — . The matrix elements
that are calculable in perturbation theory contain interference terms between these two
possibilities, which means that the colour flow is not always well-defined. Fortunately, the
interference terms are down in magnitude by a factor 1/NZ, where N¢ = 3 is the number
of colours, so approximate recipes can be found. In the leading log shower description,
on the other hand, the rules for the colour flow are well-defined. A final comment: in the
argumentation for the importance of colour flows there is a tacit assumption that soft-
gluon exchanges between partons will not normally mess up the original colour assignment;
this is likely the case but has not been proven.

2.5 Decays

A large fraction of the particles produced by fragmentation are unstable and subsequently
decay into the observable stable (or almost stable) ones. It is therefore important to in-
clude all particles with their proper mass distributions and decay properties. Although
involving little deep physics, this is less trivial than it may sound: while a lot of ex-
perimental information is available, there is also very much that is missing. For charm
mesons, it is necessary to put together measured exclusive branching ratios with some
inclusive multiplicity distributions to obtain a consistent and reasonably complete set of
decay channels, a rather delicate task. For bottom, so far only a rather simple phase-space
type of generator has been used for hadronic decays.

Normally it is assumed that decay products are distributed according to phase space,
i.e. that there is no dynamics involved in their relative distribution. However, in many
cases additional assumptions are necessary, e.g. for semileptonic decays of charm and
bottom hadrons one needs to include the proper weak matrix elements. Particles may
also be produced polarized and impart a non-isotropic distribution to their decay products.
Many of these effects are not at all treated in the program. In fact, spin information is
not at all carried along, but has to be reconstructed explicitly when needed.

The normal decay treatment is handled by JETSET, making use of a set of tables where
branching ratios and decay modes are stored. In PYTHIA a separate decay treatment
exists, used exclusively for a specific list of particles: Z°, W*, H?, Z'°, W't, H®, A°, H*,
ne.n> RY, q*, £*, and the leptoquark Lq. Together we call these resonances, and contrast
the ‘particle decay’ treatment of JETSET with the ‘resonance decay’ one of PYTHIA. Of
course, this is just a matter of terminology: a particle like the p could also be called a
resonance. What characterizes a (PYTHIA) resonance is that partial widths and branching
ratios are calculated dynamically, as a function of the actual mass of a particle. Therefore
not only do branching ratios change between an H® of nominal mass 100 GeV and one
of 200 GeV, but also for a Higgs of nominal mass 200 GeV, the branching ratios would
change between an actual mass of 190 GeV and 210 GeV, say. This is particularly relevant
for reasonably broad resonances, and in threshold regions. For an approach like this to
work, it is clearly necessary to have perturbative expressions available for all partial
widths, which is one reason why a corresponding treatment would not be the same for an
ordinary hadronic resonance, like the p.

The decay products of PYTHIA resonances are typically quarks, leptons, or other
resonances, e.g. W — qq or H® — W*W~. In decays to quarks, parton showers are
automatically added to give a more realistic multijet structure, and one may also allow
photon emission off leptons. If the decay products in turn are resonances, further decays
are necessary. Often spin information is available in resonance decay matrix elements,
contrary to the normal state of affairs in ordinary particle decays. This means that
the angular orientations in the two decays of a WTW™ pair are properly correlated.
Occasionally, the information is not available, and then resonances decay isotropically.
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The top quark is a special problem. The original machinery is based on the assumption
that the t is long-lived, so that top hadrons have time to form in the fragmentation process,
and afterwards these mesons decay weakly. With current ‘best bet’ mass values, this is
not correct, but one should rather consider top decay before fragmentation. Top should
then be handled like one of the above resonances. Therefore the program now contains
an alternative along these lines, which is the preferred option.
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3 Program Overview

This section contains a diverse collection of information. The first part is an overview
of previous JETSET and PYTHIA versions. The second gives instructions for installation
of the programs and describes their philosophy: how they are constructed and how they
are supposed to be used. It also contains some information on how to read this manual.
The third and final part contains several examples of pieces of code or short programs,
to illustrate the general style of program usage. The last part is mainly intended as an
introduction for completely new users, and can be skipped by more experienced ones.

Since the JETSET and PYTHIA programs today are so closely connected, and are
gradually coalescing, they are presented together in this report. However, they still appear
as separate entities, with slightly different style and emphasis.

JETSET is the older of the two, and is at the origin of the whole ‘Lund’ family of
event generators. It can be subdivided in two parts. The larger is a generic package for
jet fragmentation, particle decays, final-state parton showers, event-analysis routines, and
other utitilies. This package can be used in the context of any hard process, provided one
is willing to buy the underlying assumption of jet universality, i.e. that the fragmentation
process is fundamentally the same whether one is considering an ete™ or a pp event, and
that the only differences are to be found in the parton-level processes involved. This pack-
age is not only used by all other ‘Lund’ programs, but also by numerous other programs
written to study specific processes. The smaller part of JETSET is a generator for ete™
annihilation events, according to either a parton-shower or a matrix-element approach.
The JETSET program is completely selfcontained.

PYTHIA is a program made to generate hard or soft processes in collisions between
leptons, hadrons and photons, especially at ete™, ep and pp colliders. Where JETSET is a
loose collection of routines that you can combine as desired, PYTHIA is a more structured
program, where you initially set up what processes you want to study, and thereafter all
events will be generated according to this specification. Included is an extensive library
of hard subprocess differential cross sections, a library of parton distributions, a process
generation machinery, treatment of initial-state showers and beam remnants, and a few
odds and ends. JETSET is used for final-state showers, fragmentation and decay, but no
other external libraries are needed. An interface to external parton-distribution function
libraries is provided, however.

Many programs written by other persons make use of JETSET, and a few also of
PyYTHIA. It is not my intention to give a complete list here. A majority of these programs
are specific to given collaborations, and therefore not publicly distributed. Below we give
a list of a few public programs from the ‘Lund group’, which may have a somewhat wider
application. None of them are supported by the current author, so any requests should
be directed to the persons mentioned.

e ARIADNE is a generator for dipole emission, written mainly by L. Lénnblad [Pet88].
The dipole provides an alternative formulation of initial- and final-state showers.
JETSET or PYTHIA can be used to generate the hard process and JETSET to do the
fragmentation.

e AROMA is a generator for heavy-flavour processes in leptoproduction, written by
G. Ingelman and G. Schuler [Ing88]. It uses JETSET for fragmentation.

e FRITIOF is a generator for hadron-hadron, hadron—nucleus and nucleus—nucleus col-
lisions [Nil87], which makes use of PYTHIA to generate hard QCD scatterings and of
JETSET for fragmentation. Currently H. Pi is responsible for program development.

e LEPTO is a leptoproduction event generator, written mainly by G. Ingelman [Ing80].
It can generate parton configurations in deep inelastic scattering according to a
number of possibilities. It makes use of JETSET for fragmentation and additionally
has a parton-shower option based on PYTHIA.

e LUCIFER is a photoproduction generator written by G. Ingelman and A. Weigend
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[Ing87a]. It is a modification of an earlier version of PYTHIA and makes use of
JETSET.

e POMPYT is a generator for pomeron interactions written by P. Bruni and G. In-
gelman [Bru93]. This program defines parton distributions, flux factors and other
aspects specific to the pomeron, which is combined with the standard PYTHIA ma-
chinery for process generation.

e TWISTER is a generator for higher-twist processes, written by G. Ingelman [Ing87].
It is a modification of an earlier version of PYTHIA and makes use of JETSET.

One should also note that a version of PYTHIA has been modified to include the effects
of longitudinally polarized incoming protons. This is the work of St. Gillenstern et al.

[Giil93)].

3.1 Update History

Both JETSET and PYTHIA are by now fairly old and well-established programs, but they
are still steadily being improved on. While evolution was especially rapid for JETSET in
the early days, that program has by now reached a certain level of maturity, and the pace
of change has dropped significantly. PYTHIA, on the other hand, has been continually
extended in recent years, and may still see further growth, although most of the basic
structure should be in place by now.

In earlier days, before the advent of electronic mail, programs were only infrequently
distributed, and version numbers corresponded to distinct new upgrades. Today, the
evolutionary process is more continuous and so is the distribution of new versions. In
particular, the introduction of a new process or feature is often done on short notice, if
no problems of backwards compatibility are involved. With this distribution, the sub-
version numbers have therefore been expanded to three digits, where the last two give
sub-subversions. For every change made in the public file, the sub-subversion number is
updated, together with the ‘last date of change’. In most referencing the shorter ‘JETSET
version 7.4’ could still be preferable to e.g. ‘JETSET version 7.412.

For the record, in Tables 1 and 2 we list the official main versions of JETSET and
PYTHIA, respectively, with some brief comments.

All versions preceding JETSET 7.3 and PYTHIA 5.6 should now be considered obsolete,
and are no longer supported. For stable applications, the earlier combination JETSET 6.3
and PYTHIA 4.8 could still be used, however.

JETSET version 7 and PYTHIA version 5 have been evolved in parallel, so some of
the processes added in later versions of PYTHIA make use of particle data only found in
JETSET from that time onwards. Although it would be possible to combine PYTHIA 5.7
with JETSET 7.3, e.g., it is not recommended. From the current versions onwards, checks
have therefore been introduced to detect the use of (potentially) incompatible subversions,
with warnings issued at initialization if that should be the case.

Previous versions of the manuals have contained detailed lists of modifications from
one version to the next, see e.g. [Sj692d|. Below we only reproduce the updates that
appear with the most recent versions of the programs. Some of them were introduced
in later editions of PYTHIA 5.6 with JETSET 7.3, while others are completely new. If
nothing is explicitly said, these changes do not affect backwards compatibility, but only
add new features.

3.1.1 Updates in JETSET 7.4

Changes from version 7.3 to 7.4 are not so large, although the impact of the updated
particle data and parameter default values may need to be studied.

e Particle data have been updated in accordance with the 1992 Review of Particle

Properites [PDG92]. (As usual, with a free interpretation of inconsistencies, unclar-

21



Table 1: The main versions of JETSET, with their date of appearance, published
manuals, and main changes from previous versions.

No. | Date Publ. | Main new or improved features
1 | Nov 78 | [Sjo78] | single-quark jets
May 79 | [Sj679] | heavy-flavour jets
3.1 | Aug 79 — 2-jets in eTe™, preliminary 3-jets
3.2 | Apr 80 | [Sjo80] | 3-jets in eTe™ with full matrix elements,
toponium — ggg decays
3.3 | Aug 80 — softer fragmentation spectrum

4.1 | Apr 81 — baryon production and diquark fragmentation,
fourth-generation quarks, larger jet systems

4.2 | Nov 81 — low-p, physics
4.3 | Mar 82 | [Sjo82] | 4-jets and QFD structure in ete™,
Jul 82 | [Sj683] | event-analysis routines

5.1 | Apr 83 — improved string fragmentation scheme, symmetric
fragmentation, full 2°¢ order QCD for ete™

5.2 | Nov 83 — momentum-conservation schemes for IF,
initial-state photon radiation in ete™

5.3 | May 84 — ‘popcorn’ model for baryon production

6.1 | Jan 85 — common blocks restructured, parton showers

6.2 | Oct 85 | [Sj686] | error detection

6.3 | Oct 86 | [Sjo87] | new parton-shower scheme

7.1 | Feb 89 — new particle codes and common block structure,
more mesons, improved decays, vertex information,
Abelian gluon model, Bose—Einstein effects

7.2 | Nov 89 — interface to new standard common block,

photon emission in showers

7.3 | May 90 | [Sj692d] | expanded support for non-standard particles

7.4 | Dec 93 | [Sjo94] | updated particle data and defaults

ities and other gaps in the knowledge.) Changes are especially drastic for charm
and bottom. In the bottom sector the decay properties are now given individually
for B, BT, B?, Bf and A}, i.e. the generic data for ‘pseudoparticle’ 85 are only
used for other weakly decaying B baryons.

o Also a few other Standard Model parameters have been updated, such as the Z°
and W* masses and widths, sin?fy and the CKM matrix elements.

e Fragmentation and parton shower parameters have been modified to reflect current
LEP knowledge [LEP90],i.e. a minor retuning starting from an average of the ‘best’
parameter values obtained by the four LEP collaborations. Bose-Einstein effects
are still left out. Flavour composition is unchanged, except for a suppression of '
production. Affected by the change are MSTJ(11),PARJ(21),PARJ(23),PARJ(24),
PARJ(41),PARJ(42),PARJ(54)-PARJ(58) and PARJ(81).

o Several other default values have been changed for switches and parameters in the
ete™, parton shower and fragmentation parts of the programs. These changes are
intended to reflect our current best knowledge. See MSTJ(26),MSTJ(27),MSTJ(41),
MSTJ(46), MSTJ(50), MSTJ(110), PARJ(26), and PARJ(121)-PARJ(125).
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Table 2: The main versions of PYTHIA, with their date of appearance, published
manuals, and main changes from previous versions.

No. | Date Publ. Main new or improved features
1 | Dec 82 | [Ben84| | synthesis of predecessors COMPTON, HIGHPT and
KASSANDRA
9 _
3.1 —
3.2 —

3.3 | Feb 84 | [Ben84a| | scale-breaking parton distributions
3.4 | Sep 84 | [Ben85] | more efficient kinematics selection

4.1 | Dec 84 initial- and final-state parton showers, W and Z
4.2 | Jun 85 multiple interactions

4.3 | Aug 85 WW, WZ, ZZ and R processes

4.4 | Nov 85 YW, ~Z, y7v processes

4.5 | Jan 86 H° production, diffractive and elastic events

4.6 | May 86 angular correlation in resonance pair decays

4.7 | May 86 7' and H™ processes

4.8 | Jan 87 | [Ben87] | variable impact parameter in multiple interactions
4.9 | May 87 gH™ process

5.1 | May 87 massive matrix elements for heavy quarks

5.2 | Jun 87 intermediate boson scattering

5.3 | Oct 89 new particle and subprocess codes, new common block

structure, new kinematics selection, some
lepton—lepton and lepton—hadron interactions,

new subprocesses

5.4 | Jun 90 s-dependent widths, resonances not on the mass shell,
new processes, new parton distributions

5.5 | Jan 91 improved ete™ and ep, several new processes

5.6 | Sep 91 | [Sj692d] | reorganized parton distributions, new processes,
user-defined external processes

5.7 | Dec 93 | [Sj694] | new total cross sections, photoproduction, top decay

e A common title page for JETSET and PYTHIA has been introduced with the LULOGO

routine. Sub-subversion numbers are also given.

e Several options have been added for the LUSHOW shower routine. See MSTJ(41),

MSTJ(47) and MSTJ(50).

A b quark produced in the decay of a top hadron is allowed to radiate according to
the standard parton shower scheme.

The scalar gluon option contains the full electroweak angular distribution of 3-jet
events.

The LUCOMP routine has been modified. Among other things, the B} now appears
as a separate compressed code, further codes for diffractive states have been added
to the current list, and the pomeron (reggeon, niechni) has been added as particle 29
(28, 38).

A minimum threshold for calorimeter cell energy has been introduced for the LUCELL
routine.
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o All obsolescent features of the Fortran 90 standard have been removed, i.e. the
program should work well either with a Fortran 77 compiler or with a Fortran 90
one.

o A few minor errors have been corrected.

The following changes have been made since the beginning of 1994, i.e. since the

original distribution 7.400:

1. JETSET version 7.401, 11 February 1994:

e Protect against overflow in LUZDIS (needed on some machines).

2. JETSET version 7.402, 7 April 1994:

e New option to suppress either hard or soft radiation in LUSHOW, see MSTJ (40).

o A generic interface to an external 7 decay library has been introduced, see
MSTJ(28) and SUBROUTINE LUTAUD.

o In a few places, a dot has been moved from the end of one line to the beginning
of the next continuation line, or the other way around, to keep together tokens
such as .EQ. or .AND., since some debuggers may otherwise complain.

e A source of (harmless) division by zero in LUSHOW has been removed.

3. JETSET version 7.403, 15 July 1994:

o Leptons and photons which are unrelated to the system feeling the Bose-
Einstein effects do not have their energies and momenta changed in the global
rescaling step of LUBOEI. (Example: WTW™ events, where one W decays lep-
tonically; before these lepton momenta could be slightly changed, but now
not.) Further, the LUBOEI routine has been changed to avoid an unintentional
gap in the limits of the very first bin.

e The option LUEDIT(16) (used e.g. from PYEVNT) has been improved with a
more extensive search for missing daughter pointers.

e The KLU(I,16) procedure for finding rank has been rewritten to work in the
current JETSET version, which it did not before. However, note that it will
only work for MSTU(16)=2. As a general comment, the options 14-17 of KLU
were written at a time when possible event histories were less complex, and
can not be guaranteed always to work today.

4. JETSET version 7.404, 25 August 1994:

e LUSHOW has been corrected, so that if t, | or h quarks (or d* or u* quarks
masked as 1 or h ones) are given with masses that vary from event to event (a
Breit-Wigner shape, e.g.), the current mass rather than the nominal mass is
used to define the cut-off scales of parton shower evolution.

e LULOGO has been modified to take into account that a new PYTHIA/JETSET
description has been published in
T. Sjostrand, Computer Phys. Commun. 82 (1994) 74
and is from now on the standard reference to these two programs.

5. JETSET version 7.405, 27 January 1995:

e LUCELL has been corrected, in that in the option with smearing of energy rather
than transverse energy, the conversion factor between the two was applied in
the wrong direction.

e LUSHOW has been corrected in one place where the PMTH array was addressed
with the wrong order of the indices. This affected quark mass corrections in
the matching to the three-jet matrix elements.

e An additional check has been included in LUBOEI that there are at least two
particles involved in the Bose-Einstein effects. (No problem except in some
bizarre situations.)

6. JETSET version 7.406, 20 February 1995:
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7.

8.

e A new option has been added for the behaviour of the running cem(Q?) in
ULALEM. This is not added as a true physics scenario, but only to produce results
with a given, fixed value for the hard events, while still keeping the conventional
value in the Q% = 0 limit. See MSTU(101), PARU(103), PARU(104). Addition-
ally, the G¢ constant has been added to the parameter list, see PARU(105).

e The LULOGO routine has been updated to reflect my change of affiliation.

JETSET version 7.407, 21 June 1995:

e Header and LULOGO have been updated with respect to phone number and
WWW access.

e The PHEP and VHEP variables in the /HEPEVT/ common block are now assumed
to be in DOUBLE PRECISION, in accord with the proposed LEP 2 workshop
addendum to the standard.

e In LUTEST a missing decimal point on the energy check has been reinstated.

e In LUINDF an expression has been protected against vanishing denominator.

JETSET version 7.408, 23 August 1995:
o Check against division by zero in LUSHOW.

3.1.2 Updates in PYTHIA 5.7

The updates from version 5.6 to 5.7 are all minor, and just about any program that ran
with version 5.6 will also work with PYTHIA 5.7. However, as for JETSET, it should be
noted that some important default values have been changed.

New parametrizations of the total cross sections of hadronic reactions, based in
Donnachie-Landshoff [Don92], which replace the old ones.

New parametrizations of elastic and single and double diffractive cross sections of
hadronic reactions, based on Schuler-Sj6strand [Sch94, Sch93a], which replace the
old ones. Also the slope parameters, the diffractive mass distributions and other
aspects of the event generation have been changed accordingly.

o A possibility to give own total, elastic and diffractive cross sections.
o The single diffractive cross section has been split into its two constituents, AB —

XB and AB — AX. As a consequence, the diffractive subprocess codes 92-94 have
received changed meaning.

A new common block PYINT7 has been added for the expanded total cross section
information, and this information has been partly removed from other common
blocks.

A much extended description of photoproduction physics, with the possibility to
simulate separately VMD, anomalous and direct processes [Sch93, Sch93al.

The selection of proton parton distributions that come with the program has been
updated with the CTEQ2 ones, while some others have been removed. New default
is the leading-order fit CTEQ2L.

Since the PDFLIB library now has been expanded to contain also parton-distribution
functions for the photon, the interfaces to the PAKPDF and PHOPDF libraries have
been removed. In addition, the interface to PDFLIB has been modified, and is now
for appropriate for PDFLIB version 4.

An extension of hadron parton distributions into the low-z and low-Q? region
[Sch93a].

The top quark can be made to decay before it has time to fragment. In view of
the current best estimate for the top mass, this is the expected behaviour, and is
therefore now default. Further, a parton shower is allowed to evolve in the top
decay. Also fourth generation quarks are allowed to decay before they fragment,
and so on.
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e It is possible to call PYEVNT with energies that vary from one event to the next,
without the need to reinitialize.

e Improved scheme for post-factor conservation of z and Q? in deep inelastic scatter-
ing.

o Processes 15, 19, 30 and 35 have been expanded to cover v* production in addition

to the Z° one, with full interference.

New process 80, qy — q'w™.

New process 110, ff — ~HC.

New process 149, gg¢ — Ntechni-

New option for initial state radiation to restrict angular range of emission in accor-

dance with coherence considerations.

e Some options have been added or removed, and default values have been changed.
This includes KFIN (top parton distributions off by default), MSTP(7), MSTP(11),
MSTP(14), MSTP(23), MSTP(30) (removed), MSTP(31), MSTP(34), MSTP(45),
MSTP(48), MSTP(49), MSTP(62), MSTP(67), MSTP(101), PARP(13), PARP(81),
PARP(82), PARP(47) and PARP(101).

o All obsolescent features of the Fortran 90 standard have been removed, i.e. the
program should work well either with a Fortran 77 compiler or with a Fortran 90
one.

o A few minor errors have been corrected.

The following changes have been made since the beginning of 1994, i.e. since the

original distribution 5.700:

1. PYTHIA version 5.701, 27 January 1994:

e The machinery to handle 4y interactions is expanded to the level already avail-
able for yp. This in particular means that a number of new options appear for
MSTP(14). Affected are also MINT(105), MINT(107), MINT(108), MINT(109),
VINT(282) (removed), VINT(283) and VINT(284). Parametrizations are intro-
duced for meson—meson total, elastic and diffractive cross sections, needed for
the VMD part of the photon. The treatment of cross sections for hard pro-
cesses, of initial state radiation, of beam remnants and of other aspects are also
expanded to cover the new possibilities. A first study of the relevant physics
aspects is found in [Sch94a).

e An option is introduced to modify the Q? scale of the anomalous part of the
photon parton distributions, see MSTP(59) and PARP(59).

o Correction of an error, where the generation of jet and low-p, events could give
incorrect cross section information with PYSTAT(1) at low energies. The event
generation itself was correct. (The error was introduced as a consequence of
allowing variable energies.)

e A rejection is introduced for top events where the top mass (selected according
to a Breit-Wigner) is too low to allow the decay into a W on the mass shell.

o The correction of a few other minor bugs, probably harmless.

2. PYTHIA version 5.702, 13 February 1994:

o The interface to PDFLIB has been modified to reflect that TMAS should no longer
be set except in first PDFSET call. (Else a huge amount of irrelevant warning
messages are generated by PDFLIB.)

e The STOP statement in a few dummy routines has been modifed to avoid irrel-
evant compilation warning messages on IBM mainframes.

o A few labels have been renumbered.

3. PYTHIA version 5.703, 22 February 1994:

e Removal of a bug in PYRESD, which could give (under some specific conditions)
errors in the colour flow.
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4. PYTHIA version 5.704, 7 April 1994:

Process 11 has been corrected, for the part that concerns anomalous couplings
(contact interactions) in the qq' — qq’ process. The error was present in the
expression for ud — ud and obvious permutations, while ud — ud, u@ — u@
and the others were correct.

