
Revised5.94 Report on the Algorithmic Language

Scheme

— Non-Normative Appendices —

MICHAEL SPERBER

WILLIAM CLINGER, R. KENT DYBVIG, MATTHEW FLATT, ANTON VAN STRAATEN

(Editors)

11 June 2007

SUMMARY

This document contains non-normative appendices to the Revised6 Report on the Algorithmic Language Scheme. These
appendices contain advice for users and suggestions for implementors on issues not fit for standardization, in particular
on platform-specific issues.
This document frequently refers back to the Revised6 Report on the Algorithmic Language Scheme [3] and the Revised6

Report on the Algorithmic Language Scheme — Libraries — [4]; references to the report are identified by designations
such as “report section” or “report chapter”, and references to the library report are identified by designations such as
“library section” or “library chapter”.

We intend this report to belong to the entire Scheme community, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

CONTENTS

A Standard-conformant mode . 2
B Optional case insensitivity . 2
C Scripts . 2

C.1 Script interpreter . 2
C.2 Syntax . 2
C.3 Platform considerations . 3

D Source code representation . 3
E Unique library names . 4
F Library / file system mapping . 4
References . 4

*** DRAFT***
This is a preliminary draft. It is intended to reflect the decisions taken by the editors’ committee, but contains many
mistakes, ambiguities and inconsistencies.

2 Revised5.94 Scheme Non-Normative Appendices

Appendix A. Standard-conformant mode

Scheme implementations compliant with the report may
operate in a variety of modes. In particular, in ad-
dition to one or more modes conformant with the re-
quirements of the report, an implementation might of-
fer non-conformant modes. These modes are by nature
implementation-specific, and may differ in the language
and available libraries. In particular, non-conformant lan-
guage extensions may be available, including unsafe li-
braries or otherwise unsafe features, and the semantics
of the language may differ from the semantics described
in the report. Moreover, the default mode offered by a
Scheme implementation may be non-conformant, and such
a Scheme implementation may require special settings or
declarations to enter the report-conformant mode. Imple-
mentors are encouraged to clearly document the nature of
the default mode and how to enter a report-conformant
mode.

Appendix B. Optional case insensitivity

In contrast with earlier revisions of the report [2], the syn-
tax of datums distinguishes upper and lower case in iden-
tifiers and characters specified va their names. For exam-
ple, the identifiers X and x are different, and the character
#\space cannot be written #\SPACE.

Implementors may wish to support case-insensitive syntax
for backward compatibility or other reasons. If they do so,
they are encouraged to adopt the following directives to
control case folding.

#!fold-case
#!no-fold-case

These directives may appear anywhere comments may ap-
pear and are treated as comments, except that they af-
fect the reading of subsequent datums. The #!fold-case
causes the reader to case-fold (see library section 1.2) each
〈identifier〉 and 〈character name〉. The #!no-fold-case
directive causes the reader to return to the default, non-
folding behavior.

The region where each of these directives has effect depends
on the context. If the directive occurs at top level, the
region extends until the next such directive at top level, or
until the end of the source text if no such directive follows.
If the directive occurs in the immediate context of a 〈list〉
or 〈vector〉 datum (i.e., in a place that would make it an
element of the list or vector if it were a datum), the region
of its effect extends until the next such directive in the
same context, or until the end of the context if no such
directive follows. A directive occurring inside the region of
effect of another directive takes precedence.

Appendix C. Scripts

A Scheme script is a top-level program (see report chap-
ter 7) which is packaged such that it is directly executable
by conforming implementations of Scheme, on one or more
plaforms.

C.1. Script interpreter

Where applicable, implementations should provide a script
interpreter in the form of an executable program named
scheme-script that is capable of initiating the execution
of Scheme scripts, as described below.

Rationale: Distributing a Scheme program that is portable

with respect to both Scheme implementations and operating

systems is challenging, even if that program has been written

in standard Scheme. Languages with a single or primary imple-

mentation can at least rely on a standard name for their script

interpreters. Standardizing the name of the executable used to

start a Scheme script removes one barrier to the distribution of

Scheme scripts.

