How can CoMP extend 5G NR to high capacity and ultra-reliable communications?

Dr. Durga Malladi

SVP, Engineering & GM, 4G/5G Qualcomm Technologies, Inc.

5G will expand the mobile ecosystem to new industries

Powering the digital economy

>\$12 Trillion

In goods and services by 2035

Designing a unified, more capable 5G air interface

Diverse services

Diverse spectrum

Diverse deployments

Existing, emerging, and unforeseen services - a platform for future innovation

Driving the 5G roadmap and ecosystem expansion

Driving a rich 5G roadmap in Release 16 and beyond

5G CoMP

5G expansion into new use cases & verticals

Capacity from spatial multiplexing

Allows multiple transmissions at the same time to multiple location without interfering

Can also be used to by multiple operators to share spectrum more efficiently

Reliability from spatial diversity

Spatial diversity can overcome radio shadowing in challenging radio environments

Key technology to provide ultra reliability for challenging industrial IoT applications

Theoretical tradeoff between multiplexing and diversity

Multiple transmit and receive antennas with uncorrelated signal paths create spatial dimensions

Using spatial dimensions for diversity reduces the error rate

Using spatial dimensions to multiplex multiple data streams increases capacity

There is a tradeoff between spatial multiplexing gain and spatial diversity gain¹

Spatial multiplexing gain: r = R / log SNR

Exploiting spatial domain—from LTE MIMO to 5G CoMP

LTE MIMO

5G Massive MIMO

5G CoMP

2 Gbps peak-rates with 4x4 MIMO¹, carrier aggregation and higher order modulation

Example: 2 or 4 antennas for transmit and receive

Multi-user MIMO and 3D beamforming for better capacity and cell edge performance,

Example: 128 or 256 antenna elements for macro deployments

Leveraging CoMP² diversity and multiplexing to extend 5G to new use cases and verticals

Example: Multiple small-cells with 4 antennas

CoMP is an extension of MIMO

Massive MIMO

Utilizes a large number of antennas to create multiple spatial dimension from multi-path propagation to increase capacity and coverage and cell edge.

Example: Macro deployment

CoMP aka Distributed MIMO

Utilizes a large number of distributed antennas to create multiple spatial dimensions for increased capacity and/or spatial diversity for reliability

Example: Small-cell deployment

5G CoMP-different flavors

Coord. Sched./Beamforming

- Data via one base station
- Coordinated beamforming between base stations to improve overall signal quality¹
- Coordinated scheduling to maximize resource utilization

Dynamic Point Selection

- Data via multiple base stations²
- Transmission from a single base station at each time instance
- Which base station is transmitting is dynamically changing on a subframe basis

Joint Transmission (JT)

- Data via multiple base stations²
- Multiple base stations transmit same data with beamforming
- Coherent JT enables nulling; requires channel knowledge and antenna calibration

5G CoMP for reliability

Signal strength measurement when an obstruction is introduced 3 feet from device 11dB drop

Factories have challenging RF environments

Blockage and reflections by fast moving metal objects such as AGV¹, cranes and conveyor belts

Blockage can cause sudden drop in signal strength

Reflections can lead to rapidly varying interference from far-away cells

Collecting RF measurements to establish a propagation model for factory environments

Diversity schemes

Time diversity

- Example: Hybrid ARQ
- Gains limited by latency

Frequency diversity

- Wider bandwidth / many channels
- Not effective against blockage

Radio diversity

- Multi-connectivity: NR, LTE, Wi-Fi
- Not effective against blockage

Spatial diversity

- MIMO or CoMP with multiple antennas
- CoMP effective against RF blockage

CoMP spatial diversity key for reliability

Enhanced mobile broadband

Security camera

Massive IoT

Sensors

Process Monitoring

Latency: ~100 ms Availability: 99.99% Rate: kbps

Head mounted display

Augmented Reality

Latency: <10 ms Availability: 99.9% Rate: Gbps-Mbps

Automated guided vehicle (AGV)

Handheld terminal

Safety functions

Latency: <10 ms Availability: 99.9999% Rate: Mbps-kbps

Industrial robot

Motion control

Latency: <1 ms Availability: 99.9999% Rate: Mbps-kbps

Ultra-reliable low latency

Edge computing and analytics

Key Industrial IoT functionality targeted for 3GPP rel.16

Ultra Reliable, Low Latency Communication (URLLC)

Enhanced latency and reliability

CoMP multi-TRP¹ transmissions

Time Sensitive Networks (TSN)

Handling of Ethernet switch functions

real-time best effort

Enhanced Quality of Service (QoS)

Microsecond time synchronization

Spectrum

5G NR in licensed, shared or unlicensed spectrum

1) Transmission and Reception Point (TRP)

To support new applications such as wireline replacement of industrial Ethernet for the reconfigurable factory of the future

5G CoMP for capacity

Simultaneous transmission causes interference

TDM avoids interference, but only one user served at a time

5G CoMP increases system capacity from spatial multiplexing

CoMP combines antennas from multiple small-cells to create more spatial dimensions

Additional spatial dimensions allows simultaneous transmission to multiple users in the same geographical area while minimizing interference

Time

5G CoMP capacity gains have many applications

Mobile broadband

Increased mobile broadband capacity such as small-cell deployments in venues and private 5G networks

Spectrum sharing

Efficient spectrum sharing with multiple operators using the same spectrum in the same area simultaneously

URLLC

Tradeoff some capacity gains against higher reliability such as 99.9999% for industrial IoT motion control¹

5G NR in Shared Spectrum (NR-SS)

Targeting green-field bands such as 5.9-7.1 GHz and 66-71 GHz bands

(5G)	-	Flexible NR framework	 Flexible framework with forward compatibility Fast turn-around and self-contained operation
		Time synch. and coordination	 Time synchronization for more efficient sharing Coordinated sharing to improve QoS
	<u>~</u>	Guaranteed QoS	 Guaranteed bandwidth for each operator Opportunistic sharing of unused bandwidth
	1111	Exploit spatial domain	 CoMP with spatial sharing to increase capacity Spatial Listen Before Talk (LBT) and on-demand LBT
	•••	Vertical & horizontal sharing	 Native support for different priority levels (vertical sharing) Flexible framework to support various spectrum landscapes

Over-the-air testbed

5G CoMP testbed

Setup

- 100 MHz bandwidth
- 3.5 GHz band

4 small-cells

- Two X-pol antennas
- 4x4 MIMO capable

4 mobile phones

- Two omni antennas
- 2x2 MIMO capable

CoMP server

- High perf. compute
- Beamforming

CoMP server

How close can the phones be and still be spatially separated?

CoMP with spatial sharing with five feet separation between the phones

Answer: Very close!

System throughput barely changes when all four phones are literally stacked on each other

Qualcomm

5GNR

Making 5G NR a commercial reality for 2019 eMBB deployments

Driving the expansion of 5G NR ecosystem and opportunity

LTE MIMO → 5G CoMP

Continue to exploit the spatial domain to extend 5G to new use cases and verticals

5G CoMP for reliability

Using CoMP spatial diversity to provide ultra reliable connectivity for Industrial IoT applications

5G CoMP for capacity

Using CoMP spatial multiplexing increases system capacity; 4X gains shown in OTA testbed.

Qualcomm

Thank you

Follow us on: **f y** in **o**

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.