
ibm.com/redbooks

Front cover

IBM HiperSockets
Implementation Guide

Mike Ebbers
Micky Reichenberg

Alexandra Winter

Understand HiperSockets architecture,
functions, and operating systems

Learn tips for planning and
implementing HiperSockets

See examples for IBM z/OS, IBM
z/VM, and Linux on System z

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM HiperSockets Implementation Guide

June 2014

SG24-6816-02

© Copyright International Business Machines Corporation 2013, 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Third Edition (June 2014)

This edition applies to IBM zEnterprise systems.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! .x
Comments welcome. .x
Stay connected to IBM Redbooks .x

Chapter 1. Overview . 1
1.1 Overview . 2
1.2 Server integration with HiperSockets . 3
1.3 HiperSockets benefits . 3
1.4 HiperSockets mode of operation. 4

1.4.1 Unicast operations . 5
1.4.2 Multicast and broadcast . 6

Chapter 2. HiperSockets environment definitions . 7
2.1 System configuration considerations . 8

2.1.1 Channel parameters for HiperSockets . 9
2.2 HCD definitions . 9

2.2.1 Dynamic Channel Path Management . 10
2.2.2 Channel path definitions . 10
2.2.3 Control unit definitions . 16
2.2.4 I/O device definitions. 19
2.2.5 Dynamic reconfiguration . 24
2.2.6 References . 24

2.3 IBM z/VM definitions . 24
2.3.1 Hardware assists . 25
2.3.2 Implementation example. 25
2.3.3 IBM z/VM I/O verification. 26
2.3.4 IBM z/VM definitions for guest systems . 27

Chapter 3. Software configurations for HiperSockets . 29
3.1 Test configuration . 30
3.2 HiperSockets in z/OS . 31

3.2.1 HiperSockets implementation environment. 32
3.2.2 Implementation steps . 32
3.2.3 No IBM VTAM setup for HiperSockets . 32
3.2.4 TCP/IP profile setup for HiperSockets . 33
3.2.5 Verification of the HiperSockets configuration . 34

3.3 DYNAMICXCF HiperSockets implementation. 36
3.3.1 HiperSockets DYNAMICXCF connectivity . 38
3.3.2 DYNAMICXCF implementation environment . 38
3.3.3 Implementation steps . 39
3.3.4 VTAM configuration for DYNAMICXCF. 40
3.3.5 TCP/IP configuration for DYNAMICXCF. 40
3.3.6 Verification of the DYNAMICXCF configuration . 41
© Copyright IBM Corp. 2013, 2014. All rights reserved. iii

3.4 HiperSockets definitions for a z/VM host system . 44
3.4.1 Permanent TCP/IP definitions for a z/VM host system . 44
3.4.2 Dynamically define HiperSockets for a z/VM host system 46
3.4.3 TCP/IP verification . 46
3.4.4 References . 47

3.5 HiperSockets in Linux on System z. 48
3.5.1 Software requirements . 48
3.5.2 Linux configuration example . 49
3.5.3 Linux I/O definitions for the initial installation of the Linux system 49
3.5.4 Linux I/O definitions for adding to an existing Linux system 51
3.5.5 Permanent Linux definitions . 54
3.5.6 References . 56

3.6 HiperSockets in z/VSE . 56
3.6.1 HiperSockets Support in z/VSE . 56
3.6.2 Configuring HiperSockets devices in z/VSE . 57
3.6.3 Configuring a HiperSockets link in TCP/IP . 57
3.6.4 Related publications . 58

Chapter 4. Performance considerations . 59
4.1 HiperSockets for highest performance . 60
4.2 Processor considerations . 60
4.3 Physical memory structure . 60
4.4 Maximum transmission unit size . 60
4.5 Input buffer count . 61

4.5.1 Input buffer count in IBM z/OS . 61
4.5.2 Input buffer count in Linux for System z . 61
4.5.3 Input buffer count in z/VSE . 62

4.6 References . 62

Chapter 5. Layer 2 and layer 3 modes . 63
5.1 Concept of layer modes for HiperSockets. 64
5.2 Layer 3 mode . 64

5.2.1 IPv4. 64
5.2.2 IPv6. 65
5.2.3 IP takeover . 65

5.3 Layer 2 mode . 66
5.3.1 MAC address generation . 66
5.3.2 HiperSockets layer 2 mode software support . 67

Chapter 6. Virtual local area network support . 69
6.1 Overview . 70
6.2 Types of connections according to IEEE . 70

6.2.1 HiperSockets as a virtual switch in trunk mode with VLAN control 71
6.3 Out-of-band VLAN management using the IBM zEnterprise Unified Resource Manager

Network Virtualization Manager . 71
6.4 Benefits of HiperSockets VLAN . 72
6.5 An example of HiperSockets VLAN in z/OS . 72

6.5.1 Implementation steps . 73
6.5.2 Virtual Telecommunications Access Method setup for VLAN HiperSockets. 73
6.5.3 TCP/IP profile customization for VLAN HiperSockets. 73
6.5.4 Verify VLAN implementation . 75

6.6 HiperSockets VLAN for a z/VM host system. 77
6.6.1 VLAN definitions . 77
6.6.2 VLAN verification . 77
iv IBM HiperSockets Implementation Guide

6.7 HiperSockets VLAN in Linux on System z . 78
6.7.1 Temporary VLAN for RHEL—VLAN 2 on LNXRH1 . 78
6.7.2 Temporary VLAN for SLES11—VLAN 3 on LNXSU1. 80
6.7.3 Verifying your setup . 80
6.7.4 Permanent VLAN definition for Red Hat Enterprise Linux 81
6.7.5 Permanent VLAN definition for SLES11 . 82

6.8 HiperSockets VLAN in z/VSE . 83

Chapter 7. More HiperSockets features . 85
7.1 HiperSockets multiple write facility . 86

7.1.1 HiperSockets multiwrite for z/OS . 86
7.2 HiperSockets network traffic analyzer . 87

7.2.1 Overview . 87
7.2.2 NTA authorization on the SE . 88
7.2.3 HiperSockets NTA for Linux on System z . 91
7.2.4 Reference . 92

7.3 Completion queue function . 92
7.3.1 Details about completion queue . 92
7.3.2 Completion queue for the z/VM HiperSockets Bridge Port 93
7.3.3 IUCV Sockets over HiperSockets (Linux, z/VSE) . 93
7.3.4 Linux Fast Path (Linux, z/VSE) . 93

Chapter 8. Connect HiperSockets to other networks . 95
8.1 Connecting HiperSockets to external networks . 96
8.2 HiperSockets Accelerator on z/OS . 96

8.2.1 The QDIO Accelerator function. 99
8.2.2 HiperSockets Accelerator implementation . 100
8.2.3 HiperSockets Accelerator implementation steps. 101
8.2.4 VTAM configuration . 102
8.2.5 TCP/IP configuration. 102
8.2.6 HiperSockets Accelerator verification . 103
8.2.7 References . 106

8.3 HiperSockets Network Concentrator on Linux . 106
8.3.1 Example . 108
8.3.2 References . 111

8.4 The z/VM Virtual Switch with HiperSockets bridge port . 112
8.4.1 The z/VM Virtual Switch . 112
8.4.2 Bridging a HiperSockets LAN with a z/VM Virtual Switch 112
8.4.3 Benefits of a bridged HiperSockets network . 113
8.4.4 HiperSockets Bridge Port details . 114
8.4.5 Path MTU Discovery . 115
8.4.6 References . 115
8.4.7 Example . 116

Chapter 9. HiperSockets in an IBM zEnterprise ensemble . 125
9.1 The IBM zEnterprise System . 126
9.2 The intraensemble data network. 127
9.3 HiperSockets for IEDN (IQDX) . 128
9.4 MAC management by the URM . 129
9.5 VLAN management by the URM. 130
 Contents v

9.6 Using URM to manage IQDX . 130
9.6.1 Reserve MAC address ranges . 131
9.6.2 Define VLANs . 133
9.6.3 Add virtual servers to a VLAN. 135
9.6.4 Verify details of a VLAN . 138

9.7 The z/OS converged interface . 139
9.7.1 How to define the converged interface . 140

9.8 IBM z/VM Virtual Switch for IEDN . 143
9.9 Network monitoring with Unified Resource Manager . 143

Appendix A. Gathering statistics in a HiperSockets environment 147
The Resource Measurement facility (RMF) . 148

Short-term data collection with Monitor III. 148
The Monitor III Channel Path Activity Report . 148
How to generate the report . 148
References . 149

Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 151
Sysplex subplexing . 152

Subplex implementation environment . 155
Implementation steps . 156
VTAM configuration setup for Sysplex subplex. 157
TCP/IP configuration setup for Sysplex subplex . 157
Verification of the IP subplex over HiperSockets . 158

References. 163

Appendix C. Useful commands . 165
IBM z/OS commands . 166
Editing network profiles in z/OS . 168

Multiple TCPI/IP stacks. 168
Find the active profile . 168
Edit a profile . 171
A few tips for using the editor . 173
Terminate and restart a TCP/IP stack. 174
Work with a TCP/IP stack . 174

Linux on System z commands . 175
IBM z/VM commands . 176

Defining and coupling a NIC using CP commands . 177

Related publications . 179
IBM Redbooks . 179
Other publications . 179
Online resources . 180
Help from IBM . 181
vi IBM HiperSockets Implementation Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013, 2014. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
BladeCenter®
DataPower®
developerWorks®
Domino®
HiperSockets™
IBM®
Lotus®
MVS™
POWER7®

Redbooks®
Redbooks (logo) ®
Resource Measurement Facility™
RMF™
S/390®
System x®
System z®
System z10®
System z9®
Tivoli®

VTAM®
WebSphere®
z/Architecture®
z/OS®
z/VM®
z/VSE®
z10™
z9®
zEnterprise®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM HiperSockets Implementation Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication provides information about the IBM System z®
HiperSockets™ function. It offers a broad description of the architecture, functions, and
operating systems support. This publication will help you plan and implement HiperSockets. It
provides information about the definitions needed to configure HiperSockets for the supported
operating systems.

This book is intended for system programmers, network planners, and systems engineers
who want to plan and install HiperSockets. A solid background in network and Transmission
Control Protocol/Internet Protocol (TCP/IP) is assumed.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Poughkeepsie Center.

Mike Ebbers is a Consulting IT Specialist and Project Leader at the ITSO, Poughkeepsie
Center. He has worked with IBM mainframe hardware and software products since 1974, in
the field, in education, and in the ITSO.

Micky Reichenberg is an independent consultant for IBM z/OS® networking, Systems
Network Architecture (SNA), and TCP/IP. He is based in Tel Aviv, Israel. Micky has over 35
years of experience in the industry, and focuses primarily on z/OS Communications Server,
introducing and implementing new technologies, high availability (HA), problem
determination, open systems connectivity to the IBM System z Enterprise Extender design
and implementation. Before becoming a consultant, Micky was a systems engineer with IBM
Israel for 17 years. During his assignment with the ITSO Raleigh, he published five
networking-related IBM Redbooks publications. He holds a bachelor's degree in aeronautical
engineering from the Techion Israel Institute of Technology.

Alexandra Winter is the System z HiperSockets Architect. She works in the IBM
development laboratory in Boeblingen, Germany, continuously adding to the value of System
z by designing and implementing new HiperSockets features and improvements. She has 16
years of experience in System z firmware development, and has worked on various System z,
zSeries, and IBM S/390® projects (including Cryptographic Coprocessor, External Time
Reference, Capacity on Demand, Concurrent Book Add, and HiperSockets). She holds a
master's degree in electrical engineering.

Thanks to the following people for their contributions to this project:

Dave Bennin
Rich Conway
Roy Costa
Bob Haimowitz
International Technical Support Organization, Poughkeepsie Center

Wonjin Chung
IBM South Korea

Dody Kurniadi
IBM Indonesia
© Copyright IBM Corp. 2013, 2014. All rights reserved. ix

Joselito Manoto
IBM Australia

Rene Trumpp
IBM z/VSE® development, IBM Boeblingen

Thanks to the authors of the previous editions of this book:

� Authors of the first edition, IBM HiperSockets Implementation Guide

Rama Ayyar and Velibor Uskokovic

� Authors of the second edition, IBM HiperSockets Implementation Guide

Bill White, Roy Costa, Michael Gamble, Franck Injey, Giada Rauti, and Karan Singh

Now you can become a published author, too!

Here is an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Learn more about the residency program, browse the residency index, and apply online:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments in an email:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
x IBM HiperSockets Implementation Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii IBM HiperSockets Implementation Guide

Chapter 1. Overview

This chapter provides a high-level overview of IBM System z HiperSockets and its benefits to
System z customers. It describes the basic concepts, and explains how HiperSockets work
internally.

1

© Copyright IBM Corp. 2013, 2014. All rights reserved. 1

1.1 Overview

The HiperSockets function, also known as internal queued direct input/output (iQDIO or
internal QDIO), is an integrated function of the firmware of the System z central processor
complexes (CPCs). It provides users with attachment to high-speed logical local area
networks (LANs) with minimal system and network resource usage. HiperSockets
3provides internal virtual local area networks, which are Internet Protocol networks in the
System z system.

Therefore, HiperSockets provides the fastest Transmission Control Protocol/Internet Protocol
(TCP/IP) communication between consolidated Linux, IBM z/VM®, IBM z/VSE, and IBM z/OS
virtual servers on the same system. Figure 1-1 shows a typical mainframe configuration,
where multiple workloads are running in different logical partitions (LPARs), or in z/VM guests
and in different operating systems. HiperSockets provide an efficient and secure internal
network for all of these workloads to communicate with each other.

Figure 1-1 Multiple workloads on the mainframe

The virtual servers form a virtual LAN (VLAN). This technology eliminates the requirement for
any physical cabling or external networking connection among them. It works as an internal
LAN and moves data at memory speed between these virtual servers, providing a
high-throughput and low-latency communication path.

HiperSockets is a function that emulates the Logical Link Control (LLC) layer of an Open
Systems Adapter (OSA)-Express QDIO interface. It is implemented in System z firmware,
which is also called Licensed Internal Code (LIC)1. This firmware function, coupled with
supporting operating system device drivers, establishes a higher level of network availability,
security, simplicity, performance, and cost effectiveness than is available when connecting
single servers or LPARs together using an external Internet Protocol network.

HiperSockets is used by the following operating systems:

� z/OS
� z/VM
� z/VSE
� Linux on System z

Linux®

ERP
Java
Appl.

WebSphere®
Core

Native Linux

CICS
IMS

Busines
s

Objects

JVM

z/OS

DB2

z/OS

DB2

JVM

Business

Objects

z/VM®

Java™

Appl

Java Appl C++
Java

DB2

Linux
for

System z

Linux
for

System z

CICS®

DB2®

IMS™

HiperSockets™ – virtual networking and switching

Processor Resource/Systems Manager™ (PR/SM™)

CP 1 CP 2 CP n

Memory

Test
z/OS

Linux

Native Linux

DB2

z/VM

C++

Java
DB2

Linux for
System z Linux

for
System z

Linux
for

System z

IFL 1 IFL n

Linux for
System z

1 Sometimes known as microcode.
2 IBM HiperSockets Implementation Guide

1.2 Server integration with HiperSockets

Many data center environments today are multi-tiered server applications, with a variety of
middle-tier servers surrounding the System z data and transaction server. Interconnecting
this multitude of servers requires the cost and complexity of many networking connections
and components. The performance and availability of the inter-server communication is
dependent on the performance and stability of the set of connections.

The more servers involved, the greater the number of network connections and complexity to
install, administer, and maintain. Figure 1-2 shows two configurations. The configuration on
the left shows a server farm surrounding a System z server, with its corporate data and
transaction servers. This configuration is extremely complex, involving the backup of the
servers and network connections. It is expensive and has a high administrative cost.

The configuration on the right consolidates the mid-tier workload onto multiple Linux virtual
servers running on a System z server using the exceptionally reliable high-speed network that
HiperSockets provides. In addition, these consolidated servers also have direct high-speed
access to database and transaction servers running under z/OS on the same System z
server. The external network connection for all servers is concentrated over a few high-speed
OSA-Express interfaces.

Figure 1-2 Server consolidation

1.3 HiperSockets benefits

The following list describes HiperSockets benefits:

� High performance

Consolidated servers that have to access corporate data on the System z can do so at
memory speeds with the lowest possible latency, bypassing network traffic and delays.

Also, you can customize HiperSockets to accommodate varying traffic sizes. With
HiperSockets, you can define a maximum frame size (MFS) according to the traffic
characteristics for each HiperSockets. In contrast, Ethernet LANs have a MFS predefined
by their architecture.

z/OS Consolidation

 System z serverMultiple external servers

many network connections

TCP/IP network TCP/IP network

OSA-Express

z/OS

z/VM

Linux Guest Systems

HiperSockets

few network connections
Chapter 1. Overview 3

The bandwidth of your Ethernet interfaces becomes fully available for external network
traffic when the internal traffic is running over HiperSockets.

� Sysplex connection improvement

HiperSockets can also improve TCP/IP communications in a sysplex environment when
the DYNAMICXCF facility is used.

� Cost savings

You can use HiperSockets to communicate among consolidated servers in a single
processor. Therefore, you can eliminate all of the hardware boxes running these separate
servers, reducing floor space and power consumption. With HiperSockets, there are zero
external components or cables to pay for, to replace, to maintain, or to wear out.

� Consolidation

System z can be used to consolidate multiple servers into a single machine. With
HiperSockets, this reduces the amount of server hardware, and can also reduce the
complexity of your physical network, because subnets between the consolidated servers
can be turned into virtual HiperSockets networks. The more you consolidate your servers,
the greater your savings potential for costs related to external servers and their associated
networking components.

� Flexibility

Any changes to a HiperSockets network can easily be done without the need for
installation of physical components or re-cabling.

� Simplicity

HiperSockets is part of IBM z/Architecture® technology, including QDIO and advanced
adapter interrupt handling. The data transfer is handled much like a cross-address space
memory move, using the memory bus. HiperSockets is application-neutral, and it appears
as a typical TCP/IP device. Its configuration is simple, making installation easy. It is
supported by existing, known management and diagnostic tools.

� Security

Cables or external components are vulnerable to physical attacks. Because HiperSockets
does not have any physical interfaces, it is protected against any attacks from the outside.
This might enable you to run network traffic without encryption, which results in additional
performance improvements.

For isolation purposes, you can connect servers to different HiperSockets. All security
features, such as firewall filtering, are available for HiperSockets interfaces in the same
way as they are with other Internet Protocol network interfaces. In a Sysplex environment,
subplexing enables you to define security zones. Therefore, only members in the same
security zone can communicate with each other.

� Availability

With HiperSockets, there are no network switches, routers, adapters, or wires that can
break or that have to be maintained. The absence of mechanical components greatly
improves availability.

1.4 HiperSockets mode of operation

HiperSockets implementation is based on the OSA-Express QDIO protocol, therefore
HiperSockets is called internal QDIO. In many ways, the firmware emulates the behavior of
an OSA-Express QDIO interface, so common device drivers and control mechanisms can be
used in the operating systems for both interfaces.
4 IBM HiperSockets Implementation Guide

An OSA channel provides access to a physical LAN; likewise, a HiperSockets channel
represents a VLAN. All servers that have access to this HiperSockets channel also have
access to this VLAN.

Because HiperSockets represents virtual internal LANs, its components were implemented
in a simpler and therefore better-performing way. All endpoints are inside the System z CPC,
so all target addresses are known to the firmware, and no Address Resolution Protocol (ARP)
is necessary.

The System z firmware maintains a lookup table of target addresses for each HiperSockets
network. This table represents an internal LAN. At the time at which a TCP/IP stack starts a
HiperSockets device, the device is registered in the target address lookup table. If a TCP/IP
device is stopped, the entry for this device is deleted from the target address lookup table.

Also there is no need to fragment messages or encapsulate them in Ethernet frames.
Messages are directly copied to the target device.

1.4.1 Unicast operations

The QDIO protocol operates on output queues and input queues that are in the main memory.
The OSA channel operates asynchronously to the device driver. In contrast, HiperSockets
unicast operations copy data synchronously from the output queue of the sending TCP/IP
device to the input queue of the receiving TCP/IP device by using the memory bus to copy the
data through an input/output (I/O) instruction.

HiperSockets operations are run on the CP where the I/O request is initiated. The completion
of a data move is indicated to the receiving side with a Signal Adapter interrupt. Optionally,
the receiving side can use dispatcher polling rather than handling Signal Adapter interrupts,
also called thin interrupts. The data transfer is handled much like a cross-address space
memory transfer using the memory bus, not the server I/O bus. HiperSockets does not
contend with other system I/O activity, as shown in Figure 1-3.

Figure 1-3 HiperSockets basic operation

Device
Driver

TCP/IP TCP/IPTCP/IP

Device
Driver

Device
Driver

Virtual
Server 1

Common Lookup Table across entire HiperSockets LAN

1 1
3/4

2

System z

1

Virtual
Server 2

Virtual
Server 3

2

Chapter 1. Overview 5

The HiperSockets operational flow consists of these four steps:

1. Each virtual server’s TCP/IP stack registers its target addresses into a HiperSockets
Common Address Lookup table. There is one lookup table for each HiperSockets internal
LAN. The scope of each LAN is the LPARs that are defined to share the HiperSockets
internal queued direct communication (IQD) channel-path identifier (CHPID).

2. When data is being transferred, the send operation of HiperSockets performs a table
lookup for the addresses of the sending and receiving TCP/IP stacks and their associated
send and receive buffers.

3. HiperSockets firmware running on the sending processor copies the data from the
sending device driver’s send buffers into the target device driver’s receive buffers.

4. HiperSockets firmware optionally delivers an interrupt to the target TCP/IP stack. This
optional interrupt uses the thin interrupt support function of the System z server, which
means the receiving host is going to look ahead, detecting and processing inbound data.
This technique reduces the frequency of real I/O or external interrupts.

1.4.2 Multicast and broadcast

Multicast and broadcasts work similarly to the unicasts described previously. Virtual servers
can register multicast addresses with the HiperSockets firmware, which are used to deliver
messages to the targets. Broadcasts are delivered to all devices on the same IQD CHPID.

The major difference from unicast is that the memory copies for multicast and broadcast are
not done synchronously inside the I/O instruction on the sending processor, but
asynchronously by a system assist processor (SAP). Therefore, copying the message to
multiple targets uses resources on the device driver and general-purpose processors.
6 IBM HiperSockets Implementation Guide

Chapter 2. HiperSockets environment
definitions

This chapter describes how to define the IBM System z HiperSocket environment on your
system. Hardware configuration definition (HCD) or input/output configuration program
(IOCP) must be used to create an input/output configuration data set (IOCDS) with the
HiperSocket channel-path identifier (CHPID) and subchannels (I/O device) definitions.

This chapter also provides information about how to define the environment for IBM z/VM
guests, so that they can be attached to HiperSockets networks. Configuration definitions are
discussed, and step-by-step instructions are described in detail. The following list includes
topics covered in this chapter:

� System configuration considerations
� HCD definitions
� z/VM definitions

2

© Copyright IBM Corp. 2013, 2014. All rights reserved. 7

2.1 System configuration considerations

This chapter begins with a list of things to consider during configuration.

Consider the following information during configuration:

� Every CHPID that is shared among logical partitions (LPARs) can be seen as one local
area network (LAN) interconnecting the LPARs.

� HiperSockets requires the definition of a CHPID with a type of internal queued direct
communication (IQD). This CHPID is treated similar to any other CHPID, and is counted
as one of the available channels.

� Because HiperSockets are shared among LPARs, the CHPIDs must be defined as shared
in the hardware definition.

� HiperSockets channels can be configured to multiple channel subsystems (CSSs). They
are indiscernibly shared by any or all of the configured LPARs without regard for the CSS
to which the partition is configured (spanned channels).

� A minimum of three subchannel addresses must be configured:

– One read control device
– One write control device
– One data device

� Each Transmission Control Protocol/Internet Protocol (TCP/IP) stack (maximum of eight
on z/OS) on a single LPAR requires a single data device.

� The read device must be an even number. The write device must be the read device
number plus 1.

� The data device can be any device number. It does not need to be the next sequential
number after the read or write device numbers.

The HiperSockets firmware on IBM zEnterprise® or IBM z10™ central processor complexes
(CPCs) supports the following components:

� Up to 32 independent HiperSockets on zEnterprise CPCs (previous models had 16) with a
maximum of 12,288 I/O devices (valid subchannels) across all HiperSockets.

� A maximum total of 12,288 IP addresses across all HiperSockets. These IP addresses
include the HiperSockets interface, virtual IP addresses (VIPAs), and dynamic virtual IP
addresses (DVIPA) that are defined to the TCP/IP stack.

� 12,288 message authentication code (MAC) addresses per CPC.

� Each HiperSocket LAN has its own CHPID, type IQD:

– It is a good practice to start assigning address xFF to the first CHPID, and work your
way backward through the CHPID numbers, picking addresses from the high range to
avoid addressing conflicts.

– The CHPIDs can be shared by all defined LPARs.

– The CHPIDs are delivered as object code only (OCO).

– HiperSockets CHPIDs do not physically exist in the hardware, but these CHPID
numbers cannot be used by other devices.

Important: Because this task of creating the IOCD defines the hardware configuration, it is
used by all operating systems (z/OS, z/VM, z/VSE, and Linux on System z).
8 IBM HiperSockets Implementation Guide

– The CHPIDs have no physical media constraint, so no priority queuing or cabling is
required.

– Each operating system image configures its own usage of available HiperSockets
CHPIDs.

2.1.1 Channel parameters for HiperSockets

Each CHPID has a configurable frame size (16 KB, 24 KB, 40 KB, or 64 KB) that supports
optimizing per HiperSocket LAN for small packets versus large packets. The maximum
transmission unit (MTU) size is 8 KB, 16 KB, 32 KB, or 56 KB. Table 2-1 summarizes the
available frame sizes and the MTU.

Table 2-1 IQD CHPID maximum frame size (MFS) and MTU size

2.2 HCD definitions

HiperSockets emulates an Open Systems Adapter (OSA) card. As with all channel-attached
devices, an IQD CHPID must be defined by a channel path, a control unit, and I/O devices in
your system configuration. This section shows the steps needed to define an IQD CHPID,
using the z/OS HCD tool. It includes examples of the following definitions:

� Spanned channel path
� Control unit
� Devices

Channel IDs, control unit addresses, and device numbers do not represent physical entities
for HiperSockets. They all are virtual entities. It does not matter which values you chose for
these virtual entities. Just make sure that they do not conflict with other values that are used
in your configuration. A simple approach is to keep the values that are proposed by HCD.

CHPID parameter MFS MTU size

CHPARM=0x 16 KB 8 KB

CHPARM=4x 24 KB 16 KB

CHPARM=8x 40 KB 32 KB

CHPARM=Cx 64 KB 56 KB

Note: On zEnterprise 196 (z196) and later processors, the channel parameter is also used
to identify the usage function. The first character still indicates frame size. The second
character indicates the function:

� x0 indicates normal HiperSockets.
� x2 indicates HiperSockets for intraensemble data network (IEDN).
� x4 indicates HiperSockets for z/VM External Bridge.

All “x” characters are wildcards.
Chapter 2. HiperSockets environment definitions 9

2.2.1 Dynamic Channel Path Management

As part of the z/OS Intelligent Resource Director, Dynamic Channel Path Management
(DCM) enables the system to dynamically re-assign channel paths to connect control units
based on the current workload and its service goals. HCD enables channel paths to be
designated as static (fixed) or managed (re-assignable) when they are defined.

Note: HiperSockets can use DCM, but it is not used in the following examples.

2.2.2 Channel path definitions

The process of defining a HiperSockets channel, control unit, and device is similar to defining
any other set of channel, control unit, and device on z/OS using the HCD Interactive System
Productivity Facility (ISPF) application. The following list describes the differences:

� During channel definition, a panel will be displayed to set the MFS and the function for the
HiperSockets channel.

� A HiperSockets channel has no associated physical channel ID (PCHID).

� A minimum of three IQD devices must be defined for an IQD control unit.

Follow your installation’s procedure to access the HCD main panel and enter the appropriate
input/output definition file (IODF) file to begin the definition process:

1. Starting from the HCD main menu panel, select 1, as shown in Figure 2-1.

Figure 2-1 HCD main menu panel

 z/OS V2.1 HCD
Command ===> __

 Hardware Configuration

Select one of the following.

1 0. Edit profile options and policies
 1. Define, modify, or view configuration data
 2. Activate or process configuration data
 3. Print or compare configuration data
 4. Create or view graphical configuration report
 5. Migrate configuration data
 6. Maintain I/O definition files
 7. Query supported hardware and installed UIMs
 8. Getting started with this dialog
 9. What's new in this release

For options 1 to 5, specify the name of the IODF to be used.

I/O definition file . . . 'SYS0.IODF30.WORK' +
10 IBM HiperSockets Implementation Guide

2. On the next panel, entitled Define, Modify, or View Configuration Data, select Option 3 -
Processors, as shown in Figure 2-2.

Figure 2-2 Define, Modify, or View Configuration Data panel

3. Figure 2-3 shows the Processor List defined in the IODF data set. Select the processor to
update and press Enter, as shown in Figure 2-3.

Figure 2-3 Processor List

___________ Define, Modify, or View Configuration Data ______________

 Select type of objects to define, modify, or view data.

 3_ 1. Operating system configurations
 consoles
 system-defined generics
 EDTs
 esoterics
 user-modified generics
 2. Switches
 ports
 switch configurations
 port matrix
 3. Processors
 channel subsystems
 partitions
 channel paths
 PCIe functions
 4. Control units
 5. I/O devices
 6. Discovered new and changed control units and I/O devices

 Processor List Row 1 of 6 More: >
Command ===> ___ Scroll ===> CSR

Select one or more processors, then press Enter. To add, use F11.

/ Proc. ID Type + Model + Mode+ Serial-# + Description
_ ISGSYN 2064 1C7 LPAR __________ ________________________________
_ ISGS11 2064 1C7 LPAR __________ ________________________________
_ SCZP101 2094 S18 LPAR 02991E2094 Danu
_ SCZP201 2097 E26 LPAR 01DE502097 Eclipse
_ SCZP301 2817 M32 LPAR 0B3BD52817 Gryphon
s SCZP401 2827 H43 LPAR 00B8D72827 Helix
Chapter 2. HiperSockets environment definitions 11

4. On a System z processor, this will display the Channel Subsystem list. Select a channel
subsystem where the HiperSockets channel will be defined, as shown in Figure 2-4.

Figure 2-4 Channel Subsystem List

5. This displays the Channel Path List panel (see Figure 2-5).

Figure 2-5 Channel Path List

6. Press F11 to add a channel path.

 Channel Subsystem List Row 1 of 4 More: >
Command ===> ___ Scroll ===> CSR

Select one or more channel subsystems, then press Enter. To add, use F11.

Processor ID . . . : SCZP401 Helix

 CSS Devices in SS0 Devices in SS1 Devices in SS2
/ ID Maximum + Actual Maximum + Actual Maximum + Actual
_ 0 65280 10667 65535 9612 65535 0
s 1 65280 10998 65535 9612 65535 0
_ 2 65280 10768 65535 9612 65535 0
_ 3 65280 11654 65535 9612 65535 0

 Channel Path List Row 99 of 105 More: >
Command ===> ___ Scroll ===> CSR

Select one or more channel paths, then press Enter. To add use F11.

Processor ID : SCZP401 Helix
Configuration mode . : LPAR
Channel Subsystem ID : 1

 PCHID Dyn Entry +
/ CHPID AID/P Type+ Mode+ Sw+ Sw Port Con Mng Description
_ F0 ____ IQD SPAN __ __ __ No ________________________________
_ F1 ____ IQD SPAN __ __ __ No ________________________________
_ F2 ____ IQD SPAN __ __ __ No ________________________________
_ F3 ____ IQD SPAN __ __ __ No IQDCHPID
_ F4 ____ IQD SPAN __ __ __ No zAware
_ F8 ____ IQD SPAN __ __ __ No IEDN Access (IQDX)
_ F9 ____ IQD SPAN __ __ __ No External Bridge
12 IBM HiperSockets Implementation Guide

7. Enter all of the required information, as shown in Figure 2-6.

This scenario uses the following values:

– Enter a Channel path ID of F5.

– Enter a Channel path type of IQD (required for a HiperSockets channel).

– Enter an Operation mode of SPAN, because the IQD CHPID is shared among LPARs
across CSSs.

– Enter a description.

– All other parameters can default. These are not relevant to IQD CHPIDs.

Figure 2-6 Add a channel path

8. When the definitions are completed, press Enter. If the definition process is started from a
production IODF, a panel opens enabling you to create a work IODF. Enter the appropriate
information to create a work IODF.

9. The next panel that opens is Specify IQD Channel Parameters, as shown Figure 2-7 on
page 14. Select an MFS.

Press F4 for a list of the four possible options. Choose the default size of 16 KB. Because
this is the default, no operating system (OS) value will appear in the IOCP. Table 2-1 on
page 9 shows OS (CHPARM) and MTU values for maximum frame sizes other than 16 KB in
IOCP. Press Enter.

10.Select the IQD function:

– Select External Bridge if you intend to deploy a z/VM Virtual Switch with HiperSockets
Bridge port on this channel. See 8.4, “The z/VM Virtual Switch with HiperSockets
bridge port” on page 112 for more information about the HiperSockets Bridge port.

____________________________ Add Channel Path ________________________

 Specify or revise the following values.

 Processor ID : SCZP401 Helix
 Configuration mode . : LPAR
 Channel Subsystem ID : 1

 Channel path ID F5 + PCHID . . . ___
 Number of CHPIDs 1
 Channel path type . . . IQD +
 Operation mode SPAN +
 Managed No (Yes or No) I/O Cluster ________ +
 Description ________________________________

 Specify the following values only if connected to a switch:
 Dynamic entry switch ID __ + (00 - FF)
 Entry switch ID __ +
 Entry port __ +

Important: The MFS is directly related to the MTU used by TCP/IP.
Chapter 2. HiperSockets environment definitions 13

– Select IEDN Access (IQDX) if this channel is intended to be part of a zEnterprise IEDN.
There can only be one internal queued direct input/output extensions (IQDX) channel
per CPC. See Chapter 9, “HiperSockets in an IBM zEnterprise ensemble” on page 125
for more information about the IQDX.

