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ABSTRACT
Modern High-Performance Computing (HPC) architectures
have developed the need for scalable hybrid programming
models. The latest Message Passing Interface (MPI) 4.0 stan-
dard has introduced a new communication model: MPI Parti-
tioned Point-to-Point communication. This new model allows
for the contribution of data from multiple threads with lower
overheads than with traditional MPI point-to-point commu-
nication. In this paper, we design the first publicly available
micro-benchmark suite for MPI Partitioned to measure vari-
ous metrics that can give insight into the benefits of using
this new model and scenarios where MPI point-to-point is
better suited. Suggestions are provided to application devel-
opers on how to choose partition size for their application
based on compute and message size. We evaluate MPI Parti-
tioned communication with both a hot and cold CPU cache,
system noise with different probability distributions, point-
to-point communication directly, and with commonly used
MPI communication patterns such as a halo exchange and
Sweep3D.

CCS CONCEPTS
• Computing methodologies → Parallel programming
languages; • Networks → Network performance analysis;
Programming interfaces.
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1 INTRODUCTION
Applications using the Message Passing Interface (MPI) [3]
programming model have traditionally used one process per
CPU core. Over the past decade, there has been an increase in
core count, but this “MPI everywhere” model is not always op-
timal for performance. Although the MPI standard supports
multi-threaded communication, most MPI implementations
and applications are poorly optimized.

Currently, the MPI standard supports three different thread-
ing modes: MPI_THREAD_FUNNELLED, MPI_THREAD_SERIALIZED,
and MPI_THREAD_MULTIPLE. If the application uses multiple
threads but only a ‘main’ thread makes MPI calls, then we
should use the threading mode FUNNELLED. SERIALIZED al-
lows for multiple threads to make MPI calls but only a single
thread can make an MPI call at any given moment. That is,
no two threads make MPI calls concurrently. With MULTIPLE,
multiple threads can simultaneously enter the MPI library
with no restrictions.

MPI point-to-point communication often faces challenges
in multi-threaded environments. The commonly used fork-join
model in conjunction with the FUNNELLED and SERIALIZED
MPI threading modes results in the unnecessary synchroniza-
tion of threads within the application. Using the MULTIPLE
threading mode requires using many locks internally for crit-
ical regions within the MPI library causing lock contention.
Lock contention arises from many sources such as message
matching [13] and accessing network hardware [31], among
others. Using multi-threaded Remote Memory Access (RMA)
operations alleviates some of the issues that are observed
with multi-threaded point-to-point communication such as
MPI’s message queues. However, RMA is notoriously difficult
to program with. Although most MPI libraries provide an
RMA implementation, it is not always performant.

A recent survey on MPI usage within the US Exascale com-
puting project showed that 86% of application and system
software developers plan to use MPI with multiple threads
[8]. More importantly, 82% of users plan to make MPI calls
within multi-threaded regions of their code. Although MPI de-
velopers have worked towards implementations that minimize
the burden of multi-threaded point-to-point communication
[31], many problems still persist. Therefore, it is critical that
MPI improves its performance and programmability for the
next generation of applications.

To address some of these issues with MPI, Partitioned
Point-to-Point was proposed [17, 18] to provide semantics
similar to point-to-point communication that can leverage
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software-level optimizations and hardware-level triggered op-
erations to enhance the performance of multi-threaded ap-
plications. In June of 2021, MPI Partitioned point-to-point
communication was included in the MPI 4.0 standard [3].
This new communication model partitions the send and re-
ceive buffers of a point-to-point communication. This allows
individual actors (e.g., threads) to mark separate partitions
of data ready for transfer. This avoids using a thread barrier
before a communication transfer and data can now be sent
as soon as individual portions of it become available, rather
than waiting for the entire buffer to be complete. This will be
explained further in Section 2.1. For brevity, MPI Partitioned
Point-to-Point communication may be referred to as MPI
Partitioned throughout this paper.

This paper aims to understand the behaviour and perfor-
mance of MPI Partitioned. Traditionally, micro-benchmarks
have been used to evaluate the performance of MPI imple-
mentations on HPC systems. To the best of our knowledge,
existing micro-benchmark suites [2, 4, 10, 28] do not study
the new partitioned communication model of MPI.