The option with post-facto (z,Q?) conservation in deep inelastic scattering can
give infinite loops when applied to process 83, in particular if one asks for the
production of a top. (Remember that the standard DIS kinematics is defined
for massless quarks.) Therefore the switch MSTP (23) has been modifed so that
by default only process 10 is affected.

PYRESD is modified to ensure isotropic angular distributions in the decays of
the top or a fourth generation particle, i.e. in t — bW™. This may not be the
correct distribution but, unless explicit knowledge exists for a given process,
this should always be the default.

In processes 16, 20, 31 and 36 the W propagator has been modified to include
s-dependent widths in the Breit-Wigner shape. The most notable effect is a
suppression of the low-mass tail of the W mass spectrum.

When PDFLIB is used, PDFSET is now only called whenever a different structure
function is requested. For pp events therefore only one call is made, while vp
interactions still involve a call to PDFSET for each STRUCTM one, since v and p
structure functions have to be called alternatingly. MINT(93) is used to keep
track of latest structure function called.

In a few places, a dot has been moved from the end of one line to the beginning
of the next continuation line, or the other way around, to keep together tokens
such as .EQ. or .AND., since some debuggers may otherwise complain.

A number of minor errors have been corrected.

5. PYTHIA version 5.705, 15 July 1994:

A completely new possibility to have PYTHIA mix different allowed processes
(direct, VMD and anomalous) in vp and ++ interactions. This option can be
accessed with MSTP(14)=10. The relevant physics description and program-
ming details may be found in sections 7.7.2 and 8.3.2. This facility is still
not definitive, in that it is hoped to gradually enhance it with further features.
The cross-section output of the PYSTAT has been expanded to reflect the further
subdivision of the total cross section.

The new facility above has required a major restructuring of some of the
code: the routine PYEVKI has been removed, new routines PYINBM, PYINPR
and PYSAVE created, and some material has been moved to or from PYINIT,
PYINRE and PYINKI. New variables include MSTI(9), MINT(121), MINT(122),
MINT(123) and VINT(285).

The GRV leading-order dynamically generated parton distributions for the p
and 7 have been included as options, see MSTP(51) and MSTP(53).

A parametrization of the homogeneous solution to the anomalous photon par-
ton distributions have been added as an option, see MSTP (56)=3.

The treatment of the anomalous photon component can be modified with the
new switch MSTP(15) and variable PARP(17); at the same time MSTP(59) and
PARP(59) have been removed. The new options are mainly intended for com-
parative studies and should not normally be touched.

The option MSTP(92) =5 for beam remnant treatment erroneously missed some
statements which now have been inserted. Further, new options have been
added for the beam remnant splitting of momentum between a hadron and a
quark/diquark jet, where MSTP (94) should now be used rather than MSTP(92).
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e In PYDIFF the recoiling gluon energy is calculated in a numerically more stable
fashion.

6. PYTHIA version 5.706, 25 August 1994:

e New processes 167 and 168, qq' — q"'d* and qq' — q"d*, respectively, have
been introduced. These contact interaction production processes of excited
quarks complement the quark—gluon fusion ones in processes 147 and 148, and
obey the same general rules, see section 8.5.5.

o The option MSTP(57)=3 now also allows a dampening of 7% parton distribu-
tions.

e A few minor errors have been corrected.

7. PYTHIA version 5.707, 20 October 1994:

e A major bug discovered in processes 121 and 122 (and thus also affecting 181,
182, 186 and 187), gg(qq) — QQH: the kinematics was incorrectly handed
on to the Kunszt matrix elements. This affected the default option Q = t,
but effects were especially dramatic when the alternative Q = b was used.
The choice of appropriate Q2 scale for structure functions introduces a further
uncertainty in cross sections for the processes above. So long as only t quarks
are considered, the t mass is a reasonable choice, but for the Q = b alternative
this is presumably too low. Therefore new options have been introduced in
MSTP(39), with the default behaviour changed.

e Another important bug corrected in the calculation of the reduction of tt cross
section when decay modes are forced. This occured when both t and t produced
a W, and WT and W~ decay modes were set differently.

8. PYTHIA version 5.708, 25 October 1994:

o A few further places changed to make processes 181, 182, 186 and 187 work
(see version 5.707 above).

9. PYTHIA version 5.709, 26 October 1994:

o The matrix element for ff — WtW ™ has been replaced, using the formulae of
D. Bardin, M. Bilenky, D. Lehner, A. Olchevski and T. Riemann, CERN-
TH.7295/94,
but with the dependence on the ¢ variable not integrated out (D. Bardin,
private communication). This avoids some problems encountered in the old
expressions when one or both W’s were far off the mass shell.

e Change in calls to PDFLIB, so that the input @) is always at least the @, of
the respective set.

e Extra protection against infinite loops in PYSSPA.

10. PYTHIA version 5.710, 27 January 1995:

e The dimensions of the HGZ array in PYRESD has been expanded to avoid acci-
dental writing outside the bounds.

e VINT(41)-VINT(66) are saved and restored in PYSCAT, for use in low-p, events,
when beam remnant treatment has failed (with nonzero MINT(57)).

e The routine PYSTGH has been replaced by the routine PYSTHG. This contains
an improved parametrization of the homogeneous evolution of an anomalous
photon from some given initial scale. The argument NF of the PYSTGH routine
has been removed; now A is always automatically converted to the relevant
ns-flavour value from its 4-flavour one, at flavour thresholds.

11. PYTHIA version 5.711, 20 February 1995:

o New possibilities have been added to switch between electroweak couplings
being expressed in terms of a running aem(@?) or in terms of a fixed Fermi
constant Gr. This affects both decay widths and process cross sections, in the
routines PYINRE, PYRESD, PYWIDT and PYSIGH. See MSTP(8) for details; default
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corresponds to old behaviour.

e The option MSTP(37)=1, with running quark masses in couplings to Higgs
bosons, only works when a; is allowed to run (so one can define a A value).
Therefore a check has been introduced in PYWIDT and PYSIGH that the option
MSTP(37)=1 is only executed if additionally MSTP(2)> 1.

e Some non-physics changes have been made in the RKBBV and STRUCTM codes so
as to avoid some (in principle harmless) compiler warnings.

12. PYTHIA version 5.712, 15 March 1995:

e A serious error has been corrected in the MSTP(173)=1 option, i.e. when the
program is run with user-defined weights that should compensate for a biased
choice of variable beam energies. This both affected the relative admixture of
low- and high-p, events and the total cross section obtained by Monte Carlo
integration. (PYRAND changed.)

e In order to improve the flexibility and efficiency of the variable-energy option,
the user should now set PARP(174) before the PYINIT call, and thereafter
not change it. This allows PARP(173) weights of arbitrary size. (PYRAND and
PYMAXI changed.)

e MSTI(5) (and MINT(5)) are now changed so they count the number of suc-
cessfully generated events, rather than the number of tries made. This change
only affects runs with variable energies, MSTP(171)=1 and MSTP (172) =2, where
MSTI(61)=1signals that a user-provided energy has been rejected in the weight-
ing. This change also affects PARI(2), which becomes the cross section per fully
generated event. (PYEVNT changed.)

e The option MSTP(14)=10 has now been extended so that it also works for deep
inelastic scattering of an electron off a (real) photon, i.e. subprocess 10. What
is obtained is a mixture of the photon acting as a vector meson and it acting as
an anomalous state. This should therefore be the sum of what can be obtained
with MSTP(14)=2 and =3. It is distinct from MSTP(14)=1 in that different sets
are used for the parton distributions — in MSTP(14)=1 all the contributions to
the photon distributions are lumped together, while they are split in VMD and
anomalous parts for MSTP(14)=10. Also the beam remnant treatment is differ-
ent, with a simple Gaussian distribution (at least by default) for MSTP(14)=1
and the VMD part of MSTP(14)=10, but a powerlike distribution dk?)/k? be-
tween PARP(15) and () for the anomalous part of MSTP(14)=10. (PYINIT,
PYINPR and PYSTAT changed.)

To access this option for e and 74 as incoming beams, it is only necessary to
set MSTP(14)=10 and keep MSEL at its default value. Unlike the corresponding
option for yp and v+, no cuts are overwritten, i.e. it is still the responsabil-
ity of the user to set these appropriately. Those especially appropriate for
DIS usage are CKIN(21)-CKIN(22) or CKIN(23)-CKIN(24) for the z range
(former or latter depending on which side is the incoming real photon), and
CKIN(35)-CKIN(36) for the Q? range. A further new option has been added
(in PYKLIM) to set the W? range as well, see CKIN(39)-CKIN(40).

A warning about the usage of PDFLIB for photons. So long as MSTP(14)=1,1i.e.
the photon is not split up, PDFLIB is accessed by MSTP(56)=2 and MSTP(55)
the parton distribution set, as described in the manual. However, when the
VMD and anomalous pieces are split, the VMD part is based on a rescaling of
pion distributions by VMD factors (except for the SaS sets, that already come
with a separate VMD piece). Therefore, to access PDFLIB for MSTP(14)=10, it
is not correct to set MSTP(56)=2 and a photon distribution in MSTP(55). In-
stead, one should put MSTP (56)=2, MSTP (54)=2 and a pion distribution code in
MSTP(53), while MSTP(55) has no function. The anomalous part is still based
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on the SaS parametrization, with PARP(15) as main free parameter.

o A change has been made in PYREMN to reduce the possibility of infinite loops.
13. PYTHIA version 5.713, 22 March 1995:

e The SaS parton distributions of the photons are now available, see [Sch95].

There are four new sets. These differ in that two use a Qg = 0.6 GeV and two
a Qo = 2 GeV, and in that two use the DIS and two the MS conventions for
the dominant non-leading contributions. (However, the fits are formally still
leading-order, in that not all next-to-leading contributions have been included.)
New default is the SaS 1D set. Furthermore, for the definition of F;', additional
terms appear that do not form part of the parton distributions itself. To partly
take this into account, an additional doubling of the possibilities has been
included. These eight possibilites can be accesed with MSTP(55). The default
value of PARP(15) has been changed from 0.5 to 0.6 GeV, for consistency with
SaS 1D.

The generic routine PYSTFU has been rewritten to handle the interfacing. The
old routines PYSTAG, PYSTGS, PYDILN and PYSTHG have been removed. Instead
the routines of the SASGAM library have been inserted. In order to avoid any
clashes, the routines SAS*** have been renamed PYG***. Thus new routines
are PYGGAM, PYGVMD, PYGANO, PYGBEH and PYGDIR. The common block SASCOM
is renamed PYINT8. If you want to use the parton distributions for standalone
purposes, you are encouraged to use the original SASGAM routines rather than
going the way via the PYTHIA adaptations.

e PYDOCU has been corrected so that PARI(2) refers to the full cross section for
~p and ~~ processes, rather than that of the latest subprocess considered.

e An additional check has been inserted into PYREMN.

14. PYTHIA version 5.714, 22 March 1995:

e Some minor modifications to PYSTFU and PYGGAM in the wake of the changes
of the previous version.

15. PYTHIA version 5.715, 24 April 1995:

e An unfortunate choice of default values has been corrected: the old MSTP(3)=2
value implied that Aqcp was entirely based on the A value of the proton struc-
ture function; also e.g. for ete™ annihilation events. Thus the A in PARJ(81)
was overwritten, i.e. did not keep the value required by standard phenomenol-
ogy, which typically gave too narrow jets. (While switching to MSTP(3)=1 it
worked fine.) In the modified option MSTP (3) =2 this has been corrected, to bet-
ter agree with user expectations. Since further changes were made in version
5.716, we refer below for additional comments.

e The form for PTMANO, the p, i, for anomalous processes, as used in PYINPR
when processes are mixed for yp or v events, has been updated to match (as
well as can be expected) the SaS 1D photon distributions.

16. PYTHIA version 5.716, 30 June 1995:

o The strategy for the changes to A in version 5.715 above have been modified
for better transparency. Now PARJ(81) is used for resonance decays (including
e.g. Z° decay, from which it is determined), and PARP(72) for other time-
like showers. PARJ(81) is not overwritten for MSTP(3)=2, but only for =3.
Changes affect PYINIT, PYEVNT and PYRESD.

e A new multiplicative factor has been introduced for the Q? scale choice of the
hard scattering in PYSIGH, affecting parton distributions and ag, see PARP(34).
PYREMN has been corrected for occasional too large boost factors.

An error in PYSIGH for process 148 has been corrected.
The MSTP(62)=1 option of PYSSPA is modified to avoid division by zero.
Header has been updated with WWW-information.
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17. PYTHIA version 5.717, 23 August 1995:
e MIN1, MIN2, MAX1, MAX2, MINA and MAXA in PYSIGH have had an extra M prefixed
to avoid confusion with Fortran functions.
Protect against MDCY(0,1) being accessed in PYSIGH.
Protect against THB=0 in PYRAND.
Protect against YSTMAX-YSTMIN = O in PYSIGH.
Check for moved leptoquark at beginning of PYRESD just like for other particles
with colour.

3.2 Program Installation

Several ‘authorized’ sources of the programs exist. The ‘master copy’ of the programs is
the one found on my World Wide Web homepage
http://thep.lu.se/tf2/staff/torbjorn/Welcome.html

There you have:

jetset74.f the JETSET code,

pythiab7.f the PYTHIA code,

pythiab7.tex  this common PYTHIA /JETSET manual, and
updateb57.notes plain text update notes to the manual.

In addition to these, one may also find older versions of the program and manuals, sample
main programs and other pieces of related software, and other physics papers.

The lack of stable versions may make it less convenient to rely on the above files.
New versions are introduced in the general distribution of the CERN program library,
maybe once a year. These versions are better checked before release, and should be useful
for most applications. However, clearly, they may be less up-to-date. Read the CERN
Computer Newsletter for announcements. Copies of the programs are also available via
anonymous ftp, e.g. from the asisftp server at CERN.

The programs are written entirely in standard Fortran 77, and should run on any
machine with such a compiler. To a first approximation, program compilation should
therefore be straightforward.

Unfortunately, experience with many different compilers has been uniform: the options
available for obtaining optimized code actually produce erroneous code (e.g. operations
inside DO loops are moved out before them, where some of the variables have not yet been
properly set). Therefore the general advice is to use a low optimization level. Note that
this is often not the default setting.

SAVE statements have been included in accordance with the Fortran standard. Since
most ordinary machines take SAVE for granted, this part is not particularly well tried out,
however.

All default settings and particle and process data are stored in BLOCK DATA LUDATA for
JETSET and BLOCK DATA PYDATA for PYTHIA. These subprograms must be linked for a
proper functioning of the other routines. On some machines this is not done automatically
but must be forced by you, in particular if JETSET and PYTHIA are maintained as libraries
from which routines are to be loaded only when they are needed. In this connection we
note that the library approach does not give any significant space advantages over a
loading of the packages as a whole, since a normal run will call on most of the routines
anyway, directly or indirectly.

Since most machines in current use are 32-bit ones, this is the precision normally
assumed. A few pieces of code have therefore had to be written in double precision. As
a rule of thumb, double-precision variables have as first character D, but there are a few
exceptions.

For applications at very high energies, such as LHC, the use of single precision for any
real variable is a problem. It might then be necessary to rewrite the program completely,
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i.e. to have a declaration IMPLICIT DOUBLE PRECISION(A-H,0-Z) at the beginning of
each subprogram, and to change all real constants to double precision. Needless to say,
the latter is a major undertaking. In some cases, shortcuts are available. On the IBM,
for instance, the AUTODBL compiler option for automatic precision doubling works fine,
provided only that an even number of integers precede real numbers in common blocks. In
JETSET you therefore need to introduce an additional integer variable (NPAD, say) directly
after N in the LUJETS common block, and in PYTHIA an additional integer (MSEPAD) after
MSEL in the PYSUBS common block. Some pieces of code will then actually run in quadruple
precision.

A test program, LUTEST, is included in the JETSET package. It is disguised as a
subroutine, so you have to run a main program

CALL LUTEST(1)
END

This program will generate six hundred events of different types, under a variety of con-
ditions. If JETSET has not been properly installed, this program is likely to crash, or
at least generate a number of erroneous events. This will then clearly be marked in the
output, which otherwise will just contain a few sample event listings and a table of the
number of different particles produced. To switch off the output of normal events and
final table, use LUTEST(0) instead of LUTEST(1). The final tally of errors detected should
read 0.

In exactly the same vein, a test program PYTEST comes with the PYTHIA package.
You then have to run a program

CALL PYTEST(1)
END

As before the alternative PYTEST(0) will give a less extensive listing. No errors should
appear during execution.

3.3 Program Philosophy

The Monte Carlo programs are built as slave systems, i.e. you, the user, have to supply
the main program. From this the various subroutines are called on to execute specific
tasks, after which control is returned to the main program. Some of these tasks may be
very trivial, whereas the ‘high-level’ routines by themselves may make a large number of
subroutine calls. Many routines are not intended to be called directly by you, but only
from higher-level routines such as LUEXEC, LUEEVT, PYINIT or PYEVNT.

Basically, this means that there are three ways by which you communicate with the
programs. First, by setting common block variables, you specify the details of how the
programs should perform specific tasks, i.e. which subprocesses should be generated (for
PyYTHIA), which particle masses should be assumed, which coupling constants used, which
fragmentation scenarios, and so on with hundreds of options and parameters. Second,
by calling subroutines you tell the programs to generate events according to the rules
established above. Normally there are few subroutine arguments, and those are usually
related to details of the physical situation, such as what c.m. energy to assume for events.
Third, you can either look at the common block LUJETS to extract information on the
generated event, or you can call on various functions and subroutines to analyse the event
further for you.

It should be noted that, while the physics content is obviously at the centre of at-
tention, the JETSET/PYTHIA package also contains a very extensive setup of auxiliary
service routines. The hope is that this will provide a comfortable working environment,
where not only events are generated, but where you also linger on to perform a lot of the
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subsequent studies. Of course, for detailed studies, it may be necessary to interface the
output directly to a detector simulation program.

The general rule is that all routines have names that are six characters long, beginning
with LU for JETSET routines and PY for PYTHIA ones. Real-valued functions in JETSET
begin with UL instead. There are three exceptions to both the length and the initial
character rules: KLU, PLU and RLU. The former two functions are strongly coupled to the
K and P matrices in the LUJETS common block, the latter uses R to emphasize the role as
a random-number generator. Also common block names are six characters long and start
with LU or PY.

On the issue of initialization, JETSET and PYTHIA behave quite differently. Most
JETSET routines work without any initialization (except for the one implied by the pres-
ence of BLOCK DATA LUDATA, see above), i.e. each event and each task stand on their own.
Current common block values are used to perform the tasks in specific ways, and those
rules can be changed from one event to the next (or even within the generation of one
and the same event) without any penalty. The random-number generator is initialized at
the first call, but usually this is transparent. Therefore the two JETSET routines LUEEVT
(and some of the routines called by it) and LUONIA are basically the only ones to contain
some elements of initialization, where there are a few advantages if events are generated
in a coherent fashion, but even here the penalty for not doing it is small.

In PYTHIA, on the other hand, a sizeable amount of initialization is performed in the
PYINIT call, and thereafter the events generated by PYEVNT all obey the rules established
at that point. Therefore common block variables that specify methods to be used have to
be set before the PYINIT call and then not be changed afterwards, with few exceptions.
Of course, it is possible to perform several PYINIT calls in the same run, but there is a
significant time overhead involved, so this is not something one would do for each new
event.

Apart from writing a title page, giving a brief initialization information, printing error
messages if need be, and responding to explicit requests for listings, all tasks of the
programs are performed ‘silently’. All output is directed to unit MSTU(11), by default
6, and it is up to you to set this unit open for write. The only exceptions are RLUGET,
RLUSET and LUUPDA where, for obvious reasons, the input/output file number is specified
at each call. Here you again have to see to it that proper read/write access is set.

The programs are extremely versatile, but the price to be paid for this is having a
large number of adjustable parameters and switches for alternative modes of operation.
No single user is ever likely to need more than a fraction of the available options. Since
all these parameters and switches are assigned sensible default values, there is no reason
to worry about them until the need arises.

Unless explicitly stated (or obvious from the context) all switches and parameters can
be changed independently of each other. One should note, however, that if only a few
switches/parameters are changed, this may result in an artificially bad agreement with
data. Many disagreements can often be cured by a subsequent retuning of some other
parameters of the model, in particular those that were once determined by a comparison
with data in the context of the default scenario. For example, for ete™ annihilation, such
a retuning could involve one QCD parameter (o, or A), the longitudinal fragmentation
function, and the average transverse fragmentation momentum.

The programs contain a number of checks that requested processes have been imple-
mented, that flavours specified for jet systems make sense, that the energy is sufficient to
allow hadronization, that the memory space in LUJETS is large enough, etc. If anything
goes wrong that the program can catch (obviously this may not always be possible), an
error message will be printed and the treatment of the corresponding event will be cut
short. In serious cases, the program will abort. As long as no error messages appear on
the output, it may not be worthwhile to look into the rules for error checking, but if but
one message appears, it should be enough cause for alarm to receive prompt attention.
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Also warnings are sometimes printed. These are less serious, and the experienced user
might deliberately do operations which go against the rules, but still can be made to
make sense in their context. Only the first few warnings will be printed, thereafter the
program will be quiet. By default, the program is set to stop execution after ten errors,
after printing the last erroneous event.

It must be emphasized that not all errors will be caught. In particular, one tricky ques-
tion is what happens if an integer-valued common block switch or subroutine/function
argument is used with a value that is not defined. In some subroutine calls, a prompt
return will be expedited, but in most instances the subsequent action is entirely unpre-
dictable, and often completely haywire. The same goes for real-valued variables that are
assigned values outside the physically sensible range. One example will suffice here: if
PARJ(2) is defined as the s/u suppression factor, a value > 1 will not give more profuse
production of s than of u, but actually a spillover into ¢ production. Users, beware!

3.4 Manual Conventions

In the manual parts of this report, some conventions are used. All names of subprograms,
common blocks and variables are given in upper-case ‘typewriter’ style, e.g. MSTP(111)=0.
Also program examples are given in this style.

If a common block variable must have a value set at the beginning of execution, then
a default value is stored in one of the block data subprograms LUDATA and PYDATA. Such
a default value is usually indicated by a ‘(D=...)’ immediately after the variable name,
e.g.

MSTJI(1) : (D=1) choice of fragmentation scheme.

All variables in the JETSET common blocks (with very few exceptions, clearly marked)
can be freely changed from one event to the next, or even within the treatment of one
single event. In the PYTHIA common blocks the situation is more complicated. The
values of many switches and parameters are used already in the PYINIT call, and cannot
be changed after that. The problem is mentioned in the preamble to the afflicted common
blocks, which in particular means /PYPARS/ and /PYSUBS/. For the variables which may
still be changed from one event to the next, a ‘(C)’is added after the ‘(D=...)’ statement.

Normally, variables internal to the program are kept in separate common blocks and
arrays, but in a few cases such internal variables appear among arrays of switches and
parameters, mainly for historical reasons. These are denoted by ‘(R)’ for variables you
may want to read, because they contain potentially interesting information, and by ‘(I)’
for purely internal variables. In neither case may the variables be changed by you.

In the description of a switch, the alternatives that this switch may take are often
enumerated, e.g.

MSTJI(1) : (D=1) choice of fragmentation scheme.

=0 : no jet fragmentation at all.

=1 : string fragmentation according to the Lund model.

=2 : independent fragmentation, according to specification in MSTJ(2) and
MSTJ(3).

