
Monte Carlo School
Physics at the Terascale

21–24 April 2008
DESY, Hamburg

PYTHIA 8 Worksheet

Torbjörn Sjöstrand

Department of Theoretical Physics, Lund University

1 Introduction

Pythia 8 is, by today’s standards, a small package. It is completely selfcontained, and
is therefore easy to install for standalone usage, e.g. if you want to have it on your own
laptop. The Pythia package also comes with an interface to HepMC (and LHAPDF).
Section 2 describes how to install Pythia, both standalone and for use with HepMC.
If you do not already have HepMC installed, or if you are not interested in learning
how to install Pythia 8, you can skip this section, and instead make use of the existing
Pythia 8 installation, found on
/afs/desy.de/group/alliance/mcg/public/MCGenerators/pythia8/107/i586 rhel40/lib

When you use Pythia you are expected to write the main program yourself, for maximal
flexibility and power. Section 3 gives you a simple step-by-step recipe how to write a
minimal such program, that could then gradually be expanded in different directions, e.g.
as in Section 4.

There already exist some readymade main programs, however, where you only supply
an input “cards file” with your specific instructions for the run. How to do this for the
exercise of today is described in Section 5. If you want to get to the physics as rapidly as
possible you can therefore skip right to it.

Finally section 6 gives some hints how to study other possible physics topics.

2 Installation

Here is how to install Pythia 8 on a Linux/Unix/MacOS system. The baseline is for
a standalone installation, while the three points typeset in italics provide the additional
instructions if you want to be able to link to an existing installation of HepMC. (You
will have to look elsewhere if you want help with installing HepMC.) We denote the
changing-with-time sub-subversion number xx, currently 07.

• Use your web browser to go to
http://www.thep.lu.se/∼torbjorn/Pythia.html

1

• Right-click with your mouse on the link to (the current)
pythia81xx.tgz

and decide where you want to download the file. (The left-click default location is
installation-dependent, and could be your home directory or the Desktop one.)

• When in the directory where pythia81xx.tgz was downloaded, type
tar xvfz pythia81xx.tgz

This will create a new (sub)directory pythia81xx where all files are unpacked.

• Move to this directory (cd pythia81xx).

• HepMC: (version 2 only) type
./configure --with-hepmc=path

where path would depend on your local configuration. For instance, at DESY a
path

/afs/desy.de/group/alliance/mcg/public/HepMC/2.03.06/i586 rhel40

should work. (Should configure not recognize the version number you can supply
that with an optionat argument, --with-hepmcversion=2.03.06)

• Compile the program with
make

This will take 1–3 minutes (computer-dependent).

• For test runs, move to the examples subdirectory.

• HepMC: do either of
source config.csh

source config.sh

the former when you use the csh or tcsh shells, otherwise the latter. (Use echo

$SHELL if uncertain.)

• The programs mainNN, with NN from 01 through 27 can now be executed with
make mainNN

./mainNN.exe > outfile

You can study the contents of the outfile.

• HepMC: you can similarly use main programs NN = 31 and 32, which also produce
event files hepmcoutNN.dat.

• For the ambitious: Further configure possibilites exist, see the README files in
the pythia81xx directory and the examples subdirectory for details how to proceed.

3 A “Hello World” program

Assume you want to generate a single gg → tt event at the LHC, using Pythia stan-
dalone.

To do this, first open a new file mymain.cc in the examples subdirectory. Then type the
following lines (here interspersed with comments):

#include "Pythia.h"

to include the header file with classes and methods we need to use;
using namespace Pythia8;

to save us from having to type the Pythia8:: qualifier all the time;
int main() {

to begin the main program;

2

Pythia pythia;

to declare an instance pythia of the main Pythia class;
pythia.readString("Top:gg2ttbar = on");

to send in a message to pythia to switch on the process Top:gg2ttbar;
pythia.init(2212, 2212, 14000.);

to tell pythia to initialize for a collision process between two incoming protons (PDG
code 2212) at 14000 GeV c.m. energy;

pythia.next();

to tell pythia to generate the next event (in this run the only one);
pythia.event.list();

to list the event information stored in the event member of pythia;
return 0; }

to finish the main program with an error-free return.

Next you need to edit the Makefile (the one in the examples subdirectory) to make it
know what to do with mymain.cc. The lines

Create an executable for one of the normal test programs

main00 main01 main02 main03 ... main09 main10 main10 \

and the two next enumerate the main programs that do not need any external libraries.
Edit the last of these lines to include also mymain:

main21 main22 main23 main24 main25 main26 main 27 mymain: \

Now it should work as before with the other examples:
make mymain

./mymain.exe > outfile

whereafter you can study outfile.