C.2. Syntax

A Scheme script is a delimited piece of text, typically a file,
with the following syntax:

〈script〉 −→ 〈script header〉 〈top-level program〉
| 〈top-level program〉

〈script header〉 −→ 〈shebang〉 /usr/bin/env 〈space〉
scheme-script 〈linefeed〉

〈shebang〉 −→ #! | #! 〈space〉

C.2.1. Script header

The script header, if present on the first line of a script, is
used by Unix-like operating systems to identify the inter-
preter to execute that script.

The script header syntax given above is the recommended
portable form that programmers should use. However, if
the first line of a script begins with #!/ or #!〈space〉, im-
plementations should ignore it on all platforms, even if it
does not conform to the recommended syntax.

Rationale: Requiring script interpreters to recognize and ig-

nore the script header helps ensure that Scheme scripts written

for Unix-like systems can also run on other kinds of systems.

Furthermore, recognizing all #!/ or #!〈space〉 combinations al-

lows local customizations to be performed by altering a script

header from its default form.

Appendix D. Source code representation 3

C.2.2. Example

#!/usr/bin/env scheme-script

#!r6rs

(import (rnrs base (6))

(rnrs i/o ports (6))

(rnrs programs))

(put-bytes (standard-output-port)

(call-with-port

(open-file-input-port

(cadr (command-line)))

get-bytes-all))

C.3. Platform considerations

Many platforms require that scripts be marked as exe-
cutable in some way. The platform-specific details of this
are beyond the scope of this report. Scripts that are not
suitably marked as executable will fail to execute on many
platforms. Other platform-specific notes for some popular
operating systems follow.

C.3.1. Apple Mac OS X

The Mac OS X operating system supports the Unix-like
script header for shell scripts that run in the Terminal.
Depending on the intended usage, it may be advisable to
choose a file name ending in .command for a script, as this
makes the script double-clickable.

C.3.2. Unix

Scheme scripts on Unix-like operating systems are sup-
ported by the presence of the script header. Scripts that
omit the script header are unlikely to be directly executable
on Unix-like systems.

To support installation of the Scheme script interpreter in
non-standard paths, scripts should use the /usr/bin/env
program as specified in the recommended script header
syntax. (Note that on many Unix-like systems, this also
allows the script interpreter itself to be implemented as a
shell script.)

C.3.3. Microsoft Windows

The Windows operating system allows a file exten-
sion to be associated with a script interpreter such as
scheme-script. This association may be configured ap-
propriately by Scheme implementations, installation pro-
grams, or by the user.

C.3.4. Selecting an implementation

If multiple implementations of Scheme are installed on a
machine, the user may wish to specify which implementa-
tion should be used to execute Scheme scripts by default.
Most platforms support some mechanism for choosing be-
tween alternative implementations of a program. For ex-
ample, Debian GNU/Linux uses the /etc/alternatives
mechanism to do this; Microsoft Windows uses file exten-
sion associations. Implementations are expected to con-
figure this appropriately, e.g., as part of their installation
procedure. Failing that, users must perform any necessary
configuration to choose their preferred Scheme script inter-
preter.

Appendix D. Source code representation

The report does not specify how source code is represented
and stored. The only requirement the report imposes is
that the source code of a top-level program (see report
section 7.1) or a script (see section C.2) be delimited. The
source code of a library is self-delimiting in the sense that,
if the beginning of a library form can be identified, so can
the end.

Implementations might take radically different approaches
to storing source code for libraries, among them: files in the
file system where each file contains an arbitrary number of
library forms, files in the file system where each file contains
exactly one library form, records in a database, and data
structures in memory.

Similarly, programs and scripts might be stored in a variety
of formats. Platform constraints might restrict the choices
available to an implementation, which is why the report
neither mandates nor recommends a specific method for
storage.

Implementations may provide a means for importing li-
braries coming from the outside via an interface that ac-
cepts a UTF-8 text file in Unicode Normalization Form
C where line endings are encoded as newline characters.
Such text files may contain an arbitrary number of library
forms. (Authors of such files are encouraged to include an
#!r6rs comment if the file is written purely with the lex-
ical and read syntax described in the report. See report
section 3.2.3.) After importing such a file, the libraries de-
fined in it should be available to other libraries and files.
An implementation may store the file as is, or convert it to
some storage format to achieve this.