If you then use any value other than 0, 1 or 2, results are unpredictable. The action could
even be different in different parts of the program, depending on the order in which the
alternatives are identified.

It is also up to you to choose physically sensible values for parameters: there is no
check on the allowed ranges of variables. We gave an example of this at the end of the
preceding section.

Subroutines you are expected to use are enclosed in a box at the point where they are

defined:
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CALL LULIST(MLIST)

This is followed by a description of input or output parameters. The difference between
input and output is not explicitly marked, but should be obvious from the context. In
fact, the event-analysis routines of section 15.4 return values, while all the rest only have
input variables.

Routines that are only used internally are not boxed in. However, we use boxes for all
common blocks, so as to enhance the readability.

3.5 Getting Started with JETSET

As a first example, assume that you want to study the production of uu 2-jet systems at
20 GeV energy. To do this, write a main program

CALL LU2ENT(0,2,-2,20.)
CALL LULIST(1)
END

and run this program, linked together with JETSET. The routine LU2ENT is specifically
intended for storing two entries (jets or particles). The first argument (0) is a command
to perform fragmentation and decay directly after the entries have been stored, the second
and third that the two entries are u (2) and @ (—2), and the last that the c.m. energy of
the pair is 20 GeV. When this is run, the resulting event is stored in the LUJETS common
block. This information can then be read out by you. No output is produced by LU2ENT
itself, except for a title page which appears once for every JETSET/PYTHIA run.

Instead the second command, to LULIST, provides a simple visible summary of the
information stored in LUJETS. The argument (1) indicates that the short version should
be used, which is suitable for viewing the listing directly on an 80-column terminal screen.
It might look as shown here.

Event listing (summary)

I particle/jet KS KF orig p_x P-¥ pP-2 E m

1 (w) A 12 2 0 0.000 0.000 10.000 10.000 0.006
2 (u”) vV 11 -2 0 0.000 0.000 -10.000 10.000 0.006
3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000
4 (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885
5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781
6 pit 1 211 3 0.125 -0.266 0.097 0.339 0.140
7 (Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.8556 1.193
8 (Kx+) 11 323 3 -0.124 0.709 -2.763 2.968 0.846
9 p”- 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938
10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140
11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140
12 (pio0) 11 111 4 -0.011 0.301 0.546 0.638 0.135
13 pi- 1 -211 5 0.089 0.343 2.089 2.124 0.140
14 (pio0) 11 111 5 -0.316 -0.197 4.449 4.467 0.135
15 (Lambda0) 11 3122 7 -0.208 0.014 -1.403 1.804 1.116
16 gamma 1 22 7 -0.046 0.020 0.006 0.050 0.000
17 K+ 1 321 8 -0.084 0.299 -2.139 2.217 0.494
18 (pio0) 11 111 8 -0.040 0.410 -0.614 0.751 0.135
19 gamma 1 22 12 0.059 0.146 0.224 0.274 0.000
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20 gamma 1 22 12 -0.070 0.165 0.322 0.364 0.000
21 gamma 1 22 14 -0.322 -0.162 4.027 4.043 0.000
22 gamma 1 22 14 0.006 -0.035 0.422 0.423 0.000
23 p+ 1 2212 15 -0.178 0.033 -1.343 1.649 0.938
24 pi- 1 -211 15 -0.030 -0.018 -0.059 0.156 0.140
25 gamma 1 22 18 -0.006 0.384 -0.585 0.699 0.000
26 gamma 1 22 18 -0.034 0.026 -0.029 0.052 0.000

sum: 0.00 0.000 0.000 0.000 20.000 20.000

(A few blanks have been removed between the columns to make it fit into the format
of this text.) Look in the particle/jet column and note that the first two lines are the
original u and U, where ‘bar’ is actually written ‘~’ to save space in longer names. The
parentheses enclosing the names, ‘(u)’ and ‘(u~)’, are there as a reminder that these jets
actually have been allowed to fragment. The jets are still retained so that event histories
can be studied. Also note that the KF (flavour code) column contains 2 in the first line
and —2 in the second. These are the codes actually stored to denote the presence of
a u and a 1, cf. the LU2ENT call, while the names written are just conveniences used
when producing visible output. The A and V near the end of the particle/jet column
indicate the beginning and end of a string (or cluster, or independent fragmentation)
parton system; any intermediate entries belonging to the same system would have had an
I in that column. (This gives a poor man’s representation of an up-down arrow, J.)

In the orig (origin) column, the zeros indicate that u and U are two initial entries.
The subsequent line, number 3, denotes the fragmenting ud string system as a whole, and
has origin 1, since the first parton of this string system is entry number 1. The particles
in lines 4-10 have origin 3 to denote that they come directly from the fragmentation of
this string. In string fragmentation it is not meaningful to say that a particle comes from
only the u quark or only the @ one. It is the string system as a whole that gives a p*, a
p,ant, aX aK*", ap,and a 7~. Note that some of the particle names are again
enclosed in parentheses, indicating that these particles are not present in the final state
either, but have decayed further. Thus the 7~ in line 13 and the #° in line 14 have origin
5, as an indication that they come from the decay of the p~ in line 5. Only the names
not enclosed in parentheses remain at the end of the fragmentation/decay chain, and
are thus experimentally observable. The actual status code used to distinguish between
different classes of entries is given in the KS column; codes in the range 1-10 correspond
to remaining entries, and those above 10 to those that have fragmented or decayed.

The columns with px, p_y, p-z, E and m are quite self-explanatory. All momenta,
energies and masses are given in units of GeV, since the speed of light is taken to be ¢ = 1.
Note that energy and momentum are conserved at each step of the fragmentation/decay
process (although there exist options where this is not true). Also note that the z axis
plays the role of preferred direction, along which the original partons are placed. The final
line is intended as a quick check that nothing funny happened. It contains the summed
charge, summed momentum, summed energy and invariant mass of the final entries at the
end of the fragmentation/decay chain, and the values should agree with the input implied
by the LU2ENT arguments. (In fact, warnings would normally appear on the output if
anything untoward happened, but that is another story.)

The above example has illustrated roughly what information is to be had in the event
record, but not so much about how it is stored. This is better seen by using a 132-column
format for listing events. Try e.g. the following program

CALL LU3ENT(0,1,21,-1,30.,0.9,0.7)
CALL LULIST(2)

CALL LUEDIT(3)

CALL LULIST(2)

END
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where a 3-jet dgd event is generated in the first line and listed in the second. This listing
will contain the numbers as directly stored in the common block LUJETS

COMMON/LUJETS/N,K (4000,5) ,P(4000,5),V(4000,5)

For particle I, K(I,1) thus gives information on whether or not a jet or particle has
fragmented or decayed, K(I,2) gives the particle code, K(I,3) its origin, K(I,4) and
K(I,5) the position of fragmentation/decay products, and P(I,1)-P(I,5) momentum,
energy and mass. The number of lines in current use is given by N,i.e. 1 < I < N. The V
matrix contains decay vertices; to view those LULIST(3) has to be used. It is important
to learn the rules for how information is stored in LUJETS.

The third line in the program illustrates another important point about JETSET: a
number of routines are available for manipulating the event record after the event has
been generated. Thus LUEDIT(3) will remove everything except stable charged particles,
as shown by the result of the second LULIST call. More advanced possibilities include
things like sphericity or clustering routines.

Apart from the input arguments of subroutine calls, control on the doings of JETSET
may be imposed via the LUDAT1, LUDAT2, LUDAT3 and LUDAT4 common blocks. Here
sensible default values are always provided. A user might want to switch off all particle
decays by putting MSTJ(21)=0 or increase the s/u ratio in fragmentation by putting
PARJ(2)=0.40, to give but two examples. It is by exploring the possibilities offered here
that JETSET can be turned into an extremely versatile tool, even if all the nice physics is
already present in the default values.

As a final, semirealistic example, assume that the p, spectrum of 71 particles is to
be studied in 91.2 GeV ete™ annihilation events, where p, is to be defined with respect
to the sphericity axis. Using the HBOOK package (version 4, watch out for version- or
installation-specific differences) for histogramming, a complete program might look like

C...Common blocks.
COMMON/LUJETS/N,K (4000,5) ,P(4000,5),Vv(4000,5)
COMMON/PAWC/HMEMOR (10000)

C...Reserve histogram memory and book histograms.
CALL HLIMIT(10000)
CALL HBOOK1(1,’pT spectrum of pi+’,100,0.,5.,0.)

C...Number of events to generate. Loop over events.
NEVT=100
DO 110 IEVT=1,NEVT

C...Generate event. List first one.
CALL LUEEVT(0,91.2)
IF(IEVT.EQ.1) CALL LULIST(1)

C...Find sphericity axis and rotate event so sphericity along z axis.
CALL LUSPHE (SPH,APL)
CALL LUEDIT(31)

C...Loop over all particles, but skip if not pi+.
DO 100 I=1,N
IF(K(I,2).NE.211) GOTO 100

C...Calculate pT and fill in histogram.
PT=SQRT(P(I,1)**2+P(I,2)%%2)
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CALL HF1(1,PT,1.)

C...End of particle and event loops.
100 CONTINUE
110 CONTINUE

C...Normalize histogram properly and list it.
CALL HOPERA(1,’+’,1,1,20./NEVT,0.)
CALL HISTDO

END

Study this program, try to understand what happens at each step, and run it to check
that it works. You should then be ready to look at the relevant sections of this report
and start writing your own programs.

3.6 Getting Started with PYTHIA

A PYTHIA run has to be more strictly organized than a JETSET one, in that it is necessary
to initialize the generation before events can be generated, and in that it is not possible
to change switches and parameters freely during the course of the run. A fairly precise
recipe for how a run should be structured can therefore be given.
Thus, the usage of PYTHIA can be subdivided into three steps.
1. The initialization step. It is here that all the basic characteristics of the coming
generation are specified. The material in this section includes the following.

o Common blocks, at least the following, and maybe some more:
COMMON/LUJETS/N,K(4000,5) ,P(4000,5),V(4000,5)
COMMON/LUDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/PYSUBS/MSEL,MSUB (200) ,KFIN(2,-40:40),CKIN(200)
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI(200) ,PARI(200)

o Selection of required processes. Some fixed ‘menus’ of subprocesses can be

selected with different MSEL values, but with MSEL=0 it is possible to compose
‘a la carte’, using the subprocess numbers. To generate processes 14, 18 and
29, for instance, one needs

MSEL=0

MSUB(14)=1

MSUB(18)=1

MSUB(29)=1

o Selection of kinematics cuts in the CKIN array. To generate hard scatterings

with 5 GeV < p;, < 10 GeV, for instance, use

CKIN(3)=5.

CKIN(4)=10.
Unfortunately, initial- and final-state radiation will shift around the kinematics
of the hard scattering, making the effects of cuts less predictable. One therefore
always has to be very careful that no desired event configurations are cut out.

o Definition of underlying physics scenario, e.g. top mass.

o Selection of parton-distribution sets, Q? definitions, and all other details of the

generation.

o Switching off of generator parts not needed for toy simulations, e.g. fragmen-

tation for parton level studies.

o Initialization of the event generation procedure. Here kinematics is set up,

maxima of differential cross sections are found for future Monte Carlo gen-
eration, and a number of other preparatory tasks carried out. Initialization
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is performed by PYINIT, which should be called only after the switches and
parameters above have been set to their desired values. The frame, the beam
particles and the energy have to be specified.

CALL PYINIT(’CMS’,’p’,’pbar’,1800.)

o Any other initial material required by the user, e.g. histogram booking.

2. The generation loop. It is here that events are generated and studied. It includes
the following tasks:

e Generation of the next event, with

CALL PYEVNT
e Printing of a few events, to check that everything is working as planned, with
CALL LULIST(1)

e An analysis of the event for properties of interest, either directly reading out
information from the LUJETS common block or making use of a number of
utility routines in JETSET.

e Saving of events on tape, or interfacing to detector simulation.

3. The finishing step. Here the tasks are:

e Printing a table of deduced cross sections, obtained as a by-product of the

Monte Carlo generation activity, with the command
CALL PYSTAT(1)

e Printing histograms and other user output.

To illustrate this structure, imagine a toy example, where one wants to simulate the
production of a 300 GeV Higgs particle. In PYTHIA, a program for this might look
something like the following.

C...Common blocks.
COMMON/LUJETS/N,K (4000,5) ,P(4000,5),Vv(4000,5)
COMMON/LUDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
COMMON/LUDAT2/KCHG(500,3) ,PMAS(500,4) ,PARF (2000) ,VCKM(4,4)
COMMON/LUDAT3/MDCY (500,3) ,MDME (2000, 2) ,BRAT (2000) ,KFDP (2000, 5)
COMMON/PYSUBS/MSEL ,MSUB(200) ,KFIN(2,-40:40) ,CKIN(200)
COMMON/PYPARS/MSTP (200) ,PARP (200) ,MSTI (200) ,PARI(200)
COMMON/PAWC/HBOOK (10000)

C...Number of events to generate. Switch on proper processes.
NEV=1000
MSEL=0
MSUB(102)=1
MSUB(123)=1
MSUB(124)=1

C...Select t and H masses and kinematics cuts in mass.
PMAS(6,1)=140.
PMAS (25,1)=300.
CKIN(1)=290.
CKIN(2)=310.

C...For simulation of hard process only: cut out unnecessary tasks.
MSTP(61)=0
MSTP(71)=0
MSTP(81)=0
MSTP(111)=0
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C...Initialize and list partial widths.
CALL PYINIT(’CMS’,’p’,’p’,16000.)
CALL PYSTAT(2)

C...Book histograms.
CALL HLIMIT(10000)
CALL HBOOK1(1,’Higgs mass’,50,275.,325.,0.)

C...Generate events. Look at first few.
DO 200 IEV=1,NEV
CALL PYEVNT
IF(IEV.LE.3) CALL LULIST(1)

C...Loop over particles to find Higgs and histogram its mass.
DO 100 I=1,N
100 IF(K(I,2).EQ.25) HMASS=P(I,5)
CALL HF1(1,HMASS,1.)
200 CONTINUE

C...Print cross sections and histograms.
CALL PYSTAT(1)
CALL HISTDO

END

Here 102, 123 and 124 are the three main Higgs production graphs gg — H, ZZ — H,
and WW — H, and MSUB(ISUB)=1 is the command to switch on process ISUB. Full
freedom to combine subprocesses ‘a la carte’ is ensured by MSEL=0; ready-made ‘menus’
can be ordered with other MSEL numbers. The PMAS commands set the masses of the top
quark and the Higgs itself, and the CKIN variables the desired mass range of the Higgs
— a Higgs with a 300 GeV nominal mass actually has a fairly broad Breit—Wigner type
mass distribution. The MSTP switches that come next are there to modify the generation
procedure, in this case to switch off initial- and final-state radiation, multiple interactions
among beam jets, and fragmentation, to give only the ‘parton skeleton’ of the hard process.
The PYINIT call initializes PYTHIA, by finding maxima of cross sections, recalculating the
Higgs decay properties (which depend on the Higgs mass), etc. The decay properties can
be listed with PYSTAT(2).

Inside the event loop, PYEVNT is called to generate an event, and LULIST(1) to list
the event. The information used by LULIST(1) is the event record, stored in the common
block LUJETS. Here one finds all produced particles, both final and intermediate ones, with
information on particle species and event history (K array), particle momenta (P array)
and production vertices (V array). In the loop over all particles produced, 1 through N,
the Higgs particle is found by its code, K(I,2)=25, and its mass is stored in P(I,5).

After all events have been generated, PYSTAT(1) gives a summary of the number of
events generated in the various allowed channels, and the inferred cross sections.

In the run above, a typical event listing might look like the following.

Event listing (summary)

I particle/jet KF p_x P-¥ pP-2 E m
1 !p+! 2212 0.000 0.000 8000.000 8000.000 0.938
2 Ip+! 2212 0.000 0.000-8000.000 8000.000 0.938



3 Ig! 21 -0.506 -0.229 28.563 28.5568 0.000
4 !g! 21 0.224 0.041 -788.073 788.073 0.000
5 Ig! 21 -0.506 -0.229 28.563 28.5568 0.000
6 !g! 21 0.224 0.041 -788.073 788.073 0.000
7 'HO! 25 -0.281 -0.188 -759.520 816.631 300.027
8 IW+! 24 120.648 35.239 -397.843 424.829 80.023
9 IW-! -24 -120.929 -35.426 -361.677 391.801 82.579
10 let! -11 12.922 -4.760 -160.940 161.528 0.001
11 'nu_e! 12 107.726 39.999 -236.903 263.302 0.000
12 !s! 3 -62.423 7.195 -266.713 264.292 0.199
13 !tc™! -4 -58.506 -42.621 -104.963 127.509 1.350
14 (HO) 25 -0.281 -0.188 -759.520 816.631 300.027
15 (W+) 24 120.648 35.239 -397.843 424.829 80.023
16 (W-) -24 -120.929 -35.426 -361.677 391.801 82.579
17 e+ -11 12.922 -4.760 -160.940 161.528 0.001
18 nu_e 12 107.726 39.999 -236.903 263.302 0.000
19 s A 3 -62.423 7.195 -266.713 264.292 0.199
20 ¢~ v -4 -58.506 -42.621 -104.963 127.509 1.350
21 ud_1 A 2103 -0.101 0.176 7971.328 7971.328 0.771
22 d v 1 -0.316 0.001 -87.390 87.390 0.010
23 u A 2 0.606 0.052 -0.7b1 0.967 0.006
24 uu_1 v 2203 0.092 -0.042-7123.668 7123.668 0.771

sum: 2.00 0.00 0.00 0.00 15999.98 15999.98

The above event listing is abnormally short, in part because some columns of information
were removed to make it fit into this text, in part because all initial- and final-state QCD
radiation, all non-trivial beam jet structure, and all fragmentation was inhibited in the
generation. Therefore only the skeleton of the process is visible. In lines 1 and 2 one
recognizes the two incoming protons. In lines 3 and 4 are incoming partons before initial-
state radiation and in 5 and 6 after — since there is no such radiation they coincide here.
Line 7 shows the Higgs produced by gg fusion, 8 and 9 its decay products and 10-13 the
second-step decay products. Up to this point lines give a summary of the event history,
indicated by the exclamation marks that surround particle names (and also reflected in
the K(I,1) code, not shown). From line 14 onwards come the particles actually produced
in the final states, first in lines 14-16 particles that subsequently decayed, which have
their names surrounded by brackets, and finally the particles and jets left in the end,
including beam remnants. Here this also includes a number of unfragmented jets, since
fragmentation was inhibited. Ordinarily, the listing would have gone on for a few hundred
more lines, with the particles produced in the fragmentation and their decay products.
The final line gives total charge and momentum, as a convenient check that nothing
unexpected happened. The first column of the listing is just a counter, the second gives
the particle name and information on status and string drawing (the A and V), the third
the particle-flavour code (which is used to give the name), and the subsequent columns
give the momentum components.

One of the main problems is to select kinematics efficiently. Imagine for instance that
one is interested in the production of a single 7Z with a transverse momentum in excess of
50 GeV. If one tries to generate the inclusive sample of Z events, by the basic production
graphs qq — Z, then most events will have low transverse momenta and will have to be
discarded. That any of the desired events are produced at all is due to the initial-state
generation machinery, which can build up transverse momenta for the incoming q and
q. However, the amount of initial-state radiation cannot be constrained beforehand. To
increase the efficiency, one may therefore turn to the higher-order processes qg — Zq
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and qq — Zg, where already the hard subprocess gives a transverse momentum to the
Z. This transverse momentum can be constrained as one wishes, but again initial- and
final-state radiation will smear the picture. If one were to set a p; cut at 50 GeV for
the hard-process generation, those events where the 7Z was given only 40 GeV in the hard
process but got the rest from initial-state radiation would be missed. Not only therefore
would cross sections come out wrong, but so might the typical event shapes. In the end,
it is therefore necessary to find some reasonable compromise, by starting the generation
at 30 GeV, say, if one knows that only rarely do events below this value fluctuate up to
50 GeV. Of course, most events will therefore not contain a Z above 50 GeV, and one will
have to live with some inefficiency. It is not uncommon that only one event out of ten
can be used, and occasionally it can be even worse.

If it is difficult to set kinematics, it is often easier to set the flavour content of a process.
In a Higgs study, one might wish, for example, to consider the decay H® — Z°Z°, with
each Z° — eTe™ or ptpu~. It is therefore necessary to inhibit all other H® and Z° decay
channels, and also to adjust cross sections to take into account this change, all of which
is fairly straightforward. However, if one wanted to consider instead the decay Z° — ct,
with a D meson producing a lepton, not only would there then be the problem of different
leptonic branching ratios for different D:s (which means that fragmentation and decay
treatments would no longer decouple), but also that of additional c¢ pair production in
parton-shower evolution, at a rate that is unknown beforehand. In practice, it is therefore
impossible to force D decay modes in a consistent manner.
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4 Monte Carlo Techniques

Quantum mechanics introduces a concept of randomness in the behaviour of physical
processes. The virtue of event generators is that this randomness can be simulated by
the use of Monte Carlo techniques. In the process, the program authors have to use some
ingenuity to find the most efficient way to simulate an assumed probability distribution.
A detailed description of possible techniques would carry us too far, but in this section
some of the most frequently used approaches are presented, since they will appear in
discussions in subsequent sections. Further examples may be found e.g. in [Jam80].
First of all one assumes the existence of a random number generator. This is a (For-
tran) function which, each time it is called, returns a number R in the range between 0
and 1, such that the inclusive distribution of numbers R is flat in the range, and such that
different numbers R are uncorrelated. The random number generator that comes with
JETSET is described at the end of this section, and we defer the discussion until then.

4.1 Selection From a Distribution

The situation that is probably most common is that we know a function f(z) which
is non-negative in the allowed = range zn; < ¢ < Znax. We want to select an = ‘at
random’ so that the probability for a given  is proportional to f(z). Here f(z) might be
a fragmentation function, a differential cross section, or any of a number of distributions.

One does not have to assume that the integral of f(z) is explicitly normalized to unity:
by the Monte Carlo procedure of picking exactly one accepted = value, normalization is
implicit in the final result. Sometimes the integral of f(z) does carry a physics content
of its own, as part of an overall weight factor we want to keep track of. Consider, for
instance, the case when z represents one or several phase-space variables and f(z) a
differential cross section; here the integral has a meaning of total cross section for the
process studied. The task of a Monte Carlo is then, on the one hand, to generate events
one at a time, and, on the other hand, to estimate the total cross section. The discussion
of this important example is deferred to section 7.4.

If it is possible to find a primitive function F(z) which has a known inverse F~'(z),
an z can be found as follows (method 1):

/: f(z)de =R mmaxf(w)dw

min Zmin

= 2= FY(F(2min) + R(F(2max) — F(2min))) - (2)

The statement of the first line is that a fraction R of the total area under f(z) should be
to the left of . However, seldom are functions of interest so nice that the method above
works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider e.g. the generation of a Gaussian
f(z) = exp(—z?). This function is not integrable, but if we combine it with the same
Gaussian distribution of a second variable y, it is possible to transform to polar coordinates

f(z)dz f(y) dy = exp(—z® — y*)dz dy = r exp(—r*)drdep , (3)

and now the r and ¢ distributions may be easily generated and recombined to yield z.
At the same time we get a second number y, which can also be used. For the generation
of transverse momenta in fragmentation, this is very convenient, since in fact we want to
assign two transverse degrees of freedom.