Alternatively, if you did not install Pythia 8 standalone, you can link to the existing
DESY installation. Then replace the previous two paragraphs by

source /afs/desy.de/user/m/mcpythia/public/pythia8-setup-mymain.sh

./mymain.exe > outfile

which is a simplified variant of the pythia8-setup-main32.sh script in section 5 (it does
not copy a main program).

4 A first realistic analysis

The main program can thereafter be gradually expanded.

• To allow the process qq → tt as well add a second pythia.readString call with
argument "Top:qqbar2ttbar = on".

• To give some variety of event types, introduce a loop over 5 events (to begin with),
i.e. pythia.next() should be executed this many times.

• For the analysis you need to be able to access the information in the event record,
as shown by the pythia.event.list() listing. To loop over all particles in it, use

for (int i = 0; i < pythia.event.size(); ++i) {
with a matching closing curly bracket further down.

• Inside the loop you can access the properties of particle pythia.event[i]. For
instance, the method id() returns the PDG identity code, so if you insert

cout << "i = " << i << " id = " << pythia.event[i].id() << endl;

3

you should get a table of identity codes that matches the one in the event listing.

• The event listing contains all partons and particles, traced through a number of
intermediate steps. For instance, several copies of the top may well appear in the
listing, as the addition of showers shifts the top around. It is the last copy of top
that gives the “final” answer. You can thus obtain the location of this top e.g. by a
line

int iTop = 0;

before the loop over the particles in the event, and
if (pythia.event[i].id() == 6) iTop = i;

inside of it.

• In addition to the particle properties in the event listing there are also methods
that return many derived quantities for a particle, such as transverse momentum,
pythia.event[i].pT(), and pseudorapidity, pythia.event[i].eta(). Use these
methods to print out the values for the final top found above.

• We now want to generate more events, say 1000, to view the shape of these dis-
tribution. You then need to remove the listing and printing for each event. In its
place book two histograms (a very simple histogramming class comes along with
the program, for rapid check/debug purposes)

Hist pT("top transverse momentum", 100, 0., 200.);

Hist eta("top pseudorapidity", 100, -5., 5.);

before the event loop, store the values
pT.fill(pythia.event[iTop].pT());

pT.fill(pythia.event[iTop].eta());

for each event, and write out the histograms
cout << pT << eta;

after the event loop.

• As a final standalone exercise, consider plotting the charged multiplicity of events.
You then need to have a counter set to zero for each new event. Inside the par-
ticle loop this counter should be updated whenever the particle isCharged() and
isFinal(). For the histogram, note that it can be trecherous to have bin limits
at integers, where rounoff errors decide whichever way they go. In this particular
case only even numbers are possible, so 100 bins from −1 to 399 would still be
acceptable.

From what we have discussed so far to the readymade program main32, to be used in the
next section, a few aspects should be noted.

• Code has been added that will convert the pythia.event event information into
the HepMC format, and write out these events to a file, for subsequent further
analysis.

• On the other hand, there is no code for event analysis inside the main program
itself.

• The use of pythia.readString(...) commands has been replaced by a
pythia.readFile("filename") one, where each line in this file can contain one
string (without enclosing quotes) of instructions to Pythia.

• A few predefined variables, such as the number of events to generate, can also be
set in this file and extracted for use in the main program.

• The name of this input file and of the HepMC output file are read in from the

4

command line.

5 Generation of top events

In this section the emphasis is on generating files of HepMC events that you can then
analyze further with Root. Here Pythia will therefore be considered as a black box.
To this end you can use the main32.cc program found in the examples subdirectory.
Assuming that you have properly set up everything locally on your computer, you would
need to make main32 in the examples subdirectory to produce an executable.

For the purpose of this school, given the DESY-specific paths to the GENSER-provided
libraries, you may instead execute a simple script

source /afs/desy.de/user/m/mcpythia/public/pythia8-setup-main32.sh

to

• add the HepMC path to LD LIBRARY PATH and set PYTHIA8DATA (the directory
where default Pythia settings and particle data are stored),

• copy main32.cc from the GENSER repository to your current directory, and

• compile main32.cc, linked to Pythia 8.107 and HepMC 2.03.06.

The exectutable main32.exe is then run with a command line like
./main32.exe infile hepmcfile > outfile

Here hepmcfile is your chosen name for the output file with HepMC events, and outfile

your chosen name for information on the run. (If you omit > outfile it will appear on
the screen.) The rest of this section will be concerned with the infile, which is the place
where you decide what is to be done during the run.

The infile can contain one command per line, of the type
variable = value

All Pythia variable names begin with a letter or a digit, so if you begin a line with a
non-alphanumeric character (such as !, # or $) it will be interpreted as a comment line.
You can also add comments on a valid command line, after the value. For readability
we recommend it to be preceded by a non-alphanumeric character, as for comment lines.
Blanks can be freely inserted, except inside the variable name and the value. Further, the
equal sign is optional, but improves readability. The variable names are case-insensitive;
the mixing of cases has been chosen purely to improve readability.

