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SUMMARY

The report gives a defining description of the programming language Scheme. Scheme is a statically scoped and properly
tail-recursive dialect of the Lisp programming language invented by Guy Lewis Steele Jr. and Gerald Jay Sussman. It was
designed to have an exceptionally clear and simple semantics and few different ways to form expressions. A wide variety
of programming paradigms, including functional, imperative, and message passing styles, find convenient expression in
Scheme.

This report is accompanied by a report describing standard libraries [22]; references to this document are identified by
designations such as “library section” or “library chapter”. It is also accompanied by a report containing non-normative
appendices [23]. A third report gives some historical background and rationales for many aspects of the language and
its libraries [24].

The individuals listed above are not the sole authors of the text of the report. Over the years, the following individuals
were involved in discussions contributing to the design of the Scheme language, and were listed as authors of prior reports:

Hal Abelson, Norman Adams, David Bartley, Gary Brooks, William Clinger, R. Kent Dybvig, Daniel Friedman, Robert
Halstead, Chris Hanson, Christopher Haynes, Eugene Kohlbecker, Don Oxley, Kent Pitman, Jonathan Rees, Guillermo
Rozas, Guy L. Steele Jr., Gerald Jay Sussman, and Mitchell Wand.

In order to highlight recent contributions, they are not listed as authors of this version of the report. However, their
contribution and service is gratefully acknowledged.

We intend this report to belong to the entire Scheme community, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

*** DRAFT***
This is a preliminary draft. It is intended to reflect the decisions taken by the editors’ committee, but likely contains
many mistakes, ambiguities, and inconsistencies.
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INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish proce-
dures from lambda expressions and symbols, to use a sin-
gle lexical environment for all variables, and to evaluate
the operator position of a procedure call in the same way
as an operand position. By relying entirely on procedure
calls to express iteration, Scheme emphasized the fact that
tail-recursive procedure calls are essentially gotos that pass
arguments. Scheme was the first widely used programming
language to embrace first class escape procedures, from
which all previously known sequential control structures
can be synthesized. A subsequent version of Scheme in-
troduced the concept of exact and inexact number objects,
an extension of Common Lisp’s generic arithmetic. More
recently, Scheme became the first programming language
to support hygienic macros, which permit the syntax of a
block-structured language to be extended in a consistent
and reliable manner.

Guiding principles

To help guide the standardization effort, the editors have
adopted a set of principles, presented below. Like the
Scheme language defined in Revised5 Report on the Algo-
rithmic Language Scheme [15], the language described in
this report is intended to:

• allow programmers to read each other’s code, and al-
low development of portable programs that can be ex-
ecuted in any conforming implementation of Scheme;

• derive its power from simplicity, a small number of
generally useful core syntactic forms and procedures,
and no unnecessary restrictions on how they are com-
posed;

• allow programs to define new procedures and new hy-
gienic syntactic forms;

• support the representation of program source code as
data;

• make procedure calls powerful enough to express any
form of sequential control, and allow programs to per-
form non-local control operations without the use of
global program transformations;

• allow interesting, purely functional programs to run
indefinitely without terminating or running out of
memory on finite-memory machines;

• allow educators to use the language to teach program-
ming effectively, at various levels and with a variety of
pedagogical approaches; and

• allow researchers to use the language to explore the de-
sign, implementation, and semantics of programming
languages.

In addition, this report is intended to:

• allow programmers to create and distribute substan-
tial programs and libraries, e.g., implementations of
Scheme Requests for Implementation, that run with-
out modification in a variety of Scheme implementa-
tions;

• support procedural, syntactic, and data abstraction
more fully by allowing programs to define hygiene-
bending and hygiene-breaking syntactic abstractions
and new unique datatypes along with procedures and
hygienic macros in any scope;

• allow programmers to rely on a level of automatic run-
time type and bounds checking sufficient to ensure
type safety; and

• allow implementations to generate efficient code, with-
out requiring programmers to use implementation-
specific operators or declarations.

While it was possible to write portable programs in Scheme
as described in Revised5 Report on the Algorithmic Lan-
guage Scheme, and indeed portable Scheme programs were
written prior to this report, many Scheme programs were
not, primarily because of the lack of substantial stan-
dardized libraries and the proliferation of implementation-
specific language additions.

In general, Scheme should include building blocks that al-
low a wide variety of libraries to be written, include com-
monly used user-level features to enhance portability and
readability of library and application code, and exclude fea-
tures that are less commonly used and easily implemented
in separate libraries.

The language described in this report is intended to also be
backward compatible with programs written in Scheme as
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described in Revised5 Report on the Algorithmic Language
Scheme to the extent possible without compromising the
above principles and future viability of the language. With
respect to future viability, the editors have operated under
the assumption that many more Scheme programs will be
written in the future than exist in the present, so the fu-
ture programs are those with which we should be most
concerned.
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DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

This chapter gives an overview of Scheme’s semantics. The
purpose of this overview is to explain enough about the ba-
sic concepts of the language to facilitate understanding of
the subsequent chapters of the report, which are organized
as a reference manual. Consequently, this overview is not
a complete introduction to the language, nor is it precise
in all respects or normative in any way.

Following Algol, Scheme is a statically scoped program-
ming language. Each use of a variable is associated with a
lexically apparent binding of that variable.

Scheme has latent as opposed to manifest types [28]. Types
are associated with values (also called objects) rather than
with variables. (Some authors refer to languages with la-
tent types as untyped, weakly typed or dynamically typed
languages.) Other languages with latent types are Python,
Ruby, Smalltalk, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly
typed or statically typed languages) include Algol 60, C,
C#, Java, Haskell, and ML.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent in-
clude C#, Java, Haskell, most Lisp dialects, ML, Python,
Ruby, and Smalltalk.

Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section 5.11.

Scheme was one of the first languages to support proce-
dures as objects in their own right. Procedures can be
created dynamically, stored in data structures, returned
as results of procedures, and so on. Other languages with
these properties include Common Lisp, Haskell, ML, Ruby,
and Smalltalk.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section 11.15.

In Scheme, the argument expressions of a procedure call
are evaluated before the procedure gains control, whether
the procedure needs the result of the evaluation or not.
C, C#, Common Lisp, Python, Ruby, and Smalltalk are
other languages that always evaluate argument expressions
before invoking a procedure. This is distinct from the lazy-
evaluation semantics of Haskell, or the call-by-name se-
mantics of Algol 60, where an argument expression is not
evaluated unless its value is needed by the procedure.

Scheme’s model of arithmetic provides a rich set of numer-
ical types and operations on them. Furthermore, it distin-
guishes exact and inexact number objects: Essentially, an
inexact number object corresponds to a number exactly,
and an inexact number objects is the result of a computa-
tion that involved rounding or other errors.

1.1. Basic types

Scheme programs manipulate values, which are also re-
ferred to as objects. Scheme values are organized into sets
of values called types. This section gives an overview of the
fundamentally important types of the Scheme language.
More types are described in later chapters.

Note: As Scheme is latently typed, the use of the term type

in this report differs from the use of the term in the context of

other languages, particularly those with manifest typing.

Boolean values A boolean value is a truth value, and
can be either true or false. In Scheme, the value for “false”
is written #f. The value “true” is written #t. In most
places where a truth value is expected, however, any value
different from #f counts as true.

Numbers Scheme supports a rich variety of numerical
data types, including objects representing integers of arbi-
trary precision, rational numbers, complex numbers, and
inexact numbers of various kinds. Chapter 3 gives an
overview of the structure of Scheme’s numerical tower.

Characters Scheme characters mostly correspond to
textual characters. More precisely, they are isomorphic
to the scalar values of the Unicode standard.

Strings Strings are finite sequences of characters with
fixed length and thus represent arbitrary Unicode texts.
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Symbols A symbol is an object representing a string,
the symbol’s name. Unlike strings, two symbols whose
names are spelled the same way are never distinguishable.
Symbols are useful for many applications; for instance, they
may be used the way enumerated values are used in other
languages.

Pairs and lists A pair is a data structure with two com-
ponents. The most common use of pairs is to represent
(singly linked) lists, where the first component (the “car”)
represents the first element of the list, and the second com-
ponent (the “cdr”) the rest of the list. Scheme also has a
distinguished empty list, which is the last cdr in a chain of
pairs that form a list.

Vectors Vectors, like lists, are linear data structures rep-
resenting finite sequences of arbitrary objects. Whereas
the elements of a list are accessed sequentially through the
chain of pairs representing it, the elements of a vector are
addressed by an integer index. Thus, vectors are more ap-
propriate than lists for random access to elements.

Procedures Procedures are values in Scheme.

1.2. Expressions

The most important elements of Scheme code are expres-
sions. Expressions can be evaluated, producing a value.
(Actually, any number of values—see section 5.8.) The
most fundamental expressions are literal expressions:

#t =⇒ #t

23 =⇒ 23

This notation means that the expression #t evaluates to
#t, that is, the value for “true”, and that the expression
23 evaluates to a number object representing the number
23.

Compound expressions are formed by placing parenthe-
ses around their subexpressions. The first subexpression
identifies an operation; the remaining subexpressions are
operands to the operation:

(+ 23 42) =⇒ 65

(+ 14 (* 23 42)) =⇒ 980

In the first of these examples, + is the name of the built-
in operation for addition, and 23 and 42 are the operands.
The expression (+ 23 42) reads as “the sum of 23 and 42”.
Compound expressions can be nested—the second example
reads as “the sum of 14 and the product of 23 and 42”.

As these examples indicate, compound expressions in
Scheme are always written using the same prefix notation.
As a consequence, the parentheses are needed to indicate

structure. Consequently, “superfluous” parentheses, which
are often permissible in mathematical notation and also in
many programming languages, are not allowed in Scheme.

As in many other languages, whitespace (including new-
lines) is not significant when it separates subexpressions of
an expression, and can be used to indicate structure.

1.3. Variables and binding

Scheme allows identifiers to stand for locations contain-
ing values. These identifiers are called variables. In many
cases, specifically when the location’s value is never mod-
ified after its creation, it is useful to think of the variable
as standing for the value directly.

(let ((x 23)

(y 42))

(+ x y)) =⇒ 65

In this case, the expression starting with let is a bind-
ing construct. The parenthesized structure following the
let lists variables alongside expressions: the variable x
alongside 23, and the variable y alongside 42. The let
expression binds x to 23, and y to 42. These bindings are
available in the body of the let expression, (+ x y), and
only there.

1.4. Definitions

The variables bound by a let expression are local, because
their bindings are visible only in the let’s body. Scheme
also allows creating top-level bindings for identifiers as fol-
lows:

(define x 23)

(define y 42)

(+ x y) =⇒ 65

(These are actually “top-level” in the body of a top-level
program or library; see section 1.11 below.)

The first two parenthesized structures are definitions; they
create top-level bindings, binding x to 23 and y to 42. Defi-
nitions are not expressions, and cannot appear in all places
where an expression can occur. Moreover, a definition has
no value.

Bindings follow the lexical structure of the program: When
several bindings with the same name exist, a variable refers
to the binding that is closest to it, starting with its occur-
rence in the program and going from inside to outside,
going all the way to a top-level binding only if no local
binding can be found along the way:

(define x 23)

(define y 42)

(let ((y 43))
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(+ x y)) =⇒ 66

(let ((y 43))

(let ((y 44))

(+ x y))) =⇒ 67

1.5. Forms

While definitions are not expressions, compound ex-
pressions and definitions exhibit similar syntactic struc-
ture:

(define x 23)

(* x 2)

While the first line contains a definition, and the second
an expression, this distinction depends on the bindings for
define and *. At the purely syntactical level, both are
forms, and form is the general name for a syntactic part
of a Scheme program. In particular, 23 is a subform of the
form (define x 23).

1.6. Procedures

Definitions can also be used to define procedures:

(define (f x)

(+ x 42))

(f 23) =⇒ 65

A procedure is, slightly simplified, an abstraction over an
expression. In the example, the first definition defines a
procedure called f. (Note the parentheses around f x,
which indicate that this is a procedure definition.) The
expression (f 23) is a procedure call, meaning, roughly,
“evaluate (+ x 42) (the body of the procedure) with x
bound to 23”.

As procedures are objects, they can be passed to other
procedures:

(define (f x)

(+ x 42))

(define (g p x)

(p x))

(g f 23) =⇒ 65

In this example, the body of g is evaluated with p bound to
f and x bound to 23, which is equivalent to (f 23), which
evaluates to 65.

In fact, many predefined operations of Scheme are pro-
vided not by syntax, but by variables whose values are
procedures. The + operation, for example, which receives
special syntactic treatment in many other languages, is just
a regular identifier in Scheme, bound to a procedure that

adds number objects. The same holds for * and many oth-
ers:

(define (h op x y)

(op x y))

(h + 23 42) =⇒ 65

(h * 23 42) =⇒ 966

Procedure definitions are not the only way to create pro-
cedures. A lambda expression creates a new procedure as
a value, with no need to specify a name:

((lambda (x) (+ x 42)) 23) =⇒ 65

The entire expression in this example is a procedure call;
(lambda (x) (+ x 42)), evaluates to a procedure that
takes a single number object and adds 42 to it.

1.7. Procedure calls and syntactic key-
words

Whereas (+ 23 42), (f 23), and ((lambda (x) (+ x
42)) 23) are all examples of procedure calls, lambda and
let expressions are not. This is because let, even though
it is an identifier, is not a variable, but is instead a syn-
tactic keyword . A form that has a syntactic keyword as its
first subexpression obeys special rules determined by the
keyword. The define identifier in a definition is also a syn-
tactic keyword. Hence, definitions are also not procedure
calls.

The rules for the lambda keyword specify that the first
subform is a list of parameters, and the remaining subforms
are the body of the procedure. In let expressions, the
first subform is a list of binding specifications, and the
remaining subforms are a body of expressions.

Procedure calls can generally be distinguished from these
“special forms” by looking for a syntactic keyword in the
first position of an form: if it is not a syntactic keyword, the
expression is a procedure call. (So-called identifier macros
allow creating other kinds of special forms, but are com-
paratively rare.) The set of syntactic keywords of Scheme
is fairly small, which usually makes this task fairly simple.
It is possible, however, to create new bindings for syntactic
keywords; see below.

1.8. Assignment

Scheme variables bound by definitions or let or lambda ex-
pressions are not actually bound directly to the values spec-
ified in the respective bindings, but to locations containing
these values. The contents of these locations can subse-
quently be modified destructively via assignment :

(let ((x 23))

(set! x 42)

x) =⇒ 42
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In this case, the body of the let expression consists of two
expressions which are evaluated sequentially, with the value
of the final expression becoming the value of the entire let
expression. The expression (set! x 42) is an assignment,
saying “replace the value in the location referenced by x
with 42”. Thus, the previous value of x, 23, is replaced by
42.

1.9. Derived forms and macros

Many of the special forms specified in this report can be
translated into more basic special forms. For example, a
let expression can be translated into a procedure call and
a lambda expression. The following two expressions are
equivalent:

(let ((x 23)

(y 42))

(+ x y)) =⇒ 65

((lambda (x y) (+ x y)) 23 42)

=⇒ 65

Special forms like let expressions are called derived forms
because their semantics can be derived from that of other
kinds of forms by a syntactic transformation. Some proce-
dure definitions are also derived forms. The following two
definitions are equivalent:

(define (f x)

(+ x 42))

(define f

(lambda (x)

(+ x 42)))

In Scheme, it is possible for a program to create its own
derived forms by binding syntactic keywords to macros:

(define-syntax def

(syntax-rules ()

((def f (p ...) body)

(define (f p ...)

body))))

(def f (x)

(+ x 42))

The define-syntax construct specifies that a parenthe-
sized structure matching the pattern (def f (p ...)
body), where f, p, and body are pattern variables, is trans-
lated to (define (f p ...) body). Thus, the def form
appearing in the example gets translated to:

(define (f x)

(+ x 42))

The ability to create new syntactic keywords makes Scheme
extremely flexible and expressive, allowing many of the
features built into other languages to be derived forms in
Scheme.

1.10. Syntactic data and datum values

A subset of the Scheme values is called datum values.
These include booleans, number objects, characters, sym-
bols, and strings as well as lists and vectors whose elements
are data. Each datum value may be represented in textual
form as a syntactic datum, which can be written out and
read back in without loss of information, giving a syntac-
tic datum equal to the original (in the sense of equal?;
see section 11.5). A datum value may be represented by
several different syntactic data, but the datum value corre-
sponding to a syntactic datum is uniquely determined up
to equality (in the sense of equal?). Moreover, each datum
value can be trivially translated to a literal expression in
a program by prepending a ’ to a corresponding syntactic
datum:

’23 =⇒ 23

’#t =⇒ #t

’foo =⇒ foo

’(1 2 3) =⇒ (1 2 3)

’#(1 2 3) =⇒ #(1 2 3)

The ’ shown in the previous examples is not needed for
number representations or boolean literals. The syntatic
datum foo represents a symbol with name “foo”, and ’foo
is a literal expression with that symbol as its value. (1 2
3) is a syntactic datum that represents a list with elements
1, 2, and 3, and ’(1 2 3) is a literal expression with this
list as its value. Likewise, #(1 2 3) is a syntactic datum
that represents a vector with elements 1, 2 and 3, and ’#(1
2 3) is the corresponding literal.

The syntactic data are a superset of the Scheme forms.
Thus, data can be used to represent Scheme forms as data
objects. In particular, symbols can be used to represent
identifiers.

’(+ 23 42) =⇒ (+ 23 42)

’(define (f x) (+ x 42))

=⇒ (define (f x) (+ x 42))

This facilitates writing programs that operate on Scheme
source code, in particular interpreters and program trans-
formers.

1.11. Libraries

Scheme code can be organized in components called li-
braries. Each library contains definitions and expressions.
It can import definitions from other libraries and export
definitions to other libraries.

The following library called (hello) exports a definition
called hello-world, and imports the base library (see
chapter 11) and the simple I/O library (see library sec-
tion 8.3). The hello-world export is a procedure that
displays Hello World on a separate line:
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(library (hello)

(export hello-world)

(import (rnrs base)

(rnrs io simple))

(define (hello-world)

(display "Hello World")

(newline)))

1.12. Top-level programs

A Scheme program is invoked via a top-level program. Like
a library, a top-level program contains imports, definitions
and expressions, and specifies an entry point for execution.
Thus a top-level program defines, via the transitive closure
of the libraries it imports, a Scheme program.

The following program obtains the first argument from the
command line via the command-line procedure from the
(rnrs programs (6)) library (see library chapter 10. It
then opens the file using open-file-input-port (see li-
brary section 8.2, yielding a port, i.e. a connection to the
file as a data source, and calls the get-bytes-all proce-
dure to obtain the contents of the file as binary data. It
then uses put-bytes to output the contents of the file to
standard output:

#!r6rs

(import (rnrs base)

(rnrs io ports)

(rnrs programs))

(put-bytes (standard-output-port)

(call-with-port

(open-file-input-port

(cadr (command-line)))

get-bytes-all))

2. Requirement levels

The key words “must”, “must not”, “required”, “should”,
“should not”, “recommended”, “may”, and “optional”
in this report are to be interpreted as described in
RFC 2119 [3]. Specifically:

must This word means that a statement is an absolute
requirement of the specification.

must not This phrase means that a statement is an ab-
solute prohibition of the specification.

should This word, or the adjective “recommended”, mean
that valid reasons may exist in particular circum-
stances to ignore a statement, but that the implica-
tions must be understood and weighed before choosing
a different course.

should not This phrase, or the phrase “not recom-
mended”, mean that valid reasons may exist in par-
ticular circumstances when the behavior of a state-
ment is acceptable, but that the implications should

be understood and weighed before choosing the course
described by the statement.

may This word, or the adjective “optional”, mean that an
item is truly optional.

In particular, this report occasionally uses “should” to des-
ignate circumstances that are outside the specification of
this report, but cannot be practically detected by an im-
plementation; see section 5.4. In such circumstances, a
particular implementation may allow the programmer to
ignore the recommendation of the report; it may even ex-
hibit reasonable behavior. However, as the report does not
specify the behavior, these programs may be unportable,
that is, their execution might produce different results on
different implementations.

Moreover, this report occasionally uses “required” to des-
ignate circumstances that are an absolute requirement of
the specification, equivalent to “must”, and “not required”
to note the absence of an absolute requirement.

3. Numbers

This chapter describes Scheme’s model for numbers. It is
important to distinguish between the mathematical num-
bers, the Scheme objects that attempt to model them, the
machine representations used to implement the numbers,
and notations used to write numbers. In this report, the
term number refers to a mathematical number, and the
term number object refers to a Scheme object representing
a number. This report uses the types complex, real, ra-
tional, and integer to refer to both mathematical numbers
and number objects. The fixnum and flonum types refer
to special subsets of the number objects, as determined by
common machine representations, as explained below.

3.1. Numerical tower

Numbers may be arranged into a tower of subsets in which
each level is a subset of the level above it:

number
complex
real
rational
integer

For example, 5 is an integer. Therefore 5 is also a rational,
a real, and a complex. The same is true of the number
objects that model 5.

Number objects are organized as a corresponding tower
of subtypes defined by the predicates number?, complex?,
real?, rational?, and integer?; see section 11.7.4. Inte-
ger number objects are also called integer objects.
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There is no simple relationship between the subset that
contains a number and its representation inside a com-
puter. For example, the integer 5 may have several rep-
resentations. Scheme’s numerical operations treat number
objects as abstract data, as independent of their represen-
tation as possible. Although an implementation of Scheme
may use many different representations for numbers, this
should not be apparent to a casual programmer writing
simple programs.

3.2. Exactness

It useful to distinguish between number objects that are
known to correspond to a number exactly, and those num-
ber objects whose computation involved rounding or other
errors. For example, indices into data structures may be
required to be known exactly, as may be some polynomial
coefficients in a symbolic algebra system. On the other
hand, the results of measurements are inherently inexact,
and irrational numbers may be approximated by rational
and therefore inexact approximations. In order to catch
uses of numbers known only inexactly where exact numbers
are required, Scheme explicitly distinguishes exact from in-
exact number objects. This distinction is orthogonal to the
dimension of type.

Numbers objects are either exact or inexact. A number ob-
ject is exact if it is the value of an exact numerical literal
or was derived from exact number objects using only exact
operations. Exact number objects correspond to mathe-
matical numbers in the obvious way.

Conversely, a number object is inexact if it is the value of
an inexact numerical literal, or was derived from inexact
number objects, or was derived using inexact operations.
Thus inexactness is contagious.

Exact arithmetic is reliable in the following sense: If ex-
act number objects are passed to any of the arithmetic
procedures described in section 11.7.1, and an exact num-
ber object is returned, then the result is mathematically
correct. This is generally not true of computations involv-
ing inexact number objects because approximate methods
such as floating-point arithmetic may be used, but it is the
duty of each implementation to make the result as close as
practical to the mathematically ideal result.

3.3. Fixnums and flonums

A fixnum is an exact integer object that lies within a cer-
tain implementation-dependent subrange of the exact in-
teger objects. (Library section 11.1 describes a library for
computing with fixnums.) Likewise, every implementation
is required to designate a subset of its inexact real number
objects representing as flonums, and to convert certain ex-
ternal representations into flonums. (Library section 11.2

describes a library for computing with flonums.) Note that
this does not imply that an implementation is required to
use floating-point representations.

3.4. Implementation requirements

Implementations of Scheme are required to support number
objects for the entire tower of subtypes given in section 3.1.
Moreover, implementations are required to support exact
integer objects and exact rational number objects of practi-
cally unlimited size and precision, and to implement certain
procedures (listed in 11.7.1) so they always return exact
results when given exact arguments. (“Practically unlim-
ited” means that the size and precision of these numbers
should only be limited by the size of the available memory.)

Implementations may support only a limited range of inex-
act number objects of any type, subject to the requirements
of this section. For example, an implementation may limit
the range of the inexact real number objects (and therefore
the range of inexact integer and rational number objects)
to the dynamic range of the flonum format. Furthermore
the gaps between the inexact integer objects and rationals
are likely to be very large in such an implementation as the
limits of this range are approached.

An implementation may use floating point and other ap-
proximate representation strategies for inexact numbers.
This report recommends, but does not require, that the
IEEE floating-point standards be followed by implementa-
tions that use floating-point representations, and that im-
plementations using other representations should match or
exceed the precision achievable using these floating point
standards [14].

In particular, implementations that use floating-point rep-
resentations must follow these rules: A floating-point result
must be represented with at least as much precision as is
used to express any of the inexact arguments to that op-
eration. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact ar-
guments, to produce exact answers whenever possible (for
example the square root of an exact 4 ought to be an ex-
act 2). If, however, an exact number object is operated
upon so as to produce an inexact result (as by sqrt), and
if the result is represented in floating point, then the most
precise floating-point format available must be used; but if
the result is represented in some other way then the repre-
sentation must have at least as much precision as the most
precise floating-point format available.

It is the programmer’s responsibility to avoid using inexact
number objects with magnitude or significand too large to
be represented in the implementation.
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3.5. Infinities and NaNs

Positive infinity is regarded as a real (but not rational)
number object that represents an indeterminate number
greater than the numbers represented by all rational num-
ber objects. Negative infinity is regarded as a real (but not
rational) number object that represents an indeterminate
number less than the numbers represented by all rational
numbers.

A NaN is regarded as a real (but not rational) number
object so indeterminate that it might represent any real
number, including positive or negative infinity, and might
even be greater than positive infinity or less than negative
infinity.

3.6. Distinguished -0.0

Some Scheme implementations, specifically those that fol-
low the IEEE floating-point standards, distinguish between
number objects for 0.0 and −0.0, i.e., positive and nega-
tive inexact zero. This report will sometimes specify the
behavior of certain arithmetic operations on these number
objects. These specifications are marked with “if −0.0 is
distinguished” or “implementations that distinguish −0.0”.

4. Lexical syntax and datum syntax

The syntax of Scheme code is organized in three levels:

1. the lexical syntax that describes how a program text
is split into a sequence of lexemes,

2. the datum syntax, formulated in terms of the lexical
syntax, that structures the lexeme sequence as a se-
quence of syntactic data, where a syntactic datum is
a recursively structured entity,

3. the program syntax formulated in terms of the read
syntax, imposing further structure and assigning
meaning to syntactic data.

Syntactic data (also called external representations) dou-
ble as a notation for data, and Scheme’s (rnrs io ports
(6)) library (library section 8.2) provides the get-datum
and put-datum procedures for reading and writing syn-
tactic data, converting between their textual representa-
tion and the corresponding values. Each syntactic datum
uniquely determines a corresponding datum value. A syn-
tactic datum can be used in a program to obtain the cor-
responding datum value using quote (see section 11.4.1).

Scheme source code consists of syntactic data and (non-
significant) comments. Syntactic data in Scheme source
code are called forms. Consequently, Scheme’s syntax has
the property that any sequence of characters that is a form

is also a syntactic datum representing some object. This
can lead to confusion, since it may not be obvious out of
context whether a given sequence of characters is intended
to be a representation of data or the text of a program. It is
also a source of power, since it facilitates writing programs
such as interpreters or compilers that treat programs as
data (or vice versa). A form nested inside another form is
called a subform.

A datum value may have several different external repre-
sentations. For example, both “#e28.000” and “#x1c” are
syntactic data representing the exact integer object 28, and
the syntactic data “(8 13)”, “( 08 13 )”, “(8 . (13 .
()))” all represent a list containing the exact integer ob-
jects 8 and 13. Syntactic data that represent equal objects
(in the sense of equal?; see section 11.5) are always equiv-
alent as forms of a program.

Because of the close correspondence between syntactic data
and datum values, this report sometimes uses the term
datum for either a syntactic datum or a datum value when
the exact meaning is apparent from the context.

An implementation must not extend the lexical or datum
syntax in any way, with one exception: it need not treat the
syntax #!〈identifier〉, for any 〈identifier〉 (see section 4.2.4)
that is not r6rs, as a syntax violation, and it may use
specific #!-prefixed identifiers as flags indicating that sub-
sequent input contains extensions to the standard lexical or
datum syntax. The syntax #!r6rs may be used to signify
that the input afterward is written with the lexical syn-
tax and datum syntax described by this report. #!r6rs is
otherwise treated as a comment; see section 4.2.3.

This chapter contains overviews and formal accounts of the
lexical syntax and the datum syntax.

4.1. Notation

The formal syntax for Scheme is written in an extended
BNF. Non-terminals are written using angle brackets. Case
is insignificant for non-terminal names.

All spaces in the grammar are for legibility. 〈Empty〉
stands for the empty string.

The following extensions to BNF are used to make the de-
scription more concise: 〈thing〉* means zero or more occur-
rences of 〈thing〉, and 〈thing〉+ means at least one 〈thing〉.

Some non-terminal names refer to the Unicode scalar val-
ues of the same name: 〈character tabulation〉 (U+0009),
〈linefeed〉 (U+000A), 〈carriage return〉 (U+000D),
〈line tabulation〉 (U+000B), 〈form feed〉 (U+000C),
〈carriage return〉 (U+000D), 〈space〉 (U+0020),
〈next line〉 (U+0085), 〈line separator〉 (U+2028), and
〈paragraph separator〉 (U+2029).
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4.2. Lexical syntax

The lexical syntax determines how a character sequence is
split into a sequence of lexemes, omitting non-significant
portions such as comments and whitespace. The character
sequence is assumed to be text according to the Unicode
standard [27]. Some of the lexemes, such as number rep-
resentations, identifiers, strings etc., of the lexical syntax
are syntactic data in the datum syntax, and thus represent
data. Besides the formal account of the syntax, this section
also describes what datum values are represented by these
syntactic data.

The lexical syntax, in the description of comments, con-
tains a forward reference to 〈datum〉, which is described
as part of the datum syntax. Being comments, however,
these 〈datum〉s do not play a significant role in the syntax.

Case is significant except in boolean data, number repre-
sentations, and hexadecimal numbers specifying Unicode
scalar values. For example, #x1A and #X1a are equivalent.
The identifier Foo is, however, distinct from the identifier
FOO.

4.2.1. Formal account

〈Interlexeme space〉may occur on either side of any lexeme,
but not within a lexeme.

Identifiers, number representations, characters, booleans,
and dot must be terminated by a 〈delimiter〉 (e.g., paren-
thesis, space, or comment) or by the end of the input.

The following two characters are reserved for future exten-
sions to the language: { }

〈lexeme〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉
| ( | ) | [ | ] | #( | #vu8( | ’ | ` | , | ,@ | .
| #’ | #` | #, | #,@

〈delimiter〉 −→ ( | ) | [ | ] | " | ; | #
| 〈whitespace〉

〈whitespace〉 −→ 〈character tabulation〉
| 〈linefeed〉 | 〈line tabulation〉 | 〈form feed〉
| 〈carriage return〉 | 〈next line〉
| 〈any character whose category is Zs, Zl, or Zp〉

〈line ending〉 −→ 〈linefeed〉 | 〈carriage return〉
| 〈carriage return〉 〈linefeed〉 | 〈next line〉
| 〈carriage return〉 〈next line〉 | 〈line separator〉

〈comment〉 −→ ; 〈all subsequent characters up to a
〈line ending〉 or 〈paragraph separator〉〉

| 〈nested comment〉
| #; 〈interlexeme space〉 〈datum〉
| #!r6rs

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing
#| or |#〉

〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈atmosphere〉 −→ 〈whitespace〉 | 〈comment〉
〈interlexeme space〉 −→ 〈atmosphere〉*

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈peculiar identifier〉

〈initial〉 −→ 〈constituent〉 | 〈special initial〉
| 〈inline hex escape〉

〈letter〉 −→ a | b | c | ... | z
| A | B | C | ... | Z

〈constituent〉 −→ 〈letter〉
| 〈any character whose Unicode scalar value is greater than

127, and whose category is Lu, Ll, Lt, Lm, Lo, Mn,
Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co〉

〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =
| > | ? | ^ | _ | ~

〈subsequent〉 −→ 〈initial〉 | 〈digit〉
| 〈any character whose category is Nd, Mc, or Me〉
| 〈special subsequent〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hex digit〉 −→ 〈digit〉

| a | A | b | B | c | C | d | D | e | E | f | F
〈special subsequent〉 −→ + | - | . | @
〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+
〈peculiar identifier〉 −→ + | - | ... | -> 〈subsequent〉*
〈boolean〉 −→ #t | #T | #f | #F
〈character〉 −→ #\〈any character〉

| #\〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ nul | alarm | backspace | tab
| linefeed | newline | vtab | page | return
| esc | space | delete

〈string〉 −→ " 〈string element〉* "
〈string element〉 −→ 〈any character other than " or \〉

| \a | \b | \t | \n | \v | \f | \r
| \" | \\
| \〈line ending〉 | \〈space〉
| 〈inline hex escape〉

A 〈hex scalar value〉 represents a Unicode scalar
value between 0 and #x10FFFF, excluding the range
[#xD800,#xDFFF].

The rules for 〈num R〉, 〈complex R〉, 〈real R〉, 〈ureal R〉,
〈uinteger R〉, and 〈prefix R〉 below should be replicated for
R = 2, 8, 10, and 16. There are no rules for 〈decimal 2〉,
〈decimal 8〉, and 〈decimal 16〉, which means that num-
ber representations containing decimal points or exponents
must be in decimal radix.

〈number〉 −→ 〈num 2〉 | 〈num 8〉
| 〈num 10〉 | 〈num 16〉

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 | 〈real R〉 @ 〈real R〉

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i
| 〈real R〉 + 〈naninf〉 i | 〈real R〉 - 〈naninf〉 i
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| 〈real R〉 + i | 〈real R〉 - i
| + 〈ureal R〉 i | - 〈ureal R〉 i
| + 〈naninf〉 i | - 〈naninf〉 i
| + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
| + 〈naninf〉 | - 〈naninf〉

〈naninf〉 −→ nan.0 | inf.0
〈ureal R〉 −→ 〈uinteger R〉

| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉 〈mantissa width〉

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉
| . 〈digit 10〉+ 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* 〈suffix〉
| 〈digit 10〉+ . 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+
〈prefix R〉 −→ 〈radix R〉 〈exactness〉

| 〈exactness〉 〈radix R〉

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

〈exponent marker〉 −→ e | E | s | S | f | F
| d | D | l | L

〈mantissa width〉 −→ 〈empty〉
| | 〈digit 10〉+

〈sign〉 −→ 〈empty〉 | + | -
〈exactness〉 −→ 〈empty〉

| #i | #I | #e | #E
〈radix 2〉 −→ #b | #B
〈radix 8〉 −→ #o | #O
〈radix 10〉 −→ 〈empty〉 | #d | #D
〈radix 16〉 −→ #x | #X
〈digit 2〉 −→ 0 | 1
〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈hex digit〉

4.2.2. Line endings

Line endings are significant in Scheme in single-line com-
ments (see section 4.2.3) and within string literals. In
Scheme source code, any of the line endings in 〈line ending〉
marks the end of a line. Moreover, the two-character line
endings 〈carriage return〉 〈linefeed〉 and 〈carriage return〉
〈next line〉 each count as a single line ending.

In a string literal, a line ending not preceded by a \ stands
for a linefeed character, which is the standard line-ending
character of Scheme.

4.2.3. Whitespace and comments

Whitespace characters are spaces, linefeeds, carriage re-
turns, character tabulations, form feeds, line tabulations,
and any other character whose category is Zs, Zl, or Zp.

Whitespace is used for improved readability and as nec-
essary to separate lexemes from each other. Whitespace
may occur between any two lexemes, but not within a lex-
eme. Whitespace may also occur inside a string, where it
is significant.

The lexical syntax includes several comment forms. In all
cases, comments are invisible to Scheme, except that they
act as delimiters, so, for example, a comment cannot ap-
pear in the middle of an identifier or number representa-
tion.

A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears.

Another way to indicate a comment is to prefix a
〈datum〉 (cf. section 4.3.1) with #;, possibly with
〈interlexeme space〉 before the 〈datum〉. The comment
consists of the comment prefix #; and the 〈datum〉 to-
gether. This notation is useful for “commenting out” sec-
tions of code.

Block comments may be indicated with properly nested #|
and |# pairs.

#|

The FACT procedure computes the factorial

of a non-negative integer.

|#

(define fact

(lambda (n)

;; base case

(if (= n 0)

#;(= n 1)

1 ; identity of *

(* n (fact (- n 1))))))

The lexeme #!r6rs, which signifies that the program text
that follows is written with the lexical and datum syntax
described in this report, is also otherwise treated as a com-
ment.