– Select Basic HiperSockets in all other cases.

Figure 2-7 shows the Specify IQD Channel Parameters panel.

Figure 2-7 Define the MFS and function

11.Optionally specify Physical network IDs.

The PNETID= keyword parameter is optional, and specifies the physical network IDs (up to
four). A HiperSockets interface does not have multiple ports, so it makes sense to define
only one physical network ID.

The following rules apply to the physical network IDs:

– They must be 1 - 16 characters in length.
– Characters allowed are A-Z and 0-9.
– There can be 1 - 4 physical network IDs corresponding to the ports on the card.

Physical network IDs are used for network cards to establish the affinity to a particular
physical network:

– Remote Direct Memory Access (RDMA) over Converged Ethernet (10 Gb RoCE)
– OSA-Express queued direct input/output (QDIO), called OSD
– Internal queued direct communication (IQD)

When network connections require two interfaces to be coordinated, as with 10 Gb RoCE
and an associated OSD, the physical network ID should match.

If you intend to bridge the HiperSockets channel to one or more OSD channels, it is a
good practice to assign the same physical network ID to the IQD channel and the OSD
channels, because they will form one network. However, this is not required.

For function type IQDX, the physical network ID will automatically be assigned to IEDN.

___________________ Specify IQD Channel Parameters _______________

 Specify or revise the values below.

 Maximum frame size in KB 16 +

 IQD function 1 1. Basic HiperSockets
 2. IEDN Access (IQDX)
 3. External Bridge

 Physical network ID ________________
14 IBM HiperSockets Implementation Guide

12.In the Define Access List panel, complete the access list for the partitions sharing the
channel, and press Enter.

In this example, the IQD CHPID was defined as shared by two LPARs on channel
subsystem 1 and one LPAR on channel subsystem 2, as shown in Figure 2-8.

Figure 2-8 Define Access List - panel 1

13.Return to Channel Path List, which shows CHPID F5 defined (Figure 2-9).

Figure 2-9 Channel Path after the CHIPID is defined

__________________________ Define Access List ___________________________
 Row 22 of 53
Command ===> ___ Scroll ===> CSR

Select one or more partitions for inclusion in the access list.

Channel subsystem ID : 1
Channel path ID . . : F5 Channel path type . : IQD
Operation mode . . . : SPAN Number of CHPIDs . . : 1

/ CSS ID Partition Name Number Usage Description
/ 1 A11 1 OS COMMPLEX SC30
_ 1 A12 2 OS VMLINUX9
/ 1 A13 3 OS COMMPLEX SC31
/ 2 A2E E OS VMLINUX1

 Channel Path List Row 99 of 106 More: >
Command ===> ___ Scroll ===> CSR

Select one or more channel paths, then press Enter. To add use F11.

Processor ID : SCZP401 Helix
Configuration mode . : LPAR
Channel Subsystem ID : 1

 PCHID Dyn Entry +
/ CHPID AID/P Type+ Mode+ Sw+ Sw Port Con Mng Description
_ F0 ____ IQD SPAN __ __ __ No ________________________________
_ F1 ____ IQD SPAN __ __ __ No ________________________________
_ F2 ____ IQD SPAN __ __ __ No ________________________________
_ F3 ____ IQD SPAN __ __ __ No IQDCHPID
_ F4 ____ IQD SPAN __ __ __ No zAware
_ F5 ____ IQD SPAN __ __ __ No ________________________________
_ F8 ____ IQD SPAN __ __ __ No IEDN Access (IQDX)
_ F9 ____ IQD SPAN __ __ __ No External Bridge
Chapter 2. HiperSockets environment definitions 15

2.2.3 Control unit definitions

Follow these steps to define control units:

1. Starting at the Channel Path List panel, select the CHPID to get to the control unit list, as
shown in Figure 2-10.

Figure 2-10 Select a control unit list

2. Press F11 to add a control unit when the Control Unit List panel displays, as shown in
Figure 2-11.

Figure 2-11 Add a control unit

 Channel Path List Row 99 of 106 More: >
Command ===> ___ Scroll ===> CSR

Select one or more channel paths, then press Enter. To add use F11.

Processor ID : SCZP401 Helix
Configuration mode . : LPAR
Channel Subsystem ID : 1

 PCHID Dyn Entry +
/ CHPID AID/P Type+ Mode+ Sw+ Sw Port Con Mng Description
_ F0 ____ IQD SPAN __ __ __ No ________________________________
_ F1 ____ IQD SPAN __ __ __ No ________________________________
_ F2 ____ IQD SPAN __ __ __ No ________________________________
_ F3 ____ IQD SPAN __ __ __ No IQDCHPID
_ F4 ____ IQD SPAN __ __ __ No zAware
s F5 ____ IQD SPAN __ __ __ No ________________________________
_ F8 ____ IQD SPAN __ __ __ No IEDN Access (IQDX)
_ F9 ____ IQD SPAN __ __ __ No External Bridge

 Control Unit List
Command ===> ___ Scroll ===> CSR

Select one or more control units, then press Enter. To add, use F11.

Processor ID . . : SCZP401 CSS ID . : 1 Channel path . : F5 IQD SPAN

 ---#---
/ CU Type + CUADD CSS MC Serial-# + Description
******************************* Bottom of data ********************************
16 IBM HiperSockets Implementation Guide

3. Enter the required information, as shown in Figure 2-12, and then press Enter.

In this example, the following values were set:

– Control unit number to 0010. You can choose any value, as long as it does not conflict
with any HCD rules.

– Control unit type to IQD (required for a HiperSockets control unit).

Figure 2-12 Define a control unit

4. Attach the control unit to a processor channel subsystem. In this example, the control unit
was attached to channel subsystem 1 and 2 of the selected processor. Define CHPID F5
as the CHPID that connects to the control unit, as shown in Figure 2-13, and then
press F20.

Figure 2-13 Select a processor to the control unit

__________________________ Add Control Unit __________________________

 Specify or revise the following values.

 Control unit number 0010 +
 Control unit type IQD__________ +

 Serial number __________
 Description ________________________________

 Connected to switches . . . __ __ __ __ __ __ __ __ +
 Ports __ __ __ __ __ __ __ __ +

 If connected to a switch:

 Define more than eight ports . . 2 1. Yes
 2. No
 Propose CHPID/link addresses and
 unit addresses 2 1. Yes
 2. No

 Select Processor / CU Row 12 of 15 More:
Command ===> ___ Scroll ===> CSR

Select processors to change CU/processor parameters, then press Enter.

Control unit number . . : 0010 Control unit type . . . : IQD

 ---------------Channel Path ID . Link Address + ---------------
/ Proc.CSSID 1------ 2------ 3------ 4------ 5------ 6------ 7------ 8------
_ SCZP401.0 _______ _______ _______ _______ _______ _______ _______ _______
_ SCZP401.1 F5 _______ _______ _______ _______ _______ _______ _______
_ SCZP401.2 F5 _______ _______ _______ _______ _______ _______ _______
_ SCZP401.3 _______ _______ _______ _______ _______ _______ _______ _______
Chapter 2. HiperSockets environment definitions 17

5. Define the control unit starting address as 00 for a range of 256 devices (see Figure 2-14)
and then press Enter.

Figure 2-14 Define the control unit address range

6. Verify that the control unit is attached to the channel path (see Figure 2-15), and then
press Enter.

Figure 2-15 Verify that the control unit is attached to the processor

Tip: The control unit address range defines the number of devices that you can define
for this control unit. You can define a smaller address range, but 256 gives you the
maximum number of devices per control unit. If you need to define more than 256
devices per channel, you need to define more control units for that channel.

 Select Processor / CU Row 12 of 15 More: <
Command ===> ___ Scroll ===> CSR

Select processors to change CU/processor parameters, then press Enter.

Control unit number . . : 0010 Control unit type . . . : IQD

 CU --------------Unit Address . Unit Range + -------------
/ Proc.CSSID Att ADD+ 1----- 2----- 3----- 4----- 5----- 6----- 7----- 8-----
_ SCZP401.0 __ ______ ______ ______ ______ ______ ______ ______ ______
_ SCZP401.1 __ 00.256 ______ ______ ______ ______ ______ ______ ______
_ SCZP401.2 __ 00.256 ______ ______ ______ ______ ______ ______ ______
_ SCZP401.3 __ ______ ______ ______ ______ ______ ______ ______ ______

 Select Processor / CU Row 12 of 15 More: < >
Command ===> ___ Scroll ===> CSR

Select processors to change CU/processor parameters, then press Enter.

Control unit number . . : 0010 Control unit type . . . : IQD

 CU --------------Unit Address . Unit Range + -------------
/ Proc.CSSID Att ADD+ 1----- 2----- 3----- 4----- 5----- 6----- 7----- 8-----
_ SCZP401.0 __ ______ ______ ______ ______ ______ ______ ______ ______
_ SCZP401.1 Yes __ 00.256 ______ ______ ______ ______ ______ ______ ______
_ SCZP401.2 Yes __ 00.256 ______ ______ ______ ______ ______ ______ ______
_ SCZP401.3 __ ______ ______ ______ ______ ______ ______ ______ ______
18 IBM HiperSockets Implementation Guide

2.2.4 I/O device definitions

Follow these steps to define I/O devices:

1. Starting at the Control Unit List panel shown in Figure 2-16, select the control unit and
press Enter to get to the I/O device list.

Figure 2-16 Select a device list

2. From the I/O Device List panel shown in Figure 2-17, press F11 to add a device.

Figure 2-17 Add a device

3. Enter the required information, as shown in Figure 2-18 on page 20, and then press Enter.

In this example, the following values were set:

– Device number 0010
– Number of devices 32
– Device type IQD (required for a HiperSockets device)

 Control Unit List Row 1 of 1
Command ===> ___ Scroll ===> CSR

Select one or more control units, then press Enter. To add, use F11.

Processor ID . . : SCZP401 CSS ID . : 1 Channel path . : F5 IQD SPAN

 ---#---
/ CU Type + CUADD CSS MC Serial-# + Description
s 0010 IQD 2 __________ ________________________________

 I/O Device List
Command ===> ___ Scroll ===> CSR

Select one or more devices, then press Enter. To add, use F11.

Control unit number : 0010 Control unit type . : IQD

 ----------Device------ --#--- --------Control Unit Numbers + --------
/ Number Type + CSS OS 1--- 2--- 3--- 4--- 5--- 6--- 7--- 8---
******************************* Bottom of data ******************************

Tip: You need to define different device numbers for IQD interfaces on other IQD
channels. You can choose any value for the range of device numbers, provided that
it is not already used. You could, for example, choose F500 to have the device
number resemble the CHPID number.
Chapter 2. HiperSockets environment definitions 19

4. Add a device, as shown in Figure 2-18.

Figure 2-18 Define a device

________________________________ Add Device ________________________________

 Specify or revise the following values.

 Device number 0010 + (0000 - FFFF)
 Number of devices 32__
 Device type IQD__________ +

 Serial number __________
 Description ________________________________

 Volume serial number ______ (for DASD)

 PPRC usage _ + (for DASD)

 Connected to CUs . . 0010 ____ ____ ____ ____ ____ ____ ____ +

Note: How many devices should be defined for z/OS LPARs?

The answer depends on the number of TCP/IP stacks running in the LPAR. Each
TCP/IP stack requires one data device and IBM VTAM® requires two devices
(read/write control). At most, eight TCP/IP stacks can be active on a z/OS LPAR, so 10
IQD devices is the maximum that can be used for a single HiperSockets channel on a
single z/OS LPAR (one read control and one write control plus one data times eight
TCP/IP stacks).

A minimum of three devices must be defined to an IQD control unit, and a maximum of
256 can be defined. 160 is the maximum number of IQD devices that can be online to a
z/OS LPAR.

Devices can be shared between LPARs, so you can use the same range of 10 IQD
devices per channel for all z/OS LPARs that have access to this IQD channel.

Note: How many devices should be defined for z/VM LPARs?

To connect z/VM guests directly to a HiperSockets channel, you need a different set of
devices for each guest. Linux and z/VSE device drivers use three devices per
HiperSockets interface. So if you intend to run Linux or z/VSE in your z/VM guests,
define a number of IQD devices that is three times the maximum number of z/VM
guests that you anticipate. You can add more devices to a channel using the dynamic
channel path method at a later point in time.

See 2.3, “IBM z/VM definitions” on page 24 for more information about how to define
HiperSockets interfaces for z/VM guests.

Devices can be shared between LPARs, so you can use the same range of IQD devices
per channel for all z/VM LPARs that have access to this IQD channel.
20 IBM HiperSockets Implementation Guide

5. Set the unit address to 00 for the first device for both CSSs, as shown in Figure 2-19, and
then press Enter.

Figure 2-19 Define the first device address

6. Select the OS to be defined for the device, as shown in Figure 2-20, and then press Enter.

Figure 2-20 Select the operating system

_____________________ Device / Processor Definition ______________________
 Row 1 of 2
Command ===> __ Scroll ===> CSR

Select processors to change device/processor definitions, then press
Enter.

Device number . . : 0010 Number of devices . : 32
Device type . . . : IQD

 Preferred Device Candidate List
/ Proc.CSSID SS+ UA+ Time-Out STADET CHPID + Explicit Null
_ SCZP401.1 _ 00 No No __ No ___
_ SCZP401.2 _ 00 No No __ No ___

__________ Define Device to Operating System Configuration __________
 Row 1 of 5
Command ===> _____________________________________ Scroll ===> CSR

Select OSs to connect or disconnect devices, then press Enter.

Device number . : 0010 Number of devices : 32
Device type . . : IQD

/ Config. ID Type SS Description Defined
s ALLDEV MVS All devices
_ LABSERV1 MVS Lab Services
_ L06RMVS1 MVS Sysplex systems
_ MVSW1 MVS Production systems
_ TRAINER MVS Trainer - Local Site Online
Chapter 2. HiperSockets environment definitions 21

7. Select the OS parameters for the device, as shown in Figure 2-21, and then press Enter.
Use the defaults.

Figure 2-21 Select the operating system parameters

8. You are not defining the IQD devices as esoteric, so press Enter to bypass the
Assign/Unassign Device to Esoteric panel. Select the devices to verify, as shown in
Figure 2-22, and press Enter.

Figure 2-22 I/O device List

____________________ Define Device Parameters / Features ___________________
 Row 1 of 3
 Command ===> ___ Scroll ===> CSR

 Specify or revise the values below.

 Configuration ID . : ALLDEV All devices
 Device number . . : 0010 Number of devices : 32
 Device type . . . : IQD

 Parameter/
 Feature Value + R Description
 OFFLINE No Device considered online or offline at IPL
 DYNAMIC Yes Device has been defined to be dynamic
 LOCANY Yes UCB can reside in 31 bit storage

 I/O Device List Row 1 of 1 More:
Command ===> ___ Scroll ===> CSR

Select one or more devices, then press Enter. To add, use F11.

Control unit number : 0010 Control unit type . : IQD

 ----------Device------ --#--- --------Control Unit Numbers + --------
/ Number Type + CSS OS 1--- 2--- 3--- 4--- 5--- 6--- 7--- 8---
s 0010,32 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
22 IBM HiperSockets Implementation Guide

9. Next, the panel in Figure 2-23 displays, and you can verify your definitions.

Figure 2-23 Verify the device definitions

The IOCP statements generated by these HCD steps are shown in Example 2-1.

Example 2-1 IOCP statements

CHPID PATH=(CSS(1,2),F5),SHARED, *
 PARTITION=((CSS(1),(A11,A13),(=)),(CSS(2),(A2E),(=))), *
 TYPE=IQD
CNTLUNIT CUNUMBR=0010,PATH=((CSS(1),F5),(CSS(2),F5)),UNIT=IQD
IODEVICE ADDRESS=(0010,32),UNITADD=00,CUNUMBR=(0010),UNIT=IQD

10.Example 2-2 shows what the IOCDS statements might look like. Choose a CHPARM value
for maximum frame sizes other than the default of 16 KB.

Example 2-2 CHPARM values for maximum frames sizes other than 16 KB

CHPID PATH=(CSS(1,2),F5),SHARED,CHPARM=40, *
 PARTITION=((CSS(1),(A11,A13),(=)),(CSS(2),(A2E),(=))), *
 TYPE=IQD
CCHPID PATH=(CSS(1,2),F5),SHARED,CHPARM=80, *
 PARTITION=((CSS(1),(A11,A13),(=)),(CSS(2),(A2E),(=))), *
 TYPE=IQD

 I/O Device List Row 1 of 32 More:
Command ===> ___ Scroll ===> CSR

Select one or more devices, then press Enter. To add, use F11.

Control unit number : 0010 Control unit type . : IQD

 ----------Device------ --#--- --------Control Unit Numbers + --------
/ Number Type + CSS OS 1--- 2--- 3--- 4--- 5--- 6--- 7--- 8---
_ 0010 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0011 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0012 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0013 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0014 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0015 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0016 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0017 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0018 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0019 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 001A IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 001B IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 001C IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 001D IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 001E IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 001F IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0020 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
_ 0021 IQD 2 1 0010 ____ ____ ____ ____ ____ ____ ____
Chapter 2. HiperSockets environment definitions 23

CHPID PATH=(CSS(1,2),F5),SHARED,CHPARM=C0, *
 PARTITION=((CSS(1),(A11,A13),(=)),(CSS(2),(A2E),(=))), *
 TYPE=IQD

2.2.5 Dynamic reconfiguration

Dynamic reconfiguration management is the ability to select a new I/O configuration during
normal processing, without the need to complete a power-on reset (POR) of the hardware, or
an initial program load (IPL) of the z/OS operating system. The ability of HCD to provide
equivalent hardware and software I/O definitions, and to detect when they are not in sync, is
essential for dynamic I/O reconfiguration management.

HCD compares both the old and the new configuration, and informs the hardware and
software about the differences. You can add, delete, and modify definitions for channel paths,
control units, and I/O devices without having to complete a POR or an IPL.

A system programmer or other authorized person can use the Activate or verify
configuration dynamically HCD option, or the ACTIVATE IODF=xx operator command, to
make changes to a running configuration. On the HCD panel, the administrator specifies the
name and volume serial number, if applicable, for the production IODF.

2.2.6 References

The following list includes publications that provide additional information about the topic in
this chapter:

� System z Stand-Alone Input/Output Configuration Program User’s Guide, SB10-7152
� z/OS Hardware Configuration Definition (HCD) Planning, GA22-7525
� z/OS Hardware Configuration Definition (HCD) User's Guide, SC33-7988

2.3 IBM z/VM definitions

IBM z/VM provides a range of HiperSockets support for use by guest operating systems and
the z/VM TCP/IP virtual machine (VM). HiperSockets devices are fully supported and
managed by z/VM in the same manner as real devices. The use of HiperSockets for the z/VM
TCP/IP VM is discussed in 3.4, “HiperSockets definitions for a z/VM host system” on page 44.

HiperSockets guest LAN
In z/VM, you can define a HiperSockets Guest LAN. A guest LAN is a LAN segment that is
fully simulated by z/VM, and therefore has no connection to real HiperSockets CHPIDs
defined in IOCDS. Guest LANs exist only inside a single z/VM LPAR. For more information
about guest LANs, see Introduction to the New Mainframe: z/VM Basics, SG24-7316.

Attach z/VM guests to HiperSockets
Typically if a system administrator wants a guest to have connectivity to a HiperSockets
network, the administrator will dedicate a set of HiperSockets devices to the guest. You use
the ATTACH command or the DEDICATE directory statement to accomplish this. The results of
the ATTACH command are transient, and will be undone when the guest logs off. By adding a
DEDICATE statement to the guest’s directory entry, the assignment becomes persistent.
24 IBM HiperSockets Implementation Guide

2.3.1 Hardware assists

A complementary virtualization technology is available for HiperSockets that includes the
following items:

� QDIO Enhanced Buffer-State Management (QEBSM) extensions are two new hardware
instructions designed to help eliminate the resource usage of hypervisor interception.

� Host Page-Management Assist (HPMA) is an interface with the z/VM main storage
management function designed to enable the hardware to assign, lock, and unlock page
frames without z/VM hypervisor assistance.

These hardware assists enable a cooperating guest OS to initiate QDIO operations directly to
the applicable channel, without interception by z/VM, thereby helping to provide additional
performance improvements.

These hardware assists use support in the HiperSockets Firmware and z/VM, but also require
support in the guest OSs. Support for QEBSM and HPMA is currently available in the
following OSs:

� Linux for System z
� z/VSE

If the guest OS does not support or use QEBSM and HPMA, the z/VM host will emulate the
virtual HiperSockets devices by passing all communication through to the real HiperSockets
devices that are attached to the respective virtual devices.

2.3.2 Implementation example
Figure 2-24 shows the configuration that was used for the z/VM setup. The z/VM host system,
VMLINUX1, is z/VM version 6 release 3 in a zEnterprise EC12 (zEC12) LPAR A2E with two
Linux guests systems. LNXRH1 is Red Hat Enterprise Linux 6 (RHEL6.4). LNXSU1 is Novell
SUSE Linux Enterprise Server 11 (SLES 11-SP2).

Figure 2-24 LPAR A12 z/VM with two Linux guest systems

HiperSockets
base
scenario

7400-7402
192.0.1.1

TCPIP

LP-A2E
z/VM VMLINUX1

SYSPLEXSYSPLEX

LP-A11

z/OS SC30

7400-7402
192.0.1.4

LP-A13

z/OS SC31

7400-7402
192.0.1.5

LP-A16

z/OS SC32

7400-7402
192.0.1.6Linux

LNXSU1

(7000-7002)

7408-740A
192.0.1.3(7000-7002)

7404-7406
192.0.1.2

Linux
LNXRH1

HiperSockets CHPID F0
 192.0.1.0/24
Chapter 2. HiperSockets environment definitions 25

HCD and IOCP definitions
See 2.2, “HCD definitions” on page 9 for how to define the HiperSockets devices to an LPAR.

The following list includes a few notes about Figure 2-24 on page 25:

� For the z/VM TCP/IP stack, real device addresses 7400-7402 were used (setup is
described in 3.4, “HiperSockets definitions for a z/VM host system” on page 44).

� For the RHEL guest, real devices 7404-7406 were connected as virtual devices
7000-7002.

� For the SLES guest, real devices 7408-740A were connected as virtual devices
7000-7002.

The CHPID F0 is defined as shared with 16 devices, and the default frame size of 16 KB. This
results in a TCP/IP MTU size of 8 KB. The CHPARM parameter on the IOCP CHPID statement
determines the frame size and subsequent MTU size values. See 2.2, “HCD definitions” on
page 9 for additional information.

2.3.3 IBM z/VM I/O verification

To verify that the path to the HiperSockets devices is in an ONLINE status, use the CP QUERY
CHPID command, as shown in Example 2-3.

Example 2-3 Query CHPID F0

q chpid f0

Path F0 online to devices 7400 7401 7402 7403 7404 7405 7406 7407
Path F0 online to devices 7408 7409 740A 740B 740C 740D 740E 740F

Display the HiperSockets devices to confirm that they are available to the z/VM system
guests. See Example 2-4.

Example 2-4 Query devices

q 7400-740f

OSA 7400 FREE , OSA 7401 FREE , OSA 7402 FREE , OSA 7403 FREE
OSA 7404 FREE , OSA 7405 FREE , OSA 7406 FREE , OSA 7407 FREE
OSA 7408 FREE , OSA 7409 FREE , OSA 740A FREE , OSA 740B FREE
OSA 740C FREE , OSA 740D FREE , OSA 740E FREE , OSA 740F FREE

Example 2-5 shows the status of the specific paths for the HiperSockets devices (CHPID,
availability, and status).

Example 2-5 Query paths for I/O devices

q paths 7400-7402

Device 7400, Status ONLINE
 CHPIDs to Device 7400 (PIM) : F0

Note: OSs in LPARs can share the same real device numbers (LP-A11, A13, and A16 in
Figure 2-24 on page 25). However, you need to define separate real device numbers for
OSs that run in VM guests in the same VM LPAR (LNXRH1 and LNXSU1 in Figure 2-24).
However, you can define the same virtual device numbers for VM guests.
26 IBM HiperSockets Implementation Guide

 Physically Available (PAM) : +
 Online (LPM) : +
Device 7401, Status ONLINE
 CHPIDs to Device 7401 (PIM) : F0
 Physically Available (PAM) : +
 Online (LPM) : +
Device 7402, Status ONLINE
 CHPIDs to Device 7402 (PIM) : F0
 Physically Available (PAM) : +
 Online (LPM) : +
 Legend + Yes - No

2.3.4 IBM z/VM definitions for guest systems
To attach an IQD device to a guest, log on as the MAINT user and use the following
command:

ATTACH xxx-yyy TO <guestname>

Where xxx and yyy are a three-device range of HiperSockets device addresses that will be
attached to the specified guest. In this example, no virtual address range is defined, in which
case z/VM will use the same values for the real addresses and the virtual addresses that are
presented to the guest operating systems.

Some system programmers like to attach real hardware using virtual device addresses to
have consistent hardware environments. This is particularly important in disaster recovery
situations, where the hardware at the backup location might not be the same as the primary.
By using virtual device addresses, you can make the backup system look similar to the
original, enabling you to IPL your operating systems.

Temporary definitions
To dynamically attach the device addresses to a running guest system, use the CP ATTACH
command from a privileged z/VM user ID. This is a temporary definition that will be lost when
the guest is logged off, or when the z/VM system is restarted.

The following example shows the syntax for the CP ATTACH command:

CP ATTACH <real_address> <guest_id> <virtual_address>.

Use the following z/VM commands to allocate I/O devices to your running guest Linux
systems:

attach 7404 lnxrh1 7000
attach 7405 lnxrh1 7001
attach 7406 lnxrh1 7002
attach 7408 lnxsu1 7000
attach 7409 lnxsu1 7001
attach 740A lnxsu1 7002
Chapter 2. HiperSockets environment definitions 27

Displaying the HiperSockets devices, as shown in Example 2-6, provides information about
how the devices are allocated to the VMs for TCP/IP and the two Linux guests.

Example 2-6 Query I/O devices

q 7400-740f

OSA 7400 FREE , OSA 7401 FREE , OSA 7402 FREE , OSA 7403 FREE
OSA 7404 ATTACHED TO LNXRH1 7000 DEVTYPE HIPER CHPID F0 IQD
OSA 7405 ATTACHED TO LNXRH1 7001 DEVTYPE HIPER CHPID F0 IQD
OSA 7406 ATTACHED TO LNXRH1 7002 DEVTYPE HIPER CHPID F0 IQD
OSA 7407 FREE
OSA 7408 ATTACHED TO LNXSU1 7000 DEVTYPE HIPER CHPID F0 IQD
OSA 7409 ATTACHED TO LNXSU1 7001 DEVTYPE HIPER CHPID F0 IQD
OSA 740A ATTACHED TO LNXSU1 7002 DEVTYPE HIPER CHPID F0 IQD
OSA 740B FREE , OSA 740C FREE , OSA 740D FREE , OSA 740E FREE
OSA 740F FREE

Note that the allocated devices show up as an OSA-type device driver. This is normal
because the device driver is the same for QDIO and iQDIO in z/VM. However, the DEVTYPE
is identified as HIPER rather than OSA, because it is in an OSA device.

Permanent definitions
To make the change permanent, you need to edit the guest’s directory entry in the USER
DIRECT file, and add a line similar to the following statement for each of the three HiperSockets
device addresses:

DEDICATE <virtdev> <realdev>

In this case, <virtdev> is the virtual device address that you want the real device (<realdev>)
address attached at. This is done for all guest systems running in a z/VM host.

The following z/VM user directory statements were used to attach the HiperSockets I/O
devices permanently to the RHEL guest LNXRH1:

DEDICATE 7000 7404
DEDICATE 7001 7405
DEDICATE 7002 7406

The following statements were used for the SUSE guest LNXSU1:

DEDICATE 7000 7408
DEDICATE 7001 7409
DEDICATE 7002 740A

Now you need to bring your modified USER DIRECT online by entering the following
command:

wodirectxa USER DIRECT
28 IBM HiperSockets Implementation Guide

Chapter 3. Software configurations for
HiperSockets

This chapter introduces the basic software configurations that were used for this book. It
provides you with examples showing you how to set up elementary HiperSockets
configurations for your operating system (OS). The following OSs support HiperSockets:

� z/OS
� z/VM
� z/VSE
� Linux on System z

3

© Copyright IBM Corp. 2013, 2014. All rights reserved. 29

3.1 Test configuration

Figure 3-1 shows the HiperSockets base configuration used throughout the example
scenarios in this book. Based on this configuration, implement the new functions and place
the definition for each system in the specific session. Additional setup for specific scenarios,
such as DYNAMICXCF, HiperSockets Accelerator, and so on, are documented in the relevant
sections.

Figure 3-1 HiperSockets base configuration scenario

Use four logical partitions (LPARs) to set up and verify HiperSockets support with z/OS, z/VM,
and Linux. Because HiperSockets are shared among LPARs, you must define the
channel-path identifiers (CHPIDs) as shared in the hardware definitions. For HiperSockets
F0, use the IP network address 192.0.1.0/24. This configuration does not include virtual IP
addresses (VIPAs), which are also supported.

The LPARs are configured in the following ways:

� In LPAR A2E, there are two Linux systems:

– A Red Hat Enterprise Linux (RHEL) instance named LNXRH1
– A SUSE Linux Enterprise Server (SLES) instance named LNXSU1

They are running as guests under z/VM, along with the z/VM system (VMLINUX1). The
Linux systems use DEDICATE and control their HiperSockets connections directly. Each
of the two systems has one interface with HiperSockets through CHPID F0.

For LNXRH1, allocate real addresses 7404-7406 that map virtual unit addresses
7000-7002 to the three I/O devices. For LNXSU1, use the next available unit addresses in
a similar way, in ascending order.

� LPAR A11 runs a z/OS image (SC30). This image connects to HiperSockets F0 by
7400-7402 devices.

� LPAR A13 runs a z/OS image (SC31). This image connects to HiperSockets F0 by
7400-7402 devices.

� LPAR A16 runs a z/OS image (SC32). This image connects to HiperSockets F0 by
7400-7402 devices.

HiperSockets
base
scenario

7400-7402
192.0.1.1

TCPIP

LP-A2E
z/VM VMLINUX1

LP-A11

z/OS SC30
TCPIP A

7400-7402
192.0.1.4

LP-A13

z/OS SC31
TCPIP A

7400-7402
192.0.1.5

LP-A16

z/OS SC32
TCPIP C

7400-7402
192.0.1.6

Linux
LNXSU1

7408-740A
(7000-7002)

192.0.1.37404-7406
(7000-7002)

192.0.1.2

Linux
LNXRH1

HiperSockets CHPID F0
192.0.1.0/24
30 IBM HiperSockets Implementation Guide

Table 3-1 shows the details of the test HiperSockets configuration.

Table 3-1 Details of the test HiperSockets configuration

3.2 HiperSockets in z/OS

IBM z/OS can use HiperSockets in two different ways:

1. Directly as visible HiperSockets interfaces, as described in this section.
2. As part of a Dynamic cross-system coupling facility (XCF) network. This is described in

3.3, “DYNAMICXCF HiperSockets implementation” on page 36.

LPAR
name

Environment System
name

CHPID Device address IP address

A2E z/VM VMLINUX1 F0 7400-7402 192.0.1.1

A2E Linux under z/VM LNXRH1 F0 7404-7406 192.0.1.2

A2E Linux under z/VM LNXSU1 F0 7408-740A 192.0.1.3

A11 z/OS sysplex SC30 F0 7400-7402 192.0.1.4

A13 z/OS sysplex SC31 F0 7400-7402 192.0.1.5

A16 z/OS sysplex SC32 F0 7400-7402 192.0.1.6

Tip: Each LPAR can use the same device addresses. When multiple Transmission Control
Protocol/Internet Protocol (TCP/IP) stacks are present in a single LPAR, then the device
addresses must be unique to each TCP/IP stack, as shown for LPAR A2E in Table 3-1.

Restriction: The z/OS TCP/IP stack does not support HiperSockets and DYNAMICXCF
traffic over the same HiperSockets CHPID. TCP/IP stacks that have both types of traffic
must use two separate CHPIDs.
Chapter 3. Software configurations for HiperSockets 31

3.2.1 HiperSockets implementation environment

The first implementation configured a HiperSockets channel. One TCP/IP stack on each
LPAR (SC30, SC31, and SC32) was configured to use HiperSockets CHPID F0, as shown in
Figure 3-2.

Figure 3-2 HiperSockets implementation

3.2.2 Implementation steps

Follow these steps to implement HiperSockets:

� Define the HiperSockets channel, control unit, and device.
� Make the required configuration changes to the TCP/IP profile.
� Start the TCP/IP stacks.

The following examples use the definitions shown in Figure 3-2. The HiperSockets channel
and devices must be online before starting the first TCP/IP stack configured to use the
devices. For this example, CHPID F0 and device numbers 7400, 7401, and 7402 must be
active in z/OS before starting the first TCP/IP stack that will use HiperSockets channel F0.

3.2.3 No IBM VTAM setup for HiperSockets

No Virtual Telecommunications Access Method (VTAM) setup is required. VTAM dynamically
creates the necessary Transport Resource List Element (TRLE). When the first TCP/IP stack
is started, VTAM will build a single multipath channel (MPC) group using the subchannel
devices associated with the internal queued direct communication (IQD) CHPID. VTAM will
use two subchannel devices (for the read and write control devices) and 1 - 8 subchannel
devices for the data device.