Our micro-benchmark suite was created to provide insight
into the MPI Partitioned interface in an isolated environment
and provide a tool for developers to evaluate their designs.
We explore the relationships between partition counts (thread
counts) and message sizes to understand which types of work-
loads could benefit from using MPI Partitioned. We also
take note of how the noise a workload generates impacts
the improvement we expect to see from MPI Partitioned.
Therefore we can infer which types of multi-threaded MPI
applications could be good targets for porting to MPI Parti-
tioned. We also demonstrate to application developers how
they can use our micro-benchmark suite to assess the suit-
ability of their application for Partitioned communication in
their current state. Using our micro-benchmarks we create
a projection of the performance benefits that are possible
with Partitioned communication should they choose to make
larger scale changes to their code. In this paper we make the
following contributions:

• We present the first MPI micro-benchmark suite de-
signed to evaluate MPI Partitioned implementations
across a variety of metrics.

• We provide analysis of common MPI communication
patterns and evaluate how applications using MPI
Partitioned communication could potentially benefit
from this new programming model.

• We evaluate MPI Partitioned using different types of
system noise to create thread imbalances and highlight
its noise tolerance.

• We provide application developers guidance on appro-
priate partition counts based on the message sizes,
computation amount, system noise, and communica-
tion pattern.

• A new micro-benchmark suite that can be used in
testing and development of MPI implementation native
solutions.

The rest of this paper is organized as follows: In Section
2, we present background information on MPI Partitioned,
MPI communication patterns, and system noise. We discuss
the design of our micro-benchmark suite in Section 3. The
performance results and analysis are presented in Section
4. In Section 5, we discuss our work in relation to existing
research. Finally, we conclude our work and suggest future
directions in Section 6.

2 BACKGROUND
In this section, we first introduce the MPI partitioned point-
to-point communication model in greater depth using an
example. We highlight which parts of the MPI interface are
relevant for programming using this model. Then we explain
two common communication patterns that are often used in
MPI programs. These communication patterns will be used
in our benchmark for evaluating MPI Partitioned. Finally, we
briefly discuss why accounting for system noise is important
when working with HPC systems and why we include it in
our benchmarks.

2.1 MPI Partitioned Point-to-Point
Communication

MPI Partitioned Point-to-Point communication extends tra-
ditional point-to-point semantics in a way that allows for
easy use with hybrid programming models [3]. A high level
diagram is shown in Figure 1 to help explain this program-
ming model. With partitioned communication, the send and
receive buffers are segmented and actors (e.g., threads, in the
context of this paper) mark data ready for transfer. Actors

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

Figure 1: Overview of the MPI Partitioned Point-to-
Point Communication Model
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can take the form of OpenMP threads, POSIX threads, GPU
work queues, and so on.

An application which uses MPI Partitioned first initializes
communication using MPI_Psend_init and MPI_Precv_init.
With these function calls the MPI run-time registers the
persistent buffers, the partition size, and the partition count
before any data transfers occurs. The Psend/Precv calls are
also matched between processes using the tag, rank, and com-
municator in the order they are posted as if they matched
during the init stage. Unlike MPI point-to-point commu-
nication, MPI Partitioned does not support wildcards as
communication is initialized preemptively. This is beneficial
for highly-threaded codes as it avoids matching list overheads
when wildcards are allowed (preventing some high perfor-
mance matching software designs). As matching is performed
as if it happens at initialization time, tags must be decided
on before communication (persistent) epochs start. Once the
application is ready to communicate, MPI_Start is called to
start communication between the predefined buffers. Every-
thing prior to this point must be called within a serial portion
of an application or by a single thread.

In the parallel region of application code, the sender thread
computes its calculation, and once the data is ready to trans-
fer, the application calls MPI_Pready to inform the MPI run-
time that the partition can now be transferred to the receiver
thread. With MPI Partitioned, one or more partition can be
assigned to each thread at run-time. Within the context of
this paper we are assigning one thread to one partition. Once
the sender exits a parallel region it must call MPI_Test or
MPI_Wait to complete a partitioned communication transfer.
In Figure 1, it is shown that the data is directly transferred
between threads as we call MPI_Pready. The frequency and
mechanism of transfer is ultimately dictated by the MPI
implementation but this how an MPI user can reason their
program.

On the receive side, the process can use MPI_Test to check
if all partitions have arrived, or it can use MPI_Parrived
which gives finer grained information to test whether individ-
ual partitions have arrived. MPI_Parrived can also be called
by individual threads in a parallel region. Again, to complete

(a) Communication
Sweep

(b) 5-Point Halo Ex-
change

Figure 2: Example MPI Communication Patterns

a partitioned communication transfer we must use MPI_Test
or MPI_Wait on the receiving process.