4.2.4. Identifiers

Most identifiers allowed by other programming languages
are also acceptable to Scheme. In general, a sequence of
letters, digits, and “extended alphabetic characters” is an
identifier when it begins with a character that cannot begin
a number representation. In addition, +, -, and ... are
identifiers, as is a sequence of letters, digits, and extended
alphabetic characters that begins with the two-character
sequence ->. Here are some examples of identifiers:

lambda q soup

list->vector + V17a

<= a34kTMNs ->-

the-word-recursion-has-many-meanings
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Extended alphabetic characters may be used within iden-
tifiers as if they were letters. The following are extended
alphabetic characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Moreover, all characters whose Unicode scalar values are
greater than 127 and whose Unicode category is Lu, Ll,
Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc,
Sm, Sk, So, or Co can be used within identifiers. In addi-
tion, any character can be used within an identifier when
specified via an 〈inline hex escape〉. For example, the iden-
tifier H\x65;llo is the same as the identifier Hello, and
the identifier \x3BB; is the same as the identifier λ.

Any identifier may be used as a variable or as a syntactic
keyword (see sections 5.2 and 9.0.2) in a Scheme program.
Any identifier may also be used as a syntactic datum, in
which case it represents a symbol (see section 11.10).

4.2.5. Booleans

The standard boolean objects for true and false are written
as #t and #f.

4.2.6. Characters

Characters are written using the notation #\〈character〉 or
#\〈character name〉 or #\x〈hex scalar value〉.

For example:

#\a lower case letter a
#\A upper case letter A
#\( left parenthesis
#\ space character
#\nul U+0000
#\alarm U+0007
#\backspace U+0008
#\tab U+0009
#\linefeed U+000A
#\newline U+000A
#\vtab U+000B
#\page U+000C
#\return U+000D
#\esc U+001B
#\space U+0020

preferred way to write a space
#\delete U+007F

#\xFF U+00FF
#\x03BB U+03BB
#\x00006587 U+6587
#\λ U+03BB

#\x0001z &lexical exception
#\λx &lexical exception
#\alarmx &lexical exception

#\alarm x U+0007
followed by x

#\Alarm &lexical exception
#\alert &lexical exception
#\xA U+000A
#\xFF U+00FF
#\xff U+00FF
#\x ff U+0078

followed by another datum, ff
#\x(ff) U+0078

followed by another datum,
a parenthesized ff

#\(x) &lexical exception
#\(x &lexical exception
#\((x) U+0028

followed by another datum,
parenthesized x

#\x00110000 &lexical exception
out of range

#\x000000001 U+0001
#\xD800 &lexical exception

in excluded range

(The notation &lexical exception means that the line in
question is a lexical syntax violation.)

Case is significant in #\〈character〉, and in #\〈character
name〉, but not in #\x〈hex scalar value〉. A 〈character〉
must be followed by a 〈delimiter〉 or by the end of the in-
put. This rule resolves various ambiguous cases involving
named characters, requiring, for example, the sequence of
characters “#\space” to be interpreted as the space char-
acter rather than as the character “#\s” followed by the
identifier “pace”.

Note: The #\newline notation is retained for backward com-

patibility. Its use is deprecated; #\linefeed should be used

instead.

4.2.7. Strings

String are written as sequences of characters enclosed
within doublequotes ("). Within a string literal, various es-
cape sequences represent characters other than themselves.
Escape sequences always start with a backslash (\):

• \a : alarm, U+0007

• \b : backspace, U+0008

• \t : character tabulation, U+0009

• \n : linefeed, U+000A

• \v : line tabulation, U+000B

• \f : formfeed, U+000C

• \r : return, U+000D
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• \" : doublequote, U+0022

• \\ : backslash, U+005C

• \〈linefeed〉 : nothing

• \〈space〉 : space, U+0020 (useful for terminating
the previous escape sequence before continuing with
whitespace)

• \x〈hex scalar value〉; : specified character (note the
terminating semi-colon).

These escape sequences are case-sensitive, except that the
alphabetic digits of a 〈hex scalar value〉 can be uppercase
or lowercase.

Any other character in a string after a backslash is an er-
ror. Except for a line ending, any character outside of
an escape sequence and not a doublequote stands for it-
self in the string literal. For example the single-character
string literal "λ" (doublequote, a lower case lambda, dou-
blequote) represents the same string as "\x03bb;". A line
ending stands for a linefeed character.

Examples:

"abc" U+0061, U+0062, U+0063
"\x41;bc" "Abc" ; U+0041, U+0062, U+0063
"\x41; bc" "A bc"

U+0041, U+0020, U+0062, U+0063
"\x41bc;" U+41BC
"\x41" &lexical exception
"\x;" &lexical exception
"\x41bx;" &lexical exception
"\x00000041;" "A" ; U+0041
"\x0010FFFF;" U+10FFFF
"\x00110000;" &lexical exception

out of range
"\x000000001;" U+0001
"\xD800;" &lexical exception

in excluded range
"A
bc" U+0041, U+000A, U+0062, U+0063

if no space occurs after the A

4.2.8. Numbers

The syntax of written representations for number objects
is described formally by the 〈number〉 rule in the formal
grammar. Case is not significant in numerical constants.

A number representation may be written in binary, octal,
decimal, or hexadecimal by the use of a radix prefix. The
radix prefixes are #b (binary), #o (octal), #d (decimal),
and #x (hexadecimal). With no radix prefix, a number
representation is assumed to be expressed in decimal.

A numerical constant may be specified to be either exact or
inexact by a prefix. The prefixes are #e for exact, and #i
for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation
of a number has no exactness prefix, the constant is inexact
if it contains a decimal point, an exponent, or a nonempty
mantissa width; otherwise it is exact.

In systems with inexact number objects of varying preci-
sions, it may be useful to specify the precision of a constant.
For this purpose, numerical constants may be written with
an exponent marker that indicates the desired precision
of the inexact representation. The letters s, f, d, and l
specify the use of short , single, double, and long precision,
respectively. (When fewer than four internal inexact rep-
resentations exist, the four size specifications are mapped
onto those available. For example, an implementation with
two internal representations may map short and single to-
gether and long and double together.) In addition, the
exponent marker e specifies the default precision for the
implementation. The default precision has at least as much
precision as double, but implementations may wish to allow
this default to be set by the user.

3.1415926535898F0

Round to single, perhaps 3.141593

0.6L0

Extend to long, perhaps .600000000000000

A number representation with nonempty mantissa width,
x|p, represents the best binary floating-point approxima-
tion of x using a p-bit significand. For example, 1.1|53 is
a representation of the best approximation of 1.1 in IEEE
double precision. If x is an external representation of an
inexact real number object that contains no vertical bar,
it should be treated as if specified with a mantissa width
of 53.

Implementations that use binary floating point representa-
tions of real number objects should represent x|p using a
p-bit significand if practical, or by a greater precision if a
p-bit significand is not practical, or by the largest available
precision if p or more bits of significand are not practical
within the implementation.

Note: The precision of a significand should not be confused
with the number of bits used to represent the significand. In
the IEEE floating point standards, for example, the significand’s
most significant bit is implicit in single and double precision but
is explicit in extended precision. Whether that bit is implicit or
explicit does not affect the mathematical precision. In imple-
mentations that use binary floating point, the default precision
can be calculated by calling the following procedure:

(define (precision)

(do ((n 0 (+ n 1))

(x 1.0 (/ x 2.0)))

((= 1.0 (+ 1.0 x)) n)))
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Note: When the underlying floating-point representation is

IEEE double precision, the |p suffix should not always be

omitted: Denormalized floating-point representations have di-

minished precision, and therefore their external representation

should carry a |p suffix with the actual width of the signifi-

cand.

The literals +inf.0 and -inf.0 represent positive and neg-
ative infinity, respectively. The +nan.0 literal represents
the NaN that is the result of (/ 0.0 0.0), and may rep-
resent other NaNs as well.

If x is an external representation of an inexact real number
object and contains no vertical bar and no exponent marker
other than e, the inexact real number object it represents
is a flonum (see library section 11.2). Some or all of the
other external representations of inexact real number ob-
jects may also represent flonums, but that is not required
by this report.

4.3. Datum syntax

The datum syntax describes the syntax of syntactic data in
terms of a sequence of 〈lexeme〉s, as defined in the lexical
syntax.

Syntactic data include the lexeme data described in the
previous section as well as the following constructs for
forming compound data:

• pairs and lists, enclosed by ( ) or [ ] (see sec-
tion 4.3.2)

• vectors (see section 4.3.3)

• bytevectors (see section 4.3.4)

4.3.1. Formal account

The following grammar describes the syntax of syntactic
data in terms of various kinds of lexemes defined in the
grammar in section 4.2:

〈datum〉 −→ 〈lexeme datum〉
| 〈compound datum〉

〈lexeme datum〉 −→ 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉 | 〈symbol〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈vector〉 | 〈bytevector〉
〈list〉 −→ (〈datum〉*) | [〈datum〉*]

| (〈datum〉+ . 〈datum〉) | [〈datum〉+ . 〈datum〉]
| 〈abbreviation〉

〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@ | #’ | #` | #, | #,@
〈vector〉 −→ #(〈datum〉*)
〈bytevector〉 −→ #vu8(〈u8〉*)
〈u8〉 −→ 〈any 〈number〉 representing an exact

integer in {0, . . . , 255}〉

4.3.2. Pairs and lists

List and pair data, representing pairs and lists of values
(see section 11.9) are written using parentheses or brackets.
Matching pairs of brackets that occur in the rules of 〈list〉
are equivalent to matching pairs of parentheses.

The most general notation for Scheme pairs as syntac-
tic data is the “dotted” notation (〈datum1〉 . 〈datum2〉)
where 〈datum1〉 is the representation of the value of the
car field and 〈datum2〉 is the representation of the value of
the cdr field. For example (4 . 5) is a pair whose car is
4 and whose cdr is 5.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written () . For
example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

The general rule is that, if a dot is followed by an open
parenthesis, the dot, open parenthesis, and matching clos-
ing parenthesis can be omitted in the external representa-
tion.

The sequence of characters “(4 . 5)” is the external rep-
resentation of a pair, not an expression that evaluates to a
pair. Similarly, the sequence of characters “(+ 2 6)” is not
an external representation of the integer 8, even though it
is an expression (in the language of the (rnrs base (6))
library) evaluating to the integer 8; rather, it is a syntac-
tic datum representing a three-element list, the elements
of which are the symbol + and the integers 2 and 6.

4.3.3. Vectors

Vector data, representing vectors of values (see sec-
tion 11.13), are written using the notation #(〈datum〉
. . . ). For example, a vector of length 3 containing the
number zero in element 0, the list (2 2 2 2) in element
1, and the string "Anna" in element 2 can be written as
following:

#(0 (2 2 2 2) "Anna")

This is the external representation of a vector, not a base-
library expression that evaluates to a vector.

4.3.4. Bytevectors

Bytevector data, representing bytevectors (see library
chapter 2), are written using the notation #vu8(〈u8〉 . . . ),
where the 〈u8〉s represent the octets of the bytevector. For
example, a bytevector of length 3 containing the octets 2,
24, and 123 can be written as follows:
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#vu8(2 24 123)

This is the external representation of a bytevector, and also
an expression that evaluates to a bytevector.

4.3.5. Abbreviations

’〈datum〉
`〈datum〉
,〈datum〉
,@〈datum〉
#’〈datum〉
#`〈datum〉
#,〈datum〉
#,@〈datum〉

Each of these is an abbreviation:
’〈datum〉 for (quote 〈datum〉),
`〈datum〉 for (quasiquote 〈datum〉),
,〈datum〉 for (unquote 〈datum〉),
,@〈datum〉 for (unquote-splicing 〈datum〉),
#’〈datum〉 for (syntax 〈datum〉),
#`〈datum〉 for (quasisyntax 〈datum〉),
#,〈datum〉 for (unsyntax 〈datum〉), and
#,@〈datum〉 for (unsyntax-splicing 〈datum〉).

5. Semantic concepts

5.1. Programs and libraries

A Scheme program consists of a top-level program together
with a set of libraries, each of which defines a part of the
program connected to the others through explicitly spec-
ified exports and imports. A library consists of a set of
export and import specifications and a body, which con-
sists of definitions, and expressions. A top-level program is
similar to a library, but has no export specifications. Chap-
ters 7 and 8 describe the syntax and semantics of libraries
and top-level programs, respectively. Chapter 11 describes
a base library that defines many of the constructs tradi-
tionally associated with Scheme. A separate report [22] de-
scribes the various standard libraries provided by a Scheme
system.

The division between the base library and the other stan-
dard libraries is based on use, not on construction. In par-
ticular, some facilities that are typically implemented as
“primitives” by a compiler or the run-time system rather
than in terms of other standard procedures or syntactic
forms are not part of the base library, but are defined in
separate libraries. Examples include the fixnums and flon-
ums libraries, the exceptions and conditions libraries, and
the libraries for records.

5.2. Variables, keywords, and regions

In a library body or top-level program, an identifier may
name a kind of syntax, or it may name a location where
a value can be stored. An identifier that names a kind
of syntax is called a keyword, or syntactic keyword, and is
said to be bound to that kind of syntax (or, in the case of
a syntactic abstraction, a transformer that translates the
syntax into more primitive forms; see section 9.0.2). An
identifier that names a location is called a variable and is
said to be bound to that location. A variable that names a
subform in a syntactic abstraction is called a pattern vari-
able and is said to be bound to a syntax object representing
the subform. At each point within a top-level program or
a library, a specific, fixed set of variables is bound. The set
of these variables, the set of visible bindings, is known as
the environment in effect at that point. The object stored
in the location to which a variable is bound is called the
variable’s value.

Certain forms are used to create syntactic abstractions and
to bind keywords to transformers for those new syntactic
abstractions, while other forms create new locations and
bind variables to those locations. Collectively, these forms
are called binding constructs. Some binding constructs take
the form of definitions, while others are expressions. With
the exception of exported library bindings, a binding cre-
ated by a definition is visible only within the body in which
the definition appears, e.g., the body of a library, top-level
program, or lambda expression. Exported library bindings
are also visible within the bodies of the libraries and top-
level programs that import them (see chapter 7).

Expressions that bind variables include the lambda, let,
let*, letrec, letrec*, let-values, and let*-values
forms from the base library (see sections 11.4.2, 11.4.6).
Of these, lambda is the most fundamental. Variable def-
initions appearing within the body of such an expression,
or within the bodies of a library or top-level program, are
treated as a set of letrec* bindings. In addition, for li-
brary bodies, the variables exported from the library can be
referenced by importing libraries and top-level programs.

Expressions that bind keywords include the let-syntax
and letrec-syntax forms (see section 11.18). A define
form (see section 11.2.1) is a definition that creates a vari-
able binding (see section 11.2), and a define-syntax form
(see section 11.2.2) is a definition that creates a keyword
binding (see section 11.2.2).

Scheme is a statically scoped language with block struc-
ture. To each place in a top-level program or library body
where an identifier is bound there corresponds a region of
code within which the binding is visible. The region is
determined by the particular binding construct that estab-
lishes the binding; if the binding is established by a lambda
expression, for example, then its region is the entire lambda
expression. Every mention of an identifier refers to the
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binding of the identifier that established the innermost of
the regions containing the use. If a use of an identifier ap-
pears in a place where none of the surrounding expressions
contains a binding for the identifier, the use may refer to a
binding established by a definition or import at the top of
the enclosing library or top-level program (see chapter 7).
If there is no binding for the identifier, it is said to be
unbound.

5.3. Exceptional situations

A variety of exceptional situations are distinguished in this
report, among them violations of syntax, violations of a
procedure’s specification, violations of implementation re-
strictions, and exceptional situations in the environment.
When an exceptional situation is detected by the imple-
mentation, an exception is raised , which means that a
special procedure called the current exception handler is
called. A program can also raise an exception, and over-
ride the current exception handler; see section 7.1

When an exception is raised, an object is provided that de-
scribes the nature of the exceptional situation. The report
uses the condition system described in library section 7.2
to describe exceptional situations, classifying them by con-
dition types.

Some exceptional situations allow continuing the program
if the exception handler takes appropriate action. The cor-
responding exceptions are called continuable. For most of
the exceptional situations described in this report, portable
programs cannot rely upon the exception being continuable
at the place where the situation was detected. For those
exceptions, the exception handler that is invoked by the
exception should not return. In some cases, however, con-
tinuing is permissible, and the handler may return. See
library section 7.1.

Implementations must raise an exception when they are
unable to continue correct execution of a correct pro-
gram due to some implementation restriction. For ex-
ample, an implementation that does not support in-
finities must raise an exception with condition type
&implementation-restriction when it evaluates an ex-
pression whose result would be an infinity.

Some possible implementation restrictions such as the
lack of representations for NaNs and infinities (see sec-
tion 11.7.2) are anticipated by this report, and implemen-
tations typically must raise an exception of the appropriate
condition type if they encounter such a situation.

This report uses the phrase “an exception is raised” syn-
onymously with “an exception must be raised”. Several
variations on “an exception is raised” using the keywords
described in chapter 2 are possible, in particular, “an
exception should be raised”, and “an exception may be

raised”. This report uses the phrase “an exception with
condition type t” to indicate that the object provided with
the exception is a condition object of the specified type.
The phrase “a continuable exception is raised” indicates
an exceptional situation that permits the exception han-
dler to return.

5.4. Argument and subform checking

Many procedures specified in this report or as part of a
standard library restrict the arguments they accept. Typi-
cally, a procedure accepts only specific numbers and types
of arguments. Many syntactic forms similarly restrict the
values to which one or more of their subforms can evalu-
ate. These restrictions imply responsibilities for both the
programmer and the implementation. Specifically, the pro-
grammer is responsible for ensuring that the values indeed
adhere to the restrictions described in the specification.
The implementation must check that the restrictions in
the specification are indeed met, to the extent that it is
reasonable, possible, and necessary to allow the specified
operation to complete successfully. The implementation’s
responsibilities are specified in more detail in chapter 6 and
throughout the report.

Note that it is not always possible for an implementation
to completely check the restrictions set forth in a speci-
fication. For example, if an operation is specified to ac-
cept a procedure with specific properties, checking of these
properties is undecidable in general. Similarly, some oper-
ations accept both lists and procedures that are called by
these operations. Since lists can be mutated by the pro-
cedures through the (rnrs mutable-pairs (6)) library
(see library chapter 17), an argument that is a list when
the operation starts may become a non-list during the exe-
cution of the operation. Also, the procedure might escape
to a different continuation, preventing the operation from
performing more checks. Requiring the operation to check
that the argument is a list after each call to such a proce-
dure would be impractical. Furthermore, some operations
that accept lists only need to traverse these lists partially
to perform their function; requiring the implementation to
traverse the remainder of the list to verify that all spec-
ified restrictions have been met might violate reasonable
performance assumptions. For these reasons, the program-
mer’s obligations may exceed the checking obligations of
the implementation.

Moreover, the subforms of a special form usually need to
obey certain syntactic restrictions. These subforms may be
subject to macro expansion, which may not terminate, thus
making the question of whether they obey the specified
restrictions undecidable.

When an implementation detects a violation of a restric-
tion for an argument or the value of a subform, it must
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raise an exception with condition type &assertion in a
way consistent with the safety of execution as described in
the next section.

5.5. Syntax violations

Implementations must detect violations of the syntax. A
syntax violation is an error with respect to the syntax of
library bodies, top-level bodies, or the “syntax” entries
in the specification of the base library or the standard li-
braries. Moreover, attempting to assign to an immutable
variable (i.e., the variables exported by a library; see sec-
tion 7.1) is also considered a syntax violation.

If a top-level or library form is not syntactically correct,
then the execution of that top-level program or library
must not be allowed to begin.

5.6. Safety

The standard libraries whose exports are described by this
document are said to be safe libraries. Libraries and top-
level programs that import only from safe libraries are also
said to be safe.

As defined by this document, the Scheme programming
language is safe in the following sense: The execution of
a safe top-level program cannot go so badly wrong as to
crash or to continue to execute while behaving in ways
that are inconsistent with the semantics described in this
document, unless an exception is raised.

Violations of an implementation restriction
must raise an exception with condition type
&implementation-restriction, as must all violations
and errors that would otherwise threaten system integrity
in ways that might result in execution that is inconsistent
with the semantics described in this document.

The above safety properties are guaranteed only for top-
level programs and libraries that are said to be safe. In
particular, implementations may provide access to unsafe
libraries in ways that cannot guarantee safety.

5.7. Boolean values

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of
a conditional test. In a conditional test, all values count
as true in such a test except for #f. This report uses the
word “true” to refer to any Scheme value except #f, and
the word “false” to refer to #f.

5.8. Multiple return values

A Scheme expression can evaluate to an arbitrary finite
number of values. These values are passed to the expres-
sion’s continuation.

Not all continuations accept any number of values: A con-
tinuation that accepts the argument to a procedure call is
guaranteed to accept exactly one value. The effect of pass-
ing some other number of values to such a continuation is
unspecified. The call-with-values procedure described
in section 11.15 makes it possible to create continuations
that accept specified numbers of return values. If the num-
ber of return values passed to a continuation created by a
call to call-with-values is not accepted by its consumer
that was passed in that call, then an exception is raised.
A more complete description of the number of values ac-
cepted by different continuations and the consequences of
passing an unexpected number of values is given in the
description of the values procedure in section 11.15.

A number of forms in the base library have sequences of ex-
pressions as subforms that are evaluated sequentially, with
the return values of all but the last expression being dis-
carded. The continuations

discarding these values accept any number of values.

5.9. Unspecified behavior

If an expression is said to “return unspecified values”, then
the expression must evaluate without raising an exception,
but the values returned depend on the implementation;
this report explicitly does not say how many or what val-
ues should be returned. Programmers should not rely on
a specific number of return values or the specific values
themselves.

5.10. Storage model

Variables and objects such as pairs, vectors, bytevectors,
strings, hashtables, records implicitly refer to locations or
sequences of locations. A string, for example, contains as
many locations as there are characters in the string. (These
locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using
the string-set! procedure, but the string contains the
same locations as before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref, is
equivalent in the sense of eqv? (section 11.5) to the object
last stored in the location before the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
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Whenever this report speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use, and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to refer to them.

It is desirable for constants (i.e. the values of literal expres-
sions) to reside in read-only-memory. To express this, it is
convenient to imagine that every object that refers to loca-
tions is associated with a flag telling whether that object
is mutable or immutable. Literal constants, the strings re-
turned by symbol->string, records with no mutable fields,
and other values explicitly designated as immutable are
immutable objects, while all objects created by the other
procedures listed in this report are mutable. An attempt
to store a new value into a location referred to by an im-
mutable object should raise an exception with condition
type &assertion.

5.11. Proper tail recursion

Implementations of Scheme must be properly tail-recursive.
Procedure calls that occur in certain syntactic contexts
are tail calls. A Scheme implementation is properly tail-
recursive if it supports an unbounded number of active
tail calls. A call is active if the called procedure may
still return. Note that this includes regular returns as
well as returns through continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in Clinger’s paper [5]. The rules for iden-
tifying tail calls in base-library constructs are described in
section 11.20.

5.12. Dynamic extent and dynamic envi-
ronment

For a procedure call, the time between when it is initiated
and when it returns is called its dynamic extent. In Scheme,
call-with-current-continuation (section 11.15) allows
reentering a dynamic extent after its procedure call has
returned. Thus, the dynamic extent of a call may not be a
single, connected time period.

Some operations described in the report acquire informa-
tion in addition to their explicit arguments from the dy-
namic environment. For example, accesses an implicit
context established by dynamic-wind (section 11.15), and
the raise procedure (library section 7.1) accesses the
current exception handler. The operations that modify
the dynamic environment do so dynamically, for the dy-
namic extent of a call to a procedure like dynamic-wind

or with-exception-handler. When such a call returns,
the previous dynamic environment is restored. The dy-
namic environment can be thought of as part of the dy-
namic extent of a call. Consequently, it is captured by
call-with-current-continuation, and restored by in-
voking the escape procedure it creates.

6. Entry format

The chapters that describe bindings in the base library
and the standard libraries are organized into entries. Each
entry describes one language feature or a group of related
features, where a feature is either a syntactic construct or
a built-in procedure. An entry begins with one or more
header lines of the form

template category

The category defines the kind of binding described by the
entry, typically either “syntax” or “procedure”. An entry
may specify various restrictions on subforms or arguments.
For background on this, see section 5.4.

6.1. Syntax entries

If category is “syntax”, the entry describes a special syn-
tactic construct, and the template gives the syntax of the
forms of the construct. The template is written in a nota-
tion similar to a right-hand side of the BNF rules in chap-
ter 4, and describes the set of forms equivalent to the forms
matching the template as syntactic data. Some “syntax”
entries carry a suffix (expand), specifying that the syn-
tactic keyword of the construct is exported with level 1.
Otherwise, the syntatic keyword is exported with level 0;
see section 7.2.

Components of the form described by a template are desig-
nated by syntactic variables, which are written using angle
brackets, for example, 〈expression〉, 〈variable〉. Case is in-
significant in syntactic variables. Syntactic variables stand
for other forms, or sequences of them. A syntactic variable
may refer to a non-terminal in the grammar for syntactic
data (see section 4.3.1, in which case only forms match-
ing that non-terminal are permissible in that position. For
example, 〈expression〉 stands for any form which is a syn-
tactically valid expression. Other non-terminals that are
used in templates will be defined as part of the specifica-
tion.

The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .



6. Entry format 21

indicates one or more occurrences of a 〈thing〉.

It is the programmer’s responsibility to ensure that each
component of a form has the shape specified by a template.
Descriptions of syntax may express other restrictions on
the components of a form. Typically, such a restriction is
formulated as a phrase of the form “〈x〉 must be a . . . ”.
Again, these specify the programmer’s responsibility. It is
the implementation’s responsibility to check that these re-
strictions are satisfied, as long as the macro transformers
involved in expanding the form terminate. If the imple-
mentation detects that a component does not meet the
restriction, an exception with condition type &syntax is
raised.

6.2. Procedure entries

If category is “procedure”, then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Parameter names in the template are italicized .
Thus the header line

(vector-ref vector k) procedure

indicates that the built-in procedure vector-ref takes two
arguments, a vector vector and an exact non-negative in-
teger object k (see below). The header lines

(make-vector k) procedure
(make-vector k fill) procedure

indicate that the make-vector procedure takes either
one or two arguments. The parameter names are case-
insensitive: Vector is the same as vector .

As with syntax templates, an ellipsis . . . at the end of a
header line, as in

(= z1 z2 z3 . . . ) procedure

indicates that the procedure takes arbitrarily many argu-
ments of the same type as specified for the last parameter
name. In this case, = accepts two or more arguments that
must all be complex number objects.

A procedure that detects an argument that it is not speci-
fied to handle must raise an exception with condition type
&assertion. Also, the argument specifications are ex-
haustive: if the number of arguments provided in a pro-
cedure call does not match the number of arguments ac-
cepted by the procedure, an exception with condition type
&assertion must be raised.

For succinctness, the report follows the convention that if
a parameter name is also the name of a type, then the cor-
responding argument must be of the named type. For ex-
ample, the header line for vector-ref given above dictates
that the first argument to vector-ref must be a vector.
The following naming conventions imply type restrictions:

obj any object
z complex number object
x real number object
y real number object
q rational number object
n integer object
k exact non-negative integer object
bool boolean (#f or #t)
octet exact integer object in {0, . . . , 255}
byte exact integer object in {−128, . . . , 127}
char character (see section 11.11)
pair pair (see section 11.9)
vector vector (see section 11.13)
string string (see section 11.12)
condition condition (see library section 7.2)
bytevector bytevector (see library chapter 2)
proc procedure (see section 1.6)

Other type restrictions are expressed through parameter
naming conventions that are described in specific chapters.
For example, library chapter 11 uses a number of special
parameter variables for the various subsets of the numbers.

With the listed type restrictions, it is the programmer’s
responsibility to ensure that the corresponding argument
is of the specified type. It is the implementation’s respon-
sibility to check for that type.

A parameter called list means that it is the programmer’s
responsibility to pass an argument that is a list (see sec-
tion 11.9). It is the implementation’s responsibility to
check that the argument is appropriately structured for
the operation to perform its function, to the extent that
this is possible and reasonable. The implementation must
at least check that the argument is either an empty list or
a pair.

Descriptions of procedures may express other restrictions
on the arguments of a procedure. Typically, such a restric-
tion is formulated as a phrase of the form “x must be a
. . . ” (or otherwise using the word “must”).

In addition to the restrictions implied by naming conven-
tions, an entry may list additional explicit restrictions.
These explicit restrictions usually describe both the pro-
grammer’s responsibilities, who must ensure that an ap-
propriate argument is passed, and the implementation’s
responsibilities, which must check that the argument is ap-
propriate. A description may explicitly list the implemen-
tation’s responsibilities for some arguments in a paragraph
labeled “Implementation responsibilities”. In this case, the
responsibilities specified for these arguments in the rest of
the description are only for the programmer. An para-
graph describing implementation responsibility does not
affect the implementation’s responsibilities for checking ar-
guments not mentioned in the paragraph.
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6.3. Other kinds of entries

If category is something other than “syntax” and “proce-
dure”, then the entry describes a non-procedural value, and
the category describes the type of that value. The header
line

&who condition type

indicates that &who is a condition type. The header
line

unquote auxiliary syntax

indicates that unquote is a syntax binding that may
occur only as part of specific surrounding expressions.
Any use as an independent syntactic construct or iden-
tifier is a syntax violation. As with “syntax” entries,
some “auxiliary syntax” entries carry a suffix (expand),
specifying that the syntactic keyword of the construct is
exported with level 1.

6.4. Equivalent entries

The description of an entry occasionally states that it is
the same as another entry. This means that both entries
are equivalent. Specifically, it means that if both entries
have the same name and are thus exported from different
libraries, the entries from both libraries can be imported
under the same name without conflict.

6.5. Evaluation examples

The symbol “=⇒” used in program examples can be read
“evaluates to”. For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in an environ-
ment that imports the relevant library, to an object that
may be represented externally by the sequence of char-
acters “40”. See section 4.3 for a discussion of external
representations of objects.

The “=⇒” symbol is also used when the evaluation of an
expression causes a violation. For example,

(integer->char #xD800) =⇒ &assertion exception

means that the evaluation of the expression
(integer->char #xD800) must raise an exception
with condition type &assertion.

Moreover, the “=⇒” symbol is also used to explicitly say
that the value of an expression in unspecified. For exam-
ple:

(eqv? "" "") =⇒ unspecified

Mostly, examples merely illustrate the behavior specified
in the entry. In some cases, however, they disambiguate
otherwise ambiguous specifications and are thus norma-
tive. Note that, in some cases, specifically in the case of
inexact number objects, the return value is only specified
conditionally or approximately. For example:

(atan -inf.0)

=⇒ -1.5707963267948965 ; approximately

6.6. Naming conventions

By convention, the names of procedures that store values
into previously allocated locations (see section 5.10) usu-
ally end in “!”. Such procedures are called mutation pro-
cedures.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

By convention, the names of predicates—procedures that
always return a boolean value—end in “?” when the name
contains any letters; otherwise, the predicate’s name does
not end with a question mark.

By convention, the components of compound names are
separated by “-” In particular, prefixes that are actual
words or can be pronounced as though they were actual
words are followed by a hyphen, except when the first char-
acter following the hyphen would be something other than
a letter, in which case the hyphen is omitted. Short, un-
pronounceable prefixes (“fx” and “fl”) are not followed
by a hyphen.

By convention, the names of condition types start with “&”.

7. Libraries

Libraries are parts of a program that can be distributed
independently. The library system supports macro defini-
tions within libraries, macro exports, and distinguishes the
phases in which definitions and imports are needed. This
chapter defines the notation for libraries and a semantics
for library expansion and execution.

7.1. Library form

A library definition must have the following form:

(library 〈library name〉
(export 〈export spec〉 ...)

(import 〈import spec〉 ...)

〈library body〉)
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A library declaration contains the following elements:

• The 〈library name〉 specifies the name of the library
(possibly with versioning).

• The export subform specifies a list of exports, which
name a subset of the bindings defined within or im-
ported into the library.

• The import subform specifies the imported bindings
as a list of import dependencies, where each depen-
dency specifies:

– the imported library’s name,

– the relevant levels, e.g., expand or run time, and

– the subset of the library’s exports to make avail-
able within the importing library, and the local
names to use within the importing library for
each of the library’s exports, and

• The 〈library body〉 is the library body, consisting of a
sequence of definitions followed by a sequence of ex-
pressions. The definitions may be both for local (un-
exported) and exported bindings, and the set of ini-
tialization expressions to be evaluated for their effects.

An identifier can be imported with the same local name
from two or more libraries or for two levels from the same
library only if the binding exported by each library is
the same (i.e., the binding is defined in one library, and
it arrives through the imports only by exporting and re-
exporting). Otherwise, no identifier can be imported mul-
tiple times, defined multiple times, or both defined and
imported. No identifiers are visible within a library except
for those explicitly imported into the library or defined
within the library.

A 〈library name〉 uniquely identifies a library within an im-
plementation, and is globally visible in the import clauses
(see below) of all other libraries within an implementation.
A 〈library name〉 has the following form:

(〈identifier1〉 〈identifier2〉 ... 〈version〉)

where 〈version〉 is empty or has the following form:

(〈sub-version〉 ...)

Each 〈sub-version〉 must represent an exact nonnegative
integer object. An empty 〈version〉 is equivalent to ().

An 〈export spec〉 names a set of imported and locally de-
fined bindings to be exported, possibly with different exter-
nal names. An 〈export spec〉must have one of the following
forms:

〈identifier〉
(rename (〈identifier1〉 〈identifier2〉) ...)

In an 〈export spec〉, an 〈identifier〉 names a single bind-
ing defined within or imported into the library, where the
external name for the export is the same as the name of
the binding within the library. A rename spec exports the
binding named by the first 〈identifier〉 in each (〈identifier〉
〈identifier〉) pairing, using the second 〈identifier〉 as the
external name.

Each 〈import spec〉 specifies a set of bindings to be im-
ported into the library, the levels at which they are to be
available, and the local names by which they are to be
known. An 〈import spec〉must be one of the following:

〈import set〉
(library 〈library reference〉)
(for 〈import set〉 〈import level〉 ...)

The second form is synonymous with the first. The syntax
of an 〈import spec〉 is interpreted outermost to innermost
if ambiguities arise.

An 〈import level〉 is one of the following:

run

expand

(meta 〈level〉)

where 〈level〉 represents an exact integer object.

As an 〈import level〉, run is an abbreviation for (meta 0),
and expand is an abbreviation for (meta 1). Levels and
phases are discussed in section 7.2.

An 〈import set〉 names a set of bindings from another li-
brary and possibly specifies local names for the imported
bindings. It must be one of the following:

〈library reference〉
(only 〈import set〉 〈identifier1〉 〈identifier2〉 ...)

(except 〈import set〉 〈identifier1〉 〈identifier2〉 ...)

(prefix 〈import set〉 〈identifier〉)
(rename 〈import set〉 (〈identifier1〉 〈identifier2〉)

(〈identifier3〉 〈identifier4〉) ...)

A 〈library reference〉 identifies a library by its name and
optionally by its version. It has the following form:

(〈identifier1〉 〈identifier2〉 ... 〈version reference〉)

In cases where an 〈import set〉 starting with only, except,
prefix, or rename, or a 〈version reference〉 starting with
and, or, or not occurs in the place of a 〈library reference〉,
and fits the form of a 〈library reference〉, the interpreta-
tion as an 〈import set〉 or a 〈version reference〉 takes prece-
dence. A 〈import spec〉 using library can be used to re-
solve the ambiguity.

A 〈version reference〉 specifies a set of 〈version〉s that it
matches. The 〈library reference〉 identifies all libraries
of the same name and whose version is matched by the
〈version reference〉. A 〈version reference〉 is empty or has
the following form:
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(〈sub-version reference1〉 ... 〈sub-version referencen〉)
(and 〈version reference1〉 〈version reference2〉 ...)

(or 〈version reference1〉 〈version reference2〉 ...)