LPAR-A11
z/OS
SC30

TCPIP A

7400-7402
192.0.1.4

LPAR-A13
z/OS
SC31

TCPIP A

7400-7402
192.0.1.5

LPAR-A16
z/OS
SC32

TCPIP C

7400-7402
192.0.1.6

HiperSockets CHPID F0
 192.0.1.0/24

Important: After the 160th IQD device is brought online to an LPAR, subsequent attempts
to vary an IQD device online in z/OS will fail and generate the following message:

IOS577I IQD INITIALIZATION FAILED, COMPLETION TABLE FULL
32 IBM HiperSockets Implementation Guide

3.2.4 TCP/IP profile setup for HiperSockets

HiperSockets interfaces are defined in the TCP/IP profile using the INTERFACE statement
introduced in z/OS Communications Server V2R1. Additionally, specify BEGINROUTES and
START statements. If required, BSDROUTINGPARMS can be specified (it is not specified in
this implementation example).

Update the profile member for each TCP/IP stack following the configuration rules. The
customization for TCPIPA on LPAR SC30 is shown in Example 3-1.

Example 3-1 TCPIPA profile for LPAR SC30 for HiperSockets

INTERFACE HIPERLF0 1
DEFINE IPAQIDIO
IPADDR 192.0.1.4/24
CHPID F0

BEGINROUTES
ROUTE 192.0.1.0/24 = HIPERLF0 MTU 8192 2
ENDROUTES

START HIPERLF0 3

1 z/OS Communications Server V2R1 introduced the INTERFACE statement for the
definitions of HiperSockets. You can still use the DEVICE and LINK statements. The syntax
for DEVICE and LINK is described in IBM z/OS V2R1 Communications Server TCP/IP
Implementation Volume 1: Base Functions Connectivity and Routing, SG24-8096.

The INTERFACE name can be user-defined. This example uses HIPERLF0.

When a TCP/IP device is started, the IP address contained in the TCP/IP stack’s INTERFACE
statement is registered in the HiperSockets firmware’s IP address lookup table. The z/OS
TCP/IP stack becomes part of HiperSockets F0 with the IP address 192.0.1.4.

2 The ROUTE entry of the BEGINROUTES statement is specified as ROUTE destination
gateway_addr link_name MTU mtu_size. The destination ought to specify a valid host, network
or subnetwork. Specifying the Equal sign (=) for the gateway_addr means packets are routed
directly to destinations on that network or host. The link_name must match the link_name
specified on the LINK statement.

Because you are using static routes in your environment, you have to define a Route
statement. If you are using dynamic routing (RIP or OSPF), omit this statement. Also note
that you specified an maximum transmission unit (MTU) size of 8 KB to accommodate the
maximum frame size (MFS) of the IQD CHPID F0, which you defined in the hardware
configuration definition (HCD) with the default value (16 KB).

3 The START statement is specified as START interface_name. The START statement is
used to start an interface. The interface_name must match the interface_name specified on
the INTERFACE statement for the HiperSockets CHPID.

Optionally, a VARY TCPIP,tcpipproc,START,interface_name command can be issued or
the START statement can be used in a VARY TCPIP,tcpipproc,OBEYFILE,datasetname
command to start the wanted interface.
Chapter 3. Software configurations for HiperSockets 33

The TCP/IP profile for TCPIPA was also updated on LPAR SC31and TCPIPC for LPAR SC32.
All parameters are the same as defined for LPAR SC30, except for the IP address, as shown
in Example 3-2 for LPAR SC31 and Example 3-3 for LPAR SC32.

Example 3-2 SC31 TCPIPA INTERFACE statement

INTERFACE HIPERLF0 1
DEFINE IPAQIDIO
IPADDR 192.0.1.5/24
CHPID F0

Example 3-3 SC32 TCPIPC INTERFACE statement

INTERFACE HIPERLF0 1
DEFINE IPAQIDIO
IPADDR 192.0.1.6/24
CHPID F0

3.2.5 Verification of the HiperSockets configuration

This section shows the display commands used to verify the HiperSockets configuration.

TCP/IP startup
Start the TCP/IP stack TCPIPA on LPAR SC30. Because you specified a START parameter in
the tcp profile data set for the HiperSockets interface HIPERLF0, the initialization will occur
when you start the TCPIPA stack. Successful initialization of the HiperSockets interface can
be verified by checking the SYSLOG messages when the IP stack is started, as shown in
Example 3-4.

Example 3-4 TCPIPA startup message for HiperSockets device

EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE HIPERLF0

Also start the TCP/IP stacks on LPAR SC31 and SC32.

Verify TCP/IP device and link status
To verify the status of interfaces defined to the TCP/IP stack, use the
D TCPIP,procname,NETSTAT,DEVLINKS command to request NETSTAT information. The output
for this example is shown in Example 3-5.

Example 3-5 Verify interface information HiperSockets

D TCPIP,TCPIPA,NETSTAT,DEVL
INTFNAME: HIPERLF0 INTFTYPE: IPAQIDIO INTFSTATUS: READY 1
 TRLE: IUTIQ4F0 DATAPATH: 7402 DATAPATHSTATUS: READY 2
 CHPID: F0
 IPBROADCASTCAPABILITY: NO
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
 CFGMTU: NONE ACTMTU: 8192 3
 IPADDR: 192.0.1.4/24
 VLANID: NONE
 READSTORAGE: GLOBAL (2048K)
 SECCLASS: 255 MONSYSPLEX: NO
 IQDMULTIWRITE: ENABLED (ZIIP)
 MULTICAST SPECIFIC:
34 IBM HiperSockets Implementation Guide

 MULTICAST CAPABILITY: YES
 GROUP REFCNT SRCFLTMD
 ----- ------ --------

224.0.0.1 0000000001

Verify that the interface name and type match your tcp profile definitions, and that the device
is in a ready status 1. Verify that the datapath is in a ready status 2. Also verify that the MTU
definition matches what was defined in the tcp profile 3.

Verify VTAM TRLE
VTAM will automatically create a TRLE (IUTIQ4F0) 1 for the HiperSockets channel F0 as part
of the transport resource list major node (ISTTRL) 2, as shown in the output of the D NET,TRL
command in Example 3-6.

Example 3-6 D NET,TRL display for HiperSockets example (partial output)

D NET,TRL
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TRL 013
IST1954I TRL MAJOR NODE = ISTTRL 2
IST1314I TRLE = IUTIQ4F0 1 STATUS = ACTIV CONTROL = MPC

For further information about the TRLE, issue D NET,TRL TRLE. The results are shown in
Example 3-7.

The display shows that for the IUTIQ4F0 TRLE, devices 7400 and 7401 are used for read
and write control 1. For TCPIPA, data device 7402 is assigned 2. When a datapath device is
active, it indicates which TCP/IP stack is using it in message IST1717I (ULPID = jobname) 3.
For example, TCPIPA (jobname) is using device 7402. Note that if you have multiple TCP/IP
stacks running in the same LPAR and using CHPID F0, datapath devices 7403 through 7409
are used 4. No additional read/write devices are needed.

Example 3-7 Verify VTAM TRLE for HiperSockets

D NET,TRL,TRLE=IUTIQ4F0
IST097I DISPLAY ACCEPTED
IST075I NAME = IUTIQ4F0, TYPE = TRLE
IST1954I TRL MAJOR NODE = ISTTRL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = QDIO MPCUSAGE = SHARE
IST2263I PORTNAME = PORTNUM = 0 OSA CODE LEVEL = *NA*
IST2337I CHPID TYPE = IQD CHPID = F0 PNETID = **NA**
IST2319I IQD NETWORK ID = 0716
IST1577I HEADER SIZE = 4096 DATA SIZE = 16384 STORAGE = ***NA***
IST1221I WRITE DEV = 7401 STATUS = ACTIVE STATE = ONLINE 1
IST1577I HEADER SIZE = 4092 DATA SIZE = 0 STORAGE = ***NA***
IST1221I READ DEV = 7400 STATUS = ACTIVE STATE = ONLINE 1
IST924I ---
IST1221I DATA DEV = 7402 STATUS = ACTIVE STATE = N/A 2
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1717I ULPID = TCPIPA ULP INTERFACE = HIPERLF0 3
IST2309I ACCELERATED ROUTING ENABLED
IST2331I QUEUE QUEUE READ QUEUE
IST2332I ID TYPE STORAGE STATUS
IST2205I ------ -------- --------------- ----------------------
Chapter 3. Software configurations for HiperSockets 35

IST2333I RD/1 PRIMARY 2.0M(126 SBALS) ACTIVE
IST2305I NUMBER OF DISCARDED INBOUND READ BUFFERS = 0
IST2386I NUMBER OF DISCARDED OUTBOUND WRITE BUFFERS = 0
IST1757I PRIORITY1: UNCONGESTED PRIORITY2: UNCONGESTED
IST1757I PRIORITY3: UNCONGESTED PRIORITY4: UNCONGESTED
IST1801I UNITS OF WORK FOR NCB AT ADDRESS X'23DF7010'
IST1802I P1 CURRENT = 0 AVERAGE = 1 MAXIMUM = 1
IST1802I P2 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P3 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P4 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST924I ---
IST1221I DATA DEV = 7403 STATUS = RESET STATE = N/A 4
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST1221I DATA DEV = 7404 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST1221I DATA DEV = 7405 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST1221I DATA DEV = 7406 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST1221I DATA DEV = 7407 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST1221I DATA DEV = 7408 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST1221I DATA DEV = 7409 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I ---
IST314I END

Verify HiperSockets connections
The simplest and most straightforward verification is to ping the HiperSockets interface from
one LPAR to another. Example 3-8 shows the result of one successful ping.

Example 3-8 HiperSockets connectivity test

Ping from TCPIPA on LPAR SC30 to LPAR SC31
ping 192.0.1.5 (tcp tcpipa) 1
CS V2R1: Pinging host 192.0.1.5
Ping #1 response took 0.000 seconds.

3.3 DYNAMICXCF HiperSockets implementation

From an IP topology perspective, DYNAMICXCF establishes fully meshed IP connectivity to
all other z/OS TCP/IP stacks in the Sysplex. You only need one endpoint specification in each
stack for fully meshed connectivity to all other stacks in the Sysplex. When a new stack gets
started, Dynamic XCF connectivity is automatically established.
36 IBM HiperSockets Implementation Guide

Dynamic XCF uses Sysplex Sockets support, enabling the stacks to communicate with each
other and exchange information, such as VTAM CPNAMEs, IBM MVS™ SYSCLONE value,
and IP addresses. The dynamic XCF definition for IPv4 is activated by coding the IPCONFIG
DYNAMICXCF parameter in the TCP/IP profile. For IPv6, use the IPCONFIG6 DYNAMICXCF
parameter to configure dynamic XCF definitions.

Dynamic XCF creates definitions for the DEVICE, LINK, HOME, and BSDROUTINGPARMS
statements, and the START statement, dynamically. When activated, the dynamic XCF
devices and links appear to the stack as though they had been defined in the TCP/IP profile.
They can be displayed using standard commands, and they can be stopped and started.

During TCP/IP initialization, the stack joins the XCF group, ISTXCF, through VTAM. When
other stacks in the group discover the new stack, the definitions are created automatically,
the links are activated, and the remote IP address for each link is added to the routing table.
After the remote IP address has been added, IP traffic can flow across one of the following
interfaces:

� IUTSAMEH (in the same LPAR)
� HiperSockets (in the same server)
� XCF signaling (different server, either using the coupling facility link or a

channel-to-channel (CTC) connection)

Figure 3-3 shows the Dynamic XCF support implementation.

Figure 3-3 Dynamic XCF support

Remember: Only one dynamic XCF network is supported per Sysplex.

LPAR 1

Server 1

TCP/IP
Stack A

TCP/IP
Stack B

HiperSocketsIUTSAMEH

LPAR 2

TCP/IP
Stack C

Coupling Facility Link
(XCF Signaling)

LPAR 3

TCP/IP
Stack D

Server 2

CF
Chapter 3. Software configurations for HiperSockets 37

3.3.1 HiperSockets DYNAMICXCF connectivity

The z/OS images in the same server with DYNAMICXCF coded will use the HiperSockets
DYNAMICXCF connectivity rather than the standard XCF connectivity, under the following
conditions:

� The TCP/IP stacks must be on the same server.

� For the DYNAMICXCF HiperSockets device (IUTIQDIO), the stacks must be using the
same IQD CHPID, even with different channel subsystems (spanning).

� The stacks must be configured (through HCD) to use HiperSockets.

� The initial HiperSockets activation must complete successfully.

When an IPv4 DYNAMICXCF HiperSockets device and link are created and successfully
activated, a subnetwork route is created across the HiperSockets link. The subnetwork is
created by using the DYNAMICXCF IP address and mask.

This enables any LPAR in the same server to be reached, even ones that are not in the
sysplex. To achieve this functionality, the LPAR that is outside of the sysplex environment
must define at least one IP address for the HiperSockets endpoint that is in the subnetwork
defined by the DYNAMICXCF IP address and mask.

When multiple stacks exist in the same LPAR that supports HiperSockets, both IUTSAMEH
and HiperSockets links or interfaces will coexist. In this case, it is possible to transfer data
across either link. Because IUTSAMEH links have better performance, it is always better to
use them for intra-stack communication. A host route will be created by DYNAMICXCF
processing across the IUTSAMEH link, but not across the HiperSockets link.

3.3.2 DYNAMICXCF implementation environment

For this test implementation, configure a single TCP/IP stack on LPARs SC30, SC31, and
SC32 for DYNAMICXCF connectivity using CHPID F3, as shown in Figure 3-4 on page 39.
The test environment was configured based on the following requirements:

� All z/OS hosts must belong to the same sysplex.

� VTAM must have XCF communications enabled by specifying XCFINIT=YES or
XCFINIT=DEFINE as a VTAM startup parameter, or by activating the VTAM XCF local
SNA major node, ISTLSXCF. For details about configuration, see z/OS Communications
Server: SNA Network Implementation, SC31-8777.

� DYNAMICXCF must be specified in the TCP/IP profile of each stack.

� The IQD CHPID being used for the DYNAMICXCF device cannot be the same CHPID that
is used for direct HiperSockets communication (which is IQD CHPID F0 in this
environment). To avoid this, a VTAM start option, the IQDCHPID parameter, is used to
identify which IQD CHPID will be used by DYNAMICXCF (which is IQD CHPID F3 in this
environment).

Tip: HiperSockets DYNAMICXCF supports dividing a Sysplex into multiple subplexes. See
Appendix B, “IBM z/OS Sysplex subplexing and HiperSockets” on page 151 for more
information about this topic.
38 IBM HiperSockets Implementation Guide

Figure 3-4 DYNAMICXCF implementation environment

Table 3-2 is the lookup table for this configuration.

Table 3-2 IP address lookup table for HiperSockets DYNAMICXCF in CHPID F3

 All sysplex systems can connect to each other.

3.3.3 Implementation steps

Take the following steps to implement DYNAMICXCF HiperSockets:

1. Define the HiperSockets channel, control unit, and device.
2. Configure VTAM to specify XCFINIT=YES and to specify the IQDCHPID parameter.
3. Add the DYNAMICXCF statement to the TCP/IP profile.
4. Start the TCP/IP stacks.

The HiperSockets channel and devices must be online before starting the first TCP/IP stack
configured to use the devices. For this example, CHPID F3 and device numbers 7700, 7701,
and 7702 must be active to z/OS before starting the first TCP/IP stack configured to use
HiperSockets channel F3.

IP address LPAR number System name Device addresses

10.1.7.11 A11 SC30 7700-7702

10.1.7.32 A13 SC31 7700-7702

10.1.7.31 A16 SC32 7700-7702

SYSPLEXSYSPLEX

LPAR-A11
z/OS
SC30

7700-7702
10.1.7.31

LPAR-A13
z/OS
SC31

7700-7702
10.1.7.31

LPAR-A16
z/OS
SC32

7700-7702
10.1.7.32

CF38 CF39

HiperSockets CHPID F3
 10.1.7.0/24
Chapter 3. Software configurations for HiperSockets 39

3.3.4 VTAM configuration for DYNAMICXCF

To enable DYNAMICXCF over HiperSockets, the VTAM start options XCFINIT=YES and
IQDCHPID must be specified. Modify the VTAM start options (ATCSTRxx) to add the required
parameters. Add the XCFINIT=YES line to the VTAM start options 1, as shown in
Example 3-9.

Example 3-9 VTAM XCFINIT statement for DYNAMICXCF

XCFINIT=YES 1

This tells VTAM to dynamically build the ISTLSXCF link station major node, and to establish
connections to other VTAMs in the sysplex. Add the IQDCHPID statement to the VTAM start
options 2, as shown in Example 3-10.

Example 3-10 VTAM IQDCHPID statement for DYNAMICXCF

IQDCHPID=F3 2

This tells VTAM to use CHPID F3 as the DYNAMICXCF link for the sysplex. In this
configuration, multiple HiperSockets CHPIDs are defined (F0,F3). For this reason, the
definition of IQDCHPID is mandatory to ensure iQDIO with the appropriate CHPID will be
selected. Otherwise, if multiple IQD CHPIDs are defined, VTAM will use the first acceptable
HiperSockets CHPID detected (having at least three subchannel devices defined).

We suggest specifying the IQDCHPID statement to reserve the IQD channel for
DYNAMICXCF use when multiple HiperSockets are defined. VTAM will dynamically create a
IUTIQDIO TRLE for the DYNAMICXCF HiperSockets link.

In this configuration, the VTAM START definitions are the same for LPAR SC31 and
LPAR SC32.

3.3.5 TCP/IP configuration for DYNAMICXCF

In order for a TCP/IP stack to use the DYNAMICXCF HiperSockets connection, the
DYNAMICXCF parameter must be specified on the IPCONFIG statement in the tcp profile. 1
The DYNAMICXCF parameter is specified as DYNAMICXCF ipv4_address subnet_mask
cost_metric.

Specifying DYNAMICXCF will enable the creation of the DEVICE, LINK, HOME,
BSDROUTINGPARMS statements, and (for IUTIQDIO device) the START statement. Modify
the IPCONFIG statement to add the DYNAMICXCF parameter with an IP address, a subnet
mask, and a cost metric in the TCP/IP profile (PROFF30) for SC30, as shown in
Example 3-11 1.

Example 3-11 IPCONFIG statement for DYNAMICXCF connection for LPAR SC30

IPCONFIG DYNAMICXCF 10.1.7.11 255.255.255.0 1 1

This IP address (10.1.7.11) is the interface with HiperSockets CHPID F3. This address will be
automatically appended to the TCP/IP profile HOME list. At TCP/IP stack initialization time,
the stack is registered with its IP address 10.1.7.11 in the IP address lookup table, as shown
in Table 3-2 on page 39.
40 IBM HiperSockets Implementation Guide

The definitions for LPAR SC31 and LPAR SC32 are identical to the definition for SC30, except
for the IP address of (10.1.7.32) for SC31, as shown in Example 3-12, and (10.1.7.31) for
SC32, as shown in Example 3-13.

Example 3-12 IPCONFIG statement for DYNAMICXCF connection for LPAR SC31

IPCONFIG DYNAMICXCF 10.1.7.32 255.255.255.0 1

Example 3-13 IPCONFIG statement for DYNAMICXCF connection for LPAR SC32

IPCONFIG DYNAMICXCF 110.1.7.31 255.255.255.0 1

3.3.6 Verification of the DYNAMICXCF configuration

This section shows the display commands that are used to verify the DYNAMICXCF
configuration.

Verify the VTAM support for XCF
Before starting a TCP/IP stack to use the DYNAMICXCF connection, verify that the VTAM
configuration is active. Use the display VTAM options command to make sure that
IQDCHPID=F3 1 and XCFINIT=YES 2 were defined. Example 3-14 shows the results of the
D NET,VTAMOPTS command. Issue the command to each VTAM node in the sysplex to verify
that the required parameters are correct.

Example 3-14 Verify VTAM options

D NET,VTAMOPTS,OPTION=(IQDCHPID,XCFINIT)
IST097I DISPLAY ACCEPTED
IST1188I VTAM CSV2R1 STARTED AT 09:45:16 ON 11/21/13
IST1349I COMPONENT ID IS 5695-11701-210
IST1348I VTAM STARTED AS NETWORK NODE
IST1189I IQDCHPID = F3 XCFINIT = YES
IST314I END

TCP/IP startup
Start the TCP/IP stack TCPIPF on LPAR SC30. SYSLOG messages issued during the start
of the TCP/IP stack indicate if DYNAMICXCF is enabled, and if the VTAM TRLE definition was
generated. To ensure that DYNAMICXCF was enabled, examine the system log for the
EZZ0624I message 1, which is generated at TCP/IP startup time. Also verify that the
dynamically defined VTAM TRLE IUTIQDIO device was started 2, as shown in Example 3-15.

Example 3-15 TCP/IP startup messages for DYNAMICXCF configuration

EZZ0624I DYNAMIC XCF DEFINITIONS ARE ENABLED 1
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE IUTIQDIO 2

Also start the TCP/IP stacks on LPAR SC31 and SC32, which were configured for
DYNAMICXCF.
Chapter 3. Software configurations for HiperSockets 41

Verify TCP/IP DEVICE and LINK status
To verify the status of devices and links defined to the TCP/IP stack, use the
D TCPIP,procname,NETSTAT,DEVLINKS command to request NETSTAT information. The output
is shown in Example 3-16.

Example 3-16 Verify device and link status for DYNAMICXCF

D TCPIP,TCPIPA,NETSTAT,DEV
...
DEVNAME: IUTIQDIO 1 DEVTYPE: MPCIPA
 DEVSTATUS: READY
 LNKNAME: IQDIOLNK0A01070B 2 LNKTYPE: IPAQIDIO LNKSTATUS: READY
 IPBROADCASTCAPABILITY: NO
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
 ACTMTU: 8192
 VLANID: NONE
 READSTORAGE: GLOBAL (2048K)
 SECCLASS: 255
 IQDMULTIWRITE: ENABLED (ZIIP)
 ROUTING PARAMETERS:
 MTU SIZE: 8192 METRIC: 110
 DESTADDR: 0.0.0.0 SUBNETMASK: 255.255.255.0
 MULTICAST SPECIFIC:
 MULTICAST CAPABILITY: YES ...

TCP/IP will automatically generate a DEVICE IUTIQDIO 1 with LINK name
IQDIOLNKxxxxxxxx, where xxxxxxxx is the IP address in hexadecimal format. In this case,
the IP address was 10.1.7.11 for SC30. The LINK name created was IQDIOLNK0A01070B 2.

Table 3-3 shows the hexadecimal value in the LINK name converted to a dotted IP address.

Table 3-3 LINK name-to-IP address conversion

Verify TRLE definitions
The first stack in an LPAR to initialize dynamic XCF makes VTAM generate a TRLE with a
name of IUTIQDIO 1. Use the D NET,TRL,TRLE=trle_name command, as shown in
Example 3-17 on page 43, to verify that the TRLE is active 2.

You can see from the display that the IUTIQDIO MPC group has been assigned 7700 for the
read control device 3, and 7701 for the write control device 4. TCPIPA, the stack configured to
use DYNAMICXCF 5, is assigned data device 7702 6. Note that if you have multiple TCP/IP
stacks running in the same LPAR and using CHPID F3, then datapath devices 7703 through
7709 are used. No additional read and write control devices are required.

LINK name
0A01070B

0A 01 07 0B

IP address
10.1.7.11

10 1 7 11

Tip: The LINK name generated by TCP/IP can be used in conjunction with static routes.
However, you must first start the stack, then issue the VARY TCPIP command to add static
routes. Also be aware that the LINK name will change whenever the IP address defined in
the DYNAMICXCF statement changes.
42 IBM HiperSockets Implementation Guide

The IUTIQDIO device is assigned a PORTNAME IUTIQDxx, where xx is the IQD CHPID that
was specified in the IQDCHPID VTAM statement. For this example, the PORTNAME is
IUTIQDF3 7, because you specified IQDCHPID=F3 in the VTAM start options.

Example 3-17 Verify TRLE

D NET,TRL,TRLE=IUTIQDIO
IST097I DISPLAY ACCEPTED
IST075I NAME = IUTIQDIO, TYPE = TRLE 1
IST1954I TRL MAJOR NODE = ISTTRL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV 2
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = Y
IST1715I MPCLEVEL = QDIO MPCUSAGE = SHARE
IST2263I PORTNAME = IUTIQDF3 7 PORTNUM = 0 OSA CODE LEVEL = *NA*
IST2337I CHPID TYPE = IQD CHPID = F3 PNETID = **NA**
IST2319I IQD NETWORK ID = 0719
IST1577I HEADER SIZE = 4096 DATA SIZE = 16384 STORAGE = ***NA***
IST1221I WRITE DEV = 7701 STATUS = ACTIVE STATE = ONLINE 4
IST1577I HEADER SIZE = 4092 DATA SIZE = 0 STORAGE = ***NA***
IST1221I READ DEV = 7700 STATUS = ACTIVE STATE = ONLINE 3
IST924I -- 6
IST1221I DATA DEV = 7702 STATUS = ACTIVE STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1717I ULPID = TCPIPA 5 ULP INTERFACE = IUTIQDIO
IST2309I ACCELERATED ROUTING ENABLED
IST2331I QUEUE QUEUE READ QUEUE
IST2332I ID TYPE STORAGE STATUS
IST2205I ------ -------- --------------- ----------------
IST2333I RD/1 PRIMARY 2.0M(126 SBALS) ACTIVE
IST2305I NUMBER OF DISCARDED INBOUND READ BUFFERS = 0
IST2386I NUMBER OF DISCARDED OUTBOUND WRITE BUFFERS = 0
IST1757I PRIORITY1: UNCONGESTED PRIORITY2: UNCONGESTED
IST1757I PRIORITY3: UNCONGESTED PRIORITY4: UNCONGESTED
IST1801I UNITS OF WORK FOR NCB AT ADDRESS X'23C4B010'
IST1802I P1 CURRENT = 0 AVERAGE = 1 MAXIMUM = 1
IST1802I P2 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P3 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P4 CURRENT = 0 AVERAGE = 1 MAXIMUM = 2
IST924I --
IST1221I DATA DEV = 7703 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST924I --
IST314I END

If multiple TCP/IP stacks are running in the same z/OS LPAR, the DYNAMICXCF connection
creates a SAMEHOST TRLE named IUTSAMEH 1. DYNAMICXCF will provide connectivity
between stacks under the same LPAR by using the SAMEHOST device, and not use the
IUTIQDIO HiperSockets connection. Because you have additional TCP/IP stacks active that
are not a part of this configuration example, use the D NET,TRL,TRLE=trle_name command,
as shown in Example 3-18, to verify the TRLE status.

Example 3-18 Display IUTSAMEH TRLE

D NET,TRL,TRLE=IUTSAMEH

IST097I DISPLAY ACCEPTED
Chapter 3. Software configurations for HiperSockets 43

IST075I NAME = IUTSAMEH, TYPE = TRLE 1
IST1954I TRL MAJOR NODE = ISTTRL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = HPDT MPCUSAGE = SHARE
IST1717I ULPID = TCPIPF
IST314I END

Verify DYNAMICXCF HiperSockets connections
Use the ping command to verify the HiperSockets connection between the LPARs. If multiple
stacks are active, you must route the ping command to the correct stack. In this example,
TCPIPA is using the DYNAMICXCF HiperSockets link, so specify (tcp tcpipa) as a ping
command option 1. The results are shown in Example 3-19.

Example 3-19 DYNAMICXCF HiperSockets connectivity test

Ping from TCPIPA on LPAR SC30 to LPAR SC31
ping 10.1.7.32 (tcp tcpipa) 1

3.4 HiperSockets definitions for a z/VM host system

This section provides the TCP/IP definitions needed to support the HiperSockets environment
on the z/VM system shown in Figure 3-1 on page 30. By default, the TCP/IP service machine
is user ID TCPIP, and the TCP/IP configuration files are located on TCPMAINT’s 198 disk.

3.4.1 Permanent TCP/IP definitions for a z/VM host system

As with QDIO devices, each z/VM TCP/IP HiperSockets connection requires three
I/O devices:

� One device is used for read control, and must be an even-numbered device.

� One device is used for write control, and must be the read control device plus one, which
makes it odd-numbered.

� One device is used for data exchange, and must be one greater than the write control
device.

All three I/O devices must be in a group of three contiguous device addresses.

The z/VM TCP/IP profile, PROFILE TCPIP, definitions for this configuration are shown in
Example 3-20. The device type on the DEVICE statement for HiperSockets is HIPERS, as
highlighted in the example. The DEVICE and LINK names, HIPERDF0 and HIPERLF0, are
arbitrary. Choose a naming convention to identify the use of HiperSockets, along with the
applicable CHPID F0.

Example 3-20 IBM z/VM TCP/IP definitions

...
DEVICE HIPERDF0 HIPERS 7400
LINK HIPERLF0 QDIOIP HIPERDF0
...
HOME
192.0.1.1 HIPERLF0
44 IBM HiperSockets Implementation Guide

...
GATEWAY
; Network Subnet First Link MTU
; Address Mask Hop Name Size
; ------------- --------------- ---------------- --------- -----
192.0.1.0 255.255.255.0 = HIPERLF0 8192
; ------------- --------------- ---------------- --------- ----
...
START HIPERDF0

Because you are using static routes in this environment, you have to define a GATEWAY
statement. Also note that a maximum packet size (MTU size) of 8 KB was specified, to
accommodate the MFS of the IQD CHPID.

In the DEVICE statement, only the first of three I/O device addresses is defined, because the
addresses are contiguous. IBM z/VM will determine the role of each device. These addresses
are attached to the TCP/IP virtual machine (VM) with the SYSTEM DTCPARMS file.

The following SYSTEM DTCPARMS entry attaches the HiperSockets I/O devices
permanently to the z/VM LPAR:

:nick.TCPIP :type.server
 :class.stack

:attach. 7400-7402

If other network I/O device addresses are defined to the TCP/IP stack, then add the
HiperSockets I/O devices:

:nick.TCPIP :type.server
 :class.stack

:attach. C200-C203, 7400-7402

Tip: If you are using a dynamic routing protocol, such as Routing Information Protocol
(RIP) or Open Shortest Path First (OSPF), omit this GATEWAY statement.

Note: IBM z/VM can be connected to a HiperSockets network that a z/OS sysplex is using
for DynamicXCF. However, z/VM cannot use the DynamicXCF protocol, but will establish a
communication connection using the HiperSockets firmware.

To establish a connection, you need to add a port name to the TCPIP PROFILE file device
statement, as shown in the following example:

DEVICE HIPERDF3 HIPERS 7700 PORTNAME IUTIQDF3

The value for the port name is the device identifier from the z/OS sysplex network
configuration.
Chapter 3. Software configurations for HiperSockets 45

3.4.2 Dynamically define HiperSockets for a z/VM host system

Updating the PROFILE TCPIP and SYSTEM DTCPARMS files will permanently define the
device to TCPIP. To dynamically bring the new device online without having to take TCPIP
down, follow these steps:

1. From a privileged z/VM user ID, such as MAINT, attach the HiperSockets devices to
TCPIP:

CP ATTACH 7400-7402 TCPIP

2. From a user ID authorized to use the TCPIP OBEYFILE command, such as MAINT or
TCPMAINT, issue the command for TCPIP to re-read the PROFILE TCPIP file. You will
need to have access to that file before issuing the command:

CP LINK TCPMAINT 198 198 rr
CP ACC 198 F
OBEYFILE PROFILE TCPIP F

If there is a link password for accessing TCPMAINT’s 198 disk, then TCPIP will have to be
authorized to link to the disk, or a password needs to be included in the command:

OBEYFILE PROFILE TCPIP F (read_password

3. If you want to stop the TCPIP service, log on to the TCPIP user ID and issue the following
command:

#CP EXTERNAL

4. To restart TCPIP, issue TCPRUN or IPL CMS.

At device start, the z/VM TCP/IP stack is registered in the HiperSockets IP address lookup
table with its IP address (192.0.1.1) and becomes part of the HiperSockets network on
CHPID F0.

3.4.3 TCP/IP verification

Example 3-21 shows information pertinent to the TCP/IP HiperSockets device, which is
displayed by using the NETSTAT DEVLINKS command. It ensures that the proper I/O device
and MFS were defined to TCP/IP, and verifies that the device (HIPERDF0) and link
(HIPERLF0) are in a READY status.

Example 3-21 Display TCP/IP DEVICE and LINK

NETSTAT DEVL

Device HIPERDF0 Type: HIPERS Status: Ready
 Queue size: 0 CPU: 0 Address: 7400 Port name: UNASSIGNED
 IPv4 Router Type: NonRouter Arp Query Support: No
 Link HIPERLF0 Type: QDIOIP Net number: 0
 BytesIn: 4008 BytesOut: 1328
 Forwarding: Disabled MTU: 8192
 Maximum Frame Size : 16384
 Broadcast Capability: Yes
 Multicast Capability: Yes

Important: To use these TCP/IP commands, the z/VM user ID has to be linked to
TCPMAINT’s 592 disk.
46 IBM HiperSockets Implementation Guide

 Group Members
 ----- -------
 224.0.0.1 1

The NETSTAT GATEWAY command, shown in Example 3-22, indicates that the correct
routing table entry has been added for HiperSockets.

Example 3-22 Display routing table

NETSTAT GATE

Subnet Address Subnet Mask FirstHop Flgs PktSz Metric Link
-------------- ----------- -------- ---- ----- ------ ------
192.0.1.0 255.255.255.0 <direct> US 8192 <none> HIPERLF0

Example 3-23 shows similar information about the HiperSockets connection using the
IFCONFIG command.

Example 3-23 Display configuration

ifconfig hiperlf0

HIPERLF0 inet addr: 192.0.1.1 mask: 255.255.255.0
 UP BROADCAST MULTICAST MTU: 8192
 vdev: 7400 rdev: 7400 type: HIPERS
 vlan: 1 cpu: 0 forwarding: DISABLED
 RX bytes: 1040 TX bytes: 2888

For IP connectivity verification, use ping commands. In this example, we were able to
successfully ping all of the other TCP/IP stacks that participate in HiperSockets CHPID F0
(192.0.1.2, 192.0.1.3, 192.0.1.4, 192.0.1.5, and 192.0.1.6).