As MPI Partitioned is persistent, to restart the commu-
nication and reuse the buffer, the application developer can
call MPI_Start to begin the data transfers again. If MPI Par-
titioned is implemented efficiently it should not suffer from
some of the issues we see from using MPI send/receives in
multi-threaded environments. As communication has differ-
ent stages, the message matching occurs only once, prior to
communication and it is less problematic than searching the
message queue with multiple threads. A good implementation
should also reduce any lock contention that is observed with
MPI point-to-point communication [6].

2.2 Communication Sweep
Sweeping algorithms are commonly used in HPC workload
where data is decomposed and communication is sweeped
across the processes [27]. A 2D sweep communication pattern
is shown in Figure 2a. The computation starts on a corner
and then sweeps out the data domain. Sweeps also exist in 3D
problems where they are decomposed into 2D. In this paper
we will focus on 3D sweeping patterns but a 2D example is
shown for simplicity. These types of communication patterns
stress the network as many messages are produced during
their execution.

2.3 Halo Exchange
Halo exchanges are incredibly important in HPC applications.
They have been previously studied using micro-benchmarks
to help aid the design of system software with a focus on
application domains [26]. In a typical workload, the problem
is decomposed across processes and/or threads where each
worker computes a part of the problem then communicates
with its neighbours. In Figure 2b, we can see a visual rep-
resentation of this communication pattern. A 5-point halo
exchange pattern is shown, where each process communicates
with four other processes. It is clear that the communication
pattern differs for the edges and corners. In three dimen-
sions this would be extended to seven points. Multi-threaded
halo exchanges decomposes the problem per process and
subdivides the work given to a process among threads.

2.4 System Noise
System noise on HPC clusters has been a long standing
problem, especially for bulk synchronous parallel (BSP) pro-
grams which require synchronization at each step [24]. This
imbalance between threads or processes results in a loss of
performance during an application’s execution due to waiting
for barriers or data dependencies. In application or system
software design, it is important to consider these sources of
imbalance to develop more performant programs.

3 MICRO-BENCHMARK SUITE
DESIGN

Our micro-benchmark suite contains two main parts; MPI
Partitioned as point-to-point communication and its use in
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Figure 3: Assisting Visualization For Defined Metrics, adapted from [14]
.

communication patterns that mimic real world applications.
The benchmark suite allow a user vary message size, partition
count, system noise type and amount, and using hot cache
vs cold-cache. These variables allow a user to understand the
potential benefit of using MPI Partitioned in many different
scenarios. The code used in this paper is available on GitHub1.

3.1 Point-to-Point Metrics
In this paper, we have defined the following metrics for evalu-
ating MPI Partitioned communication between two processes:

• Overhead
• Perceived Bandwidth
• Application Availability
• Early-Bird Communication

These metrics were chosen as traditional latency/bandwidth
metrics do not provide the required information for us to
study the MPI Partitioned interface in an isolated environ-
ment. Latency/bandwidth metrics give the user information
about the performance of the underlying hardware, but the
goal of MPI Partitioned are software level optimizations
which will better utilize hardware.

3.1.1 Overhead. A point-to-point and a partitioned point-
to-point communication could send the same data volume
between two processes but it is likely that partition com-
munication will do it with many data transfers. Sending n
partitions of size k will have some overhead when compared
to a single send model sending a message of size m = n ∗ k.
Therefore, it is important to understand what overhead parti-
tioned communication has. We define the overhead Overhead
as:

Overhead =
tpart
tpt2pt

(1)

1https://github.com/Yiltan/MPI-Partitioned-Microbenchmarks

The parameter tpt2pt is the time taken to send a single MPI
send/receive operation of size m and this can be seen in
Figure 3. The parameter tpart is the total time taken to send
each individual partition measuring from the first MPI_Pready
to the last MPI_Parrived.

In the case where the number of partitions is equal to 1, the
communication is equivalent to a traditional persistent point-
to-point communication (one thread communicating with
one thread). Therefore, we would expect tpt2pt ≈ tpart and
have an overhead value close to one. Overhead is essentially
a slowdown metric because we quantify to see how much
extra load is placed on the network with multiple messages
compared to a single message of the same size. It also shows
how many MPI send/receive operations we could send in
place of using multiple partitions.

3.1.2 Perceived Bandwidth. The concept of Perceived Band-
width in MPI Partitioned was first proposed in [18]. We have
included it in this benchmark suite for its importance and
for completeness with prior work.