If the maximum of f(z) is known, f(#) < fimax in the z range considered, a hit-or-miss
method will always yield the correct answer (method 2):

1. select an z with even probability in the allowed range, i.e. £ = Zmin+ B(Zmax — Tmin);

43



2. compare a (new) R with the ratio f(#)/fmax; If f(2)/fmax < R, then reject the z

value and return to point 1 for a new try;

3. otherwise the most recent z value is retained as final answer.

The probability that f(z)/fmax > R is proportional to f(z); hence the correct distribution
of retained = values. The efficiency of this method, i.e. the average probability that an
z will be retained, is ([ f(z)dz)/(fmax(®max — Tmin)). The method is acceptable if this
number is not too low, i.e. if f(z) does not fluctuate too wildly.

Very often f(z) does have narrow spikes, and it may not even be possible to define
an fpax- An example of the former phenomenon is a function with a singularity just
outside the allowed region, an example of the latter an integrable singularity just at the
Tmin and/or T,.x borders. Variable transformations may then be used to make a function
smoother. Thus a function f(z) which blows up as 1/z for ¢ — 0, with an i, close to
0, would instead be roughly constant if transformed to the variable y = In .

The variable transformation strategy may be seen as a combination of methods 1 and
2, as follows. Assume the existence of a function g(z), with f(z) < g(z) over the = range
of interest. Here g() is picked to be a ‘simple’ function, such that the primitive function
G(z) and its inverse G~'(z) are known. Then (method 3):

1. select an = according to the distribution g(z), using method 1;

2. compare a (new) R with the ratio f(z)/g(z); if f(z)/g(z) < R, then reject the z

value and return to point 1 for a new try;

3. otherwise the most recent z value is retained as final answer.

This works, since the first step will select z with a probability g(z)dz = dG(z) and the
second retain this choice with probability f(z)/g(z). The total probability to pick a value
z is then just the product of the two, i.e. f(z)dz.

If f(z) has several spikes, method 3 may work for each spike separately, but it may
not be possible to find a g(z) that covers all of them at the same time, and which still
has an invertible primitive function. However, assume that we can find a function g(z) =
> : 9i(z), such that f(z) < g(z) over the z range considered, and such that the functions
gi(z) each are non-negative and simple, in the sense that we can find primitive functions
and their inverses. In that case (method 4):

1. select an ¢ at random, with relative probability given by the integrals

[ 6(z) de = Gi(emms) — Gilwin) (4)

2. for the ¢ selected, use method 1 to find an z, i.e.
z = G;(Gi(@min) + R(Gi(Tmax) — Gi(#min))) 5 (5)

3. compare a (new) R with the ratio f(z)/g(z); if f(z)/g(z) < R, then reject the z

value and return to point 1 for a new try;

4. otherwise the most recent = value is retained as final answer.

This is just a trivial extension of method 3, where steps 1 and 2 ensure that, on the
average, each z value picked there is distributed according to g(z): the first step picks ¢
with relative probability [ ¢;(z) dz, the second # with absolute probability g;(z)/ [ ¢g:(z) d=
(this is one place where one must remember to do normalization correctly); the product
of the two is therefore g;(z) and the sum over all ¢ gives back g(z).

We have now arrived at an approach that is sufficiently powerful for a large selection
of problems. In general, for a function f(z) which is known to have sharp peaks in a few
different places, the generic behaviour at each peak separately may be covered by one
or a few simple functions g;(z), to which one adds a few more g;(z) to cover the basic
behaviour away from the peaks. By a suitable selection of the relative strengths of the
different g;’s, it is possible to find a function g(z) that matches well the general behaviour
of f(z), and thus achieve a reasonable Monte Carlo efficiency.
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The major additional complication is when z is a multidimensional variable. Usually
the problem is not so much f(z) itself, but rather that the phase-space boundaries may
be very complicated. If the boundaries factorize it is possible to pick phase-space points
restricted to the desired region. Otherwise the region may have to be inscribed in a hyper-
rectangle, with points picked within the whole hyper-rectangle but only retained if they
are inside the allowed region. This may lead to a significant loss in efficiency. Variable
transformations may often make the allowed region easier to handle.

There are two main methods to handle several dimensions, each with its set of vari-
ations. The first method is based on a factorized ansatz, i.e. one attempts to find a
function g(x) which is everywhere larger than f(x), and which can be factorized into
g(x) = ¢W(z1) g (zs)--- g™ (z,), where x = (z1,29,...,2,). Here each g\¥(z;) may
in its turn be a sum of functions gz(J), as in method 4 above. First, each z; is selected
independently, and afterwards the ratio f(x)/g(x) is used to determine whether to retain
the point.

The second method is useful if the boundaries of the allowed region can be written in
a form where the maximum range of z; is known, the allowed range of z, only depends
on z1, that of z3 only on z; and z,, and so on until #,, whose range may depend on all
the preceding variables. In that case it may be possible to find a function g(x) that can
be integrated over x, through z,, to yield a simple function of #;, according to which z; is
selected. Having done that, z, is selected according to a distribution which now depends
on z;, but with #3 through =z, integrated over. In particular, the allowed range for z, is
known. The procedure is continued until z,, is reached, where now the function depends
on all the preceding z; values. In the end, the ratio f(x)/g(x) is again used to determine
whether to retain the point.

4.2 The Veto Algorithm

The ‘radioactive decay’ type of problems is very common, in particular in parton showers,
but it is also used, e.g. in the multiple interactions description in PYTHIA. In this kind
of problems there is one variable ¢, which may be thought of as giving a kind of time axis
along which different events are ordered. The probability that ‘something will happen’
(a nucleus decay, a parton branch) at time ¢ is described by a function f(¢), which is
non-negative in the range of ¢ values to be studied. However, this naive probability is
modified by the additional requirement that something can only happen at time ¢ if it
did not happen at earlier times t' < ¢. (The original nucleus cannot decay once again
if it already did decay; possibly the decay products may decay in their turn, but that is
another question.)

The probability that nothing has happened by time ¢ is expressed by the function
N (t) and the differential probability that something happens at time ¢ by P(t). The
basic equation then is

dN

S N (6)

For simplicity, we shall assume that the process starts at time ¢t = 0, with A/(0) = 1.
The above equation can be solved easily if one notes that AN /N = dIn N:

N(t) = N(0) exp {— / CFe) dt'} — exp {— / “Ft) dt'} , (7)

P(t) =

and thus \
P = ftyesp {~ [ r(e)ar} . (8)

With f(t) = c this is nothing but the textbook formulae for radioactive decay. In partic-
ular, at small times the correct decay probability, P(t), agrees well with the input one,
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f(t), since the exponential factor is close to unity there. At larger ¢, the exponential
gives a dampening which ensures that the integral of P(t) never can exceed unity, even
if the integral of f(t) does. The exponential can be seen as the probability that nothing
happens between the original time 0 and the final time ¢. In the parton-shower language,
this is (almost) the so-called Sudakov form factor.

If f(t) has a primitive function with a known inverse, it is easy to select ¢ values
correctly:

/OtP(t') dt' = N(0) — N(£) = 1 — exp {_ /Otf(t’) dt'} ~1-R, (9)
which has the solution
F(0)-Ft)=InR = t=F'Y(F(0)—InR). (10)

If f(t) is not sufficiently nice, one may again try to find a better function g(¢), with
f(t) < g(t) for all ¢ > 0. However to use method 3 with this ¢g(¢) would not work, since
the method would not correctly take into account the effects of the exponential term in
P(t). Instead one may use the so-called veto algorithm:

1. start with : = 0 and ¢o = 0;

2. add 1 to 7 and select t; = G™'(G(¢;—1) — In R), i.e. according to g(t), but with the

constraint that ¢; > ;_1,

3. compare a (new) R with the ratio f(¢;)/g(t;); if f(¢:)/9(t;)) < R, then return to

point 2 for a new try;

4. otherwise t; is retained as final answer.

It may not be apparent why this works. Consider, however, the various ways in which
one can select a specific time ¢. The probability that the first try works, ¢ = ¢, i.e. that
no intermediate ¢ values need be rejected, is given by

Polt) = exp{—/otg(t') dt'} g(t) % _ f(t)exp{—/otg(t') dt'} , (11)

where the exponential times g(t) comes from eq. (8) applied to g, and the ratio f(t)/g(t)

is the probability that ¢ is accepted. Now consider the case where one intermediate time
t; is rejected and t = ¢, is only accepted in the second step. This gives

Pi(t) = /Ot dt, exp{—/otl o(t) dt'}g(tl) [1 _ f(tl)] exp{—/t:g(t') dt'}g(t)@ . (12)

g(t1) g(?)

where the first exponential times g(¢;) gives the probability that ¢; is first selected, the
square brackets the probability that ¢; is subsequently rejected, the following piece the
probability that ¢ = ¢, is selected when starting from ¢;, and the final factor that ¢ is
retained. The whole is to be integrated over all possible intermediate times ¢;. The
exponentials together give an integral over the range from 0 to ¢, just as in Py, and the
factor for the final step being accepted is also the same, so therefore one finds that

Pi(e) = Po(t) [ dtslg(ts) — F(t2)] - (13)

This generalizes. In P, one has to consider two intermediate times, 0 < t; <ty <3 =1,
and so

t1

Pa(t) = Polt) /Ot dis [g(t1) — f(t1)] t dts [g(t2) — f(t2)]
= Py ([ lot) - s ar) (14
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The last equality is most easily seen if one also considers the alternative region 0 < ¢, <
t; < t, where the roles of ¢; and ¢, have just been interchanged, and the integral therefore
has the same value as in the region considered. Adding the two regions, however, the
integrals over t; and t, decouple, and become equal. In general, for P;, the ¢ intermediate
times can be ordered in ¢! different ways. Therefore the total probability to accept ¢, in
any step, is

P = SP0 =P Y 5 ([ )~ Felar)

=0 v

— f(t)exp {— [ oty ar}exp /0 o) — (¢ ae'}
- f(t)exp{—/otf(t') dt’} : (15)

which is the desired answer.

If the process is to be stopped at some scale t,.., i.e. if one would like to remain
with a fraction A (tmax) of events where nothing happens at all, this is easy to include in
the veto algorithm: just iterate upwards in ¢ at usual, but stop the process if no allowed
branching is found before ¢,,,x-

Usually f(¢) is a function also of additional variables . The methods of the preceding
subsection are easy to generalize if one can find a suitable function g(¢,z) with f(¢,z) <
g(t,z). The g(t) used in the veto algorithm is the integral of g(¢,z) over z. Each time
a t; has been selected also an z; is picked, according to ¢(¢;, ) dz, and the (¢, ) point is
accepted with probability f(¢;,z;)/g(¢:, ®;).

4.3 The Random Number Generator

The construction of a good, portable (pseudo)random generator is not a trivial task.
Therefore JETSET has traditionally stayed away from that area, and just provided the
routine RLU as an interface, which the user could modify to call on an existing routine,
implemented on the actual machine being used.

In recent years, progress has been made in constructing portable generators with large
periods and other good properties; see the review [Jam90]. Therefore the current version
contains a random number generator based on the algorithm proposed by Marsaglia,
Zaman and Tsang [Mar90]. This routine should work on any machine with a mantissa
of at least 24 digits, i.e. all common 32-bit (or more) computers. Given the same initial
state, the sequence will also be identical on different machines. This need not mean
that the same sequence of events will be generated on an IBM and a VAX, say, since
the different treatments of roundoff errors in numerical operations will lead to slightly
different real numbers being tested against these random numbers in IF statements. Also
code optimization may lead to a divergence. Apart from nomenclature issues, and the
coding of RLU as a function rather than a subroutine, the only difference between the
JETSET code and the code given in [Jam90] is that slightly different algorithms are used
to ensure that the random number is not equal to 0 or 1 within the machine precision.

The generator has a period of over 10*®, and the possibility to obtain almost 10° dif-
ferent and disjoint subsequences, selected by giving an initial integer number. The price
to be paid for the long period is that the state of the generator at a given moment cannot
be described by a single integer, but requires about 100 words. Some of these are real
numbers, and are thus not correctly represented in decimal form. The normal procedure,
which makes it possible to restart the generation from a seed value written to the run
output, is therefore not convenient. The CERN library implementation keeps track of the
number of random numbers generated since the start. With this value saved, in a subse-
quent run the random generator can be asked to skip ahead the corresponding number of
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random numbers. JETSET is a heavy user of random numbers, however: typically 30% of
the full run time is spent on random number generation. Of this, half is overhead coming
from the function call administration, but the other half is truly related to the speed of
the algorithm. Therefore a skipping ahead would take place with 15% of the time cost of
the original run, i.e. an uncomfortably high figure.

Instead a different solution is chosen here. Two special routines are provided for
writing and reading the state of the random number generator (plus some initialization
information) on a sequential file, in a machine-dependent internal representation. The file
used for this purpose has to be specified by you, and opened for read and write. A state
is written as a single record, in free format. It is possible to write an arbitrary number of
states on a file, and a record can be overwritten, if so desired. The event generation loop
might then look something like:

1. save the state of the generator on file (using flag set in point 3 below),

2. generate an event,

3. study the event for errors or other reasons why to regenerate it later; set flag to
overwrite previous generator state if no errors, otherwise set flag to create new
record;

4. loop back to point 1.

With this procedure, the file will contain the state before each of the problematical events.
An alternative approach might be to save the state every 100 events or so. If the events
are subsequently processed through a detector simulation, you may have to save also other
sets of seeds, naturally.

In addition to the service routines, the common block which contains the state of the
generator is available for manipulation, if you so desire. In particular, the initial seed
value is by default 19780503, i.e. different from the Marsaglia/ CERN default 54217137.
It is possible to change this value before any random numbers have been generated, or
to force reinitialization in mid-run with any desired new seed. Inside JETSET/PYTHIA,
some initialization may take place in connection with the very first event generated in a
run, so sometimes it may be necessary to generate one ordinary event before reading in a
saved state to generate an interesting event. In the current PYTHIA version, some of the
multiple interaction machinery options contain an element of learning, which means that
the event sequence may be broken.

It should be noted that, of course, the appearance of a random number generator
package inside JETSET does in no way preclude the use of other routines. You can easily
revert to the old approach, where RLU is nothing but an interface to an arbitrary external
random number generator; e.g. to call a routine RNDM all you need to have is

FUNCTION RLU(IDUMMY)

100 RLU=RNDM(IDUMMY)
IF(RLU.LE.O..OR.RLU.GE.1.) GOTO 100
RETURN
END

The random generator subpackage consists of the following components.

R = RLU(IDUMMY)

Purpose: to generate a (pseudo)random number R uniformly in the range 0<R<1, i.e.
excluding the endpoints.
IDUMMY : dummy input argument; normally 0.

CALL RLUGET(LFN,MOVE)
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Purpose:

LFN :

MOVE :

to dump the current state of the random number generator on a separate file,
using internal representation for real and integer numbers. To be precise, the
full contents of the LUDATR common block are written on the file, with the
exception of MRLU(6).

(logical file number) the file number to which the state is dumped. You must
associate this number with a true file (with a machine-dependent name), and
see to it that this file is open for write.

choice of adding a new record to the file or overwriting old record(s). Normally
only options 0 or —1 should be used.

0 (or > 0) : add a new record to the end of the file.

= -1 : overwrite the last record with a new one (i.e. do one BACKSPACE before
the new write).
= —n :  back up n records before writing the new record. The records following

after the new one are lost, i.e. the last n old records are lost and one
new added.

CALL RLUSET(LFN,MOVE)

Purpose:

LFN :

MOVE :

to read in a state for the random number generator, from which the subsequent
generation can proceed. The state must previously have been saved by a
RLUGET call. Again the full contents of the LUDATR common block are read,
with the exception of MRLU(6).

(logical file number) the file number from which the state is read. You must
associate this number with a true file previously written with a RLUGET call,
and see to it that this file is open for read.

positioning in file before a record is read. With zero value, records are read one
after the other for each new call, while non-zero values may be used to navigate
back and forth, and e.g. return to the same initial state several times.

=0 : read the next record.

= 4n skip ahead n records before reading the record that sets the state of the
random number generator.

= —n :  back up n records before reading the record that sets the state of the

random number generator.

COMMON/LUDATR/MRLU(6) ,RRLU(100)

Purpose:

MRLU(1)

MRLU(2)

MRLU(3)

to contain the state of the random number generator at any moment (for
communication between RLU, RLUGET and RLUSET), and also to provide the
user with the possibility to initialize different random number sequences, and
to know how many numbers have been generated.

: (D=19780503) the integer number that specifies which of the possible subse-

quences will be initialized in the next RLU call for which MRLU(2)=0. Allowed
values are 0<MRLU (1) <900 000 000, the original Marsaglia (and CERN library)
seed is 54217137. The MRLU(1) value is not changed by any of the JETSET
routines.

: (D=0) initialization flag, put to 1 in the first RLU call of run. A reinitialization

of the random number generator can be made in mid-run by resetting MRLU(2)
to 0 by hand. In addition, any time the counter MRLU(3) reaches 1000000000,
it is reset to 0 and MRLU(2) is increased by 1.

: (D=0) counter for the number of random numbers generated from the begin-

ning of the run. To avoid overflow when very many numbers are generated,
MRLU(2) is used as described above.
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MRLU(4), MRLU(5) : I97 and J97 of the CERN library implementation; part of the state
of the generator.

MRLU(6) : (D=0) current position, i.e. how many records after beginning, in the file;
used by RLUGET and RLUSET.

RRLU(1) - RRLU(97) : the U array of the CERN library implementation; part of the
state of the generator.

RRLU(98) - RRLU(100) : C, CD and CM of the CERN library implementation; the first

part of the state of the generator, the latter two constants calculated at ini-
tialization.
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5 The Event Record

The event record is the central repository for information about the particles produced
in the current event: flavours, momenta, event history, and production vertices. It plays
a very central role: without a proper understanding of what the record is and how infor-
mation is stored, it is meaningless to try to use either JETSET or PYTHIA. The record
is stored in the common block LUJETS. Almost all the routines thatthe user calls can be
viewed as performing some action on the record: fill a new event, let partons fragment or
particles decay, boost it, list it, find clusters, etc.

In this section we will first describe the KF flavour code, subsequently the LUJETS
common block, and then give a few comments about the role of the event record in the
programes.

To ease the interfacing of different event generators, a HEPEVT standard common block
structure for the event record has been agreed on. For historical reasons the standard
common blocks are not directly used in JETSET, but a conversion routine comes with the
program, and is described at the end of this section.

5.1 Particle Codes

The new particle code now adopted by the Particle Data Group [PDG88, PDG92] is used
consistently throughout the program, and is referred to as the KF particle code. This
code you have to be thoroughly familiar with. It is described below.

Note that a few inconsistencies between the KF and the PDG codes are known, which
stem from differences of interpretation of the rules agreed on when developing the stan-
dard. These rules form the basis of the PDG tables and (independently) of the JETSET
tables. (Of course, my private opinion is that I follow the original agreement, and the
PDG deviate from it.) Hopefully, this should have few practical consequences, since only
rarely-produced particles are affected. Anyway, here is a list of the known discrepancies:

1. The PDG has not allowed for the existence of an n,, which in JETSET is included

with code 551. This code is reserved for xop, by the PDG, a particle which appears as
10551 in JETSET. (We agree to have 7. as 441, which illustrates the basic difference:
I use the additional recurrence figure to refer to a whole multiplet, whether all
particles of that multiplet have been found or not; the PDG, on the other hand,
does not reserve space for particles which we know should be there but have not yet
been discovered, which means that members of a multiplet need not go together.)

2. The PDG has not allowed for the existence of an h;., which in JETSET is represented

by 10443. Therefore ;. is the PDG code 10443 but JETSET code 20443. Further
Y’ is either 20443 or 30443, and T’ = Y(25) either 20553 or 30553. (Comment as
for point 1.)
3. Different conventions for spin 1/2 baryons with one heavy flavour (charm, bottom,
top), one strange flavour, and one light (u or d). Here two states exist, e.g. = and
Z/*, both with flavour content csu. By analogy with the A°-X pair, JETSET uses
the decreasing order of flavour content for the heavier state and inversed order of
the two lighter flavours for the lighter state, while the PDG tables use the opposite
convention. Thus in JETSET E7 is 4232 and =t 4322, while in PDG it is the other
way around.
There are no plans to change the JETSET rules to agree with the PDG ones in either of
the cases above.

The KF code is not convenient for a direct storing of masses, decay data, or other
particle properties, since the KF codes are so spread out. Instead a compressed code KC
between 1 and 500 is used here, where the most frequently used particles have a separate
code, but many heavy-flavour hadrons are lumped together in groups. Normally this code
is only used at very specific places in the program, not visible to the user. If need be, the
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Table 3: Quark and lepton codes.

KF | Name | Printed || KF | Name | Printed
1 d d 11 e~ e-
2 u u 12 Ve nu_e
3 s s 13 I/ mu-
4 c c 14 vy nu_mu
5 b b 15 T~ tau-
6 t t 16 7 nu_tau
7 1 1 17 X~ chi-
8 h h 18 Uy nu_chi
9 19
10 20

correspondence can always be obtained by using the function LUCOMP, KC = LUCOMP (KF).
It is therefore not intended that you should ever need to know any KC codes at all. It
may be useful to know, however, that for codes smaller than 80, KF and KC agree.

The particle names printed in the tables in this section correspond to the ones obtained
with the routine LUNAME, which is used extensively, e.g. in LULIST. Greek characters
are spelt out in full, with a capital first letter to correspond to a capital Greek letter.
Generically the name of a particle is made up of the following pieces:

1. The basic root name. This includes a * for most spin 1 (L = 0) mesons and spin
3/2 baryons, and a ' for some spin 1/2 baryons (where there are two states to be
distinguished, cf. A-X?). The rules for heavy baryon naming are in accordance with
the 1986 Particle Data Group conventions [PDG86]. For mesons with one unit of
orbital angular momentum, K (D, B, ...) is used for quark-spin 0 and K* (D*, B*,
...) for quark-spin 1 mesons; the convention for ‘*’ may here deviate slightly from
the one used by the PDG.

2. Any lower indices, separated from the root by a _. For heavy hadrons, this is the
additional heavy-flavour content not inherent in the root itself. For a diquark, it is
the spin.

3. The character ~ (alternatively bar, see MSTU(15)) for an antiparticle, wherever the
distinction between particle and antiparticle is not inherent in the charge informa-
tion.

4. Charge information: ++, +, 0, —, or ——. Charge is not given for quarks or diquarks.
Some neutral particles which are customarily given without a 0 also here lack it,
such as neutrinos, g, v, and flavour-diagonal mesons other than 7° and p°. Note
that charge is included both for the proton and the neutron. While non-standard,
it is helpful in avoiding misunderstandings when looking at an event listing.

Below follows a list of KF particle codes. The list is not complete; a more extensive
one may be obtained with CALL LULIST(11). Particles are grouped together, and the
basic rules are described for each group. Whenever a distinct antiparticle exists, it is
given the same KF code with a minus sign (whereas KC codes are always positive).

1. Quarks and leptons, Table 3.

This group contains the basic building blocks of matter, arranged according to
family, with the lower member of weak isodoublets also having the smaller code
(thus d precedes u, contrary to the ordering in previous JETSET versions). A fourth
generation is included for future reference. The quark codes are used as building
blocks for the diquark, meson and baryon codes below.

2. Gauge bosons and other fundamental bosons, Table 4.
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Table 4: Gauge boson and other fundamental boson codes.