3.4.4 References

The following list includes publications that provide additional information about the topic in
this section:

� z/VM V6R3 CP Commands and Utilities Reference, SC24-6175

� z/VM V6R3 CP Planning and Administration, SC24-6178

� z/VM V6R3 TCP/IP Planning and Customization, SC24-6238

� z/VM V6R3 TCP/IP User's Guide, SC24-6240

� z/VM V6R3 TCP/IP Messages and Codes, GC24-6237

� z/VM V6R3 TCP/IP Diagnosis Guide, GC24-6235

These and other z/VM publications are available in PDF format on the IBM z/VM Internet
Library:

http://www.vm.ibm.com/library/index.html

You can also find more information on the IBM Publication Center:

http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
Chapter 3. Software configurations for HiperSockets 47

http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.vm.ibm.com/library/index.html

3.5 HiperSockets in Linux on System z

Linux uses the QETH device driver to support HiperSockets on System z. It is delivered as
part of the current Red Hat Enterprise Linux (RHEL) and SUSE Linux Enterprise Server
(SLES) distributions. The QETH device driver also supports Open Systems Adapter
(OSA)-Express ports operating in queued direct input/output (QDIO) mode. The HiperSockets
internal QDIO (iQDIO) support is an extension to the OSA-Express QDIO support.

Each Linux HiperSockets connection requires three I/O devices. One device is used for read
control, one for write control, and one for data exchange. The device number for the control
write device must be the device number for the read control device plus one. The device
number for the data exchange device can be any number.

This section provides information to use HiperSockets with Linux systems. To enable
HiperSockets support, perform the following tasks:

1. Confirm that the correct input/output configuration program (IOCP) definitions are in place
for the HiperSockets channels:

– One or more IQD channels with access to a native Linux partition.
– One or more IQD channels with access to a z/VM partition that is hosting the Linux

guest. In this case, make sure that there are enough devices defined, so that each
Linux guest can be attached to three different devices.

2. If Linux is hosted by z/VM, define the virtual environment in z/VM for the Linux guest
system to use HiperSockets.

3. Configure the HiperSockets interfaces in the Linux system in one of the following ways:

– Permanently, when installing the Linux system for the first time.
– Add a permanent HiperSockets interface with an already existing Linux system.
– Add a temporary HiperSockets interface with an existing Linux system. This interface

will disappear when the system is rebooted.

The Linux support for HiperSockets on System z is the same as for Linux running in a
stand-alone LPAR and running as a guest under z/VM. With this in mind, we chose to work
with Linux guests in these test configurations. This section describes how to define the most
simple HiperSockets interface. Additional functionality, such as layer 2 interfaces, virtual local
area network (VLAN) definitions, and others, is described in subsequent sections.

3.5.1 Software requirements

The System z QETH Linux network device driver is required, and is available in all Linux
distributions for System z.
48 IBM HiperSockets Implementation Guide

3.5.2 Linux configuration example

The configuration used in this example is shown in Figure 3-5.

Figure 3-5 Linux test configuration

For the HiperSockets network, use CHPID F0 devices connected as I/O addresses
7000-7002 for both Linux environments. See 2.3, “IBM z/VM definitions” on page 24 for a
description how to define the interfaces for the Linux guests in z/VM.

3.5.3 Linux I/O definitions for the initial installation of the Linux system

If your server environment will only be using the HiperSockets network, define the
HiperSockets devices as your primary network when installing your Linux system. The
installation process for both the SLES and RHEL distributions is much the same as the one
that you follow using OSA or other network devices. The primary difference is identifying the
type of network device as HiperSockets.

HiperSockets
base
scenario

7400-7402
192.0.1.1

TCPIP

LP-A2E
z/VM VMLINUX1

SYSPLEXSYSPLEX

LP-A11

z/OS SC30

7400-7402
192.0.1.4

LP-A13

z/OS SC31

7400-7402
192.0.1.5

LP-A16

z/OS SC32

7400-7402
192.0.1.6Linux

LNXSU1

(7000-7002)

7408-740A
192.0.1.3(7000-7002)

7404-7406
192.0.1.2

Linux
LNXRH1

HiperSockets CHPID F0
 192.0.1.0/24

Note: Because the Linux systems were already installed, we did not define the
HiperSockets interfaces during installation for this version of this book. The following
paragraphs describe how this was done for a previous version of this book.
Chapter 3. Software configurations for HiperSockets 49

Follow these steps to complete the initial install:

1. Using a minimal parameter configuration file (parmfile), make the following choices at the
network device prompt:

a. For the SLES installation, select HiperSockets. Example 3-24 shows the prompt from
an SLES install, selecting option 2.

Example 3-24 SUSE installation prompt

Please select the type of your network device.

1) OSA-2 or OSA-Express
2) HiperSockets

3) Channel To Channel (CTC)
4) ESCON
5) Inter-User Communication Vehicle (IUCV)

> 2

b. For the RHEL installation, select the qeth driver and at the bus ID and Device Number
prompt, enter the HiperSockets devices, such as 0.0.7000,0.0.7001,0.0.7002.

Both SUSE (SLES10 and later) and Red Hat (RHEL5 and later) allow the use of
installation parameter files (parmfiles) to identify installation resources, rather than having
to input these parameters during the installation. The format of the parmfile is the same as
in an installation using a different type of network device, identifying HiperSockets as the
installation device.

2. Configure the parmfile:

a. For an SLES parmfile, include the line shown in Example 3-25.

Example 3-25 SLES PARMFILE

....
InstNetDev=hsi OsaInterface=eth OsaMedium=qdio
....

b. For an RHEL parmfile, point to the configuration file to be used and include the lines in
Example 3-26 and Example 3-27.

Example 3-26 RHEL PARMFILE

...
CMSCONFFILE=rhel4.conf
...

Example 3-27 RHEL4 CONF

...
DEVICE="hsi0"
NETTYPE="qeth"
...

Attention: For command formats for your specific Linux distribution, see
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
50 IBM HiperSockets Implementation Guide

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

3.5.4 Linux I/O definitions for adding to an existing Linux system

This section shows the Linux setup from the perspective of the /sysfs file system. As such,
the definitions are temporary, and will be lost after a reboot. 3.5.5, “Permanent Linux
definitions” on page 54 describes how to make the definitions permanent.

Linux I/O verification
Ensure that your Linux system has the HiperSockets devices available:

1. From the Linux guest, issue the lscss command to display network devices, as shown in
Example 3-28.

Example 3-28 The lscss command

lscss | grep 1732

0.0.7000 0.0.0000 1732/05 1731/05 80 80 ff f0000000 00000000
0.0.7001 0.0.0001 1732/05 1731/05 80 80 ff f0000000 00000000
0.0.7002 0.0.0002 1732/05 1731/05 80 80 ff f0000000 00000000

This shows that the Linux system knows of the devices, but the absence of the word yes
between the 1731/05 and the 80 indicates that the devices are not configured or online.
The first two characters of the second to the last column show the CHPID, f0 in the
example.

2. On an RHEL system, the HiperSockets devices might not show up, although they
configured correctly in the input/output configuration data set (IOCDS) and in z/VM. In this
case, to remove the HiperSockets devices from the list of ignored devices and make them
visible to Linux, issue the following command:

cio_ignore -r 0.0.7000,0.0.7001,0.0.7002

Hardware definition using znetconf
Use the znetconf command to sense and list candidate configurations for network devices.
Example 3-29 shows how to use the znetconf command to list unconfigured network devices
(the -u option), to add the HiperSockets devices (the -a option), and to list the configured
network devices (the -c option).

Example 3-29 Use znetconf to configure HiperSockets devices

lnxsu1:~ # znetconf -u
Scanning for network devices...
Device IDs Type Card Type CHPID Drv.
--
0.0.7000,0.0.7001,0.0.7002 1731/05 HiperSockets f0 qeth

lnxsu1:~ #znetconf -a 7000
Scanning for network devices...
Successfully configured device 0.0.7000 (hsi0)

lnxsu1:~ #znetconf -c

Important: To use the HiperSockets network during the initial installation, the
installation code must be accessible from the HiperSockets network.
Chapter 3. Software configurations for HiperSockets 51

Device IDs Type Card Type CHPID Drv. Name State
--
0.0.c200,0.0.c201,0.0.c202 1731/01 GuestLAN QDIO 03 qeth eth0 online
0.0.8000,0.0.8001,0.0.8002 1731/01 GuestLAN QDIO 05 qeth eth1 online
0.0.7000,0.0.7001,0.0.7002 1731/05 HiperSockets F0 qeth hsi0 online

Hardware definition using sysfs attributes
Alternatively you can use the sysfs attributes to set the devices online:

1. Create a qeth group device, as shown in the following code:

echo 0.0.7000,0.0.7001,0.0.7002 > /sys/bus/ccwgroup/drivers/qeth/group

This defines the device as part of the qeth group. The three devices are specified in device
bus-ID form, with 0.0 proceeding each device address (the device number). Address 7000
is the read control I/O device, address 7001 is the write control I/O device, and address
7002 is the data exchange device.

The driver handles the distribution for read and write buffer space dynamically. The qeth
device driver uses the device bus-ID of the read subchannel to create a directory for the
device, for example, this file should now exist:

/sys/devices/qeth/0.0.7000

Also, the driver creates additional directories that are symbolic links to the device
directory:

/sys/bus/ccwgroup/drivers/qeth/0.0.7000
/sys/bus/ccwgroup/devices/0.0.7000

This directory contains one file for each of the attributes that control the device. The driver
automatically senses the device as a HiperSockets device, and sets all device attributes to
their default values. Example 3-30 shows a list of these attributes.

Example 3-30 List of device attributes

[root@lnxrh1 ~]# ls /sys/devices/qeth/0.0.7000
blkt driver net rxip
broadcast_mode fake_broadcast online sniffer
buffer_count hsuid performance_stats state
canonical_macaddr hw_trap portname subsystem
card_type if_name portno uevent
cdev0 inbuf_size power ungroup
cdev1 ipa_takeover priority_queueing vipa
cdev2 isolation recover
checksumming large_send route4
chpid layer2 route6

Writing the new value to the appropriate file changes the attribute. The Linux on System z,
Device Drivers, Features, and Commands, SC33-8281 publication describes the
HiperSockets device attributes and the qeth device driver.

2. To bring the HiperSockets device online, write a 1 to the online attribute file:

echo 1 > /sys/devices/qeth/0.0.7000/online

Remember: Linux is case-sensitive. When using hardware addresses with hex
alphabetic characters in commands and files, keep the case the same.
52 IBM HiperSockets Implementation Guide

Network definition
The device driver associates the device with an interface name:

1. Find the name in the if_name attribute file for the device:

a. For SLES, use the following command:

lnxsu1:~ # cat /sys/devices/qeth/0.0.7000/if_name
hsi1

b. For RHEL, use the following command:

[root@lnxrh1 ~]# cat /sys/devices/qeth/0.0.7000/if_name
hsi0

2. With the name, use the ifconfig command to define the network interface, as shown in
this example for RHEL:

ifconfig hsi0 192.0.1.2 netmask 255.255.255.0 up

Verification of the setup
This section shows how the configuration can be verified regardless of the way that it is
defined. Example 3-31 shows how the lsqeth command can be used to display the attributes
of an interface.

Example 3-31 Using lsqeth to display attributes

[root@lnxrh1 ~]# lsqeth hsi0
Device name : hsi0

 card_type : HiperSockets
 cdev0 : 0.0.7000
 cdev1 : 0.0.7001
 cdev2 : 0.0.7002
 chpid : F0
 online : 1
 portname : no portname required
 portno : 0
 route4 : no
 route6 : no
 checksumming : sw checksumming
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 fake_broadcast : 0
 buffer_count : 128
 layer2 : 0
 large_send : no
 isolation : none
 sniffer : 0

Example 3-32 shows the ifconfig command issued to verify the network setup.

Example 3-32 Verifying Linux HiperSockets setup with ifconfig

ifconfig

hsi0 Link encap:Ethernet HWaddr 06:00:F0:2E:00:06
 inet addr:192.0.1.2 Bcast:192.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:6/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
Chapter 3. Software configurations for HiperSockets 53

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:210 (210.0 b)

3.5.5 Permanent Linux definitions

This section provides the Linux information to permanently define the same configuration
used in Figure 3-5 on page 49. Although the definition can be completed using the Linux
distribution setup software (for example, SUSE YAST), this section shows you how to do
it manually.

Hardware definition for SLES
SLES11 differs from SLES10 in that it no longer uses hardware definition files in
/etc/sysconfig/hardware, but instead uses udev rules defined in /etc/udev/rules.d.

To define the new network interface, follow these steps:

1. Copy an existing OSA hardware definition file.

2. Modify the new file to change all of the device addresses to the new one:

cd /etc/udev/rules.d
sed 51-qeth-0.0.c200.rules -e ‘s/c20/700/g’ > 51-qeth-0.0.7000.rules

Now the file looks like Example 3-33.

Example 3-33 The /etc/udev/rules.d/51-qeth-0.0.7000.rules file

Configure qeth device at 0.0.7000/0.0.7001/0.0.7002
ACTION=="add", SUBSYSTEM=="drivers", KERNEL=="qeth", IMPORT{program}="collect
0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.7000", IMPORT{program}="collect
0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.7001", IMPORT{program}="collect
0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="add", SUBSYSTEM=="ccw", KERNEL=="0.0.7002", IMPORT{program}="collect
0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="remove", SUBSYSTEM=="drivers", KERNEL=="qeth",
IMPORT{program}="collect --remove 0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="remove", SUBSYSTEM=="ccw", KERNEL=="0.0.7000",
IMPORT{program}="collect --remove 0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="remove", SUBSYSTEM=="ccw", KERNEL=="0.0.7001",
IMPORT{program}="collect --remove 0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
ACTION=="remove", SUBSYSTEM=="ccw", KERNEL=="0.0.7002",
IMPORT{program}="collect --remove 0.0.7000 %k 0.0.7000 0.0.7001 0.0.7002 qeth"
TEST=="[ccwgroup/0.0.7000]", GOTO="qeth-0.0.7000-end"
ACTION=="add", SUBSYSTEM=="ccw", ENV{COLLECT_0.0.7000}=="0",
ATTR{[drivers/ccwgroup:qeth]group}="0.0.7000,0.0.7001,0.0.7002"
ACTION=="add", SUBSYSTEM=="drivers", KERNEL=="qeth",
ENV{COLLECT_0.0.7000}=="0",
ATTR{[drivers/ccwgroup:qeth]group}="0.0.7000,0.0.7001,0.0.7002"

Tip: You might want to check the kernel messages (displayable by using the dmesg
command) for any problems that could have occurred. Most distributions will also trigger a
message in /var/log/messages in that case.
54 IBM HiperSockets Implementation Guide

LABEL="qeth-0.0.7000-end"
ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.7000", ATTR{portno}="0"
ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.7000", ATTR{layer2}="0"
ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.7000", ATTR{online}="1"

Network definition for SLES
In a similar manner, the /etc/sysconfig/network directory contains the network configuration
files. The files are named with the interface name. For example, the file name for this
configuration is ifcfg-hsi1. The contents of this file are shown in Figure 3-6. This file can be
built from a copy of an existing OSA definition file, or from the sample
/etc/sysconfig/network/ifcfg.template file.

Figure 3-6 Example ifcfg-hsi1

To activate the new file after it has been properly customized, you use the following ifup
command:

lnxsu1:/etc/sysconfig/network # ifup hsi1
hsi1 name: ITSO HiperSockets Network CHPID F0 (0.0.7000)

You can also use the rcnetwork restart command shown in Example 3-34.

Example 3-34 The rcnet work restart command

lnxsu1:~ # rcnetwork restart
Shutting down network interfaces:
 eth0 name: OSA Express Network card (0.0.c200) done
 hsi1 name: ITSO HiperSockets Network CHPID F0 (0.0.7000) done
Shutting down service network done
Hint: you may set mandatory devices in /etc/sysconfig/network/config
Setting up network interfaces:
 eth0 name: OSA Express Network card (0.0.c200)
 eth0 IP address: 9.12.7.16/20 done
 hsi1 name: ITSO HiperSockets Network CHPID F0 (0.0.7000)
 hsi1 IP address: 192.0.1.3/24 done
Setting up service network done

This will permanently define the HiperSockets interface configuration for your
SLES11 system.

Hardware and network definition for Red Hat Enterprise Linux
The /etc/sysconfig/network-scripts directory contains the network configuration files.
These files contain hardware information as well. These files are named with the interface
type and number. For example, your file name is ifcfg-hsi0.

BOOTPROTO='static'
IPADDR='192.0.1.3'
BROADCAST='192.0.1.255'
STARTMODE='auto'
NAME='ITSO HiperSockets Network CHPID F0 (0.0.7000)'
USERCONTROL='no'
NETMASK='255.255.255.0'
Chapter 3. Software configurations for HiperSockets 55

The contents shown in this file can be built from a copy of an existing configuration file.
Figure 3-7 shows the example ifcfg-hsi0 file.

Figure 3-7 Example ifcfg-hsi0 file

To activate the interface, you can issue the ifup command:

ifup hsi0

3.5.6 References

The following list includes publications that provide additional information about the topic in
this section:

� Device Drivers, Features, and Commands, SC33-8281. The most recent version can be
found in the What’s new link:

http://www.ibm.com/developerworks/linux/linux390/index.html

� Additional information is available at the following sites:

http://www-03.ibm.com/systems/z/os/linux/
http://www.vm.ibm.com/linux

� For details about Linux distributions and support, go to the following website:

http://www.ibm.com/servers/eserver/zseries/os/linux/

3.6 HiperSockets in z/VSE

This section covers the basic setup and usage of HiperSockets in a z/VSE environment.
HiperSockets have been supported since IBM VSE/ESA 2.7.

Note: We did not have a z/VSE system for this version of the book. The information about
z/VSE was supplied by the IBM z/VSE developers. For additional information, see
Introduction to the New Mainframe: z/VSE Basics, SG24-7436 and Enhanced Networking on
IBM z/VSE, SG24-8091 for instructions about how to set up HiperSockets interfaces
on z/VSE.

3.6.1 HiperSockets Support in z/VSE

HiperSockets devices are defined in the IOCDS with channel path identifier (CHPID type
IQD). IBM z/VSE supports HiperSockets spanned channels. These channels are
HiperSockets that connect LPARs using different logical channel subsystems (LCSSs).

DEVICE=hsi0
BOOTPROTO=static
IPADDR=192.0.1.2
NETMASK=255.255.255.0
NETTYPE=qeth
ONBOOT=yes
SUBCHANNELS=0.0.7000,0.0.7001,0.0.7002
TYPE=Ethernet
56 IBM HiperSockets Implementation Guide

http://www.ibm.com/developerworks/linux/linux390/index.html
http://www-03.ibm.com/systems/z/os/linux/
http://www.vm.ibm.com/linux
http://www.ibm.com/servers/eserver/zseries/os/linux/

For HiperSockets devices, the z/VSE QDIO network driver supports the following items:

� TCP/IP layer 3
� IPv4 protocols
� IPv6 protocols (z/VSE 5.1 and later)
� VLAN (z/VSE 5.1 and later)

IPv6 support is provided by IPv6/VSE.

The TCP/IP configuration for HiperSockets devices is provided by the following software:

� TCP/IP for VSE/ESA (licensed from Connectivity Systems, Inc., or CSI)

This is a well-known TCP/IP stack with applications for IPv4 traffic. It provides secure
transmission of data using the Secure Sockets Layer (SSL) protocol. For more information
about CSI’s TCP/IP for VSE/ESA, see the following website:

http://www.csi-international.com

� IPv6/VSE (licensed from Barnard Software Inc., or BSI)

This is a full-function TCP/IP stack with applications for IPv4 and IPv6 network traffic.
Since December 2012, secured transmission of data using the Secure Socket Layer (SSL)
Protocol, Hypertext Transfer Protocol Secure (HTTPS), File Transfer Protocol Secure
(FTPS), Simple Mail Transfer Protocol Secure (SMTPS), and TN3270E over SSL has
been supported. It is available for z/VSE 4.3 and z/VSE 5.1.

For more information about BSI’s IPv6/VSE, see their Internet home page:

http://www.bsiopti.com

If you run z/VSE under z/VM, you can also use virtual HiperSockets. For details about
HiperSockets support under z/VM, see the corresponding z/VM documentation.

3.6.2 Configuring HiperSockets devices in z/VSE

For each HiperSockets link, you require three CHPID type IQD devices. In z/VSE, CHPID
type IQD devices have a corresponding z/VSE device type: OSAX.

The HiperSockets devices must be added with the z/VSE IPL ADD statement using type
OSAX. To distinguish CHPID type IQD devices from CHPID type OSA-Express QDIO (OSD)
devices, a mode of 1 must be specified, as shown in the following example:

ADD 1500:1515 AS 500:515,OSAX,1

3.6.3 Configuring a HiperSockets link in TCP/IP

The statements for using a HiperSockets connection vary depending upon the TCP/IP
solution that you have chosen. Under TCP/IP for VSE/ESA, to define a layer 3 IPv4 link you
must specify device and link information in the TCP/IP DEFINE LINK command:

DEFINE LINK,ID=...,TYPE=OSAX,
DEV=cuu1, (or DEV=(cuu1,cuu2))
DATAPATH=cuu3,
IPADDR=addr,
MTU=xxxx, (default: as specified in the OS parameter)
FRAGMENT={NO|YES} (default: NO)

(YES not supported by HiperSockets)
Chapter 3. Software configurations for HiperSockets 57

http://www.bsiopti.com
http://www.csi-international.com

In this example, cuu1 and cuu2 are VSE addresses that correspond to physical addresses.
These definitions are the same as those for OSA Express, except in the following ways:

� HiperSockets do not require a PORTNAME.
� The MTU size must not exceed the MTU size specified in the OS parameter (CHPID

definition). The default MTU size is the size specified in the OS parameter (CHPID
definition).

Under IPv6/VSE, for details of how to specify the equivalent statements to those described
previously, see the following website:

http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

3.6.4 Related publications

For more details about TCP/IP in z/VSE, see the following publications:

� Enhanced Networking on IBM z/VSE, SG24-8091
� Introduction to the New Mainframe: z/VSE Basics, SG24-7436
� z/VSE Planning, SC33-8301
� z/VSE Administration, SC33-8304
� z/VSE Operation, SC33-8309
� z/VSE V5R1 e-business Connectors User's Guide, SC34-2629
� z/VSE V5R1 TCP/IP Support, SC34-2640
58 IBM HiperSockets Implementation Guide

http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

Chapter 4. Performance considerations

This chapter describes the factors that influence IBM System z HiperSockets performance. It
provides insights on which tuning parameters are available, and can help you decide how to
configure HiperSockets for your scenario.

4

© Copyright IBM Corp. 2013, 2014. All rights reserved. 59

4.1 HiperSockets for highest performance

HiperSockets moves network data from one virtual server to another. This movement is
synchronous to the device driver and uses memory copies, therefore resulting in the lowest
possible latency and highest throughput. So, although it emulates an Open Systems Adapter
(OSA) channel in many aspects, with respect to performance it behaves more like a software
program.

4.2 Processor considerations

The firmware that copies the data runs inside the send instruction, so a server that is
processor-constrained will not be able to send as much data per second as a server with
more processing power available. This is especially true for processors shared between
logical partitions (LPARs), or between z/VM guests. In the time slices where a processor is
not running for a server, HiperSockets will not move data for that server.

The operating systems (OSs) can distribute HiperSockets traffic over multiple processors, so
a server with more physical processors available is able to send more data per second over
HiperSockets. This is not true if the processors are only virtual, and not backed by physical
resources, because then no true parallelism can be achieved.

Upgrading to a new model of System z will typically result in higher HiperSockets throughput
and lower latency, because of the improved capacity of the processor hardware.

HiperSockets firmware on central processors (CPs) of subcapacity models runs at the same
speed as on full capacity models or Integrated Facilities for Linux (IFLs). However, the
subcapacity CPs will affect the end-to-end network performance, because it affects the
Transmission Control Protocol/Internet Protocol (TCP/IP) stack and the device driver on these
servers.

4.3 Physical memory structure

HiperSockets firmware uses the same hardware as other System z software memory moves
use. The best overall performance is achieved when processors accessing the same memory
location are in close physical proximity, sharing a certain level of cache. Processors that are
physically separated, on different processor books, achieve less optimal overall performance.
The same is true for the processors that communicate over HiperSockets. Depending on their
physical location, HiperSockets performance can vary.

4.4 Maximum transmission unit size

HiperSockets can be defined with four different maximum transmission units (MTUs): 8 KB,
16 KB, 32 KB, or 56 KB (see 2.1, “System configuration considerations” on page 8).
Transferring large units of data in one I/O operation can result in very high throughput,
especially for streaming-type workloads. For request-response type workloads, smaller MTU
sizes are usually sufficient.
60 IBM HiperSockets Implementation Guide

A large MTU can improve the throughput, and it can also result in less processor use,
because the TCP/IP stack and device driver functions are called less often. It is important to
adjust both the HiperSockets channel definition and the MTU definitions in the TCP/IP stacks,
to benefit from the large MTU capabilities of HiperSockets.

Note that the MTU size affects the size of the input and output buffers that are allocated by
the operating system. A larger MTU size will result in higher memory consumption. If a server
is severely memory-constrained, larger MTU sizes, and therefore larger buffers, might
deteriorate the situation, lead to increased paging activity, and therefore to less than optimal
overall system performance.

4.5 Input buffer count

4.5.1 Input buffer count in IBM z/OS

The default number of input buffers for HiperSockets for z/OS is 126. To configure the number
of input buffers for HiperSockets, the Virtual Telecommunications Access Method (VTAM)
Start Option IQDIOSTG or the READSTORAGE keyword on the LINK or INTERFACE statements
can be used. For more information, go to the z/OS V2R1 Information Center:

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

4.5.2 Input buffer count in Linux for System z

A count of 128 input buffers has been the default since Red Hat Enterprise Linux (RHEL)
V6.2 and SUSE Linux Enterprise Server (SLES) V11 SP2. It used to be 16 in previous
versions. Your current input buffer count can be checked using the lsqeth -p command. The
input buffer count can be set in the appropriate config file:

� SUSE SLES 10

In /etc/sysconfig/hardware/hwcfg-qeth-bus-ccw-0.0.device_number,
add QETH_OPTIONS="buffer_count=128".

� SUSE SLES 11

In /etc/udev/rules.d/51-qeth-0.0.device_number.rules,
add ACTION=="add"' SUBSYSTEM=="ccwgroup"' KERNEL=="0.0.device_number",
ATTR{buffer_count}="128".

Important: Because HiperSockets transfers data synchronously, successful data delivery
depends on the available queued direct input/output (QDIO) input buffers of the target
system. The device drivers or TCP/IP stacks are able to handle conditions when there are
no available target buffers, but these situations affect the overall performance.

Optimal performance can be achieved if the device drivers always try to provide the
maximum number of 128 available input buffers. Each input buffer has the size of the
maximum frame size (MFS) that is defined for the internal queued direct communication
(IQD) channel (not the MTU that is defined for this TCP/IP stack). Therefore, in a scenario
with a large MFS and servers that are memory-constrained rather than
processor-constrained, a smaller number of input buffers might be appropriate.
Chapter 4. Performance considerations 61

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

� RHEL 6.2

In /etc/sysconfig/network-scripts/ifcfg-interface_name,
add OPTIONS="buffer_count=128".

4.5.3 Input buffer count in z/VSE

The default number of input buffer for HiperSockets on z/VSE is 8. To configure the number of
QDIO input buffers for HiperSockets, you can use the configuration skeleton SKOSACFG in
ICCF library 59. Valid values are: 8, 16, 32, or 64. For more information see Enhanced
Networking on IBM z/VSE, SG24-8091.

4.6 References

Look for the current IBM performance benchmarks at IBM developerWorks®:

http://www.ibm.com/developerworks/linux/linux390/perf/index.html
62 IBM HiperSockets Implementation Guide

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

Chapter 5. Layer 2 and layer 3 modes

HiperSockets can operate either as layer 3 interfaces (network or Internet Protocol (IP) layer),
or as layer 2 interfaces (link layer).

This chapter describes what the layer concept means for HiperSockets, and explains how
HiperSockets use IPv4, IPv6, and message authentication code (MAC) addresses to
communicate.

5

© Copyright IBM Corp. 2013, 2014. All rights reserved. 63

5.1 Concept of layer modes for HiperSockets

For flexible and efficient data transfer for IP and non-IP workloads, HiperSockets can support
two transport modes. These are layer 3 (network or IP layer) and layer 2 (link layer).

As described in 1.4, “HiperSockets mode of operation” on page 4, the virtual servers register
target addresses for the HiperSockets interfaces with the firmware. A HiperSockets device
can be configured by the device driver either in layer 3 mode or in layer 2 mode. In layer 3
mode, IP addresses are used as target addresses. In layer 2 mode, MAC addresses are used
as target addresses.

Layer 3 mode is used for messages in IP datagram format (either IPv4 or IPv6), identifying a
next-hop IP address for each message. An internal queued direct communication (IQD)
channel-path identifier (CHPID) represents an IP subnet in this case.

Layer 2 mode is intended to be used for messages in Ethernet format (Ethernet II Digital,
Intel, and Xerox (DIX) or Institute of Electrical and Electronics Engineers (IEEE) 802.3
frames). An IQD CHPID represents an Ethernet broadcast domain in this case.

The layer used by the guests is not apparent to IBM z/VM, if the devices are directly
connected to the guest.

5.2 Layer 3 mode

When a HiperSockets device is defined in layer 3 mode, both IPv4 or IPv6 protocols can be
used. An IQD CHPID represents an IP local area network (LAN) segment in this case.

Software enqueues IP datagrams into the HiperSockets queues, and sets the next-hop IP
address as the destination. HiperSockets firmware delivers these datagrams into the target
queues without the involvement of any lower-level protocols. The software device drivers also
operate at the IP layer. The lower levels of the Transmission Control Protocol/Internet Protocol
(TCP/IP) stack, such as Ethernet, are not required at all.

Different upper-layer protocols, such as TCP, User Datagram Protocol (UDP), and others, can
be used by the software stacks on HiperSockets layer 3 devices. IBM z/OS, Linux on System
z, z/VM (host) and z/VSE support HiperSockets layer 3 devices. As of the writing of this book,
layer 3 is the default mode for all operating systems (OSs).

In z/VSE, layer 3 is the default. It is supported by both TCP/IP software packages:

� TCP/IP for VSE/ESA (licensed from Connectivity Systems, Inc. (CSI))
� IPv6/VSE (licensed from Barnard Software Inc. (BSI))

5.2.1 IPv4

Four-byte IPv4 addresses are used as target addresses. IBM z/OS, Linux on System z, z/VM
(host), and z/VSE support IPv4 over HiperSockets layer 3 devices. IBM z/VSE support has
been present since VSE/ESA V2.7.

Tip: Devices in layer 3 mode and devices in layer 2 mode cannot communicate with each
other. It is a good practice to either define only layer 3 devices or only layer 2 devices on
one HiperSockets CHPID.
64 IBM HiperSockets Implementation Guide

5.2.2 IPv6

16-byte IPv6 addresses are used as target addresses. IPv6 support for layer 3 devices has
been available since IBM System z9®.

IPv6 address generation
If stateless auto-configuration is used on IPv6 interfaces, the IP stack tries to define a
link-local address by obtaining the MAC address of the interface. HiperSockets firmware
provides a computer-generated virtual MAC address for that purpose. See 5.3.1, “MAC
address generation” on page 66 for more information.

IPv6 on layer 3 devices software support
IPv6 on layer 3 devices supports the following software:

� All current z/OS releases support IPV6.
� HiperSockets accelerator does not support IPV6.
� Linux support has been present since Red Hat Enterprise Linux (RHEL) 5.2 and Novell

SUSE Linux Enterprise Server (SLES) 10 SP2.
� Virtual machine (VM) TCP/IP stack support has been present since z/VM V5.2.
� IBM z/VSE 4.2 and later support includes IPv6/VSE (licensed from BSI).

5.2.3 IP takeover

An IP address is registered with its HiperSockets interface by the TCP/IP stack when the
TCP/IP device is started. IP addresses are removed from an IP address lookup table when a
HiperSockets device is stopped. Under OS control, you can reassign IP addresses to other
HiperSockets interfaces on the same HiperSockets LAN. This enables flexible backup of
TCP/IP stacks.

IP address takeover in Linux
Linux supports IP address takeover. Only IP addresses from another Linux system on the
same System z can be taken over. HiperSockets checks the type of OS before a change in
the IP address lookup table is made. IP address takeover must be initiated on the system that
takes over an IP address (add). IP address takeover must be enabled on both systems when
loading the driver. The devices are disabled by default. To enable the device for takeover,
write to the following file:

/sys/devices/qeth/<device_number>/ipa_takeover/enable

Important: Reassignment is only possible in the same HiperSockets LAN. A HiperSockets
channel is one network or subnetwork. Reassignment is only possible for the same OS
type. The following list includes some examples:

� An IP address originally assigned to a Linux TCP/IP stack can only be reassigned to
another Linux TCP/IP stack.

� A z/OS dynamic virtual IP address (VIPA) can only be reassigned to another z/OS
TCP/IP stack.

� A z/VM TCP/IP VIPA can only be reassigned to another z/VM TCP/IP stack.

The firmware performs the reassignment in force mode. It is up to the OS’s TCP/IP stack to
control this change.
Chapter 5. Layer 2 and layer 3 modes 65

For example, you could use the following write:

echo 1 > /sys/devices/qeth/0.0.7000/ipa_takeover/enable

5.3 Layer 2 mode

When a HiperSockets device is defined in layer 2 mode, software implements the layer 2
functionality of the network stack (in this case, Ethernet including Address Resolution
Protocol, or ARP), registers virtual MAC addresses as target addresses, and enqueues
Ethernet frames into the internal queued direct input/output (iQDIO) queues. Firmware will
then deliver these Ethernet frames based on the destination MAC address. An IQD CHPID
represents an Ethernet broadcast domain in this case.