All valid variables are listed in the online manual, which you can access if you open a web
browser on the file

/afs/desy.de/group/alliance/mcg/public/MCGenerators/pythia8/107/

share/htmldoc/Welcome.html

(all in one go; the address had to be split here since it did not fit on one line). Use the
left-column index to navigate among the topics. Cut-and-paste of variable names can be
used to avoid spelling mistakes.

The same pages also exist in an interactive variant, where you semi-automatically can
construct a file with all the command lines you wish to have. This requires that somebody
installs the phpdoc directory in a webserver (i.e. like your homepage is). If you lack a
local installation you can use the one at

http://home.thep.lu.se/∼torbjorn/php8105/Welcome.php

5

This is not a commercial-quality product, however, but requires some user discipline. As
explained on the “Save Settings” page, you must initially pick a temporary file, then
remember to save changes to this file for each new webpage that you change, and finally
determine the ultimate location of the file.

We are now ready to introduce you to some command lines that you should have in your
infile:

• Main:numberOfEvents = 100

is your choice of how many events will be generated and stored in HepMC format
in the hepmcfile.

• Main:timesToShow = 10

how many times the program will print how far along the job is (more useful for
longer runs).

• Main:showChangedSettings = on

echo back the list of changes you have made, to check you got it right.

• Beams:idA = 2212

first incoming beam is a 2212, i.e. a proton.

• Beams:idB = 2212

second beam is also a proton.

• Beams:eCM = 14000.

the cm energy of collisions.

• Top:gg2ttbar = on

switch on the process gg → tt.

• Top:qqbar2ttbar = on

switch on the process qq → tt.

These commands together would provide a minimal infile, necessary to generate some
first few events that you could analyze further. As you go along you can increase the
number of events and also play with further optional aspects, such as:

• 6:m0 = 175.

change the top mass, which by default is 171 GeV.

• Main:showChangedParticleData = on

echo back particle data for those particles you have changed.

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MI = off

switch off multiple interactions.

6 Further studies

If you have time left, you should take the opportunity to try a few other processes or
options. Below are given some examples, but feel free to pick something else that you
would be more interested in.

6

• Higgs production can proceed through several different production processes. For
the Standard Model Higgs some process switches are
HiggsSM:ffbar2H for ff → H0 (f generic fermion, here mainly bb → H0)
HiggsSM:gg2H for gg → H0

HiggsSM:ffbar2HZ for ff → H0Z0

HiggsSM:ffbar2HW for ff → H0W±

HiggsSM:ff2Hff(t:ZZ) for ff → H0ff via Z0Z0 fusion
HiggsSM:ff2Hff(t:WW) for ff → H0ff via W+W− fusion
HiggsSM:all for all of the above (and some more) Study the p⊥ and η spectrum of
the Higgs in these processes, and compare.

• You can also vary the Higgs mass with a 25:m0 = ... and switch off FSR/ISR/MI
as above for top.

• Z0 production to lowest order only involves one process, accessible with
WeakSingleBoson:ffbar2gmZ = on. The problem here is that the process is
ff → γ∗/Z0 with full γ∗/Z0 interference and so a signficiant enhancement at low
masses. The combined particle is always classified with code 23, however. So gener-
ate events and study the γ∗/Z0 mass and p⊥ distributions. Then restrict to a more
“Z0-like” mass range with PhaseSpace:mHatMin = 75. and PhaseSpace:mHatMax

= 120.

• Using your favourite jet cluster algorithm, study the number of jets found in asso-
ciation with the Z0 above. You can switch off Z0 decay with 23:mayDecay = no. If
you do not have a jet finder around, to begin with you can use the simple CellJet

one that comes with Pythia, see the “Event Analysis” page in the online manual.
A more interesting alternative is provided by FastJet, see next point. Again check
the importance of FSR/ISR/MI.

• If you would like to try out FastJet, which is on the road to becoming the
standard for LHC jet analyses, you can find an example if you copy the file

/afs/desy.de/user/m/mcpythia/public/pythia8-setup-fastjetexample.sh

to your working directory, then
source pythia8-setup-fastjetexample.sh

to

• add the FastJet installation path (in the DESY GENSER repository) to
LD LIBRARY PATH and set PYTHIA8DATA,

• copy the program fastjetexample.cc to the current directory, and

• compile to produce an executable fastjetexample.exe that you can then run.

Once you have this working, you can modify fastjetexample.cc to suit your needs,
and change pythia8-setup-fastjetexample.sh so that you do not overwrite the
former each time you source the latter.

Acknowledgements

Thanks to Florian Bechtel for providing suitable scripts for the setup in the DESY envi-
ronment, and for the FastJet example.

7