(not 〈version reference〉)

An empty 〈version reference〉 is equivalent to (). A
〈version reference〉 of the first form matches a 〈version〉
with at least n elements, whose 〈sub-version reference〉s
match the corresponding 〈sub-version〉s. An
and 〈version reference〉 matches a version if all
〈version references〉 following the and match it. Cor-
respondingly, an or 〈version reference〉 matches a version
if one of 〈version references〉 following the or matches it,
and a not 〈version reference〉 matches a version if the
〈version reference〉 following it does not match it.

A 〈sub-version reference〉 has one of the following forms:

〈sub-version〉
(>= 〈sub-version〉)
(<= 〈sub-version〉)
(and 〈sub-version reference1〉 〈sub-version reference2〉 ...)

(or 〈sub-version reference1〉 〈sub-version reference2〉 ...)

(not 〈sub-version reference1〉)

A 〈sub-version reference〉 of the first form matches
a 〈sub-version〉 if it is equal to it. A >=
〈sub-version reference〉 of the first form matches a sub-
version if it is greater or equal to the 〈sub-version〉 following
it; analogously for <=. An and 〈sub-version reference〉
matches a sub-version if all of the subsequent
〈sub-version reference〉s match it. Correspondingly,
an or 〈sub-version reference〉 matches a sub-version if one
of the subsequent 〈sub-version reference〉s matches it, and
a not 〈sub-version reference〉 matches a sub-version if the
subsequent 〈sub-version reference〉 does not match it.

Examples:

version reference version match?
() (1) yes
(1) (1) yes
(1) (2) no
(2 3) (2) no
(2 3) (2 3) yes
(2 3) (2 3 5) yes
(or (1 (>= 1)) (2)) (2) yes
(or (1 (>= 1)) (2)) (1 1) yes
(or (1 (>= 1)) (2)) (1 0) no
((or 1 2 3)) (1) yes
((or 1 2 3)) (2) yes
((or 1 2 3)) (3) yes
((or 1 2 3)) (4) no

When more than one library is identified by a library
reference, the choice of libraries is determined in some
implementation-dependent manner.

To avoid problems such as incompatible types and repli-
cated state, implementations should prohibit the two li-
braries whose library names consist of the same sequence

of identifiers but whose versions do not match to co-exist
in the same program.

By default, all of an imported library’s exported bind-
ings are made visible within an importing library using
the names given to the bindings by the imported library.
The precise set of bindings to be imported and the names
of those bindings can be adjusted with the only, except,
prefix, and rename forms as described below.

• An only form produces a subset of the bindings
from another 〈import set〉, including only the listed
〈identifier〉s. The included 〈identifier〉s must be in the
original 〈import set〉.

• An except form produces a subset of the bindings
from another 〈import set〉, including all but the listed
〈identifier〉s. All of the excluded 〈identifier〉s must be
in the original 〈import set〉.

• A prefix form adds the 〈identifier〉 prefix to each
name from another 〈import set〉.

• A rename form, (rename (〈identifier1〉 〈identifier2〉)
...), removes the bindings for 〈identifier1〉 ... to
form an intermediate 〈import set〉, then adds the bind-
ings back for the corresponding 〈identifier2〉 ... to
form the final 〈import set〉. Each 〈identifier1〉 must
be in the original 〈import set〉, each 〈identifier2〉 must
not be in the intermediate 〈import set〉, and the
〈identifier2〉s must be distinct.

It is a syntax violation if a constraint given above is not
met.

The 〈library body〉 of a library form consists of forms that
are classified as definitions or expressions. Which forms
belong to which class depends on the imported libraries
and the result of expansion—see chapter 10. Generally,
forms that are not definitions (see section 11.2 for defini-
tions available through the base library) are expressions.

A 〈library body〉 is like a 〈body〉 (see section 11.3) except
that a 〈library body〉s need not include any expressions. It
must have the following form:

〈definition〉 ... 〈expression〉 ...

When base-library begin, let-syntax, or letrec-syntax
forms occur in a top-level body prior to the first expression,
they are spliced into the body; see section 11.4.7. Some
or all of the body, including portions wrapped in begin,
let-syntax, or letrec-syntax forms, may be specified
by a syntactic abstraction (see section 9.0.2).

The transformer expressions and bindings are evaluated
and created from left to right, as described in chap-
ter 10. The variable-definition right-hand-side expressions
are evaluated from left to right, as if in an implicit letrec*,
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and the body expressions are also evaluated from left to
right after the variable-definition right-hand-side expres-
sions. A fresh location is created for each exported vari-
able and initialized to the value of its local counterpart.
The effect of returning twice to the continuation of the last
body expression is unspecified.

The names library, export, import, for, run, expand,
meta, import, export, only, except, prefix, rename,
and, or, >=, and <= appearing in the library syntax are
part of the syntax and are not reserved, i.e., the same
names can be used for other purposes within the library
or even exported from or imported into a library with dif-
ferent meanings, without affecting their use in the library
form.

Bindings defined with a library are not visible in code out-
side of the library, unless the bindings are explicitly ex-
ported from the library. An exported macro may, however,
implicitly export an otherwise unexported identifier defined
within or imported into the library. That is, it may insert a
reference to that identifier into the output code it produces.

All explicitly exported variables are immutable in both the
exporting and importing libraries. It is thus a syntax vi-
olation if an explicitly exported variable appears on the
left-hand side of a set! expression, either in the exporting
or importing libraries.

All implicitly exported variables are also immutable in both
the exporting and importing libraries. It is thus a syn-
tax violation if a variable appears on the left-hand side of
a set! expression in any code produced by an exported
macro outside of the library in which the variable is de-
fined. It is also a syntax violation if a reference to an
assigned variable appears in any code produced by an ex-
ported macro outside of the library in which the variable
is defined, where an assigned variable is one that appears
on the left-hand side of a set! expression in the exporting
library.

All other variables defined within a library are mutable.

7.2. Import and export levels

Every library can be characterized by expand-time infor-
mation (minimally, its imported libraries, a list of the ex-
ported keywords, a list of the exported variables, and code
to evaluate the transformer expressions) and run-time in-
formation (minimally, code to evaluate the variable def-
inition right-hand-side expressions, and code to evaluate
the body expressions). The expand-time information must
be available to expand references to any exported binding,
and the run-time information must be available to evaluate
references to any exported variable binding.

Expanding a library may require run-time information
from another library. For example, if a library provides

procedures that are called by another library’s macros dur-
ing expansion, then the former library must be run when
expanding the latter. The former may not be needed when
the latter is eventually run as part of a program, or it may
be needed for the latter’s run time, too.

A phase is a time at which the expressions within a li-
brary are evaluated. Within a library body, top-level ex-
pressions and the right-hand sides of define forms are
evaluated at run time, i.e., phase 0, and the right-hand
sides of define-syntax forms are evaluated at expand
time, i.e., phase 1. When define-syntax, let-syntax,
or letrec-syntax forms appear within code evaluated at
phase n, the right-hand sides are evaluated as phase n + 1
expressions.

These phases are relative to the phase in which the li-
brary itself is used. An instance of a library corresponds
to an evaluation of its variable definitions and expressions
in a particular phase relative to another library—a process
called instantiation. For example, if a top-level expression
in a library B refers to a variable export from another li-
brary A, then it refers to the export from an instance of
A at phase 0 (relative to the phase of B). But if a phase
1 expression within B refers to the same binding from A,
then it refers to the export from an instance of A at phase
1 (relative to the phase of B).

A visit of a library corresponds to the evaluation of its
syntax definitions in a particular phase relative to another
library—a process called visiting. Evaluating a syntax def-
inition at phase n means that its right-hand side is evalu-
ated at phase n + 1. For example, if a top-level expression
in a library B refers to a macro export from another library
A, then it refers to the export from an visit of A at phase
0 (relative to the phase of B), which corresponds to the
evaluation of the macro’s transformer expression at phase
1.

A level is a lexical property of an identifier that determines
in which phases it can be referenced. The level for each
identifier bound by a definition within a library is 0; that is,
the identifier can be referenced only by phase 0 expressions
within the library. The level for each imported binding
is determined by the enclosing for form of the import
in the importing library, in addition to the levels of the
identifier in the exporting library. Import and export levels
are combined by pairwise addition of all level combinations.
For example, references to an imported identifier exported
for levels pa and pb and imported for levels qa, qb, and qc

are valid at levels pa + qa, pa + qb, pa + qc, pb + qa, pb + qb,
and pb + qc. An 〈import set〉 without an enclosing for is
equivalent to (for 〈import set〉 run), which is the same
as (for 〈import set〉 (meta 0)).

The export level of an exported binding is 0 for all bindings
that are defined within the exporting library. The export
levels of a reexported binding, i.e., an export imported from
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another library, are the same as the effective import levels
of that binding within the reexporting library.

For the libraries defined in the library report, the ex-
port level is 0 for nearly all bindings. The exceptions are
syntax-rules, identifier-syntax, ..., and from the
(rnrs base (6)) library, which are exported with level 1,
set! from the (rnrs base (6)) library, which is exported
with levels 0 and 1, and all bindings from the composite
(rnrs (6)) library (see library chapter 15), which are ex-
ported with levels 0 and 1.

Macro expansion within a library can introduce a reference
to an identifier that is not explicitly imported into the li-
brary. In that case, the phase of the reference must match
the identifier’s level as shifted by the difference between the
phase of the source library (i.e., the library that supplied
the identifier’s lexical context) and the library that encloses
the reference. For example, suppose that expanding a li-
brary invokes a macro transformer, and the evaluation of
the macro transformer refers to an identifier that is ex-
ported from another library (so the phase 1 instance of the
library is used); suppose further that the value of the bind-
ing is a syntax object representing an identifier with only a
level-n binding; then, the identifier must be used only in a
phase n+1 expression in the library being expanded. This
combination of levels and phases is why negative levels on
identifiers can be useful, even though libraries exist only at
non-negative phases.

If any of a library’s definitions are referenced at phase 0
in the expanded form of a program, then an instance of
the referenced library is created for phase 0 before the pro-
gram’s definitions and expressions are evaluated. This rule
applies transitively: if the expanded form of one library ref-
erences at phase 0 an identifier from another library, then
before the referencing library is instantiated at phase n, the
referenced library must be instantiated at phase n. When
an identifier is referenced at any phase n greater than 0, in
contrast, then the defining library is instantiated at phase
n at some unspecified time before the reference is evalu-
ated. Similarly, when a macro keyword is referenced at
phase n during the expansion of a library, then the defin-
ing library is visited at phase n at some unspecified time
before the reference is evaluated.

An implementation may distinguish instances/visits of a li-
brary for different phases or to use an instance/visit at any
phase as an instance/visit at any other phase. An imple-
mentation may further start each expansion of a library
form by removing visits of libraries in any phase and/or
instances of libraries in phases above 0. An implementa-
tion may create instances/visits of more libraries at more
phases than required to satisfy references. When an iden-
tifier appears as an expression in a phase that is incon-
sistent with the identifier’s level, then an implementation
may raise an exception either at expand time or run time,
or it may allow the reference. Thus, a library is portable

only when it references identifiers in phases consistent with
the declared levels, and a library whose meaning depends
on whether the instances of a library are distinguished or
shared across phases or library expansions may be un-
portable.

Note: If a program and its libraries avoid the (rnrs (6))

and (rnrs syntax-case (6)) libraries, and if the program and

libraries never use the for import form, then the program

does not depend on whether instances are distinguished across

phases, and the phase of an identifier’s use cannot be inconsis-

tent with the identifier’s level.

7.3. Examples

Examples for various 〈import spec〉s and 〈export spec〉s:

(library (stack)

(export make push! pop! empty!)

(import (rnrs))

(define (make) (list ’()))

(define (push! s v) (set-car! s (cons v (car s))))

(define (pop! s) (let ([v (caar s)])

(set-car! s (cdar s))

v))

(define (empty! s) (set-car! s ’())))

(library (balloons)

(export make push pop)

(import (rnrs))

(define (make w h) (cons w h))

(define (push b amt)

(cons (- (car b) amt) (+ (cdr b) amt)))

(define (pop b) (display "Boom! ")

(display (* (car b) (cdr b)))

(newline)))

(library (party)

;; Total exports:

;; make, push, push!, make-party, pop!

(export (rename (balloon:make make)

(balloon:push push))

push!

make-party

(rename (party-pop! pop!)))

(import (rnrs)

(only (stack) make push! pop!) ; not empty!

(prefix (balloons) balloon:))

;; Creates a party as a stack of balloons,

;; starting with two balloons

(define (make-party)

(let ([s (make)]) ; from stack

(push! s (balloon:make 10 10))

(push! s (balloon:make 12 9))

s))

(define (party-pop! p)
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(balloon:pop (pop! p))))

(library (main)

(export)

(import (rnrs) (party))

(define p (make-party))

(pop! p) ; displays "Boom! 108"

(push! p (push (make 5 5) 1))

(pop! p)) ; displays "Boom! 24"

Examples for macros and phases:

(library (my-helpers id-stuff)

(export find-dup)

(import (rnrs))

(define (find-dup l)

(and (pair? l)

(let loop ((rest (cdr l)))

(cond

[(null? rest) (find-dup (cdr l))]

[(bound-identifier=? (car l) (car rest))

(car rest)]

[else (loop (cdr rest))])))))

(library (my-helpers values-stuff)

(export mvlet)

(import (rnrs) (for (my-helpers id-stuff) expand))

(define-syntax mvlet

(lambda (stx)

(syntax-case stx ()

[( [(id ...) expr] body0 body ...)

(not (find-dup (syntax (id ...))))

(syntax

(call-with-values

(lambda () expr)

(lambda (id ...) body0 body ...)))]))))

(library (let-div)

(export let-div)

(import (rnrs)

(my-helpers values-stuff)

(rnrs r5rs))

(define (quotient+remainder n d)

(let ([q (quotient n d)])

(values q (- n (* q d)))))

(define-syntax let-div

(syntax-rules ()

[( n d (q r) body0 body ...)

(mvlet [(q r) (quotient+remainder n d)]

body0 body ...)])))

8. Top-level programs

A top-level program specifies an entry point for defining and
running a Scheme program. A top-level program specifies

a set of libraries to import and code to run. Through the
imported libraries, whether directly or through the tran-
sitive closure of importing, a top-level program defines a
complete Scheme program.

Top-level programs accept a list of string command-line
arguments that may be used to pass data to the program.

8.1. Top-level program syntax

A top-level program is a delimited piece of text, typically
a file, that follows the following syntax:

〈top-level program〉 −→ 〈import form〉 〈top-level body〉
〈import form〉 −→ (import 〈import spec〉*)
〈top-level body〉 −→ 〈top-level body form〉*
〈top-level body form〉 −→ 〈definition〉 | 〈expression〉

The rules for 〈top-level program〉 specify syntax at the
form level.

The 〈import form〉 is identical to the import clause in li-
braries (see section 7.1), and specifies a set of libraries
to import. A 〈top-level body〉 is like a 〈library body〉
(see section 7.1), except that definitions and expressions
may occur in any order. Thus, the syntax specified by
〈top-level body form〉 refers to the result of macro expan-
sion.

When base-library begin, let-syntax, or letrec-syntax
forms occur in a top-level body prior to the first expression,
they are spliced into the body; see section 11.4.7. Some
or all of the body, including portions wrapped in begin,
let-syntax, or letrec-syntax forms, may be specified
by a syntactic abstraction (see section 9.0.2).

8.2. Top-level program semantics

A top-level program is executed by treating the pro-
gram similarly to a library, and evaluating its defini-
tions and expressions. The semantics of a top-level
body may be roughly explained by a simple trans-
lation into a library body: Each 〈expression〉 that
appears before a definition in the top-level body is
converted into a dummy definition (define 〈variable〉
(begin 〈expression〉 〈unspecified〉)), where 〈variable〉 is
a fresh identifier and 〈unspecified〉 is a side-effect-free ex-
pression returning unspecified values. (It is generally im-
possible to determine which forms are definitions and ex-
pressions without concurrently expanding the body, so the
actual translation is somewhat more complicated; see chap-
ter 10.)

On platforms that support it, a top-level program may ac-
cess its command line by calling the command-line proce-
dure (see library section 10).
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9. Primitive syntax

After the import form within a library form or a top-level
program, the forms that constitute a the body of the li-
brary or the top-level program depend on the libraries that
are imported. In particular, imported syntactic keywords
determine most of the available forms and whether each
form is a definition or expression. A few form types are al-
ways available independent of imported libraries, however,
including constant literals, variable references, procedure
calls, and macro uses.

9.0.1. Primitive expression types

The entries in this section all describe expressions, which
may occur in the place of 〈expression〉 syntactic variables.
See also section 11.4.

Constant literals

〈number〉 syntax
〈boolean〉 syntax
〈character〉 syntax
〈string〉 syntax
〈bytevector〉 syntax

An expression consisting of a number representation, a
boolean, a character, a string, or a bytevector, evaluates
“to itself.

145932 =⇒ 145932

#t =⇒ #t

"abc" =⇒ "abc"

#vu8(2 24 123) =⇒ #vu8(2 24 123)

As noted in section 5.10, the value of a literal expression is
immutable.

Variable references

〈variable〉 syntax

An expression consisting of a variable (section 5.2) is a
variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is a syntax violation to reference an unbound
variable.

; These examples assume the base library

; has been imported.

(define x 28)

x =⇒ 28

Procedure calls

(〈operator〉 〈operand1〉 . . . ) syntax

A procedure call is written by simply enclosing in paren-
theses expressions for the procedure to be called and the
arguments to be passed to it. A form in an expression
context is a procedure call if 〈operator〉 is not an identifier
bound as a syntactic keyword.

When a procedure call is evaluated, the operator and
operand expressions are evaluated (in an unspecified or-
der) and the resulting procedure is passed the resulting
arguments.

; These examples assume the base library

; has been imported.

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

If the value of 〈operator〉 is not a procedure, an excep-
tion with condition type &assertion is raised. Also, if
〈operator〉 does not accept as many arguments as there are
〈operand〉s, an exception with condition type &assertion
is raised.

Note: In contrast to other dialects of Lisp, the order of

evaluation is unspecified, and the operator expression and the

operand expressions are always evaluated with the same evalu-

ation rules.

Note: Although the order of evaluation is otherwise unspeci-

fied, the effect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

sequential order of evaluation. The order of evaluation may be

chosen differently for each procedure call.

Note: In many dialects of Lisp, the form () is a legitimate

expression. In Scheme, expressions written as list/pair forms

must have at least one subexpression, so () is not a syntactically

valid expression.

9.0.2. Macros

Libraries and top-level programs can define and use new
kinds of derived expressions and definitions called syntactic
abstractions or macros. A syntactic abstraction is created
by binding a keyword to a macro transformer or, simply,
transformer. The transformer determines how a use of
the macro is transcribed into a more primitive form.

Most macro uses have the form:

(〈keyword〉 〈datum〉 . . . )

where 〈keyword〉 is an identifier that uniquely determines
the type of form. This identifier is called the syntactic
keyword, or simply keyword, of the macro. The number of
〈datum〉s and the syntax of each depends on the syntactic
abstraction.

Macro uses can also take the form of improper lists, single-
ton identifiers, or set! forms, where the second subform
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of the set! is the keyword (see section 11.19) library sec-
tion 12.3):

(〈keyword〉 〈datum〉 . . . . 〈datum〉)
〈keyword〉
(set! 〈keyword〉 〈datum〉)

The define-syntax, let-syntax and letrec-syntax
forms, described in sections 11.2.2 and 11.18, create bind-
ings for keywords, associate them with macro transformers,
and control the scope within which they are visible.

The syntax-rules and identifier-syntax forms, de-
scribed in section 11.19, create transformers via a pattern
language. Moreover, the syntax-case form, described in
library chapter 12, creates transformers via a pattern lan-
guage that permits the use of arbitrary Scheme code.

Keywords occupy the same name space as variables. That
is, within the same scope, an identifier can be bound as
a variable or keyword, or neither, but not both, and local
bindings of either kind may shadow other bindings of either
kind.

Macros defined using syntax-rules and
identifier-syntax are “hygienic” and “referentially
transparent” and thus preserve Scheme’s lexical scop-
ing [17, 16, 2, 6, 9]:

• If a macro transformer inserts a binding for an iden-
tifier (variable or keyword), the identifier is in effect
renamed throughout its scope to avoid conflicts with
other identifiers.

• If a macro transformer inserts a free reference to an
identifier, the reference refers to the binding that was
visible where the transformer was specified, regardless
of any local bindings that may surround the use of the
macro.

Macros defined using the syntax-case facility are also hy-
gienic unless datum->syntax (see library section 12.6) is
used.

10. Expansion process

Macro uses (see section 9.0.2) are expanded into core forms
at the start of evaluation (before compilation or inter-
pretation) by a syntax expander. (The set of core forms
is implementation-dependent, as is the representation of
these forms in the expander’s output.) If the expander en-
counters a syntactic abstraction, it invokes the associated
transformer to expand the syntactic abstraction, then re-
peats the expansion process for the form returned by the
transformer. If the expander encounters a core form, it re-
cursively processes the subforms, if any, and reconstructs
the form from the expanded subforms. Information about
identifier bindings is maintained during expansion to en-
force lexical scoping for variables and keywords.

To handle definitions, the expander processes the initial
forms in a 〈body〉 (see section 11.3) or 〈library body〉 (see
section 7.1) from left to right. How the expander processes
each form encountered as it does so depends upon the kind
of form.

macro use The expander invokes the associated trans-
former to transform the macro use, then recursively
performs whichever of these actions are appropriate
for the resulting form.

define-syntax form The expander expands and evalu-
ates the right-hand-side expression and binds the key-
word to the resulting transformer.

define form The expander records the fact that the de-
fined identifier is a variable but defers expansion of the
right-hand-side expression until after all of the defini-
tions have been processed.

begin form The expander splices the subforms into the
list of body forms it is processing. (See section 11.4.7.)

let-syntax or letrec-syntax form The expander
splices the inner body forms into the list of (outer)
body forms it is processing, arranging for the key-
words bound by the let-syntax and letrec-syntax
to be visible only in the inner body forms.

expression, i.e., nondefinition The expander com-
pletes the expansion of the deferred right-hand-side
forms and the current and remaining expressions
in the body, and then creates the equivalent of a
letrec* form from the defined variables, expanded
right-hand-side expressions, and expanded body
expressions.

For the right-hand side of the definition of a variable, ex-
pansion is deferred until after all of the definitions have
been seen. Consequently, each keyword and variable refer-
ence within the right-hand side resolves to the local bind-
ing, if any.

A definition in the sequence of forms must not define any
identifier whose binding is used to determine the meaning
of the undeferred portions of the definition or any definition
that precedes it in the sequence of forms. For example, the
bodies of the following expressions violate this restriction.

(let ()

(define define 17)

(list define))

(let-syntax ([def0 (syntax-rules ()

[( x) (define x 0)])])

(let ([z 3])

(def0 z)

(define def0 list)
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(list z)))

(let ()

(define-syntax foo

(lambda (e)

(+ 1 2)))

(define + 2)

(foo))

The following do not violate the restriction.

(let ([x 5])

(define lambda list)

(lambda x x)) =⇒ (5 5)

(let-syntax ([def0 (syntax-rules ()

[( x) (define x 0)])])

(let ([z 3])

(define def0 list)

(def0 z)

(list z))) =⇒ (e)

(let ()

(define-syntax foo

(lambda (e)

(let ([+ -]) (+ 1 2))))

(define + 2)

(foo)) =⇒ -1

The implementation should treat a violation of the restric-
tion as a syntax violation.

Note that this algorithm does not directly reprocess any
form. It requires a single left-to-right pass over the defini-
tions followed by a single pass (in any order) over the body
expressions and deferred right-hand sides.

For example, in

(lambda (x)

(define-syntax defun

(syntax-rules ()

[( x a e) (define x (lambda a e))]))

(defun even? (n) (or = n 0) (odd? (- n 1)))

(define-syntax odd?

(syntax-rules () [( n) (not (even? n))]))

(odd? (if (odd? x) (* x x) x)))

The definition of defun is encountered first, and the key-
word defun is associated with the transformer resulting
from the expansion and evaluation of the corresponding
right-hand side. A use of defun is encountered next and
expands into a define form. Expansion of the right-hand
side of this define form is deferred. The definition of odd?
is next and results in the association of the keyword odd?
with the transformer resulting from expanding and eval-
uating the corresponding right-hand side. A use of odd?
appears next and is expanded; the resulting call to not
is recognized as an expression because not is bound as a
variable. At this point, the expander completes the ex-
pansion of the current expression (the not call) and the

deferred right-hand side of the even? definition; the uses
of odd? appearing in these expressions are expanded using
the transformer associated with the keyword odd?. The
final output is the equivalent of

(lambda (x)

(letrec* ([even?

(lambda (n)

(or (= n 0)

(not (even? (- n 1)))))])

(not (even? (if (not (even? x)) (* x x) x)))))

although the structure of the output is implementation de-
pendent.

Because definitions and expressions can be interleaved in
a 〈top-level body〉 (see chapter 8), the expander’s process-
ing of a 〈top-level body〉 is somewhat more complicated. It
behaves as described above for a 〈body〉 or 〈library body〉
with the following exceptions. When the expander finds a
nondefinition, it defers its expansion and continues scan-
ning for definitions. Once it reaches the end of the set of
forms, it processes the deferred right-hand-side and body
expressions, then residualizes the equivalent of a letrec*
form from the defined variables, expanded right-hand-side
expressions, and expanded body expressions. For each
body expression 〈expression〉 that appears before a vari-
able definition in the body, a dummy binding is created
at the corresponding place within the set of letrec* bind-
ings, with a fresh temporary variable on the left-hand side
and the equivalent of (begin 〈expression〉 〈unspecified〉),
where 〈unspecified〉 is a side-effect-free expression return-
ing unspecified values, on the right-hand side, so that left-
to-right evaluation order is preserved. The begin wrapper
allows 〈expression〉 to evaluate to zero or more values.

11. Base library

This chapter describes Scheme’s (rnrs base (6)) library,
which exports many of the procedure and syntax bindings
that are traditionally associated with Scheme.

Section 11.20 defines the rules that identify tail calls and
tail contexts in base-library constructs.

11.1. Base types

No object satisfies more than one of the following predi-
cates:

boolean? pair?

symbol? number?

char? string?

vector? procedure?

null?
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These predicates define the base types boolean, pair, sym-
bol, number, char (or character), string, vector, and pro-
cedure. Moreover, the empty list is a special object of its
own type.

Note that, although there is a separate boolean type, any
Scheme value can be used as a boolean value for the pur-
pose of a conditional test; see section 5.7.

11.2. Definitions

Definitions may appear within a 〈top-level body〉 (sec-
tion 8.1), at the top of a 〈library body〉 (section 7.1), or
at the top of a 〈body〉 (section 11.3).

A 〈definition〉 may be a variable definition (section 11.2.1)
or keyword definition (section 11.2.1). Syntactic abstrac-
tions that expand into definitions or groups of defini-
tions (packaged in a base-library begin, let-syntax, or
letrec-syntax form; see section 11.4.7) may also appear
wherever other definitions may appear.

11.2.1. Variable definitions

The define form described in this section is a 〈definition〉
used to create variable bindings and may appear anywhere
other definitions may appear.

(define 〈variable〉 〈expression〉) syntax
(define 〈variable〉) syntax
(define (〈variable〉 〈formals〉) 〈body〉) syntax
(define (〈variable〉 . 〈formal〉) 〈body〉) syntax

The first from of define binds 〈variable〉 to a new location
before assigning the value of 〈expression〉 to it.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

The continuation of 〈expression〉 should not be invoked
more than once.

Implementation responsibilities: Implementations are not
required to detect that the continuation of 〈expression〉
is invoked more than once. If the implementation de-
tects this, it must raise an exception with condition type
&assertion.

The second form of define is equivalent to

(define 〈variable〉 〈unspecified〉)

where 〈unspecified〉 is a side-effect-free expression return-
ing an unspecified value.

In the third form of define, 〈formals〉 must be either a
sequence of zero or more variables, or a sequence of one

or more variables followed by a space-delimited period
and another variable (as in a lambda expression, see sec-
tion 11.4.2). This form is equivalent to

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

In the fourth form of define, 〈formal〉 must be a single
variable. This form is equivalent to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

11.2.2. Syntax definitions

The define-syntax form described in this section is a
〈definition〉 used to create keyword bindings and may ap-
pear anywhere other definitions may appear.

(define-syntax 〈keyword〉 〈expression〉) syntax

Binds 〈keyword〉 to the value of 〈expression〉, which must
evaluate, at macro-expansion time, to a transformer (see
library section 12.3).

Keyword bindings established by define-syntax are vis-
ible throughout the body in which they appear, except
where shadowed by other bindings, and nowhere else, just
like variable bindings established by define. All bind-
ings established by a set of definitions, whether keyword
or variable definitions, are visible within the definitions
themselves.

Implementation responsibilities: The implementation must
check that the value of 〈expression〉 is a transformer when
the evaluation produces a value.

For example:

(let ()

(define even?

(lambda (x)

(or (= x 0) (odd? (- x 1)))))

(define-syntax odd?

(syntax-rules ()

((odd? x) (not (even? x)))))

(even? 10)) =⇒ #t

An implication of the left-to-right processing order (sec-
tion 10) is that one definition can affect whether a subse-
quent form is also a definition. For example, the expression

(let ()

(define-syntax bind-to-zero

(syntax-rules ()

((bind-to-zero id) (define id 0))))

(bind-to-zero x)

x) =⇒ 0

The behavior is unaffected by any binding for
bind-to-zero that might appear outside of the let
expression.



32 Revised5.96 Scheme

11.3. Bodies and sequences

The 〈body〉 of a lambda, let, let*, let-values,
let*-values, letrec, letrec* expression or that of a def-
inition with a body consists of zero or more definitions fol-
lowed by one or more expressions.

〈definition〉 ... 〈expression1〉 〈expression2〉 ...

Each identifier defined by a definition is local to the 〈body〉.
That is, the identifier is bound, and the region of the bind-
ing is the entire 〈body〉 (see section 5.2). For example,

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) =⇒ 45

When base-library begin, let-syntax, or letrec-syntax
forms occur in a body prior to the first expression, they are
spliced into the body; see section 11.4.7. Some or all of the
body, including portions wrapped in begin, let-syntax,
or letrec-syntax forms, may be specified by a syntactic
abstraction (see section 9.0.2).

An expanded 〈body〉 (see chapter 10) containing variable
definitions can always be converted into an equivalent
letrec* expression. For example, the let expression in
the above example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

11.4. Expressions

The entries in this section describe the expressions of the
(rnrs base (6)) library, which may occur in the position
of the 〈expression〉 syntactic variable in addition to the
primitive expression types as described in section 9.0.1.

11.4.1. Quotation

(quote 〈datum〉) syntax

Syntax: 〈Datum〉 should be a syntactic datum.

Semantics: (quote 〈datum〉) evaluates to the datum value
represented by 〈datum〉 (see section 4.3). This notation is
used to include constants, including list and vector con-
stants, in Scheme code.

(quote a) =⇒ a

(quote #(a b c)) =⇒ #(a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

As noted in section 4.3.5, (quote 〈datum〉) may be abbre-
viated as ’〈datum〉:

’"abc" =⇒ "abc"

’145932 =⇒ 145932

’a =⇒ a

’#(a b c) =⇒ #(a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

As noted in section 5.10, constants are immutable.

11.4.2. Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 must be a formal arguments list as de-
scribed below, and 〈body〉 must be as described in sec-
tion 11.3.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression is
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was eval-
uated is extended by binding the variables in the formal
argument list to fresh locations, and the resulting actual
argument values are stored in those locations. Then, the
expressions in the body of the lambda expression (which
may contain definitions and thus represent a letrec* form,
see section 11.3) are evaluated sequentially in the extended
environment. The results of the last expression in the body
are returned as the results of the procedure call.

(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

((lambda (x)

(define (p y)

(+ y 1))

(+ (p x) x))

5) =⇒ 11

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 must have one of the following forms:

• (〈variable1〉 . . . ): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the ar-
guments are stored in the bindings of the correspond-
ing variables.
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• 〈variable〉: The procedure takes any number of ar-
guments; when the procedure is called, the sequence
of actual arguments is converted into a newly allo-
cated list, and the list is stored in the binding of the
〈variable〉.

• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n
is the number of formal arguments before the period
(there must be at least one). The value stored in the
binding of the last variable is a newly allocated list
of the actual arguments left over after all the other
actual arguments have been matched up against the
other formal arguments.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

((lambda (x y . z) z)

3 4 5 6) =⇒ (5 6)

It is a syntax violation for a 〈variable〉 to appear more than
once in 〈formals〉.

11.4.3. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 must be ex-
pressions.

Semantics: An if expression is evaluated as follows: first,
〈test〉 is evaluated. If it yields a true value (see section 5.7),
then 〈consequent〉 is evaluated and its values are returned.
Otherwise 〈alternate〉 is evaluated and its values are re-
turned. If 〈test〉 yields #f and no 〈alternate〉 is specified,
then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

(if #f #f) =⇒ unspecified

The 〈consequent〉 and 〈alternate〉 expressions are in tail
context if the if expression itself is; see section 11.20.

11.4.4. Assignments

(set! 〈variable〉 〈expression〉) syntax

〈Expression〉 is evaluated, and the resulting value is stored
in the location to which 〈variable〉 is bound. 〈Variable〉
must be bound either in some region enclosing the set!
expression or at the top level of a library body. The result
of the set! expression is unspecified.

(let ((x 2))

(+ x 1)

(set! x 4)

(+ x 1)) =⇒ 5

It is a syntax violation if 〈variable〉 refers to an immutable
binding.

Note: The identifier set! is exported with level 1 as well. See

section 11.19.

11.4.5. Derived conditionals

(cond 〈cond clause1〉 〈cond clause2〉 . . . ) syntax
=> auxiliary syntax
else auxiliary syntax

Syntax: Each 〈cond clause〉 must be of the form

(〈test〉 〈expression1〉 . . . )

where 〈test〉 is any expression. Alternatively, a
〈cond clause〉 may be of the form

(〈test〉 => 〈expression〉)

The last 〈cond clause〉 may be an “else clause”, which has
the form

(else 〈expression1〉 〈expression2〉 . . . ).

Semantics: A cond expression is evaluated by evaluating
the 〈test〉 expressions of successive 〈cond clause〉s in order
until one of them evaluates to a true value (see section 5.7).
When a 〈test〉 evaluates to a true value, then the remaining
〈expression〉s in its 〈cond clause〉 are evaluated in order,
and the results of the last 〈expression〉 in the 〈cond clause〉
are returned as the results of the entire cond expression. If
the selected 〈cond clause〉 contains only the 〈test〉 and no
〈expression〉s, then the value of the 〈test〉 is returned as the
result. If the selected 〈cond clause〉 uses the => alternate
form, then the 〈expression〉 is evaluated. Its value must be
a procedure. This procedure should accept one argument;
it is called on the value of the 〈test〉 and the values returned
by this procedure are returned by the cond expression. If
all 〈test〉s evaluate to #f, and there is no else clause, then
the result of the conditional expression is unspecified; if
there is an else clause, then its 〈expression〉s are evaluated,
and the values of the last one are returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(cond (’(1 2 3) => cadr)

(else #f)) =⇒ 2

For 〈cond clauses〉 that use the forms

(〈test〉 〈expression1〉 . . . )(else 〈expression1〉 〈expression2〉 . . . ).
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the last 〈expression〉 is in tail context if the cond form itself
is; see section 11.20.

A sample definition of cond in terms of simpler forms is in
appendix B.

(case 〈key〉 〈case clause1〉 〈case clause2〉 . . . ) syntax

Syntax: 〈Key〉 must be an expression. Each 〈case clause〉
must have one of the following forms:

((〈datum1〉 . . . ) 〈expression1〉 〈expression2〉 . . . )
(else 〈expression1〉 〈expression2〉 . . . )

The second form, which specifies an “else clause”, may only
appear as the last 〈case clause〉. Each 〈datum〉 is an exter-
nal representation of some object. The data represented
by the 〈datum〉s need not be distinct.

