
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Rserve
A Fast Way to Provide R Functionality to

Applications

Simon Urbanek

Abstract

Rserve is a TCP/IP server which allows other programs to use facilities of R
from various languages without the need to initialize R or link to the R library.
Every connection has a separate workspace and working directory. Client-
side implementations are available for popular languages such as C/C++ and
Java. Rserve supports remote connection, authentication and file transfer.
This paper describes the Rserve concept, compares it with other techniques
and illustrates its use on several practical examples.

1 Introduction

The R statistical environment provides a powerful suite of tools for statistical anal-
ysis for use in many scientific fields. Its application is not limited to statistical
research only, but its modular design allows the use of R and its packages in other
projects. Often it is feasible to hide the programming aspects of R from the user
and integrate the computing capabilities of R into a customized software designed
for a specific target group. Possible examples are web-based servlets that allow the
user to analyze his/her data using a fixed process, or software for data visualization
which uses R facilities to generate statistical models.

R provides two native interfaces for communication with other applications: a
simple standard input/output model or R as a shared library. As we will describe
later they are unsatisfactory in many situations, either because of speed concerns
or when the host application is not written in the C language. In this paper we
propose another method of using R facilities from other applications, called Rserve.
It is not limited to specific programming languages and even allows separation of
client and R environments. The main concerns while developing the system were
speed and ease of use. In section 2 we describe the basic design and functionality of

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

Rserve while more detailed description of the implementation is given in section 3.
In section 4 we compare Rserve to other communication methods, including the
Omegahat (Temple Lang, 2000) approach and in section 5 we illustrate the use
of Rserve on several basic examples. A real application of Rserve is described in
section 6. Concluding remarks and ideas for the future are mentioned in section 7.

2 Basic design and features

The main goal of Rserve is to provide an interface which can be used by applications
to perform computations in R. Our experience with other communication methods
has shown that there are three main points to be considered when designing a new
system: separation, flexibility and speed.

It is important to separate the R system from the application itself. One reason
is to avoid any dependence on the programming language of the application, since
a native direct interface to R (Chambers, 1998) is usable from the C language only
(R Development Core Team, 2003). Another aspect comes from the fact that tight
integration with R is more error prone, because the application must take internals
of R into account. On the other hand application developers want the interface to
be very flexible and make use of most R facilities. Finally speed is a crucial element,
because the goal is to provide the user with the desired results quickly, without the
need of starting an R session from scratch.

A client/server concept allows us to meet all three key requirements. The com-
putation is done by the Rserve core, which is a server answering requests from
clients such as applications. The communication between the Rserve and the client
is done via network sockets, usually over TCP/IP protocol, but other variations are
also possible. This allows the use of a central Rserve from remote computers, the
use of several Rserve by the remote client to distribute computation, but also local
communication on a single machine.

One Rserve can serve multiple clients simultaneously1. Every connection to
Rserve obtains its own data space and working directory. This means, that objects
created by one connection don’t affect other connections in any way. Addition-
ally each connection can produce local files, such as images created by R’s bitmap
graphics device, without interfering with other connections. Every application can
open multiple connections to process parallel tasks.

The data transfer between the application and Rserve is performed in a binary
form to gain speed and minimize the amount of transferred data. Intermediate
objects are stored in Rserve, therefore only objects of interest need to be transferred
to the client. For practical examples, see section 5.

Beside communication with the R core, Rserve has also an integrated authenti-
cation and file transfer protocol, which makes Rserve suitable for use on separate
machines. User authentication is provided to add a level of security for remote use.
File transfer allows copying of files needed for the computation or produced by R
from the client to the server and vice versa.

Currently Rserve supports two main groups of commands for communication
with R: creation of objects in R and evaluation of R code. Most basic objects,
such as numbers, strings or vectors can be constructed via direct object creation.
The contents of the objects are sent in binary form from the client to the server.

1An exception to this rule is the Windows operating system. The reasons and alternative
solutions are described in the next section.

Proceedings of DSC 2003 3

This provides an efficient way of transporting data necessary for evaluation. All
objects are always passed by value to separate client and server data spaces. This
way both the client and the server are free to dispose of the data at any time,
preventing crashes which are inherent in other communication methods where the
systems share the same data physically.