This enables the use of standard networking stacks over HiperSockets devices, without
having to separate the IP layer from the Ethernet layer. It also enables the use of applications
that depend on the existence of an Ethernet layer: NetBIOS, Dynamic Host Configuration
Protocol (DHCP) servers, some firewalls, and others. Network stacks can implement IPv4,
IPv6, or other protocols over HiperSockets layer 2 devices.

Layer 2 for HiperSockets requires IBM System z10® or later.

5.3.1 MAC address generation

HiperSockets is a virtual network without any MAC addresses burnt into real hardware
adapters. Therefore, firmware generates a default virtual MAC address for each device.
These generated addresses can be read by the software stack and can be used for layer 2
Ethernet addresses, or to generate IPv6 link-local addresses. It is not mandatory to use these
default MAC addresses, because user-defined virtual MAC addresses can also be used.
Firmware-generated MAC addresses have been available since IBM System z9.

These generated MAC addresses are locally administered. They are guaranteed to be unique
in the same central processor complex (CPC) with respect to MAC addresses generated by
other firmware or z/VM. Because HiperSockets networks connect only to other HiperSockets
interfaces in the same CPC, no duplicate MAC addresses can occur on the same
HiperSockets network. Usually, HiperSockets interfaces on different CPCs will get different
MAC addresses, but this is not guaranteed.

The default MAC address of a HiperSockets device is persistent, which means that each data
device will get the same firmware-generated MAC address again after the server is restarted,
or if the HiperSockets CHPID is configured off and on, or even if the CPC is restarted. If the
server is restarted in a different logical partition (LPAR), or on a different CPC, it will get a
different default MAC address. If it is a requirement to keep the same MAC address,
user-defined MAC addresses must be used.

A variation of this mechanism is used for IBM zEnterprise intra-ensemble data networks
(IEDNs). There, the network management component of the zEnterprise Unified Resource
Manager (URM) orchestrates the generation of MAC addresses for the IEDN. See 9.4, “MAC
management by the URM” on page 129 for more information about this topic.
66 IBM HiperSockets Implementation Guide

5.3.2 HiperSockets layer 2 mode software support

HiperSockets provides the following layer 2 mode software support:

� z/OS, as of today, supports only HiperSockets layer 2 for internal queued direct
Input/output extensions (IQDX) channels. See 9.7, “The z/OS converged interface” on
page 139 for more details.

� Linux for System z is supported by Novell SLES 10 SP2 or RHEL 5.2 and later.

� z/VSE provides no layer 2 support for HiperSockets as of the writing of this book.

� z/VM provides the following support:

– The layer of direct-connected guest devices is not apparent to z/VM.
– A z/VM TCP/IP stack does not support layer 2, as of the writing of this book.
– HiperSockets Bridge Port on z/VM VSwitch is always a layer 2 device. See Chapter 8,

“Connect HiperSockets to other networks” on page 95 for more information.

Layer 2 for Linux
To dynamically put a HiperSockets interface into layer 2 mode, you first need to unconfigure
the device. A sequence that worked with both SLES and RHEL is shown in Example 5-1.

Example 5-1 Dynamically setting an HiperSockets interface with layer 2 using znetconf

lnxsu1:~ # lsqeth hsi1
Device name : hsi1

 card_type : HiperSockets
 cdev0 : 0.0.7000
 cdev1 : 0.0.7001
 cdev2 : 0.0.7002
 chpid : F0
 online : 0
 portname : no portname required
 portno : 0
 route4 : no
 route6 : no
 checksumming : sw checksumming
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 fake_broadcast : 0
 buffer_count : 128
 layer2 : 0
 large_send : no
 isolation : none
 sniffer : 0
lnxsu1:~ # znetconf -r 7000
Remove network device 0.0.7000 (0.0.7000,0.0.7001,0.0.7002)?
Warning: this may affect network connectivity!
Do you want to continue (y/n)?y
Successfully removed device 0.0.7000 (hsi1)
lnxsu1:~ # znetconf -a 7000 -o layer2="1"
Scanning for network devices...
Successfully configured device 0.0.7000 (hsi1)
lnxsu1:~ # lsqeth hsi1
Device name : hsi1

Chapter 5. Layer 2 and layer 3 modes 67

 card_type : HiperSockets
 cdev0 : 0.0.7000
 cdev1 : 0.0.7001
 cdev2 : 0.0.7002
 chpid : F0
 online : 1
 portname : no portname required
 portno : 0
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 buffer_count : 128
 layer2 : 1
 isolation : none

For RHEL, it seems to be sufficient to set the device offline. The sequence shown in
Example 5-2 only worked for RHEL, not for SLES.

Example 5-2 Dynamically set a HiperSockets interface with layer 2 using sysfs

[root@lnxrh1 ~]# cd /sys/devices/qeth/0.0.7000
[root@lnxrh1 0.0.7000]# echo 0 > /sys/devices/qeth/0.0.7000/online
[root@lnxrh1 0.0.7000]# echo 1 > /sys/devices/qeth/0.0.7000/layer2
[root@lnxrh1 0.0.7000]# echo 1 > /sys/devices/qeth/0.0.7000/online

For a permanent layer 2 definition in SLES11, define the following ATTR parameter in
/etc/udev/rules.d/51-qeth-0.0.device_number.rules:

ACTION=="add", SUBSYSTEM=="ccwgroup", KERNEL=="0.0.device_number",
ATTR{layer2}="1"

For a permanent layer 2 definition in RHEL, define the following OPTIONS parameter in
/etc/sysconfig/network-scripts/ifcfg-interface_name:

OPTIONS="layer2=1"
68 IBM HiperSockets Implementation Guide

Chapter 6. Virtual local area network
support

This chapter describes the concept of a virtual local area network (VLAN), and how it is
implemented in the HiperSockets environment. Examples are provided to illustrate its use.

6

© Copyright IBM Corp. 2013, 2014. All rights reserved. 69

6.1 Overview

The HiperSockets VLAN can logically subdivide the internal LAN for a HiperSockets
channel-path identifier (CHPID) into multiple LANs. Two or more stacks that configure the
same VLAN ID for the same CHPID can communicate over HiperSockets, but stacks that
configure different VLAN IDs cannot.

A VLAN configuration provides many benefits, such as improved network performance by
distributing traffic among VLANs, enhanced security by isolating traffic, and more flexibility in
configuring networks. See Figure 6-1 for an example of how a HiperSockets LAN is
subdivided into two VLANs.

Figure 6-1 HiperSockets VLAN

6.2 Types of connections according to IEEE

Institute of Electrical and Electronics Engineers (IEEE) 802.1p and IEEE 802.1q VLANs
operate by defining switch ports as members of VLANs. Devices on a VLAN can be
connected in three modes (trunk, access, and hybrid), based on whether the connected
devices are VLAN-aware or VLAN-unaware. VLAN-aware devices use tagging and
understand VLAN memberships (which users belong to a particular VLAN) and VLAN
formats.

Ports used to attach VLAN-unaware equipment are called access ports, and ports used to
connect to other switches or VLAN-aware servers are known as trunk ports. Network frames
generated by VLAN-aware equipment are marked with a tag that identifies the frame as
belonging to a particular VLAN.

Trunk mode
Trunk mode indicates that the switch ought to allow all VLAN ID-tagged packets to pass
through the switch port without altering the VLAN ID. This mode is intended for servers that
are VLAN-capable. It filters and processes all VLAN ID-tagged packets. In trunk mode, the
switch expects to see VLAN ID-tagged packets inbound to the switch port.

HiperSockets

VLAN 11
10.10.11.0/24

VLAN 13
10.10.13.0/24

z/VM
LP 1

z/OS
LP 4

Linux
LP 5

Linux
LP 8

Linux
LP 10

z/VM
LP 7

CHPID x'F4'

... ...Linux
Linux

Linux
Linux

HiperSockets
VLAN
70 IBM HiperSockets Implementation Guide

Access mode
Access mode indicates that the switch ought to filter on specific VLAN IDs, and only allow
packets that match the configured VLAN IDs to pass through the switch port. The VLAN ID is
then removed from the packet before it is sent to the server. That is, VLAN ID filtering is
controlled by the switch. In access mode, the switch expects to see packets without VLAN ID
tags inbound to the switch port.

Hybrid mode
Hybrid mode is a combination of the previous two modes. This is a port where both
VLAN-aware and VLAN-unaware devices are attached. A hybrid port can have both tagged
and untagged frames.

6.2.1 HiperSockets as a virtual switch in trunk mode with VLAN control

A HiperSockets LAN is not connected to any physical switches or network. However, the
HiperSockets CHPID acts as a virtual switch, and its interfaces into the servers can be viewed
as virtual switch ports.

As of this writing, HiperSockets does not support access mode. The servers’ operating
systems (OSs) have to be VLAN-aware. However, HiperSockets firmware will verify the VLAN
tags of the messages, and only deliver a message if the tag matches one of the VLAN IDs
defined by the server.

Although no Ethernet frames are constructed when HiperSockets are used in layer 3 mode, it
is still possible to define VLAN IDs per server for layer 3 HiperSockets devices. As for layer 2,
HiperSockets will only deliver messages when the source and target servers have defined the
same VLAN ID.

6.3 Out-of-band VLAN management using the IBM zEnterprise
Unified Resource Manager Network Virtualization Manager

Chapter 9, “HiperSockets in an IBM zEnterprise ensemble” on page 125 provides information
about the IBM zEnterprise Unified Resource Manager (URM), also called zManager, and its
component, the Network Virtualization Manager (NVM). NVM is used to divide an
intra-ensemble data network (IEDN) HiperSockets channel (internal queued direct
Input/output extensions, or IQDX) into VLANs, and define per server to which VLAN it
belongs.

IQDX HiperSockets enforce NVM settings, and prevent any communication that does not
concur with these settings. However, HiperSockets still operates in trunk mode, which means
that the servers still need to be VLAN-aware.

See 9.4, “MAC management by the URM” on page 129 for more details about NVM VLAN
management.
Chapter 6. Virtual local area network support 71

6.4 Benefits of HiperSockets VLAN

The following list describes some of the benefits of using VLANs with HiperSockets:

� Optimization of traffic flow

HiperSockets makes sure that no message with an incorrect VLAN ID goes into the input
queue of an interface, and therefore prevents the OSs from unnecessary handling of these
messages. This is especially true for broadcast messages. Broadcasts will only be sent to
a target that belongs to the same VLAN.

� Isolation

An important point about VLANs in general is that they provide isolation. VLANs behave
like separate networks, even though they are contained in the same HiperSockets LAN.

� Flexibility

A server can be moved from one VLAN to another by just changing the configuration in its
OS, without changing the hardware configuration of the central processor complex (CPC).

6.5 An example of HiperSockets VLAN in z/OS

To demonstrate how HiperSockets VLANs are defined and operated, create two VLANs
across a single HiperSockets channel. Logical partition (LPAR) SC31 is defined to VLAN 2,
and LPARs SC30 and SC32 are defined to VLAN 3, as shown in Figure 6-2 on page 73.

Additionally, a z/VM LPAR and Linux system are configured to VLAN 2. Another Linux system
is configured to VLAN 3. The z/VM and Linux configuration details are covered in the two
sections that follow, 6.6, “HiperSockets VLAN for a z/VM host system” on page 77 and 6.7,
“HiperSockets VLAN in Linux on System z” on page 78.

Configure the TCP/IP stacks using the following configuration rules:

� The VLANID parameter is specified on the INTERFACE statement for the HiperSockets
device in the TCP profile data set.

� For TCP/IP stacks communicating over the same HiperSockets channel, each stack must
specify the same VLANID parameter value.
72 IBM HiperSockets Implementation Guide

Figure 6-2 HiperSockets VLAN configuration

Although the scenario described in the following pages uses IPv4, VLAN for HiperSockets is
supported in IPv6 as well.

6.5.1 Implementation steps

Take the following steps to implement VLAN on HiperSockets:

1. Use the configuration detailed in Figure 3-2 on page 32.

2. Add the VLANID to the INTERFACE statement in the TCP profile data set for each TCP/IP
stack participating in the VLAN. Assign each VLAN a separate subnet address.

3. Start the TCP/IP stacks.

6.5.2 Virtual Telecommunications Access Method setup for VLAN
HiperSockets

No additional Virtual Telecommunications Access Method (VTAM) customization is required.

6.5.3 TCP/IP profile customization for VLAN HiperSockets

The VLANID keyword must be coded on the INTERFACE statement associated with the
HiperSockets CHPID. For this scenario, add the VLANID and assign a value to the TCPIP
profile on each LPAR:

1. For SC30, specify VLANID 3 1 and assign an address 2 in a subnet 3 for the VLAN, as
shown in Example 6-1.

Example 6-1 VLAN configuration for TCPIPF on SC30

INTERFACE HIPERLF0 1
DEFINE IPAQIDIO
IPADDR 192.0.3.4/24 2

HiperSockets
VLAN
scenario

7400-7402
192.0.2.1

TCPIP

LP-A2E
z/VM VMLINUX1

LP-A11

z/OS SC30

7400-7402
192.0.3.4

LP-A13

z/OS SC31

7400-7402
192.0.2.5

LP-A16

z/OS SC32

7400-7402
192.0.3.6Linux

LNXSU1

Linux
LNXRH1

(7000-7002)

7408-740A
192.0.3.3(7000-7002)

7404-7406
192.02.2

HiperSockets CHPID F0

VLAN 2
192.0.2.0/24

VLAN 3
192.0.3.0/24
Chapter 6. Virtual local area network support 73

CHPID F0
VLANID 3

BEGINROUTES
ROUTE 192.0.3.0/24 = HIPERLF0 MTU 8192 3
ENDROUTES

START HIPERLF0

2. Because LPAR SC32 is to participate in VLAN 3 (with LPAR SC30), configure its TCPIPC
stack to use the same VLANID 3 1 and assign it an address 2 in the same subnet 3 as
TCPIPA on LPAR SC30, as shown in Example 6-2.

Example 6-2 VLAN configuration for TCPIPC on SC32

INTERFACE HIPERLF0
DEFINE IPAQIDIO
IPADDR 192.0.3.6/24 2
CHPID F0
VLANID 3

1
BEGINROUTES
ROUTE 192.0.3.0/24 = HIPERLF0 MTU 8192 3
ENDROUTES

START HIPERLF0

3. Configure the TCP/IP stack on LPAR SC31 to use a different VLANID and subnet from
LPARs SC30 and SC32. Although they are all using the same HiperSockets channel (F0),
they will not be able to communicate because of the different VLANIDs. For SC31, specify
VLANID 2 1 and assign an address 2 in a subnet 3 for the VLAN, as shown in
Example 6-3.

Example 6-3 VLAN configuration for TCPIPA on SC31

INTERFACE HIPERLF0
DEFINE IPAQIDIO
IPADDR 192.0.2.5/24 2
CHPID F0
VLANID 2 1

BEGINROUTES
ROUTE 192.0.2.0/24 = HIPERLF0 MTU 8192 3
ENDROUTES

START HIPERLF0
74 IBM HiperSockets Implementation Guide

6.5.4 Verify VLAN implementation

This section shows the display commands used to verify the configuration.

TCP/IP startup
There are no messages issued during the TCP/IP stack initialization to indicate that the IP
stack is part of a VLAN.

Verify the device and link
After the TCP/IP stack has started, issue the command D TCPIP,procname,NETSTAT,DEV to
verify the VLANID 3 for the HiperSockets INTERFACE. In this example, it is HIPERLF0 2. For
SC30, the display command output is shown in Example 6-4.

Example 6-4 Verify VLANID for SC30 (partial output)

INTFNAME: HIPERLF0 2 INTFTYPE: IPAQIDIO INTFSTATUS: READY
 TRLE: IUTIQ4F0 DATAPATH: 7403 DATAPATHSTATUS: READY
 CHPID: F0
 IPBROADCASTCAPABILITY: NO
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
 CFGMTU: NONE ACTMTU: 8192
 IPADDR: 192.0.3.4/24
 VLANID: 3 1
READSTORAGE: GLOBAL (2048K)
 SECCLASS: 255 MONSYSPLEX: NO
 IQDMULTIWRITE: DISABLED
 MULTICAST SPECIFIC:
 SECCLASS: 255 MONSYSPLEX: NO
Chapter 6. Virtual local area network support 75

For SC31, the output of the D TCPIP,procname,NETSTAT,DEV command is shown in
Example 6-5.

Example 6-5 Verify VLANID for SC31 (partial output)

INTFNAME: HIPERLF0 INTFTYPE: IPAQIDIO INTFSTATUS: READY
 TRLE: IUTIQ4F0 DATAPATH: 7402 DATAPATHSTATUS: READY
 CHPID: F0
 IPBROADCASTCAPABILITY: NO
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
 CFGMTU: NONE ACTMTU: 8192
 IPADDR: 192.0.2.5/24
 VLANID: 2
 READSTORAGE: GLOBAL (2048K)
 SECCLASS: 255 MONSYSPLEX: NO

For SC32, the output of the D TCPIP,procname,NETSTAT,DEV command is shown in
Example 6-6.

Example 6-6 Verify vlanid for SC32 (partial output)

INTFNAME: HIPERLF0 INTFTYPE: IPAQIDIO INTFSTATUS: READY
 TRLE: IUTIQ4F0 DATAPATH: 7402 DATAPATHSTATUS: READY
 CHPID: F0
 IPBROADCASTCAPABILITY: NO
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
 CFGMTU: NONE ACTMTU: 8192
 IPADDR: 192.0.3.6/24
 VLANID: 3
 READSTORAGE: GLOBAL (2048K)
 SECCLASS: 255 MONSYSPLEX: NO
 IQDMULTIWRITE: DISABLED

VLAN connectivity test
To test that no connectivity exists between the two VLANs with different VLANIDs, attempt to
ping across the VLANs. There is no connectivity between VLAN 1 and VLAN 3, as shown in
Example 6-7.

Example 6-7 Ping from SC30 (vlan 3) to SC31 (vlan 2)

===> ping 192.0.2.5 (tcp tcpipa
 CS V2R1: Pinging host 192.0.2.5
 Ping #1 timed out

There is connectivity between the two systems on the same VLAN (SC30 and SC32 are in
VLAN 3), as shown in Example 6-8.

Example 6-8 Ping from SC30 (vlan 3) to SC32 (vlan 3)

===> ping 192.0.3.6 (tcp tcpipa)
CS V2R1: Pinging host 192.0.3.6
Ping #1 response took 0.000 seconds.
76 IBM HiperSockets Implementation Guide

6.6 HiperSockets VLAN for a z/VM host system

IBM z/VM can use VLAN in a HiperSockets network to logically subdivide the network without
needing additional hardware resources or HiperSockets networks.

6.6.1 VLAN definitions

The VLAN is defined and started like any other network. The VLAN parameter is added to the
TCPIP PROFILE file LINK statement, as shown in Example 6-9.

Example 6-9 IBM z/VM TCPIP definition for VLAN

...
DEVICE HIPERDF0 HIPERS 7400
LINK HIPERLF0 QDIOIP HIPERDF0 NOFWD VLAN 2
...
HOME
192.0.2.1 HIPERLF0
...
GATEWAY
; Network Subnet First Link MTU
; Address Mask Hop Name Size
; ------------- --------------- ---------------- --------- -----
192.0.2.0 255.255.255.0 = HIPERLF0 8192
; ------------- --------------- ---------------- --------- ----
START HIPERDF0
...

6.6.2 VLAN verification

To verify the connection to the VLAN, use the NETSTAT DEVLINKS command. In Example 6-10,
the device HIPERDF0 is connected to VLAN 2. Only systems with devices connected to
VLAN 2 will be able to communicate with each other.

Example 6-10 Display TCP/IP VLAN connection

netstat devl
VM TCP/IP Netstat Level 520

Device HIPERDF0 Type: HIPERS Status: Ready
 Queue size: 0 CPU: 0 Address: 7400 Port name: UNASSIGNED
 IPv4 Router Type: NonRouter Arp Query Support: No
 Link HIPERLF0 Type: QDIOIP Net number: 0
 BytesIn: 0 BytesOut: 308
 Forwarding: Disabled MTU: 8192
 Maximum Frame Size : 16384
 VLAN ID: 2
 Broadcast Capability: Yes
 Multicast Capability: Yes
 Group Members
 ----- -------
 224.0.0.1 1
Chapter 6. Virtual local area network support 77

6.7 HiperSockets VLAN in Linux on System z

This section demonstrates that Linux on System z can use VLAN in a HiperSockets network
to logically subdivide a network. Start with a HiperSockets network as described in 3.1, “Test
configuration” on page 30. You recall that the device addresses being assigned to the various
systems are on the same CHPID, and therefore on the same HiperSockets network.

This section shows the commands needed to set up a VLAN for the environment shown in
Figure 6-3 for the Red Hat Enterprise Linux (RHEL) and SUSE Linux Enterprise Server
(SLES) guest servers.

Figure 6-3 VLAN test configuration

The only difference for the two Linux guest systems is specifying the VLAN number on the
vconfig and ifconfig commands. The vconfig command defines VLAN 2 on the RHEL
server, and VLAN 3 on the SLES server, to the HiperSockets interfaces.

The important thing to note in the examples is that the HiperSockets network is up before the
VLAN is defined (that is, before the network is subdivided) and started. The other commands
show the process of defining and starting the VLAN. Start with the LNXRH1 system.

6.7.1 Temporary VLAN for RHEL—VLAN 2 on LNXRH1

As described in 3.5.2, “Linux configuration example” on page 49, you have defined hsi0 as
HiperSockets interface by using the znetconf command, or added it to the ifcfg-hsi0 file.
Example 6-11 shows the configuration of hsi0 at this point.

Example 6-11 Displaying HiperSockets network definition

[root@lnxrh1 ~]# ifconfig hsi0
hsi0 Link encap:Ethernet HWaddr 06:00:F0:2E:00:06
 inet addr:192.0.1.2 Bcast:192.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:6/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:8192 Metric:1

HiperSockets
VLAN
scenario

7400-7402
192.0.2.1

TCPIP

LP-A2E
z/VM VMLINUX1

SYSPLEXSYSPLEX

LP-A11

z/OS SC30

7400-7402
192.0.3.4

LP-A13

z/OS SC31

7400-7402
192.0.2.5

LP-A16

z/OS SC32

7400-7402
192.0.3.6Linux

LNXSU1

Linux
LNXRH1

(7000-7002)

7408-740A
192.0.3.3(7000-7002)

7404-7406
192.0.2.2

HiperSockets CHPID F0

VLAN 2
192.0.2.0/24

VLAN 3
192.0.3.0/24
78 IBM HiperSockets Implementation Guide

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:830 (830.0 b)

To create the VLAN, follow these steps:

1. In addition to this standard HiperSockets interface, create a new interface for VLAN 2 by
using the vconfig command, as shown in Example 6-12.

Example 6-12 Adding a VLAN interface

[root@lnxrh1 ~]# vconfig add hsi0 2
Added VLAN with VID == 2 to IF -:hsi0:-

The new VLAN interface can be seen in the Linux VLAN configuration file and in the
interface configuration, as shown in Example 6-13.

Example 6-13 Displaying the VLAN interface

[root@lnxrh1 ~]# cat /proc/net/vlan/config
VLAN Dev name | VLAN ID
Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD
hsi0.2 | 2| hsi0
[root@lnxrh1 ~]# ifconfig hsi0.2
hsi0.2 Link encap:Ethernet HWaddr 06:00:F0:2E:00:06
 BROADCAST MULTICAST MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

2. If you compare Example 6-13 with Example 6-11 on page 78, you will note the missing
second and third lines, in addition to the fields missing from the fourth line from the hsi0
information. This is because hsi0.2 is defined only and needs to be started:

ifconfig hsi0.2 192.0.2.2 netmask 255.255.255.0 up

Now you see that the VLAN 2subnet is up and running. See Example 6-14.

Example 6-14 VLAN 2 is running

[root@lnxrh1 ~]# ifconfig hsi0.2
hsi0.2 Link encap:Ethernet HWaddr 06:00:F0:2E:00:06
 inet addr:192.0.2.2 Bcast:192.0.2.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:6/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:492 (492.0 b)
Chapter 6. Virtual local area network support 79

6.7.2 Temporary VLAN for SLES11—VLAN 3 on LNXSU1

Further subdivide the HiperSockets network on the LNXSU1 system by setting up another
VLAN. Example 6-15 shows the existing HiperSockets interface.

Example 6-15 HiperSockets is up

lnxsu1:~ # ifconfig hsi1
hsi1 Link encap:Ethernet HWaddr 06:00:F0:2E:00:0A
 inet addr:192.0.1.3 Bcast:192.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:a/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:4 errors:0 dropped:0 overruns:0 frame:0
 TX packets:50 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:336 (336.0 b) TX bytes:4800 (4.6 Kb)

To create a temporary VLAN, follow these steps:

1. Create a new interface for VLAN 3 by using the vconfig command, as shown in
Example 6-16.

Example 6-16 Adding a VLAN

lnxsu1:~ # vconfig add hsi1 3
Added VLAN with VID == 3 to IF -:hsi1:-

2. Define the network address for hsi1.3, as shown in Example 6-17.

Example 6-17 Defining a network address

lnxsu1:~ # ifconfig hsi1.3 192.0.3.3 netmask 255.255.255.0 up

3. Example 6-18 shows the new interface hsi1.3.

Example 6-18 Displaying the interface

lnxsu1:~ # cat /proc/net/vlan/config
VLAN Dev name | VLAN ID
Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD
hsi1.3 | 3 | hsi1
lnxsu1:~ # ifconfig hsi1.3
hsi1.3 Link encap:Ethernet HWaddr 06:00:F0:2E:00:0A
 inet addr:192.0.3.3 Bcast:192.0.3.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:a/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:210 (210.0 b)

6.7.3 Verifying your setup

Using ping, confirm that the VLAN addresses 192.0.2.2 and 192.0.3.3 cannot be reached
by the other Linux guest. They both can reach the VLAN-defined IP addresses of the z/OS
LPARs and the z/VM stack that were defined in the previous sections, if they are on the same
HiperSockets network and the same VLAN.
80 IBM HiperSockets Implementation Guide

Note that the two Linux guests can still communicate without VLAN: 192.0.1.2 and 192.0.1.3
can still ping each other. If you want to remove these non-VLAN interfaces, you can remove
their IP addresses from the respective config files, as shown in the next sections.

6.7.4 Permanent VLAN definition for Red Hat Enterprise Linux

To define a permanent VLAN for RHEL, follow these steps:

1. To make your VLAN interface permanent, create a new file
/etc/sysconfig/network-scripts/ifcfg-hsi0.2, as shown in Example 6-19.

Example 6-19 Content of /etc/sysconfig/network-scripts/ifcfg-hsi0.2

DEVICE=hsi0.2
BOOTPROTO=static
IPADDR=192.0.2.2
NETMASK=255.255.255.0
ONBOOT=yes
VLAN=yes

2. If you want to change the definition of the base interface in
/etc/sysconfig/network-scripts/ifcfg-hsi0, you can do so, as shown in Example 6-20.

Example 6-20 Content of /etc/sysconfig/network-scripts/ifcfg-hsi0

DEVICE=hsi0
BOOTPROTO=static
NETTYPE=qeth
ONBOOT=yes
SUBCHANNELS=0.0.7000,0.0.7001,0.0.7002
TYPE=Ethernet

3. Now only VLAN traffic is possible over the HiperSockets network, as shown in
Example 6-21.

Example 6-21 Result of ifconfig

[root@lnxrh1 ~]# ifconfig
[...]
hsi0 Link encap:Ethernet HWaddr 06:00:F0:2E:00:06
 inet6 addr: fe80::400:f0ff:fe2e:6/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:780 (780.0 b)

hsi0.2 Link encap:Ethernet HWaddr 06:00:F0:2E:00:06
 inet addr:192.0.2.2 Bcast:192.0.2.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:6/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:390 (390.0 b)
[...]
Chapter 6. Virtual local area network support 81

6.7.5 Permanent VLAN definition for SLES11

To define a permanent VLAN for SLES, follow these steps:

1. To make your VLAN interface permanent, create a new file
/etc/sysconfig/network/ifcfg-hsi1.3, as shown in Example 6-22.

Example 6-22 Contents of /etc/sysconfig/network/ifcfg-hsi1.3

BOOTPROTO='static'
IPADDR='192.0.3.3'
BROADCAST='192.0.3.255'
STARTMODE='auto'
NAME='ITSO HiperSockets Network CHPID F0 (0.0.7000)'
USERCONTROL='no'
NETMASK='255.255.255.0'
VLAN='yes'
ETHERDEVICE='hsi1'

2. If wanted, the IP address information for the base interface in
/etc/sysconfig/network/ifcfg-hsi can be commented out, as shown in Example 6-23.

Example 6-23 Contents of /etc/sysconfig/network/ifcfg-hsi1

BOOTPROTO='static'
#IPADDR='192.0.1.3'
#BROADCAST='192.0.1.255'
STARTMODE='auto'
#NAME='ITSO HiperSockets Network CHPID F0 (0.0.7000)'
USERCONTROL='no'
#NETMASK='255.255.255.0'

3. Now only VLAN traffic is possible over the HiperSockets network, as shown in
Example 6-24.

Example 6-24 Result of ifconfig

lnxsu1:/etc/sysconfig/network # ifconfig
[...]
hsi1 Link encap:Ethernet HWaddr 06:00:F0:2E:00:0A
 inet6 addr: fe80::400:f0ff:fe2e:a/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:25 errors:0 dropped:0 overruns:0 frame:0
 TX packets:123 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:2100 (2.0 Kb) TX bytes:11318 (11.0 Kb)

hsi1.3 Link encap:Ethernet HWaddr 06:00:F0:2E:00:0A
 inet addr:192.0.3.3 Bcast:192.0.3.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:a/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:210 (210.0 b)
[...]
82 IBM HiperSockets Implementation Guide

6.8 HiperSockets VLAN in z/VSE

IBM z/VSE has provided VLAN support for Open Systems Adapter (OSA)-Express CHPID
types OSD (OSA-Express for queued direct input/output (QDIO)) and OSX (OSA for IEDN),
and HiperSockets devices since version 5.1:

� In a Layer 3 configuration, VLANs can be transparently used by IPv6/VSE and
Transmission Control Protocol/Internet Protocol (TCP/IP) for VSE/ESA.

� If you want to configure VLANs for OSA-Express (CHPID types OSD and OSX) devices in
a Layer 2 configuration that carries IPv6 traffic, you require the IPv6/VSE product.

You can use one of the following ways to configure your system to use VLAN:

� Configure one or more VLANs in the TCP/IP stack of IPv6/VSE using the LINK command.
For details about IPv6/VSE commands, see IPv6/VSE Installation Guide, SC34-2616.

� Generate and catalog phase IJBOCONF containing the global VLANs to be used with
your OSAX devices. IBM z/VSE provides skeleton SKOSACFG to generate phase
IJBOCONF. The VLANs contained in IJBOCONF can be transparently used for Layer 3
links by IPv6/VSE and TCP/IP for VSE/ESA. See z/VSE Planning, SC34-2635 for details.

Example 6-25 shows a sample configuration setting VLAN ID 200 for Device D00.

Example 6-25 Sample SKOSACFG configuration

* $$ JOB JNM=IJBOCONF,CLASS=A,DISP=D
// JOB IJBOCONF GENERATE IJBOSA MODULE CONFIGURATION PHASE
// LIBDEF *,CATALOG=PRD2.CONFIG
// LIBDEF *,SEARCH=PRD1.BASE
// OPTION ERRS,SXREF,SYM,NODECK,CATAL,LISTX
PHASE IJBOCONF,*
// EXEC ASMA90,SIZE=(ASMA90,64K)
IJBOCONF CSECT
IJBOCONF AMODE ANY
IJBOCONF RMODE ANY
*
* *
* *
* GLOBAL VLAN DEFINITION *
* *
* DEFGVLAN DEVNO=<CUU>, VLAN_ID=<ID>, VLAN_PRIO=<PRIO> *
* <CUU> VSE DEVICE NUMBER IN HEX FORMAT *
* <ID> VLAN ID IN DECIMAL FORMAT (1 ... 4095) *
* <PRIO> VLAN PRIORITY (VALID VALUES 0 ... 7) *
* *
* *
*
DEFGVLAN DEVNO=0D00,VLAN_ID=200
*
* *
* *
* ONLY ONE GLOBAL VLAN CAN BE DEFINED PER SUBCHANNEL. *
* IF GLOBAL VLAN IS DEFINED, NO USUAL VLAN(S) MAY BE DEFINED *
* ON THE SAME SUBCHANNEL. *
* *
* *
END
/*
// IF $MRC GT 4 THEN
// GOTO NOLINK
Chapter 6. Virtual local area network support 83

// EXEC LNKEDT,PARM='MSHP'
/. NOLINK
/&
* $$ EOJ

The job template SKOSACFG is located in ICCF library 59.
84 IBM HiperSockets Implementation Guide

Chapter 7. More HiperSockets features

This chapter provides information about several features that are provided by IBM System z
HiperSockets firmware to help you in special scenarios:

� The HiperSockets multiple write facility (multiwrite) provides you with even more
throughput for large messages, by offering the ability to transfer more than one message
per firmware instruction. It is used by IBM z/OS.

� The HiperSockets network traffic analyzer (HS NTA) gives you detailed insights into the
behavior of your HiperSockets network, by tracing the messages that are being transferred
into a Linux tool. You can trace messages from all operating systems (OSs). Special
authorization through the Support Element (SE) is required to protect your security when
using the HiperSockets network traffic analyzer.