Perceived Bandwidth =
m

tpart_last
(2)

We define tpart_last as the time taken for the last partition
to be sent to the receiving process. In Figure 3 this would
be the data transfer referred to as Thread #4 Data Transfer
in the Partitioned Send Timeline. This gives the bandwidth
that would be required by a single send model to send the
data after all tasks have completed. The perceived bandwidth
will be significantly higher than what we see with the ac-
tual bandwidth from the network hardware. This is due to
MPI Partitions ability to send data early before a joining of
threads.

https://github.com/Yiltan/MPI-Partitioned-Microbenchmarks
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3.1.3 Application Availability. When switching from the MPI
Point-to-Point to MPI Partitioned, we expect that an appli-
cation using MPI Partitioned will perform better in noisy
environments. We modify the metric for application availabil-
ity presented in [11] to observe what MPI Partitioned can
provide. We define the value of tafter_join to be the time that
an MPI Partitioned communication still communicates after
an equivalent thread join with the single-send communication.
Essentially, we are measuring how much CPU time is freed
to do additional work. This metric is explicitly labelled in
Figure 3.

Application Availability = 1−
tafter_join

tpt2pt
(3)

3.1.4 Early-Bird Communication. With this metric we want
to quantify how much of MPI Partitioned communication
occurs before an equivalent thread join using an MPI send. In
our benchmark, we first measure the amount taken for threads
to be forked, the tasks completed, and then the threads to join.
Then we calculate the amount of partitioned communication
that has occurred before the join and label it tbefore_join. In
Figure 3, tbefore_join would be the first two data transfers and
a portion of the third transfer in the partitioned send timeline.
The parameter tpart was defined in Section 3.1.1. Then from
these values we obtain the percentage of communication
which occurs before the thread join.

% early bird =
tbefore_join

tpart
(4)

With this metric it will be unlikely that a value of exactly
100% early-bird communication will be obtained but it is
possible to asymptotically approach this value. A value close
to 0% implies that an MPI Partitioned implementation does
not have any features that provide early-bird communication.

3.2 MPI Communication Patterns
We chose two common MPI communication patterns to study
in this paper; a communication sweep and a halo exchange.
Further details on these communication patterns can be
found in Section 2.3 and Section 2.2, respectively. For these
communication patterns we have used the Ember module [19]
from the structural simulation toolkit (SST) [23]. The motifs
in this module are computation/communication patterns that
are used to simulate MPI workloads. We use the Sweep3D
motif and Halo3D, which is a 7-Point Halo Exchange. These
motifs were modified to use OpenMP and MPI Partitioned
communication for our micro-benchmark suite.

3.3 Noise Models
As stated in Section 2.4, HPC applications often experience a
loss in performance from system noise. Therefore, to simulate
a realistic workload we wanted the ability to to evaluate our
benchmark using noise. Our benchmarks can evaluated with
the following noise models:

• Single Thread Noise
• Uniform Noise

• Gaussian Noise

The Single Thread Noise model is when we delay a single
thread by some delay amount. All other threads compute the
expected compute amount. This is to mimic a context switch
on a single CPU core [21]. This is the model that was used in
[18] to evaluate Finepoints. With our Uniform Noise model,
each thread samples a compute amount from a uniform prob-
ability distribution on the interval [comp, comp+% noise].
For the Gaussian Noise model, we sample a compute amount
from a normal probability distribution with the user defined
computation amount as our mean and the % noise as our
standard deviation. This is similar to the method used in
[22]. For this noise model, we are ignoring edge cases where
our delay amount is sampled from the tails of the normal dis-
tribution as we suspect that it will be sufficiently infrequent.
For both the Uniform and Gaussian models, noise will be
applied to all threads.

3.4 Hot vs Cold Cache Evaluation
Most micro-benchmarks use a hot cache where the same
memory location is repeatedly accessed. Thus, resulting in the
data to be in CPU cache when needed. To better imitate real
world usage, we also consider invalidating the CPU’s cache
and refer to this as our cold cache. For cache invalidation,
we read/write from an 8MB buffer to clear the CPU’s L1
and L2 cache using a similar method to the SMBs [10]. This
results in CPU accessing memory not in its cache for each
iteration of our benchmark.

4 PERFORMANCE RESULTS AND
ANALYSIS

4.1 Experimental Setup
Experiments were conducted on the Niagara compute cluster
at the SciNet HPC Consortium [25]. Each Niagara node has
two sockets with 20 Intel Skylake cores at 2.4GHz, for a total
of 40 cores and 188GB of RAM per node. The 2024 nodes are
connected using an EDR InfiniBand network in a Dragonfly+
topology. In this paper we will limit our point-to-point tests
to a single wing so there will only be a single switch between
any two processes. As our system has one NUMA domain
per socket, we have not considered NUMA effects aside from
when threads are mapped to cores between sockets. That
said, multiple NUMA domains shouldn’t impact the results
due to the design of this micro-benchmark suite.