The second main command group is the evaluation of R code. As opposed to
object creation such code is sent in clear text to Rserve and is treated as if the
code was typed on the console in R. The resulting object of the evaluation can be
sent back in binary form to the client if requested. Most R types are supported,
including scalar numbers, strings, vectors, lists (hence classes, data frames and so
on), lexical objects etc. This allows Rserve to pass entire models back to the client.
The client may decide to not receive any objects, which is useful while setting up
intermediate objects in R which are not directly relevant to the client.

Rserve provides two basic error handling facilities. The three possible results
of an evaluation are successful evaulation, run-time error in the code and parser
error. The status is always returned to the client application to allow corresponding
action. Since Rserve is just a layer between the application and R it is still possible
to influence run-time error handling in R itself e.g. with the error option or the
try command.

A typical use of Rserve facilities is to load all necessary data into R, perform
computations according to the user input, such as construction of models, and send
results back to the application for display. All data and objects are persistent until
the connection is closed. This allows an application to open a connection early e.g.
when the user first specified the dataset, pass all necessary data to the server and
respond to user input by ad-hoc computing of the desired models or estimates. Since
the results are not in textual form, no tedious parsing of the results is necessary.

The interface to Rserve is modular and documented, allowing access to Rserve
from any application or programming language which supports sockets, including
current scripting and programming languages. We have implemented a client for
Rserve in pure Java, which interfaces to most facilities of Rserve and maps all objects
available in Rserve into native Java objects or classes. The use of the Java client is
illustrated in the examples section.

3 Implementation details

In the previous section we have presented the basic goals, design and features of
Rserve. In this section we aim to to describe the technical implementation details.
The information provided here is aimed at developers who want to to understand
the technical details of the implementation or to write a new Rserve client. Others
are free to skip this section, the use of Rserve is illustrated in the following sections.

Rserve uses a client/server design to separate R from the client, to allow distri-
bution of tasks over multiple computers or to provide a central computation node.
The communication can be performed over any reliable bi-directional stream, the
current implementation uses datagram sockets. This allows communication over
TCP/IP or unix sockets. The default TCP port is 6311 but can be modified upon
Rserve startup.

Rserve uses its own message-oriented data transfer protocol over the stream,
which is described in the Rserve online documentation (Urbanek, 2003). It defines
the encoding of all basic data types, such as integers, deoubles, strings, but also R’s

Proceedings of DSC 2003 4

SEXP - simple expressions. All data types in R are internally represented as SEXP.
Any more complex objects, such as arrays, vectors, lists or closures are transported
as SEXP. Rserve takes care of the encoding and decoding of the expressions and uses
its own storage format. Because of the client/server nature of Rserve all objects
are passed by value (exception to this rule are symbols which are passed by name,
unless explicitly evaluated).

The same format is used for the encoding of data types in both directions. We
decided to define our own data transfer encoding in order to be able to mimic R’s
SEXP more closely. The definition is platform independent as it defines the format
of all primitive types as well. The current version of Rserve supports encoding of
most SEXP types, namely all primitive types, logicals, vectors, arrays, lists, LANGSXP,
CLOSXP and symbols (as names). Decoding is implemented only for integers, dou-
bles, strings and the corresponding arrays. Other types are likely to follow in the
future.

The protocol is message-oriented. Rserve waits for a packet containing the com-
mand (e.g. CMD_eval) and all associated parameters (e.g. string ”R.version.string”).
Rserve performs the specified action (in this case evaluating ”R.version.string”)
and sends a response packet. The response packet indicates whether the command
was successful or not and contains also the required data (in our case a string con-
taining the R version). In case of an error the source of the error is indicated (I/O
error, parser or run-time evaluation in R).

The commands supported by the current Rserve can be divided into the following
categories:

1. user authentication

2. evaluation of R expressions

3. assignment of values to R symbols

4. file transfer

5. administration (server shutdown)

User authentication allows restricting the use of Rserve to certain users. Rserve
currently supports two authentication methods: plain text or unix crypt password.
The Rserve user information is stored in a separate file on the server, which is not
connected with the system user database. The goal is to prevent unauthorized ac-
cess to Rserves which operate in remote mode. The transport itself is not encrypted,
it is possible to use other tools, such as ssh to enhance security. For more detailed
discussion concerning R, Rserve and security, please consult the online documenta-
tion (Urbanek, 2003).

Evaluation of R expressions is the key functionality of Rserve. It enables the
client to execute code in R and to retrieve the result. The result is transported
to the client as an encoded SEXP. Unless additional packages are used, any printed
output is ignored, only the resulting value is returned. The error handling behavior
is dependent on settings in R, such as the error option. From the application’s
point of view the result is the same as if the error occurred in a regular R session
using the terminal - the default being to unwind the stack and to return the control
to the application along with the corresponding error code.