� The HiperSockets completion queue feature enables HiperSockets firmware to transfer
messages synchronously when possible, and asynchronously when needed, therefore
increasing the overall system performance. It is used by the IBM z/VM Virtual Switch’s
HiperSockets Bridge Port, and by Linux and IBM z/VSE for inter-user communication
vehicle (IUCV) Sockets over HiperSockets and Linux Fast Path (LFP).

7

© Copyright IBM Corp. 2013, 2014. All rights reserved. 85

7.1 HiperSockets multiple write facility

The HiperSockets multiple write facility moves multiple buffers of data with a single write
operation. This facility was added to reduce processor use, and to improve performance for
large outbound messages over HiperSockets. The receiving partition can process larger
amounts of data per input/output (I/O) interrupt. The improvement is not apparent to the OS in
the receiving partition.

Multiple writes with fewer I/O interrupts reduce processor use of both the sending and
receiving logical partitions (LPARs). This has been available since the IBM System z10.

7.1.1 HiperSockets multiwrite for z/OS

The HiperSockets multiple write facility has been supported in z/OS since V1R9 with program
temporary fixes (PTFs).

When enabled, HiperSockets multiwrite is used any time a message spans the HiperSockets
frame size, consequently requiring multiple output buffers to transfer the message. Therefore,
it will only be used for larger outbound messages. Spanning multiple output data buffers can
be affected by several factors:

� HiperSockets frame size
� Application socket send size
� Transmission Control Protocol (TCP) send size
� Maximum transmission unit (MTU) size

The HiperSockets multiple write facility is disabled by default. To enable it on all HiperSockets
interfaces, including interfaces created for dynamic cross-system coupling facility (XCF), add
the IQDMULTIWRITE parameter to the GLOBALCONFIG statement. If the GLOBALCONFIG parameters
are changed with the VARY TCPIP,,OBEYFILE command, the new values will not take effect for
an active HiperSockets interface until you stop and restart the interface.

For more information, see the following sources:

� IBM z/OS V2R1 Communications Server TCP/IP Implementation Volume 1: Base
Functions, Connectivity, and Routing, SG24-8096

� The z/OS V2R1 Information Center

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

IBM System z Integrated Information Processor-assisted HiperSockets
for large messages
IBM System z Integrated Information Processor (zIIP) is a speciality processor designed to
make more general computing capacity available, and to lower software costs for selected
workloads.

With z/OS V1R10 and later, HiperSockets multiwrite operations can also be offloaded to a
zIIP for further savings. The zIIP offload is only supported for TCP traffic that originates in this
host. For example, it cannot be used for sysplex distributor or Enterprise Extender (EE) traffic.

Restriction: HiperSockets multiwrite is not supported when running as a guest in a z/VM
environment.
86 IBM HiperSockets Implementation Guide

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

IBM z/OS application workloads that are based on Extensible Markup Language (XML),
Hypertext Transfer Protocol (HTTP), SOAP, Java, and traditional file transfer methods, can
benefit from zIIP enablement by lowering general-purpose processor use.

IBM zIIP-assisted HiperSockets multiwrite is disabled by default. To enable it, specify the ZIIP
IQDIOMULTIWRITE parameter on the GLOBALCONFIG statement. Notice that the IQDMULTIWRITE
parameter that turns on the function is spelled differently than the IQDIOMULTIWRITE parameter
that enables it for zIIP assist. Figure 7-1 illustrates the configuration parameters for z/OS.

Figure 7-1 IBM zIIP-assisted HiperSockets multiwrite configuration example

7.2 HiperSockets network traffic analyzer

HS NTA is a function that can make problem isolation and resolution simpler by allowing
layer 2 and layer 3 tracing of HiperSockets network traffic.

7.2.1 Overview

HS NTA support has been available since System z10. A Linux on System z implementation
of the HS NTA has been available since:

� Novell SUSE Linux Enterprise Server (SLES) 11 SP1
� Red Hat Enterprise Linux (RHEL) 6.0

You can use HS NTA for Linux on System z to trace network traffic between any endpoints on
a given HiperSockets network. The endpoints do not have to be Linux, but can be traffic
between any OSs in any logical partitions (LPARs) that have access to this HiperSockets
network.

HS NTA for Linux on System z captures records into host memory and storage (file systems).
These records can be analyzed by system programmers and network administrators by using
Linux on System z tools to format, edit, and process the trace records.

To protect the security of your HiperSockets networks, the use of the HS NTA feature needs to
be authorized by the system administrator on the SE. On the SE you can specify, for each
HiperSockets LAN, in which LPAR an NTA can be started and which LPARs are eligible for
being traced.
Chapter 7. More HiperSockets features 87

A network traffic analyzer traces messages from and to devices with the same channel
identifier (CHID) that the NTA belongs to. An NTA receives one copy of each message that
was successfully delivered from a sender LPAR that is eligible to be traced by the NTA, to at
least one target LPAR that is also eligible to be traced by the NTA. Figure 7-2 shows an
example of this trace.

Figure 7-2 Message A is traced by NTA; Message B is not traced

An active NTA can trace layer 2 messages and layer 3 messages.

Because the HiperSockets transfer instruction (run by the processor) has to serve the
Network Traffic Analyzer also, this instruction will take longer to finish. This affects
performance and also uses more processor cycles at the sender side.

7.2.2 NTA authorization on the SE

HS NTA rules can be set up on the SE. Log on with the user ID ACSADMIN to modify HS NTA
rules. Select the HiperSockets channel (internal queued direct communication (IQD) channel)
for which the NTA configuration has to be modified. Figure 7-3 on page 89 shows this
process. To set the rules, follow these steps:

1. In the menu of the selected IQD channel, expand Service and select Network Traffic
Analyzer Authorization.

LPAR1
(eligible to be traced)

LPAR2
(eligible to be traced)

LPAR2
(eligible to be traced)

LPAR4
(not eligible to be

traced)

LPAR4
(not eligible to be

traced)

LPAR3
(active NTA)

MSG
A

MSG
B

MSG
A

trace
88 IBM HiperSockets Implementation Guide

I

Figure 7-3 Channel view window

2. Select this subentry if you want to modify the HS NTA rules.

Figure 7-4 shows that there are four types of rules for the HS NTA:

– Tracing is disabled for all IQD channels in the system (the default rule).

– Tracing is disabled for this IQD channel.

– Tracing is allowed for this IQD channel. (All LPARS can be set up for NTA, and all
LPARs are eligible to be traced by an active NTA.)

– Tracing is customized by an authorization list for this IQD channel.

Figure 7-4 HiperSockets NTA authorization window
Chapter 7. More HiperSockets features 89

The HS NTA feature is not authorized per default. You can authorize it by channel, or
define a customized authorization list. A customized authorization list enables you to
authorize one or more LPARs that are authorized to start an NTA, and also define which
LPARs are eligible to be traced on the selected IQD channel.

Therefore, if you select LPAR-A as an NTA partition, and LPAR-B and LPAR-C as eligible
to be traced partitions, LPAR-A is only able to trace messages successfully sent between
LPAR-B and LPAR-C. If LPAR-D also communicates over the selected IQD channel, the
NTA will not be able to trace any of the messages sent from or to LPAR-D. At least one
partition that is eligible to be traced must be selected to enable an NTA on the NTA
partition.

If a z/VM hypervisor runs in an LPAR, the respective settings apply to all virtual machine
(VM) guests in that LPAR.

3. You can set up a customized NTA authorization list by selecting the corresponding option
in the Network Traffic Analyzer Authorization window. This enables the Change
Customized Settings button in the same dialog box. Click Change Customized
Settings to open the Customize a HiperSockets NTA Logical Partition Authorization List
window, as shown in Figure 7-5.

In this window, it is possible to specify which LPAR is authorized to enable an NTA, and
which LPAR is eligible to be traced by this NTA. To apply modified NTA rules to the system,
press Submit. As mentioned previously, only messages that are successfully delivered
between at least two LPARs that are eligible to be traced by the NTA are also delivered to
the active NTA.

Figure 7-5 Customize HS NTA LPAR authorization list
90 IBM HiperSockets Implementation Guide

When HS NTA authorization is changed, a security log is taken on the SE. This security
log contains details as to what the change was (such as what channel is authorized
for NTA).

If the input/output configuration data set (IOCDS) is not changed, the HS NTA
authorization will be preserved across power-on resets (PORs). If the IOCDS is changed,
then another security log will be issued during the POR to say that all HS NTA
authorization has been disabled.

7.2.3 HiperSockets NTA for Linux on System z

The qeth Linux on System z HiperSockets network interface driver provides a sysfs attribute
called sniffer. If this attribute is set to a value of 1 for a HiperSockets network interface, and
the NTA rules are set up accordingly for the specific LPAR, an NTA can be activated by every
user space application that opens a raw socket on this network interface (for instance,
tcpdump). The interface must be online and up, and must not be defined as a layer 2 interface.

Note that it is not possible to assign Internet Protocol (IP) or message authentication code
(MAC) addresses to a HiperSockets NTA.

To set up an HS NTA interface manually, follow these steps:

1. Issue the following commands:

[root@xyz ~]# znetconf -a 1234 -o layer2=0 -o sniffer=1
[root@xyz ~]# ip link set hsi1 up

2. Start tracing with the following command:

[root@xyz ~]# tcpdump -i hsi1 [<further options>]

This triggers the delivery of authorized HiperSockets-LAN-packets to the hsi1 interface.

3. The tcpdump command can also be started for a non-NTA HiperSockets network interface
configured with the sniffer attribute set to value 0. In this case, only packets sent to and
received from this interface are dumped.

4. Due to the synchronous nature of HiperSockets, situations can occur where a message is
delivered to the actual target, but cannot be delivered to the active NTA because of lack of
empty inbound buffers at the NTA. In this case, the dropped packet counter of the NTA
interface is increased.

[root@xyz ~]# ifconfig hsi 1 | grep "RX packets"
RX packets:6789 errors:0 dropped:5 overruns:0 frame:0

[root@xyz ~]# tcpdump -i hsi1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on hsi1, link-type EN10MB (Ethernet), capture size 96 bytes
...
5 packets dropped by kernel

Note: The sniffer attribute cannot be defined when the Linux instance is a z/VM guest.
Only Linux instances running natively in an LPAR can define the sniffer attribute.

Note: If the Linux on System z you are using does not support the HS NTA function, the
following command will fail with a message:

echo 1 > /sys/bus/ccwgroup/devices/0.0.1234/sniffer
/sys/bus/ccwgroup/devices/0.0.1234/sniffer: No such file or directory
Chapter 7. More HiperSockets features 91

7.2.4 Reference

An HS NTA FAQ document can be found at the following website:

http://ibm.biz/BdRFgz

A link to the FAQ can be found at the following website:

http://www.ibm.com/systems/z/hardware/networking/products.html#hipersockets

7.3 Completion queue function

The HiperSockets completion queue function is designed to enable HiperSockets to transfer
data synchronously if possible, or asynchronously if necessary. This combines ultra-low
latency with more tolerance for traffic peaks. With the asynchronous support, during high
volume situations data can be temporarily held until the receiver has buffers available in its
inbound queue. This provides end-to-end performance improvement for communication
inside the central processor complex (CPC).

As explained in 4.1, “HiperSockets for highest performance” on page 60, the synchronous
nature is a reason for HiperSockets outstanding performance and minimal latency. However,
in cases where the receiving server runs out of empty inbound buffers, the sending device
driver needs to handle these conditions.

This usually means special handling outside of the optimized main path. It can lead to a
decrease in overall performance if it happens too often. As described in 4.5, “Input buffer
count” on page 61, increasing the input buffer count on the target system helps avoid these
problems.

The HiperSockets completion queue function solves these problems by buffering the
messages at the sender side in cases where they temporarily cannot be delivered to the
receiver, transferring the data synchronously if possible and asynchronously if necessary. The
device driver software at the sender side needs to use this function. No special support on the
receiver side is required. Currently, the following software components use the HiperSockets
completion queue function:

� HiperSockets Bridge Port for z/VM Virtual Switch
� Inter-user communication vehicle (IUCV)

The HiperSockets completion queue function has been available since IBM zEnterprise 196
(z196). IBM z/VM 6.3 and later provides support for completion queue usage by z/VM guests
with queued direct input/output (QDIO) Enhanced Buffer-State Management (QEBSM).

7.3.1 Details about completion queue

For completion queue usage, the OS’s device driver needs to provide a completion queue in
addition to the internal QDIO (iQDIO) output and input queues that were described in 1.4,
“HiperSockets mode of operation” on page 4. With a special instruction, the device driver
informs the firmware that there is data available in the output queue that can be sent
synchronously or asynchronously. If there are empty buffers at the target side, the data is
transferred exactly the same way as without the HiperSockets completion queue function.

If there are no empty buffers, the data remains in the send buffer at the sender side, the
sending device driver is informed that this send buffer cannot be freed up yet, and the transfer
can continue with the next send buffer.
92 IBM HiperSockets Implementation Guide

http://www.ibm.com/systems/z/hardware/networking/products.html#hipersockets
http://ibm.biz/BdRFgz

When (some time later) the receiving side provides empty inbound buffers, firmware will
automatically move the pending data and then post completion events into the sender’s
completion queue. This informs the device driver that the output buffers can now be freed.

7.3.2 Completion queue for the z/VM HiperSockets Bridge Port

The HiperSockets Bridge Port for z/VM Virtual Switch is explained in 8.4, “The z/VM Virtual
Switch with HiperSockets bridge port” on page 112.

The z/VM implementation of the HiperSockets Bridge Port is a highly efficient mechanism that
moves the data directly from the OSA’s input queue to the HiperSockets network. If that
mechanism has to deal with target full conditions, it reduces overall performance for the other
targets as well. By using the completion queue function, the z/VM Bridge Port leaves that to
HiperSockets firmware and can continue to bridge the next packet from Open Systems
Adapter (OSA) to HiperSockets without additional delay.

7.3.3 IUCV Sockets over HiperSockets (Linux, z/VSE)

IUCV was first implemented as a z/VM function that provides a fast, reliable communication
path between two z/VM guests running under the same z/VM system. This concept of a fast,
reliable, point-to-point connection was transferred to IUCV Sockets over HiperSockets, where
a HiperSockets connection with completion queue support is used to create an IUCV Socket.
In this case, the completion queue function is used on both sides of the connection, and is
used as a congestion control mechanism to form a reliable connection.

Because IUCV Sockets are based on a reliable communication layer, they require many fewer
resources than User Datagram Protocol (UDP) or TCP sockets. There is no need for
sequence numbers, acknowledgements, or checksums to protect against problems such as
packet loss, duplicate packets, packet sequence errors, and damaged or incomplete packets.
Therefore IUCV Sockets are fast and lightweight.

For more information about the IUCV Socket type under Linux, see Device Drivers, Features,
and Commands, SC33-8281. The most recent version can be found at the following website:

http://www.ibm.com/developerworks/linux/linux390/index.html

7.3.4 Linux Fast Path (Linux, z/VSE)

The Fast Path to Linux on System z function enables selected TCP/IP applications running
under z/VSE to communicate with a TCP/IP stack on Linux on System z without using a
TCP/IP stack on z/VSE. The short name is Linux Fast Path (LFP). LFP routes TCP/IP traffic
to Linux on System z without the need for a z/VSE local TCP/IP stack. Instead, the Linux
TCP/IP stack is used to communicate to the Internet.

Rather than using TCP/IP-based network communication, LFP uses IUCV-based
communication. LFP can either use VM-defined IUCV devices for communication between
guests in the same z/VM LPAR, or IUCV Sockets over HiperSockets for communication
between servers running in LPARs, guests in different z/VM LPARs, or any combination.

LFP over IUCV Sockets over HiperSockets has been supported since z/VSE 5.1 and SLES
11 SP2 (or RHEL 6 Update 3). IUCV over HiperSockets requires the HiperSockets completion
queue function, which has been available since z196.

IUCV over HiperSockets from z/VM guests requires z/VM 6.3 or later for completion queue
support.
Chapter 7. More HiperSockets features 93

http://www.ibm.com/developerworks/linux/linux390/index.html

94 IBM HiperSockets Implementation Guide

Chapter 8. Connect HiperSockets to other
networks

This chapter provides information about the different tools that are available to you to connect
HiperSockets to an external network. Depending on the operating systems (OSs) that you
use, the kind of IBM System z HiperSockets network that you have, and the network topology
that you want to achieve, there are several options available.

This chapter provides information about, and examples for, the following functions:

� HiperSockets Accelerator or queued direct input/output (QDIO) Accelerator for z/OS
� HiperSockets Network Concentrator for Linux on System z
� HiperSockets Bridge Port for z/VM Virtual Switch

8

© Copyright IBM Corp. 2013, 2014. All rights reserved. 95

8.1 Connecting HiperSockets to external networks

Most servers require connectivity to other servers inside the central processor complex
(CPC), and to external networks. There are several ways to achieve this:

� Multiple interfaces per server

You can simply define one or more Open Systems Adapter (OSA) interfaces for external
traffic, and one or more HiperSockets interfaces for access to the internal HiperSockets
local area networks (LANs), per server.

� Software router

One server can take the role of an Internet Protocol (IP) gateway, and connect a
HiperSockets LAN to an OSA LAN. This is standard IP technology to connect different
LANs. As for other LANs, a gateway server can be used to implement firewall technology.

A software router connects different IP networks. The endpoints are aware that they are in
different subnets. Routing information about the gateway must be set up in the endpoints.

� IBM z/OS HiperSockets Accelerator or z/OS QDIO Accelerator

In z/OS, in addition to setting up an IP gateway, a HiperSockets Accelerator or a QDIO
Accelerator can be used to connect a layer 3 IPv4 HiperSockets IP subnet to another IP
subnet on OSA. These functions work like software routers, but are more efficient.

� HiperSockets Network Concentrator on Linux

The HiperSockets Network Concentrator on Linux is a tool that connects a HiperSockets
layer 3 network with an OSA network to form one single IP subnet. Therefore, it does not
operate as an IP gateway, but rather as a software switch or bridge. The endpoints are all
in the same IP subnet, and have no awareness whether another endpoint is reached
through OSA or through HiperSockets.

� HiperSockets Bridge Port for z/VM Virtual Switch

The HiperSockets Bridge Port for z/VM Virtual Switch provides a true layer 2 bridge that
connects a layer 2 HiperSockets network with a layer 2 OSA network to create a single
Ethernet broadcast domain. The OSs can define the IP topology just like they do for a LAN
segment with a physical bridge. Therefore, it is natural to define one single IP subnet for
this LAN segment.

8.2 HiperSockets Accelerator on z/OS

The z/OS Communications Server uses the technological advances and high-performing
nature of the input/output I/O processing offered by HiperSockets with the IBM System z
servers and OSA-Express, using the QDIO architecture. This is achieved by optimizing IP
packet forwarding processing that occurs across these two types of technologies. This
function is referred to as HiperSockets Accelerator. It is a configurable option, and is activated
by defining the IQDIORouting option on the IPCONFIG statement.

HiperSockets Accelerator is supported by z/OS for IPv4 only. It enables a z/OS Transmission
Control Protocol (TCP)/IP router stack to efficiently route IP packets from an OSA-Express
(QDIO) interface with a HiperSockets (internal QDIO, or iQDIO) interface and vice versa. The
routing is done by the z/OS Communications Server device drivers at the lowest possible
software data link control level. IP packets do not have to be processed at the higher-level
TCP/IP stack routing function, therefore reducing the path-length and improving performance.
96 IBM HiperSockets Implementation Guide

Figure 8-1 represents an example of a HiperSockets Accelerator routing stack with four
OSA-Express interfaces in a single System z that has multiple logical partitions (LPARs).
These LPARs might be running z/OS, z/VM, or Linux on System z, and also z/VM with
numerous guest systems.

You can have more than one z/OS TCP/IP stack to provide a redundant path in case one of
the z/OS HiperSockets Accelerator images suffers an outage. The remaining routing stack
can then connect to all of the remaining TCP/IP stacks in other images in System z that
require connectivity to the OSA LANs using HiperSockets.

Figure 8-1 HiperSockets Accelerator on z/OS: Routing stack implementation

System z
z/VM

Linux
Guest

1

Linux
Guest

2

Linux
Guest

n
........

LP 7 LP 8 LP 9 LP10 LP11 LP12

LP4 LP5 LP6

OSA1 OSA2 OSA3 OSA4

ENet1 ENet2 ENet3 ENet4

z/OS
HiperSockets
Accelerator

x'FC'

x'FE'

x'FD'

x'FF'
Chapter 8. Connect HiperSockets to other networks 97

Figure 8-2 illustrates how HiperSockets Accelerator works. The solid line connecting
TCP/IP A and TCP/IP X represents the normal path through the TCP/IP H stack’s routing
function, and the dotted line represents the accelerated path through the Virtual
Telecommunications Access Method (VTAM) device driver.

Figure 8-2 HiperSockets Accelerator flow

You can activate the HiperSockets Accelerator by configuring the iQDIO Routing option in the
TCP/IP profile using the IPCONFIG statement. The TCP/IP stack automatically detects an IP
packet prerouting across a HiperSockets Accelerator eligible route. Eligible routes are from
OSA-Express (QDIO) to HiperSockets (iQDIO), and from HiperSockets (iQDIO) to
OSA-Express (QDIO).

Figure 8-2 shows what happens when TCP/IP A sends something to TCP/IP X. The process
is explained in the following steps:

1. The first packet goes through the TCP/IP routing stack in TCP/IP H, which creates iQDIO
routing route entries for source TCP/IP A and destination TCP/IP X, the gateway for an
external network. These entries are added to the iQDIO routing table. The destination
stack TCP/IP X must be reachable through HiperSockets.

2. Starting with the second packet, all subsequent packets for the same destination take the
optimized device driver path, and do not traverse the routing function of the TCP/IP routing
stack. No change is required for target stacks. There is a timer built into the HiperSockets
Accelerator function. Based on this timer, if a specific IQDIORouting entry is not used for
90 seconds, it is deleted from this table.

Therefore, for just the first time that a TCP/IP host sends the first packet of new entries, it is
created in the IQDIORouting table, and it is involved in the TCP/IP H routing stack. The IP
packets that follow this first packet are routed through the VTAM device driver.

Logical partition

TCP/IP X

External LAN

TCP/IP H

Communication Server

System z

TCP/IP A

OSA-E

HiperSockets
iQDIO LAN

Accelerated
QDIO - iQDIO routing

z/OS
Logical partition

22

11

iQDIO Device
Driver

QDIO Device
Driver
98 IBM HiperSockets Implementation Guide

Only one PRIRouter can be defined to an OSA-Express port. However, a second TCP/IP
stack can be defined as SECRouter to the same OSA-Express port, and serve as a backup to
the PRIRouter TCP/IP stack.

If any IP packets have to be fragmented so that they can be routed between QDIO and iQDIO
(or vice versa), they are not accelerated, and the normal path through the TCP/IP stack
routing function is taken. You can prevent IP fragmentation conflicts by using path maximum
transmission unit (MTU) discovery (PATHMTUDISCOVERY in IPCONFIG), or by coding the
appropriate MTU size in the static route statement (if static routes are used).

For more details about defining MTU discovery and MTU sizes, see z/OS Communications
Server, IP Configuration Reference, SC31-8776.

8.2.1 The QDIO Accelerator function

Since z/OS V1R11, the QDIO accelerator function is available. The QDIO Accelerator
function extends the HiperSockets Accelerator function. HiperSockets Accelerator provides
accelerated forwarding at the data link control (DLC) layer for the following types of packets:

� Inbound packets over HiperSockets that are forwarded outbound over OSA-Express QDIO
� Inbound packets over OSA-Express QDIO that are forwarded outbound over HiperSockets

QDIO Accelerator provides all of the functionality supported by HiperSockets Accelerator. It
also provides accelerated forwarding at the DLC layer for the following types of packets:

� Inbound packets over OSA-Express QDIO that are forwarded outbound over
OSA-Express QDIO

� Inbound packets over HiperSockets that are forwarded outbound over HiperSockets

� Sysplex distributor packets that are forwarded to a target stack, or that are forwarded to or
from an IBM DataPower® appliance, when the route involves any of the following inbound
and outbound DLC combinations:

– Inbound over HiperSockets, forwarded outbound over OSA-Express QDIO
– Inbound over OSA-Express QDIO, forwarded outbound over HiperSockets
– Inbound over OSA-Express QDIO, forwarded outbound over OSA-Express QDIO
– Inbound over HiperSockets, forwarded outbound over HiperSockets

To configure QDIO Accelerator, specify the QDIOACCELERATOR parameter on the IPCONFIG
statement rather than specifying IQDIOROUTING for the HiperSockets Accelerator.

Just like the HiperSockets Accelerator, QDIO Accelerator is supported for IPv4 only, and can
only be used with HiperSockets layer 3 interfaces.

Important: In order for a TCP/IP router stack to forward IP packets from an OSA-Express
device to a HiperSockets device, the OSA-Express port must be defined as PRIRouter on
the DEVICE statement in the TCP/IP profile. If no PRIRouter option is defined to the
OSA-Express port, IP packets are not forwarded.

Another way to enable the OSA-Express device to forward packets is to use the VMAC
parameter.

Restriction: HiperSockets Accelerator cannot be enabled if either IPSECURITY or
NODATAGRAMFWD is specified in the IPCONFIG statement.
Chapter 8. Connect HiperSockets to other networks 99

For more information go to the z/OS V1R11 Information Center:

http://pic.dhe.ibm.com/infocenter/zos/v1r11/index.jsp

More information about the QDIO Accelerator, and additional details about how to set it up,
are available by expanding the following topics in the information center: Communications
Server IP Configuration Guide Base TCP/IP system IP configuration
overview Considerations for networking hardware attachment QDIO Accelerator.

8.2.2 HiperSockets Accelerator implementation

The test environment is shown in Figure 8-3 on page 101:

� LNXRH1, LNXSU1, and SC32 are only connected to IP subnet 192.0.1.0/24 on
HiperSockets CHPID F0.

� SC31 represents the outside world. It has no direct connection to HiperSockets. It is
connected to IP subnet 192.168.6.0/24 by OSA CHPID 07.

In a real-life production scenario, the outside world might be distributed workstations,
logical partitions (LPARs), or virtual machine (VM) guests running on another System z
CPC. These servers can run any OS.

Connecting SC31 using HiperSockets Accelerator does not really make sense, because it
is on the same CPC and might easily be connected to the HiperSockets network directly.
They are connected in this example for demonstration purposes only. It also works if SC31
is on another CPC, and if more than one server is connected to IP subnet 192.168.6.0/24
on a physical Ethernet.

� SC30 serves as a gateway between the HiperSockets network and the Ethernet
connected with the OSA card. For this purpose the HiperSockets Accelerator was
implemented in SC30.
100 IBM HiperSockets Implementation Guide

http://pic.dhe.ibm.com/infocenter/zos/v1r11/index.jsp

Figure 8-3 HiperSockets Accelerator implementation environment

Implement the HiperSockets Accelerator function using a single TCP/IP stack, TCPIPA on
LPAR A11, to forward IP traffic from the HiperSockets LAN on CHPID F0 to an OSA-Express
port defined on CHPID 07. It was configured in this example according to the following
guidelines:

� The OSA-Express port must be defined as the PRIRouter on the DEVICE statement in the
TCP/IP profile.

� Only one primary router (PRIRouter) can be defined to an OSA-Express port.

� HiperSockets Accelerator is activated by configuring the IQDIORouting option in the
TCP/IP profile using the IPCONFIG statement.

8.2.3 HiperSockets Accelerator implementation steps

Take the following steps to configure your HiperSockets Accelerator test:

1. Define the HiperSockets and OSA-Express channel, control unit, and devices.

2. Configure the TCP/IP stacks to use the HiperSockets channel.

3. Configure a TCP/IP stack to use the OSA-Express device as a primary router.

4. Configure the TCP/IP using the OSA-Express device to enable forwarding of IP packets
from its HiperSockets interface with the OSA-Express interface.

HiperSockets
Accelerator

LP-A2E
z/VM VMLINUX1

LP-A16

z/OS SC32
TCPIP C

7400-7402
192.0.1.6

LP-A11

z/OS SC30
TCPIP A

7400-7402
192.0.1.4

LP-A13

z/OS SC31
TCPIP A

2160-2165
192.168.6.44

Linux
LNXSU1

7408-740A
(7000-7002)

192.0.1.37404-7406
(7000-7002)

192.0.1.2

Linux
LNXRH1

HiperSockets CHPID F0
192.0.1.0/24

HiperSockets
Accelerator

2160-2165
192.168.6.40

OSA
CHPID 07

!92.168.6.0/24
Chapter 8. Connect HiperSockets to other networks 101

The OSA-Express IOCP statements are shown in Example 8-1.

Example 8-1 OSA-Express IOCP statements

CHPID PATH=(CSS(1,2),07),SHARED, *
 PARTITION=((CSS(1),(A11,A13,A16,A18),(=)),(CSS(2),(A2E),*
 (=))),PCHID=570,TYPE=OSD
CNTLUNIT CUNUMBR=2160,PATH=((CSS(1),07),(CSS(2),07)),UNIT=OSA
IODEVICE ADDRESS=(2160,015),UNITADD=00,CUNUMBR=(2160),UNIT=OSA
IODEVICE ADDRESS=(216F,001),UNITADD=FE,CUNUMBR=(2160), *
 UNIT=OSAD

8.2.4 VTAM configuration

A VTAM Transport Resource List (TRL) major node must be defined for the OSA-Express
device. Define the VTAM TRL as member OSA2160 in your VTAMLST data set, as shown in
Example 8-2.

Example 8-2 VTAM TRLE definition for OSA-EXPRESS

OSA2160 VBUILD TYPE=TRL
OSA2160P TRLE LNCTL=MPC,
 READ=2160,
 WRITE=2161,
 DATAPATH=(2162-2165),
 PORTNAME=OSA2160,
 MPCLEVEL=QDIO

Activate the OSA TRL by issuing this command:

V NET,ACT,ID=OSA2160

8.2.5 TCP/IP configuration

In this implementation, configure stack TCPIPA on LPAR A11 to use the HiperSockets
connection on CHPID F0 by using the INTERFACE statements for the HiperSockets connection
(see Example 8-3 on page 103). Use the DEVICE, LINK, and HOME statements for the
OSA-Express connection.

HiperSockets Accelerator is activated by configuring the IQDIORouting option in the TCP/IP
profile’s IPCONFIG statement 1. Also specify the DATAGRAMFWD option on the IPCONFIG
statement to enable pack forwarding 2. In addition, configure the OSA-Express device with
the PRIRouter option 3.
102 IBM HiperSockets Implementation Guide

Example 8-3 TCPIPA profile on SC30

GLOBALCONFIG NOTCPIPSTATISTICS
IPCONFIG DATAGRAMFWD 2 PATHMTUDISCOVERY IQDIOROUTING 1
TCPCONFIG TCPSENDBFRSIZE 256K TCPRCVBUFRSIZE 256K SENDGARBAGE FALSE
TCPCONFIG RESTRICTLOWPORTS
UDPCONFIG RESTRICTLOWPORTS
;---
; HIPERSOCKETS
;---
;
; Define HiperSockets interface on CHPID F0
 Interface HIPERLF0
 Define IPAQIDIO
 IPADDR 192.0.1.4/24
 CHPID F0

; PRIMARY ROUTING SU CHPID 07
DEVICE OSA2160 MPCIPA PRIR 3
LINK OSA2160L IPAQENET OSA2160
;
;---
; HOME DEFINITION
;---
;
HOME
 192.168.6.40 OSA2160L

BEGINROUTES
ROUTE DEFAULT 192.0.1.4 HIPERLF0 MTU 1492
ROUTE 192.0.1.0 255.255.255.0 = HIPERLF0 MTU 1492
ROUTE 192.168.6.0 255.255.255.0 = OSA2160L MTU 8992
ENDROUTES

START HIPERLF0
START OSA2160

Static routing was used in this example. However, dynamic routing with Routing Information
Protocol (RIP) or Open Shortest Path First (OSPF) is supported when the HiperSockets
Accelerator function is enabled.

8.2.6 HiperSockets Accelerator verification

The following sections describe how to verify that the HiperSockets Accelerator is installed
and working.

Important: Because NODATAGRAMFWD is the default in IPCONFIG, you must explicitly code
DATAGRAMFWD when using the HiperSockets Accelerator.
Chapter 8. Connect HiperSockets to other networks 103

OSA-Express verification
Use the D,NET,TRLE=trle_name command to verify that the OSA-Express transport resource
list element (TRLE) has been activated, as shown in Example 8-4.

Example 8-4 OSA TRLE display

D NET,TRL,TRLE=OSA2160P
IST097I DISPLAY ACCEPTED
IST075I NAME = OSA2160P, TYPE = TRLE 855
IST1954I TRL MAJOR NODE = OSA2160N
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = QDIO MPCUSAGE = SHARE
IST2263I PORTNAME = OSA2160 PORTNUM = 0 OSA CODE LEVEL = 0C8C
IST2337I CHPID TYPE = OSD CHPID = 07 PNETID = **NA**

TCP/IP startup
When TCPIPA is started on LPAR A11, SYSLOG messages enable us to verify that IP
forwarding is enabled 1, the HiperSockets Accelerator function is enabled 2, the HiperSockets
device is initialized 3, and the OSA device is initialized 4, as shown in Example 8-5.

Example 8-5 HiperSockets Accelerator stack SYSLOG messages

EZZ0641I IP FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED 1
EZZ0623I PATH MTU DISCOVERY SUPPORT IS ENABLED
EZZ0688I IQDIO ROUTING IS ENABLED 2
EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE HIPERLF0 3
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE OSA2160 4

If this function cannot be enabled, you will receive the following message:

EZZ0689I CANNOT ENABLE IQDIO ROUTING

This might be due to one of the conditions described in the following messages:

� IP FORWARDING IS DISABLED
� IP SECURITY IS ACTIVE
� QDIO ACCELERATOR IS ACTIVE
� PROCESSOR IS NOT HIPERSOCKET CAPABLE
� TCPIP ACTIVATED WITH NOIQDIOROUTING

Example 8-6 shows the NETSTAT command with the configuration option, which you use to
verify that this function is enabled. The IP configuration table portion of the
D TCPIP,procname,N,CONFIG command also verifies that IP forwarding and routing are
enabled, as shown in Example 8-6.