Niagara uses the GNU/Linux distribution CentOS 7.6. To
conduct our tests we only evaluated a single MPI Partitioned
implementation, MPIPCL, due to the current experimen-
tal state of the MPI library native implementations such
as Open MPI or MPICH. As MPIPCL is dependent on an
MPI implementation’s send and receive operations, we used
the MPIPCL library on top of Open MPI from the master
branch (7b177ce) and UCX v1.11.0. MPIPCL lets us have a
stable layered library approach to partitioned communication
that is helpful in these very early stages of MPI partitioned
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Figure 4: Overhead of Partitioned Point-to-Point Communication Relative to Point-to-Point Communication
for 10ms of Compute

development. Previous work showing MPI partitioned com-
munication in native libraries is preliminary [14, 29] and
are still undergoing development. This would make them
unsuitable for in-depth consistent testing for these micro-
benchmarks. For our investigation into SNAP, we used a C
port of SNAP from LANL [5]. This application was profiled
using v3.5 of mpiP [1].

In our experiments, when we increase partition counts,
we apply the same compute amount across all threads, thus
using strong scaling unless otherwise stated. As we have
injected noise using the noise models explained in Section
3.3, our results will appear somewhat noisy when presented.
The results shown are averages over several trials, and we
have pruned extreme noise samples from the dataset to avoid
extreme outliers that do not often occur in practice. We also
compare the effects of hot and cold caches when relevant.

4.2 Overhead
Determining the overhead of MPI Partitioned (see Section
3.1.1) allows us to observe the loss in performance that could
occur by switching to this programming model. We measure
the overhead without the simulated noise to view it from an
ideal environment in Figure 4. The cold cache (using cache
invalidation) results shows a lower overhead than with the
hot cache (without using cache invalidation). At first this
seems surprising but the overhead metric is a ratio comparing
a single MPI Point-to-Point to MPI Partitioned. Using a cold
cache results in data not being present in memory when it
is needed. Therefore, the CPU needs to read the required
data from memory. So the cost of reading from memory
is amortized during the benchmark. With one thread, our
overhead value ranges between 1.6x and 1x compared to a
single send, for both the hot and cold cache tests. For large
messages, there is little cost (≈1x) associated with using MPI
Partitioned compared to MPI point-to-point. This is ideal
as we want to observe no loss in using MPI Partitioned. For
two partitions, the overhead is also fairly low. Thus, one and
two partitions are not clearly visible in Figure 4.

As thread count increases so does overhead, especially
for small messages. These overheads only further increase
with partition count. As small messages are latency bound,
subdividing a message is more expensive since headers and
other information is added as we transmit data across a wire.
Although this is true for 1-16 partitions, there is a significant
increase in overhead of up to 59.4x when using 32 partitions.
In our design methodology we assigned each partition to a
single thread. As our system has 20 cores per socket, using
32 partitions causes some of those threads to spill over to the
second socket resulting in an increase in communication cost.
Therefore, application designers should consider the platform
to ensure that the partition counts are chosen to ensure
that they are associated with a single socket. On systems
with multiple NUMA domains per socket, this would be an
important benchmark to refer to if any unexpected behaviour
occurs when increasing partitions. For larger messages, the
overhead of splitting the buffer into multiple partitions has a
lower cost. It can be suggested that MPI Partitioned better
suits application using medium to large messages.

4.3 Perceived Bandwidth
In Figure 5, we present the results for our perceived band-
width (see Section 3.1.2) benchmark with different compute
and noise amounts. When using one or two partitions a tra-
ditional bandwidth curve is shown, this can also be seen in
the tests using 0% noise. For smaller messages, our perceived
bandwidth is relatively low as these messages are latency
bound. Our overhead results in Figure 4 showed that around
the 1MB mark the overhead dropped significantly. At this
message size our perceived bandwidth begins to reach its
peak. As the message size increases the perceived bandwidth
increases to a point, then there is a sharp decline. We see
this initial sharp increase as the perceived bandwidth metric
is a function of the time spent in the last transfer (send side
partition) to arrive at the MPI_Pready call. Therefore, once
a single partition saturates the network we see a decline in
performance. As the partition count is increased we see the
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Figure 5: Perceived Bandwidth of MPI Partitioned Point-to-Point Communication with Uniform Noise and a
Hot Cache for Different Noise and Compute Amounts

peak increase; this is due to the total message size being
further subdivided. When increasing partition count from
16 to 32 with 10ms computation a decline in performance is
shown, the same is not true when compared to 100ms in noisy
environments. Again, this is likely an issue of using more
threads than available cores. With 100ms comp this overhead
can be hidden as the computation time is sufficiently large.