Assigning of values to R symbols provides a fast way of transporting data to
Rserve. Without this feature the only way of passing values was to send the corre-
sponding command string, such as: ”a <- c(1.5,2.4,6.7,3.5,1.2)”.

Proceedings of DSC 2003 5

This approach is rather clumsy since the application usually stores the values
in a binary form and would have to construct the string. Further problems are
also caused by special characters and limited string representation of a number.
Therefore Rserve provides a way of transporting values in encoded form to Rserve
and assigning them to R symbols.

Rserve could be extended by adding decoding support for more SEXP types.
This would allow invocation of R commands in the style of .Call function. This
functionality should be available in the next versions of Rserve.

Since Rserve can be used in remote mode, where the server and the client run
on different machines, it may be convenient to transfer files, such as data sets or
images generated by R from the server to the client or vice versa. Rserve provides
a simple file transport facility for this purpose. The supported facilities comprise
opening, creating, reading, writing and deleting files.

Finally the last group provides the shutdown command for server administration.
Although the server responds to the usual shutdown signals, such as TERM and KILL,
the shutdown command provides the most graceful termination. New connections
are not accepted, but all current connections are kept open until closed by the client,
then the server terminates.

So far we have illustrated what happens while a client is connected to the Rserve.
One of our main goals was to eliminate R initialization delay and to provide a
separate data space and working directory for each connection. Therefore we need
to describe what happens when a new connection is accepted.

Rserve is linked to the R shared library and it initializes R during its startup.
Now we have an initialized R waiting for commands. Rserve uses fork to create
a new, initialized process as soon as a new incoming connection arrives. For most
current operating systems fork has little overhead, since the same memory is used for
the code and data segment is copied on write only. This allows very fast spawning
of R processes for the clients. At the same time this method guarantees that each
connection receives a clean, separate data space, unpolluted by previous connections
which is independent of all other R instances.

Before answering queries from the client Rserve creates a new working directory
for the connection. The root of the working directories is configurable (default
is /tmp/Rserv) and each subdirectory is of the form connX where X is a decimal
number unique to the connection. Empty working directories are removed once the
connection has been closed. The reason for retaining non-empty directories is that
a local application (e.g. web server) may want to access the generated data (e.g.
bitmap images previously generated) even after the connection was closed and is
then responsible for their removal. This feature may become configurable at some
later point if necessary.

Rserve initializes an incoming connection by sending an identification string of 32
bytes which describes the basic capabilities of the server. Therefore listening Rserves
are easily identifiable as they send 32 bytes of which the first four are ”Rsrv”.

Rserve was primarily designed for unix operating systems, because those are
mainly used for network servers. Rserve can be also used on computers running the
Windows operating system, but several restrictions apply. The main difference is
the inability to use the fork command to spawn new instances of Rserve quickly.
Windows provides no such facilities. Although Rserve supports threads, R does not
and therefore there is no alternative but to use separate Rserve instances for separate
connections. Therefore the Windows version of Rserve supports only one connection
at a time. Any subsequent connections to the same Rserve share the same working

Proceedings of DSC 2003 6

directory and data space. In this case Rserve doesn’t change the working directory.
Depending on the client there are several approaches for using Rserves in a

Windows environment. Applications which use one Rserve instance at a time are
free to launch their own instance, use it and shut it down upon completion. This is
sufficient for most applications. More sophisticated applications can initialize a pool
of parallel Rserves and distribute computation among them, launching new instances
when necessary. In Windows this can be easily done by an external application,
therefore we decided not to incorporate this functionality directly in Rserve.

4 Comparison with other methods

Rserve aims to complement the variety of available methods for communication to
R, not to replace them. Native API for communication with R is defined on the
level of the C or FORTRAN languages, excluding other languages unless some kind
of a bridge is used, specific for each language. Rserve provides an interface which is
defined independently of any programming or scripting language.

A console-based interface, where commands for R are stored in a file and written
into another file (also known as batch mode) is currently used by several applica-
tions, such as VASMM (Masaya Iizuka and Tanaka, 2002). It is very slow, because
a new instance of R has to be started for each request. Results are usually stored
in textual form, which is not suitable for interprocess communication and requires
a parser at the application’s end. This may not be a problem for some scripting
languages such as perl, but it is a problem for other languages such as Java.