Example 8-6 TCPIPA configuration display

D TCPIP,TCPIPA,N,CONFIG
...
IP CONFIGURATION TABLE:
FORWARDING: YES TIMETOLIVE: 00064 RSMTIMEOUT: 00060
IPSECURITY: NO
ARPTIMEOUT: 01200 MAXRSMSIZE: 65535 FORMAT: LONG
IGREDIRECT: NO SYSPLXROUT: NO DOUBLENOP: NO
STOPCLAWER: NO SOURCEVIPA: NO
MULTIPATH: NO PATHMTUDSC: YES DEVRTRYDUR: 0000000090
104 IBM HiperSockets Implementation Guide

DYNAMICXCF: NO
QDIOACCEL: NO
IQDIOROUTE: YES QDIOPRIORITY: 1
TCPSTACKSRCVIPA: NO
CHECKSUMOFFLOAD: YES SEGOFFLOAD: NO
...

The last command used to verify the iQDIO routing function is a display of the VTAM TRLE
major node (IUTIQ4F0), shown in Example 8-7. A display of the QDIO TRLE also results in
message ITS2309I.

Example 8-7 Verify HiperSockets Accelerator is enabled by displaying the TRLE

D NET,TRL,TRLE=IUTIQ4F0
IST097I DISPLAY ACCEPTED
IST075I NAME = IUTIQ4F0, TYPE = TRLE 913
IST1954I TRL MAJOR NODE = ISTTRL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = QDIO MPCUSAGE = SHARE
IST2263I PORTNAME = PORTNUM = 0 OSA CODE LEVEL = *NA*
IST2337I CHPID TYPE = IQD CHPID = F0 PNETID = **NA**
IST2319I IQD NETWORK ID = 0716
IST1577I HEADER SIZE = 4096 DATA SIZE = 16384 STORAGE = ***NA***
IST1221I WRITE DEV = 7401 STATUS = ACTIVE STATE = ONLINE
IST1577I HEADER SIZE = 4092 DATA SIZE = 0 STORAGE = ***NA***
IST1221I READ DEV = 7400 STATUS = ACTIVE STATE = ONLINE
IST924I ---
IST1221I DATA DEV = 7402 STATUS = ACTIVE STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1717I ULPID = TCPIPA ULP INTERFACE = HIPERLF0
IST2309I ACCELERATED ROUTING ENABLED

Connectivity test
To have connectivity across the two subnets, the correct routing information needs to be set
up in all of the endpoints. To set up routing information, follow these steps:

1. Add the following information in LNXRH1 and LNXSU1:

route add -net 192.168.6.0 netmask 255.255.255.0 gw 192.0.1.4

Alternatively, you can add the HiperSockets Accelerator as a default gateway:

route add default gw 192.0.1.4

2. Add the following line (in bold) to the profile of TCPIP C in SC32:

BEGINRoutes
; Direct Routes - Routes that are directly connected to my interfaces
; Destination Subnet Mask First Hop Link Name Packet Size
ROUTE 192.0.1.0 255.255.255.0 = HIPERLF0 mtu defaultsize repl
ROUTE 192.168.6.0 255.255.255.0 192.0.1.4 HIPERLF0 mtu defaultsize repl
ENDRoutes

Alternatively you could have added the following code:

ROUTE DEFAULT 192.0.1.4 HIPERLF0 mtu defaultsize repl
Chapter 8. Connect HiperSockets to other networks 105

3. Add the line in bold to the profile of TCPIP A in SC31:

ROUTE 192.168.6.0 255.255.255.0 = OSA2160L MTU 8992
ROUTE 192.0.1.0 255.255.255.0 192.168.6.40 OSA2160L MTU 8992

4. Now you are able to ping back and forth between SC31 and the servers on the
HiperSockets network. Example 8-8 shows a ping from LNXRH1 (192.0.1.2) to SC31
(192.168.6.44).

Example 8-8 Linux on HiperSockets to z/OS on OSA

[root@lnxrh1 ~]# ping 192.168.6.44
PING 192.168.6.44 (192.168.6.44) 56(84) bytes of data.
64 bytes from 192.168.6.44: icmp_seq=1 ttl=64 time=1.77 ms
64 bytes from 192.168.6.44: icmp_seq=2 ttl=64 time=1.78 ms
^C
--- 192.168.6.44 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1459ms
rtt min/avg/max/mdev = 1.778/1.780/1.782/0.002 ms

5. Example 8-9 shows a ping from SC31 (192.168.6.44) to SC32 (192.0.1.6).

Example 8-9 z/OS on OSA to z/OS on HiperSockets

CS V2R1: Pinging host 192.0.1.6
 Ping #1 response took 0.002 seconds.

All other combinations were also verified.

8.2.7 References

The following references provide additional information about HiperSockets Accelerator:

� Communications Server for z/OS V2R1 TCP/IP Implementation Volume 1: Base
Functions, Connectivity, and Routing, SG24-8096

� IBM System z Connectivity Handbook, SG24-5444

� z/OS Communications Server, IP Configuration Guide, SC31-8775

� z/OS Communications Server, IP Configuration Reference, SC31-8776

� z/OS Communications Server, SNA Resource Definition Reference, SC31-8778

8.3 HiperSockets Network Concentrator on Linux

Traffic between HiperSockets and OSA-Express can be transparently bridged using the
HiperSockets Network Concentrator, without requiring intervening network routing overhead,
therefore increasing performance and simplifying the network configuration. This is achieved
by configuring a connector Linux system that has HiperSockets and OSA-Express
connections defined.

The HiperSockets Network Concentrator registers with HiperSockets firmware as a special
network entity to receive data packets destined for an IP address on the external LAN using
an OSA-Express port. The HiperSockets Network Concentrator also registers IP addresses
to the OSA-Express on behalf of the TCP/IP stacks using HiperSockets, therefore providing
inbound and outbound connectivity.
106 IBM HiperSockets Implementation Guide

The HiperSockets Network Concentrator, shown in Figure 8-5 on page 109, is a mechanism
to connect systems with HiperSockets interfaces to the external network using the same
subnet. Therefore, the server instances connected to HiperSockets appear as though they
were directly connected to the physical network.

A Linux Network Concentrator system acts as a forwarder for traffic between the OSA
interface and the internal HiperSockets connected systems (z/VM, z/OS, z/VSE, and Linux on
z). See Linux on System z, Device Drivers, Features, and Commands, SC33-8281, for
detailed information.

HiperSockets Network Concentrator can be a useful solution if you have a Linux on System z
(native LPAR or guest under z/VM), a large amount of traffic among servers inside System z,
and the requirement of high-speed communications to the external network. It enables you to
bridge network endpoints rather than routing them, and it does not use other subnets.

In addition, HiperSockets Network Concentrator enables you to port systems from the LAN
into a System z environment without changing IP address and network routing. Therefore,
HiperSockets Network Concentrator helps to simplify network configuration and
administration. It can be helpful during server consolidation by enabling you to move one
server after the other from an external workstation to Linux on System z without changing the
network configuration.

Restriction: The Linux implementation of the HiperSockets Network Concentrator
supports only layer 3 devices, only IPv4 addresses, and does not support VLAN traffic.

Important: IP fragmentation does not work for multicast bridging. The MTU of the
HiperSockets link and OSA must be of the same size. Multicast packets not fitting in the
link MTU are discarded.
Chapter 8. Connect HiperSockets to other networks 107

Figure 8-4 shows such a scenario where Linux servers are ported from external workstations
to Linux on System z. Linux A, B, and C are already ported. Linux D and E still reside on
external workstations. At any point in time, Linux A-E can all communicate with each other,
and with the z/OS LPARs over subnet 192.0.1.0/24.

Figure 8-4 Server migration with the HiperSockets Network Concentrator

8.3.1 Example

Figure 8-5 on page 109 represents the setup used for this example. Because there were no
external workstations available, LNXRH1 plays the role of an external server, and is only
connected to the OSA Card. LNXRH1 is not directly connected to the HiperSockets network.
LNXSU1 runs the HiperSockets Network Concentrator that connects the HiperSockets
network and the OSA network. IBM z/OS SC30-32 are only connected to the HiperSockets
network, and have no direct connection to the OSA network.

Server
migration

z/VM

z/OS

192.0.1.4

z/OS

7400-7402
192.0.1.5

Linux

192.0.1.3 192.0.1.99

Linux C

HiperSockets CHPID F0

192.0.1.0/24

Network
Concentrator

OSA CHPID

!92.0.1.0/24

192.0.1.8

Linux D
192.0.1.55

Linux E
192.0.1.66

z/VM

192.0.1.7

Linux A

192.0.1.88

Linux B
108 IBM HiperSockets Implementation Guide

Figure 8-5 HiperSockets Network Concentrator on Linux

Although the HiperSockets Network Concentrator can be a stand-alone Linux LPAR, there is
no functional difference between Linux in an LPAR and running as a z/VM guest Linux server.
This configuration used a Linux guest server.

For the servers inside the HiperSockets Internal LAN, the routing parameters are the same as
they were if they were connected on the external net directly. The default gateway setting is
the same. See Table 8-1.

Table 8-1 Details of the configuration scenario

On the connector Linux server, LNXSU1, follow these steps:

1. Define an OSA-Express LAN. This is similar to the information given previously in 3.5,
“HiperSockets in Linux on System z” on page 48 because the same qeth device driver is
used.

LP name Environment System name CHPID Device address IP address

A2E Linux under z/VM LNXRH1 07 C700-C702 192.0.1.7

A2E Linux under z/VM LNXSU1 07 C700-C702 192.0.1.8

A2E Linux under z/VM LNXSU1 F0 7000-7002 192.0.1.3

A11 z/OS sysplex SC30 F0 7400-7402 192.0.1.4

A13 z/OS sysplex SC31 F0 7400-7402 192.0.1.5

A16 z/OS sysplex SC32 F0 7400-7402 192.0.1.6

Network
Concentrator
scenario

LP-A2E
z/VM VMLINUX1

LP-A11

z/OS SC30
TCPIP A

7400-7402
192.0.1.4

LP-A13

z/OS SC31
TCPIP A

7400-7402
192.0.1.5

LP-A16

z/OS SC32
TCPIP C

7400-7402
192.0.1.6

Linux
LNXSU1

7408-740A
(7000-7002)

192.0.1.3

2164-2166

(C700-C702)
192.0.1.7

Linux

LNXRH1

HiperSockets CHPID F0
192.0.1.0/24

Network
Concentrator

OSA
CHPID 07

!92.0.1.0/24

2168-216A
(C700-C702)

192.0.1.8
Chapter 8. Connect HiperSockets to other networks 109

Issue the following commands:

znetconf -a c700 -o layer2="0"
ifconfig eth4 192.0.1.8 netmask 255.255.255.0 mtu 8192 up

2. Define a layer 3 HiperSockets LAN interface as described in 3.5, “HiperSockets in Linux
on System z” on page 48:

znetconf -a 7000 -o layer2="0"
ifconfig hsi1 192.0.1.3 netmask 255.255.255.0 mtu 8192 up

3. Make the HiperSockets a primary concentrator; for example, issue the following
command:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.7000/route4

4. When using multicasting, make the OSA-Express a multicast router. For example, issue
the following command:

echo multicast_router > /sys/bus/ccwgroup/drivers/qeth/0.0.c700/route4

5. Enable IP forwarding:

sysctl -w net.ipv4.ip_forward=1

Update /etc/sysctl.conf with this line to retain the setup across a restart.

6. Remove the network route for the HiperSockets interface, for example:

route del -net 192.0.1.0 netmask 255.255.255.0 dev hsi1

7. Start the HiperSockets Network Concentrator:

start_hsnc.sh &

Update /etc/init.d/boot.local with start_hsnc.sh to retain the setup across a restart.
Warnings and errors are written to the var/log/messages file. No messages are written if
the start is successful unless multicasting is used. Then the following messages are
written to var/log/messages:

xcec-bridge: *** started ***
xcec-bridge: rechecking interfaces
xcec-bridge: added interface hsi1
xcec-bridge: added interface eth4
xcec-bridge: rechecking interfaces

Important: Both the OSA and the HiperSockets interface need to be defined as layer 3
interfaces.

Tip: When issuing the ifconfig command for each network interface, include the mtu
parameter with the same value.

This example uses mtu 8192, which is the HiperSockets default. Accordingly, the OSA
card supports up to 8992 bytes for layer 3. An alternative is to use mtu 1492 on both
interfaces, which is the default value for the OSA card.

Also, to preserve this setting across Linux boots, add an mtu=8192 statement to the
appropriate network definition file. See 3.5.5, “Permanent Linux definitions” on page 54.
110 IBM HiperSockets Implementation Guide

Example 8-10 shows the results of the ifconfig command for the Network Concentrator.
Note the identical mtu values. Otherwise, nothing else is unique in this output.

Example 8-10 Network Concentrator ifconfig

eth4 Link encap:Ethernet HWaddr 6C:AE:8B:48:0A:B0
 inet addr:192.0.1.8 Bcast:192.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::6cae:8b00:348:ab0/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:8192 Metric:1
 RX packets:395 errors:0 dropped:0 overruns:0 frame:0
 TX packets:25 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:40616 (39.6 Kb) TX bytes:2330 (2.2 Kb)

hsi1 Link encap:Ethernet HWaddr 06:00:F0:2E:00:0A
 inet addr:192.0.1.3 Bcast:192.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::400:f0ff:fe2e:a/64 Scope:Link
 UP BROADCAST RUNNING NOARP MULTICAST MTU:8192 Metric:1
 RX packets:11 errors:0 dropped:0 overruns:0 frame:0
 TX packets:25 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:924 (924.0 b) TX bytes:2377 (2.3 Kb)

No changes and no special routing setup are required on the other servers.

8. Verify that the Red Hat Enterprise Linux (RHEL) system, LNXRH2, can ping the z/OS
systems on the HiperSockets network now, as shown in Example 8-11.

Example 8-11 Network concentrator verification

[root@lnxrh1 ~]# ping 192.0.1.4
PING 192.0.1.4 (192.0.1.4) 56(84) bytes of data.
64 bytes from 192.0.1.4: icmp_seq=1 ttl=63 time=9.60 ms
64 bytes from 192.0.1.4: icmp_seq=2 ttl=63 time=0.253 ms
64 bytes from 192.0.1.4: icmp_seq=3 ttl=63 time=0.287 ms
^C
--- 192.0.1.4 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5079ms
rtt min/avg/max/mdev = 0.216/1.803/9.604/3.488 ms
[root@lnxrh1 ~]# ping 192.0.1.6
PING 192.0.1.6 (192.0.1.6) 56(84) bytes of data.
64 bytes from 192.0.1.6: icmp_seq=1 ttl=63 time=9.66 ms
64 bytes from 192.0.1.6: icmp_seq=2 ttl=63 time=0.238 ms
64 bytes from 192.0.1.6: icmp_seq=3 ttl=63 time=0.227 ms
^C
--- 192.0.1.6 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4089ms
rtt min/avg/max/mdev = 0.227/2.126/9.665/3.769 ms

8.3.2 References

For more information, see the Linux on System z document Device Drivers, Features, and
Commands, SC33-8411. You can find the current version of this and other publications in the
Linux on System z library on the developerWorks website:

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
Chapter 8. Connect HiperSockets to other networks 111

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

8.4 The z/VM Virtual Switch with HiperSockets bridge port

The z/VM Virtual Switch has been enhanced to transparently bridge guest VM network
connections on a HiperSockets LAN segment. This bridge enables HiperSockets guest VMs
with a HiperSockets connection to also communicate with the following components:

� Other servers on the HiperSockets network
� Other guest VMs on the z/VM Virtual Switch
� External network hosts through the virtual switch OSA Uplink port

8.4.1 The z/VM Virtual Switch

IBM z/VM has the capability to simulate a network segment and a virtual switch. The
interfaces to this simulated network are represented to the z/VM guest systems as virtual
OSA interfaces. The z/VM Virtual Switch can be connected to one or more real OSA trunk
ports, and provides external LAN connectivity to the guest systems that are connected to the
virtual switch.

Note that the virtual switch acts as a switch, not a router, so the OSA interfaces and the virtual
interfaces are part of the same IP subnet. A z/VM Virtual Switch exists only inside a z/VM
host, and only guests of this specific host can be directly connected to this virtual switch.

8.4.2 Bridging a HiperSockets LAN with a z/VM Virtual Switch

Ever since z/VM Version 6 Release 2, a HiperSockets Bridge Port can be defined on a z/VM
Virtual Switch. A HiperSockets Bridge Port transparently bridges z/VM guests connected to
the HiperSockets network with the z/VM Virtual Switch and the connected OSA network, as
shown in Figure 8-6.

Figure 8-6 Bridged HiperSockets channel

The HiperSockets channel, the virtual switch, and the OSA network are all part of the same
layer 2 broadcast domain and the same subnet. Only a single subnet is required, and the
servers require only a single network interface and a single IP address. A single IP address
and VM network connection can be used to communicate over the internal and external
segments of the LAN.

z/VM LPAR B z/VM LPAR A

Linux Guest
Server B1

Linux Guest
Server B2

Linux Guest
Server A1

Linux Guest
Server A2

Linux Guest
Server A3

Linux Guest
Server A4

PR/SM

HiperSockets (IQD)

IQD NIC IQD NIC IQD NIC IQD NIC

OSD VNIC OSD VNIC

VSwitchA
HS Bridge

Port
OSA

Uplink Port

Primary
OSD

Backup
OSD

External
LAN
112 IBM HiperSockets Implementation Guide

The fact that a given destination address might be on the local HiperSockets channel or
outside the CPC is totally indiscernible to the network interfaces of the servers. Incorporating
the HiperSockets channel into the flat layer 2 broadcast domain through OSA adapters
simplifies networking configuration and maintenance.

The virtual switch HiperSockets Bridge Port eliminates the need to configure a separate next
hop router on the HiperSockets channel to provide connectivity to destinations outside of a
HiperSockets channel. This avoids the need to create routes for this internal route in all
hosted servers, and the extra hop of a router to provide the layer 3 routing functions.

8.4.3 Benefits of a bridged HiperSockets network

Connecting virtual servers directly to a bridged HiperSockets network (such as servers B1,
B2, A1, and A2 in Figure 8-6 on page 112) provides maximum performance for
communication with other servers inside the same CPC (same LPAR or other LPARs) and
also provides connectivity to the external LAN. Administration is simple because the whole
network is a single layer 2 broadcast domain, and each server only has a single network
interface.

You can extend this network to connect to other virtual switches and other HiperSockets on
other CPCs, and therefore create a single HiperSockets network across CPCs.

Compared to a HiperSockets network and an OSA network
When a bridged HiperSockets network is compared to a HiperSockets network and an OSA
network connected to each server, you see the following benefits:

� There is no separate HiperSockets subnet required
� Only a single interface and IP address is needed per server

However, a directly connected OSA network can provide better performance if high
throughput to the external network is required.

Compare a direct connection to the z/VM Virtual Switch
IBM z/VM guests that are directly connected to a HiperSockets network can use QDIO
Enhanced Buffer-State Management (QEBSM). See 2.3.1, “Hardware assists” on page 25 for
more information. Rather than having the z/VM host system simulate a network interface,
HiperSockets firmware provides the network interface directly to the guest OS. This has the
following benefits:

� Reduced amount of z/VM memory required
� Reduced processor use
� Reduced latency
� No VM host involvement for traffic inside the CPC
� Minimal z/VM resource usage to provide bridge to external network

The HiperSockets Bridge Port of a Virtual Switch in one z/VM LPAR can bridge the traffic from
z/VM guests in other z/VM LPARs to other z/VM guests and to the external network.
Consequently, this network is no longer restricted to a single z/VM host.
Chapter 8. Connect HiperSockets to other networks 113

8.4.4 HiperSockets Bridge Port details

In a bridged HiperSockets network, one or more z/VM Virtual Switches provide connectivity to
an external LAN for the z/VM guest systems connected to the HiperSockets network and
create a single layer 2 broadcast domain. Therefore the following items apply:

� Only interfaces that use QEBSM are eligible to be bridged by HiperSockets firmware.
Therefore only z/VM guest systems that use QEBSM will be bridged. Interfaces to native
LPARs will not be bridged.

� All HiperSockets interfaces must be defined as layer 2 interfaces. To enforce this and to
avoid misconfigurations, the HiperSockets channel must be defined as either one of the
following options:

– HiperSockets for z/VM External Bridge
– HiperSockets for intraensemble data network (IEDN), or iQDIO extensions (IQDX)

See 9.3, “HiperSockets for IEDN (IQDX)” on page 128 for more information about IEDN
and IQDX. Also, 2.1.1, “Channel parameters for HiperSockets” on page 9 explains how
these usage parameters are defined in the input/output configuration data set (IOCDS).
You can only define layer 2 interfaces on these HiperSockets channels. You cannot define
a bridge port on a normal HiperSockets channel.

� The HiperSockets Bridge Port for z/VM Virtual Switch is available with z/VM Version 6
Release 2 and later.

� The HiperSockets Bridge Port is available since IBM zEnterprise 196 (z196). Since then,
HiperSockets firmware provides the following functionality required by a HiperSockets
Bridge Port:

– All frames with unknown destinations will be sent to the bridge port rather than being
discarded.

– HiperSockets firmware will notify the z/VM Virtual Switch of any changes to the
addresses registered on the HiperSockets network.

– The functionality provides support for multiple bridge ports per HiperSockets channel
for redundancy and automatic failover.

� Multiple Virtual Switches with bridge ports to the same HiperSockets channel can be
defined for redundancy. However, only one Virtual Switch will be actively bridging traffic at
any time. IBM z/VM and HiperSockets firmware provide automatic failover mechanisms.

� Multiple OSA channels can be connected to a z/VM Virtual Switch for high availability.
These OSA channels are configured as aggregated links in concert with a switch that also
supports the IEEE 802.3ad specification. This configuration provides the benefits of
increased bandwidth and near seamless failover of a failed link in the aggregated group.

� The z/VM HiperSockets Bridge Port uses the HiperSockets Completion Queue function,
which is explained in 7.3, “Completion queue function” on page 92. Therefore, the bridge
port will send traffic synchronously to the other participants on the HiperSockets channel,
if possible.

However, it can also send asynchronously in case a receiver does not provide enough
empty inbound buffers. This prevents the bridge port from being held up by one slow
receiver. It will continue to send traffic synchronously with the lowest possible latency to
the other receivers.
114 IBM HiperSockets Implementation Guide

8.4.5 Path MTU Discovery

Path MTU Discovery (PMTUD) is a standardized technique for determining an acceptable
MTU size between two IP network connections. The goal of this technique is to discover the
largest size datagram that does not require fragmentation anywhere along the path between
the source and destination. This discovered datagram size is known as the path maximum
transmission unit (PMTU) or the effective MTU for sending.

The virtual switch can be configured to provide MTU discovery responses for payloads that
are determined by the virtual switch to be larger than the supported MTU of the OSA uplink
port, or the system administrator-configured MTU of the external LAN. The PMTUD process
will cause the virtual switch to respond to the sending guest with an Internet Control Message
Protocol (ICMP) error response that contains the acceptable MTU.

The MTU value used to check payloads to be sent over the virtual switch uplink port is
provided by the PATHMTUDISCOVERY operand of the SET VSWITCH command. By default,
the virtual switch will use the largest allowable MTU supported by the OSA-Express feature
currently deployed as the uplink port.

PMTUD is provided for guests connected directly to the virtual switch (simulated network
interface cards, or NICs) and the HiperSockets bridge-capable ports. Connecting a virtual
switch to a HiperSockets channel introduces the complexity of having a local broadcast
domain with different MTU sizes, requiring infrastructure to orchestrate an acceptable MTU
size between source and destinations that are connected through the bridged networks.

The virtual switch PMTUD provides the ability for the HiperSockets guest port-to-guest port
communications to enjoy the performance benefits of using large MTUs of the HiperSockets
channel, while also supporting external destinations for HiperSockets bridge-capable ports
with lower MTUs. Bridge-capable guest ports, or simulated ports with a single network
connection supporting PMTUD, can communicate optimally with all destinations over the
entire broadcast domain.

For more information, see z/VM V6R3 Connectivity, SC24-6174.

8.4.6 References

For more information go to the z/VM V6R2.0 Information Center:

http://pic.dhe.ibm.com/infocenter/zvm/v6r2/index.jsp

More information about the z/VM HiperSockets Bridge Port, and additional details about how
to set it up, can be found by expanding the following topics in the information center:
Planning and Administration z/VM V6R2 Connectivity Planning Virtual
Networks Bridging a HiperSockets LAN with a z/VM Virtual Switch.
Chapter 8. Connect HiperSockets to other networks 115

http://pic.dhe.ibm.com/infocenter/zvm/v6r2/index.jsp

8.4.7 Example

Figure 8-7 represents the setup used for this example. Because no external workstations or a
second CPC were available, z/OS LPAR SC30 plays the role of an external server, and is only
connected to the OSA card. SC30 is not directly connected to the HiperSockets network.
HiperSockets channel-path identifier (CHPID) F9 is defined as HiperSockets for z/VM
External Bridge in the IOCDS.

LNXRH1 and LNXSU1 will be directly connected to the External Bridge Network F9 by layer 2
interfaces. They will only be connected to the HiperSockets network, and have no direct
connection to the OSA network. Define a z/VM virtual switch (VSWALEX) to connect the OSA
network to the HiperSockets network. SC30, LNXRH1, and LNXSU1 will all be connected to
the same 192.168.6.0/25 IP network.

Figure 8-7 IBM z/VM VSwitch with HiperSockets Bridge example scenario

Note that you can also connect Linux guests from other z/VM LPARs to the HiperSockets
CHPID F9 and bridge them. You could also have guests directly attached to the Virtual
Switch, but directly attaching them to the HiperSockets channel has benefits, as described in
8.4.3, “Benefits of a bridged HiperSockets network” on page 113.

z/VM VSwitch with
HiperSockets Bridge Port

LP-A2E
z/VM VMLINUX1

LP-A11

z/OS SC30
TCPIP A

2160-2165
192.168.6.130

Linux
LNXSU1

7906-7908
(20C9 -20CB)

192.168.6.100

7900 - 7902
(20C9 - 20CB)

192.168.6.110

Linux
LNXRH1

HiperSockets CHPID F9

192.168.6.0/24

z/VM VSwitch
VSWALEX

7903 - 7905 2166 - 2168

OSA
CHPID 07

192.168.6.0/24
116 IBM HiperSockets Implementation Guide

Connecting the Linux guests to HiperSockets CHPID F9
Follow these steps to connect Linux guests to HiperSockets:

1. In the IOCDS hardware definition, define CHPID F9 with channel parameter 04
(HiperSockets for External Bridge) and give the z/VM LPAR A2E access to devices 7900 -
790F of this channel, as shown in Example 8-12.

Example 8-12 HiperSockets devices available in z/VM

q chpid f9
Path F9 online to devices 7900 7901 7902 7903 7904 7905 7906 7907
Path F9 online to devices 7908 7909 790A 790B 790C 790D 790E 790F
Ready; T=0.01/0.01 09:37:57
q 7900-790f
OSA 7900 FREE , OSA 7901 FREE , OSA 7902 FREE , OSA 7903 FREE
OSA 7904 FREE , OSA 7905 FREE , OSA 7906 FREE , OSA 7907 FREE
OSA 7908 FREE , OSA 7909 FREE , OSA 790A FREE , OSA 790B FREE
OSA 790C FREE , OSA 790D FREE , OSA 790E FREE , OSA 790F FREE
Ready; T=0.01/0.01 09:38:20

2. Now connect some of these devices to the Linux guests, as shown in Example 8-13.

Example 8-13 Connect HiperSockets devices to Linux guests

attach 7900 lnxrh1 20c9
attach 7901 lnxrh1 20ca
attach 7902 lnxrh1 20cb
attach 7906 lnxsu1 20c9
attach 7907 lnxsu1 20ca
attach 7908 lnxsu1 20cb

q 7900-790f
OSA 7900 ATTACHED TO LNXRH1 20C9 DEVTYPE HIPER-BRDG CHPID F9 IQD
OSA 7901 ATTACHED TO LNXRH1 20CA DEVTYPE HIPER-BRDG CHPID F9 IQD
OSA 7902 ATTACHED TO LNXRH1 20CB DEVTYPE HIPER-BRDG CHPID F9 IQD
OSA 7903 FREE , OSA 7904 FREE , OSA 7905 FREE
OSA 7906 ATTACHED TO LNXSU1 20C9 DEVTYPE HIPER-BRDG CHPID F9 IQD
OSA 7907 ATTACHED TO LNXSU1 20CA DEVTYPE HIPER-BRDG CHPID F9 IQD
OSA 7908 ATTACHED TO LNXSU1 20CB DEVTYPE HIPER-BRDG CHPID F9 IQD
OSA 7909 FREE , OSA 790A FREE , OSA 790B FREE , OSA 790C FREE
OSA 790D FREE , OSA 790E FREE , OSA 790F FREE
Ready; T=0.01/0.01 09:43:35

3. Next, configure the network interfaces to subnet 192.168.6.0/24 in RHEL, as shown in
Example 8-14. Remember, interfaces to External Bridge channels need to be defined as
layer 2 interfaces 1!

Example 8-14 Layer 2 interface for RHEL

[root@lnxrh1 ~]# cio_ignore -r 0.0.20c9,0.0.20ca,0.0.20cb
[root@lnxrh1 ~]# znetconf -a 20c9 -o layer2="1" 1
Scanning for network devices...
Successfully configured device 0.0.20c9 (hsi1)
[root@lnxrh1 ~]# lsqeth hsi1
Device name : hsi1

 card_type : HiperSockets
 cdev0 : 0.0.20c9
Chapter 8. Connect HiperSockets to other networks 117

 cdev1 : 0.0.20ca
 cdev2 : 0.0.20cb
 chpid : F9
 online : 1
 portname : no portname required
 portno : 0
 state : SOFTSETUP
 priority_queueing : always queue 2
 buffer_count : 128
 layer2 : 1
 isolation : none

[root@lnxrh1 ~]# ifconfig hsi1 192.168.6.110

Example 8-15 shows the interface configuration for the SUSE Linux guest.

Example 8-15 Layer 2 interface for SUSE

lnxsu1:~ # znetconf -a 20c9 -o layer2="1"
Scanning for network devices...
Successfully configured device 0.0.20c9 (hsi2)
lnxsu1:~ # ifconfig hsi2 192.168.6.100

Example 8-16 shows that now these two Linux guests can ping each other. (1 and 2). But
they cannot communicate with SC30 yet (3 and 4).

Example 8-16 Ping without Virtual Switch

lnxsu1:~ # ping 192.168.6.110 1
PING 192.168.6.110 (192.168.6.110) 56(84) bytes of data.
64 bytes from 192.168.6.110: icmp_seq=1 ttl=64 time=7.98 ms
64 bytes from 192.168.6.110: icmp_seq=2 ttl=64 time=0.156 ms
64 bytes from 192.168.6.110: icmp_seq=3 ttl=64 time=0.168 ms
^C
--- 192.168.6.110 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.156/2.768/7.981/3.686 ms

[root@lnxrh1 ~]# ping 192.168.6.100 2
PING 192.168.6.100 (192.168.6.100) 56(84) bytes of data.
64 bytes from 192.168.6.100: icmp_seq=1 ttl=64 time=0.178 ms
64 bytes from 192.168.6.100: icmp_seq=2 ttl=64 time=0.136 ms
^C
--- 192.168.6.100 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1699ms
rtt min/avg/max/mdev = 0.136/0.157/0.178/0.021 ms

[root@lnxrh1 ~]# ping 192.168.6.130 3
PING 192.168.6.130 (192.168.6.130) 56(84) bytes of data.
^C
--- 192.168.6.130 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2479ms

lnxsu1:~ # ping 192.168.6.130 4

PING 192.168.6.130 (192.168.6.130) 56(84) bytes of data.
^C
118 IBM HiperSockets Implementation Guide

--- 192.168.6.130 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms

Defining the z/VM Virtual Switch with HiperSockets Bridge Port
To connect the Linux guests to the external OSA network, define a z/VM Virtual Switch
(VSWALEX) with an OSA uplink port and a HiperSockets Bridge Port, as shown in Figure 8-7
on page 116. Note that there are no VM guests attached to this VSwitch.

Example 8-17 shows the necessary steps. The Virtual Switch needs to be defined in layer 2
mode, as indicated by the keyword ETHERNET 1. Then define an uplink port to OSA CHPID 07
2, and a bridge port to HiperSockets CHPID F9 3.

Example 8-17 Defining a Virtual Switch

define vswitch VSWALEX type QDIO ETHERNET 1
VSWITCH SYSTEM VSWALEX is created
Ready; T=0.01/0.01 10:05:15
set vswitch VSWALEX uplink rdev 2166 2
Command complete
Ready; T=0.01/0.01 10:07:16
HCPSWU2830I VSWITCH SYSTEM VSWALEX status is ready.
HCPSWU2830I DTCVSW1 is VSWITCH controller for device 2166.P00.
set vswitch VSWALEX bridgeport rdev 7903 3
Command complete
Ready; T=0.01/0.01 10:08:35
HCPSWU3048I DTCVSW2 is VSWITCH controller for HiperSockets bridge device 7903.
HCPSWU3048I VSWITCH SYSTEM VSWALEX secondary HiperSockets bridge status is active.

Now you can ping SC30 from the Linux guests, as shown in Example 8-18.