4.4 Application Availability
Our experiments on application availability (see Section 3.1.3)
are shown in Figure 6 and Figure 7. The impact of varying
partitions size in Figure 6 shows how a user can choose
a partition size for their application. Generally, in a noisy
environment more partitions result in more time for the CPU
to compute more for small messages. The issue of thread
spillover is also present in Figure 6a, as 16 partitions perform
better than 32. After around 4MB application availability
drops off; this seems to correlate with the peak we see in the
perceived bandwidth. Increasing computation also results in
a shift as to where the availability starts to drop off.

The results in Figure 6 are all presented using the sin-
gle thread delay model but we would also like to observe
availability with different noise distributions. The impact of
thread arrival is presented in Figure 7. The best availability
is shown with the single delay model as all other threads can

continue their execution without being blocked and only the
delayed thread will face consequences. With both the uniform
and normal distributions, we see our application availability
is worse for small messages than the single delay model as the
imbalance between threads is much smaller and early-bird
communication cannot be taken advantage of.

4.5 Early-Bird Communication
In Figure 8, we present the results for our investigation
in quantifying early-bird communication using the Uniform
noise model. Note, that results using this benchmark with
0% percent noise or with one partition would not be useful as
those results would be the same as a single-send model. For
both 10ms and 100ms compute, early-bird communication is
taken advantage of as most messages are transferred before
the single-send model would join its threads. This is especially
true for small and medium sized messages as transfer time
is significantly less than the computation time. Early-bird
communication is better utilized as we increase the partition
count with 100ms compute. That said, there is minimal
difference between 8 and 32 partitions. The same cannot be
said for the 10ms compute scenario because after 16 partitions
utilization declines. It is likely 10ms compute is not sufficient
to observe the desired properties of MPI Partitioned for
messages larger than 2MB as the early-bird communication
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Figure 6: Application Availability When Using MPI
Partitioned Point-to-Point Communication
With a Hot Cache and Our Single Thread
Delay Model With 4% Noise
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Figure 7: The Impact of Noise Models on Application
Availability. 16 Partitions are Used with 4%
Noise and a Hot Cache

window of opportunity is too small. However, it could still
be useful for an application with small compute to use MPI
Partitioned if they transfer smaller data.

Another observation that can be seen is that with two
partitions we effectively utilize early-bird communication.
When comparing to our availability results for small messages
it seems that the noise is sufficiently small that sending
messages does not improve application availability as much.

4.6 Sweep3D
Using our communication pattern micro-benchmarks we can
also gain insight into how MPI Partitioned communication
performs with many processes, as previous sections in this
paper have only covered point-to-point performance between
two processes. In these tests, we have compared the com-
munications using MPI point-to-point with a single thread,
multiple threads, and with multiple threads using MPI Par-
titioned.

Figure 9 and Figure 10 show the results for the Sweep3D
communication pattern’s throughput for 10ms and 100ms
of computation, respectively. For the most part, we observe
that the performance between MPI Partitioned and MPI
point-to-point is relatively similar for small and medium
messages. We suspect that this is largely due to MPIPCL
being implemented with MPI point-to-point. Therefore, these
comparisons are limited as we are not observing what a well
optimized MPI Partitioned implementation could provide for
applications.

As we are using weak scaling for the data size, when in-
creasing the partition count from four to 16 there is a 4x
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Figure 8: Percentage of Early-Bird Communication
with MPI Partitioned Point-to-Point Com-
munication

increase in compute per process (strong scaling is used for
computation). We can see that the increase in thread count
results in improved throughput for the Sweep3D communica-
tion pattern for both MULTIPLE and PARTITIONED. As thread
count increases, the data size per thread decreases so less
data is sent per thread across the network.

For larger messages, it can be seen that the difference
in throughput between MPI point-to-point with multiple
threads and MPI Partitioned grows. With 10ms computa-
tion, the multi-threaded throughput falls below what we
measure with the single-threaded implementation and MPI
Partitioned implementation has a 15.1x higher throughput
than single-threaded. The trends for 10ms and 100ms compu-
tation results are relatively similar. As expected, due to the
larger compute the throughput drops with 100ms. Also the
divergence between MPI point-to-point and MPI Partitioned
occurs at a larger message size changes.