KF | Name | Printed | KF | Name | Printed
21 g g 31

22 ~ gamma | 32 7" Z°0
23 7° Z0 33 | 7" Z"0
24 | Wt W+ 34 | W't W+
25 | H° HO 35 | H? H’0
26 36 A° A0
27 37 H* H+

28 R reggeon || 38 | Nechni | ©ta_techO
29 P pomeron || 39 Lq LQ

30 40 | R° RO

This group includes all the gauge and Higgs bosons of the standard model, as well
as some of the bosons appearing in various extensions of it. The latter are not
covered by the standard PDG codes. They correspond to one extra U(1) group
and one extra SU(2) one, a further Higgs doublet, a (scalar, colour octet) techni-
n, a (scalar) leptoquark Lq, and a horizontal gauge boson R (coupling between
families). Additionally, we here include the pomeron IP and reggeon IR ‘particles’,
which are important e.g. in the description of diffractive scattering, but have no
obvious position anywhere in the classification scheme.

. Free space.

The positions 41-80 are currently unused. In the future, they might come to be
used, e.g. for supersymmetric partners of the particles above, or for some other
kind of new physics. At the moment, they are at your disposal.

. Various special codes, Table 5.

In a Monte Carlo, it is always necessary to have codes that do not correspond to
any specific particle, but are used to lump together groups of similar particles for
decay treatment, or to specify generic decay products. These codes, which again
are non-standard, are found between numbers 81 and 100. Several are not found in
the event record, and therefore properly belong only to the KC group of codes.

. Diquark codes, Table 6.

A diquark made up of a quark with code ¢ and another with code 7, where ¢ > 7,
and with total spin s, is given the code

KF = 10007 + 1005 +2s + 1 , (16)

i.e. the tens position is left empty (cf. the baryon code below). Some of the most
frequently used codes are listed in the table. All the lowest-lying spin 0 and 1
diquarks are included in the program.

The corresponding KC code is 90, and it is mainly used to store colour charge.

. Meson codes, Tables 7 and 8.

A meson made up of a quark with code ¢ and an antiquark with code —j, 7 # ¢,
and with total spin s, is given the code

KF = {100 max(s, ) + 10 min (i, ) 4 25 + 1} sign(s — 5) (—1)™>9 (17)

Note the presence of an extra — sign if the heaviest quark is a down-type one. This is
in accordance with the particle-antiparticle distinction adopted in the 1986 Review
of Particle Properties [PDG86]. It means for example that a B meson contains a b
antiquark rather than a b quark.
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Table 5: Various special codes.

KF | Printed Meaning

81 | specflav | Spectator flavour; used in decay-product listings
82 | rndmflav | A random u, d, or s flavour; possible decay product
83 | phasespa Simple isotropic phase-space decay

84 | c-hadron Information on decay of generic charm hadron
85 | b-hadron Information on decay of generic bottom hadron
86 | t-hadron Information on decay of generic top hadron
87 | 1-hadron Information on decay of generic low hadron
88 | h-hadron Information on decay of generic high hadron
89 Wvirt Off-mass-shell W in weak decays of t, 1, h or x
90 | diquark Generic code for diquark colour information
91 | cluster Parton system in cluster fragmentation

92 string Parton system in string fragmentation

93 indep. Parton system in independent fragmentation
94 | CMshower Four-momentum of time-like showering system
95 | SPHEaxis Event axis found with LUSPHE

96 | THRUaxis Event axis found with LUTHRU

97 | CLUSjet Jet (cluster) found with LUCLUS

98 | CELLjet Jet (cluster) found with LUCELL

99 table Tabular output from LUTABU

100

The flavour-diagonal states are arranged in order of ascending mass. The standard
rule of having the last digit of the form 2s + 1 is broken for the K3-K{ system,
where it is 0, and this convention should carry over to mixed states in the B meson
system. For higher multiplets with the same spin, £10000, 420000, etc., are added
to provide the extra distinction needed. Some of the most frequently used codes are
given below.

The full lowest-lying pseudoscalar and vector multiplets are included in the program,
Table 7.

Also the lowest-lying orbital angular momentum L = 1 mesons are included, Table 8:
one pseudovector multiplet obtained for total quark-spin 0 (L =1,5=0=J =1)
and one scalar, one pseudovector and one tensor multiplet obtained for total quark-
spin 1 (L=1,S=1=J =0,1 or 2), where J is what is conventionally called the
spin s of the meson. Any mixing between the two pseudovector multiplets is not

Table 6: Diquark codes.

KF | Name | Printed || KF | Name | Printed
1103 | dd; dd_i
2101 | udg ud_0 2103 | ud; ud_1
2203 | uuy uu_l
3101 sdg sd 0 3103 | sd; sd_1
3201 sug su_0 3203 su; su_l
3303 $S1 ss_1
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Table 7: Meson codes, part 1.

KF | Name | Printed || KFF | Name | Printed

211 | =t pi+ 213 pt rho+
311 | K° KO 313 | K*° K*0
321 | KT K+ 323 | K*t K*+
411 | DT D+ 413 | D** Dx*+
421 | D° DO 423 | D*° D*0Q
431 | Df D.s+ | 433 | Dt D*_s+
511 | B° BO 513 | B*® B*0Q
521 | Bt B+ 523 | B*t Bx+

531 | B? B.sO || 533 | B B*_s0
541 | Bf Bc+ || 543 | B:t B*_c+

111 70 pio 113 P° rho0
221 n eta 223 w omega
331 n' eta’ 333 @ phi

441 e etac | 443 | J/¢ J/psi
551 b etab | 553 T Upsilon
661 4 eta_t || 663 ) Theta
130 | K¢ K LO
310 | K3 K SO

taken into account. Please note that some members of these multiplets have still
not been found, and are included here only based on guesswork. Even for known
ones, the information on particles (mass, width, decay modes) is highly incomplete.
Only two radial excitations are included, the ¢’ = 9(25) and T’ = T(25).
The corresponding meson KC codes, used for organizing mass and decay data, range
between 101 and 240.
. Baryon codes, Table 9.
A baryon made up of quarks ¢, 7 and k, with ¢ > 7 > k, and total spin s, is given
the code

KF = 1000z + 1005 + 10k +2s+ 1 . (18)

An exception is provided by spin 1/2 baryons made up of three different types of
quarks, where the two lightest quarks form a spin-0 diquark (A-like baryons). Here
the order of the j and k quarks is reversed, so as to provide a simple means of
distinction to baryons with the lightest quarks in a spin-1 diquark (¥-like baryons).
For hadrons with heavy flavours, the root names are Lambda or Sigma for hadrons
with two u or d quarks, Xi for those with one, and Omega for those without u or d
quarks.

Some of the most frequently used codes are given in Table 9. The full lowest-lying
spin 1/2 and 3/2 multiplets are included in the program.

The corresponding KC codes, used for organizing mass and decay data, range be-
tween 301 and 400, with some slots still free.

. Diffractive states, Table 10.

These codes are not standard ones: they have been defined by analogy to be used
for denoting diffractive states in PYTHIA, as part of the event history. The first two
or three digits give flavour content, while the last one is 0, to denote the somewhat
unusual character of the code. Only a few codes have been introduced; depending
on circumstances these also have to double up for other diffractive states.
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Table 8: Meson codes, part 2.

KF | Name | Printed KF | Name | Printed

10213 | by b 1+ 10211 | af a 0+
10313 | K¢ K_10 10311 | Kg° K*_00
10323 | Kf K 1+ 10321 | Kgt | K*_0+
10413 | D7 D 1+ 10411 | Dgt | D*_0+
10423 | D¢ D_10 10421 | Dg° D*_00
10433 | D7, D_1s+ 10431 | Dyt | Dx_0s+
10113 | b9 b_10 10111 | ad a_00
10223 | h? h_10 10221 | ) £.00

10333 | hP h’ 10 | 10331 | f £2_00
10443 | h9, h_1c0 10441 | xJ. | chi_0cO
20213 a; a_1+ 215 ay a_2+
20313 | K3° K*_10 315 K3? K*_20
20323 | K3t K*_1+ 325 | K3t | Kx_2+
20413 | D3 D*_1+ 415 | D3t | Dx_2+
20423 | D3° D*_10 425 | D3® | Dx_20
20433 | Dif D*_1s+ 435 | D3f | Dx_2s+
20113 al a_10 115 ad a_20
20223 | ) £.10 225 f2 £.20
20333 | f7° £7_10 335 £ £7_20
20443 | X%, | chi1cO | 445 | 2. | chi_2co
30443 (7 psi’
30553 T' | Upsilon’

9. Free compressed codes. The positions 401-500 of mass and decay arrays are left
open. Here a user may map any new kind of particle from the ordinary KF codes,
which probably are above 10000, into a more manageable KC range for mass and
decay data information. The mapping must be implemented in the LUCOMP function.

5.2 The Event Record

Each new event generated is in its entirety stored in the common block LUJETS, which
thus forms the event record. Here each jet or particle that appears at some stage of
the fragmentation or decay chain will occupy one line in the matrices. The different
components of this line will tell which jet/particle it is, from where it originates, its
present status (fragmented/decayed or not), its momentum, energy and mass, and the
space—time position of its production vertex. Note that K(I,3)-K(I,5) and the P and V
vectors may take special meaning for some specific applications (e.g. sphericity or cluster
analysis), as described in those connections.

The event history information stored in K(I,3)-K(I,5) should not be taken too lit-
erally. In the particle decay chains, the meaning of a mother is well-defined, but the
fragmentation description is more complicated. The primary hadrons produced in string
fragmentation come from the string as a whole, rather than from an individual parton.
Even when the string is not included in the history (see MSTU(16)), the pointer from
hadron to parton is deceptive. For instance, in a qgq event, those hadrons are pointing
towards the q (q) parton that were produced by fragmentation from that end of the string,
according to the random procedure used in the fragmentation routine. No particles point
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Table 9: Baryon codes.

KF | Name | Printed KF | Name Printed
1114 | A~ Delta-
2112 n no 2114 | A° Delta0
2212 P p+ 2214 | AT Delta+
2224 | ATY Deltat+
3112 | ¥~ Sigma- 3114 | X*~ Sigmax*-
3122 | A° | LambdaO
3212 | X° Sigma0 3214 | X*° Sigma*0
3222 | ¥t Sigma+ 3224 | X*t Sigmax+
3312 | =7 Xi- 3314 | =~ Xi*-
3322 | E° Xi0 3324 | =% Xi*0
3334 | Q° Omega-
4112 | X2 Sigma cO || 4114 | X Sigma*_cO
4122 | A} | Lambda c+
4212 | %F Sigma c+ || 4214 | X*t | Sigmax c+
4222 | It | Sigma c++ || 4224 | XXt | Sigma* c++
4132 | =2 Xi_cO
4312 | 2P Xi’ cO0 || 4314 | E=X° Xi*_cO
4232 | E=f Xi_c+
4322 | =If Xi’ c+ 4324 | E=rt Xi*_c+
4332 | Q2 Omega cO || 4334 | QX° Omega*_cO
5112 | X Sigma b- | 5114 | X{~ | Sigma* b-
5122 | A2 | Lambda b0
5212 | X? Sigma b0 || 5214 | X1° Sigma* b0
5222 | %f Sigma b+ || 5224 | Lit | Sigmak b+

to the g. This assignment seldom agrees with the visual impression, and is not intended

to.

The common block LUJETS has expanded with time, and can now house 4000 entries.
This figure may seem ridiculously large, but actually the previous limit of 2000 was
often reached in studies of high-p, processes at the LHC and SSC. This is because the
event record contains not only the final particles, but also all intermediate partons and
hadrons, which subsequenty showered, fragmented or decayed. Included are also a wealth
of photons coming from 7° decays; the simplest way of reducing the size of the event

Table 10: Diffractive state codes.

KF Printed Meaning

110 | rho diff0 | Diffractive 7°/p° /v state
210 | pidiffr+ Diffractive 7t state
220 | omega._diO Diffractive w state
330 | phi diffo0 Diffractive ¢ state
440 | J/psidio | Diffractive J/¢ state
2110 | n. diffr Diffractive n state
2210 | pdiffr+ Diffractive p state
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record is actually to switch off 7% decays by MDCY(LUCOMP(111),1)=0. Also note that
some routines, such as LUCLUS and LUCELL, use memory after the event record proper as
a working area. Still, to change the size of the common block, upwards or downwards, is
easy: just do a global substitute in the common block and change the MSTU(4) value to the
new number. If more than 10000 lines are to be used, the packing of colour information
should also be changed, see MSTU(5).

COMMON/LUJETS/N,K(4000,5) ,P(4000,5),V(4000,5)

Purpose:

N :

K(I,1)

=11 :

=12 :

=13 :
=14 :
= 15 :
= 31 :

32 :
41

A
o

K(I,2)

to contain the event record, i.e. the complete list of all partons and particles
in the current event.

number of lines in the K, P and V matrices occupied by the current event. N
is continuously updated as the definition of the original configuration and the
treatment of fragmentation and decay proceed. In the following, the individual
parton/particle number, running between 1 and N, is called I.

status code KS, which gives the current status of the parton/particle stored in
the line. The ground rule is that codes 1-10 correspond to currently existing
partons/particles, while larger codes contain partons/particles which no longer

exist, or other kinds of event information.

empty line.

an undecayed particle or an unfragmented jet, the latter being either a
single jet or the last one of a jet system.

an unfragmented jet, which is followed by more jets in the same colour-
singlet jet system.

an unfragmented jet with special colour flow information stored in K(I,4)
and K(I,5), such that adjacent partons along the string need not follow
each other in the event record.

a particle which could have decayed, but did not within the allowed
volume around the original vertex.

a particle which is to be forced to decay in the next LUEXEC call, in the
vertex position given (this code is only set by user intervention).

a decayed particle or a fragmented jet, the latter being either a single jet
or the last one of a jet system, cf. =1.

a fragmented jet, which is followed by more jets in the same colour-singlet
jet system, cf. =2. Further, a B meson which decayed as a B one, or vice
versa, because of B-B mixing, is marked with this code rather than =11.
a jet which has been removed when special colour flow information has
been used to rearrange a jet system, cf. =3.

a parton which has branched into further partons, with special colour-
flow information provided, cf. =3.

a particle which has been forced to decay (by user intervention), cf. =5.
documentation lines used to give a compressed story of the event at the
beginning of the event record.

lines with information on sphericity, thrust or cluster search.

tabular output, as generated by LUTABU.

junction (currently not fully implemented).

these codes are never used by the program, and are therefore usually
not affected by operations on the record, such as LUROBO, LULIST and
event-analysis routines (the exception is some LUEDIT calls, where lines
are moved but not deleted). Such codes may therefore be useful in some
connections.

parton/particle KF code, as described in section 5.1.
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K(I,3)

K(I,4)

K(I,5)

P(I,1)
P(I,2)
P(I,3)
P(I,4)
P(I,5)

v(I,1)
V(I,2)
V(I,3)
V(I,4)
V(I,5)

line number of parent particle or jet, where known, otherwise 0. Note that the
assignment of a particle to a given jet in a jet system is unphysical, and what
is given there is only related to the way the event was generated.

normally the line number of the first daughter; it is 0 for an undecayed particle
or unfragmented jet.

For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form

K(I,4) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
colour comes and to where it goes, respectively; MCFR and MCTO originally
are 0 and are set to 1 when the corresponding colour connection has been traced
in the LUPREP rearrangement procedure. (The packing may be changed with
MSTU(5).) The ‘from’ colour position may indicate a parton which branched
to produce the current parton, or a parton created together with the current
parton but with matched anticolour, while the ‘to’ normally indicates a parton
that the current parton branches into. Thus, for setting up an initial colour
configuration, it is normally only the ‘from’ part that is used, while the ‘to’
part is added by the program in a subsequent call to parton-shower evolution
(for final-state radiation; it is the other way around for initial-state radiation).
Note: normally most users never have to worry about the exact rules for
colour-flow storage, since this is used mainly for internal purposes. However,
when it is necessary to define this flow, it is recommended to use the LUJOIN
routine, since it is likely that this would reduce the chances of making a mis-
take.

normally the line number of the last daughter; it is 0 for an undecayed particle
or unfragmented jet.

For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information
(for internal use only) of the form

K(I,5) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,
where ICFR and ICTO give the line numbers of the partons from which the
anticolour comes and to where it goes, respectively; MCFR and MCTO orig-
inally are 0 and are set to 1 when the corresponding colour connection has
been traced in the LUPREP rearrangement procedure. For further discussion,
see K(I,4).

: Pz, momentum in the z direction, in GeV/c.
: py, momentum in the y direction, in GeV/ec.
: p., momentum in the z direction, in GeV/c.

E, energy, in GeV.

m, mass, in GeV/c?. In parton showers, with space-like virtualities, i.e. where
2= —m? > 0, one puts P(I,5)= —Q.

x position of production vertex, in mm.

y position of production vertex, in mm.

z position of production vertex, in mm.

time of production, in mm/c (=~ 3.33 x 107'? s).

proper lifetime of particle, in mm/c (=~ 3.33 x 107!? 5). If the particle is not

expected to decay, V(I,5)=0. A line with K(I,1)=4,i.e. a particle that could

have decayed, but did not within the allowed region, has the proper non-zero

v(1,5).

In the absence of electric or magnetic fields, or other disturbances, the decay

vertex VP of an unstable particle may be calculated as
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5.3 How The Event Record Works

The event record is the main repository for information about an event. In the generation
chain, it is used as a ‘scoreboard’ for what has already been done and what remains to
be done. This information can be studied by you, to access information not only about
the final state, but also about what came before.

5.3.1 A simple example

The example of section 3.5 may help to clarify what is going on. When LU2ENT is called to
generate a qq pair, the quarks are stored in lines 1 and 2 of the event record, respectively.
Colour information is set to show that they belong together as a colour singlet. The
counter N is also updated to the value of 2. At no stage is the previously generated event
removed. Lines 1 and 2 are overwritten, but lines 3 onwards still contain whatever may
have been there before. This does not matter, since N indicates where the ‘real’ record
ends.

As LUEXEC is called, explicitly by you or indirectly by LU2ENT, the first entry is con-
sidered and found to be the first jet of a system. Therefore the second entry is also found,
and these two together form a jet system, which may be allowed to fragment. The ‘string’
that fragments is put in line 3 and the fragmentation products in lines 4 through 10 (in
this particular case). At the same time, the q and q in the first two lines are marked as
having fragmented, and the same for the string. At this stage, N is 10. Internally there is
another counter with the value 2, which indicates how far down in the record the event
has been studied.

This second counter is gradually increased by one. If the entry in the corresponding line
can fragment or decay, then fragmentation or decay is perfomed. The fragmentation/decay
products are added at the end of the event record, and N is updated accordingly. The
entry is then also marked as having been treated. For instance, when line 3 is considered,
the ‘string’ entry of this line is seen to have been fragmented, and no action is taken. Line
4, a p*, is allowed to decay to n™n°; the decay products are stored in lines 11 and 12,
and line 4 is marked as having decayed. Next, entry 5 is allowed to decay. The entry in
line 6, ©7, is a stable particle (by default) and is therefore passed by without any action
being taken.

In the beginning of the process, entries are usually unstable, and N grows faster than
the second counter of treated entries. Later on, an increasing fraction of the entries are
stable end products, and the roles are now reversed, with the second counter growing
faster. When the two coincide, the end of the record has been reached, and the process
can be stopped. All unstable objects have now been allowed to fragment or decay. They
are still present in the record, so as to simplify the tracing of the history.

Notice that LUEXEC could well be called a second time. The second counter would then
start all over from the beginning, but slide through until the end without causing any
action, since all objects that can be treated already have been. Unless some of the relevant
switches were changed meanwhile, that is. For instance, if 7° decays were switched off
the first time around but on the second, all the 7%’s found in the record would be allowed
to decay in the second call. A particle once decayed is not ‘undecayed’, however, so if the
70 is put back stable and LUEXEC is called a third time, nothing will happen.

5.3.2 Applications to PYTHIA

In a full-blown event generated with PYTHIA, the usage of LUJETS is more complicated,
although the general principles survive. LUJETS is used extensively both by the PyTHIA
and the JETSET routines; indeed it provides the bridge that allows the general utility
routines in JETSET to be used also for PYTHIA events. The PYTHIA event listing begins
(optionally) with a few lines of event summary, specific to the hard process simulated
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and thus not described in the overview above. These specific parts are covered in the
following.

In most instances, only the partons and particles actually produced are of interest. For
MSTP (125) =0, the event record starts off with the parton configuration existing after hard
interaction, initial- and final-state radiation, multiple interactions and beam remnants
have been considered. The partons are arranged in colour singlet clusters, ordered as
required for string fragmentation. Also photons and leptons produced as part of the hard
interaction (e.g. from qq — gy or ut — Z° — e'te”) appear in this part of the event
record. These original entries appear with pointer K(I,3)=0, whereas the products of the
subsequent fragmentation and decay have K(I,3) numbers pointing back to the line of
the parent.

The standard documentation, obtained with MSTP (125)=1, includes a few lines at the
beginning of the event record, which contain a brief summary of the process that has taken
place. The number of lines used depends on the nature of the hard process and is stored
in MSTI(4) for the current event. These lines all have K(I,1)=21. For all processes, lines
1 and 2 give the two incoming hadrons. When listed with LULIST, these two lines will be
separated from subsequent ones by a sequence of ‘======" signs, to improve readability.
For diffractive and elastic events, the two outgoing states in lines 3 and 4 complete the
list. Otherwise, lines 3 and 4 contain the two partons that initiate the two initial-state
parton showers, and 5 and 6 the end products of these showers, i.e. the partons that
enter the hard interaction. With initial-state radiation switched off, lines 3 and 5 and
lines 4 and 6 coincide. For a simple 2 — 2 hard scattering, lines 7 and 8 give the two
outgoing partons/particles from the hard interaction, before any final-state radiation. For
2 — 2 processes proceeding via an intermediate resonance such as v*/Z°% W= or H°, the
resonance is found in line 7 and the two outgoing partons/particles in 8 and 9. In some
cases one of these may be a resonance in its own right, or both of them, so that further
pairs of lines are added for subsequent decays. If the decay of a given resonance has
been switched off, then no decay products are listed either in this initial summary or in
the subsequent ordinary listing. Whenever partons are listed, they are assumed to be on
the mass shell for simplicity. The fact that effective masses may be generated by initial-
and final-state radiation is taken into account in the actual parton configuration that is
allowed to fragment, however. A special case is provided by WTW~ or Z°Z° fusion to an
H°. Then the virtual W’s or Z’s are shown in lines 7 and 8, the H® in line 9, and the
two recoiling quarks (that emitted the bosons) in 10 and 11, followed by the Higgs decay
products. Since the W’s and Z’s are space-like, what is actually listed as the mass for
them is —y/—m2. The listing of the event documentation closes with another line made

A few examples may help clarify the picture. For a single diffractive event pp — pais:P,
the event record will start with
IK(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p

2 21 -2212 0 incoming p
========================= 1ot part of record; appears in listings

3 21 27 1 outgoing pair

4 21 -2212 2 outgoing p

The typical QCD 2 — 2 process would be
IK(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p
2 21 -2212 0 incoming p
3 21 2 1 u picked from incoming p
4 21 -1 2 d picked from incoming p
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5 21 21 3 u evolved to g at hard scattering
6 21 -1 4 still d at hard scattering

7 21 21 0 outgoing g from hard scattering
8 21 -1 0 outgoing d from hard scattering

Note that, where well defined, the K(I,3) code does contain information as to which
side the different partons come from, e.g. above the gluon in line 5 points back to the u
in line 3, which points back to the proton in line 1. In the example above, it would have
been possible to associate the scattered g in line 7 with the incoming one in line 5, but
this is not possible in the general case, consider e.g. gg — gg. As a final example, WTW~
fusion to an H° in process 8 (not process 124, which is lengthier) might look like

IK(I,1) K(I,2) K(I,3) comment

1 21 2212 0 first incoming p
2 21 2212 0 second incoming p
3 21 2 1 u picked from first p
4 21 21 2 g picked from second p
5 21 2 3 still u after initial-state radiation
6 21 -4 4 gevolved toc
7 21 24 5 space-like Wt emitted by u quark
8 21 -24 6 space-like W™ emitted by € quark
9 21 25 0 Higgs produced by WTW~ fusion
10 21 1 5 u turned into d by emission of W+
11 21 -3 6 ¢ turned into § by emission of W~
12 21 23 9 first Z° coming from decay of H°
13 21 23 9 second Z° coming from decay of H°
14 21 12 12 v, from first Z° decay
15 21 -12 12 7, from first Z° decay
16 21 5 13 b quark from second Z° decay
17 21 -5 13 b antiquark from second Z° decay

After these lines with the initial information, the event record looks the same as
for MSTP(125)=0, i.e. first comes the parton configuration to be fragmented and, after
another separator line ‘====== " in the output (but not the event record), the products
of subsequent fragmentation and decay chains. The K(I,3) pointers for the partons, as
well as leptons and photons produced in the hard interaction, are now pointing towards
the documentation lines above, however. In particular, beam remnants point to 1 or 2,
depending on which side they belong to, and partons emitted in the initial-state parton
showers point to 3 or 4. In the second example above, the partons produced by final-
state radiation will be pointing back to 7 and 8; as usual, it should be remembered that
a specific assignment to 7 or 8 need not be unique. For the third example, final-state
radiation partons will come both from partons 10 and 11 and from partons 16 and 17,
and additionally there will be a neutrino—antineutrino pair pointing to 14 and 15. The
extra pairs of partons that are generated by multiple interactions do not point back to
anything, i.e. they have K(I,3)=0.