Semantics: A case expression is evaluated as follows.
〈Key〉 is evaluated and its result is compared against the
data represented by the 〈datum〉s of each 〈case clause〉 in
turn, proceeding in order from left to right through the
set of clauses. If the result of evaluating 〈key〉 is equiva-
lent (in the sense of eqv?; see section 11.5) to a datum of
a 〈case clause〉, the corresponding 〈expression〉s are evalu-
ated from left to right and the results of the last expres-
sion in the 〈case clause〉 are returned as the results of the
case expression. Otherwise, the comparison process con-
tinues. If the result of evaluating 〈key〉 is different from
every datum in each set, then if there is an else clause its
expressions are evaluated and the results of the last are the
results of the case expression; otherwise the result of the
case expression is unspecified.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) =⇒ unspecified
(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else ’consonant)) =⇒ consonant

The last 〈expression〉 of a 〈case clause〉 is in tail context if
the case expression itself is; see section 11.20.

(and 〈test1〉 . . . ) syntax

Syntax: The 〈test〉s must be expressions.

Semantics: If there are no 〈test〉s, #t is returned. Other-
wise, the 〈test〉 expressions are evaluated from left to right
until a 〈test〉 returns #f or the last 〈test〉 is reached. In the
former case, the and expression returns #f without evalu-
ating the remaining expressions. In the latter case, the last
expression is evaluated and its values are returned.

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

The and keyword could be defined in terms of if using
syntax-rules (see section 11.19) as follows:

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #f))))

The last 〈test〉 expression is in tail context if the and ex-
pression itself is; see section 11.20.

(or 〈test1〉 . . . ) syntax

Syntax: The 〈test〉s must be expressions.

Semantics: If there are no 〈test〉s, #f is returned. Other-
wise, the 〈test〉 expressions are evaluated from left to right
until a 〈test〉 returns a true value val (see section 5.7) or the
last 〈test〉 is reached. In the former case, the or expression
returns val without evaluating the remaining expressions.
In the latter case, the last expression is evaluated and its
values returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or ’(b c) (/ 3 0)) =⇒ (b c)

The or keyword could be defined in terms of if using
syntax-rules (see section 11.19) as follows:

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

The last 〈test〉 expression is in tail context if the or expres-
sion itself is; see section 11.20.

11.4.6. Binding constructs

The binding constructs described in this section create lo-
cal bindings for variables that are visible only in a delimited
region. The syntax of the constructs let, let*, letrec,
and letrec* is identical, but they differ in the regions (see
section 5.2) they establish for their variable bindings and
in the order in which the values for the bindings are com-
puted. In a let expression, the initial values are computed
before any of the variables become bound; in a let* expres-
sion, the bindings and evaluations are performed sequen-
tially. In a letrec or letrec* expression, all the bindings
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are in effect while their initial values are being computed,
thus allowing mutually recursive definitions. In a letrec
expression, the initial values are computed before being as-
signed to the variables; in a letrec*, the evaluations and
assignments are performed sequentially.

In addition, the binding constructs let-values and
let*-values generalize let and let* to allow multiple
variables to be bound to the results of expressions that
evaluate to multiple values. They are analogous to let and
let* in the way they establish regions: in a let-values
expression, the initial values are computed before any of
the variables become bound; in a let*-values expression,
the bindings are performed sequentially.

Note: These forms are compatible with SRFI 11 [13].

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 11.3. It is a syntax violation for a
〈variable〉 to appear more than once in the list of variables
being bound.

Semantics: The 〈init〉s are evaluated in the current envi-
ronment (in some unspecified order), the 〈variable〉s are
bound to fresh locations holding the results, the 〈body〉 is
evaluated in the extended environment, and the values of
the last expression of 〈body〉 are returned. Each binding
of a 〈variable〉 has 〈body〉 as its region.

(let ((x 2) (y 3))

(* x y)) =⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

See also named let, section 11.16.

(let* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 11.3.

Semantics: The let* form is similar to let, but the 〈init〉s
are evaluated and bindings created sequentially from left to
right, with the region of each binding including the bind-
ings to its right as well as 〈body〉. Thus the second 〈init〉
is evaluated in an environment in which the first binding
is visible and initialized, and so on.

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) =⇒ 70

Note: While the variables bound by a let expression must be

distinct, the variables bound by a let* expression need not be

distinct.

The let* keyword could be defined in terms of let using
syntax-rules (see section 11.19) as follows:

(define-syntax let*

(syntax-rules ()

((let* () body1 body2 ...)

(let () body1 body2 ...))

((let* ((name1 expr1) (name2 expr2) ...)

body1 body2 ...)

(let ((name1 expr1))

(let* ((name2 expr2) ...)

body1 body2 ...)))))

(letrec 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 11.3. It is a syntax violation for a
〈variable〉 to appear more than once in the list of variables
being bound.

Semantics: The 〈variable〉s are bound to fresh locations,
the 〈init〉s are evaluated in the resulting environment (in
some unspecified order), each 〈variable〉 is assigned to the
result of the corresponding 〈init〉, the 〈body〉 is evaluated in
the resulting environment, and the values of the last expres-
sion in 〈body〉 are returned. Each binding of a 〈variable〉
has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

=⇒ #t

One restriction on letrec is very important: it should be
possible to evaluate each 〈init〉 without assigning or refer-
ring to the value of any 〈variable〉. The restriction is nec-
essary because Scheme passes arguments by value rather
than by name. In the most common uses of letrec, all
the 〈init〉s are lambda expressions and the restriction is
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satisfied automatically. Another restriction is that the con-
tinuation of each 〈init〉 should not be invoked more than
once.

Implementation responsibilities: Implementations must de-
tect references to a 〈variable〉 during the evaluation of the
〈init〉 expressions (using one particular evaluation order
and order of evaluating the 〈init〉 expressions). If an im-
plementation detects such a violation of the restriction, it
must raise an exception with condition type &assertion.
Implementations may or may not detect that the continu-
ation of each 〈init〉 is invoked more than once. However, if
the implementation detects this, it must raise an exception
with condition type &assertion.

A sample definition of letrec in terms of simpler forms is
in appendix B.

(letrec* 〈bindings〉 〈body〉) syntax
Syntax: 〈Bindings〉 must have the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 11.3. It is a syntax violation for a
〈variable〉 to appear more than once in the list of variables
being bound.

Semantics: The 〈variable〉s are bound to fresh locations,
each 〈variable〉 is assigned in left-to-right order to the re-
sult of evaluating the corresponding 〈init〉, the 〈body〉 is
evaluated in the resulting environment, and the values of
the last expression in 〈body〉 are returned. Despite the left-
to-right evaluation and assignment order, each binding of a
〈variable〉 has the entire letrec* expression as its region,
making it possible to define mutually recursive procedures.

(letrec* ((p

(lambda (x)

(+ 1 (q (- x 1)))))

(q

(lambda (y)

(if (zero? y)

0

(+ 1 (p (- y 1))))))

(x (p 5))

(y x))

y)

=⇒ 5

One restriction on letrec* is very important: it must be
possible to evaluate each 〈init〉 without assigning or re-
ferring to the value of the corresponding 〈variable〉 or the
〈variable〉 of any of the bindings that follow it in 〈bindings〉.
The restriction is necessary because Scheme passes argu-
ments by value rather than by name. Another restriction is
that the continuation of each 〈init〉 should not be invoked
more than once.

Implementation responsibilities: Implementations must de-
tect references to a 〈variable〉 during the evaluation of the

〈init〉 expressions (using one particular evaluation order).
If an implementation detects such a violation of the re-
striction, it must raise an exception with condition type
&assertion. Implementations may or may not detect that
the continuation of each 〈init〉 is invoked more than once.
However, if the implementation detects this, it must raise
an exception with condition type &assertion.

The letrec* keyword could be defined approximately
in terms of let and set! using syntax-rules (see sec-
tion 11.19) as follows:

(define-syntax letrec*

(syntax-rules ()

((letrec* ((var1 init1) ...) body1 body2 ...)

(let ((var1 <undefined>) ...)

(set! var1 init1)

...

(let () body1 body2 ...)))))

The syntax <undefined> represents an expression that re-
turns something that, when stored in a location, causes an
exception with condition type &assertion to be raised if
an attempt to read from or write to the location occurs
before the assignments generated by the letrec* trans-
formation take place. (No such expression is defined in
Scheme.)

(let-values 〈mv-bindings〉 〈body〉) syntax

Syntax: 〈Mv-bindings〉 must have the form

((〈formals1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 11.3. It is a syntax violation for a vari-
able to appear more than once in the list of variables that
appear as part of the formals.

Semantics: The 〈init〉s are evaluated in the current en-
vironment (in some unspecified order), and the variables
occurring in the 〈formals〉 are bound to fresh locations
containing the values returned by the 〈init〉s, where the
〈formals〉 are matched to the return values in the same way
that the 〈formals〉 in a lambda expression are matched to
the actual arguments in a procedure call. Then, the 〈body〉
is evaluated in the extended environment, and the values
of the last expression of 〈body〉 are returned. Each binding
of a variable has 〈body〉 as its region. If the 〈formals〉 do
not match, an exception with condition type &assertion
is raised.

(let-values (((a b) (values 1 2))

((c d) (values 3 4)))

(list a b c d)) =⇒ (1 2 3 4)

(let-values (((a b . c) (values 1 2 3 4)))

(list a b c)) =⇒ (1 2 (3 4))

(let ((a ’a) (b ’b) (x ’x) (y ’y))
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(let-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y a b)

A sample definition of let-values in terms of simpler
forms is in appendix B.

(let*-values 〈mv-bindings〉 〈body〉) syntax

Syntax: 〈Mv-bindings〉 must have the form

((〈formals1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 is as de-
scribed in section 11.3.

The let*-values form is similar to let-values, but the
〈init〉s are evaluated and bindings created sequentially from
left to right, with the region of the bindings of each
〈formals〉 including the bindings to its right as well as
〈body〉. Thus the second 〈init〉 is evaluated in an environ-
ment in which the bindings of the first 〈formals〉 is visible
and initialized, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y x y)

Note: While all of the variables bound by a let-values expres-

sion must be distinct, the variables bound by different 〈formals〉
of a let*-values expression need not be distinct.

The following macro defines let*-values in terms of let
and let-values:

(define-syntax let*-values

(syntax-rules ()

((let*-values () body1 body2 ...)

(let () body1 body2 ...))

((let*-values (binding1 binding2 ...)

body1 body2 ...)

(let-values (binding1)

(let*-values (binding2 ...)

body1 body2 ...)))))

11.4.7. Sequencing

(begin 〈form〉 . . . ) syntax
(begin 〈expression〉 〈expression〉 . . . ) syntax

The 〈begin〉 keyword has two different roles, depending on
its context:

• It may appear as a form in a 〈body〉 (see section 11.3),
〈library body〉 (see section 7.1), or 〈top-level body〉
(see chapter 8), or directly nested in a begin form that
appears in a body. In this case, the begin form must
have the shape specified in the first header line. This
use of begin acts as a splicing form—the forms inside

the 〈body〉 are spliced into the surrounding body, as
if the begin wrapper were not actually present.

A begin form in a 〈body〉 or 〈library body〉 must be
non-empty if it appears after the first 〈expression〉
within the body.

• It may appear as an ordinary expression and must
have the shape specified in the second header line.
In this case, the 〈expression〉s are evaluated sequen-
tially from left to right, and the values of the last
〈expression〉 are returned. This expression type is used
to sequence side effects such as assignments or input
and output.

(define x 0)

(begin (set! x 5)

(+ x 1)) =⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =⇒ unspecified
and prints 4 plus 1 equals 5

The following macro, which uses syntax-rules (see sec-
tion 11.19), defines begin in terms of lambda. Note that
it covers only the expression case of begin.

(define-syntax begin

(syntax-rules ()

((begin exp1 exp2 ...)

((lambda () exp1 exp2 ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression
in the body of a lambda expression. It, too, covers only
the expression case of begin.

(define-syntax begin

(syntax-rules ()

((begin exp)

exp)

((begin exp1 exp2 ...)

(call-with-values

(lambda () exp1)

(lambda ignored

(begin exp2 ...))))))

11.5. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation
(it is symmetric, reflexive, and transitive). Of the equiva-
lence predicates described in this section, eq? is the finest
or most discriminating, and equal? is the coarsest. The
eqv? predicate is slightly less discriminating than eq?.
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(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation
on objects. Briefly, it returns #t if obj1 and obj2 should
normally be regarded as the same object and #f otherwise.
This relation is left slightly open to interpretation, but the
following partial specification of eqv? must hold for all im-
plementations.

The eqv? procedure returns #t if one of the following holds:

• Obj1 and obj2 are both booleans and are the same
according to the boolean=? procedure (section 11.8).

• Obj1 and obj2 are both symbols and are the same ac-
cording to the symbol=? procedure (section 11.10).

• Obj1 and obj2 are both exact number objects and are
numerically equal (see =, section 11.7).

• Obj1 and obj2 are both inexact number objects, are
numerically equal (see =, section 11.7, and yield the
same results (in the sense of eqv?) when passed as ar-
guments to any other procedure that can be defined as
a finite composition of Scheme’s standard arithmetic
procedures.

• Obj1 and obj2 are both characters and are the same
character according to the char=? procedure (sec-
tion 11.11).

• Both obj1 and obj2 are the empty list.

• Obj1 and obj2 are objects such as pairs, vectors,
bytevectors (library chapter 2), strings, hashtables,
records (library chapter 6), ports (library section 8.2),
or hashtables (library chapter 13) that refer to the
same locations in the store (section 5.10).

• Obj1 and obj2 are record-type descriptors that are
specified to be eqv? in library section 6.2.

Moreover, if (eqv? obj1 obj2) returns #t, then obj1 and
obj2 behave the same when passed as arguments to any
procedure that can be written as a finite composition of
Scheme’s standard procedures.

The eqv? procedure returns #f if one of the following holds:

• Obj1 and obj2 are of different types (section 11.1).

• Obj1 and obj2 are booleans for which the boolean=?
procedure returns #f.

• Obj1 and obj2 are symbols for which the symbol=?
procedure returns #f.

• One of obj1 and obj2 is an exact number object but
the other is an inexact number object.

• Obj1 and obj2 are rational number objects for which
the = procedure returns #f.

• Obj1 and obj2 yield different results (in the sense of
eqv?) when passed as arguments to any other proce-
dure that can be defined as a finite composition of
Scheme’s standard arithmetic procedures.

• Obj1 and obj2 are characters for which the char=? pro-
cedure returns #f.

• One of obj1 and obj2 is the empty list, but the other
is not.

• Obj1 and obj2 are objects such as pairs, vectors,
bytevectors (library chapter 2), strings, records (li-
brary chapter 6), ports (library section 8.2), or hashta-
bles (library chapter 13) that refer to distinct loca-
tions.

• Obj1 and obj2 are pairs, vectors, strings, or records,
or hashtables, where the applying the same accessor
(i.e. car, cdr, vector-ref, string-ref, or record ac-
cessors) to both yields results for which eqv? returns
#f.

• Obj1 and obj2 are procedures that would behave dif-
ferently (return different values or have different side
effects) for some arguments.

Note: The eqv? procedure returning #t when obj1 and obj2
are number objects does not imply that = would also return #t

when called with obj1 and obj2 as arguments.

(eqv? ’a ’a) =⇒ #t

(eqv? ’a ’b) =⇒ #f

(eqv? 2 2) =⇒ #t

(eqv? ’() ’()) =⇒ #t

(eqv? 100000000 100000000) =⇒ #t

(eqv? (cons 1 2) (cons 1 2))=⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f

(eqv? #f ’nil) =⇒ #f

(let ((p (lambda (x) x)))

(eqv? p p)) =⇒ unspecified

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "" "") =⇒ unspecified
(eqv? ’#() ’#()) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified
(eqv? +nan.0 +nan.0) =⇒ unspecified
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The next set of examples shows the use of eqv? with proce-
dures that have local state. Calls to gen-counter must re-
turn a distinct procedure every time, since each procedure
has its own internal counter. Calls to gen-loser return
procedures that behave pairwise equivalent when called.
However, eqv? is not required to detect this equivalence.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))

(eqv? g g)) =⇒ unspecified
(eqv? (gen-counter) (gen-counter))

=⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) =⇒ unspecified
(eqv? (gen-loser) (gen-loser))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g))

=⇒ #f

Since the effect of trying to modify constant objects (those
returned by literal expressions) is unspecified, implementa-
tions are permitted, though not required, to share structure
between constants where appropriate. Furthermore, a con-
stant may be copied at any time by the implementation so
as to exist simultaneously in different sets of locations, as
noted in section 5.10. Thus the value of eqv? on constants
is sometimes implementation-dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified
but see below

(eqv? "a" "a") =⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified
(let ((x ’(a)))

(eqv? x x)) =⇒ #t

Note: Library section 6.1 elaborates on the semantics of eqv?

on record objects.

(eq? obj1 obj2) procedure

The eq? predicate is similar to eqv? except that in some
cases it is capable of discerning distinctions finer than those
detectable by eqv?.

The eq? and eqv? predicates are guaranteed to have the
same behavior on symbols, booleans, the empty list, pairs,

procedures, non-empty strings, bytevectors, and vectors,
and records. The behavior of eq? on number objects and
characters is implementation-dependent, but it always re-
turns either #t or #f, and returns #t only when eqv? would
also return #t. The eq? predicate may also behave differ-
ently from eqv? on empty vectors, empty bytevectors, and
empty strings.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ #f

(eq? "a" "a") =⇒ unspecified
(eq? "" "") =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? #\A #\A) =⇒ unspecified
(eq? car car) =⇒ #t

(let ((n (+ 2 3)))

(eq? n n)) =⇒ unspecified
(let ((x ’(a)))

(eq? x x)) =⇒ #t

(let ((x ’#()))

(eq? x x)) =⇒ unspecified
(let ((p (lambda (x) x)))

(eq? p p)) =⇒ unspecified

(equal? obj1 obj2) procedure

The equal? predicate returns #t if and only if the (possibly
infinite) unfoldings of its arguments into regular trees are
equal as ordered trees.

The equal? predicate treats pairs and vectors as nodes
with outgoing edges, uses string=? to compare strings,
uses bytevector=? to compare bytevectors (see library
chapter 2), and uses eqv? to compare other nodes.

(equal? ’a ’a) =⇒ #t

(equal? ’(a) ’(a)) =⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t

(equal? "abc" "abc") =⇒ #t

(equal? 2 2) =⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t

(equal? ’#vu8(1 2 3 4 5)

(u8-list->bytevector

’(1 2 3 4 5)) =⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

(let* ((x (list ’a))

(y (list ’a))

(z (list x y)))

(list (equal? z (list y x))

(equal? z (list x x))))

=⇒ (#t #t)

Note: The equal? procedure must always terminate, even if

its arguments contain cycles.
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11.6. Procedure predicate

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

11.7. Arithmetic

The procedures described here implement arithmetic that
is generic over the numerical tower described in chapter 3.
The generic procedures described in this section accept
both exact and inexact number objects as arguments, per-
forming coercions and selecting the appropriate operations
as determined by the numeric subtypes of their arguments.

Library chapter 11 describes libraries that define other nu-
merical procedures.

11.7.1. Propagation of exactness and inexactness

The procedures listed below must return the mathemati-
cally correct exact result provided all their arguments are
exact:

+ - *

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt real-part imag-part

make-rectangular

The procedures listed below must return the correct ex-
act result provided all their arguments are exact, and no
divisors are zero:

/

div mod div-and-mod

div0 mod0 div0-and-mod0

The general rule is that the generic operations return the
correct exact result when all of their arguments are exact
and the result is mathematically well-defined, but return an
inexact result when any argument is inexact. Exceptions to
this rule include sqrt, exp, log, sin, cos, tan, asin, acos,
atan, expt, make-polar, magnitude, and angle, which
may (but are not required to) return inexact results even
when given exact arguments, as indicated in the specifica-
tion of these procedures.

One general exception to the rule above is that an im-
plementation may return an exact result despite inexact
arguments if that exact result would be the correct result
for all possible substitutions of exact arguments for the in-
exact ones. An example is (* 1.0 0) which may return
either 0 (exact) or 0.0 (inexact).

11.7.2. Representability of infinities and NaNs

The specification of the numerical operations is written as
though infinities and NaNs are representable, and speci-
fies many operations with respect to these number objects
in ways that are consistent with the IEEE 754 standard
for binary floating point arithmetic. An implementation
of Scheme is not required to represent infinities and NaNs;
however, an implementation must raise a continuable ex-
ception with condition type &no-infinities or &no-nans
(respectively; see library section 11.2) whenever it is unable
to represent an infinity or NaN as required by the speci-
fication. In this case, the continuation of the exception
handler is the continuation that otherwise would have re-
ceived the infinity or NaN value. This requirement also ap-
plies to conversions between number objects and external
representations, including the reading of program source
code.

11.7.3. Semantics of common operations

Some operations are the semantic basis for several arith-
metic procedures. The behavior of these operations is de-
scribed in this section for later reference.

Integer division

Scheme’s operations for performing integer division rely on
mathematical operations div, mod, div0, and mod0, that
are defined as follows:

div, mod, div0, and mod0 each accept two real numbers x1

and x2 as operands, where x2 must be nonzero.

div returns an integer, and mod returns a real. Their re-
sults are specified by

x1 div x2 = nd

x1 mod x2 = xm

where
x1 = nd ∗ x2 + xm

0 ≤ xm < |x2|

Examples:

123 div 10 = 12
123 mod 10 = 3
123 div −10 = −12
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123 mod −10 = 3
−123 div 10 = −13
−123 mod 10 = 7
−123 div −10 = 13
−123 mod −10 = 7

div0 and mod0 are like div and mod, except the result of
mod0 lies within a half-open interval centered on zero. The
results are specified by

x1 div0 x2 = nd

x1 mod0 x2 = xm

where:
x1 = nd ∗ x2 + xm

−|x2
2 | ≤ xm < |x2

2 |

Examples:

123 div0 10 = 12
123 mod0 10 = 3
123 div0 −10 = −12

123 mod0 −10 = 3
−123 div0 10 = −12
−123 mod0 10 = −3
−123 div0 −10 = 12
−123 mod0 −10 = −3

Transcendental functions

In general, the transcendental functions log, sin−1 (arc-
sine), cos−1 (arccosine), and tan−1 are multiply defined.
The value of log z is defined to be the one whose imagi-
nary part lies in the range from −π (inclusive if −0.0 is
distinguished, exclusive otherwise) to π (inclusive). log 0
is undefined.

The value of log z for non-real z is defined in terms of log
on real numbers as

log z = log |z|+ (angle z)i

where angle z is the angle of z = a · eib specified as:

angle z = b + 2πn

with −π ≤ angle z ≤ π and angle z = b + 2πn for some
integer n.

With the one-argument version of log defined this way, the
values of the two-argument-version of log, sin−1 z, cos−1 z,
tan−1 z, and the two-argument version of tan−1 are accord-
ing to the following formulæ:

log z b =
log z

log b

sin−1 z = −i log(iz +
√

1− z2)
cos−1 z = π/2− sin−1 z

tan−1 z = (log(1 + iz)− log(1− iz))/(2i)
tan−1 x y = angle(x + yi)

The range of tan−1 x y is as in the following table. The
asterisk (*) indicates that the entry applies to implemen-
tations that distinguish minus zero.

y condition x condition range of result r
y = 0.0 x > 0.0 0.0

∗ y = +0.0 x > 0.0 +0.0
∗ y = −0.0 x > 0.0 −0.0

y > 0.0 x > 0.0 0.0 < r < π
2

y > 0.0 x = 0.0 π
2

y > 0.0 x < 0.0 π
2 < r < π

y = 0.0 x < 0 π
∗ y = +0.0 x < 0.0 π
∗ y = −0.0 x < 0.0 −π

y < 0.0 x < 0.0 −π < r < −π
2

y < 0.0 x = 0.0 −π
2

y < 0.0 x > 0.0 −π
2 < r < 0.0

y = 0.0 x = 0.0 undefined
∗ y = +0.0 x = +0.0 +0.0
∗ y = −0.0 x = +0.0 −0.0
∗ y = +0.0 x = −0.0 π
∗ y = −0.0 x = −0.0 −π
∗ y = +0.0 x = 0 π

2
∗ y = −0.0 x = 0 −π

2

11.7.4. Numerical operations

Numerical type predicates

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument. They return #t if the object is a number ob-
ject of the named type, and #f otherwise. In general, if a
type predicate is true of a number object then all higher
type predicates are also true of that number object. Con-
sequently, if a type predicate is false of a number object,
then all lower type predicates are also false of that number
object.

If z is a complex number object, then (real? z) is
true if and only if (zero? (imag-part z)) and (exact?
(imag-part z)) are both true.

If x is a real number object, then (rational? x) is true
if and only if there exist exact integer objects k1 and k2



42 Revised5.96 Scheme

such that (= x (/ k1 k2)) and (= (numerator x) k1)
and (= (denominator x) k2) are all true. Thus infinities
and NaNs are not rational number objects.

If q is a rational number objects, then (integer? q) is
true if and only if (= (denominator q) 1) is true. If q is
not a rational number object, then (integer? q) is #f.

(complex? 3+4i) =⇒ #t

(complex? 3) =⇒ #t

(real? 3) =⇒ #t

(real? -2.5+0.0i) =⇒ #f

(real? -2.5+0i) =⇒ #t

(real? -2.5) =⇒ #t

(real? #e1e10) =⇒ #t

(rational? 6/10) =⇒ #t

(rational? 6/3) =⇒ #t

(rational? 2) =⇒ #t

(integer? 3+0i) =⇒ #t

(integer? 3.0) =⇒ #t

(integer? 8/4) =⇒ #t

(number? +nan.0) =⇒ #t

(complex? +nan.0) =⇒ #t

(real? +nan.0) =⇒ #t

(rational? +nan.0) =⇒ #f

(complex? +inf.0) =⇒ #t

(real? -inf.0) =⇒ #t

(rational? -inf.0) =⇒ #f

(integer? -inf.0) =⇒ #f

Note: Except for number?, the behavior of these type predi-

cates on inexact number objects is unreliable, because any in-

accuracy may affect the result.

(real-valued? obj) procedure
(rational-valued? obj) procedure
(integer-valued? obj) procedure

These numerical type predicates can be applied to any kind
of argument. The real-valued? procedure returns #t if
the object is a number object and is equal in the sense of
= to some real number object, or if the object is a NaN,
or a complex number object whose real part is a NaN and
whose imaginary part is zero in the sense of zero?. The
rational-valued? and integer-valued? procedures re-
turn #t if the object is a number object and is equal in the
sense of = to some object of the named type, and otherwise
they return #f.

(real-valued? +nan.0) =⇒ #t

(real-valued? +nan.0+0i) =⇒ #t

(real-valued? -inf.0) =⇒ #t

(real-valued? 3) =⇒ #t

(real-valued? -2.5+0.0i) =⇒ #t

(real-valued? -2.5+0i) =⇒ #t

(real-valued? -2.5) =⇒ #t

(real-valued? #e1e10) =⇒ #t

(rational-valued? +nan.0) =⇒ #f

(rational-valued? -inf.0) =⇒ #f

(rational-valued? 6/10) =⇒ #t

(rational-valued? 6/10+0.0i)=⇒ #t

(rational-valued? 6/10+0i) =⇒ #t

(rational-valued? 6/3) =⇒ #t

(integer-valued? 3+0i) =⇒ #t

(integer-valued? 3+0.0i) =⇒ #t

(integer-valued? 3.0) =⇒ #t

(integer-valued? 3.0+0.0i) =⇒ #t

(integer-valued? 8/4) =⇒ #t

Note: These procedures test whether a given number object

can be coerced to the specified type without loss of numerical

accuracy. Specifically, the behavior of these predicates differs

from the behavior of real?, rational?, and integer? on com-

plex number objects whose imaginary part is inexact zero.

Note: The behavior of these type predicates on inexact number

objects is unreliable, because any inaccuracy may affect the

result.

(exact? z) procedure
(inexact? z) procedure

These numerical predicates provide tests for the exactness
of a quantity. For any number object, precisely one of these
predicates is true.

(exact? 5) =⇒ #t

(inexact? +inf.0) =⇒ #t

Generic conversions

(inexact z) procedure
(exact z) procedure

The inexact procedure returns an inexact representation
of z . If inexact number objects of the appropriate type have
bounded precision, then the value returned is an inexact
number object that is nearest to the argument. If an exact
argument has no reasonably close inexact equivalent, an ex-
ception with condition type &implementation-violation
may be raised.

Note: For a real number object whose magnitude is finite but

so large that it has no reasonable finite approximation as an

inexact number, a reasonably close inexact equivalent may be

+inf.0 or -inf.0. Similarly, the inexact representation of a

complex number object whose components are finite may have

infinite components.

The exact procedure returns an exact representation of
z . The value returned is the exact number object that is
numerically closest to the argument; in most cases, the
result of this procedure should be numerically equal to
its argument. If an inexact argument has no reasonably
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close exact equivalent, an exception with condition type
&implementation-violation may be raised.

These procedures implement the natural one-to-one cor-
respondence between exact and inexact integer objects
throughout an implementation-dependent range.

The inexact and exact procedures are idempotent.

Arithmetic operations

(= z1 z2 z3 . . . ) procedure
(< x1 x2 x3 . . . ) procedure
(> x1 x2 x3 . . . ) procedure
(<= x1 x2 x3 . . . ) procedure
(>= x1 x2 x3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, and #f otherwise.

(= +inf.0 +inf.0) =⇒ #t

(= -inf.0 +inf.0) =⇒ #f

(= -inf.0 -inf.0) =⇒ #t

For any real number object x that is neither infinite nor
NaN:

(< -inf.0 x +inf.0)) =⇒ #t

(> +inf.0 x -inf.0)) =⇒ #t

For any number object z :

(= +nan.0 z) =⇒ #f

For any real number object x :

(< +nan.0 x) =⇒ #f

(> +nan.0 x) =⇒ #f

These predicates must be transitive.

Note: The traditional implementations of these predicates in

Lisp-like languages are not transitive.

Note: While it is possible to compare inexact number objects
using these predicates, the results may be unreliable because a
small inaccuracy may affect the result; this is especially true of
= and zero? (below).

When in doubt, consult a numerical analyst.

(zero? z) procedure
(positive? x) procedure
(negative? x) procedure
(odd? n) procedure
(even? n) procedure
(finite? x) procedure
(infinite? x) procedure
(nan? x) procedure

These numerical predicates test a number object for a par-
ticular property, returning #t or #f. See note above. The

zero? procedure tests if the number object is = to zero,
positive? tests whether it is greater than zero, negative?
tests whether it is less than zero, odd? tests whether it
is odd, even? tests whether it is even, finite? tests
whether it is not an infinity and not a NaN, infinite?
tests whether it is an infinity, nan? tests whether it is a
NaN.

(zero? +0.0) =⇒ #t

(zero? -0.0) =⇒ #t

(zero? +nan.0) =⇒ #f

(positive? +inf.0) =⇒ #t

(negative? -inf.0) =⇒ #t

(positive? +nan.0) =⇒ #f

(negative? +nan.0) =⇒ #f

(finite? +inf.0) =⇒ #f

(finite? 5) =⇒ #t

(finite? 5.0) =⇒ #t

(infinite? 5.0) =⇒ #f

(infinite? +inf.0) =⇒ #t

(max x1 x2 . . . ) procedure
(min x1 x2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(max 3 4) =⇒ 4

(max 3.9 4) =⇒ 4.0

For any real number object x :

(max +inf.0 x) =⇒ +inf.0

(min -inf.0 x) =⇒ -inf.0

Note: If any argument is inexact, then the result is also inexact

(unless the procedure can prove that the inaccuracy is not large

enough to affect the result, which is possible only in unusual

implementations). If min or max is used to compare number

objects of mixed exactness, and the numerical value of the result

cannot be represented as an inexact number object without loss

of accuracy, then the procedure may raise an exception with

condition type &implementation-restriction.

(+ z1 . . . ) procedure
(* z1 . . . ) procedure

These procedures return the sum or product of their argu-
ments.

(+ 3 4) =⇒ 7

(+ 3) =⇒ 3

(+) =⇒ 0

(+ +inf.0 +inf.0) =⇒ +inf.0

(+ +inf.0 -inf.0) =⇒ +nan.0

(* 4) =⇒ 4

(*) =⇒ 1

(* 5 +inf.0) =⇒ +inf.0

(* -5 +inf.0) =⇒ -inf.0
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(* +inf.0 +inf.0) =⇒ +inf.0

(* +inf.0 -inf.0) =⇒ -inf.0

(* 0 +inf.0) =⇒ 0 or +nan.0

(* 0 +nan.0) =⇒ 0 or +nan.0

(* 1.0 0) =⇒ 0 or 0.0

For any real number object x that is neither infinite nor
NaN:

(+ +inf.0 x) =⇒ +inf.0

(+ -inf.0 x) =⇒ -inf.0

For any real number object x :

(+ +nan.0 x) =⇒ +nan.0

For any real number object x that is not an exact 0:

(* +nan.0 x) =⇒ +nan.0

If any of these procedures are applied to mixed
non-rational real and non-real complex arguments,
they either raise an exception with condition type
&implementation-restriction or return an unspecified
number object.

Implementations that distinguish −0.0 should adopt be-
havior consistent with the following examples:

(+ 0.0 -0.0) =⇒ 0.0

(+ -0.0 0.0) =⇒ 0.0

(+ 0.0 0.0) =⇒ 0.0

(+ -0.0 -0.0) =⇒ -0.0

(- z) procedure
(- z1 z2 . . . ) procedure

With two or more arguments, this procedures returns the
difference of its arguments, associating to the left. With
one argument, however, it returns the additive inverse of
its argument.

(- 3 4) =⇒ -1

(- 3 4 5) =⇒ -6

(- 3) =⇒ -3

(- +inf.0 +inf.0) =⇒ +nan.0

If this procedure is applied to mixed non-rational real and
non-real complex arguments, it either raises an exception
with condition type &implementation-restriction or re-
turns an unspecified number object.

Implementations that distinguish −0.0 should adopt be-
havior consistent with the following examples:

(- 0.0) =⇒ -0.0

(- -0.0) =⇒ 0.0

(- 0.0 -0.0) =⇒ 0.0

(- -0.0 0.0) =⇒ -0.0

(- 0.0 0.0) =⇒ 0.0

(- -0.0 -0.0) =⇒ 0.0

(/ z) procedure
(/ z1 z2 . . . ) procedure

If all of the arguments are exact, then the divisors must
all be nonzero. With two or more arguments, this pro-
cedure returns the quotient of its arguments, associating
to the left. With one argument, however, it returns the
multiplicative inverse of its argument.

(/ 3 4 5) =⇒ 3/20

(/ 3) =⇒ 1/3

(/ 0.0) =⇒ +inf.0

(/ 1.0 0) =⇒ +inf.0

(/ -1 0.0) =⇒ -inf.0

(/ +inf.0) =⇒ 0.0

(/ 0 0)

=⇒ &assertion exception
(/ 3 0)

=⇒ &assertion exception
(/ 0 3.5) =⇒ 0.0

(/ 0 0.0) =⇒ +nan.0

(/ 0.0 0) =⇒ +nan.0

(/ 0.0 0.0) =⇒ +nan.0

If this procedure is applied to mixed non-rational real and
non-real complex arguments, it either raises an exception
with condition type &implementation-restriction or re-
turns an unspecified number object.

(abs x) procedure

Returns the absolute value of its argument.

(abs -7) =⇒ 7

(abs -inf.0) =⇒ +inf.0

(div-and-mod x1 x2) procedure
(div x1 x2) procedure
(mod x1 x2) procedure
(div0-and-mod0 x1 x2) procedure
(div0 x1 x2) procedure
(mod0 x1 x2) procedure

These procedures implement number-theoretic integer divi-
sion and return the results of the corresponding mathemat-
ical operations specified in section 11.7.3. In each case, x1

must be neither infinite nor a NaN, and x2 must be nonzero;
otherwise, an exception with condition type &assertion is
raised.

(div x1 x2) =⇒ x1 div x2

(mod x1 x2) =⇒ x1 mod x2

(div-and-mod x1 x2) =⇒ x1 div x2, x1 mod x2

; two return values
(div0 x1 x2) =⇒ x1 div0 x2

(mod0 x1 x2) =⇒ x1 mod0 x2

(div0-and-mod0 x1 x2)

=⇒ x1 div0 x2, x1 mod0 x2

; two return values
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(gcd n1 . . . ) procedure
(lcm n1 . . . ) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments. The result is
always non-negative.