Similarly, implementations may provide a means for ex-
ecuting a program represented as a UTF-8 text file con-
taining its source code. Again, authors of such files are
encouraged to include an #!r6rs comment if the file is
written purely with the lexical and read syntax described
in the report. This report does not describe a file format

4 Revised5.94 Scheme Non-Normative Appendices

that allows both libraries and programs to appear in the
same file.

Appendix E. Unique library names

Programmers are encouraged to choose names for dis-
tributed libraries whose names are chosen not to collide
with other libraries’ names. This appendix suggests a con-
vention for generating unique library names, similar to the
convention for Java [1].

A unique library name can be formed by associating the
library with an Internet domain name, such as mit.edu.
The lower-case components of the domain are reversed to
form a prefix for the library name. Adding further name
components to establish a hierarchy may be advisable, de-
pending on the size of the organization associated with the
domain name, the number of libraries to be distributed
from it, and other organizational properties or conventions
associated with the library.

Programmers are encouraged to use library names that are
suitable for use in the file-system mapping described in
appendix F. Special characters in domain names that do
not fit the convention should be replaced by hyphens or
suitable “escape sequences” that, as much as possible, are
suitable for avoiding collisions. Here are some examples for
possible library names according to this convention:

(edu mit swiss cheese)

(de deinprogramm educational graphics turtle)

(com pan-am booking passenger)

The name of a library does not necessarily indicate an In-
ternet address where the package is distributed.

Appendix F. Library / file system map-
ping

Storing library source code as files in a hierarchical file
system is a common way to support the use of standard
tools for editing and other kinds of source code processing.

The following recommendation specifies a standard way to
map library names to file names in widely-used file systems,
using an approach in which each file contains exactly one
library form. Following this recommendation will allow
users to work with a familiar source code structure across
implementations, and can also allow multiple implementa-
tions to share a common repository of library source code.

The form of a library name is specified in section 6.1. It
can be expressed as follows:

(〈identifier1〉 ... 〈identifiern〉 〈version〉)

where 〈version〉 is empty or has the following form:

(〈sub-version1〉 〈sub-version2〉 ...)

Such a library name should be mapped to a file in the file
system with a relative path formed by the concatenation
of the following components:

〈identifier1〉 〈sep〉 ... 〈identifiern〉 〈xsep〉 〈extension〉

where 〈sep〉 is the platform-specific character (such as /)
used to separate path elements (which are typically direc-
tory names); 〈xsep〉 is the platform-specific character (typ-
ically a period) used to separate parts of a file name; and
〈extension〉 has the following form:

〈sub-version1〉 〈xsep〉 〈sub-version2〉 〈xsep〉 ... sls

where sls is the recommended extension used to identify
Scheme library source files.

Note that the resulting path is relative to some
implementation-dependent root directory.

According to this mapping, the source code for a library
named (mylib examples hello) would be stored in a
file mylib/examples/hello.sls; the source code for a
library named (mylib examples hello (0 4 2)) would
be stored in a file mylib/examples/hello.0.4.2.sls.

A library source file may define a library with a library
name consisting of the same sequence of identifiers as an-
other library known to the implementation if each library
name includes a distinct and non-empty 〈version〉.
If a library source file defines a library with a library name
for which 〈version〉 is () or empty, then the source file
must similarly have no version embedded within its name.
In that case, to avoid confusion, no other library with a
library name consisting of the same sequence of identifiers,
but with a non-empty version, should be known to the
implementation.

This report does not describe a file system mapping for
compiled code.

REFERENCES

[1] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The JavaTM Language Specification. Addison-Wesley,
third edition, 2005.

[2] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–105,
1998.

[3] Michael Sperber, William Clinger, R. Kent Dybvig,
Matthew Flatt, Anton van Straaten, Richard Kelsey,
and Jonathan Rees. Revised6 report on the algorith-
mic language Scheme. http://www.r6rs.org/, 2007.

[4] Michael Sperber, William Clinger, R. Kent Dybvig,
Matthew Flatt, Anton van Straaten, Richard Kelsey,
and Jonathan Rees. Revised6 report on the algorithmic
language Scheme — libraries —. http://www.r6rs.
org/, 2007.