4.7 Halo Exchange
Figure 11 and Figure 12 show the results for a 3D halo ex-
change with 10ms and 100ms computation, respectively. Due
to the nature of how a 3D halo exchange can be implemented
we are required to use thread counts that are cubed num-
bers. We have chosen thread counts of eight and 64; only the
eight-thread configuration fits onto a single socket, whereas
64 threads require over-subscription. Eight threads results in
four partitions as each face has 2x2 threads. For our 64-thread
experiment, each face of the cube has 16 partitions (4x4).

The results using four partitions perform relatively the
same for all threading modes which we studied. Therefore, in
the figures it is difficult to distinguish the different lines. Due
to weak scaling we have 8x more compute while providing a
similar throughput to a single-threaded implementation.
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Figure 9: Sweep3D Communication Throughput For
10ms, 4% Single Noise with a Hot Cache
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Figure 10: Sweep3D Communication Throughput
For 100ms, 4% Single Noise with a Hot
Cache

A larger difference between threading modes is shown for
64 threads. The performance of multi-threaded MPI point-
to-point is close to what we see with MPI Partitioned. Again,
we suspect that is due to using MPIPCL. For a 16MB mes-
sage size with 10ms computation, we see 42.6% decrease in
throughput with a 64x increase in total computation. With
100ms computation, we see only a 16.8% decrease for the
same increase in computation. Oversubscription could be
useful in applications with very large compute where the
workload can be dynamically distributed among threads.

4.8 Proxy Application Projection
In Section 4.6, we saw promising results for using MPI Par-
titioned with sweeping communication patterns. To further
investigate how porting an application to MPI Partitioned
could yield performance improvements, we profile SNAP ap-
plication [5] using the mpiP profiler [1]. SNAP is a proxy
application that models the performance of discrete ordinates
neutral particle transport applications. The application is
modelled based on PARTISN, which solves the linear Boltz-
mann transport equation. SNAP was chosen as it uses a 3
dimensional sweeping pattern.

The projected performance by porting SNAP to MPI Par-
titioned can be seen in Figure 13. In this figure, we projected
the performance based on the 15.1x performance improve-
ment we saw in Section 4.6. For smaller process counts, the
expected performance improvement is relatively small; this
is due to MPI send/receives contributing to only 1-6% of ap-
plication run-time. At 128 and 256 nodes, MPI send/receives
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Figure 11: Halo3D Communication Throughput For
10ms, 4% Single Noise with a Hot Cache
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Figure 12: Halo3D Communication Throughput For
100ms, 4% Single Noise with a Hot Cache

contributes to 20.4% and 54.5% of application run-time, re-
spectively. This results in the large speedups that we expect
to see for these process counts.

5 RELATED WORK
MPI Endpoints was initially proposed at the MPI Forum
suggesting that assigning ranks to threads could be one
possible solution to handling hybrid MPI codes [9]. This
approach had some issues as it would increase the rank space
by the number of threads, and it does not necessarily avoid
some of the issues present with multi-threaded MPI from an
implementation perspective. Challenges with multi-threaded
MPI performance usually occurs with threads requiring access
to mutexes which can cause starvation [6], contention with
the message queue and message progression, [13], or issues
handling the MPI_Request object [16].

Another approach to hybrid programming with MPI is
to use the MPI Partitioned Point-to-Point communication
model. MPI Partitioned tries to form a hybrid between RMA
and point-to-point APIs of MPI. It provides similar semantics
to point-to-point in the form of send/receives but it intends to
deliver the performance of multi-threaded RMA. It decouples
the control of communication with the data transfer itself
[17, 18]. The partitioned API accommodates multi-threaded
and other hybrid codes by the concept of partitions. Each
partition of data is committed by individual actors; i.e.,
threads, and their arrival can also be checked by the receiver
[12, 18]. It also avoids many of the MPI message matching
issues, as send/receives are matched once in a serial portion of
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Figure 13: Expected Speedup From Porting SNAP-C
to MPI Partitioned.

the code, then the buffers can be reused during an application
execution.

A few MPI Partitioned implementations exist but the
remaining optimization space is still relatively large [7, 14,
29, 30]. In these works, the authors have thus far investigated
portability [7], using helper threads for communication [29],
and using an RMA based implementation [14]. Although
these works have studied MPI Partitioned, they have not
used a public benchmarking suite.