Rserve still provides a way of capturing textual output if necessary, although the
preferred method is binary transfer. In turn Rserve has very little overhead for each
new connection, because it doesn’t need to initialize a new instance of R.

Since our main applications of Rserve involve the Java client for Rserve, we also
compared Rserve to the SJava interface from the Omegahat project (Temple Lang,
2000). SJava is conceptually far more flexible than Rserve, because it allows calling
both R from Java and Java from R. Rserve implies that Java is the controlling
application and unlike SJava it has no concept of callbacks. As Rserve provides
computational facilities for the client and every action is initiated on the Java side,
callbacks are in fact undesirable, since R is not thread-safe.

Let us compare Rserve with the R-from-Java part of SJava, because they are
based on very similar philosophies. Rserve can be used remotely, because objects
are copied when necessary. This approach allows distributed computing on multiple
machines and CPUs. SJava works only locally since it embeds R into Java via JNI.
Due to the fact that there is no synchronization between Java and R, and given
that R is not multi-thread safe, it is fatal to make more than one call from Java into
R. The application developer is responsible for proper synchronization when using
SJava. Rserve performs this synchronization by design and also allows the use of
multiple concurrent connections. SJava allows passing of object references, which
can lead to serious problems and crashes if utmost care is not taken.

Both SJava and Rserve support conversion of basic object types between Java and
R. Rserve provides much a wider variety of objects passed to Java by encapsulating
all native SEXP (simple expressions) of R into a Java class. In SJava conversion
of complex types is supported, but the developer must implement his own class
converters.

Proceedings of DSC 2003 7

Probably one of the main disadvantages of SJava is that it does not run out-
of-the-box. The code is dependent on the hardware and operating system used,
as well as the Java implementation. In general it is very hard to setup and the
solution cannot be deployed with the application. Rserve comes as a regular R
source package for unix platforms and as a binary executable for Windows. The
client side of Rserve needs no special setting and is platform independent, since it
is written in pure Java, currently requiring only the JDK 1.1 specification. The
Rserve client classes can be easily deployed with any Java program and no third
party software is necessary.

Finally R has its own set of functions for socket communication, therefore it
should be possible to build a pure R program mimicking the same functionality as
Rserve. Although this is true, such an R program would only be able to serve one
connection at a time and would lack separate workspaces. The use of the serializable
format of R instead of the Rserve protocol was also suggested, but the serialization
is known only to R and therefore the application would have to implement the full
serialization protocol. Only limited documentation was at our disposal when the
decision was made, therefore we decided to use our own binary protocol.

5 Using Rserve

Rserve itself is provided as a regular R package and can be installed as such. The
actual use is not performed by the library command, but by starting the Rserve
executable (Windows) or typing R CMD Rserve on the command line (all others).
By default Rserve runs in local mode with no enforced authentication. Once the
Rserve is running any applications can use its services.

All of our applications using Rserve represent Java programs which use R for
computation, therefore we will show examples using the Java client for Rserve. The
principles are identical when using other Rserve clients, therefore using Java as the
starting point poses no limitation.

Before plunging into real examples, let us consider the minimal “hello world”
example:

Rconnection c = new Rconnection();
REXP x = c.eval("R.version.string");
System.out.println(r.asString());

The code has the same effect as typing R.version.string in R. In the first line
a connection to the local Rserve is established. Then the R command is evaluated
and the result stored in a special object of the class REXP. This class encapsulates
any objects received or sent to Rserve. If the type of the returned objects is known
in advance, accessor methods can be called to obtain the Java object corresponding
to the R value, in our case a regular String. Finally this string is printed on the
standard output.

The following code fragment illustrates the use of slightly more complex native
Java types:

double[] d = (double[]) c.eval("rnorm(100)").getContent();

This single line in Java provides an array of 100 doubles representing random num-
bers from the standard normal distribution. The numeric vector in R is automati-
cally converted into double[] Java type. In cases where no native Java type exists,

Proceedings of DSC 2003 8

Rserve Java client defines its own classes such as RList or RBool2. This approach
makes the use of Rserve very easy.

As a first more practical example we want to calculate a Lowess smoother
through a given set of points. The Java application lets the user specify the data
allowing interactive changes of the points, displays a regular scatter plot and needs
coordinates of the smoother to be obtained from R.