There exists a third documentation option, MSTP (125)=2. Here the history of initial-
and final-state parton branchings may be traced, including all details on colour flow. This
information has not been optimized for user-friendliness, and cannot be recommended for
general usage. With this option, the initial documentation lines are the same. They are
followed by blank lines, K(I,1)=0, up to line 20 (can be changed in MSTP(126)). From
line 21 onwards each parton with K(I,1)= 3, 13 or 14 appears with special colour-flow
information in the K(I,4) and K(I,5) positions. For an ordinary 2 — 2 scattering, the
two incoming partons at the hard scattering are stored in lines 21 and 22, and the two

62



outgoing in 23 and 24. The colour flow between these partons has to be chosen according to
the proper relative probabilities in cases when many alternatives are possible, see section
8.2.1. If there is initial-state radiation, the two partons in lines 21 and 22 are copied down
to lines 25 and 26, from which the initial-state showers are reconstructed backwards step
by step. The branching history may be read by noting that, for a branching a — bc,
the K(I,3) codes of b and ¢ point towards the line number of a. Since the showers are
reconstructed backwards, this actually means that parton b would appear in the listing
before parton a and ¢, and hence have a pointer to a position below itself in the list.
Associated time-like partons ¢ may initiate time-like showers, as may the partons of
the hard scattering. Again a showering parton or pair of partons will be copied down
towards the end of the list and allowed to undergo successive branchings ¢ — de, with
d and e pointing towards c¢. The mass of time-like partons is properly stored in P(I,5);
for space-like partons —+/—m? is stored instead. After this section, containing all the
branchings, comes the final parton configuration, properly arranged in colour, followed by
all subsequent fragmentation and decay products, as usual.

5.4 The HEPEVT Standard

A set of common blocks was developed and agreed on within the framework of the 1989
LEP physics study, see [Sj689]. This standard defines an event record structure which
should make the interfacing of different event generators much simpler.

It would be a major work to rewrite PYTHIA/JETSET to agree with this standard
event record structure. More importantly, the standard only covers quantities which can
be defined unambiguously, i.e. which are independent of the particular program used.
There are thus no provisions for the need for colour-flow information in models based
on string fragmentation, etc., so the standard common blocks would anyway have to be
supplemented with additional event information. For the moment, the adopted approach
is therefore to retain the LUJETS event record, but supply a routine LUHEPC which can
convert to or from the standard event record. Owing to a somewhat different content
in the two records, some ambiguities do exist in the translation procedure. LUHEPC has
therefore to be used with some judgment.

In this section, the new standard event structure is first presented, i.e. the most im-
portant points in [Sj689] are recapitulated. Thereafter the conversion routine is described,
with particular attention to ambiguities and limitations.

The standard event record is stored in two common blocks. The second of these is
specifically intended for spin information. Since JETSET never (explicitly) makes use of
spin information, this latter common block is not addressed here. A third common block
for colour flow information has been discussed, but never formalized.

In order to make the components of the standard more distinguishable in user pro-
grams, the three characters HEP (for High Energy Physics) have been chosen to be a part
of all names.

Originally it was not specified whether real variables should be in single or double
precision. At the time, this meant that single precision became the default choice, but
since then the trend has been towards increasing precision. In connection with the 1995
LEP 2 workshop, it was therefore agreed to adopt DOUBLE PRECISION real variables as
part of the standard.

PARAMETER (NMXHEP=2000)
COMMON/HEPEVT/NEVHEP ,NHEP , ISTHEP (NMXHEP) , IDHEP (NMXHEP) ,

&JMOHEP (2,NMXHEP) , JDAHEP (2, NMXHEP) , PHEP (5 ,NMXHEP) , VHEP (4 , NMXHEP)
DOUBLE PRECISION PHEP, VHEP
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Purpose: to contain an event record in a Monte Carlo-independent format.

NMXHEP: maximum numbers of entries (partons/particles) that can be stored in the
common block. The default value of 2000 can be changed via the parameter
construction. In the translation, it is checked that this value is not exceeded.

NEVHEP: is normally the event number, but may have special meanings, according to
the description below:

>0 ¢ event number, sequentially increased by 1 for each call to the main event
generation routine, starting with 1 for the first event generated.

0 : for a program which does not keep track of event numbers, as JETSET.

= -1 special initialization record; not used by JETSET.

-2 : special final record; not used by JETSET.

NHEP: the actual number of entries stored in the current event. These are found in the
first NHEP positions of the respective arrays below. Index IHEP, 1 <IHEP <NHEP,
is used below to denote a given entry.

ISTHEP (IHEP) : status code for entry IHEP, with the following meanings:

=0 : null entry.

=1 : an existing entry, which has not decayed or fragmented. This is the main
class of entries, which represents the ‘final state’ given by the generator.

=2 : an entry which has decayed or fragmented and is therefore not appearing
in the final state, but is retained for event history information.

=3: a documentation line, defined separately from the event history. This

could include the two incoming reacting particles, etc.

4 - 10 : undefined, but reserved for future standards.

= 11 - 200 : at the disposal of each model builder for constructs specific to his

program, but equivalent to a null line in the context of any other program.

201 - : at the disposal of users, in particular for event tracking in the detector.

IDHEP (IHEP) : particle identity, according to the PDG standard. The four additional
codes 91-94 have been introduced to make the event history more legible, see
section 5.1 and the MSTU(16) description.

JMOHEP (1, IHEP) : pointer to the position where the mother is stored. The value is 0 for
initial entries.

JMOHEP (2, IHEP) : pointer to position of second mother. Normally only one mother
exists, in which case the value 0 is to be used. In JETSET, entries with
codes 91-94 are the only ones to have two mothers. The flavour con-
tents of these objects, as well as details of momentum sharing, have to be
found by looking at the mother partons, i.e. the two partons in positions
JMOHEP (1, IHEP) and JMOHEP(2,IHEP) for a cluster or a shower system, and
the range JMOHEP (1,IHEP)-JMOHEP(2,IHEP) for a string or an independent
fragmentation parton system.

JDAHEP (1,IHEP) : pointer to the position of the first daughter. If an entry has not
decayed, this is 0.

JDAHEP (2,IHEP) : pointer to the position of the last daughter. If an entry has not
decayed, this is 0. It is assumed that daughters are stored sequentially, so
that the whole range JDAHEP (1,IHEP)—-JDAHEP (2,IHEP) contains daughters.
This variable should be set also when only one daughter is present, as in
K° — K3 decays, so that looping from the first daughter to the last one works
transparently. Normally daughters are stored after mothers, but in backwards
evolution of initial-state radiation the opposite may appear, i.e. that mothers
are found below the daughters they branch into. Also, the two daughters then
need not appear one after the other, but may be separated in the event record.

PHEP(1,IHEP) : momentum in the z direction, in GeV/c.

PHEP(2,IHEP) : momentum in the y direction, in GeV/ec.

PHEP(3,IHEP) : momentum in the z direction, in GeV/ec.

64



PHEP (4,IHEP) : energy, in GeV.

PHEP (5,IHEP) : mass, in GeV/c?. For space-like partons, it is allowed to use a negative
mass, according to PHEP (5,IHEP)= —/—m2.

VHEP (1,IHEP) : production vertex x position, in mm.

VHEP (2, IHEP) : production vertex y position, in mm.

VHEP (3, IHEP) : production vertex z position, in mm.

VHEP (4, IHEP) : production time, in mm/c (= 3.33 x 107!% s).

This completes the brief description of the standard. In JETSET, the routine LUHEPC
is provided as an interface.

CALL LUHEPC(MCONV)

Purpose: to convert between the LUJETS event record and the HEPEVT event record.
MCONV : direction of conversion.

=1 : translates the current LUJETS record into the HEPEVT one, while leaving
the original LUJETS one unaffected.
=2 : translates the current HEPEVT record into the LUJETS one, while leaving

the original HEPEVT one unaffected.

The conversion of momenta is trivial: it is just a matter of exchanging the order of the
indices. The vertex information is but little more complicated; the extra fifth component
present in LUJETS can be easily reconstructed from other information for particles which
have decayed. (Some of the advanced features made possible by this component, such as
the possibility to consider decays within expanding spatial volumes in subsequent LUEXEC
calls, cannot be used if the record is translated back and forth, however.) Also, the
particle codes K(I,2) and IDHEP(I) are identical, since they are both based on the PDG
codes.

The remaining, non-trivial areas deal with the status codes and the event history. In
moving from LUJETS to HEPEVT, information on colour flow is lost. On the other hand, the
position of a second mother, if any, has to be found; this only affects lines with K(I,2)=
91-94. Also, for lines with K(I,1)=13 or 14, the daughter pointers have to be found. By
and large, however, the translation from LUJETS to HEPEVT should cause little problem,
and there should never be any need for user intervention. (We assume that JETSET is run
with the default MSTU(16)=1, otherwise some discrepancies with respect to the proposed
standard event history description will be present.)

In moving from HEPEVT to LUJETS, information on a second mother is lost. Any
codes IDHEP(I) not equal to 1, 2 or 3 are translated into K(I,1)=0, and so all entries
with K(I,1)> 30 are effectively lost in a translation back and forth. All entries with
IDHEP (I)=2 are translated into K(I,1)=11, and so entries of type K(I,1) = 12, 13, 14
or 15 are never found. There is thus no colour-flow information available for partons
which have fragmented. For partons with IDHEP(I)=1,i.e. which have not fragmented,
an attempt is made to subdivide the partonic system into colour singlets, as required
for subsequent string fragmentation. To this end, it is assumed that partons are stored
sequentially along strings. Normally, a string would then start at a q (q) or qq (qq) entry,
cover a number of intermediate gluons, and end at a  (q) or qq (qq) entry. Particles
could be interspersed in this list with no adverse effects, i.e. a u — g — v — @ sequence
would be interpreted as a u — g — U string plus an additional photon. A closed gluon loop
would be assumed to be made up of a sequential listing of the gluons, with the string
continuing from the last gluon up back to the first one. Contrary to the previous, open
string case, the appearance of any particle but a gluon would therefore signal the end of
the gluon loop. For example, a g — g — g — g sequence would be interpreted as one single
four-gluon loop, while a g — g — v — g — g sequence would be seen as composed of two
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2-gluon systems.

If these interpretations, which are not unique, are not to your liking, it is up to you
to correct them, e.g. by using LUJOIN to tell exactly which partons should be joined, in
which sequence, to give a string. Calls to LUJOIN (or the equivalent) are also necessary if
LUSHOW is to be used to have some partons develop a shower.

For practical applications, one should note that JETSET eTe™ events, which have been
allowed to shower but not to fragment, do have partons arranged in the order assumed
above, so that a translation to HEPEVT and back does not destroy the possibility to perform
fragmentation by a simple LUEXEC call. Also the hard interactions in PYTHIA fulfil this
condition, while problems may appear in the multiple interaction scenario, where several
closed gg loops may appear directly following one another, and thus would be interpreted
as a single multigluon loop after translation back and forth.
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6 Hard Processes in JETSET

JETSET contains the simulation of two hard processes. The process of main interest is
ete™ — 4*/Z° — qq. Higher-order QCD corrections can be obtained either with parton
showers or with second-order matrix elements. The details of the parton-shower evolution
are given in section 10, while this section contains the matrix-element description, includ-
ing a summary of the JETSET algorithm for initial-state photon radiation. Also PYTHIA
can be used to simulate the process ete™ — v*/Z° — qq, but without the options of
using second-order matrix elements or polarized incoming beams. Some other differences
between the two algorithms are described.

The other hard process in JETSET is T decay to ggg or ygg, which is briefly commented
on.

The main sources of information for this chapter are refs. [Sj683, Sj686, Sj689].

6.1 Annihilation Events in the Continuum

The description of eTe™ annihilation into hadronic events involves a number of compo-
nents: the s dependence of the total cross section and flavour composition, multijet matrix
elements, angular orientation of events, initial-state photon bremsstrahlung and effects of
initial-state electron polarization. Many of the published formulae have been derived for
the case of massless outgoing quarks. For each of the components described in the fol-
lowing, we will begin by discussing the massless case, and then comment on what is done
to accommodate massive quarks.

6.1.1 Electroweak cross sections

In the standard theory, fermions have the following couplings (illustrated here for the first
generation):

e, =0, v, =1, a, =1,
e. = —1, ve = —1 + 4sin’Oy, a. = —1,
ew = 2/3, vy = 1 — 85in®8y /3, a, =1,
ea=—1/3, vq=—1+4sin’0w/3, aq= —1,

with e the electric charge, and v and a the vector and axial couplings to the Z°. The
relative energy dependence of the weak neutral current to the electromagnetic one is given
by

1 s

= . B L)
45in%0y cos?0y s — m2 + imzl'y

x(s) (19)
where s = FE2_. In JETSET the electroweak mixing parameter sin’fy; and the Z° mass
my and width I'; are considered as constants to be given by you (while PYTHIA itself
calculates an s-dependent width).

Although the incoming e* and e~ beams are normally unpolarized, we have included
the possibility of polarized beams, following the formalism of [O1s80]. Thus the incoming
et and e” are characterized by polarizations P* in the rest frame of the particles:

P* = PEs* 4+ PEp* (20)
where 0 < P%E <land —1< PEE < 1, with the constraint
(P¥)? = (Py)’ + (PE)*<1. (21)

Here §* are unit vectors perpendicular to the beam directions p*. To be specific, we

choose a right-handed coordinate frame with p* = (0,0,F1), and standard transverse
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polarization directions (out of the machine plane for storage rings) 8% = (0,+1,0), the
latter corresponding to azimuthal angles p* = 47/2. As free parameters in the program

we choose Pi", P, Pr = \/P{ Py and Ap = (¢t + p7)/2.
In the massless QED case, the probability to produce a flavour f is proportional to €7,

i.e up-type quarks are four times as likely as down-type ones. In lowest-order massless
QFD the corresponding relative probabilities are given by [O1s80]

he(s) = €2(1— PfPr)el + 2e. {ve(l — PP —a(P — Pﬂ')} Rx(s) esvs +
+ {02+ ad) (1 - BERY) = 2vead(Pp = B} Ix(s) {of +af} , (22)

where Jx(s) denotes the real part of x(s). The h¢(s) expression depends both on the s
value and on the longitudinal polarization of the e* beams in a non-trivial way.
The cross section for the process ete™ — 4*/Z° — ff may now be written as

2

33"”‘ R¢(s) (23)

dra
os(s) =

where R; gives the ratio to the lowest-order QED cross section for the process ete™ —
pru,

Rf(S) = NC RQCD hf(S) . (24)
The factor of No = 3 counts the number of colour states available for the qq pair. The

Rqcp factor takes into account QCD loop corrections to the cross section. For ny effective
flavours (normally n; = 5)

Qs

2
Raop ~ 1+ =% 4 (1.986 — 0.115n;) <_> b (25)
T T

in the MS renormalization scheme [Din79]. Note that Rqcp does not affect the relative
quark-flavour composition, and so is of peripheral interest in JETSET. (For leptons the
N¢ and Rgcp factors would be absent, i.e. N¢ Rqcp = 1, but leptonic final states are
not generated in JETSET.)

Neglecting higher-order QCD and QFD effects, the corrections for massive quarks are

given in terms of the velocity vq of a quark with mass mg, vq = /1 —4m2/s, as follows.

The vector quark current terms in hs (proportional to e?, efvr, or v?) are multiplied by a
threshold factor ve(3 — v2)/2, while the axial vector quark current term (proportional to
a?) is multiplied by vg. While inclusion of quark masses in the QFD formulae decreases
the total cross section, first-order QCD corrections tend in the opposite direction [Jer81].
Naively, one would expect one factor of v, to get cancelled. So far, the available options
are either to include threshold factors in full or not at all.

Given that all five quarks are light at the scale of the Z°, the issue of quark masses
is not really of interest at LEP. Here, however, purely weak corrections are important, in
particular since they change the b quark partial width differently from that of the other
ones [Kiih89]. No such effects are included in the program.

6.1.2 First-order QCD matrix elements

The Born process ete™ — qq is modified in first-order QCD by the probability for the q or
q to radiate a gluon, i.e. by the process ete™ — qqg. The matrix element is conveniently
given in terms of scaled energy variables in the c.m. frame of the event, #; = 2E,/Em,
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ty = 2Eg/Ecm, and 23 = 2E,/Ecy,, 1.6, &1 + 22 + z3 = 2. For massless quarks the matrix

element reads [Ell76]

1 do a z2 + x2
1 _eg @it 2
oo dz;dze 27 F (1—z)(1 —ay)’ (26)

where oy is the lowest-order cross section, Cr = 4/3 is the appropriate colour factor, and
the kinematically allowed region is 0 < z; < 1,2 = 1,2,3. By kinematics, the z; variable
for parton k is related to the invariant mass m;; of the other two partons ¢ and j by
yij = mi;/Egy = 1 — ap.

The strong coupling constant « is in first order given by

127

(Q) = (33 — 2n;) In(Q?/A2)

(27)

Conventionally Q? = s = E2_; we will return to this issue below. The number of flavours
ny is 5 for LEP applications, and so the A value determined is A5 (while e.g. most deep
inelastic scattering studies refer to A4, the energies for these experiments being below the
bottom threshold). The a, values are matched at flavour thresholds, i.e. as ny is changed
the A value is also changed. It is therefore the derivative of oy that changes at a threshold,
not ay itself.

In order to separate 2-jets from 3-jets, it is useful to introduce jet-resolution param-
eters. This can be done in several different ways. Most famous are the y and (e, )
procedures. We will only refer to the y cut, which is the one used in the program. Here

a 3-parton configuration is called a 2-jet event if

min(y;;) = min (mgj) <y. (28)

g w \ B2

The cross section in eq. (26) diverges for #; — 1 or #3 — 1 but, when first-order
propagator and vertex corrections are included, a corresponding singularity with opposite
sign appears in the qq cross section, so that the total cross section is finite. In analytical
calculations, the average value of any well-behaved quantity @ can therefore be calculated
as

]_ d arton
(Q) = lim (Q(Zparton) Taparton(y) + / Q(z1,z2) oparton g, dw2) , (29)

Otot ¥—0 Yij >V dz, dz,

where any explicit y dependence disappears in the limit y — 0.

In a Monte Carlo program, it is not possible to work with a negative total 2-jet rate,
and thus it is necessary to introduce a fixed non-vanishing y cut in the 3-jet phase space.
Experimentally, there is evidence for the need of a low y cut, i.e. a large 3-jet rate. For
LEP applications, the recommended value is y = 0.01, which is about as far down as one
can go and still retain a positive 2-jet rate. With a; = 0.12, in full second-order QCD
(see below), the 2 : 3 : 4 jet composition is then approximately 11% : 77% : 12%.

Note, however, that initial-state QED radiation may occasionally lower the c.m. energy
significantly, i.e. increase ag, and thereby bring the 3-jet fraction above unity if y is kept
fixed at 0.01 also in those events. Therefore, at PETRA/PEP energies, y values slightly
above 0.01 are needed. In addition to the y cut, the program contains a cut on the
invariant mass m;; between any two partons, which is typically required to be larger than
2 GeV. This cut corresponds to the actual merging of two nearby parton jets, i.e. where a
treatment with two separate partons rather than one would be superfluous in view of the
smearing arising from the subsequent fragmentation. Since the cut-off mass scale | /yFEcm
normally is much larger, this additional cut only enters for events at low energies.

69



For massive quarks, the amount of QCD radiation is slightly reduced [Iof78]:

1 do _ &OF{ z? + 22 _4m3< 1 N 1 >
(

oo dz; dzs 2r 1—2)(1 —z2) s l—2z; 1—2,

2m? 1 1 4Am? 1 1 \?2
~ + — mq< + > .(30)
s (1 —21)2  (1—2,)? 2 \1l—2zy 11—z,

In addition, the phase space for emission is reduced by the requirement

(1 —21)(1 —z2)(1 — z3) > m_i -

(31)
For b quarks at LEP energies, these corrections are fairly small.

6.1.3 4-jet matrix elements

Two new event types are added in second-order QCD, ete™ — qqgg and ete™ — qqq'q’.
The 4-jet cross section has been calculated by several groups [Ali80a, Gae80, ElI81, Dan82],
which agree on the result. The formulae are too lengthy to be quoted here. In one of the
calculations [Ali80a], quark masses were explicitly included, but JETSET only includes
the massless expressions, as taken from [El81]. Here the angular orientation of the event
has been integrated out, so that five independent internal kinematical variables remain.
These may be related to the six y;; and the four y;j;, variables, y;; = mZ;/s = (p; + p;)?/s
and yi;r = miy /s = (pi + p; + pr)’/s, in terms of which the matrix elements are given.

The original calculations were for the pure y-exchange case; it was recently pointed
out [Kni89] that an additional contribution to the ete™ — qqq'q’ cross section arises from
the axial part of the Z°. This term is not included in the program, but fortunately it is
finite and small.

Whereas the way the string, i.e. the fragmenting colour flux tube, is stretched is
uniquely given in qqg event, for qqgg events there are two possibilities: q —g; — g — q
or q— g — g1 —q. A knowledge of quark and gluon colours, obtained by perturbation
theory, will uniquely specify the stretching of the string, as long as the two gluons do not
have the same colour. The probability for the latter is down in magnitude by a factor
1/NZ = 1/9. One may either choose to neglect these terms entirely, or to keep them for the
choice of kinematical setup, but then drop them at the choice of string drawing [Gus82].
We have adopted the latter procedure. Comparing the two possibilities, differences are
typically 10-20% for a given kinematical configuration, and less for the total 4-jet cross
section, so from a practical point of view this is not a major problem.