System noise often causes unnecessary delays and perfor-
mance degradation for HPC applications [24]. In [15] the
authors showed how to quantify system noise and the impact
on applications. Noise has been found to follow a Gaussian
distribution with a mean value of 100ms with a standard
deviation of 3ms [22]. Noise has also been used to predict
the performance degradation of HPC applications in noisy
environments [22].

Currently, there are no publicly available micro-benchmarks
for partitioned communication. This includes some of the
most common MPI benchmarks such as SMB [10], the Ohio
State Micro-benchmark suite (OMB) [4], and Intel MPI
Benchmarks [2]. Some benchmarks do exist to evaluate multi-
threaded MPI communication [26], but they do not consider
system noise or any other metrics that we have studied [28].
Micro-benchmarking MPI communication patterns for sys-
tem design has also been previously studied but again not
within the context of partitioned communication.

6 CONCLUSION
In this paper, we addressed the lack of open-source micro-
benchmarks for MPI Partitioned communication with a pro-
posal for methods in which we can evaluate new designs. Our
micro-benchmark design provides the user with ability to
adjust many constraints within their measurements, such as
hot vs cold caching, different probability distributions for
thread noise and arrival imbalance, compute amounts, noise
amounts, and partition counts. These parameters allow users
to search the parameter space for optimal partition commu-
nication usage for their application using a set of predefined
metrics. For applications that use common communication
patterns such as halo exchanges or sweeping patterns we have
provided analysis on how partition communication can be
used. At this stage, MPI Partitioned implementations are

new and not highly optimized, so the performance difference
is small relative to using multi-threaded MPI Point-to-Point.

Our results show the benefits of using MPI Partitioned
communication in noisy environments. We found that the
amount of application compute time also greatly impacts
what performance we could gain. We also have shown that it
is important to consider partition count based on the message
size that a user intends to use and the hardware platform to
ensure that threads are mapped appropriately.

6.1 Future Work
This paper provides a baseline for future work conducted on
partitioned communication and its extensions and run-time
improvements to MPI implementations can be compared. As
we only evaluated MPIPCL, once other MPI implementations
are sufficiently mature, it would be useful to compare them
amongst themselves to see the trade-offs for different types of
partitioned workloads. Another limitation of MPIPCL is that
send and receive partitions must have equal counts. There-
fore, we have not explored different partition sizes between
processes. Porting applications to use MPI Partition based
of the projections we have presented in the paper could be
useful to emphasize real world usage and application of this
new MPI API.

The proposed micro-benchmark suite only handles the
scenario where buffers are located in host memory. With
the growth of accelerators and MPI Partitioned proposals
to handle invocation of MPI_Pready from compute kernels
or task queues (e.g., sycl::queue or cudaStreams_t), it is
important to consider how this may impact our application
design. Finally, the extension to MPI Partitioned collectives
[20] could be necessary as it will face some similar motives
as to the work that has been conducted in this paper.
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A PAPER ARTIFACT DESCRIPTION APPENDIX
A.1 Software Artifact Availability:
All code used in this paper will be publicly available. These micro-benchmarks were designed to measure MPI Partitioned’s
capability. The linked GitHub repository should explain how to setup and run these tests.

A.2 Hardware Artifact Availability:
Experiments were conducted on the Niagara compute cluster at the SciNet HPC Consortium.

A.3 Data Artifact Availability:
N/A

A.4 Proprietary Artifacts:
N/A

A.5 Artifact 1:
A.5.1 Persistent ID:. https://github.com/Yiltan/MPI-Partitioned-Microbenchmarks.

A.5.2 Artifact name: MPI-Partitioned-Microbenchmarks

A.5.3 Citation of artifact: This paper.

A.5.4 Relevant hardware details: Each Niagara node has two sockets with 20 Intel Skylake cores at 2.4GHz, for a total of 40
cores and 188GB of RAM per node. The 2024 nodes are connected using an EDR InfiniBand network in a Dragonfly+ topology.

A.5.5 Operating systems and versions: GNU/Linux distribution CentOS 7.6.

A.5.6 Compilers and versions: gcc (9.4.0)

A.5.7 Applications and versions:
• Open MPI from the master branch (7b177ce)
• UCX v1.11.0
• SNAP-C from https://github.com/lanl/SNAP/tree/main/ports/snap-c
• mpiP 3.5

A.5.8 Key algorithms: N/A

https://github.com/Yiltan/MPI-Partitioned-Microbenchmarks
https://github.com/lanl/SNAP/tree/main/ports/snap-c
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