One way of obtaining such a result would be to construct a long string command
of the form lowes(c(0.2,0.4,...), c(2.5,4.8,...)) and using the eval method to obtain
the result. This is somewhat clumsy, because the points usually already exist in a
double array in the Java application and the command string must be constructed
from these. An alternative involves constructing objects in R directly. The following
code shows the full Lowess example:

double[] dataX,dataY;
...
Rconnection c = new Rconnection();
c.assign("x",dataX);
c.assign("y",dataY);
RList l = c.eval("lowess(x,y)").asList();
double[] lx = (double[]) l.at("x").getContent();
double[] ly = (double[]) l.at("y").getContent();

First the Java application defines the arrays for the data points dataX and dataY .
The application is responsible for filling these arrays with the desired content. Then
we assign the contents of these arrays to R variables x and y. The assign command
transfers the contents in binary form to Rserve and assigns this content to the
specified symbol. This is far more efficient than constructing a string representation
of the content.

Once the variables are set in R we are ready to use the lowess function. It
returns a list consisting of two vectors x and y which contain the smoother points.
The RList object provides the method at for extraction of named entries of a list.
Since lists may contain entries of different types, the object returned by the at
method is of the class REXP whose content can be cast into double[] in our case.
The result can now be used by the Java application.

More complex computations can be performed even without transmission of
resulting objects. This is useful when defining functions or constructing complex
models. Model objects are usually large, because they contain original data points,
residuals and other meta data. Although they can be transferred to the client, it
is more efficient to retain such objects in R and extract relevant information only.
This can be done by using the voidEval method which does not transfer the result
of the evaluation back to the client:

c.assign(y, ...) ...
c.voidEval("m<-lm(y~a+b+c)");
double [] coeff =
(double[]) c.eval("coefficients(m)").getContent();

In the above example a linear model is fitted, but its content is not passed back to
the client. It is stored in an object in R for later use. Finally the coefficients are
extracted from the model and passed back to the Java application.

2Java’s boolean type has no support for NA missing values, therefore it cannot be used to
directly represent the logical type in R.

Proceedings of DSC 2003 9

So far we used Rserve in local mode only. Extension to remote Rserve con-
nections is possible without code changes, except for additional parameters to the
Rconnection constructor, specifying the remote computer running the Rserve. For
details about the use of remote authentication, error handling and file transfer,
consult the documentation supplied with the Rserve and the Java client. The use
is again straight-forward, since native Java facilities, such as input/output streams
are used.

6 Example

In the following we want to describe a real-life application of Rserve. The example
features Klimt (Urbanek and Unwin, 2001), a software for visualization and anal-
ysis of trees and forests. Klimt is written entirely in Java and provides numerous
interactive facilities for visualization of tree models and analysis of associated data.
Klimt can be used as a stand-alone application, but it requires R for the construc-
tion of tree models. Therefore it needs a way of communicating with R to perform
the necessary computations.

There are four tasks for which Klimt connects to a Rserve: initialization, con-
struction of a tree from the open data set, construction of tree branches when the
user interactively modifies a tree and finally construction of derived variables.

When initializing R by opening the Rserve connection, Klimt checks the version
of R and loads the necessay libraries for tree construction - tree or rpart depend-
ing on the user’s choice. Before the first tree is generated or the first variable is
used, Klimt stores the entire data set in R by assigning each variable of the data
set into R objects of the same name. For tree construction Klimt simply evaluates
an R expression of the form: "tree("+formula+","+parameters+")$frame". The
resulting object contains a data frame which entirely describes the tree. This infor-
mation is converted by Klimt into an internal representation of a tree. The formula
is generated from the items selected by the user from a list. Optional parameters
can be specified by the user.

It is recommended to wrap the evaluated expression in the try function. The
resulting object is then either the requested tree, or a string containing the error
message if the command was not successful. In Klimt the actual code looks like
this:

REXP r=c.eval("try(tree("+formula+","+parameters+")$frame)");
if (r.getType()==REXP.XT_STRING) {
String error=r.asString();
...

} else {
SNode root=convertTree(r.asList());
...

}

Here SNode is the internal recursive representation of a tree in Klimt. A similar
approach is used for interactive tree splitting. The user interactively specifies the
split, resulting in two nodes. Two subsets corresponding to the interactively created
nodes are used, one tree is grown for each node and attached to its parent node.
The main advantage is that the connection is held open and therefore the data set
doesn’t need to be re-transmitted to Rserve.