(gcd 32 -36) =⇒ 4

(gcd) =⇒ 0

(lcm 32 -36) =⇒ 288

(lcm 32.0 -36) =⇒ 288.0

(lcm) =⇒ 1

(numerator q) procedure
(denominator q) procedure

These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined
to be 1.

(numerator (/ 6 4)) =⇒ 3

(denominator (/ 6 4)) =⇒ 2

(denominator

(inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return inexact integer objects for inexact
arguments that are not infinities or NaNs, and exact integer
objects for exact rational arguments. For such arguments,
floor returns the largest integer object not larger than x .
The ceiling procedure returns the smallest integer object
not smaller than x . The truncate procedure returns the
integer object closest to x whose absolute value is not larger
than the absolute value of x . The round procedure returns
the closest integer object to x , rounding to even when x
represents a number halfway between two integers.

Note: If the argument to one of these procedures is inexact,

then the result is also inexact. If an exact value is needed, the

result should be passed to the exact procedure.

Although infinities and NaNs are not integer objects, these
procedures return an infinity when given an infinity as an
argument, and a NaN when given a NaN.

(floor -4.3) =⇒ -5.0

(ceiling -4.3) =⇒ -4.0

(truncate -4.3) =⇒ -4.0

(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0

(ceiling 3.5) =⇒ 4.0

(truncate 3.5) =⇒ 3.0

(round 3.5) =⇒ 4.0

(round 7/2) =⇒ 4

(round 7) =⇒ 7

(floor +inf.0) =⇒ +inf.0

(ceiling -inf.0) =⇒ -inf.0

(round +nan.0) =⇒ +nan.0

(rationalize x1 x2) procedure

The rationalize procedure returns the a number object
representing the simplest rational number differing from x1

by no more than x2. A rational number r1 is simpler than
another rational number r2 if r1 = p1/q1 and r2 = p2/q2

(in lowest terms) and |p1| ≤ |p2| and |q1| ≤ |q2|. Thus
3/5 is simpler than 4/7. Although not all rationals are
comparable in this ordering (consider 2/7 and 3/5) any
interval contains a rational number that is simpler than
every other rational number in that interval (the simpler
2/5 lies between 2/7 and 3/5). Note that 0 = 0/1 is the
simplest rational of all.

(rationalize (exact .3) 1/10)

=⇒ 1/3

(rationalize .3 1/10)

=⇒ #i1/3 ; approximately

(rationalize +inf.0 3) =⇒ +inf.0

(rationalize +inf.0 +inf.0) =⇒ +nan.0

(rationalize 3 +inf.0) =⇒ 0.0

The first two examples hold only in implementations whose
inexact real number objects have sufficient precision.

(exp z) procedure
(log z) procedure
(log z1 z2) procedure
(sin z) procedure
(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan z) procedure
(atan x1 x2) procedure

These procedures compute the usual transcendental func-
tions. The exp procedure computes the base-e exponential
of z . The log procedure with a single argument computes
the natural logarithm of z (not the base ten logarithm);
(log z1 z2) computes the base-z2 logarithm of z1. The
asin, acos, and atan procedures compute arcsine, arc-
cosine, and arctangent, respectively. The two-argument
variant of atan computes (angle (make-rectangular x2

x1)).

See section 11.7.3 for the underlying mathematical opera-
tions. These procedures may return inexact results even
when given exact arguments.
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(exp +inf.0) =⇒ +inf.0

(exp -inf.0) =⇒ 0.0

(log +inf.0) =⇒ +inf.0

(log 0.0) =⇒ -inf.0

(log 0)

=⇒ &assertion exception
(log -inf.0)

=⇒ +inf.0+3.141592653589793i

; approximately
(atan -inf.0)

=⇒ -1.5707963267948965 ; approximately
(atan +inf.0)

=⇒ 1.5707963267948965 ; approximately
(log -1.0+0.0i)

=⇒ 0.0+3.141592653589793i ; approximately
(log -1.0-0.0i)

=⇒ 0.0-3.141592653589793i ; approximately
; if -0.0 is distinguished

(sqrt z) procedure

Returns the principal square root of z . For rational z ,
the result has either positive real part, or zero real part
and non-negative imaginary part. With log defined as in
section 11.7.3, the value of (sqrt z) could be expressed as
e

log z
2 .

The sqrt procedure may return an inexact result even
when given an exact argument.

(sqrt -5)

=⇒ 0.0+2.23606797749979i ; approximately
(sqrt +inf.0) =⇒ +inf.0

(sqrt -inf.0) =⇒ +inf.0i

(exact-integer-sqrt k) procedure

The exact-integer-sqrt procedure returns two non-
negative exact integer objects s and r where k = s2 + r
and k < (s + 1)2.

(exact-integer-sqrt 4) =⇒ 2, 0

; two return values
(exact-integer-sqrt 5) =⇒ 2, 1

; two return values

(expt z1 z2) procedure

Returns z1 raised to the power z2. For nonzero z1, this
is ez2 log z1 . 0.0z is 1.0 if z = 0.0, and 0.0 if (real-part
z) is positive. For other cases in which the first argument
is zero, either an exception is raised with condition type
&implementation-restriction, or an unspecified num-
ber object is returned.

For an exact real number object z1 and an exact integer
object z2, (expt z1 z2) must return an exact result. For
all other values of z1 and z2, (expt z1 z2) may return an
inexact result, even when both z1 and z2 are exact.

(expt 5 3) =⇒ 125

(expt 5 -3) =⇒ 1/125

(expt 5 0) =⇒ 1

(expt 0 5) =⇒ 0

(expt 0 5+.0000312i) =⇒ 0

(expt 0 -5) =⇒ unspecified
(expt 0 -5+.0000312i) =⇒ unspecified
(expt 0 0) =⇒ 1

(expt 0.0 0.0) =⇒ 1.0

(make-rectangular x1 x2) procedure
(make-polar x3 x4) procedure
(real-part z) procedure
(imag-part z) procedure
(magnitude z) procedure
(angle z) procedure

Suppose a1, a2, a3, and a4 are real numbers, and c is a
complex number object such that the following holds:

c = a1 + a2i = a3e
ia4

Then, if x1, x2, x3, and x4 are number objects representing
a1, a2, a3, and a4, respectively, (make-rectangular x1

x2) returns c, and (make-polar x3 x4) returns c.
(make-rectangular 1.1 2.2)

=⇒ 1.1+2.2i ; approximately
(make-polar 1.1 2.2)

=⇒ 1.1@2.2 ; approximately

Conversely, if −π ≤ a4 ≤ π, and if z is a number object rep-
resenting c, then (real-part z) returns a1 (imag-part
z) returns a2, (magnitude z) returns a3, and (angle z)
returns a4.

(real-part 1.1+2.2i) =⇒ 1.1 ; approximately
(imag-part 1.1+2.2i) =⇒ 2.2i ; approximately
(magnitude 1.1@2.2) =⇒ 1.1 ; approximately
(angle 1.1@2.2) =⇒ 2.2 ; approximately

(angle -1.0)

=⇒ 3.141592653589793 ; approximately
(angle -1.0+0.0i)

=⇒ 3.141592653589793 ; approximately
(angle -1.0-0.0i)

=⇒ -3.141592653589793 ; approximately
; if -0.0 is distinguished

(angle +inf.0) =⇒ 0.0

(angle -inf.0)

=⇒ 3.141592653589793 ; approximately

Moreover, suppose x1, x2 are such that either x1 or x2 is an
infinity, then

(make-rectangular x1 x2) =⇒ z
(magnitude z) =⇒ +inf.0

The make-polar, magnitude, and angle procedures may
return inexact results even when given exact arguments.

(angle -1)

=⇒ 3.141592653589793 ; approximately
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Numerical Input and Output

(number->string z) procedure
(number->string z radix) procedure
(number->string z radix precision) procedure

Radix must be an exact integer object, either 2, 8, 10,
or 16. If omitted, radix defaults to 10. If a precision
is specified, then z must be an inexact complex number
object, precision must be an exact positive integer object,
and radix must be 10. The number->string procedure
takes a number object and a radix and returns as a string
an external representation of the given number object in
the given radix such that

(let ((number z) (radix radix))
(eqv? (string->number

(number->string number radix)

radix)

number))

is true. If no possible result makes this ex-
pression true, an exception with condition type
&implementation-restriction is raised.

Note: The error case can occur only when z is not a com-

plex number object or is a complex number object with a non-

rational real or imaginary part.

If a precision is specified, then the representations of the
inexact real components of the result, unless they are infi-
nite or NaN, specify an explicit 〈mantissa width〉 p, and p
is the least p ≥ precision for which the above expression is
true.

If z is inexact, the radix is 10, and the above expression
and condition can be satisfied by a result that contains a
decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive
of exponent, trailing zeroes, and mantissa width) needed
to make the above expression and condition true [4, 7];
otherwise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

(string->number string) procedure
(string->number string radix) procedure

Returns a number object with maximally precise represen-
tation expressed by the given string . Radix must be an
exact integer object, either 2, 8, 10, or 16. If supplied,
radix is a default radix that may be overridden by an ex-
plicit radix prefix in string (e.g., "#o177"). If radix is not
supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number object or a nota-
tion for a rational number object with a zero denominator,
then string->number returns #f.

(string->number "100") =⇒ 100

(string->number "100" 16) =⇒ 256

(string->number "1e2") =⇒ 100.0

(string->number "15##") =⇒ 1500.0

(string->number "0/0") =⇒ #f

(string->number "+inf.0") =⇒ +inf.0

(string->number "-inf.0") =⇒ -inf.0

(string->number "+nan.0") =⇒ +nan.0

Note: The string->number procedure always returns a number

or #f; it never raises an exception.

11.8. Booleans

The standard boolean objects for true and false are writ-
ten as #t and #f. However, of all the standard Scheme
values, only #f counts as false in conditional expressions.
See section 5.7.

Note: Programmers accustomed to other dialects of Lisp

should be aware that Scheme distinguishes both #f and the

empty list from each other and from the symbol nil.

(not obj) procedure

Returns #t if obj is #f, and returns #f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not (list 3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not (list)) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure

Returns #t if obj is either #t or #f and returns #f other-
wise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f

(boolean=? bool1 bool2 bool3 . . . ) procedure

Returns #t if the booleans are the same.

11.9. Pairs and lists

A pair is a compound structure with two fields called the
car and cdr fields (for historical reasons). Pairs are created
by the procedure cons. The car and cdr fields are accessed
by the procedures car and cdr.

Pairs are used primarily to represent lists. A list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that
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• The empty list is in X .

• If list is in X , then any pair whose cdr field contains
list is also in X .

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

The empty list is a special object of its own type. It is not
a pair. It has no elements and its length is zero.

Note: The above definitions imply that all lists have finite

length and are terminated by the empty list.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored
in the cdr field.

(pair? obj) procedure

Returns #t if obj is a pair, and otherwise returns #f.

(pair? ’(a . b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons "a" ’(b c)) =⇒ ("a" b c)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair .

(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car ’(1 . 2)) =⇒ 1

(car ’()) =⇒ &assertion exception

(cdr pair) procedure

Returns the contents of the cdr field of pair .

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr ’(1 . 2)) =⇒ 2

(cdr ’()) =⇒ &assertion exception

(caar pair) procedure
(cadr pair) procedure

...
...

(cdddar pair) procedure
(cddddr pair) procedure

These procedures are compositions of car and cdr, where
for example caddr could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided.
There are twenty-eight of these procedures in all.

(null? obj) procedure

Returns #t if obj is the empty list. Otherwise, returns #f.

(list? obj) procedure

Returns #t if obj is a list. Otherwise, returns #f. By
definition, all lists are chains of pairs that have finite length
and are terminated by the empty list.

(list? ’(a b c)) =⇒ #t

(list? ’()) =⇒ #t

(list? ’(a . b)) =⇒ #f

(list obj . . . ) procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)

(list) =⇒ ()

(length list) procedure

Returns the length of list .

(length ’(a b c)) =⇒ 3

(length ’(a (b) (c d e))) =⇒ 3

(length ’()) =⇒ 0

(append list . . . obj) procedure

Returns a possibly improper list consisting of the elements
of the first list followed by the elements of the other lists,
with obj as the cdr of the final pair. An improper list
results if obj is not a list.
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(append ’(x) ’(y)) =⇒ (x y)

(append ’(a) ’(b c d)) =⇒ (a b c d)

(append ’(a (b)) ’((c))) =⇒ (a (b) (c))

(append ’(a b) ’(c . d)) =⇒ (a b c . d)

(append ’() ’a) =⇒ a

If append constructs a nonempty chain of pairs, it is always
newly allocated. If no pairs are allocated, obj is returned.

(reverse list) procedure

Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c)) =⇒ (c b a)

(reverse ’(a (b c) d (e (f))))

=⇒ ((e (f)) d (b c) a)

(list-tail list k) procedure

List should be a list of size at least k .

The list-tail procedure returns the subchain of pairs of
list obtained by omitting the first k elements.

(list-tail ’(a b c d) 2) =⇒ (c d)

Implementation responsibilities: The implementation must
check that list is a chain of pairs whose length is at least
k . It should not check that it is a chain of pairs beyond
this length.

(list-ref list k) procedure

List must be a list whose length is at least k + 1.

Returns the kth element of list .

(list-ref ’(a b c d) 2) =⇒ c

Implementation responsibilities: The implementation must
check that list is a chain of pairs whose length is at least
k + 1. It should not check that it is a list of pairs beyond
this length.

(map proc list1 list2 . . . ) procedure

The lists should all have the same length. Proc should
accept as many arguments as there are lists and return a
single value. Proc should not mutate any of the lists.

The map procedure applies proc element-wise to the ele-
ments of the lists and returns a list of the results, in order.
Proc is always called in the same dynamic environment as
map itself. The dynamic order in which proc is applied to
the elements of the lists is unspecified. If multiple returns
occur from map, the values returned by earlier returns are
not mutated.

(map cadr ’((a b) (d e) (g h)))

=⇒ (b e h)

(map (lambda (n) (expt n n))

’(1 2 3 4 5))

=⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6)) =⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b))) =⇒ (1 2) or (2 1)

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on proc to the
extent performed by applying it as described. An imple-
mentation may check whether proc is an appropriate argu-
ment before applying it.

(for-each proc list1 list2 . . . ) procedure

The lists should all have the same length. Proc should
accept as many arguments as there are lists. Proc should
not mutate any of the lists.

The for-each procedure applies proc element-wise to the
elements of the lists for its side effects, in order from the
first elements to the last. Proc is always called in the same
dynamic environment as for-each itself. The return val-
ues of for-each are unspecified.

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(for-each (lambda (x) x) ’(1 2 3 4))

=⇒ 4

(for-each even? ’()) =⇒ unspecified

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on proc to the
extent performed by applying it as described. An imple-
mentation may check whether proc is an appropriate argu-
ment before applying it.

Note: Implementations of for-each may or may not tail-call

proc on the last elements.

11.10. Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eq?, eqv? and
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equal?) if and only if their names are spelled the same
way. A symbol literal is formed using quote.

Hello =⇒ Hello

’H\x65;llo =⇒ Hello

’λ =⇒ λ
’\x3BB; =⇒ λ
(string->symbol "a b") =⇒ a\x20;b

(string->symbol "a\\b") =⇒ a\x5C;b

’a\x20;b =⇒ a\x20;b

’|a b| ; syntax violation
; (illegal character
; vertical bar)

’a\nb ; syntax violation
; (illegal use of backslash)

’a\x20 ; syntax violation
; (missing semi-colon to
; terminate \x escape)

(symbol? obj) procedure
Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol->string symbol) procedure
Returns the name of symbol as an immutable string.

(symbol->string ’flying-fish)

=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"

(symbol->string

(string->symbol "Malvina"))

=⇒ "Malvina"

(symbol=? symbol1 symbol2 symbol3 . . . ) procedure
Returns #t if the symbols are the same, i.e., if their names
are spelled the same.

(string->symbol string) procedure
Returns the symbol whose name is string .

(eq? ’mISSISSIppi ’mississippi)

=⇒ #f

(string->symbol "mISSISSIppi")

=⇒ the symbol with name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt"))

=⇒ #t

(eq? ’JollyWog

(string->symbol

(symbol->string ’JollyWog)))

=⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D.")))

=⇒ #t

11.11. Characters

Characters are objects that represent Unicode scalar val-
ues [27].
Note: Unicode defines a standard mapping between sequences
of Unicode scalar values (integers in the range 0 to #x10FFFF,
excluding the range #xD800 to #xDFFF) in the latest version
of the standard) and human-readable “characters”. More pre-
cisely, Unicode distinguishes between glyphs, which are printed
for humans to read, and characters, which are abstract enti-
ties that map to glyphs (sometimes in a way that’s sensitive
to surrounding characters). Furthermore, different sequences of
scalar values sometimes correspond to the same character. The
relationships among scalar, characters, and glyphs are subtle
and complex.

Despite this complexity, most things that a literate human
would call a “character” can be represented by a single Uni-
code scalar value (though several sequences of Unicode scalar
values may represent that same character). For example, Ro-
man letters, Cyrillic letters, Hebrew consonants, and most Chi-
nese characters fall into this category.

Unicode scalar values exclude the range #xD800 to #xDFFF,

which are part of the range of Unicode code points. However,

these the Unicode scalar values in this range, the so-called sur-

rogates, are an artefact of the UTF-16 encoding, and can only

appear in specific Unicode encodings, and even then only in

pairs that encode scalar values. Consequently, all characters

represent code points, but the surrogate code points do not

have representations as characters.

(char? obj) procedure

Returns #t if obj is a character, otherwise returns #f.

(char->integer char) procedure
(integer->char sv) procedure

Sv must be a Unicode scalar value, i.e., a non-negative ex-
act integer object in [0,#xD7FF]∪ [#xE000,#x10FFFF].

Given a character, char->integer returns its Unicode
scalar value as an exact integer object. For a Unicode scalar
value sv , integer->char returns its associated character.

(integer->char 32) =⇒ #\space

(char->integer (integer->char 5000))

=⇒ 5000

(integer->char #\xD800) =⇒ &assertion exception

(char=? char1 char2 char3 . . . ) procedure
(char<? char1 char2 char3 . . . ) procedure
(char>? char1 char2 char3 . . . ) procedure
(char<=? char1 char2 char3 . . . ) procedure
(char>=? char1 char2 char3 . . . ) procedure

These procedures impose a total ordering on the set of
characters according to their Unicode scalar values.

(char<? #\z #\ß) =⇒ #t

(char<? #\z #\Z) =⇒ #f
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11.12. Strings

Strings are sequences of characters.

The length of a string is the number of characters that it
contains. This number is fixed when the string is created,
and represented by an exact, non-negative integer object.
The valid indices of a string are the exact non-negative
integer objects less than the length of the string. The first
character of a string has index 0, the second has index 1,
and so on.

In phrases such as “the characters of string beginning with
index start and ending with index end”, it is understood
that the index start is inclusive and the index end is ex-
clusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the
length of string , then the entire string is referred to.

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure

Returns a newly allocated string of length k . If char is
given, then all elements of the string are initialized to char ,
otherwise the contents of the string are unspecified.

(string char . . . ) procedure

Returns a newly allocated string composed of the argu-
ments.

(string-length string) procedure

Returns the number of characters in the given string as an
exact integer object.

(string-ref string k) procedure

K must be a valid index of string . The string-ref proce-
dure returns character k of string using zero-origin index-
ing. Note: Implementors are encouraged to make string-ref

run in constant time.

(string=? string1 string2 string3 . . . ) procedure

Returns #t if the strings are the same length and contain
the same characters in the same positions. Otherwise, re-
turns #f.

(string=? "Straße" "Strasse")=⇒ #f

(string<? string1 string2 string3 . . . ) procedure
(string>? string1 string2 string3 . . . ) procedure
(string<=? string1 string2 string3 . . . ) procedure
(string>=? string1 string2 string3 . . . ) procedure

These procedures are the lexicographic extensions to
strings of the corresponding orderings on characters. For
example, string<? is the lexicographic ordering on strings
induced by the ordering char<? on characters. If two
strings differ in length but are the same up to the length
of the shorter string, the shorter string is considered to be
lexicographically less than the longer string.

(string<? "z" "ß") =⇒ #t

(string<? "z" "zz") =⇒ #t

(string<? "z" "Z") =⇒ #f

(substring string start end) procedure

String must be a string, and start and end must be exact
integer objects satisfying

0 ≤ start ≤ end ≤ (string-length string).

The substring procedure returns a newly allocated string
formed from the characters of string beginning with index
start (inclusive) and ending with index end (exclusive).

(string-append string . . . ) procedure

Returns a newly allocated string whose characters form the
concatenation of the given strings.

(string->list string) procedure
(list->string list) procedure

List must be a list of characters. The string->list pro-
cedure returns a newly allocated list of the characters that
make up the given string. The list->string procedure re-
turns a newly allocated string formed from the characters
in list . The string->list and list->string procedures
are inverses so far as equal? is concerned.

(string-for-each proc string1 string2 . . . ) procedure

The strings must all have the same length. Proc should
accept as many arguments as there are strings. The
string-for-each procedure applies proc element-wise to
the characters of the strings for its side effects, in order
from the first characters to the last. Proc is always called in
the same dynamic environment as string-for-each itself.
The return values of string-for-each are unspecified.

Analogous to for-each.

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
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whether proc is an appropriate argument before applying
it.

(string-copy string) procedure

Returns a newly allocated copy of the given string .

11.13. Vectors

Vectors are heterogeneous structures whose elements are
indexed by integers. A vector typically occupies less space
than a list of the same length, and the average time re-
quired to access a randomly chosen element is typically
less for the vector than for the list.

The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
fixed when the vector is created, and represented by an
exact integer object. The valid indices of a vector are the
exact non-negative integer objects less than the length of
the vector. The first element in a vector is indexed by zero,
and the last element is indexed by one less than the length
of the vector.

Like list constants, vector constants must be quoted:

’#(0 (2 2 2 2) "Anna")

=⇒ #(0 (2 2 2 2) "Anna")

(vector? obj) procedure

Returns #t if obj is a vector. Otherwise the procedure
returns #f.

(make-vector k) procedure
(make-vector k fill) procedure

Returns a newly allocated vector of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(vector obj . . . ) procedure

Returns a newly allocated vector whose elements contain
the given arguments. Analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure

Returns the number of elements in vector as an exact in-
teger object.

(vector-ref vector k) procedure

K must be a valid index of vector . The vector-ref pro-
cedure returns the contents of element k of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

(exact (round (* 2 (acos -1)))))

=⇒ 13

(vector-set! vector k obj) procedure

K must be a valid index of vector . The vector-set! pro-
cedure stores obj in element k of vector . The value re-
turned by vector-set! is unspecified.

Passing an immutable vector to vector-set! should cause
an exception with condition type &assertion to be raised.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

=⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")

=⇒ unspecified
; constant vector

; should raise &assertion exception

(vector->list vector) procedure
(list->vector list) procedure

The vector->list procedure returns a newly allocated list
of the objects contained in the elements of vector . The
list->vector procedure returns a newly created vector
initialized to the elements of the list list .

(vector->list ’#(dah dah didah))

=⇒ (dah dah didah)

(list->vector ’(dididit dah))

=⇒ #(dididit dah)

(vector-fill! vector fill) procedure

Stores fill in every element of vector and returns the un-
specified value.

(vector-map proc vector1 vector2 . . . ) procedure

The vectors must all have the same length. Proc should
accept as many arguments as there are vectors and return
a single value.

The vector-map procedure applies proc element-wise to
the elements of the vectors and returns a vector of the re-
sults, in order. Proc is always called in the same dynamic
environment as vector-map itself. The dynamic order in
which proc is applied to the elements of the vectors is un-
specified. If multiple returns occur from vector-map, the
return values returned by earlier returns are not mutated.

Analogous to map.
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Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

(vector-for-each proc vector1 vector2 . . . ) procedure

The vectors must all have the same length. Proc should
accept as many arguments as there are vectors. The
vector-for-each procedure applies proc element-wise to
the elements of the vectors for its side effects, in order
from the first elements to the last. Proc is always called in
the same dynamic environment as vector-for-each itself.
The return values of vector-for-each are unspecified.

Analogous to for-each.

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

11.14. Errors and violations

(error who message irritant1 . . . ) procedure
(assertion-violation who message irritant1 . . . )

procedure

Who must be a string or a symbol or #f. Message must
be a string. The irritants are arbitrary objects.

These procedures raise an exception. The error proce-
dure should be called when an error has occurred, typically
caused by something that has gone wrong in the interaction
of the program with the external world or the user. The
assertion-violation procedure should be called when an
invalid call to a procedure was made, either passing an in-
valid number of arguments, or passing an argument that it
is not specified to handle.

The who argument should describe the procedure or oper-
ation that detected the exception. The message argument
should describe the exceptional situation. The irritants
should be the arguments to the operation that detected
the operation.

The condition object provided with the exception (see li-
brary chapter 7) has the following condition types:

• If who is not #f, the condition has condition type &who,
with who as the value of the who field. In that case,
who should be the name of the procedure or entity
that detected the exception. If it is #f, the condition
does not have condition type &who.

• The condition has condition type &message, with
message as the value of the message field.

• The condition has condition type &irritants, and the
irritants field has as its value a list of the irritants.

Moreover, the condition created by error has con-
dition type &error, and the condition created by
assertion-violation has condition type &assertion.

(define (fac n)

(if (not (integer-valued? n))

(assertion-violation

’fac "non-integral argument" n))

(if (negative? n)

(assertion-violation

’fac "negative argument" n))

(letrec

((loop (lambda (n r)

(if (zero? n)

r

(loop (- n 1) (* r n))))))

(loop n 1)))

(fac 5) =⇒ 120

(fac 4.5) =⇒ &assertion exception
(fac -3) =⇒ &assertion exception

(assert 〈expression〉) syntax

An assert form is evaluated by evaluating 〈expression〉.
If 〈expression〉 returns a true value, that value is returned
from the assert expression. If 〈expression〉 returns #f, an
exception with condition types &assertion and &message
is raised. The message provided in the condition object is
implementation-dependent.

Note: Implementations should exploit the fact that assert is

syntax to provide as much information as possible about the

location of the assertion failure.

11.15. Control features

This chapter describes various primitive procedures which
control the flow of program execution in special ways.

(apply proc arg1 . . . rest-args) procedure

Rest-args must be a list. Proc should accept n arguments,
where n is number of args plus the length of rest-args.
Calls proc with the elements of the list (append (list
arg1 . . . ) rest-args) as the actual arguments.

(apply + (list 3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args
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(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

Proc should accept one argument. The procedure
call-with-current-continuation (which is the same as
the procedure call/cc) packages the current continuation
as an “escape procedure” and passes it as an argument to
proc. The escape procedure is a Scheme procedure that,
if it is later called, will abandon whatever continuation is
in effect at that later time and will instead reinstate the
continuation that was in effect when the escape procedure
was created. Calling the escape procedure may cause the
invocation of before and after procedures installed using
dynamic-wind.

The escape procedure accepts the same number of ar-
guments as the continuation of the original call to
call-with-current-continuation.

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It may be
stored in variables or data structures and may be called as
many times as desired.

The following examples show only some ways in which
call-with-current-continuation is used. If all real
uses were as simple as these examples, there would
be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) =⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f

(call-with-current-continuation procedure?)

=⇒ #t

Note: Calling an escape procedure reenters the dynamic ex-

tent of the call to call-with-current-continuation, and thus

restores its dynamic environment; see section 5.12.

(values obj . . .) procedure

Delivers all of its arguments to its continuation. The
values procedure might be defined as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

The continuations of all non-final expressions within a se-
quence of expressions in lambda, begin, let, let*, letrec,
letrec*, let-values, let*-values, case, cond, and do
forms as well as the continuations of the before and after
arguments to dynamic-wind take an arbitrary number of
values.

Except for these and the continuations created by
call-with-values, let-values, and let*-values, all
other continuations take exactly one value. The effect of
passing an inappropriate number of values to a continu-
ation not created by call-with-values, let-values, or
let*-values is undefined.

(call-with-values producer consumer) procedure

Producer must be a procedure and should accept zero argu-
ments. Consumer must be a procedure and should accept
as many values as producer returns. Calls producer with
no arguments and a continuation that, when passed some
values, calls the consumer procedure with those values as
arguments. The continuation for the call to consumer is
the continuation of the call to call-with-values.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

=⇒ 5

(call-with-values * -) =⇒ -1

Implementation responsibilities: After producer returns,
the implementation must check that consumer accepts as
many values as consumer has returned.

(dynamic-wind before thunk after) procedure

Before, thunk , and after must be procedures, and each
should accept zero arguments. These procedures may re-
turn any number of values. The dynamic-wind proce-
dure calls thunk without arguments, returning the results
of this call. Moreover, dynamic-wind calls before with-
out arguments whenever the dynamic extent of the call to
thunk is entered, and after without arguments whenever
the dynamic extent of the call to thunk is exited. Thus,
in the absence of calls to escape procedures created by
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call-with-current-continuation, dynamic-wind calls
before, thunk , and after , in that order.

While the calls to before and after are not considered to
be within the dynamic extent of the call to thunk , calls
to the before and after procedures of any other calls to
dynamic-wind that occur within the dynamic extent of the
call to thunk are considered to be within the dynamic ex-
tent of the call to thunk .

More precisely, an escape procedure transfers control out
of the dynamic extent of a set of zero or more active
dynamic-wind calls x . . . and transfer control into the dy-
namic extent of a set of zero or more active dynamic-wind
calls y . . .. It leaves the dynamic extent of the most re-
cent x and calls without arguments the corresponding after
procedure. If the after procedure returns, the escape pro-
cedure proceeds to the next most recent x, and so on. Once
each x has been handled in this manner, the escape pro-
cedure calls without arguments the before procedure cor-
responding to the least recent y. If the before procedure
returns, the escape procedure reenters the dynamic extent
of the least recent y and proceeds with the next least recent
y, and so on. Once each y has been handled in this man-
ner, control is transferred to the continuation packaged in
the escape procedure.

Implementation responsibilities: The implementation must
check the restrictions on thunk and after only if they are
actually called.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

=⇒ (connect talk1 disconnect

connect talk2 disconnect)

(let ((n 0))

(call-with-current-continuation

(lambda (k)

(dynamic-wind

(lambda ()

(set! n (+ n 1))

(k))

(lambda ()

(set! n (+ n 2)))

(lambda ()

(set! n (+ n 4))))))

n) =⇒ 1

(let ((n 0))

(call-with-current-continuation

(lambda (k)

(dynamic-wind

values

(lambda ()

(dynamic-wind

values

(lambda ()

(set! n (+ n 1))

(k))

(lambda ()

(set! n (+ n 2))

(k))))

(lambda ()

(set! n (+ n 4))))))

n) =⇒ 7

Note: Entering a dynamic extent restores its dynamic environ-

ment; see section 5.12.

11.16. Iteration

(let 〈variable〉 〈bindings〉 〈body〉) syntax

“Named let” is a variant on the syntax of let which pro-
vides a general looping construct and may also be used to
express recursion. It has the same syntax and semantics as
ordinary let except that 〈variable〉 is bound within 〈body〉
to a procedure whose formal arguments are the bound vari-
ables and whose body is 〈body〉. Thus the execution of
〈body〉 may be repeated by invoking the procedure named
by 〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers) (list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

((< (car numbers) 0)

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

11.17. Quasiquotation

(quasiquote 〈qq template〉) syntax
unquote auxiliary syntax
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unquote-splicing auxiliary syntax

“Backquote” or “quasiquote” expressions are useful for
constructing a list or vector structure when some but not
all of the desired structure is known in advance.

Syntax: 〈Qq template〉 should be as specified by the gram-
mar at the end of this entry.

Semantics: If no unquote or unquote-splicing forms
appear within the 〈qq template〉, the result of evaluating
(quasiquote 〈qq template〉) is equivalent to the result of
evaluating (quote 〈qq template〉).

If an (unquote 〈expression〉 . . . ) form appears inside a
〈qq template〉, however, the 〈expression〉s are evaluated
(“unquoted”) and their results are inserted into the struc-
ture instead of the unquote form.

If an (unquote-splicing 〈expression〉 . . . ) form appears
inside a 〈qq template〉, then the 〈expression〉s must evalu-
ate to lists; the opening and closing parentheses of the lists
are then “stripped away” and the elements of the lists are
inserted in place of the unquote-splicing form.

Any unquote-splicing or multi-operand unquote form
must appear only within a list or vector 〈qq template〉.

As noted in section 4.3.5, (quasiquote 〈qq template〉)
may be abbreviated `〈qq template〉, (unquote
〈expression〉) may be abbreviated ,〈expression〉, and
(unquote-splicing 〈expression〉) may be abbreviated
,@〈expression〉.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)

(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

=⇒ (a 3 4 5 6 b)

`(( foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

=⇒ ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

=⇒ #(10 5 2 4 3 8)

(let ((name ’foo))

`((unquote name name name)))

=⇒ (foo foo foo)

(let ((name ’(foo)))

`((unquote-splicing name name name)))

=⇒ (foo foo foo)

(let ((q ’((append x y) (sqrt 9))))

``(foo ,,@q))

=⇒ `(foo (unquote (append x y) (sqrt 9)))

(let ((x ’(2 3))

(y ’(4 5)))

`(foo (unquote (append x y) (sqrt 9))))

=⇒ (foo (2 3 4 5) 3)

Quasiquote forms may be nested. Substitutions are made
only for unquoted components appearing at the same nest-
ing level as the outermost quasiquote. The nesting level
increases by one inside each successive quasiquotation, and
decreases by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e))

=⇒ (a `(b ,x ,’y d) e)

A quasiquote expression may return either fresh, mutable
objects or literal structure for any structure that is con-
structed at run time during the evaluation of the expres-
sion. Portions that do not need to be rebuilt are always
literal. Thus,

(let ((a 3)) `((1 2) ,a ,4 ,’five 6))

may be equivalent to either of the following expres-
sions:

’((1 2) 3 4 five 6)

(let ((a 3))

(cons ’(1 2)

(cons a (cons 4 (cons ’five ’(6))))))

However, it is not equivalent to this expression:

(let ((a 3)) (list (list 1 2) a 4 ’five 6))

It is a syntax violation if any of the identifiers quasiquote,
unquote, or unquote-splicing appear in positions within
a 〈qq template〉 otherwise than as described above.

The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an
infinite number of production rules. Imagine a copy of the
following rules for D = 1, 2, 3, . . .. D keeps track of the
nesting depth.

〈qq template〉 −→ 〈qq template 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈lexeme datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→

(unquote-splicing 〈qq template D − 1〉*)
| (unquote 〈qq template D − 1〉*)

In 〈quasiquotation〉s, a 〈list qq template D〉 can some-
times be confused with either an 〈unquotation D〉 or
a 〈splicing unquotation D〉. The interpretation as an
〈unquotation〉 or 〈splicing unquotation D〉 takes prece-
dence.
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11.18. Binding constructs for syntactic key-
words

The let-syntax and letrec-syntax forms are analogous
to let and letrec but bind keywords rather than vari-
ables. Like a begin form, a let-syntax or letrec-syntax
form may appear in a definition context, in which case it
is treated as a definition, and the forms in the body must
also be definitions. A let-syntax or letrec-syntax form
may also appear in an expression context, in which case
the forms within their bodies must be expressions.

(let-syntax 〈bindings〉 〈form〉 . . . ) syntax

Syntax: 〈Bindings〉 must have the form

((〈keyword〉 〈expression〉) . . . )

Each 〈keyword〉 is an identifier, and each 〈expression〉 is
an expression that evaluates, at macro-expansion time,
to a transformer , which is returned by syntax-rules or
identifier-syntax expressions (see section 11.19, or by
syntax-case expressions (see 12). It is a syntax violation
for 〈keyword〉 to appear more than once in the list of key-
words being bound.

Semantics: The 〈form〉s are expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax form with macros whose keywords are
the 〈keyword〉s, bound to the specified transformers. Each
binding of a 〈keyword〉 has the 〈form〉s as its region.

The 〈form〉s of a let-syntax form are treated, whether
in definition or expression context, as if wrapped in an
implicit begin; see section 11.4.7. Thus definitions in the
result of expanding the 〈form〉s have the same region as
any definition appearing in place of the let-syntax form
would have.

Implementation responsibilities: The implementation must
check that the value of each 〈expression〉 is a transformer
when the evaluation produces a value.