In higher orders, results depend on the renormalization scheme; we will use MS
throughout. In addition to this choice, several possible forms can be chosen for a, all
of which are equivalent to that order but differ in higher orders. We have picked the
recommended standard [PDG88]

127 153 — 19n; ln(ln(QZ/Aid—s))}

(@) = 53" 2m,) In(Q*/AZ_) {1 ~ 933 _2ny)? In(Q*/Ads)

(32)

6.1.4 Second-order 3-jet matrix elements

As for first order, a full second-order calculation consists both of real parton emission
terms and of vertex and propagator corrections. These modify the 3-jet and 2-jet cross
sections. Although there was some initial confusion, everybody soon agreed on the size
of the loop corrections [ElI81, Ver81, Fab82]. In analytic calculations, the procedure
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of eq. (29), suitably expanded, can therefore be used unambiguously for a well-behaved
variable.

For Monte Carlo event simulation, it is again necessary to impose some finite jet-
resolution criterion. This means that four-parton events which fail the cuts should be
reassigned either to the 3-jet or to the 2-jet event class. It is this area that caused quite a
lot of confusion in the past [Kun81, Got82, Ali82, Zhu83, Gut84, Gut87, Kra88], and where
full agreement does not exist. Most likely, agreement will never be reached, since there
are indeed ambiguous points in the procedure, related to uncertainties on the theoretical
side, as follows.

For the y-cut case, any two partons with an invariant mass m?. < yE2_ should be
recombined into one. If the four-momenta are simply added, the sum will correspond
to a parton with a positive mass, namely the original m;;. The loop corrections are
given in terms of final massless partons, however. In order to perform the (partial)
cancellation between the four-parton real and the 3-parton virtual contributions, it is
therefore necessary to get rid of the bothersome mass in the four-parton states. Several
recombinations are used in practice, which go under names such as ‘E’, ‘E0’, ‘p’ and
‘p0’ [OPA91]. In the ‘E’-type schemes, the energy of a recombined parton is given by
E;; = E; + E;, and three-momenta may have to be adjusted accordingly. In the ‘p’-
type schemes, on the other hand, three-momenta are added, p;; = p; + p;, and then
energies may have to be adjusted. These procedures result in different 3-jet topologies,
and therefore in different second-order differential 3-jet cross sections.

Within each scheme, a number of lesser points remain to be dealt with, in particular
what to do if a recombination of a nearby parton pair were to give an event with a non-qqg
flavour structure.

JETSET contains two alternative second-order 3-jet implementations, GKS and
ERT(Zhu). For historical reasons the former is default, but actually the latter is the
recommended one today. Other parametrizations have also been made available that run
together with JETSET, see [Sj689, Mag89)].

The GKS option is based on the GKS [Gut84]| calculation, where some of the original
mistakes in FKSS [Fab82] have been corrected. The GKS formulae have the advantage of
giving the second-order corrections in closed analytic form, as not-too-long functions of
z1, 2, and the y cut. However, it is today recognized, also by the authors, that important
terms are still missing, and that the matrix elements should therefore not be taken too
seriously. The option is thus kept mainly for backwards compatibility.

The ERT(Zhu) generator [Zhu83| is based on the ERT matrix elements [El81], with
a Monte Carlo recombination procedure suggested by Kunszt [Kun81] and developed by
Ali [Ali82]. It has the merit of giving corrections in a convenient, parametrized form.
For practical applications, the main limitation is that the corrections are only given for
discrete values of the cut-off parameter y, namely y = 0.01, 0.02, 0.03, 0.04, and 0.05.

The basic approach is the following. Without any loss of generality, the full second-
order 3-jet cross section can be written in terms of the ‘ratio function’ R(X,Y;y), defined

by

1 dobt Qs Qs

— = —Ao(X,Y {1 —R(X,Y; } , 33

odxdy ~ x AoVl R Vi) (33)
where X = 2, — 2y = zq — 25, ¥ = z3 = x4, 0o is the lowest-order hadronic cross

section, and A¢(X,Y) the standard first-order 3-jet cross section, cf. eq. (26). By Monte
Carlo integration, the value of R(X,Y;y) is evaluated in bins of (X,Y), and the result
parametrized by a simple function F(X,Y;y).

In order to obtain the second-order 3-jet rate, a small cut yo = 10~7 was introduced.
It was assumed that four-parton events which fail this cut can be (partly) cancelled
analytically against the virtual 3-jet events, to give a net ‘regularized virtual’ contribution
to the 3-jet rate. For a given choice of y cut, in the physical range y > yo, an additional
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‘soft’ contribution comes from four-parton events which survive the yo cut but fail the y
one.

A large sample (9 000 000) of four-parton events was generated inside the yo cut region.
For events which failed the more stringent y cuts, the parton pair with the smallest
invariant mass was recombined into an effective jet, using the ‘p0’ recombination scheme.
This means that the individual three-momenta were added, p;; = p; + p;, the mass of
the recombined pair was set to zero for the calculation of energy, E;; = |p; + p;|, and
finally all four-momenta were rescaled by a common factor so as to preserve the correct
c.m. frame energy.

In calculating the O(a?) correction functions, care was taken to maintain the flavour
signature of the jets in the recombination process. A quark and a gluon were recombined
into a quark with the same flavour as the original quark, two gluons were recombined to
form a gluon, etc. In some cases the three jets of the final state were not in the standard
qqg configuration. The probability for this to happen corresponded to less than 0.5% of
the total cross section, even for the most stringent cuts used. For these non-qqg final
states, the assignment of q, q and g was done at random.

The sum of ‘regularized virtual’ (1000000 3-jet events were generated, with evaluated
second-order weights) and ‘soft’ corrections, normalized to the first-order 3-jet cross sec-
tion, was tabulated in the (X,Y’) plane, using bins of size 0.05 x 0.05. This estimated
R-function behaviour was then fit with a 12-parameter function F,

F(X,Y;y) = pr+pX>+psX*+ (pa+ps XY + (ps + pr X*)Y? +
(ps + P X?)Y? 4+ p1o/(X? = Y?) + pui/(1 = Y) + p12/Y . (34)

The parameters p; are reproduced in [Sj689)].

6.1.5 The matrix-element event generator scheme

The program contains parametrizations, separately, of the total first-order 3-jet rate, the
total second-order 3-jet rate, and the total 4-jet rate, all as functions of y (with a; as a
separate prefactor). These parametrizations have been obtained as follows:

o The first-order 3-jet matrix element is almost analytically integrable; some small
finite pieces were obtained by a truncated series expansion of the relevant integrand.

e The GKS second-order 3-jet matrix elements were integrated for 40 different y-cut
values, evenly distributed in Iny between a smallest value y = 0.001 and the kine-
matical limit y = 1/3. For each y value, 250 000 phase-space points were generated,
evenly in dIn(1 — ;) = dz;/(1 — #;), ¢ = 1,2, and the second-order 3-jet rate in the
point evaluated. The properly normalized sum of weights in each of the 40 y points
were then fitted to a polynomial in In(y~! — 2). For the ERT(Zhu) matrix elements
the parametrizations in eq. (34) were used to perform a corresponding Monte Carlo
integration for the five y values available.

e The 4-jet rate was integrated numerically, separately for qqgg and qqq'q’ events, by
generating large samples of 4-jet phase-space points within the boundary y = 0.001.
Each point was classified according to the actual minimum y between any two
partons. The same events could then be used to update the summed weights for
40 different counters, corresponding to y values evenly distributed in Ilny between
y = 0.001 and the kinematical limit y = 1/6. In fact, since the weight sums for large
y values only received contributions from few phase-space points, extra (smaller)
subsamples of events were generated with larger y cuts. The summed weights,
properly normalized, were then parametrized in terms of polynomials in In(y~* —5).
Since it turned out to be difficult to obtain one single good fit over the whole range
of y values, different parametrizations are used above and below y = 0.018. As
originally given, the qqq'q’ parametrization only took into account four q' flavours,
i.e. secondary bb pairs were not generated, but this has been corrected for LEP.
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In the generation stage, each event is treated on its own, which means that the oy and
y values may be allowed to vary from event to event. The main steps are the following.

1.

The y value to be used in the current event is determined. If possible, this is
the value given by you, but additional constraints exist from the validity of the
parametrizations (y > 0.001 for GKS, 0.01 < y < 0.05 for ERT(Zhu)) and an
extra (user-modifiable) requirement of a minimum absolute invariant mass between
jets (which translates into varying y cuts due to the effects of initial-state QED
radiation).

The a, value is calculated.

. For the y and a, values given, the relative two/three/4-jet composition is deter-

mined. This is achieved by using the parametrized functions of y for 3- and 4-jet
rates, multiplied by the relevant number of factors of a;. In ERT(Zhu), where the
second-order 3-jet rate is available only at a few y values, intermediate results are
obtained by linear interpolation in the ratio of second-order to first-order 3-jet rates.
The 3-jet and 4-jet rates are normalized to the analytically known second-order to-
tal event rate, i.e. divided by Rqcp of eq. (25). Finally, the 2-jet rate is obtained
by conservation of total probability.

. If the combination of y and «, values is such that the total 3- plus 4-jet fraction is

larger than unity, i.e. the remainder 2-jet fraction negative, the y-cut value is raised
(for that event), and the process is started over at point 3.

The choice is made between generating a 2-, 3- or 4-jet event, according to the
relative probabilities.

. For the generation of 4-jets, it is first necessary to make a choice between qqgg

and qqq'q’ events, according to the relative (parametrized) total cross sections. A
phase-space point is then selected, and the differential cross section at this point is
evaluated and compared with a parametrized maximum weight. If the phase-space
point is rejected, a new one is selected, until an acceptable 4-jet event is found.

. For 3-jets, a phase-space point is first chosen according to the first-order cross sec-

tion. For this point, the weight
Qs
W(zi,z25y) =1+ ;R(wl,%;y) (35)

is evaluated. Here R(z1,zs;y) is analytically given for GKS [Gut84], while it is
approximated by the parametrization F'(X,Y;y) of eq. (34) for ERT(Zhu). Again,
linear interpolation of F(X,Y;y) has to be applied for intermediate y values. The
weight W is compared with a maximum weight

Qs
Wmax(y) =1+ ?RmaX(y) ) (36)

which has been numerically determined beforehand and suitably parametrized. If
the phase-space point is rejected, a new point is generated, etc.

. Massive matrix elements are not available in JETSET for second-order QCD (but

are in the first-order option). However, if a 3- or 4-jet event determined above falls
outside the phase-space region allowed for massive quarks, the event is rejected and
reassigned to be a 2-jet event. (The way the y;; and y;; variables of 4-jet events
should be interpreted for massive quarks is not even unique, so some latitute has
been taken here to provide a reasonable continuity from 3-jet events.) This proce-
dure is known not to give the expected full mass suppression, but is a reasonable
first approximation.

. Finally, if the event is classified as a 2-jet event, either because it was initially so

assigned, or because it failed the massive phase-space cuts for 3- and 4-jets, the
generation of 2-jets is trivial.
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6.1.6 Optimized perturbation theory

Theoretically, it turns out that the second-order corrections to the 3-jet rate are large. It is
therefore not unreasonable to expect large third-order corrections to the 4-jet rate. Indeed,
the experimental 4-jet rate is much larger than second order predicts (when fragmentation
effects have been folded in), if a; is determined based on the 3-jet rate [Sj684a, JADSS|.

The only consistent way to resolve this issue is to go ahead and calculate the full next
order. This is a tough task, however, so people have looked at possible shortcuts. For
example, one can try to minimize the higher-order contributions by a suitable choice of
the renormalization scale [Ste81] — ‘optimized perturbation theory’. This is equivalent
to a different choice for the Q? scale in a, a scale which is not unambiguous anyway.
Indeed the standard value Q* = s = E?_ is larger than the natural physical scale of
gluon emission in events, given that most gluons are fairly soft. One could therefore pick
another scale, Q% = fs, with f < 1. The O(a;) 3-jet rate would be increased by such
a scale change, and so would the number of 4-jet events, including those which collapse
into 3-jet ones. The loop corrections depend on the Q? scale, however, and compensate
the changes above by giving a larger negative contribution to the 3-jet rate.

The possibility of picking an optimized scale f is implemented as follows [Sj689].
Assume that the differential 3-jet rate at scale Q? = s is given by the expression

Ry = ria, + r2af , (37)

where R3, r; and 7, are functions of the kinematical variables ; and z, and the y cut,
as described above. When the coupling is chosen at a different scale, Q' = fs, the 3-jet
rate has to be changed to

Rg = r'la; + r2a;2 , (38)
where 7] = rq,
33 — 2n
TI2:T2—|—T1?f111f, (39)

and o/ = a;s(fs). Since we only have the Born term for 4-jets, here the effects of a scale
change come only from the change in the coupling constant. Finally, the 2-jet cross section
can still be calculated from the difference between the total cross section and the 3- and
4-jet cross sections.

If an optimized scale is used in the program, the default value is f = 0.002, which is
favoured by the studies in ref. [Bet89]. (In fact, it is also possible to use a correspondingly
optimized Rqcp factor, eq. (25), but then the corresponding f is chosen independently
and much closer to unity.) The success of describing the jet rates should not hide the fact
that one is dabbling in (educated, hopefully) guesswork, and that any conclusions based
on this method have to be taken with a pinch of salt.

One special problem associated with the use of optimized perturbation theory is that
the differential 3-jet rate may become negative over large regions of the (z;,z2) phase
space. This problem already exists, at least in principle, even for a scale f = 1, since r, is
not guaranteed to be positive definite. Indeed, depending on the choice of y cut, a, value
and recombination scheme, one may observe a small region of negative differential 3-jet
rate for the full second-order expression. This region is centred around qqg configurations,
where the q and q are close together in one hemisphere and the g is alone in the other, i.e.
1 &~z ~ 1/2. It is well understood why second-order corrections should be negative in
this region [Dok89]: the q and q of a qqg state are in a relative colour octet state, and thus
the colour force between them is repulsive, which translates into a negative second-order
term.

However, as f is decreased below unity, ), receives a negative contribution from the In f
term, and the region of negative differential cross section has a tendency to become larger,
also after taking into account related changes in a;. In an event-generator framework,
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where all events are supposed to come with unit weight, it is clearly not possible to
simulate negative cross sections. What happens in the program is therefore that no 3-jet
events at all are generated in the regions of negative differential cross section, and that
the 3-jet rate in regions of positive cross sections is reduced by a constant factor, chosen
so that the total number of 3-jet events comes out as it should. This is a consequence
of the way the program works, where it is first decided what kind of event to generate,
based on integrated 3-jet rates in which positive and negative contributions are added up
with sign, and only thereafter the kinematics is chosen.

Based on our physics understanding of the origin of this negative cross section, the
approach adopted is as sensible as any, at least to that order in perturbation theory (what
one might strive for is a properly exponentiated description of the relevant region). It can
give rise to funny results for low f values, however, as observed by OPAL [OPA92] for
the energy—energy correlation asymmetry.

6.1.7 Angular orientation

While pure v exchange gives a simple 1+ cos® 8 distribution for the q (and @) direction in
qq events, Z° exchange and v*/Z° interference results in a forward—backward asymmetry.
If one introduces

hi(s) = 2e. {ae(l — PP — v (P — Pﬂ')} Rx(s)erar
¥ {veadl - BEBD) — (0F 4 ad)(Pp — PO} x(o)Purar s (40)

then the angular distribution of the quark is given by

do

m o he(s)(1 + cos® 0;) + 2h;(s) cos b . (41)

The angular orientation of a 3- or 4-jet event may be described in terms of three angles
X, € and ¢; for 2-jet events only 6 and ¢ are necessary. From a standard orientation,
with the q along the +2z axis and the q in the zz plane with p, > 0, an arbitrary
orientation may be reached by the rotations +yx in azimuthal angle, +6 in polar angle,
and +¢ in azimuthal angle, in that order. Differential cross sections, including QFD
effects and arbitrary beam polarizations have been given for 2- and 3-jet events in refs.
[O1s80, Sch80]. We use the formalism of ref. [Ols80], with x — 71—y and ¢~ — —(p+7/2).
The resulting formulae are tedious, but straightforward to apply, once the internal jet
configuration has been chosen. 4-jet events are approximated by 3-jet ones, by joining the
two gluons of a qqgg event and the q' and @' of a qqq'q’ event into one effective jet. This
means that some angular asymmetries are neglected [Ali80a], but that weak effects are
automatically included. It is assumed that the second-order 3-jet events have the same
angular orientation as the first-order ones, some studies on this issue may be found in
[Kor85]. Further, the formulae normally refer to the massless case; only for the QED 2-
and 3-jet cases are mass corrections available.

The main effect of the angular distribution of multijet events is to smear the lowest-
order result, i.e. to reduce any anisotropies present in 2-jet systems. In the parton-shower
option of the program, only the initial qq axis is determined. The subsequent shower
evolution then de facto leads to a smearing of the jet axis, although not necessarily in full
agreement with the expectations from multijet matrix-element treatments.

6.1.8 Initial-state radiation

Initial-state photon radiation has been included using the formalism of ref. [Ber82]. Here
each event contains either no photon or one, i.e. it is a first-order non-exponentiated
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description. The main formula for the hard radiative photon cross section is

d_U:aem (lni—l) 1—|—(1—w7)2

dz., T m? T

oo(8) (42)

where z., is the photon energy fraction of the beam energy, § = (1 — z,)s is the squared
reduced hadronic c.m. energy, and o¢ is the ordinary annihilation cross section at the
reduced energy. In particular, the selection of jet flavours should be done according to
expectations at the reduced energy. The cross section is divergent both for z, — 1 and
z, — 0. The former is related to the fact that oo has a 1/§ singularity (the real photon
pole) for § — 0. An upper cut on z, can here be chosen to fit the experimental setup.
The latter is a soft photon singularity, which is to be compensated in the no-radiation
cross section. A requirement z, > 0.01 has therefore been chosen so that the hard-
photon fraction is smaller than unity. In the total cross section, effects from photons
with z, < 0.01 are taken into account, together with vertex and vacuum polarization
corrections (hadronic vacuum polarizations using a simple parametrization of the more
complicated formulae of ref. [Ber82]).

The hard photon spectrum can be integrated analytically, for the full 4*/Z° structure
including interference terms, provided that no new flavour thresholds are crossed and that
the Rqcp term in the cross section can be approximated by a constant over the range
of allowed § values. In fact, threshold effects can be taken into account by standard
rejection techniques, at the price of not obtaining the exact cross section analytically, but
only by an effective Monte Carlo integration taking place in parallel with the ordinary
event generation. In addition to ., the polar angle 6., and azimuthal angle ¢, of the
photons are also to be chosen. Further, for the orientation of the hadronic system, a
choice has to be made whether the photon is to be considered as having been radiated
from the et or from the e™.

Final-state photon radiation, as well as interference between initial- and final-state
radiation, has been left out of this treatment. The formulae for ete™ — utu~ cannot
be simply taken over for the case of outgoing quarks, since the quarks as such only live
for a short while before turning into hadrons. Another simplification in our treatment is
that effects of incoming polarized e* beams have been completely neglected, i.e. neither
the effective shift in azimuthal distribution of photons nor the reduction in polarization is
included. The polarization parameters of the program are to be thought of as the effective
polarization surviving after initial-state radiation.

6.1.9 Alternative matrix elements

The program contains two sets of ‘toy model’ matrix elements, one for an Abelian vector
gluon model and one for a scalar gluon model. Clearly both of these alternatives are
already excluded by data, and are anyway not viable alternatives for a consistent theory
of strong interactions. They are therefore included more as references to show how well
the characteristic features of QCD can be measured experimentally.

Second-order matrix elements are available for the Abelian vector gluon model. These
are easily obtained from the standard QCD matrix elements by a substitution of the
Casimir group factors: Cp =4/3 — 1, No =3 — 0, and Tgr = n¢/2 — 3n¢. First-order
matrix elements contain only Cp; therefore the standard first-order QCD results may be
recovered by a rescaling of a; by a factor 4/3. In second order the change of Ng to 0
means that g — gg couplings are absent from the Abelian model, while the change of T
corresponds to an enhancement of the g — q'q’ coupling, i.e. to an enhancement of the
qqq'q’ 4-jet event rate.

The second-order corrections to the 3-jet rate turn out to be strongly negative — if
a, is fitted to get about the right rate of 4-jet events, the predicted differential 3-jet rate
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is negative almost everywhere in the (z;,z2) plane. Whether this unphysical behaviour
would be saved by higher orders is unclear. It has been pointed out that the rate can
be made positive by a suitable choice of scale, since a; runs in opposite directions in an
Abelian model and in QCD [Bet89]. This may be seen directly from eq. (39), where the
term 33 = 11Ny is absent in the Abelian model, and therefore the scale-dependent term
changes sign. In the program, optimized scales have not been implemented for this toy
model. Therefore the alternatives provided for you are either to generate only 4-jet events,
or to neglect second-order corrections to the 3-jet rate, or to have the total 3-jet rate set
vanishing (so that only 2- and 4-jet events are generated). Normally we would expect the
former to be the one of most interest, since it is in angular (and flavour) distributions
of 4-jet events that the structure of QCD can be tested. Also note that the ‘correct’
running of a4 is not included; you are expected to use the option where «; is just given
as a constant number.

The scalar gluon model is even more excluded than the Abelian vector one, since
differences appear already in the 3-jet matrix element [Lae80]:

2
do zs;

diBl d€B2 x (]_ — :Bl)(]_ — €B2)

(43)

when only v exchange is included. The axial part of the Z° gives a slightly different
shape; this is included in the program but does not make much difference. The angular
orientation does include the full v*/Z° interference [Lae80], but the main interest is in the
3-jet topology as such [Ell79]. No higher-order corrections are included. It is recommended
to use the option of a fixed ay also here, since the correct running is not available.

6.2 Decays of Onia Resonances

Many different possibilities are open for the decay of heavy J¥¢ = 17~ onia resonances.
Of special interest are the decays into three gluons or two gluons plus a photon, since
these offer unique possibilities to study a ‘pure sample’ of gluon jets. A routine for this
purpose is included in the program. It was written at a time where the expectations
were to find toponium at PETRA energies. If, as now seems likely, the top mass is above
100 GeV, weak decays will dominate, to the extent that the top quark will decay weakly
even before a bound toponium state is formed, and thus the routine will be of no use for
top. The charm system, on the other hand, is far too low in mass for a jet language to
be of any use. The only application is therefore likely to be for T, which unfortunately
also is on the low side in mass.
The matrix element for q@ — ggg is (in lowest order) [Kol78]

1 dogg _ 1 {<1—w1>2+<1—w2>2+<1—w3>2} , (44)
Oggg dz1dzy 72 —9 ToT3 T1T3 T1To
where, as before, z; = 2E;/E.,, in the c.m. frame of the event. This is a well-defined
expression, without the kind of singularities encountered in the qqg matrix elements. In
principle, no cuts at all would be necessary, but for reasons of numerical simplicity we
implement a y cut as for continuum jet production, with all events not fulfilling this cut
considered as (effective) gg events. For ggg events, each gg invariant mass is required to
be at least 2 GeV.
Another process is qq — ~vgg, obtained by replacing a gluon in qq@ — ggg by a photon.
This process has the same normalized cross section as the one above, if e.g. z; is taken
to refer to the photon. The relative rate is [Kol78]

2
U’ygg . 36 eq Oem

Ogeg 5 as(Q?) '

(45)
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Here e, is the charge of the heavy quark, and the scale in o, has been chosen as the mass
of the onium state. If the mass of the recoiling gg system is lower than some cut-off (by
default 2 GeV), the event is rejected.