Proceedings of DSC 2003 10

Finally derived variables can be created by evaluating an expression supplied by
the user and stored in the requested variable:

REXP r=c.eval("try("+varName+" <- "+expr+")");

If the expression supplied by the user is correct, then the result must be an array
of the same length as the data set in Klimt. Since the variables are stored directly
in R, expressions of the form v1/v2+v3 deliver the expected result if the data set
contains the variables v1, v2 and v3.

7 Conclusions

Rserve complements the family of interfaces between applications and R by providing
a fast, language-independent and remote-capable way of using all facilities of R from
other programs. Due to a clean separation between R (server) and the application
(client), internal data manipulation on one side cannot affect the other. Using
network sockets for the communication ensures platform and software independence
of the client and the server. At the same time restriction to local use is also possible,
requiring no physical network.

For concurrent connections Rserve offers both data and file space separation
between connections. Each new connection is accepted almost immediately without
the need for initializing R engine. Integrated file transfer protocol allows the use
of remotely created files, such as plot bitmaps created by R. User authentication is
provided for a level of security, especially when used in remote mode. This concept
is suitable for distributed computing and load balancing.

The supplied Java client provides an easy embedding of R facilities into Java
programs. Evaluation and transfer of most types from R to the application is pro-
vided, including complex objects such as models. All basic types are automatically
converted to corresponding Java classes.

Rserve is very versatile, since it poses no limit on the facilities of R used. Al-
though Rserve allows the execution of all R commands, the user should avoid any
commands involving the GUI or console input, since Rserve has no console and
there is no guarantee that it has any GUI at all. An exception are applications
that provide their own copy of Rserve and have control over the way Rserve is
started. Typical uses of Rserve include interactive applications using R for model
construction (see KLIMT project) or web-servlets performing online computations.

As of now only basic types, such as numbers, strings and vectors hereof, can
be assigned directly to R objects. The framework allows the transfer of arbitrarily
complex types supported by the REXP, but the Rserve side is not fully implemented
yet. Only transfer of evaluated objects supports all common expression types.

Rserve currently provides two client implementations: for Java and C languages.
The Rserve protocol is well defined and allows the implementation of further clients
in other programming or scripting languages when needed.

Rserve was tested on Linux, Mac OS X and Windows operating systems. The
Windows version is the only restricted one, because there is no possible way of
spawning new instances of R quickly in Windows. If all a Windows application
needs is non-concurrent Rserve connections, it can provide its own copy of the Rserve
binary, which will automatically find the last installed R and use it for computations,
preventing clashes with other applications.

Proceedings of DSC 2003 11

The Rserve project is released under GPL software license, which means that
it can be modified or enhanced if necessary. The current Rserve is already used
by several projects and is being enhanced as needs arise. For details and recent
development, please visit the Rserve project page:
http://stats.math.uni-augsburg.de/Rserve

References

John M. Chambers. Programming with Data. A Guide to the S Language. Springer-
Verlag, NY, 1998.

Tomoyuki Tarumi Masaya Iizuka, Yuichi Mori and Yutaka Tanaka. Statistical soft-
ware VASMM for variable selection in multivariate methods. In COMPSTAT
2002 Proceedings in Computational Statistics, pages 563–568. Physica, Heidel-
berg, 2002.

Duncan Temple Lang. The Omegahat environment: New possibilities for statistical
computing. JCGS, 9(3), 2000.

R Development Core Team. Writing R extensions, 2003. URL http://cran.
r-project.org/doc/manuals/R-exts.pdf.

Simon Urbanek. Rserve online documentation, 2003. URL http://stats.math.
uni-augsburg.de/Rserve.

Simon Urbanek and Antony R. Unwin. Making trees interactive - KLIMT. In Proc.
of the 33th Symposium of the Interface of Computing Science and Statistics, 2001.

Affiliation

Simon Urbanek
Department of computer oriented statistics and data analysis
University of Augsburg
Universitätsstr. 14
86135 Augsburg
Germany
E-mail: simon.urbanek@math.uni-augsburg.de

http://stats.math.uni-augsburg.de/Rserve
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://stats.math.uni-augsburg.de/Rserve
http://stats.math.uni-augsburg.de/Rserve
mailto:simon.urbanek@math.uni-augsburg.de

	Introduction
	Basic design and features
	Implementation details
	Comparison with other methods
	Using Rserve
	Example
	Conclusions