(let-syntax ((when (syntax-rules ()

((when test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(when if (set! if ’now))

if)) =⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) =⇒ outer

(let ()

(let-syntax

((def (syntax-rules ()

((def stuff ...) (define stuff ...)))))

(def foo 42))

foo) =⇒ 42

(let ()

(let-syntax ())

5) =⇒ 5

(letrec-syntax 〈bindings〉 〈form〉 . . . ) syntax

Syntax: Same as for let-syntax.

Semantics: The 〈form〉s are expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the letrec-syntax form with macros whose keywords
are the 〈keyword〉s, bound to the specified transformers.
Each binding of a 〈keyword〉 has the 〈bindings〉 as well
as the 〈form〉s within its region, so the transformers can
transcribe forms into uses of the macros introduced by the
letrec-syntax form.

The 〈form〉s of a letrec-syntax form are treated, whether
in definition or expression context, as if wrapped in an
implicit begin; see section 11.4.7. Thus definitions in the
result of expanding the 〈form〉s have the same region as any
definition appearing in place of the letrec-syntax form
would have.

Implementation responsibilities: The implementation must
check that the value of each 〈expression〉 is a transformer
when the 〈expression〉 evaluates to a value.

(letrec-syntax

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) =⇒ 7

The following example highlights how let-syntax and
letrec-syntax differ.

(let ((f (lambda (x) (+ x 1))))

(let-syntax ((f (syntax-rules ()

((f x) x)))

(g (syntax-rules ()

((g x) (f x)))))

(list (f 1) (g 1))))

=⇒ (1 2)
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(let ((f (lambda (x) (+ x 1))))

(letrec-syntax ((f (syntax-rules ()

((f x) x)))

(g (syntax-rules ()

((g x) (f x)))))

(list (f 1) (g 1))))

=⇒ (1 1)

The two expressions are identical except that
the let-syntax form in the first expression is a
letrec-syntax form in the second. In the first ex-
pression, the f occurring in g refers to the let-bound
variable f, whereas in the second it refers to the keyword f
whose binding is established by the letrec-syntax form.

11.19. Macro transformers

(syntax-rules (〈literal〉 ...) 〈syntax rule〉 ...)
syntax (expand)

auxiliary syntax (expand)
... auxiliary syntax (expand)

Syntax: Each 〈literal〉 must be an identifier. Each
〈syntax rule〉 must have the following form:

(〈srpattern〉 〈template〉)

An 〈srpattern〉 is a restricted form of 〈pattern〉, namely,
a nonempty 〈pattern〉 in one of four parenthesized forms
below whose first subform is an identifier or an underscore
. A 〈pattern〉 is an identifier, constant, or one of the fol-
lowing.

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 ... . 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ... . 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

A 〈template〉 is a pattern variable, an identifier that is not
a pattern variable, a pattern datum, or one of the following.

(〈subtemplate〉 ...)

(〈subtemplate〉 ... . 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more
ellipses.

Semantics: An instance of syntax-rules evaluates, at
macro-expansion time, to a new macro transformer by
specifying a sequence of hygienic rewrite rules. A use of
a macro whose keyword is associated with a transformer
specified by syntax-rules is matched against the patterns
contained in the 〈syntax rule〉s, beginning with the left-
most 〈syntax rule〉. When a match is found, the macro use

is transcribed hygienically according to the template. It is
a syntax violation when no match is found.

An identifier appearing within a 〈pattern〉 may be an un-
derscore ( ), a literal identifier listed in the list of literals
(〈literal〉 ...), or an ellipsis ( ... ). All other identifiers
appearing within a 〈pattern〉 are pattern variables. It is
a syntax violation if an ellipsis or underscore appears in
(〈literal〉 ...).

While the first subform of 〈srpattern〉 may be an identifier,
the identifier is not involved in the matching and is not
considered a pattern variable or literal identifier.

Pattern variables match arbitrary input subforms and are
used to refer to elements of the input. It is a syntax viola-
tion if the same pattern variable appears more than once
in a 〈pattern〉.
Underscores also match arbitrary input subforms but are
not pattern variables and so cannot be used to refer to those
elements. Multiple underscores may appear in a 〈pattern〉.
A literal identifier matches an input subform if and only
if the input subform is an identifier and either both its
occurrence in the input expression and its occurrence in
the list of literals have the same lexical binding, or the two
identifiers have the same name and both have no lexical
binding.

A subpattern followed by an ellipsis can match zero or more
elements of the input.

More formally, an input form F matches a pattern P if and
only if one of the following holds:

• P is an underscore ( ).

• P is a pattern variable.

• P is a literal identifier and F is an identifier such that
both P and F would refer to the same binding if both
were to appear in the output of the macro outside of
any bindings inserted into the output of the macro.
(If neither of two like-named identifiers refers to any
binding, i.e., both are undefined, they are considered
to refer to the same binding.)

• P is of the form (P1 ... Pn) and F is a list of n
elements that match P1 through Pn.

• P is of the form (P1 ... Pn . Px) and F is a list
or improper list of n or more elements whose first n
elements match P1 through Pn and whose nth cdr
matches Px.

• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn), where 〈ellipsis〉 is the identifier ... and F is a list
of n elements whose first k elements match P1 through
Pk, whose next m − k elements each match Pe, and
whose remaining n−m elements match Pm+1 through
Pn.
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• P is of the form (P1 ... Pk Pe 〈ellipsis〉 Pm+1 ...
Pn . Px), where 〈ellipsis〉 is the identifier ... and
F is a list or improper list of n elements whose first
k elements match P1 through Pk, whose next m − k
elements each match Pe, whose next n − m elements
match Pm+1 through Pn, and whose nth and final cdr
matches Px.

• P is of the form #(P1 ... Pn) and F is a vector of n
elements that match P1 through Pn.

• P is of the form #(P1 ... Pk Pe 〈ellipsis〉 Pm+1

... Pn), where 〈ellipsis〉 is the identifier ... and F is
a vector of n or more elements whose first k elements
match P1 through Pk, whose next m−k elements each
match Pe, and whose remaining n−m elements match
Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, non-
symbol datum) and F is equal to P in the sense of the
equal? procedure.

When a macro use is transcribed according to the template
of the matching 〈syntax rule〉, pattern variables that occur
in the template are replaced by the subforms they match
in the input.

Pattern data and identifiers that are not pattern variables
or ellipses are copied directly into the output. A subtem-
plate followed by an ellipsis expands into zero or more oc-
currences of the subtemplate. Pattern variables that occur
in subpatterns followed by one or more ellipses may oc-
cur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the
output by the input subforms to which they are bound,
distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associ-
ated subpattern, the input form is replicated as necessary.
The subtemplate must contain at least one pattern vari-
able from a subpattern followed by an ellipsis, and for at
least one such pattern variable, the subtemplate must be
followed by exactly as many ellipses as the subpattern in
which the pattern variable appears. (Otherwise, the ex-
pander would not be able to determine how many times
the subform should be repeated in the output.) It is a syn-
tax violation if the constraints of this paragraph are not
met.

A template of the form (〈ellipsis〉 〈template〉) is identi-
cal to 〈template〉, except that ellipses within the template
have no special meaning. That is, any ellipses contained
within 〈template〉 are treated as ordinary identifiers. In
particular, the template (... ...) produces a single el-
lipsis, .... This allows syntactic abstractions to expand
into forms containing ellipses.

As an example for hygienic use of auxiliary identifier, if let
and cond are defined as in section 11.4.6 and appendix B

then they are hygienic (as required) and the following is
not an error.

(let ((=> #f))

(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the base-
library identifier =>, which the macro transformer treats
as a syntactic keyword. Thus the example expands into

(let ((=> #f))

(if #t (begin => ’ok)))

instead of

(let ((=> #f))

(let ((temp #t))

(if temp (’ok temp))))

which would result in an assertion violation.

(define-syntax be-like-begin

(syntax-rules ()

((be-like-begin name)

(define-syntax name

(syntax-rules ()

((name expr (... ...))

(begin expr (... ...))))))))

(be-like-begin sequence)

(sequence 1 2 3 4) =⇒ 4

(identifier-syntax 〈template〉) syntax (expand)
(identifier-syntax syntax (expand)
(〈id1〉 〈template1〉)
((set! 〈id2〉 〈pattern〉)
〈template2〉))

set! auxiliary syntax (expand)

Syntax: The 〈id〉s must be identifiers. The 〈template〉s
must be as for syntax-rules.

Semantics: When a keyword is bound to a transformer
produced by the first form of identifier-syntax, refer-
ences to the keyword within the scope of the binding are
replaced by 〈template〉.

(define p (cons 4 5))

(define-syntax p.car (identifier-syntax (car p)))

p.car =⇒ 4

(set! p.car 15) =⇒ &syntax exception

The second, more general, form of identifier-syntax
permits the transformer to determine what happens when
set! is used. In this case, uses of the identifier by itself are
replaced by 〈template1〉, and uses of set! with the identi-
fier are replaced by 〈template2〉.
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(define p (cons 4 5))

(define-syntax p.car

(identifier-syntax

( (car p))

((set! e) (set-car! p e))))

(set! p.car 15)

p.car =⇒ 15

p =⇒ (15 5)

11.20. Tail calls and tail contexts

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

• The last expression within the body of a lambda ex-
pression, shown as 〈tail expression〉 below, occurs in a
tail context.

(lambda 〈formals〉
〈definition〉*
〈expression〉* 〈tail expression〉)

• If one of the following expressions is in a tail context,
then the subexpressions shown as 〈tail expression〉 are
in a tail context. These were derived from specifi-
cations of the syntax of the forms described in this
chapter by replacing some occurrences of 〈expression〉
with 〈tail expression〉. Only those rules that contain
tail contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(let 〈bindings〉 〈tail body〉)
(let 〈variable〉 〈bindings〉 〈tail body〉)
(let* 〈bindings〉 〈tail body〉)
(letrec* 〈bindings〉 〈tail body〉)
(letrec 〈bindings〉 〈tail body〉)
(let-values 〈mv-bindings〉 〈tail body〉)

(let*-values 〈mv-bindings〉 〈tail body〉)

(let-syntax 〈bindings〉 〈tail body〉)
(letrec-syntax 〈bindings〉 〈tail body〉)

(begin 〈tail sequence〉)

where

〈cond clause〉 −→ (〈test〉 〈tail sequence〉)
〈case clause〉 −→ ((〈datum〉*) 〈tail sequence〉)

〈tail body〉 −→ 〈definition〉*
〈tail sequence〉

〈tail sequence〉 −→ 〈expression〉* 〈tail expression〉

• If a cond expression is in a tail context, and has a
clause of the form (〈expression1〉 => 〈expression2〉)
then the (implied) call to the procedure that results
from the evaluation of 〈expression2〉 is in a tail context.
〈expression2〉 itself is not in a tail context.

Certain built-in procedures must also perform tail
calls. The first argument passed to apply and to
call-with-current-continuation, and the second argu-
ment passed to call-with-values, must be called via a
tail call.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations are allowed, but not required, to recog-

nize that some non-tail calls, such as the call to h above, can be

evaluated as though they were tail calls. In the example above,

the let expression could be compiled as a tail call to h. (The

possibility of h returning an unexpected number of values can

be ignored, because in that case the effect of the let is explicitly

unspecified and implementation-dependent.)
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APPENDICES

Appendix A. Formal semantics

This appendix presents a non-normative, formal, opera-
tional semantics for Scheme. It does not cover the entire
language. The notable missing features are the macro sys-
tem, I/O, and the numeric tower. The precise list of fea-
tures included is given in section A.2.

The core of the specification is a single-step term rewriting
relation that indicates how an (abstract) machine behaves.
In general, the report is not a complete specification, giving
implementations freedom to behave differently, typically to
allow optimizations. This underspecification shows up in
two ways in the semantics.

The first is reduction rules that reduce to special
“unknown: string” states (where the string provides a
description of the unknown state). The intention is that
rules that reduce to such states can be replaced with arbi-
trary reduction rules. The precise specification of how to
replace those rules is given in section A.12.

The other is that the single-step relation relates one pro-
gram to multiple different programs, each corresponding
to a legal transition that an abstract machine might take.
Accordingly we use the transitive closure of the single step
relation →∗ to define the semantics, S, as a function from
programs (P) to sets of observable results (R):

S : P −→ 2R

S(P) = {O(A) | P →∗ A}

where the function O turns an answer (A) from the seman-
tics into an observable result. Roughly, O is the identity
function on simple base values, and returns a special tag
for more complex values, like procedure and pairs.

So, an implementation conforms to the semantics if, for
every program P, the implementation produces one of the
results in S(P) or, if the implementation loops forever,
then there is an infinite reduction sequence starting at P,
assuming that the reduction relation → has been adjusted
to replace the unknown: states.

The precise definitions of P, A, R, and O are also given in
section A.2.

To help understand the semantics and how it behaves, we
have implemented it in PLT Redex. The implementation is
available at the report’s website: http://www.r6rs.org/.
All of the reduction rules and the metafunctions shown in
the figures in this semantics were generated automatically
from the source code.

A.1. Background

We assume the reader has a basic familiarity with context-
sensitive reduction semantics. Readers unfamiliar with this

system may wish to consult Felleisen and Flatt’s mono-
graph [10] or Wright and Felleisen [29] for a thorough in-
troduction, including the relevant technical background, or
an introduction to PLT Redex [19] for a somewhat lighter
one.

As a rough guide, we define the operational semantics of
a language via a relation on program terms, where the
relation corresponds to a single step of an abstract ma-
chine. The relation is defined using evaluation contexts,
namely terms with a distinguished place in them, called
holes, where the next step of evaluation occurs. We say
that a term e decomposes into an evaluation context E
and another term e′ if e is the same as E but with the
hole replaced by e′. We write E[e′] to indicate the term
obtained by replacing the hole in E with e′.

For example, assuming that we have defined a grammar
containing non-terminals for evaluation contexts (E), ex-
pressions (e), variables (x), and values (v), we would write:

E1[((lambda (x1 · · · ) e1) v1 · · · )] →
E1[{x1 · · · 7→ v1 · · ·}e1] (#x1 = #v1)

to define the βv rewriting rule (as a part of the → sin-
gle step relation). We use the names of the non-terminals
(possibly with subscripts) in a rewriting rule to restrict the
application of the rule, so it applies only when some term
produced by that grammar appears in the corresponding
position in the term. If the same non-terminal with an
identical subscript appears multiple times, the rule only ap-
plies when the corresponding terms are structurally identi-
cal (nonterminals without subscripts are not constrained to
match each other). Thus, the occurrence of E1 on both the
left-hand and right-hand side of the rule above means that
the context of the application expression does not change
when using this rule. The ellipses are a form of Kleene star,
meaning that zero or more occurrences of terms matching
the pattern proceeding the ellipsis may appear in place of
the the ellipsis and the pattern preceding it. We use the
notation {x1 · · · 7→ v1 · · ·}e1 for capture-avoiding substitu-
tion; in this case it means that each x1 is replaced with the
corresponding v1 in e1. Finally, we write side-conditions in
parentheses beside a rule; the side-condition in the above
rule indicates that the number of x1s must be the same
as the number of v1s. Sometimes we use equality in the
side-conditions; when we do it merely means simple term
equality, i.e., the two terms must have the same syntactic
shape.

Making the evaluation context E explicit in the rule allows
us to define relations that manipulate their context. As a
simple example, we can add another rule that signals an
error when a procedure is applied to the wrong number
of arguments by discarding the evaluation context on the

http://www.r6rs.org/
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P ::= (store (sf · · · ) es) | uncaught exception: v | unknown: description
A ::= (store (sf · · · ) (values v · · · )) | uncaught exception: v | unknown: description
R ::= (values Rv · · · ) | exception | unknown

Rv ::= pair | null | ′sym | sqv | condition | procedure

sf ::= (x v) | (x bh) | (pp (cons v v))
es ::= ′seq | ′sqv | ′() | (begin es es · · · )

| (begin0 es es · · · ) | (es es · · · ) | (if es es es) | (set! x es) | x | nonproc
| pproc | (lambda f es es · · · ) | (letrec ((x es) · · · ) es es · · · )
| (letrec* ((x es) · · · ) es es · · · ) | (dw x es es es) | (throw x es)
| unspecified | (handlers es · · · es) | (l! x es) | (reinit x)

f ::= (x · · · ) | (x x · · · dot x) | x
s ::= seq | () | sqv | sym
seq ::= (s s · · · ) | (s s · · · dot sqv) | (s s · · · dot sym)

sqv ::= n | #t | #f

p ::= (store (sf · · · ) e)
e ::= (begin e e · · · ) | (begin0 e e · · · ) | (e e · · · ) | (if e e e) | (set! x e)

| (handlers e · · · e) | x | nonproc | proc | (dw x e e e) | unspecified

| (letrec ((x e) · · · ) e e · · · ) | (letrec* ((x e) · · · ) e e · · · )
| (l! x es) | (reinit x)

v ::= nonproc | proc
nonproc ::= pp | null | ′sym | sqv | (make-cond string)
proc ::= (lambda f e e · · · ) | pproc | (throw x e)
pproc ::= aproc | proc1 | proc2 | list | dynamic-wind | apply | values

proc1 ::= null? | pair? | car | cdr | call/cc | procedure? | condition? | raise*
proc2 ::= cons | consi | set-car! | set-cdr! | eqv? | call-with-values | with-exception-handler

aproc ::= + | - | / | *

raise* ::= raise-continuable | raise

pp ::= ip | mp
ip ::= [immutable pair pointers]
mp ::= [mutable pair pointers]

sym ::= [variables except dot]
x ::= [variables except dot and keywords]
n ::= [numbers]

Figure A.2a: Grammar for programs and observables

right-hand side of a rule:

E[((lambda (x1 · · · ) e) v1 · · · )] →
error: wrong argument count (#x1 6= #v1)

Later we take advantage of the explicit evaluation context
in more sophisticated ways.

A.2. Grammar

Figure A.2a shows the grammar for the subset of the report
this semantics models. Non-terminals are written in italics
or in a calligraphic font (P A, R, and Rv) and literals are
written in a monospaced font.

The P non-terminal represents possible program states.
The first alternative is a program with a store and an ex-
pression. The second alternative is an error, and the third
is used to indicate a place where the model does not com-
pletely specify the behavior of the primitives it models (see
section A.12 for details of those situations). The A non-
terminal represents a final result of a program. It is just
like P except that expression has been reduced to some
sequence of values.

The R and Rv non-terminals specify the observable re-
sults of a program. Each R is either a sequence of values
that correspond to the values produced by the program
that terminates normally, or a tag indicating an uncaught
exception was raised, or unknown if the program encoun-
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P ::= (store (sf · · · ) E?)

E ::= F [(handlers proc · · · E?)] | F [(dw x e E? e)] | F
E? ::= [ ]? | E
E◦ ::= [ ]◦ | E

F ::= [ ] | (v · · · F ◦ v · · · ) | (if F ◦ e e) | (set! x F ◦) | (begin F ? e e · · · )
| (begin0 F ? e e · · · ) | (begin0 (values v · · · ) F ? e · · · )
| (begin0 unspecified F ? e · · · ) | (call-with-values (lambda () F ? e · · · ) v)
| (l! x F ◦)

F ? ::= [ ]? | F
F ◦ ::= [ ]◦ | F
U ::= (v · · · [ ] v · · · ) | (if [ ] e e) | (set! x [ ]) | (call-with-values (lambda () [ ]) v)

PG ::= (store (sf · · · ) G)

G ::= F [(dw x e G e)] | F
H ::= F [(handlers proc · · · H )] | F

S ::= [ ] | (begin e e · · · S es · · · ) | (begin S es · · · ) | (begin0 e e · · · S es · · · )
| (begin0 S es · · · ) | (e · · · S es · · · ) | (if S es es) | (if e S es) | (if e e S)
| (set! x S) | (handlers s · · · S es · · · es) | (handlers s · · · S) | (throw x e)
| (lambda f S es · · · ) | (lambda f e e · · · S es · · · )
| (letrec ((x e) · · · (x S) (x es) · · · ) es es · · · )
| (letrec ((x e) · · · ) S es · · · ) | (letrec ((x e) · · · ) e e · · · S es · · · )
| (letrec* ((x e) · · · (x S) (x es) · · · ) es es · · · )
| (letrec* ((x e) · · · ) S es · · · ) | (letrec* ((x e) · · · ) e e · · · S es · · · )

Figure A.2b: Grammar for evaluation contexts

ters a situation the semantics does not cover. The Rv

non-terminal specifies what the observable results are for a
particular value: the unspecified value, a pair, the empty
list, a symbol, a self-quoting value (true, false, and num-
bers), a condition, or a procedure.

The sf non-terminal generates individual elements of the
store. The store holds all of the mutable state of a program.
It is explained in more detail along with the rules that
manipulate it.

Expressions (es) include quoted data, begin expressions,
begin0 expressions1, application expressions, if expres-
sions, set! expressions, variables, non-procedure values
(nonproc), primitive procedures (pproc), lambda expres-
sions, letrec and letrec* expressions.

The last few expression forms are only generated for in-
1 begin0 is not part of the standard, but we include it to make

the rules for dynamic-wind and letrec easier to read. Although we
model it directly, it can be defined in terms of other forms we model
here that do come from the standard:

(begin0 e1 e2 · · · ) =

(call-with-values
(lambda () e1)

(lambda x
e2 · · ·
(apply values x)))

termediate states (dw for dynamic-wind, throw for con-
tinuations, unspecified for the result of the assignment
operators, handlers for exception handlers, and l! and
reinit for letrec), and should not appear in an initial
program. Their use is described in the relevant sections of
this appendix.

The f describes the arguments for lambda expressions.
(The dot is used instead of a period for procedures that
accept an arbitrary number of arguments, in order to avoid
meta-circular confusion in our PLT Redex model.)

The s non-terminal covers all s-expressions, which can be
either non-empty sequences (seq), the empty sequence, self-
quoting values (sqv), or symbols. Non-empty sequences are
either just a sequence of s-expressions, or they are termi-
nated with a dot followed by either a symbol or a self-
quoting value. Finally the self-quoting values are numbers
and the booleans #t and #f.

The p non-terminal represents programs that have no
quoted data. Most of the reduction rules rewrite p to p,
rather than P to P, since quoted data is first rewritten into
calls to the list construction functions before ordinary eval-
uation proceeds. In parallel to es, e represents expressions
that have no quoted expressions.
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(store (sf 1 · · · ) S1[
′sqv1])→ [6sqv]

(store (sf 1 · · · ) S1[sqv1])

(store (sf 1 · · · ) S1[
′()])→ [6eseq]

(store (sf 1 · · · ) S1[null])

(store (sf 1 · · · ) S1[
′seq1])→ [6qcons]

(store (sf 1 · · · ) ((lambda (qp) S1[qp]) QiJseq1K)) (qp fresh)

(store (sf 1 · · · ) S1[
′seq1])→ [6qconsi]

(store (sf 1 · · · ) ((lambda (qp) S1[qp]) QmJseq1K)) (qp fresh)

Qi : seq → e
QiJ()K = null

QiJ(s1 s2 · · · )K = (cons QiJs1K QiJ(s2 · · · )K)
QiJ(s1 dot sqv1)K = (cons QiJs1K sqv1)

QiJ(s1 s2 s3 · · · dot sqv1)K = (cons QiJs1K QiJ(s2 s3 · · · dot sqv1)K)
QiJ(s1 dot sym1)K = (cons QiJs1K ′sym1)

QiJ(s1 s2 s3 · · · dot sym1)K = (cons QiJs1K QiJ(s2 s3 · · · dot sym1)K)
QiJsym1K = ′sym1

QiJsqv1K = sqv1

Qm : seq → e
QmJ()K = null

QmJ(s1 s2 · · · )K = (consi QmJs1K QmJ(s2 · · · )K)
QmJ(s1 dot sqv1)K = (consi QmJs1K sqv1)

QmJ(s1 s2 s3 · · · dot sqv1)K = (consi QmJs1K QmJ(s2 s3 · · · dot sqv1)K)
QmJ(s1 dot sym1)K = (consi QmJs1K ′sym1)

QmJ(s1 s2 s3 · · · dot sym1)K = (consi QmJs1K QmJ(s2 s3 · · · dot sym1)K)
QmJsym1K = ′sym1

QmJsqv1K = sqv1

Figure A.3: Quote

The values (v) are divided into four categories:

• Non-procedures (nonproc) include pair pointers (pp),
null, symbols, self-quoting values (sqv), and condi-
tions. Conditions represent the report’s condition val-
ues, but here just contain a message and are otherwise
inert.

• User procedures ((lambda f e e · · ·)) include multi-
arity lambda expressions and lambda expressions with
dotted argument lists,

• Primitive procedures (pproc) include

– arithmetic procedures (aproc): +, -, /, and *,

– procedures of one argument (proc1 ): null?,
pair?, car, cdr, call/cc, procedure?,
condition?, unspecified?, raise, and
raise-continuable,

– procedures of two arguments (proc2 ):
cons, set-car!, set-cdr!, eqv?, and
call-with-values,

– as well as list, dynamic-wind, apply, values,
and with-exception-handler.

• Finally, continuations are represented as throw expres-
sions whose body consists of the context where the
continuation was grabbed.

The next three set of non-terminals in figure A.2a represent
pairs (pp), which are divided into immutable pairs (ip) and
mutable pairs (mp). The final set of non-terminals in fig-
ure A.2a, sym, x , and n represent symbols, variables, and
numbers respectively. The non-terminals ip, mp, and sym
are all assumed to all be disjoint. Additionally, the vari-
ables x are assumed not to include any keywords or prim-
itive operations, so any program variables whose names
coincide with them must be renamed before the semantics
can give the meaning of that program.
The set of non-terminals for evaluation contexts is shown
in figure A.2b. The P non-terminal controls where eval-
uation happens in a program that does not contain any
quoted data. The E and F evaluation contexts are for ex-
pressions. They are factored in that manner so that the
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P1[v1]?→ [6promote]
P1[(values v1)]

P1[(values v1)]◦→ [6demote]
P1[v1]

P1[(call-with-values (lambda () (values v2 · · · )) v1)]→ [6cwvd]
P1[(v1 v2 · · · )]

P1[(call-with-values v1 v2)]→ [6cwvw]
P1[(call-with-values (lambda () (v1)) v2)] (v1 6= (lambda () e))

Figure A.4: Multiple values and call-with-values

PG , G , and H evaluation contexts can re-use F and have
fine-grained control over the context to support exceptions
and dynamic-wind. The starred and circled variants, E?,
E◦, F ?, and F ◦ dictate where a single value is promoted
to multiple values and where multiple values are demoted
to a single value. The U context is used to manage the re-
port’s underspecification of the results of set!, set-car!,
and set-cdr! (see section A.12 for details). Finally, the S
context is where quoted expressions can be simplified. The
precise use of the evaluation contexts is explained along
with the relevant rules.

To convert the answers (A) of the semantics into observable
results, we uses these two functions:

O : A → R
OJ(store (sf · · · ) (values v1 · · · ))K =

(values OvJv1K · · · )

OJuncaught exception: vK =
exception

OJunknown: descriptionK =
unknown

Ov : v → Rv

OvJpp1K = pair
OvJnullK = null
OvJ′sym1K = ′sym1

OvJsqv1K = sqv1

OvJ(make-cond string)K = condition
OvJprocK = procedure

They eliminate the store, and replace complex values with
simple tags that indicate only the kind of value that was
produced or, if no values were produced, indicates that ei-
ther an uncaught exception was raised, or that the program
reached a state that is not specified by the semantics.

A.3. Quote

The first reduction rules that apply to any program is the
rules in figure A.3 that eliminate quoted expressions. The
first two rules erase the quote for quoted expressions that
do not introduce any cons pairs. The last two rules lift
quoted s-expressions to the top of the expression so they
are evaluated first, and turn the s-expressions into calls to
either cons or consi, via the metafunctions Qi and Qm.

Note that the left-hand side of the [6qcons] and [6qconsi]
rules are identical, meaning that if one rule applies to a
term, so does the other rule. Accordingly, a quoted expres-
sion may be lifted out into a sequence of cons expressions,
which create mutable pairs, or into a sequence of consi
expressions, which create immutable pairs (see section A.7
for the rules on how that happens).

These rules apply before any other because of the contexts
in which they, and all of the other rules, apply. In particu-
lar, these rule applies in the S context. Figure A.2b shows
that the S context allows this reduction to apply in any
subexpression of an e, as long as all of the subexpressions
to the left have no quoted expressions in them, although
expressions to the right may have quoted expressions. Ac-
cordingly, this rule applies once for each quoted expression
in the program, moving out to the beginning of the pro-
gram. The rest of the rules apply in contexts that do not
contain any quoted expressions, ensuring that these rules
convert all quoted data into lists before those rules apply.

Although the identifier qp does not have a subscript, the
semantics of PLT Redex’s “fresh” declaration takes special
care to ensures that the qp on the right-hand side of the
rule is indeed the same as the one in the side-condition.

A.4. Multiple values

The basic strategy for multiple values is to add a rule that
demotes (values v) to v and another rule that promotes
v to (values v). If we allowed these rules to apply in an
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PG[(raise* v1)]→ [6xunee]
uncaught exception: v1

P [(handlers G[(raise* v1)])]→ [6xuneh]
uncaught exception: v1

PG1[(with-exception-handler proc1 proc2)]→ [6xwh1]
PG1[(handlers proc1 (proc2))]

P1[(handlers proc1 · · · G1[(with-exception-handler proc2 proc3)])]→ [6xwhn]
P1[(handlers proc1 · · · G1[(handlers proc1 · · · proc2 (proc3))])]

P1[(handlers proc1 · · · G1[(with-exception-handler v1 v2)])]→ [6xwhne]
P1[(handlers proc1 · · · G1[(raise (make-cond “with-exception-handler expects procs”))])] (v1 6∈ proc or v2 6∈ proc)

P1[(handlers proc1 · · · proc2 G1[(raise-continuable v1)])]→ [6xrc]
P1[(handlers proc1 · · · proc2 G1[(handlers proc1 · · · (proc2 v1))])]

P1[(handlers proc1 · · · proc2 G1[(raise v1)])]→ [6xr]
P1[(handlers proc1 · · · proc2

G1[(handlers proc1 · · · (begin (proc2 v1) (raise (make-cond “handler returned”))))])]

P1[(condition? (make-cond string))]→ [6ct]
P1[#t]

P1[(condition? v1)]→ [6cf]
P1[#f] (v1 6= (make-cond string))

P1[(handlers proc1 · · · (values v1 · · · ))]→ [6xdone]
P1[(values v1 · · · )]

PG1[(with-exception-handler v1 v2)]→ [6weherr]
PG1[(raise (make-cond “with-exception-handler expects procs”))] (v1 6∈ proc or v2 6∈ proc)

Figure A.5: Exceptions

arbitrary evaluation context, however, we would get in-
finite reduction sequences of endless alternation between
promotion and demotion. So, the semantics allows de-
motion only in a context expecting a single value and al-
lows promotion only in a context expecting multiple val-
ues. We obtain this behavior with a small extension to
the Felleisen-Hieb framework (also present in the opera-
tional model for R5RS [18]). We extend the notation so
that holes have names (written with a subscript), and the
context-matching syntax may also demand a hole of a par-
ticular name (also written with a subscript, for instance
E[e]?). The extension allows us to give different names to
the holes in which multiple values are expected and those in
which single values are expected, and structure the gram-
mar of contexts accordingly.

To exploit this extension, we use three kinds of holes in the
evaluation context grammar in figure A.2b. The ordinary
hole [ ] appears where the usual kinds of evaluation can
occur. The hole [ ]? appears in contexts that allow multiple
values and the hole [ ]◦ appears in contexts that expect a
single value. Accordingly, the rules [6promote] only applies
in [ ]? contexts, and the rule [6demote] only applies in [ ]◦

contexts.

To see how the evaluation contexts are organized to ensure
that promotion and demotion occur in the right places,
consider the F , F ? and F ◦ evaluation contexts. The F ?

and F ◦ evaluation contexts are just the same as F , except
that they allow promotion to multiple values and demotion
to a single value, respectively. So, the F evaluation context,
rather than being defined in terms of itself, exploits F ? and
F ◦ to dictate where promotion and demotion can occur.
For example, F can be (if F ◦ e e) meaning that demotion
from (values v) to v can occur in the first argument to
an if expression. Similarly, F can be (begin F ? e e · · · )
meaning that v can be promoted to (values v) in the first
argument of a begin.

In general, the promotion and demotion rules simplify the
definitions of the other rules. For instance, the rule for if
does not need to consider multiple values in its first subex-
pression. Similarly, the rule for begin does not need to
consider the case of a single value as its first subexpres-
sion.

The other two rules in figure A.4 handle
call-with-values. The evaluation contexts for
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P1[(+)] → P1[0] [6+0]

P1[(+ n1 n2 · · · )] → P1[
dΣ{n1,n2 · · ·}e] [6+]

P1[(- n1)] → P1[
d − n1

e] [6u-]

P1[(- n1 n2 n3 · · · )] → P1[
dn1 − Σ{n2,n3 · · ·}e] [6-]

P1[(-)] → P1[(raise (make-cond “arity mismatch”))] [6-arity]

P1[(*)] → P1[1] [6*1]

P1[(* n1 n2 · · · )] → P1[
dΠ{n1,n2 · · ·}e] [6*]

P1[(/ n1)] → P1[(/ 1 n1)] [6u/]

P1[(/ n1 n2 n3 · · · )] → P1[
dn1/Π{n2,n3 · · ·}e] [6/]

(0 6∈ {n2,n3, . . .})

P1[(/ n n · · · 0 n · · · )] → P1[(raise (make-cond “divison by zero”))] [6/0]

P1[(/)] → P1[(raise (make-cond “arity mismatch”))] [6/arity]

P1[(aproc v1 · · · )] → P1[(raise (make-cond “arith-op applied to non-number”))] [6ae]
(∃v ∈ v1 · · · s.t. v is not a number)

P1[(if v1 e1 e2)] → P1[e1] [6if3t]
(v1 6= #f)

P1[(if #f e1 e2)] → P1[e2] [6if3f]

P1[(begin (values v · · · ) e1 e2 · · · )] → P1[(begin e1 e2 · · · )] [6beginc]

P1[(begin e1)] → P1[e1] [6begind]

P1[(begin0 (values v1 · · · ) (values v2 · · · ) e2 · · · )] → P1[(begin0 (values v1 · · · ) e2 · · · )] [6begin0n]

P1[(begin0 e1)] → P1[e1] [6begin01]

Figure A.6: Arithmetic and basic forms

call-with-values (in the F non-terminal) allow
evaluation in the body of a procedure that has been
passed as the first argument to call-with-values, as
long as the second argument has been reduced to a value.
Once evaluation inside that procedure completes, it will
produce multiple values (since it is an F ? position), and
the entire call-with-values expression reduces to an
application of its second argument to those values, via the
rule [6cwvd]. Finally, in the case that the first argument
to call-with-values is a value, but is not of the form
(lambda () e), the rule [6cwvw] wraps it in a thunk to
trigger evaluation.

A.5. Exceptions

The workhorses for the exception system are

(handlers proc · · · e)

expressions and the G and PG evaluation contexts (shown
in figure A.2b). The handlers expression records the ac-

tive exception handlers (proc · · ·) in some expression (e).
The intention is that only the nearest enclosing handlers
expression is relevant to raised exceptions, and the G and
PG evaluation contexts help achieve that goal. They are
just like their counterparts E and P , except that handlers
expressions cannot occur on the path to the hole, and the
exception system rules take advantage of that context to
find the closest enclosing handler.