In the present implementation the angular orientation of the ggg and ~vgg events is
given for the ete™ — v* — onium case [Kol78] (optionally with beam polarization effects
included), i.e. weak effects have not been included, since they are negligible at around
10 GeV.

It is possible to start a perturbative shower evolution from either of the two states
above. However, for T the phase space for additional evolution is so constrained that not
much is to be gained from that. We therefore do not recommend this possibility. The
shower generation machinery, when starting up from a ygg configuration, is constructed
such that the photon energy is not changed. This means that there is currently no
possibility to use showers to bring the theoretical photon spectrum in better agreement
with the experimental one.

In string fragmentation language, a ggg state corresponds to a closed string triangle
with the three gluons at the corners. As the partons move apart from a common origin,
the string triangle expands. Since the photon does not take part in the fragmentation,
the ygg state corresponds to a double string running between the two gluons.

6.3 Routines and Common Block Variables
6.3.1 e'e” continuum event generation

The only routine a normal user will call to generate eTe™ continuum events is LUEEVT.
The other routines listed below, as well as LUSHOW (see section 10.4), are called by LUEEVT.

CALL LUEEVT(KFL,ECM)

Purpose: to generate a complete event ee™ — 4*/Z° — qq — parton shower — hadrons
according to QFD and QCD cross sections. As an alternative to parton show-
ers, second-order matrix elements are available for qq + qqg + qqgg + qqq'q’

production.
KFL : flavour of events generated.
=0 : mixture of all allowed flavours according to relevant probabilities.
= 1 - 8 : primary quarks are only of the specified flavour KFL.
ECM : total c.m. energy of system.

Remark: Each call generates one event, which is independent of preceding ones, with
one exception, as follows. If radiative corrections are included, the shape of
the hard photon spectrum is recalculated only with each LUXTOT call, which
normally is done only if KFL, ECM or MSTJ(102) is changed. A change of e.g.
the Z° mass in mid-run has to be followed either by a user call to LUXTOT or
by an internal call forced e.g. by putting MSTJ(116)=3.

SUBROUTINE LUXTOT(KFL,ECM,XTOT) : to calculate the total hadronic cross section, in-
cluding quark thresholds, weak, beam polarization, and QCD effects and ra-
diative corrections. In the process, variables necessary for the treatment of
hard photon radiation are calculated and stored.

KFL, ECM : as for LUEEVT.
XTOT : the calculated total cross section in nb.

SUBROUTINE LURADK(ECM,MK,PAK,THEK,PHIK,ALPK) : to describe initial-state hard ~
radiation.

SUBROUTINE LUXKFL(KFL,ECM,ECMC,KFLC) : to generate the primary quark flavour in
case this is not specified by the user.
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SUBROUTINE LUXJET(ECM,NJET,CUT) : to determine the number of jets (2, 3 or 4) to be
generated within the kinematically allowed region (characterized by CUT = y.yu;)
in the matrix-element approach; to be chosen such that all probabilities are
between 0 and 1.

SUBROUTINE LUX3JT(NJET,CUT,KFL,ECM,X1,X2) : to generate the internal momentum
variables of a 3-jet event, qqg, according to first- or second-order QCD matrix
elements.

SUBROUTINE LUX4JT(NJET,CUT,KFL,ECM,KFLN,X1,X2,X4,X12,X14) : to generate the
internal momentum variables for a 4-jet event, qqgg or qqq'q’, according to
second-order QCD matrix elements.

SUBROUTINE LUXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) : to describe the angular orien-
tation of the jets. In first-order QCD the complete QED or QFD formulae are
used; in second order 3-jets are assumed to have the same orientation as in
first, and 4-jets are approximated by 3-jets.

6.3.2 A routine for onium decay

In LUONIA we have implemented the decays of heavy onia resonances into three gluons or
two gluons plus a photon, which are the dominant non-background-like decays of T.

CALL LUONIA(KFL,ECM)

Purpose: to simulate the process ete™ — 4* — 17~ onium resonance — (ggg or ggvy) —
shower — hadrons.
KFL : the flavour of the quark giving rise to the resonance.
=0 : generate ggg events alone.
1 - 8 : generate ggg and ggy events in mixture determined by the squared
charge of flavour KFL. Normally KFL=5 or 6.
ECM : total c.m. energy of system.

6.3.3 Common block variables

The status codes and parameters relevant for the ete™ routines are found in the com-
mon block LUDAT1. This common block also contains more general status codes and
parameters, described elsewhere.

COMMON/LUDAT1/MSTU (200) ,PARU(200) ,MSTJ (200) ,PARJ (200)

Purpose: to give access to a number of status codes and parameters regulating the
performance of the ete™ event generation routines.
MSTJ(101) : (D=b5) gives the type of QCD corrections used for continuum events.

=0 : only qq events are generated.

=1 : qq + qqg events are generated according to first-order QCD.

=2 : qq + qqg + qqgg + qqq’q’ events are generated according to second-order
QCD.

=3: qq + qqg + qqgg + qqq'q’ events are generated, but without second-order
corrections to the 3-jet rate.

=5 : a parton shower is allowed to develop from an original qq pair, see
MSTJ(40) - MSTJ(50) for details.

= -1 only qqg events are generated (within same matrix-element cuts as for

=1). Since the change in flavour composition from mass cuts or radiative
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corrections is not taken into account, this option is not intended for
quantitative studies.

only qqgg and qqq'q events are generated (as for =2). The same warning
as for =-1 applies.

only qdgg events are generated (as for =2). The same warning as for =-1
applies.

only qdq'q’ events are generated (as for =2). The same warning as for
=-1 applies.

MSTJ(101) is also used in LUONIA, with

geg+gg events are generated according to lowest-order matrix elements.
a parton shower is allowed to develop from the original ggg or ggv con-
figuration, see MSTJ(40) - MSTJ(50) for details.

The default values of fragmentation parameters have been chosen to work
well with the default parton-shower approach above. If any of the other
options are used, or if the parton shower is used in non-default mode, it
may be necessary to retune fragmentation parameters. As an example, we
note that the second-order matrix-element approach (MSTJ(101)=2) at
PETRA /PEP energies gives a better description when the a and b param-
eters of the symmetric fragmentation function are set to a =PARJ (41)=1,
b =PARJ(42)=0.7, and the width of the transverse momentum distribu-
tion to o =PARJ(21)=0.40. In principle, one also ought to change the
joining parameter to PARJ(33)=PARJ(35)=1.1 to preserve a flat rapidity
plateau, but if this should be forgotten, it does not make too much dif-
ference. For applications at TRISTAN or LEP, one must expect to have
to change the matrix-element approach parameters even more, to make
up for additional soft gluon effects not covered in this approach.

MSTJ(102) : (D=2) inclusion of weak effects (Z° exchange) for flavour production, angu-
lar orientation, cross sections and initial-state photon radiation in continuum
events.

N

QED, i.e. no weak effects are included.

QFD, i.e. including weak effects.

as =2, but at initialization in LUXTOT the Z° width is calculated from
sin?fy, Qem and Z° and quark masses (including bottom and top thresh-
old factors for MSTJ(103) odd), assuming three full generations, and the
result is stored in PARJ (124).

MSTJ(103) : (D=T7) mass effects in continuum matrix elements, in the form MSTJ(103)
= M, +2M, +4M3, where M; = 0 if no mass effects and M; = 1 if mass effects

M
M,

M3Z

should be included. Here;

threshold factor for new flavour production according to QFD result;
gluon emission probability (only applies for IMSTJ(101) | <1, otherwise
no mass effects anyhow);

angular orientation of event (only applies for |IMSTJ(101)|< 1 and
MSTJ(102)=1, otherwise no mass effects anyhow).

MSTJ(104) : (D=b5) number of allowed flavours, i.e. flavours that can be produced in a
continuum event if the energy is enough. A change to 6 makes top production
allowed above the threshold, etc. Note that in qqq'q’ events only the first five
flavours are allowed in the secondary pair, produced by a gluon breakup.

MSTJI(1

05)
0 :

1

-1 :

(D=1) fragmentation and decay in LUEEVT and LUONIA calls.

no LUEXEC calls, i.e. only matrix-element and/or parton-shower treat-
ment.

LUEXEC calls are made to generate fragmentation and decay chain.

no LUEXEC calls and no collapse of small jet systems into one or two
particles (in LUPREP).
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MSTJ(106) : (D=1) angular orientation in LUEEVT and LUONIA.
=0 : standard orientation of events, i.e. q along +z axis and q along —z axis
or in zz plane with p, > 0 for continuum events, and g;gsg3 or vgsgs in
zz plane with g; or v along the 4z axis for onium events.

=1 : random orientation according to matrix elements.
MSTJ(107) : (D=0) radiative corrections to continuum events.
=0 : no radiative corrections.
=1 : initial-state radiative corrections (including weak effects for MSTJ(102)=
2 or 3).

MSTJ(108) : (D=2) calculation of oy for matrix-element alternatives. The MSTU(111)
and PARU(112) values are automatically overwritten in LUEEVT or LUONIA calls

accordingly.
=0 : fixed ag value as given in PARU(111).
=1 : first-order formula is always used, with Aqcp given by PARJ(121).
=2 : first- or second-order formula is used, depending on value of MSTJ(101),

with Aqep given by PARJ(121) or PARJ(122).

MSTJ(109) : (D=0) gives a possibility to switch from QCD matrix elements to some
alternative toy models. Is not relevant for shower evolution, MSTJ(101)=5,
where one can use MSTJ(49) instead.

=0 : standard QCD scenario.

=1 : a scalar gluon model. Since no second-order corrections are available in
this scenario, one can only use this with MSTJ(101) = 1 or -1. Also note
that the event-as-a-whole angular distribution is for photon exchange
only (i.e. no weak effects), and that no higher-order corrections to the
total cross section are included.

=2 : an Abelian vector gluon theory, with the colour factors Cr = 1 (= 4/3
in QCD), N¢ = 0 (= 3 in QCD) and Tr = 3n; (= ns/2 in QCD).
If one selects aapelian = (4/3)aqep, the 3-jet cross section will agree

with the QCD one, and differences are to be found only in 4-jets. The
MSTJ(109)=2 option has to be run with MSTJ(110)=1 and MSTJ(111)=0;
if need be, the latter variables will be overwritten by the program.
Warning: second-order corrections give a large negative contribution to
the 3-jet cross section, so large that the whole scenario is of doubtful use.
In order to make the second-order options work at all, the 3-jet cross
section is here by hand set exactly equal to zero for MSTI(101)=2. It is
here probably better to use the option MSTJ(101)=3, although this is not
a consistent procedure either.
MSTJ(110) : (D=2) choice of second-order contributions to the 3-jet rate.

=1: the GKS second-order matrix elements, i.e. the old JETSET standard.

=2: the Zhu parametrization of the ERT matrix elements, based on the pro-
gram of Kunszt and Ali, i.e. in historical sequence ERT /Kunszt/Ali/Zhu.
The parametrization is available for y = 0.01, 0.02, 0.03, 0.04 and 0.05.
Values outside this range are put at the nearest border, while those in-
side it are given by a linear interpolation between the two nearest points.
Since this procedure is rather primitive, one should try to work at one
of the values given above. Note that no Abelian QCD parametrization
is available for this option.

MSTJ(111) : (D=0) use of optimized perturbation theory for second-order matrix ele-
ments (it can also be used for first-order matrix elements, but here it only
corresponds to a trivial rescaling of the oy argument).

=0 : no optimization procedure; i.e. Q* = E2 .
=1 : an optimized Q? scale is chosen as Q% = fEcm, where f =PARJ(128) for
the total cross section R factor, while f =PARJ(129) for the 3- and 4-jet
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rates. This f value enters via the a,, and also via a term proportional
to a?In f. Some constraints are imposed; thus the optimized ‘3-jet’ con-
tribution to R is assumed to be positive (for PARIJ(128)), the total 3-jet
rate is not allowed to be negative (for PARJ(129)), etc. However, there is
no guarantee that the differential 3-jet cross section is not negative (and
truncated to 0) somewhere (this can also happen with f = 1, but is then
less frequent). The actually obtained f values are stored in PARJ(168)
and PARJ(169), respectively. If an optimized Q? scale is used, then the
Aqep (and a;) should also be changed. With the value f = 0.002, it
has been shown [Bet89] that a Aqcp = 0.100 GeV gives a reasonable
agreement; the parameter to be changed is PARJ (122) for a second-order
running ;. Note that, since the optimized Q? scale is sometimes below
the charm threshold, the effective number of flavours used in a; may well
be 4 only. If one feels that it is still appropriate to use 5 flavours (one
choice might be as good as the other), it is necessary to put MSTU(113)=5.
MSTJ(115) : (D=1) documentation of continuum or onium events, in increasing order of

completeness.
=0 : only the parton shower, the fragmenting partons and the generated
hadronic system are stored in the LUJETS common block.
=1 : also a radiative photon is stored (for continuum events).
=2 also the original eTe™ are stored (with K(I,1)=21).
=3 : also the v or 4*/Z°® exchanged for continuum events, the onium state for

resonance events is stored (with K(I,1)=21).
MSTJ(116) : (D=1) initialization of total cross section and radiative photon spectrum
in LUEEVT calls.

=0 : never; cannot be used together with radiative corrections.

=1 : calculated at first call and then whenever KFL or MSTJ(102) is changed
or ECM is changed by more than PARJ(139).

=2 : calculated at each call.

=3 : everything is reinitialized in the next call, but MSTJ(116) is afterwards

automatically put =1 for use in subsequent calls.

MSTJ(119) : (I) check on need to reinitialize LUXTOT.

MSTJ(120) : (R) type of continuum event generated with the matrix-element option

(with the shower one, the result is always =1).

qaq.

qqg-

qqeg from Abelian (QED-like) graphs in matrix element.

qqeg from non-Abelian (i.e. containing triple-gluon coupling) graphs in
matrix element.

=5 : qqq'q.

MSTJ(121) : (R) flag set if a negative differential cross section was encountered in the
latest LUX3JT call. Events are still generated, but maybe not quite according
to the distribution one would like (the rate is set to zero in the regions of
negative cross section, and the differential rate in the regions of positive cross
section is rescaled to give the ‘correct’ total 3-jet rate).

PARJ(121) : (D=1.0 GeV) A value used in first-order calculation of a; in the matrix-
element alternative.

PARJ(122) : (D=0.25 GeV) A values used in second-order calculation of ay in the matrix-
element alternative.

PARJ(123) : (D=91.187 GeV) mass of Z° as used in propagators for the QFD case.

PARJ(124) : (D=2.489 GeV) width of Z° as used in propagators for the QFD case.
Overwritten at initialization if MSTJ(102)=3.

= wWwN
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PARJ(125) : (D=0.01) ycut, minimum squared scaled invariant mass of any two partons
in 3- or 4-jet events; the main user-controlled matrix-element cut. PARJ (126)
provides an additional constraint. For each new event, it is additionally
checked that the total 3- plus 4-jet fraction does not exceed unity; if so the
effective y cut will be dynamically increased. The actual y-cut value is stored
in PARJ(150), event by event.

PARJ(126) : (D=2. GeV) minimum invariant mass of any two partons in 3- or 4-jet
events; a cut in addition to the one above, mainly for the case of a radiative
photon lowering the hadronic c.m. energy significantly.

PARJ(127) : (D=1. GeV) is used as a safety margin for small colour-singlet jet systems,
cf. PARJ(32), specifically q@' masses in qqq'q 4-jet events and gg mass in
onium ygg events.

PARJ(128) : (D=0.25) optimized @Q* scale for the QCD R (total rate) factor for the
MSTJ(111)=1option is given by Q% = fE?_, where f =PARJ(128). For various
reasons the actually used f value may be increased compared with the nominal
one; while PARJ (128) gives the nominal value, PARJ(168) gives the actual one
for the current event.

PARJ(129) : (D=0.002) optimized Q? scale for the 3- and 4-jet rate for the MSTJ(111)=1
option is given by Q? = fE2_, where f =PARJ(129). For various reasons the
actually used f value may be increased compared with the nominal one; while
PARJ(129) gives the nominal value, PARJ(169) gives the actual one for the
current event. The default value is in agreement with the studies of Bethke
[Bet89].

PARJ(131), PARJ(132) : (D=2*0.) longitudinal polarizations Pﬂ' and P of incoming
et and e”.

PARJ(133) : (D=0.) transverse polarization Pr = 1/ P{f Py, with Pf and Pg transverse
polarizations of incoming e* and e™.

PARJ(134) : (D=0.) mean of transverse polarization directions of incoming et and e,
Ap = (p* + ¢7)/2, with ¢ the azimuthal angle of polarization, leading to a
shift in the ¢ distribution of jets by Aep.

PARJ(135) : (D=0.01) minimum photon energy fraction (of beam energy) in initial-state
radiation; should normally never be changed (if lowered too much, the fraction
of events containing a radiative photon will exceed unity, leading to problems).

PARJ(136) : (D=0.99) maximum photon energy fraction (of beam energy) in initial-state
radiation; may be changed to reflect actual trigger conditions of a detector (but
must always be larger than PARJ(135)).

PARJ(139) : (D=0.2 GeV) maximum deviation of E., from the corresponding value at
last LUXTOT call, above which a new call is made if MSTJ(116)=1.

PARJ(141) : (R) value of R, the ratio of continuum cross section to the lowest-order
muon pair production cross section, as given in massless QED (i.e. three times
the sum of active quark squared charges, possibly modified for polarization).

PARJ(142) : (R) value of R including quark-mass effects (for MSTJ(102)=1) and/or weak
propagator effects (for MSTJ(102)=2).

PARJ(143) : (R) value of R as PARJ(142), but including QCD corrections as given by
MSTJ(101).

PARJ(144) : (R) value of R as PARJ(143), but additionally including corrections from
initial-state photon radiation (if MSTJ(107)=1). Since the effects of heavy
flavour thresholds are not simply integrable, the initial value of PARJ(144) is
updated during the course of the run to improve accuracy.

PARJ(145) - PARJ(148) : (R) absolute cross sections in nb as for the cases PARJ(141)
- PARJ(144) above.

PARJ(150) : (R) current effective matrix element cut-off yc,s, as given by PARJ(125),
PARJ(126) and the requirements of having non-negative cross sections for 2-,
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3- and 4-jet events. Not used in parton showers.

PARJ(151) : (R) value of c.m. energy ECM at last LUXTOT call.

PARJ(152) : (R) current first-order contribution to the 3-jet fraction; modified by mass
effects. Not used in parton showers.

PARJ(153) : (R) current second-order contribution to the 3-jet fraction; modified by
mass effects. Not used in parton showers.

PARJ(154) : (R) current second-order contribution to the 4-jet fraction; modified by
mass effects. Not used in parton showers.

PARJ(155) : (R) current fraction of 4-jet rate attributable to qqq'q events rather than
qqgg ones; modified by mass effects. Not used in parton showers.

PARJ(156) : (R) has two functions when using second-order QCD. For a 3-jet event,
it gives the ratio of the second-order to the total 3-jet cross section in the
given kinematical point. For a 4-jet event, it gives the ratio of the modified
4-jet cross section, obtained when neglecting interference terms whose colour
flow is not well defined, to the full unmodified one, all evaluated in the given
kinematical point. Not used in parton showers.

PARJ(157) - PARJ(159) : (I) used for cross-section calculations to include mass thresh-
old effects to radiative photon cross section. What is stored is basic cross
section, number of events generated and number that passed cuts.

PARJ(160) : (R) nominal fraction of events that should contain a radiative photon.

PARJ(161) - PARJ(164) : (I) give shape of radiative photon spectrum including weak
effects.

PARJ(168) : (R) actual f value of current event in optimized perturbation theory for R;
see MSTJ(111) and PARJ(128).

PARJ(169) : (R) actual f value of current event in optimized perturbation theory for 3-
and 4-jet rate; see MSTJ(111) and PARJ(129).

PARJ(171) : (R) fraction of cross section corresponding to the axial coupling of quark
pair to the intermediate v*/Z° state; needed for the Abelian gluon model 3-jet
matrix element.

6.4 Examples

An ordinary e*e” annihilation event in the continuum, at a c.m. energy of 40 GeV, may
be generated with

CALL LUEEVT(0,40.)

In this case a qq event is generated, including weak effects, followed by parton-shower
evolution and fragmentation/decay treatment. Before a call to LUEEVT, however, a number
of default values may be changed, e.g. MSTJ(101)=2 to use second-order QCD matrix
elements, giving a mixture of qq, qqg, qqgg, and qqq'q’ events, MSTI(102) =1 to have QED
only, MSTJ(104)=6 to allow tt production as well, MSTJ(107)=1 to include initial-state
photon radiation (including a treatment of the Z° pole), PARJ(123)=92.0 to change the
7° mass, PARJ(81)=0.3 to change the parton-shower A value, or PARJ(82)=1.5 to change
the parton-shower cut-off. If initial-state photon radiation is used, some restrictions apply
to how one can alternate the generation of events at different energies or with different
Z° mass, etc. These restrictions are not there for efficiency reasons (the extra time for
recalculating the extra constants every time is small), but because it ties in with the
cross-section calculations (see PARJ(144)).

Most parameters can be changed independently of each other. However, if just one
or a few parameters/switches are changed, one should not be surprised to find a rather
bad agreement with the data, like e.g. a too low or high average hadron multiplicity. It
is therefore usually necessary to retune one parameter related to the perturbative QCD
description, like a; or A, one of the two parameters a and b of the Lund symmetric
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fragmentation function (since they are so strongly correlated, it is often not necessary
to retune both of them), and the average fragmentation transverse momentum — see
Note 2 of the MSTJ(101) description for an example. For very detailed studies it may be
necessary to retune even more parameters.

The three-gluon and gluon—gluon—photon decays of T may be simulated by a call

CALL LUONIA(5,9.46)

Unfortunately, with present top-mass limits, this routine will not be of much interest for
toponium studies (weak decays will dominate).

A typical program for analysis of ete™ annihilation events at 100 GeV might look
something like

COMMON/LUJETS/N, K (4000,5) ,P(4000,5) ,V(4000,5)

COMMON/LUDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)

COMMON/LUDAT2/KCHG (500,3) ,PMAS (500,4) ,PARF (2000) ,VCKM(4,4)

COMMON/LUDAT3/MDCY (500, 3) ,MDME (2000,2) ,BRAT (2000) ,KFDP (2000, 5)

MDCY (LUCOMP(111),1)=0 ! put pi0 stable

MSTJ(107)=1 include initial-state radiation

PARU(41)=1. use linear sphericity

..... other desired changes

initialize analysis statistics

loop over events

generate new event

list first event

save particle composition
statistics

remove decayed particles

linear sphericity analysis

too few particles in event for
LUSPHE to work on it (unusual)

orient event along axes above

list first treated event

fill analysis statistics

now do thrust analysis

more analysis statistics

DO 100 IEVENT=1,1000

CALL LUEEVT(0,100.)
IF(IEVENT.EQ.1) CALL LULIST(2)
CALL LUTABU(11)

CALL LUEDIT(2)
CALL LUSPHE (SPH, APL)
IF(SPH.LT.0.) GOTO 100

CALL LUEDIT(31)
IF(IEVENT.EQ.1) CALL LULIST(2)

100 CONTINUE
CALL LUTABU(12) print particle composition
statistics

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! print analysis statistics