To see how the contexts work together with handler ex-
pressions, consider the left-hand side of the [6xunee] rule in
figure A.5. It matches expressions that have a call to raise
or raise-continuable (the non-terminal raise* matches
both exception-raising procedures) in a PG evaluation con-
text. Since the PG context does not contain any handlers
expressions, this exception cannot be caught, so this ex-
pression reduces to a final state indicating the uncaught
exception. The rule [6xuneh] also signals an uncaught ex-
ception, but it covers the case where a handlers expres-
sion has exhausted all of the handlers available to it. The
rule applies to expressions that have a handlers expres-
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P1[(list v1 v2 · · · )]→ [6listc]
P1[(cons v1 (list v2 · · · ))]

P1[(list)]→ [6listn]
P1[null]

(store (sf 1 · · · ) E1[(cons v1 v2)])→ [6cons]
(store (sf 1 · · · (mp (cons v1 v2))) E1[mp]) (mp fresh)

(store (sf 1 · · · ) E1[(consi v1 v2)])→ [6consi]
(store (sf 1 · · · (ip (cons v1 v2))) E1[ip]) (ip fresh)

(store (sf 1 · · · (ppi (cons v1 v2)) sf 2 · · · ) E1[(car ppi)])→ [6car]
(store (sf 1 · · · (ppi (cons v1 v2)) sf 2 · · · ) E1[v1])

(store (sf 1 · · · (ppi (cons v1 v2)) sf 2 · · · ) E1[(cdr ppi)])→ [6cdr]
(store (sf 1 · · · (ppi (cons v1 v2)) sf 2 · · · ) E1[v2])

(store (sf 1 · · · (mp1 (cons v1 v2)) sf 2 · · · ) E1[(set-car! mp1 v3)])→ [6setcar]
(store (sf 1 · · · (mp1 (cons v3 v2)) sf 2 · · · ) E1[unspecified])

(store (sf 1 · · · (mp1 (cons v1 v2)) sf 2 · · · ) E1[(set-cdr! mp1 v3)])→ [6setcdr]
(store (sf 1 · · · (mp1 (cons v1 v3)) sf 2 · · · ) E1[unspecified])

P1[(null? null)]→ [6null?t]
P1[#t]

P1[(null? v1)]→ [6null?f]
P1[#f] (v1 6= null)

P1[(pair? pp)]→ [6pair?t]
P1[#t]

P1[(pair? v1)]→ [6pair?f]
P1[#f] (v1 6∈ pp)

P1[(car v i)]→ [6care]
P1[(raise (make-cond “can’t take car of non-pair”))] (v i 6∈ pp)

P1[(cdr v i)]→ [6cdre]
P1[(raise (make-cond “can’t take cdr of non-pair”))] (v i 6∈ pp)

P1[(set-car! v1 v2)]→ [6scare]
P1[(raise (make-cond “can’t set-car! on a non-pair or an immutable pair”))] (v1 6∈ mp)

P1[(set-cdr! v1 v2)]→ [6scdre]
P1[(raise (make-cond “can’t set-cdr! on a non-pair or an immutable pair”))] (v1 6∈ mp)

Figure A.7: Lists

sion (with no exception handlers) in an arbitrary evalua-
tion context where a call to one of the exception-raising
functions is nested in the handlers expression. The use of
the G evaluation context ensures that there are no other
handler expressions between this one and the raise.

The next two rules cover call to the procedure
with-exception-handler. The [6xwh1] rule applies when
there are no handler expressions. It constructs a new one
and applies v2 as a thunk in the handler body. If there
already is a handler expression, the [6xwhn] applies. It col-
lects the current handlers and adds the new one into a new
handlers expression and, as with the previous rule, invokes

the second argument to with-exception-handlers.

The next two rules cover exceptions that are raised in
the context of a handlers expression. If a continu-
able exception is raised, [6xrc] applies. It takes the
most recently installed handler from the nearest enclos-
ing handlers expression and applies it to the argument to
raise-continuable, but in a context where the exception
handlers do not include that latest handler. The [6xr] rule
behaves similarly, except it raises a new exception if the
handler returns. The new exception is created with the
condition special form.
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P1[(eqv? v1 v1)]→ [6eqt]
P1[#t] (v1 6∈ proc, v1 6= (make-cond string))

P1[(eqv? v1 v2)]→ [6eqf]
P1[#f] (v1 6= v2, v1 6∈ proc or v2 6∈ proc, v1 6= (make-cond string) or v2 6= (make-cond string))

P1[(eqv? (make-cond string) (make-cond string))]→ [6eqct]
P1[#t]

P1[(eqv? (make-cond string) (make-cond string))]→ [6eqcf]
P1[#f]

Figure A.8: Eqv

The make-cond special form is a stand-in for the report’s
conditions. It does not evaluate its argument (note its ab-
sence from the E grammar in figure A.2b). That argument
is just a literal string describing the context in which the
exception was raised. The only operation on conditions is
condition?, whose semantics are given by the two rules
[6ct] and [6cf].

Finally, the rule [6xdone] drops a handlers expression
when its body is fully evaluated, and the rule [6weherr]
raises an exception when with-exception-handler is sup-
plied with incorrect arguments.

A.6. Arithmetic and basic forms

This model does not include the report’s arithmetic, but
does include an idealized form in order to make experi-
mentation with other features and writing test suites for
the model simpler. Figure A.6 shows the reduction rules
for the primitive procedures that implement addition, sub-
traction, multiplication, and division. They defer to their
mathematical analogues. In addition, when the subtrac-
tion or divison operator are applied to no arguments, or
when division receives a zero as a divisor, or when any of
the arithmetic operations receive a non-number, an excep-
tion is raised.

The bottom half of figure A.6 shows the rules for if, begin,
and begin0. The relevant evaluation contexts are given by
the F non-terminal.

The evaluation contexts for if only allow evaluation in its
first argument. Once that is a value, the rules for if reduce
an if expression to its second argument if the test is not
#f, and to its third subexpression if it is.

The begin evaluation contexts allow evaluation in the first
subexpression of a begin, but only if there are two or more
subexpressions. In that case, once the first expression has
been fully simplified, the reduction rules drop its value.
If there is only a single subexpression, the begin itself is
dropped.

Like the begin evaluation contexts, the begin0 evaluation
contexts allow evaluation of the first argument of a begin0
expression when there are two or more subexpressions. The
begin0 evaluation contexts also allow evaluation in the sec-
ond argument of a begin0 expression, as long as the first
argument has been fully simplified. The [6begin0n] rule
for begin0 then drops a fully simplified second argument.
Eventually, there is only a single expression in the begin0,
at which point the [begin01] rule fires, and removes the
begin0 expression.

A.7. Lists

The rules in figure A.7 handle lists. The first two rules
handle list by reducing it to a succession of calls to cons,
followed by null.

The next two rules, [6cons] and [6consi], allocate new cons
cells. They both move (cons v1 v2) into the store, bound
to a fresh pair pointer (see also section A.3 for a description
of “fresh”). The [6cons] uses a mp variable, to indicate
the pair is mutable, and the [6consi] uses a ip variable to
indicate the pair is immutable.

The rules [6car] and [6cdr] extract the components of a pair
from the store when presented with a pair pointer (the pp
can be either mp or ip, as shown in figure A.2a).

The rules [6setcar] and [6setcdr] handle assignment of mu-
table pairs. They replace the contents of the appropriate
location in the store with the new value, and reduce to
unspecified. See section A.12 for an explanation of how
unspecified reduces.

The next four rules handle the null? predicate and the
pair? predicate, and the final four rules raise exceptions
when car, cdr, set-car! or set-cdr! receive non pairs.

A.8. Eqv

The rules for eqv? are shown in figure A.8. The first two
rules cover most of the behavior of eqv?. The first says that
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P1[(e1 · · · ei ei+1 · · · )]→ [6mark]
P1[((lambda (x) (e1 · · · x ei+1 · · · )) ei)] (x fresh, ei 6∈ v , ∃e ∈ e1 · · · ei+1 · · · s.t. e 6∈ v)

(store (sf 1 · · · ) E1[((lambda (x1 x2 · · · ) e1 e2 · · · ) v1 v2 · · · )])→ [6appN!]
(store (sf 1 · · · (bp v1)) E1[({x1 7→ bp}(lambda (x2 · · · ) e1 e2 · · · ) v2 · · · )])

(bp fresh, #x2 = #v2, V Jx1, (lambda (x2 · · · ) e1 e2 · · · )K)

P1[((lambda (x1 x2 · · · ) e1 e2 · · · ) v1 v2 · · · )]→ [6appN]
P1[({x1 7→ v1}(lambda (x2 · · · ) e1 e2 · · · ) v2 · · · )] (#x2 = #v2,¬V Jx1, (lambda (x2 · · · ) e1 e2 · · · )K)

P1[((lambda () e1 e2 · · · ))]→ [6app0]
P1[(begin e1 e2 · · · )]

P1[((lambda (x1 x2 · · · dot x r) e1 e2 · · · ) v1 v2 · · · v3 · · · )]→ [6µapp]
P1[((lambda (x1 x2 · · · x r) e1 e2 · · · ) v1 v2 · · · (list v3 · · · ))] (#x2 = #v2)

P1[((lambda x1 e1 e2 · · · ) v1 · · · )]→ [6µapp1]
P1[((lambda (x1) e1 e2 · · · ) (list v1 · · · ))]

(store (sf 1 · · · (x1 v1) sf 2 · · · ) E1[x1])→ [6var]
(store (sf 1 · · · (x1 v1) sf 2 · · · ) E1[v1])

(store (sf 1 · · · (x1 v1) sf 2 · · · ) E1[(set! x1 v2)])→ [6set]
(store (sf 1 · · · (x1 v2) sf 2 · · · ) E1[unspecified])

P1[(procedure? proc)]→ [6proct]
P1[#t]

P1[(procedure? nonproc)]→ [6procf]
P1[#f]

P1[((lambda (x1 · · · ) e e · · · ) v1 · · · )]→ [6arity]
P1[(raise (make-cond “arity mismatch”))] (#x1 6= #v1)

P1[((lambda (x1 x2 · · · dot x) e e · · · ) v1 · · · )]→ [6µarity]
P1[(raise (make-cond “arity mismatch”))] (#v1 < #x2 + 1)

P1[(nonproc v · · · )]→ [6appe]
P1[(raise (make-cond “can’t call non-procedure”))]

P1[(proc1 v1 · · · )]→ [61arity]
P1[(raise (make-cond “arity mismatch”))] (#v1 6= 1)

P1[(proc2 v1 · · · )]→ [62arity]
P1[(raise (make-cond “arity mismatch”))] (#v1 6= 2)

Figure A.9a: Procedures & application

when the two arguments to eqv? are syntactically identical,
then eqv? produces #t and the second says that when the
arguments are not syntactically identical, then eqv? pro-
duces #f. The structure of v has been carefully designed
so that simple term equality corresponds closely to eqv?’s
behavior. For example, pairs are represented as pointers
into the store and eqv? only compares those pointers.

The side-conditions on those first two rules ensure that
they do not apply when simple term equality doesn’t match
the behavior of eqv?. There are two situations where it
does not match: comparing two conditions and comparing
two procedures. For the first, the report does not spec-
ify eqv?’s behavior, except to say that it must return a

boolean, so the remaining two rules ([6eqct], and [6eqcf])
allow such comparisons to return #t or #f. Comparing two
procedures is covered in section A.12.

A.9. Procedures and application

In evaluating a procedure call, the report leaves unspeci-
fied the order in which arguments are evaluated. So, our
reduction system allows multiple, different reductions to
occur, one for each possible order of evaluation.

To capture unspecified evaluation order but allow only
evaluation that is consistent with some sequential ordering
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V ∈ 2x×e

V Jx1, (set! x2 e1)K if x1 = x2

V Jx1, (set! x2 e1)K if V Jx1, e1K and x1 6= x2

V Jx1, (begin e1 e2 e3 · · · )K if V Jx1, e1K or V Jx1, (begin e2 e3 · · · )K
V Jx1, (begin e1)K if V Jx1, e1K
V Jx1, (e1 e2 · · · )K if V Jx1, (begin e1 e2 · · · )K
V Jx1, (if e1 e2 e3)K if V Jx1, e1K or V Jx1, e2K or V Jx1, e3K
V Jx1, (begin0 e1 e2 · · · )K if V Jx1, (begin e1 e2 · · · )K
V Jx1, (lambda (x2 · · · ) e1 e2 · · · )K if V Jx1, (begin e1 e2 · · · )K and x1 6∈ {x2 · · ·}
V Jx1, (lambda (x2 · · · dot x3) e1 e2 · · · )K if V Jx1, (begin e1 e2 · · · )K and x1 6∈ {x2 · · · x3}
V Jx1, (lambda x2 e1 e2 · · · )K if V Jx1, (begin e1 e2 · · · )K and x1 6= x2

V Jx1, (letrec ((x2 e1) · · · ) e2 e3 · · · )K if V Jx1, (begin e1 · · · e2 e3 · · · )K and x1 6∈ {x2 · · ·}
V Jx1, (letrec* ((x2 e1) · · · ) e2 e3 · · · )K if V Jx1, (begin e1 · · · e2 e3 · · · )K and x1 6∈ {x2 · · ·}
V Jx1, (l! x2 e1)K if V Jx1, (set! x2 e1)K
V Jx1, (reinit x2 e1)K if V Jx1, (set! x2 e1)K
V Jx1, (dw x2 e1 e2 e3)K if V Jx1, e1K or V Jx1, e2K or V Jx1, e3K

Figure A.9b: Variable-assignment relation

of the evaluation of an application’s subexpressions, we use
non-deterministic choice to first pick a subexpression to re-
duce only when we have not already committed to reducing
some other subexpression. To achieve that effect, we limit
the evaluation of application expressions to only those that
have a single expression that isn’t fully reduced, as shown
in the non-terminal F , in figure A.2b. To evaluate appli-
cation expressions that have more than two arguments to
evaluate, the rule [6mark] picks one of the subexpressions
of an application that is not fully simplified and lifts it out
in its own application, allowing it to be evaluated. Once
one of the lifted expressions is evaluated, the [6appN] sub-
stitutes its value back into the original application.

The [6appN] rule also handles other applications whose ar-
guments are finished by substituting the first actual pa-
rameter for the first formal parameter in the expression.
Its side-condition uses the relation in figure A.9b to en-
sure that there are no set! expressions with the param-
eter x1 as a target. If there is such an assignment, the
[6appN!] rule applies (see also section A.3 for a description
of “fresh”). Instead of directly substituting the actual pa-
rameter for the formal parameter, it creates a new location
in the store, initially bound the actual parameter, and sub-
stitutes a variable standing for that location in place of the
formal parameter. The store, then, handles any eventual
assignment to the parameter. Once all of the parameters
have been substituted away, the rule [6app0] applies and
evaluation of the body of the procedure begins.

At first glance, the rule [6appN] appears superfluous, since
it seems like the rules could just reduce first by [6appN!]
and then look up the variable when it is evaluated. There
are two reasons why we keep the [6appN], however. The
first is purely conventional: reducing applications via sub-
stitution is taught to us at an early age and is commonly

used in rewriting systems in the literature. The second
reason is more technical. In particular, there is a subtle
interaction with the [6mark] rule. Consider the right-hand
side of the [6mark] and imagine that ei has beem reduced
to a value. At this point, we’d like to take that value and
replace it back into the original application. Unfortunately,
the [6appN!] does not do that. Instead, it will lift the value
into the store and replace put a variable reference into the
application, leading to another use of [6mark], and another
use of [6appN!], which continues forever.

The rule [6µapp] handles a well-formed application of a
function with a dotted argument lists. It such an applica-
tion into an application of an ordinary procedure by con-
structing a list of the extra arguments. Similarly, the rule
[6µapp1] handles an application of a procedure that has a
single variable as its parameter list.

The rule [6var] handles variable lookup in the store and
[6set] handles variable assignment.

The next two rules [6proct] and [6procf] handle applications
of procedure?, and the remaining rules cover applications
of non-procedures and arity errors.

The rules in figure A.9c cover cover apply. The first rule,
[6applyf], covers the case where the last argument to apply
is the empty list, and simply reduces by erasing the empty
list and the apply. The second rule, [6applyc] covers a well-
formed application of apply where apply’s final argument
is a pair. It reduces by extracting the components of the
pair from the store and putting them into the application
of apply. Repeated application of this rule thus extracts
all of the list elements passed to apply out of the store.

The remaining five rules cover the various errors that can
occur when using apply. The first one covers the case
where apply is supplied with a cyclic list. The next four
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P1[(apply proc1 v1 · · · null)]→ [6applyf]
P1[(proc1 v1 · · · )]

(store (sf 1 · · · (pp1 (cons v2 v3)) sf 2 · · · ) E1[(apply proc1 v1 · · · pp1)])→ [6applyc]
(store (sf 1 · · · (pp1 (cons v2 v3)) sf 2 · · · ) E1[(apply proc1 v1 · · · v2 v3)])

(¬C Jpp1, v3, (sf 1 · · · (pp1 (cons v2 v3)) sf 2 · · · )K)

(store (sf 1 · · · (pp1 (cons v2 v3)) sf 2 · · · ) E1[(apply proc1 v1 · · · pp1)])→ [6applyce]
(store (sf 1 · · · (pp1 (cons v2 v3)) sf 2 · · · ) E1[(raise (make-cond “apply called on circular list”))])

(C Jpp1, v3, (sf 1 · · · (pp1 (cons v2 v3)) sf 2 · · · )K)

P1[(apply nonproc v · · · )]→ [6applynf]
P1[(raise (make-cond “can’t apply non-procedure”))]

P1[(apply proc v1 · · · v2)]→ [6applye]
P1[(raise (make-cond “apply’s last argument non-list”))] (v2 6∈ list-v)

P1[(apply)]→ [6apparity0]
P1[(raise (make-cond “arity mismatch”))]

P1[(apply v)]→ [6apparity1]
P1[(raise (make-cond “arity mismatch”))]

C ∈ 2pp×val×(sf ···)

C Jpp1, pp2, (sf 1 · · · (pp2 (cons v1 v2)) sf 2 · · · )K if pp1 = v2

C Jpp1, pp2, (sf 1 · · · (pp2 (cons v1 v2)) sf 2 · · · )K if C Jpp1, v2, (sf 1 · · · (pp2 (cons v1 v2)) sf 2 · · · )K and pp1 6= v2

Figure A.9c: Apply

cover applying a non-procedure, passing a non-list as the
last argument, and supplying too few arguments to apply.

A.10. Call/cc and dynamic wind

The specification of dynamic-wind uses (dw x e e e) ex-
pressions to record which dynamic-wind thunks are active
at each point in the computation. Its first argument is
an identifier that is globally unique and serves to iden-
tify invocations of dynamic-wind, in order to avoid exiting
and re-entering the same dynamic context during a con-
tinuation switch. The second, third, and fourth arguments
are calls to some before, thunk , and after procedures from
a call to dynamic-wind. Evaluation only occurs in the
middle expression; the dw expression only serves to record
which before and after procedures need to be run during a
continuation switch. Accordingly, the reduction rule for an
application of dynamic-wind reduces to a call to the before
procedure, a dw expression and a call to the after proce-
dure, as shown in rule [6wind] in figure A.10. The next two
rules cover abuses of the dynamic-wind procedure: call-
ing it with non-procedures, and calling it with the wrong
number of arguments. The [6dwdone] rule erases a dw ex-
pression when its second argument has finished evaluating.

The next two rules cover call/cc. The rule [6call/cc]
creates a new continuation. It takes the context of the

call/cc expression and packages it up into a throw ex-
pression that represents the continuation. The throw ex-
pression uses the fresh variable x to record where the ap-
plication of call/cc occurred in the context for use in the
[6throw] rule when the continuation is applied. That rule
takes the arguments of the continuation, wraps them with
a call to values, and puts them back into the place where
the original call to call/cc occurred, replacing the current
context with the context returned by the T metafunction.

The T (for “trim”) metafunction accepts two D contexts
and builds a context that matches its second argument,
the destination context, except that additional calls to the
before and after procedures from dw expressions in the con-
text have been added.

The first clause of the T metafunction exploits the H con-
text, a context that contains everything except dw expres-
sions. It ensures that shared parts of the dynamic-wind
context are ignored, recurring deeper into the two expres-
sion contexts as long as the first dw expression in each have
matching identifiers (x1). The final rule is a catchall; it
only applies when all the others fail and thus applies ei-
ther when there are no dws in the context, or when the dw
expressions do not match. It calls the two other metafunc-
tions defined in figure A.10 and puts their results together
into a begin expression.

The R metafunction extracts all of the before procedures
from its argument and the S metafunction extracts all of
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P1[(dynamic-wind proc1 proc2 proc3)]→ [6wind]
P1[(begin (proc1) (begin0 (dw x (proc1) (proc2) (proc3)) (proc3)))] (x fresh)

P1[(dynamic-wind v1 v2 v3)]→ [6winde]
P1[(raise (make-cond “dynamic-wind expects procs”))] (v1 6∈ proc or v2 6∈ proc or v3 6∈ proc)

P1[(dynamic-wind v1 · · · )]→ [6dwarity]
P1[(raise (make-cond “arity mismatch”))] (#v1 6= 3)

P1[(dw x e (values v1 · · · ) e)]→ [6dwdone]
P1[(values v1 · · · )]

(store (sf 1 · · · ) E1[(call/cc v1)])→ [6call/cc]
(store (sf 1 · · · ) E1[(v1 (throw x E1[x ]))]) (x fresh)

(store (sf 1 · · · ) E1[((throw x1 E2[x1]) v1 · · · )])→ [6throw]
(store (sf 1 · · · ) T JE1,E2K[(values v1 · · · )])

T : E × E → E
T JH 1[(dw x1 e1 E1 e2)],H 2[(dw x1 e3 E2 e4)]K = H 2[(dw x1 e3 T JE1,E2K e4)]
T JE1,E2K = (begin S JE1K[1] RJE2K) (otherwise)

R : E → E
RJH 1[(dw x1 e1 E1 e2)]K = H 1[(begin e1 (dw x1 e1 RJE1K e2))]
RJH 1K = H 1 (otherwise)

S : E → E
S JE1[(dw x1 e1 H 2 e2)]K = S JE1K[(begin0 (dw x1 e1 [ ] e2) e2)]
S JH 1K = [ ] (otherwise)

Figure A.10: Call/cc and dynamic wind

the after procedures from its argument. They each con-
struct new contexts and exploit H to work through their
arguments, one dw at a time. In each case, the metafunc-
tions are careful to keep the right dw context around each of
the procedures in case a continuation jump occurs during
one of their evaluations. Since R, receives the destination
context, it keeps the intermediate parts of the context in
its result. In contrast S discards all of the context except
the dws, since that was the context where the call to the
continuation occured.

A.11. Letrec

Figre A.11 shows the rules that handle letrec and
letrec* and the supplementary expressions that they pro-
duce, l! and reinit. As a first approximation, both
letrec and letrec* reduce by allocating locations in the
store to hold the values of the init expressions, initializing
those locations to bh (for “black hole”), evaluating the init
expressions, and then using l! to update the locations in
the store with the value of the init expressions. They also
use reinit to detect when an init expression in a letrec is
reentered via a continuation.

Before considering how letrec and letrec* use l! and
reinit, first consider how l! and reinit behave. The
first two rules in figure A.11 cover l!. It behaves very
much like set!, but it initializes both ordinary variables,
and variables that are current bound to the black hole (bh).

The next two rules cover ordinary set! when applied to
a variable that is currently bound to a black hole. This
situation can arise when the program assigns to a variable
before letrec initializes it, eg (letrec ((x (set! x 5)))
x). The report specifies that either an implementation
should perform the assignment, as reflected in the [6setdt]
rule or it should signal an error, as reflected in the [6setdte]
rule.

The [6dt] rule covers the case where a variable is referred
to before the value of a init expression is filled in, which
must always be an error.

A reinit expression is used to detect a program that cap-
tures a continuation in an initialization expression and re-
turns to it, as shown in the three rules [6init], [6reinit], and
[6reinite]. The reinit form accepts an identifier that is
bound in the store to a boolean as its argument. Those
are identifiers are initially #f. When reinit is evaluated,
it checks the value of the variable and, if it is still #f, it
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(store (sf 1 · · · (x1 bh) sf 2 · · · ) E1[(l! x1 v2)])→ [6initdt]
(store (sf 1 · · · (x1 v2) sf 2 · · · ) E1[unspecified])

(store (sf 1 · · · (x1 v1) sf 2 · · · ) E1[(l! x1 v2)])→ [6initv]
(store (sf 1 · · · (x1 v2) sf 2 · · · ) E1[unspecified])

(store (sf 1 · · · (x1 bh) sf 2 · · · ) E1[(set! x1 v1)])→ [6setdt]
(store (sf 1 · · · (x1 v1) sf 2 · · · ) E1[unspecified])

(store (sf 1 · · · (x1 bh) sf 2 · · · ) E1[(set! x1 v1)])→ [6setdte]
(store (sf 1 · · · (x1 bh) sf 2 · · · ) E1[(raise (make-cond “letrec variable touched”))])

(store (sf 1 · · · (x1 bh) sf 2 · · · ) E1[x1])→ [6dt]
(store (sf 1 · · · (x1 bh) sf 2 · · · ) E1[(raise (make-cond “letrec variable touched”))])

(store (sf 1 · · · (x1 #f) sf 2 · · · ) E1[(reinit x1)])→ [6init]
(store (sf 1 · · · (x1 #t) sf 2 · · · ) E1[

′ignore])

(store (sf 1 · · · (x1 #t) sf 2 · · · ) E1[(reinit x1)])→ [6reinit]
(store (sf 1 · · · (x1 #t) sf 2 · · · ) E1[

′ignore])

(store (sf 1 · · · (x1 #t) sf 2 · · · ) E1[(reinit x1)])→ [6reinite]
(store (sf 1 · · · (x1 #t) sf 2 · · · ) E1[(raise (make-cond “reinvoked continuation of letrec init”))])

(store (sf 1 · · · ) E1[(letrec ((x1 e1) · · · ) e2 e3 · · · )])→ [6letrec]
(store (sf 1 · · · (lx bh) · · · (ri #f) · · · )

E1[((lambda (x1 · · · ) (l! lx x1) · · · {x1 7→ lx · · ·}e2 {x1 7→ lx · · ·}e3 · · · )
(begin0 {x1 7→ lx · · ·}e1 (reinit ri)) · · · )])

(lx · · · fresh, ri · · · fresh)

(store (sf 1 · · · ) E1[(letrec* ((x1 e1) · · · ) e2 e3 · · · )])→ [6letrec*]
(store (sf 1 · · · (lx bh) · · · (ri #f) · · · ) E1[{x1 7→ lx · · ·}(begin (begin (l! lx e1) (reinit ri)) · · · e2 e3 · · · )])

(lx · · · fresh, ri · · · fresh)

Figure A.11: Letrec and letrec*

changes it to #t. If it is already #t, then reinit either just
does nothing, or it raises an exception, in keeping with the
two legal behaviors of letrec and letrec*.

The last two rules in figure A.11 put together l! and
reinit. The [6letrec] rule reduces a letrec expression
to an application expression, in order to capture the un-
specified order of evaluation of the init expressions. Each
init expression is wrapped in a begin0 that records the
value of the init and then uses reinit to detect continu-
ations that return to the init expression. Once all of the
init expressions have been evaluated, the procedure on the
right-hand side of the rule is invoked, causing the value of
the init expression to be filled in the store, and evaluation
continues with the body of the original letrec expression.

The [6letrec*] rule behaves similarly, but uses a begin ex-
pression rather than an application expression, since its
specification mandates that the init expressions are evalu-
ated from left to right. In addition, each init expression is
filled into the store as it is evaluated, so that subsequent
init expressions can refer to its value.

A.12. Underspecification

The rules in figure A.12 cover aspects of the semantics that
are explicitly unspecified. Implementations can replace the
rules [6ueqv], [6uval] and with different rules that cover the
left-hand sides and, as long as they follow the informal
specification, any replacement is valid. Those three situ-
ations correspond to the case when eqv? applied to two
procedures and when multiple values are used in a single-
value context.

The remaining rules in figure A.12 cover the results from
the assignment operations, set!, set-car!, and set-cdr!.
An implementation does not adjust those rules, but instead
renders them useless by adjusting the rules that insert
unspecified: [6setcar], [6setcdr], [6set], and [6setd]. Those
rules can be adjusted by replacing unspecified with any
number of values in those rules.

So, the remaining rules just specify the minimal behav-
ior that we know that a value or values must have and
otherwise reduce to an unknown: state. The rule [6ude-
mand] drops unspecified in the U context. See figure A.2b
for the precise definition of U, but intuitively it is a con-
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P [(eqv? proc proc)] → unknown: equivalence of procedures [6ueqv]

P [(values v1 · · · )]◦ → unknown: context expected one value, received #v1 [6uval]
(#v1 6= 1)

P [U [unspecified]] → unknown: unspecified result [6udemand]

(store (sf · · · ) unspecified) → unknown: unspecified result [6udemandtl]

P1[(begin unspecified e1 e2 · · · )] → P1[(begin e1 e2 · · · )] [6ubegin]

P1[(handlers v · · · unspecified)] → P1[unspecified] [6uhandlers]

P1[(dw x e unspecified e)] → P1[unspecified] [6udw]

P1[(begin0 (values v1 · · · ) unspecified e1 · · · )] → P1[(begin0 (values v1 · · · ) e1 · · · )] [6ubegin0]

P1[(begin0 unspecified (values v2 · · · ) e2 · · · )] → P1[(begin0 unspecified e2 · · · )] [6ubegin0u]

P1[(begin0 unspecified unspecified e2 · · · )] → P1[(begin0 unspecified e2 · · · )] [6ubegin0uu]

Figure A.12: Explicitly unspecified behavior

text that is only a single expression layer deep that con-
tains expressions whose value depends on the value of their
subexpressions, like the first subexpression of a if. Follow-
ing that are rules that discard unspecified in expressions
that discard the results of some of their subexpressions.
The [6ubegin] shows how begin discards its first expres-
sion when there are more expressions to evaluate. The next
two rules, [6uhandlers] and [6udw] propagate unspecified
to their context, since they also return any number of val-
ues to their context. Finally, the two begin0 rules preserve
unspecified until the rule [6begin01] can return it to its
context.

Appendix B. Sample definitions for de-
rived forms

This appendix contains sample definitions for some of the
keywords described in this report in terms of simpler forms:

cond

The cond keyword (section 11.4.5) could be defined in
terms of if, let and begin using syntax-rules (see sec-
tion 11.19) as follows:

(define-syntax cond

(syntax-rules (else =>)

((cond (else result1 result2 ...))

(begin result1 result2 ...))

((cond (test => result))

(let ((temp test))

(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(cond clause1 clause2 ...))))

((cond (test)) test)

((cond (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))

(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(cond clause1 clause2 ...)))))

case

The case keyword (section 11.4.5) could be defined in
terms of let, cond, and memv (see library chapter 3) using
syntax-rules (see section 11.19) as follows:

(define-syntax case

(syntax-rules (else)

((case expr0

((key ...) res1 res2 ...)

...

(else else-res1 else-res2 ...))

(let ((tmp expr0))

(cond

((memv tmp ’(key ...)) res1 res2 ...)

...

(else else-res1 else-res2 ...))))

((case expr0

((keya ...) res1a res2a ...)

((keyb ...) res1b res2b ...)
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...)

(let ((tmp expr0))

(cond

((memv tmp ’(keya ...)) res1a res2a ...)

((memv tmp ’(keyb ...)) res1b res2b ...)

...)))))

letrec

The letrec keyword (section 11.4.6) could be defined ap-
proximately in terms of let and set! using syntax-rules
(see section 11.19), using a helper to generate the tempo-
rary variables needed to hold the values before the assign-
ments are made, as follows:

(define-syntax letrec

(syntax-rules ()

((letrec () body1 body2 ...)

(let () body1 body2 ...))

((letrec ((var init) ...) body1 body2 ...)

(letrec-helper

(var ...)

()

((var init) ...)

body1 body2 ...))))

(define-syntax letrec-helper

(syntax-rules ()

((letrec-helper

()

(temp ...)

((var init) ...)

body1 body2 ...)

(let ((var <undefined>) ...)

(let ((temp init) ...)

(set! var temp)

...)

(let () body1 body2 ...)))

((letrec-helper

(x y ...)

(temp ...)

((var init) ...)

body1 body2 ...)

(letrec-helper

(y ...)

(newtemp temp ...)

((var init) ...)

body1 body2 ...))))

The syntax <undefined> represents an expression that re-
turns something that, when stored in a location, causes an
exception with condition type &assertion to be raised if
an attempt to read to or write from the location occurs be-
fore the assignments generated by the letrec transforma-
tion take place. (No such expression is defined in Scheme.)

A simpler definition using syntax-case and
generate-temporaries is given in library chapter 12.

let-values

The following definition of let-values (section 11.4.6) us-
ing syntax-rules (see section 11.19) employs a pair of
helpers to create temporary names for the formals.

(define-syntax let-values

(syntax-rules ()

((let-values (binding ...) body1 body2 ...)

(let-values-helper1

()

(binding ...)

body1 body2 ...))))

(define-syntax let-values-helper1

;; map over the bindings

(syntax-rules ()

((let-values

((id temp) ...)

()

body1 body2 ...)

(let ((id temp) ...) body1 body2 ...))

((let-values

assocs

((formals1 expr1) (formals2 expr2) ...)

body1 body2 ...)

(let-values-helper2

formals1

()

expr1

assocs

((formals2 expr2) ...)

body1 body2 ...))))

(define-syntax let-values-helper2

;; create temporaries for the formals

(syntax-rules ()

((let-values-helper2

()

temp-formals

expr1

assocs

bindings

body1 body2 ...)

(call-with-values

(lambda () expr1)

(lambda temp-formals

(let-values-helper1

assocs

bindings

body1 body2 ...))))

((let-values-helper2

(first . rest)

(temp ...)

expr1

(assoc ...)

bindings

body1 body2 ...)

(let-values-helper2

rest
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(temp ... newtemp)

expr1

(assoc ... (first newtemp))

bindings

body1 body2 ...))

((let-values-helper2

rest-formal

(temp ...)

expr1

(assoc ...)

bindings

body1 body2 ...)

(call-with-values

(lambda () expr1)

(lambda (temp ... . newtemp)

(let-values-helper1

(assoc ... (rest-formal newtemp))

bindings

body1 body2 ...))))))

let

The let keyword could be defined in terms of lambda and
letrec using syntax-rules (see section 11.19) as follows:

(define-syntax let

(syntax-rules ()

((let ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))

((let tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...)

body1 body2 ...)))

tag)

val ...))))

Appendix C. Additional material

This report itself, as well as more material related to this
report such as reference implementations of some parts of
Scheme and archives of mailing lists discussing this report
is at

http://www.r6rs.org/

The Schemers web site at

http://www.schemers.org/

as well as the Readscheme site at

http://library.readscheme.org/

contain extensive Scheme bibliographies, as well as papers,
programs, implementations, and other material related to
Scheme.

Appendix D. Example

This section describes an example consisting of
the (runge-kutta) library, which provides an

integrate-system procedure that integrates the system

y′k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.

As the (runge-kutta) library makes use of the (rnrs
base (6)) library, its skeleton is as follows:

#!r6rs

(library (runge-kutta)

(export integrate-system

head tail)

(import (rnrs base))

〈library body〉)

The procedure definitions described below go in the place
of 〈library body〉.

The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1, . . . , yn) and produces a system derivative (the val-
ues y′1, . . . , y

′
n). The parameter initial-state provides

an initial system state, and h is an initial guess for the
length of the integration step.

The value returned by integrate-system is an infinite
stream of system states.

(define integrate-system

(lambda (system-derivative initial-state h)

(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states

(cons initial-state

(lambda ()

(map-streams next states)))))

states))))

The runge-kutta-4 procedure takes a function, f, that
produces a system derivative from a system state. The
runge-kutta-4 procedure produces a function that takes
a system state and produces a new system state.

(define runge-kutta-4

(lambda (f h)

(let ((*h (scale-vector h))

(*2 (scale-vector 2))

(*1/2 (scale-vector (/ 1 2)))

(*1/6 (scale-vector (/ 1 6))))

(lambda (y)

;; y is a system state
(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))

(k2 (*h (f (add-vectors y (*1/2 k1)))))

(k3 (*h (f (add-vectors y k2)))))

(add-vectors y

(*1/6 (add-vectors k0

(*2 k1)

(*2 k2)

k3))))))))

http://www.r6rs.org/
http://www.schemers.org/
http://library.readscheme.org/
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(define elementwise

(lambda (f)

(lambda vectors

(generate-vector

(vector-length (car vectors))

(lambda (i)

(apply f

(map (lambda (v) (vector-ref v i))

vectors)))))))

(define generate-vector

(lambda (size proc)

(let ((ans (make-vector size)))

(letrec ((loop

(lambda (i)

(cond ((= i size) ans)

(else

(vector-set! ans i (proc i))

(loop (+ i 1)))))))

(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector

(lambda (s)

(elementwise (lambda (x) (* x s)))))

The map-streams procedure is analogous to map: it applies
its first argument (a procedure) to all the elements of its
second argument (a stream).

(define map-streams

(lambda (f s)

(cons (f (head s))

(lambda () (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car holds
the first element of the stream and whose cdr holds a pro-
cedure that delivers the rest of the stream.

(define head car)

(define tail

(lambda (stream) ((cdr stream))))

The following program illustrates the use of
integrate-system in integrating the system

C
dvC

dt
= −iL −

vC

R

L
diL
dt

= vC

which models a damped oscillator.

#!r6rs

(import (rnrs base)

(rnrs io simple)

(runge-kutta))

(define damped-oscillator

(lambda (R L C)

(lambda (state)

(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L))))))

(define the-states

(integrate-system

(damped-oscillator 10000 1000 .001)

’#(1 0)

.01))

(letrec ((loop (lambda (s)

(newline)

(write (head s))

(loop (tail s)))))

(loop the-states))

This prints output like the following:

#(1 0)

#(0.99895054 9.994835e-6)

#(0.99780226 1.9978681e-5)

#(0.9965554 2.9950552e-5)

#(0.9952102 3.990946e-5)

#(0.99376684 4.985443e-5)

#(0.99222565 5.9784474e-5)

#(0.9905868 6.969862e-5)

#(0.9888506 7.9595884e-5)

#(0.9870173 8.94753e-5)

Appendix E. Language changes

This chapter describes most of the changes that have been
made to Scheme since the “Revised5 Report” [15] was pub-
lished:

• Scheme source code now uses the Unicode character
set. Specifically, the character set that can be used
for identifiers has been greatly expanded.

• Identifiers can now start with the characters ->.

• Identifiers and symbol literals are now case-sensitive.

• Identifiers, number representations, characters,
booleans, and dot must be explicitly delimited.

• # is now a delimiter.

• Bytevector literal syntax has been added.

• Matched square brackets can be used synonymously
with parentheses.

• The read-syntax abbreviations #’ (for syntax), #`
(for quasisyntax), #, (for unsyntax), and #,@
(for unsyntax-splicing have been added; see sec-
tion 4.3.5.)
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• # can no longer be used in place of digits in number
representations.

• The external representation of number objects can
now include a mantissa width.

• Literals for NaNs and infinities were added.

• String and character literals can now use a variety of
escape sequences.

• Block and datum comments have been added.

• The !#r6rs comment for marking report-compliant
lexical syntax has been added.

• Characters are now specified to correspond to Unicode
scalar values.

• Many of the procedures and syntactic forms of the lan-
guage are now part of the (rnrs base (6)) library.
Some procedures and syntactic forms have been moved
to other libraries; see figure A.1.

• The base language has the following new proce-
dures and syntactic forms: letrec*, let-values,
let*-values, real-valued?, rational-valued?,
integer-valued?, exact, inexact, finite?,
infinite?, nan?, div, mod, div-and-mod, div0, mod0,
div0-and-mod0, exact-integer-sqrt, boolean=?,
symbol=?, string-for-each, vector-map,
vector-for-each, error, assertion-violation,
assert, call/cc, identifier-syntax.

• The following procedures have been removed:
char-ready?, transcript-on, transcript-off,
load.

• The case-insensitive string comparisons
(string-ci=?, string-ci<?, string-ci>?,
string-ci<=?, string-ci>=?) operate on the
case-folded versions of the strings rather than as
the simple lexicographic ordering induced by the
corresponding character comparison procedures.

• Libraries have been added to the language.

• A number of standard libraries are described in a sep-
arate report [22].

• Many situations that “were an error” now have defined
or constrained behavior. In particular, many are now
specified in terms of the exception system.

• The full numeric tower is now required.

• The semantics for the transcendental functions has
been specified more fully.

• The semantics of expt for zero bases has been refined.

• In syntax-rules forms, a may be used in place of
the keyword.

• The let-syntax and letrec-syntax no longer intro-
duce a new environment for their bodies.

• For implementations where NaNs and/or infinities are
available, the semantics of many arithmetic operations
has been specified on these values consistently with
IEEE 754.

• For implementations that support a distinct -0.0, the
semantics of many arithmetic operations with regard
to -0.0 has been specified consistently with IEEE 754.

• Scheme’s real number objects now have an exact zero
as their imaginary part.

• The specification of quasiquote has been extended.
Nested quasiquotations work correctly now, and
unquote and unquote-splicing have been extended
to several operands.

• Procedures now may or may not refer to locations.
Consequently, eqv? is now unspecified in a few cases
where it was specified before.

• The mutability of the values of quasiquote structures
has been specified to some degree.

• The dynamic environment of the before and after pro-
cedures of dynamic-wind is now specified.

• Various expressions that have only side effects are now
allowed to return an arbitrary number of values.

• The order and semantics for macro expansion has been
more fully specified.

• Internal definitions are now defined in terms of
letrec*.

• The old notion of program structure and Scheme’s top-
level environment has been replaced by top-level pro-
grams and libraries.

• The denotational semantics has been replaced by an
operational semantics.
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identifier moved to

assoc (rnrs lists (6))

assv (rnrs lists (6))

assq (rnrs lists (6))

call-with-input-file (rnrs io simple (6))

call-with-output-file (rnrs io simple (6))

char-upcase (rnrs unicode (6))

char-downcase (rnrs unicode (6))

char-ci=? (rnrs unicode (6))

char-ci<? (rnrs unicode (6))

char-ci>? (rnrs unicode (6))

char-ci<=? (rnrs unicode (6))

char-ci>=? (rnrs unicode (6))

char-alphabetic? (rnrs unicode (6))

char-numeric? (rnrs unicode (6))

char-whitespace? (rnrs unicode (6))

char-upper-case? (rnrs unicode (6))

char-lower-case? (rnrs unicode (6))

close-input-port (rnrs io simple (6))

close-output-port (rnrs io simple (6))

current-input-port (rnrs io simple (6))

current-output-port (rnrs io simple (6))

display (rnrs io simple (6))

do (rnrs control (6))

eof-object? (rnrs io simple (6))

eval (rnrs eval (6))

delay (rnrs r5rs (6))

exact->inexact (rnrs r5rs (6))

force (rnrs r5rs (6))

identifier moved to

inexact->exact (rnrs r5rs (6))

member (rnrs lists (6))

memv (rnrs lists (6))

memq (rnrs lists (6))

modulo (rnrs r5rs (6))

newline (rnrs io simple (6))

null-environment (rnrs r5rs (6))

open-input-file (rnrs io simple (6))

open-output-file (rnrs io simple (6))

peek-char (rnrs io simple (6))

quotient (rnrs r5rs (6))

read (rnrs io simple (6))

read-char (rnrs io simple (6))

remainder (rnrs r5rs (6))

scheme-report-environment (rnrs r5rs (6))

set-car! (rnrs mutable-pairs (6))

set-cdr! (rnrs mutable-pairs (6))

string-ci=? (rnrs unicode (6))

string-ci<? (rnrs unicode (6))

string-ci>? (rnrs unicode (6))

string-ci<=? (rnrs unicode (6))

string-ci>=? (rnrs unicode (6))

string-set! (rnrs mutable-strings (6))

string-fill! (rnrs mutable-strings (6))

with-input-from-file (rnrs io simple (6))

with-output-to-file (rnrs io simple (6))

write (rnrs io simple (6))

write-char (rnrs io simple (6))

Figure A.1: Identifiers moved to libraries
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS, KEYWORDS, AND
PROCEDURES

The index includes entries from the library document; the
entries are marked with “(library)”.

! 22
#,@ 17
#\ 14
#| 13
& 22
’ 17
#’ 17
* 43
*, formal semantics rule [6*1] 67
*, formal semantics rule [6*] 67
+ 13, 43
+, formal semantics rule [6+0] 67
+, formal semantics rule [6+] 67
, 17
#, 17
,@ 17
- 13, 22, 44
-, formal semantics rule [6-] 67
-, formal semantics rule [6-arity] 67
-, formal semantics rule [6u-] 67
-> 13, 22
... 13, 50 (library), 58
/ 44
/, formal semantics rule [6/0] 67
/, formal semantics rule [6/] 67
/, formal semantics rule [6/arity] 67
/, formal semantics rule [6u/] 67
; 13
#; 13
< 43
<= 43
= 43
=> 33
> 43
>= 43
? 22

50 (library), 58
#‘ 17
‘ 17
|# 13

abs 44
acos 45
and 34
angle 46
antimark 49 (library)
append 48
apply 53, 60
apply, formal semantics rule [6apparity0] 72

apply, formal semantics rule [6apparity1] 72
apply, formal semantics rule [6applyc] 72
apply, formal semantics rule [6applyce] 72
apply, formal semantics rule [6applye] 72
apply, formal semantics rule [6applyf] 72
apply, formal semantics rule [6applynf] 72
argument checking 18
asin 45
assert 53
&assertion 27 (library)
assertion-violation 53
assertion-violation? 27 (library)
assignment 7
assoc 13 (library)
assp 13 (library)
assq 13 (library)
assv 13 (library)
atan 45

#b 13, 15
backquote 56
base record type 16 (library)
begin 37
begin, formal semantics rule [6beginc] 67
begin, formal semantics rule [6begind] 67
begin, formal semantics rule [6ubegin] 75
begin0, formal semantics rule [6begin01] 67
begin0, formal semantics rule [6begin0n] 67
begin0, formal semantics rule [6ubegin0] 75
begin0, formal semantics rule [6ubegin0u] 75
begin0, formal semantics rule [6ubegin0uu] 75
big-endian 5 (library)
binary port 29, 30 (library)
binary-port? 32 (library)
binding 6, 17
binding construct 17
bit fields 46 (library)
bitwise-and 47 (library)
bitwise-arithmetic-shift 47 (library)
bitwise-arithmetic-shift-left 48 (library)
bitwise-arithmetic-shift-right 48 (library)
bitwise-bit-count 47 (library)
bitwise-bit-field 47 (library)
bitwise-bit-set? 47 (library)
bitwise-copy-bit 47 (library)
bitwise-copy-bit-field 47 (library)
bitwise-first-bit-set 47 (library)
bitwise-if 47 (library)
bitwise-ior 47 (library)
bitwise-length 47 (library)
bitwise-not 46 (library)
bitwise-reverse-bit-field 48 (library)
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bitwise-rotate-bit-field 48 (library)
bitwise-xor 47 (library)
body 32
boolean 5
boolean=? 47
boolean? 31, 47
bound 18
bound-identifier=? 52 (library)
buffer-mode 30 (library)
buffer-mode? 30 (library)
byte 5 (library)
bytevector 5 (library)
bytevector->sint-list 7 (library)
bytevector->string 32 (library)
bytevector->u8-list 6 (library)
bytevector->uint-list 7 (library)
bytevector-copy 6 (library)
bytevector-copy! 6 (library)
bytevector-fill! 6 (library)
bytevector-ieee-double-native-ref 9 (library)
bytevector-ieee-double-native-set! 9 (library)
bytevector-ieee-double-ref 9 (library)
bytevector-ieee-single-native-ref 9 (library)
bytevector-ieee-single-native-set! 9 (library)
bytevector-ieee-single-ref 9 (library)
bytevector-length 6 (library)
bytevector-s16-native-ref 7 (library)
bytevector-s16-native-set! 8 (library)
bytevector-s16-ref 7 (library)
bytevector-s16-set! 7 (library)
bytevector-s32-native-ref 8 (library)
bytevector-s32-native-set! 8 (library)
bytevector-s32-ref 8 (library)
bytevector-s32-set! 8 (library)
bytevector-s64-native-ref 8 (library)
bytevector-s64-native-set! 9 (library)
bytevector-s64-ref 8 (library)
bytevector-s64-set! 8 (library)
bytevector-s8-ref 6 (library)
bytevector-s8-set! 6 (library)
bytevector-sint-ref 7 (library)
bytevector-sint-set! 7 (library)
bytevector-u16-native-ref 7 (library)
bytevector-u16-native-set! 7 (library)
bytevector-u16-ref 7 (library)
bytevector-u16-set! 7 (library)
bytevector-u32-native-ref 8 (library)
bytevector-u32-native-set! 8 (library)
bytevector-u32-ref 8 (library)
bytevector-u32-set! 8 (library)
bytevector-u64-native-ref 8 (library)
bytevector-u64-native-set! 8 (library)
bytevector-u64-ref 8 (library)
bytevector-u64-set! 8 (library)
bytevector-u8-ref 6 (library)

bytevector-u8-set! 6 (library)
bytevector-uint-ref 7 (library)
bytevector-uint-set! 7 (library)
bytevector=? 6 (library)
bytevector? 5 (library)

caar 48
cadr 48
call 28
call by need 62 (library)
call-with-bytevector-output-port 37 (library)
call-with-current-continuation 54, 60
call-with-input-file 40 (library)
call-with-output-file 40 (library)
call-with-port 33 (library)
call-with-string-output-port 38 (library)
call-with-values 54, 60
call-with-values, formal semantics rule [6cwvd] 65
call-with-values, formal semantics rule [6cwvw] 65
call/cc 54
call/cc, formal semantics rule [6call/cc] 73
car 48
car, formal semantics rule [6car] 68
car, formal semantics rule [6care] 68
case 34, 75
case-lambda 15 (library)
cdddar 48
cddddr 48
cdr 48
cdr, formal semantics rule [6cdr] 68
cdr, formal semantics rule [6cdre] 68
ceiling 45
char->integer 50
char-alphabetic? 3 (library)
char-ci<=? 3 (library)
char-ci<? 3 (library)
char-ci=? 3 (library)
char-ci>=? 3 (library)
char-ci>? 3 (library)
char-downcase 3 (library)
char-foldcase 3 (library)
char-general-category 4 (library)
char-lower-case? 3 (library)
char-numeric? 3 (library)
char-title-case? 3 (library)
char-titlecase 3 (library)
char-upcase 3 (library)
char-upper-case? 3 (library)
char-whitespace? 3 (library)
char<=? 50
char<? 50
char=? 50
char>=? 50
char>? 50
char? 31, 50
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character 5
Characters 50
close-input-port 40 (library)
close-output-port 40 (library)
close-port 33 (library)
code point 50
codec 30 (library)
command-line 41 (library)
command-line arguments 27
comment 12, 13
complex? 41
compound condition 24 (library)
cond 33, 59, 75
condition 24 (library)
&condition 24 (library)
condition 24 (library)
condition-accessor 25 (library)
condition-irritants 27 (library)
condition-message 26 (library)
condition-predicate 25 (library)
condition-who 27 (library)
condition? 25 (library)
condition?, formal semantics rule [6cf] 66
condition?, formal semantics rule [6ct] 66
cons 48
cons, formal semantics rule [6cons] 68
cons* 13 (library)
consi, formal semantics rule [6consi] 68
constant 20
constructor descriptor 17 (library)
continuable exception 18, 23 (library)
core form 29
cos 45
current exception handler 23 (library)
current-error-port 38 (library), 40 (library)
current-input-port 34 (library), 40 (library)
current-output-port 38 (library), 40 (library)

#d 15
datum 11
datum value 8, 11
datum->syntax 53 (library)
define 31
define-condition-type 25 (library)
define-enumeration 60 (library)
define-record-type 19 (library)
define-syntax 31
definition 6, 17, 24, 31
delay 62 (library)
delete-file 41 (library)
denominator 45
derived form 8
display 41 (library)
div 44
div-and-mod 44

div0 44
div0-and-mod0 44
do 14, 15 (library)
dot, formal semantics rule [6µapp] 70
dot, formal semantics rule [6µarity] 70
dw, formal semantics rule [6dwdone] 73
dw, formal semantics rule [6udw] 75
dynamic environment 20
dynamic extent 20
dynamic-wind 54
dynamic-wind, formal semantics rule [6dwarity] 73
dynamic-wind, formal semantics rule [6wind] 73
dynamic-wind, formal semantics rule [6winde] 73

#e 13, 15
else 33, 34
empty list 16, 31, 47, 48
end of file object 32 (library)
end-of-line style 30 (library)
endianness 5 (library)
endianness 5 (library)
enum-set->list 59 (library)
enum-set-complement 60 (library)
enum-set-constructor 59 (library)
enum-set-difference 59 (library)
enum-set-indexer 59 (library)
enum-set-intersection 59 (library)
enum-set-member? 59 (library)
enum-set-projection 60 (library)
enum-set-subset? 59 (library)
enum-set-union 59 (library)
enum-set-universe 59 (library)
enum-set=? 59 (library)
enumeration 58 (library)
enumeration sets 58 (library)
enumeration type 58 (library)
environment 61 (library)
eof-object 32 (library), 40 (library)
eof-object? 32 (library), 40 (library)
eol-style 31 (library)
eq? 39
equal-hash 58 (library)
equal? 39
equivalence function 56 (library)
equivalence predicate 37
eqv? 19, 38
eqv?, formal semantics rule [6eqcf] 69
eqv?, formal semantics rule [6eqct] 69
eqv?, formal semantics rule [6eqf] 69
eqv?, formal semantics rule [6eqt] 69
eqv?, formal semantics rule [6ueqv] 75
&error 26 (library)
error 53
error-handling-mode 31 (library)
error? 26 (library)
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escape procedure 54
escape sequence 14
eval 60 (library)
even? 43
exact 10, 38
exact 42
exact->inexact 61 (library)
exact-integer-sqrt 46
exact? 42
exactness 10
exception 24 (library)
exceptional situation 18, 24 (library)
exceptions 23 (library)
exists 10 (library)
exit 41 (library)
exp 45
export 22
expression 6, 24
expt 46
external representation 11

#f 14, 47
false 19
file options 29 (library)
file-exists? 41 (library)
file-options 30 (library)
filter 11 (library)
find 10 (library)
finite? 43
fixnum 10
fixnum->flonum 46 (library)
fl 22
fl* 45 (library)
fl+ 45 (library)
fl- 45 (library)
fl/ 45 (library)
fl<=? 44 (library)
fl<? 44 (library)
fl=? 44 (library)
fl>=? 44 (library)
fl>? 44 (library)
flabs 45 (library)
flacos 46 (library)
flasin 46 (library)
flatan 46 (library)
flceiling 45 (library)
flcos 46 (library)
fldenominator 45 (library)
fldiv 45 (library)
fldiv-and-mod 45 (library)
fldiv0 45 (library)
fldiv0-and-mod0 45 (library)
fleven? 44 (library)
flexp 46 (library)
flexpt 46 (library)

flfinite? 44 (library)
flfloor 45 (library)
flinfinite? 44 (library)
flinteger? 44 (library)
fllog 46 (library)
flmax 45 (library)
flmin 45 (library)
flmod 45 (library)
flmod0 45 (library)
flnan? 44 (library)
flnegative? 44 (library)
flnumerator 45 (library)
flodd? 44 (library)
flonum 10
flonum? 44 (library)
floor 45
flpositive? 44 (library)
flround 45 (library)
flsin 46 (library)
flsqrt 46 (library)
fltan 46 (library)
fltruncate 45 (library)
flush-output-port 37 (library)
flzero? 44 (library)
fold-left 11 (library)
fold-right 12 (library)
for-all 10 (library)
for-each 49
force 62 (library)
form 7, 11
free-identifier=? 52 (library)
fx 22
fx* 42 (library)
fx*/carry 42 (library)
fx+ 42 (library)
fx+/carry 42 (library)
fx- 42 (library)
fx-/carry 42 (library)
fx<=? 42 (library)
fx<? 42 (library)
fx=? 42 (library)
fx>=? 42 (library)
fx>? 42 (library)
fxand 43 (library)
fxarithmetic-shift 43 (library)
fxarithmetic-shift-left 44 (library)
fxarithmetic-shift-right 44 (library)
fxbit-count 43 (library)
fxbit-field 43 (library)
fxbit-set? 43 (library)
fxcopy-bit 43 (library)
fxcopy-bit-field 43 (library)
fxdiv 42 (library)
fxdiv-and-mod 42 (library)
fxdiv0 42 (library)
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fxdiv0-and-mod0 42 (library)
fxeven? 42 (library)
fxfirst-bit-set 43 (library)
fxif 43 (library)
fxior 43 (library)
fxlength 43 (library)
fxmax 42 (library)
fxmin 42 (library)
fxmod 42 (library)
fxmod0 42 (library)
fxnegative? 42 (library)
fxnot 43 (library)
fxodd? 42 (library)
fxpositive? 42 (library)
fxreverse-bit-field 44 (library)
fxrotate-bit-field 44 (library)
fxxor 43 (library)
fxzero? 42 (library)

gcd 45
generate-temporaries 54 (library)
get-bytevector-all 36 (library)
get-bytevector-n 35 (library)
get-bytevector-n! 35 (library)
get-bytevector-some 36 (library)
get-char 36 (library)
get-datum 36 (library)
get-line 36 (library)
get-string-all 36 (library)
get-string-n 36 (library)
get-string-n! 36 (library)
get-u8 35 (library)
guard 23 (library)

hash function 56 (library)
hashtable 56, 57 (library)
hashtable-clear! 58 (library)
hashtable-contains? 57 (library)
hashtable-copy 58 (library)
hashtable-delete! 57 (library)
hashtable-entries 58 (library)
hashtable-equivalence-function 58 (library)
hashtable-hash-function 58 (library)
hashtable-keys 58 (library)
hashtable-mutable? 58 (library)
hashtable-ref 57 (library)
hashtable-set! 57 (library)
hashtable-size 57 (library)
hashtable-update! 57 (library)
hashtable? 57 (library)
hole 61
hygienic 29

#i 13, 15
&i/o 28 (library)
&i/o-decoding 31 (library)

i/o-decoding-error? 31 (library)
&i/o-encoding 31 (library)
i/o-encoding-error-char 31 (library)
i/o-encoding-error? 31 (library)
i/o-error-filename 28 (library)
i/o-error-port 29 (library)
i/o-error? 28 (library)
&i/o-file-already-exists 29 (library)
i/o-file-already-exists-error? 29 (library)
&i/o-file-does-not-exist 29 (library)
i/o-file-does-not-exist-error? 29 (library)
&i/o-file-is-read-only 29 (library)
i/o-file-is-read-only-error? 29 (library)
&i/o-file-protection 28 (library)
i/o-file-protection-error? 28 (library)
&i/o-filename 28 (library)
i/o-filename-error? 28 (library)
&i/o-invalid-position 28 (library)
i/o-invalid-position-error? 28 (library)
&i/o-port 29 (library)
i/o-port-error? 29 (library)
&i/o-read 28 (library)
i/o-read-error? 28 (library)
&i/o-write 28 (library)
i/o-write-error? 28 (library)
identifier 6, 12, 13, 17, 49 (library)
identifier macro 52 (library)
identifier-syntax 59
identifier? 52 (library)
if 33
if, formal semantics rule [6if3f] 67
if, formal semantics rule [6if3t] 67
imag-part 46
immutable 20
immutable record type 16 (library)
implementation restriction 10, 18
&implementation-restriction 27 (library)
implementation-restriction-violation? 27 (library)
implicit identifier 53 (library)
import 22
import level 25
improper list 48
inexact 10, 38
inexact 42
inexact->exact 61 (library)
inexact? 42
infinite? 43
input port 29 (library)
input-port? 33 (library)
instance 25
instantiation 25
integer objects 9
integer->char 50
integer-valued? 42
integer? 41
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&irritants 27 (library)
irritants-condition? 27 (library)

keyword 17, 28

lambda 32
lambda, formal semantics rule [6µapp1] 70
lambda, formal semantics rule [6µapp] 70
lambda, formal semantics rule [6µarity] 70
lambda, formal semantics rule [6app0] 70
lambda, formal semantics rule [6appN!] 70
lambda, formal semantics rule [6appN] 70
lambda, formal semantics rule [6arity] 70
lambda, formal semantics rule [6cwvd] 65
latin-1-codec 31 (library)
lazy evaluation 62 (library)
lcm 45
length 48
let 32, 35, 55, 59, 77
let* 32, 35
let*-values 32, 37
let-syntax 57
let-values 32, 36
letrec 32, 35, 76
letrec, formal semantics rule [6letrec] 74
letrec* 32, 36
letrec*, formal semantics rule [6letrec*] 74
letrec-syntax 57
level 25
lexeme 12
&lexical 27 (library)
lexical-violation? 27 (library)
library 8, 17, 22
library 22
library specifier 60 (library)
list 6
list 48
list, formal semantics rule [6listc] 68
list, formal semantics rule [6listn] 68
list->string 51
list->vector 52
list-ref 49
list-sort 13 (library)
list-tail 49
list? 48
literal 28
little-endian 5 (library)
location 19
log 45
lookahead-char 36 (library)
lookahead-u8 35 (library)

macro 8, 28
macro keyword 28
macro transformer 28, 49 (library), 57
magnitude 46

make-assertion-violation 27 (library)
make-bytevector 5 (library)
make-custom-binary-input-port 34 (library)
make-custom-binary-input/output-port 39 (library)
make-custom-binary-output-port 38 (library)
make-custom-textual-input-port 35 (library)
make-custom-textual-input/output-port 39 (library)
make-custom-textual-output-port 38 (library)
make-enumeration 59 (library)
make-eq-hashtable 57 (library)
make-eqv-hashtable 57 (library)
make-error 26 (library)
make-hashtable 57 (library)
make-i/o-decoding-error 31 (library)
make-i/o-encoding-error 31 (library)
make-i/o-error 28 (library)
make-i/o-file-already-exists-error 29 (library)
make-i/o-file-does-not-exist-error 29 (library)
make-i/o-file-is-read-only-error 29 (library)
make-i/o-file-protection-error 28 (library)
make-i/o-filename-error 28 (library)
make-i/o-invalid-position-error 28 (library)
make-i/o-port-error 29 (library)
make-i/o-read-error 28 (library)
make-i/o-write-error 28 (library)
make-implementation-restriction-violation 27 (li-

brary)
make-irritants-condition 27 (library)
make-lexical-violation 27 (library)
make-message-condition 26 (library)
make-no-infinities-violation 46 (library)
make-no-nans-violation 46 (library)
make-non-continuable-violation 27 (library)
make-polar 46
make-record-constructor-descriptor 17 (library)
make-record-type-descriptor 16 (library)
make-rectangular 46
make-serious-condition 26 (library)
make-string 51
make-syntax-violation 27 (library)
make-transcoder 32 (library)
make-undefined-violation 27 (library)
make-variable-transformer 50 (library)
make-vector 52
make-violation 26 (library)
make-warning 26 (library)
make-who-condition 27 (library)
map 49
mark 48 (library)
max 43
may 9
member 12 (library)
memp 12 (library)
memq 12 (library)
memv 12 (library)
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&message 26 (library)
message-condition? 26 (library)
min 43
mod 44
mod0 44
modulo 62 (library)
must 9
must be 21
must not 9
mutable 20
mutable record type 16 (library)

nan? 43
native-endianness 5 (library)
native-eol-style 31 (library)
native-transcoder 32 (library)
negative? 43
newline 41 (library)
nil 47
&no-infinities 46 (library)
no-infinities-violation? 46 (library)
&no-nans 46 (library)
no-nans-violation? 46 (library)
&non-continuable 27 (library)
non-continuable-violation? 27 (library)
not 47
null, formal semantics rule [6applyf] 72
null, formal semantics rule [6null?t] 68
null-environment 63 (library)
null? 31, 48
null?, formal semantics rule [6null?f] 68
null?, formal semantics rule [6null?t] 68
number 5, 9, 41 (library)
number->string 47
number? 31, 41
numerator 45
numerical types 9

#o 13, 15
object 5
octet 5 (library)
odd? 43
open-bytevector-input-port 34 (library)
open-bytevector-output-port 37 (library)
open-file-input-port 33 (library)
open-file-input/output-port 39 (library)
open-file-output-port 37 (library)
open-input-file 40 (library)
open-output-file 40 (library)
open-string-input-port 34 (library)
open-string-output-port 38 (library)
or 34
output ports 29 (library)
output-port-buffer-mode 37 (library)
output-port? 37 (library)

pair 6, 47
pair? 31, 48
pair?, formal semantics rule [6pair?f] 68
pair?, formal semantics rule [6pair?t] 68
partition 11 (library)
pattern variable 17, 50 (library), 58
peek-char 40 (library)
phase 25
port 29 (library)
port-eof? 33 (library)
port-has-port-position? 33 (library)
port-has-set-port-position!? 33 (library)
port-position 33 (library)
port-transcoder 32 (library)
port? 32 (library)
position 32 (library)
positive? 43
predicate 37
prefix notation 6
procedure 6, 7
procedure call 7, 28
procedure? 31, 40
procedure?, formal semantics rule [6procf] 70
procedure?, formal semantics rule [6proct] 70
promise 62 (library)
proper tail recursion 20
protocol 17 (library)
put-bytevector 39 (library)
put-char 39 (library)
put-datum 39 (library)
put-string 39 (library)
put-u8 39 (library)

quasiquote 55, 56
quasisyntax 55 (library)
quote 32
quotient 62 (library)

raise 18
raise 23 (library)
raise, formal semantics rule [6xr] 66
raise-continuable 23 (library)
raise-continuable, formal semantics rule [6xrc] 66
rational-valued? 42
rational? 41
rationalize 45
read 40 (library)
read-char 40 (library)
real->flonum 44 (library)
real-part 46
real-valued? 42
real? 41
record 15 (library)
record constructor 17 (library)
record-accessor 18 (library)
record-constructor 18 (library)
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record-constructor descriptor 17 (library)
record-constructor-descriptor 21 (library)
record-field-mutable? 22 (library)
record-mutator 18 (library)
record-predicate 18 (library)
record-rtd 22 (library)
record-type descriptor 16 (library)
record-type-descriptor 21 (library)
record-type-descriptor? 17 (library)
record-type-field-names 22 (library)
record-type-generative? 22 (library)
record-type-name 22 (library)
record-type-opaque? 22 (library)
record-type-parent 22 (library)
record-type-sealed? 22 (library)
record-type-uid 22 (library)
record? 22 (library)
referentially transparent 29
region 14 (library), 17, 33–37
remainder 62 (library)
remove 12 (library)
remp 12 (library)
remq 12 (library)
remv 12 (library)
responsibility 18
reverse 49
(rnrs (6)) 60 (library)
(rnrs arithmetic bitwise (6)) 46 (library)
(rnrs arithmetic fixnums (6)) 41 (library)
(rnrs arithmetic flonums (6)) 44 (library)
(rnrs base (6)) 30
(rnrs bytevectors (6)) 5 (library)
(rnrs conditions (6)) 24 (library)
(rnrs control (6)) 14 (library)
(rnrs enums (6)) 58 (library)
(rnrs exceptions (6)) 23 (library)
(rnrs files (6)) 41 (library)
(rnrs hashtables (6)) 56 (library)
(rnrs io ports (6)) 29 (library)
(rnrs io simple (6)) 40 (library)
(rnrs lists (6)) 10 (library)
(rnrs mutable-pairs (6)) 61 (library)
(rnrs mutable-strings (6)) 61 (library)
(rnrs programs (6)) 41 (library)
(rnrs r5rs (6)) 61 (library)
(rnrs records inspection (6)) 22 (library)
(rnrs records procedural (6)) 16 (library)
(rnrs records syntactic (6)) 19 (library)
(rnrs sorting (6)) 13 (library)
(rnrs syntax-case (6)) 48 (library)
(rnrs unicode (6)) 3 (library)
round 45
rtd 16 (library)

safe libraries 19

scalar value 50
scheme-report-environment 63 (library)
&serious 26 (library)
serious-condition? 26 (library)
set! 33
set!, formal semantics rule [6set] 70
set!, formal semantics rule [6setdt] 74
set!, formal semantics rule [6setdte] 74
set-car! 61 (library)
set-car!, formal semantics rule [6scare] 68
set-car!, formal semantics rule [6setcar] 68
set-cdr! 61 (library)
set-cdr!, formal semantics rule [6scdre] 68
set-cdr!, formal semantics rule [6setcdr] 68
set-port-position! 33 (library)
should 9
should not 9
simple condition 24 (library)
simple-conditions 24 (library)
simplest rational 45
sin 45
sint-list->bytevector 7 (library)
splicing 37
sqrt 46
standard library 17
standard-error-port 38 (library)
standard-input-port 34 (library)
standard-output-port 38 (library)
string 5
string 51
string->bytevector 32 (library)
string->list 51
string->number 47
string->symbol 50
string->utf16 9 (library)
string->utf32 10 (library)
string->utf8 9 (library)
string-append 51
string-ci-hash 58 (library)
string-ci<=? 4 (library)
string-ci<? 4 (library)
string-ci=? 4 (library)
string-ci>=? 4 (library)
string-ci>? 4 (library)
string-copy 52
string-downcase 4 (library)
string-fill! 61 (library)
string-foldcase 4 (library)
string-for-each 51
string-hash 58 (library)
string-length 51
string-normalize-nfc 4 (library)
string-normalize-nfd 4 (library)
string-normalize-nfkc 4 (library)
string-normalize-nfkd 4 (library)
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string-ref 51
string-set! 61 (library)
string-titlecase 4 (library)
string-upcase 4 (library)
string<=? 51
string<? 51
string=? 51
string>=? 51
string>? 51
string? 31, 51
subform 7, 11
substitution 48 (library)
substring 51
surrogate 50
symbol 6, 14
symbol->string 20, 50
symbol-hash 58 (library)
symbol=? 50
symbol? 31, 50
syntactic abstraction 28
syntactic datum 8, 11, 16
syntactic keyword 7, 14, 17, 28
&syntax 27 (library)
syntax 51 (library)
syntax object 49 (library)
syntax violation 19
syntax->datum 53 (library)
syntax-case 50 (library)
syntax-rules 58
syntax-violation 56 (library)
syntax-violation-form 27 (library)
syntax-violation-subform 27 (library)
syntax-violation? 27 (library)

#t 14, 47
tail call 20, 60
tan 45
textual port 30 (library)
textual ports 29 (library)
textual-port? 32 (library)
throw, formal semantics rule [6throw] 73
top-level program 9, 17, 27
transcoded-port 32 (library)
transcoder 30 (library)
transcoder-codec 32 (library)
transcoder-eol-style 32 (library)
transcoder-error-handling-mode 32 (library)
transformation procedure 49 (library)
transformer 28, 49 (library), 57
true 19, 33
truncate 45
type 31

u8-list->bytevector 6 (library)
uint-list->bytevector 7 (library)
unbound 18, 28

&undefined 27 (library)
undefined-violation? 27 (library)
Unicode 50
Unicode scalar value 50
universe 58 (library)
unless 14 (library)
unquote 55, 56
unquote-splicing 56
unspecified behavior 19
unspecified values 19
unsyntax 55 (library)
unsyntax-splicing 55 (library)
utf-16-codec 31 (library)
utf-8-codec 31 (library)
utf16->string 10 (library)
utf32->string 10 (library)
utf8->string 10 (library)

valid indices 51, 52
values 54
values, formal semantics rule [6begin0n] 67
values, formal semantics rule [6beginc] 67
values, formal semantics rule [6cwvd] 65
values, formal semantics rule [6demote] 65
values, formal semantics rule [6dwdone] 73
values, formal semantics rule [6ubegin0] 75
values, formal semantics rule [6ubegin0u] 75
values, formal semantics rule [6uval] 75
values, formal semantics rule [6xdone] 66
variable 6, 14, 17, 28
variable transformer 49, 50 (library)
vector 6
vector 52
vector->list 52
vector-fill! 52
vector-for-each 53
vector-length 52
vector-map 52
vector-ref 52
vector-set! 52
vector-sort 13 (library)
vector-sort! 13 (library)
vector? 31, 52
&violation 26 (library)
violation? 26 (library)
visit 25
visiting 25

&warning 26 (library)
warning? 26 (library)
when 14 (library)
Whitespace 13
&who 27 (library)
who-condition? 27 (library)
with-exception-handler 23 (library)
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with-exception-handler, formal semantics rule [6weherr]
66

with-exception-handler, formal semantics rule [6xwh1]
66

with-exception-handler, formal semantics rule [6xwhn]
66

with-exception-handler, formal semantics rule [6xwhne]
66

with-input-from-file 40 (library)
with-output-to-file 40 (library)
with-syntax 55 (library)
wrap 49 (library)
wrapped syntax object 49 (library)
write 41 (library)
write-char 41 (library)

#x 13, 15

zero? 43
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