Example 8-18 Pinging z/OS from the Linux guests

[root@lnxrh1 ~]# ping 192.168.6.130
PING 192.168.6.130 (192.168.6.130) 56(84) bytes of data.
64 bytes from 192.168.6.130: icmp_seq=1 ttl=64 time=0.767 ms
64 bytes from 192.168.6.130: icmp_seq=2 ttl=64 time=0.316 ms
64 bytes from 192.168.6.130: icmp_seq=3 ttl=64 time=0.317 ms
64 bytes from 192.168.6.130: icmp_seq=4 ttl=64 time=0.319 ms
64 bytes from 192.168.6.130: icmp_seq=5 ttl=64 time=0.326 ms
64 bytes from 192.168.6.130: icmp_seq=6 ttl=64 time=0.345 ms
64 bytes from 192.168.6.130: icmp_seq=7 ttl=64 time=0.409 ms
64 bytes from 192.168.6.130: icmp_seq=8 ttl=64 time=0.533 ms
64 bytes from 192.168.6.130: icmp_seq=9 ttl=64 time=0.308 ms
64 bytes from 192.168.6.130: icmp_seq=10 ttl=64 time=0.314 ms
^C
--- 192.168.6.130 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9409ms
rtt min/avg/max/mdev = 0.308/0.395/0.767/0.141 ms
Chapter 8. Connect HiperSockets to other networks 119

lnxsu1:~ # ping 192.168.6.130
PING 192.168.6.130 (192.168.6.130) 56(84) bytes of data.
64 bytes from 192.168.6.130: icmp_seq=1 ttl=64 time=0.313 ms
64 bytes from 192.168.6.130: icmp_seq=2 ttl=64 time=0.329 ms
^C
--- 192.168.6.130 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.313/0.321/0.329/0.008 ms

Example 8-19 shows that SC30 can also ping the Linux guests.

Example 8-19 Ping from z/OS to Linux guests

ISPF Command Shell
 Enter TSO or Workstation commands below:

 ===> ping 192.168.6.110 (tcp tcpipe

 Place cursor on choice and press enter to Retrieve command

 => ping 192.168.6.110 (tcp tcpipe
 => ping 192.168.110 (tcp tcpipe
 => ping 192.168.110
 => netstat home (tcp tcpipf
 => netstat dev
 => netstat home
 =>
 =>
 =>
 =>
 CS V2R1: Pinging host 192.168.6.110
 Ping #1 response took 0.000 seconds.

Note that no routing setup is necessary at the endpoints, because they all belong to the same
IP subnet. No changes to the Virtual Switch are necessary, if additional servers are added or
removed to the HiperSockets network or the external network. You only need to define the
Virtual Switch once, then the two networks are bridged.

Connecting a server directly to the Virtual Switch
In Figure 8-8 on page 121, you connect one of the Linux guests directly to the Virtual Switch.
This is to show that such a server is also connected to the same bridged network formed by
the HiperSockets network and the OSA network. This scenario uses more resources than the
previous one, but it can be a solution for OSs that do not yet provide layer 2 support for
HiperSockets, because the network interface of the guest is now a simulated OSA interface.
120 IBM HiperSockets Implementation Guide

Figure 8-8 HiperSockets Bridge Scenario with z/VM guest attached to the Virtual Switch

Follow these steps to connect a server directly to the Virtual Switch:

1. First remove the HiperSockets interface from LNXSU1, as shown in Example 8-20.

Example 8-20 Remove HiperSockets interface

lnxsu1:~ # ifdown hsi2
lnxsu1:~ # znetconf -r 20c9
Remove network device 0.0.20c9 (0.0.20c9,0.0.20ca,0.0.20cb)?
Warning: this may affect network connectivity!
Do you want to continue (y/n)?y
Successfully removed device 0.0.20c9 (hsi2)

In VM MAINT:

detach 7906 lnxsu1 20c9
detach 7907 lnxsu1 20c9
detach 7908 lnxsu1 20c9

z/VM VSwitch with
HiperSockets Bridge Port

LP-A2E
z/VM VMLINUX1

LP-A11

z/OS SC30
TCPIP A

2160-2165
192.168.6.130

Linux
LNXSU1

(20C9 -20CB)
192.168.6.100

7900 - 7902
(20C9 - 20CB)

192.168.6.110

Linux
LNXRH1

HiperSockets CHPID F9
192.168.6.0/24

z/VM VSwitch
VSWALEX

7903 - 7905 2166 - 2168

OSA
CHPID 07

192.168.6.0/24
Chapter 8. Connect HiperSockets to other networks 121

2. Connect LNXSU1 directly to a simulated OSA interface of the Virtual Switch, as shown in
Example 8-21:

a. First, you need to give LNXSU1 access to VSWALEX 1.
b. Then, define a virtual NIC for LNXSU1 2.
c. Finally, configure the interface in Linux 3. For details about how to configure a z/VM

virtual switch, see the z/VM V6R2.0 Information Center:
http://pic.dhe.ibm.com/infocenter/zvm/v6r2/index.jsp

More information is also available in the OSA-Express Implementation Guide,
SG24-5948.

Example 8-21 Connect LNXSU1 to VSwitch

In MAINT:

set vswitch VSWALEX grant LNXSU1 1
Command complete
Ready; T=0.01/0.01 11:00:17

In VMGuest LNXSU1:
define nic 20c9 type qdio 2
NIC 20C9 is created; devices 20C9-20CB defined
couple 20c9 system VSWALEX
NIC 20C9 is connected to VSWITCH SYSTEM VSWALEX

in lnxsu1:

lnxsu1:~ # znetconf -a 20c9 3
Scanning for network devices...
Successfully configured device 0.0.20c9 (eth2)

lnxsu1:~ # ifconfig eth2 192.168.6.100

Pings work! Example 8-22 shows that this Linux guest connected to the z/VM VSwitch can
ping both LNXRH1 connected to HiperSockets 1 and SC30 connected to OSA 2.

Example 8-22 ping from and to LNXSU1

lnxsu1:~ # ping 192.168.6.110 1
PING 192.168.6.110 (192.168.6.110) 56(84) bytes of data.
64 bytes from 192.168.6.110: icmp_seq=1 ttl=64 time=7.64 ms
64 bytes from 192.168.6.110: icmp_seq=2 ttl=64 time=0.233 ms
64 bytes from 192.168.6.110: icmp_seq=3 ttl=64 time=0.238 ms
64 bytes from 192.168.6.110: icmp_seq=4 ttl=64 time=0.186 ms
^C
--- 192.168.6.110 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.186/2.074/7.642/3.214 ms

lnxsu1:~ # ping 192.168.6.130 2
PING 192.168.6.130 (192.168.6.130) 56(84) bytes of data.
64 bytes from 192.168.6.130: icmp_seq=1 ttl=64 time=8.11 ms
64 bytes from 192.168.6.130: icmp_seq=2 ttl=64 time=0.333 ms
64 bytes from 192.168.6.130: icmp_seq=3 ttl=64 time=0.301 ms
^C
--- 192.168.6.130 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
122 IBM HiperSockets Implementation Guide

http://pic.dhe.ibm.com/infocenter/zvm/v6r2/index.jsp

rtt min/avg/max/mdev = 0.301/2.915/8.111/3.674 ms

[root@lnxrh1 ~]# ping 192.168.6.100
PING 192.168.6.100 (192.168.6.100) 56(84) bytes of data.
64 bytes from 192.168.6.100: icmp_seq=1 ttl=64 time=0.210 ms
64 bytes from 192.168.6.100: icmp_seq=2 ttl=64 time=0.214 ms
64 bytes from 192.168.6.100: icmp_seq=3 ttl=64 time=0.229 ms
^C
--- 192.168.6.100 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2299ms
rtt min/avg/max/mdev = 0.210/0.217/0.229/0.018 ms
Chapter 8. Connect HiperSockets to other networks 123

124 IBM HiperSockets Implementation Guide

Chapter 9. HiperSockets in an IBM
zEnterprise ensemble

This chapter describes how to use and manage HiperSockets in the IBM zEnterprise and IBM
zEnterprise BladeCenter® unified network.

The zEnterprise central processor complexes (CPCs) provide the capability to integrate
HiperSockets connectivity into the intraensemble data network (IEDN). In each zEnterprise
CPC that is a member of an ensemble, you can elect one HiperSockets (internal queued
direct communication, or IQD) channel-path identifier (CHPID) to connect to the IEDN. This
capability is enabled through the internal queued direct input/output (I/O) extensions (IQDX)
function of HiperSockets.

This chapter describes how to configure IQDX in the zEnterprise Unified Resource Manager
(URM). This chapter provides information about how to use IQDX, and how to connect it to
the rest of the IEDN network.

9

© Copyright IBM Corp. 2013, 2014. All rights reserved. 125

9.1 The IBM zEnterprise System

The zEnterprise System, shown in Figure 9-1, is a heterogeneous hardware infrastructure
that can consist of three components:

� IBM zEnterprise CPC

Examples of IBM zEnterprise CPCs include zEnterprise EC12 (zEC12), zEnterprise BC12
(zBC12), zEnterprise 196 (z196), and zEnterprise 114 (z114).

� IBM zEnterprise BladeCenter Extension (zBX)

The zBX provides the capability to run the wide variety of applications typically found in
UNIX and x86 architectures. The zBX supports select IBM POWER7® blades running IBM
AIX® and IBM System x® blades running Linux on System x and Microsoft Windows.

� IBM zEnterprise URM

The zEnterprise URM is firmware that runs on the Hardware Management Console (HMC)
and Support Element (SE).The URM consists of six management areas, which are
identified in the pie chart in Figure 9-1:

– Virtual servers
– Performance
– Energy
– Hypervisors
– Networks
– Operations

Figure 9-1 BM zEnterprise System components

One management area of the zEnterprise URM is network management (networks). This
component creates and manages virtual networks, including access control, which enables
virtual servers to be connected to each other.

For more information about the IBM zEnterprise System, see Building an Ensemble Using
IBM zEnterprise Unified Resource Manager, SG24-7921.

Virtual
Servers Performance

Energy

HypervisorsNetworks

Operations

Unified Resource Management firmware
End to end management functions

zEnterprise
zBX

zEnterprise CPC
126 IBM HiperSockets Implementation Guide

9.2 The intraensemble data network

There are three types of LANs that attach to the zEnterprise system, each with redundant
connections:

1. The IEDN
2. The intranode management network (INMN)
3. The client-managed data network

These three networks are depicted in Figure 9-2. The purple boxes and lines represent the
URM communicating with agents through the INMN. The orange arrow at the bottom of the
figure is the IEDN, which is used to transport data in the ensemble. The gray arrows represent
the connections to the client-managed data network outside of the ensemble.

Figure 9-2 Network overview of a zEnterprise System

An IEDN enables communication to flow along the ensemble network components and
between the nodes that comprise an ensemble:

� Supports zEnterprise applications communicating between operating system (OS) images
to share data

� Supports zBX-to-zBX communication in an ensemble

Each IEDN is supported by a 10 gigabit Ethernet (GbE) Open Systems Adapter (OSA) data
link, a single dedicated physical layer 2 network. An IEDN is composed of zEnterprise
equipment, and is managed by the URM (on the HMC) as part of the ensemble. The HMC
manages the ensemble through its user interface and includes networking tasks that are
collectively known as network virtualization tasks. The IEDN supports running IPv4 or IPv6
protocols, and Internet Protocol (IP) addresses are client controlled.

S
ys

te
m

 z
 H

ar
d

w
ar

e
 M

a
n

a
g

e
m

e
n

t
C

o
n

so
le

 (
H

M
C

)
w

it
h

 U
n

if
ie

d
 R

es
o

u
rc

e
 M

a
n

ag
e

r
S

ys
te

m
 z

 H
ar

d
w

ar
e

 M
a

n
a

g
e

m
e

n
t

C
o

n
so

le
 (

H
M

C
)

w
it

h
 U

n
if

ie
d

 R
es

o
u

rc
e

 M
a

n
ag

e
r

Select IBM Blades OptimizersSystem z Host

z/OS

Linux
on

System z

Linux on
System x

AIX on
POWER7

z/TPF

z/VSE
Linux on
System z

Windows
on

System x

Blade HW Resourcesz HW Resources

Support Element

System z PR/SM

D
at

aP
o

w
er

 X
I5

0z

D
a

ta
P

o
w

e
r

X
I5

0z

zBX

Private data network (IEDN)Private data network (IEDN)

z/VM
Blade

Virtualization
Blade

Virtualization
Blade

Virtualization

Private Management Network INMNUnified Resource
Manager

Client Network Client Network
Private High Speed Data Network IEDN
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 127

Virtual servers must be isolated into groups on the physical network by defining virtual local
area networks (VLANs).The IEDN default is one VLAN, and multiple other VLAN subnets can
be defined.

Access to the IEDN is controlled by the URM (using the HMC and the SE), the hypervisor,
and the physical switches. URM controls the configuration for all switches, and provides
secure access to the IEDN. Communication through the IEDN has the benefit of being
performed through a physical network in the machine, so it is more secure than external
network communications.

For more information about the IEDN of the IBM zEnterprise System, see Building an
Ensemble Using IBM zEnterprise Unified Resource Manager, SG24-7921.

9.3 HiperSockets for IEDN (IQDX)

The zEnterprise CPCs provide the capability to integrate HiperSockets connectivity to the
IEDN. In each zEnterprise CPC that is a member of an ensemble, you can elect one
HiperSockets (IQD) CHPID to connect to the IEDN. This capability is enabled through the
IQDX function of HiperSockets.

The IQDX function is a channel function, and is not a new CHPID type. It is defined in the
input/output configuration data set (IOCDS) by setting the channel parameter of this CHPID
to 0x02, 0x42, 0x82, or 0xC2, depending on the maximum frame size (MFS). See 2.1.1,
“Channel parameters for HiperSockets” on page 9 for more information about the
HiperSockets channel parameters.

When the IQDX function is configured, this IQD CHPID is integrated with the IEDN. For
communications in the CPC, the IQDX function enables secure network access using the
designated IQD CHPID. Because it is part of the IEDN, the IQDX CHPID (channel parameter
x2) shows some significant differences from normal HiperSockets channels (channel
parameter x0):

� Because the IEDN is a flat layer 2 network, IQDX network interfaces can only be defined in
layer 2 mode. Any attempt by the OS to activate a layer 3 interface will fail. See 5.3, “Layer
2 mode” on page 66 for more information about HiperSockets layer 2 interfaces.

� The URM orchestrates the generation of message authentication code (MAC) addresses
for IQDX. See 9.4, “MAC management by the URM” on page 129 for more information.

� The whole IEDN network is VLAN-enforced and VLAN-controlled. See 9.5, “VLAN
management by the URM” on page 130 for more information.

� The monitoring task of the URM can be used to display statistics about the usage of the
IQDX channel. See 9.9, “Network monitoring with Unified Resource Manager” on
page 143 for more information.

There are two ways for a virtual server to connect to the IEDN through IQDX:

� Using a converged interface, as described in 9.7, “The z/OS converged interface” on
page 139.

� Using a single IQDX interface that is connected to the physical IEDN network by an IBM
z/VM Virtual Switch that bridges IQDX and OSX channels, as described in 9.8, “IBM z/VM
Virtual Switch for IEDN” on page 143.
128 IBM HiperSockets Implementation Guide

Figure 9-3 illustrates these two types of interfaces to the IQDX channel.

� Server A is a native IBM z/OS logical partition (LPAR) that uses the z/OS converged
interface with connect to IQDX and OSA for IEDN (OSX).

� VSwitch B is an IEDN Virtual Switch that bridges all of the queued direct input/output
(QDIO) Enhanced Buffer-State Management (QEBSM) guests on the IQDX to the OSX
network. In this scenario, Linux QA1-QA4 and Linux QB1-QB4 are QEBSM guests that
are attached to the bridged IQDX network.

� The HiperSockets Bridge Port of Virtual Switch A is in standby state, because it is defined
as a secondary bridge port. It serves as a backup for the bridge port of VSwitch B.

� Linux VA1 and VB1 and z/OS VA2 and VB2 have no direct interface with IQDX, but only an
interface with VSwitch A or VSwitch B. The Virtual Switch bridges these interfaces to
IQDX for communication with the QEBSM guests, and to OSX for all other traffic.

� Server B is a native Linux LPAR. Currently, Linux does not provide support for converged
interfaces, and could not easily handle two interfaces to the same layer 2 subnet. Defining
only an IQDX interface is not an option for server B, because it is not connected through
QEBSM (because it is not a z/VM guest), so it cannot be bridged to OSX with z/VM
VSwitch B. Therefore, defining an OSX interface and using it to communicate to the other
servers in the IEDN is the only option for server B in the native Linux LPAR.

Figure 9-3 Virtual servers connected to the IQDX

9.4 MAC management by the URM

Although the IEDN consists of multiple physical and virtual components (Top-of-Rack
switches, OSX cards, IQDX channels, and z/VM Virtual Switches), it is one flat layer 2
network. All of its virtual interfaces need to provide virtual MAC addresses for the virtual
servers. The URM orchestrates this provision, so all MAC addresses in the IEDN are unique.

One part of this orchestration is to provide a prefix to the IQDX firmware that is used to
generate virtual MAC addresses for the IQDX that do not collide with virtual MAC addresses
on the OSX channels or other parts of the IEDN.

CEC X

OSX

z/OS LPAR Linux LPAR z/VM LPAR A z/VM LPAR B

Server A

(native)
Server B

(native)

If 1
If A

QEBSMQEBSM

OSX NIC IQDX NIC OSX NIC

VSwitch B
Primary BC

VSwitch A
Secondary BC

zL
in

ux
 Q

A
1

zL
in

u
x

Q
A

2

zL
in

ux
 Q

A
3

zL
in

ux
 Q

A
4

zL
in

ux
 V

A
1

z/
O

S
 V

A
2

zL
in

u
x

Q
B

1
zL

in
u

x
Q

B
2

zL
in

u
x

Q
B

3
zL

in
u

x
Q

B
4

zL
in

ux
 V

B
1

z/
O

S
 V

B
2

HiperSockets (IQDX)

PR/SMH
S

B

ri
d

ge

P
o

rt

O
S

A

U
p

li
n

k
P

o
rt

H
S

B

ri
d

g
e

P
or

t

O
S

A

U
p

li
n

k
P

o
rt
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 129

As opposed to normal HiperSockets channels or HiperSockets channels for external bridges,
the device driver software cannot overwrite these computer-generated MAC addresses on
IQDX channels. The computer-generated virtual IEDN MAC address of an IQDX
HiperSockets device is predictable, which means that each data device will get the same
firmware-generated MAC address again if the server is restarted, or the IQDX CHPID is
configured off and on, or even if the CPC is restarted.

If the virtual server is restarted in a different LPAR, a different z/VM guest, or on a different
CPC, it will get a different firmware-generated MAC address. The firmware-generated virtual
MAC addresses of the IQDX devices are guaranteed to be unique in the IEDN.

The users cannot directly influence which virtual MAC address is assigned to which device of
a virtual server in the IEDN, nor can they define the prefix that is assigned to be used by the
IQDX. They can, however, reserve MAC address ranges, which must not be used as MAC
addresses by the URM. See 9.6.1, “Reserve MAC address ranges” on page 131 for an
example of how this can be done.

9.5 VLAN management by the URM

The whole IEDN network is VLAN-enforced and VLAN-controlled. Only VLAN traffic is
allowed on the IQDX. A message without a VLAN tag will not be transferred. IQDX interfaces
operate in a VLAN-enforced trunk mode. Therefore, the OSs need to be VLAN-aware, and
define the VLAN IDs to be used, but they can only use VLAN IDs that were previously
assigned by the URM to their virtual servers.

See Chapter 6, “Virtual local area network support” on page 69 for more information about
VLAN support for HiperSockets, and see 9.6.3, “Add virtual servers to a VLAN” on page 135
for more information about how to assign VLAN IDs to virtual servers in the URM.

9.6 Using URM to manage IQDX

The test system had IQD CHPID F8 defined as IQDX in the IOCDS with access to the z/OS
LPARs A11, A13, and A16. The z/VM system in LPAR A2E was running with z/VM V6.3,
which is not managed by the URM. Therefore, it was not connected to the IQDX.

Only z/VM V6.2 and later, and its guests and virtual switches, can be managed by the URM.
Other z/VM versions can run in ensemble LPARs in the same way as other OSs, but not as
managed hypervisors.
130 IBM HiperSockets Implementation Guide

9.6.1 Reserve MAC address ranges

Figure 9-4 shows the ensemble management view of the URM on your HMC. Follow these
steps to reserve MAC address ranges:

1. Log on to your HMC with a user ID that has the correct authority to perform ensemble
tasks.

2. Select an ensemble. This displays a menu item labeled Ensemble Details.

Figure 9-4 Unified Resource Manager - Ensemble view
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 131

3. Click Ensemble Details. You will get to the Network Information tab of the Ensemble
Details window, as shown in Figure 9-5.

4. On this tab, you can reserve ranges of MAC addresses that the URM must not use for the
IEDN network. In this example, MAC addresses 02:12:34:00:00:00 - 02:12:34:ff:ff:ff and
02:a0:00:00:00:00 - 02:a0:00:00:0f:ff will not be used for IEDN.

Figure 9-5 Ensemble details and reserving MAC address ranges

The ensemble prefix is chosen when an ensemble is created. It cannot be changed for a
running ensemble.
132 IBM HiperSockets Implementation Guide

9.6.2 Define VLANs

Figure 9-6 shows the ensemble management view of the URM on your HMC. Follow these
steps to define VLANs:

1. Log on to your HMC with a user ID that has the correct authority to perform ensemble
tasks.

2. Select an ensemble. This displays a menu item labeled Manage Virtual Networks in the
Configuration menu of your ensemble.

Figure 9-6 Unified Resource Manager - Ensemble view
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 133

3. Click Manage Virtual Networks. You will get to the Virtual Network pane, as shown in
Figure 9-7.

Figure 9-7 Manage Virtual Networks pane

4. Select the action New Virtual Network to define a SG6816TestNetwork with the VLAN
ID 55. The result is shown in Figure 9-8.

Figure 9-8 Manage Virtual Networks pane with SG6816TestNetwork
134 IBM HiperSockets Implementation Guide

9.6.3 Add virtual servers to a VLAN

Figure 9-9 shows the Virtual Server view of the URM on your HMC.

To add virtual servers to the VLAN, follow these steps:

1. Log on to your HMC with a user ID that has the correct authority to perform ensemble
tasks and select a virtual server. This opens a menu item Image Details.

Figure 9-9 Unified Resource Manager—Virtual Server view

2. If you click Image Details you will get to the Network Options tab of the Image Details
window as shown in Figure 9-10 on page 135.

Figure 9-10 Virtual Server Image Details window

3. There is a check box for Replicate VLAN IDs to vNICs, which is selected by default. If it is
selected and you add this server to a VLAN, then all of the IEDN (virtual) network
interfaces (vNICs) that belong to this server will be authorized to use this VLAN.
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 135

In most scenarios this will be what you want to accomplish. It saves you the chore of
enabling each vNIC separately.

4. To add a virtual server to a VLAN, go back to the Ensemble view shown in Figure 9-6 on
page 133 and click Manage Virtual Networks to get to the Virtual Network window, as
shown in Figure 9-7 on page 134.

5. Now, select the SG6816TestNetwork and select the action Add Hosts to Virtual Network
to open the Add Hosts to Virtual network window as shown in Figure 9-11.

Figure 9-11 Add Hosts to Virtual Network window

6. Select A11 and A13, two virtual servers that have an active Replicate VLAN IDs to vNICs
option, as shown in Figure 9-10 on page 135.

7. Click Next and a confirmation window, shown in Figure 9-12, opens.

Figure 9-12 Add Hosts to Virtual Network confirmation pane
136 IBM HiperSockets Implementation Guide

8. You can only add a virtual server with all of its vNICs or with none of them. In this example,
both LPARs A11 and A13 have interfaces to OSX CHPIDs 1.18 and 1.19 and to IQDX
CHPID 1.F8. LPAR A11 is already authorized to use VLAN ID 99, but LPAR A13 is not yet
authorized for a VLAN ID. Click OK to add the two LPARs to the SG6816TestNetwork with
VLAN ID 55.

9. For the third z/OS LPAR, LPAR A16, go back to the Image Details window, as shown in
Figure 9-13, and clear the Replicate VLAN IDs to vNICs check box.

Figure 9-13 Virtual Server Image Details window with cleared check box

10.Use the Add Hosts to Virtual Network window as shown in Figure 9-11 on page 136 to
add A16 to the SG6816TestNetwork.

11.Click Next to get a different confirmation window, as shown in Figure 9-14. You notice that
you now can select which network interfaces ought to be authorized for the VLAN. In this
example, you select all interfaces and click OK.

In most cases, it will not be necessary to authorize single vNICs for a VLAN, but this option
is available for special cases. In-depth knowledge about how the virtual server will use the
interfaces is required when using this option.

Figure 9-14 Add Hosts to Virtual Network confirmation window with separate vNICs
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 137

9.6.4 Verify details of a VLAN

To verify the details, follow these steps:

1. To examine the virtual network settings, go to the Ensemble view (Figure 9-6 on page 133)
and click Manage Virtual Networks to get to the Virtual Network window. Now select the
SG6816TestNetwork and select the action Details to open the Details window, as shown
in Figure 9-15.

Figure 9-15 Virtual Network Details window

2. Go to the Members tab to see a list of all of the virtual servers and vNICs that are
authorized to access this virtual network, as shown in Figure 9-16.

Figure 9-16 Members of a virtual network
138 IBM HiperSockets Implementation Guide

9.7 The z/OS converged interface

HiperSockets connectivity to the IEDN is referred to as the z/OS Communications Server
IEDN-enabled HiperSockets function. Figure 9-17 shows the key concepts of this function.
HiperSockets connectivity is transparently converged with OSA-Express connectivity.

Communications Server provides transparent access to the IQD CHPID that is configured for
the IQDX function. For each configured OSX CHPID and for each IP version,
Communications Server dynamically creates and associates an IQDX interface and transport
resource list element (TRLE) to the IQD CHPID. The dynamically created IQDX interfaces
inherit the VLAN IDs and IP addresses of their associated OSX interfaces, therefore
eliminating the need for IP topology, routing, or security changes in the network.

Communications Server dynamically determines whether traffic routed to the IEDN over a
given OSX CHPID can also use the IQDX interface. If the traffic can use the IQDX interface,
Communications Server routes the traffic over the high-performance HiperSockets IQD
CHPID.

Figure 9-17 The z/OS Communications Server IEDN-enabled HiperSockets overview

OSX and IQDX interfaces of the same virtual server need to be authorized for the same
VLAN IDs in the URM. This is best achieved by the Replicate VLAN IDs to vNICs option
(which is enabled by default) as described in 9.6.3, “Add virtual servers to a VLAN” on
page 135.

AUTOIQDX and ALLTRAFFIC are default values for GLOBALCONFIG. So there is basically
no need to define anything else than the OSX interface. Then z/OS will automatically try to
generate converged interfaces and use them.

IEDN

Internal IEDN

Communications Server
transparently splits and
converges network traffic to
this interface

With AUTOIQDX
the IQDX interface is
dynamically configured
and transparently managed
(tucked under OSX)

The IQDX interface provides
access to internal CPC

IEDN fabric (optimal path)

… and provides access to
just the subset of servers on
the internal IEDN (the IQDX
portion of the IEDN)

All IP traffic to and from
this IP subnet

Single IP address
(single network interface)

z/OS

Converged
Interface

OSX IQD
(IQDX)

OSX IQD
(IQDX)

The z/OS administrator
configures and manages
only the OSX interface

The zEnterprise ensemble
network administrator
configures only VLANs for
OSX

Only OSX
connectivity must be
configured

IQDX connectivity is
transparent

The OSX interface
provides access to the
external IEDN fabric

… and provides
access to all servers
on both the internal
and external network
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 139

For more information, see the z/OS Communications Server Information Center:

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

There, expand the following topic: z/OS Communications Server z/OS Communications
Server: IP Configuration Guide Base TCP•IP system TCP/IP in an ensemble
HiperSockets connectivity to the intraensemble data network.

9.7.1 How to define the converged interface

As explained in 9.7, “The z/OS converged interface” on page 139, most of the definitions are
done by the system. This is the sequence of tasks that are required to define a converged
interface for SC30 TCPIPE:

1. Update VTAM ATCSTRxx. Set the ENSEMBLE parameter to YES:

F NET,VTAMOPTS,ENSEMBLE=YES

2. Add OSX definitions to the TCP PROFILE, as shown in Example 9-1.

Example 9-1 OSX definition in TCP/IP profile

; ------------- IEDN INTERFACES FOR ENSEMBLE ATTACHMENTS ---------
; ------------- VLAN 55 for TEST ---------
INTERFACE OSX1111
DEFINE IPAQENET CHPIDTYPE OSX 1
CHPID 18 VLANID 55 2
MTU 8992 IPADDR 192.168.55.1/24
;
BEGINROUTES
 ROUTE 192.168.55.0 255.255.255.0 = OSX1111 MTU 8992
ENDROUTES OSX1111

The following elements are defined:

– The CHPID type is an OSX 1.
– The VLAN ID is mandatory for defining the converged interface 2.

This set of definitions has to be defined for every LPAR that uses a converged interface.

3. Example 9-2 shows the output of TCPIPE. Note the IQDX interface EZAIQX18 that was
automatically generated. Also note that EZAIQX18 does not have its own IP address, but
is only used together with OSX1111. This function also applies to IPv6. If you start an
OSX IPV6 interface for this CHPID, the stack generates IQDX interface EZ6IOX18.

Example 9-2 TCPIP E output

Display Filter View Print Options Search Help

 SDSF OUTPUT DISPLAY TCPIPE STC04854 DSID 2 LINE 236 COLUMNS 16- 95
 COMMAND INPUT ===> SCROLL ===> CSR
 INTFNAME: OSX1111 INTFTYPE: IPAQENET INTFSTATUS: READY
 PORTNAME: IUTXP018 DATAPATH: 2303 DATAPATHSTATUS: READY
 CHPIDTYPE: OSX CHPID: 18
 PNETID: IEDN
 SPEED: 0000010000
 IPBROADCASTCAPABILITY: NO
 VMACADDR: 02279200002D VMACORIGIN: OSA VMACROUTER: ALL
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
140 IBM HiperSockets Implementation Guide

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

 CFGMTU: 8992 ACTMTU: 8992
 IPADDR: 192.168.55.1/24
 VLANID: 55 VLANPRIORITY: DISABLED
 DYNVLANREGCFG: NO DYNVLANREGCAP: YES
 READSTORAGE: GLOBAL (4096K)
 INBPERF: DYNAMIC
 WORKLOADQUEUEING: NO
 CHECKSUMOFFLOAD: YES SEGMENTATIONOFFLOAD: NO
 SECCLASS: 255 MONSYSPLEX: NO
 ISOLATE: NO OPTLATENCYMODE: NO
 MULTICAST SPECIFIC:
 MULTICAST CAPABILITY: YES
 GROUP REFCNT SRCFLTMD
 ----- ------ --------
 224.0.0.1 0000000001 EXCLUDE
 SRCADDR: NONE
 INTERFACE STATISTICS:
 BYTESIN = 0
 INBOUND PACKETS = 0
 INBOUND PACKETS IN ERROR = 0
 INBOUND PACKETS DISCARDED = 0
 INBOUND PACKETS WITH NO PROTOCOL = 0
 BYTESOUT = 0
 OUTBOUND PACKETS = 0
 OUTBOUND PACKETS IN ERROR = 0
 OUTBOUND PACKETS DISCARDED = 0
 ASSOCIATED IQDX INTERFACE: EZAIQX18 IQDX STATUS: READY
 BYTESIN = 0

INBOUND PACKETS = 0
 BYTESOUT = 0
 OUTBOUND PACKETS = 0
 INTFNAME: EZAIQX18 INTFTYPE: IPAQIQDX INTFSTATUS: READY
 DATAPATH: 7803 DATAPATHSTATUS: READY
 VMACADDR: 027482110003
 READSTORAGE: MAX (2048K)
 IQDMULTIWRITE: DISABLED
 MULTICAST SPECIFIC:
 MULTICAST CAPABILITY: NO
 INTERFACE STATISTICS:
 BYTESIN = 0
 INBOUND PACKETS = 0
 INBOUND PACKETS IN ERROR = 0
 INBOUND PACKETS DISCARDED = 0
 INBOUND PACKETS WITH NO PROTOCOL = 0
 BYTESOUT = 96
 OUTBOUND PACKETS = 1
 OUTBOUND PACKETS IN ERROR = 0
 OUTBOUND PACKETS DISCARDED = 0
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
 .
.

Chapter 9. HiperSockets in an IBM zEnterprise ensemble 141

4. Example 9-3 shows the output of the netstat command after several pings from SC31 to
SC30 over IEDN (ping 192.168.55.1).

Example 9-3 The tcpe netstat dev command output

IntfName: OSX1111 IntfType: IPAQENET IntfStatus: Ready
 PortName: IUTXP018 Datapath: 2303 DatapathStatus: Ready
 CHPIDType: OSX CHPID: 18
 PNetID: IEDN
 Speed: 0000010000
 IpBroadcastCapability: No
 VMACAddr: 02279200002D VMACOrigin: OSA VMACRouter: All
 ArpOffload: Yes ArpOffloadInfo: Yes
 CfgMtu: 8992 ActMtu: 8992
 IpAddr: 192.168.55.1/24
 VLANid: 55 VLANpriority: Disabled
 DynVLANRegCfg: No DynVLANRegCap: Yes
 ReadStorage: GLOBAL (4096K)
 InbPerf: Dynamic
 WorkloadQueueing: No
 ChecksumOffload: Yes SegmentationOffload: No
 SecClass: 255 MonSysplex: No
 Isolate: No OptLatencyMode: No
 Multicast Specific:
 Multicast Capability: Yes
 Group RefCnt SrcFltMd
 ----- ------ --------
 224.0.0.1 0000000001 Exclude

 SrcAddr: None
 Interface Statistics:
 BytesIn = 316
 Inbound Packets = 1
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 0
 Outbound Packets = 0
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0
 Associated IQDX interface: EZAIQX18 IQDX Status: Ready
 BytesIn = 0
 Inbound Packets = 0
 BytesOut = 334
 Outbound Packets = 1

 IntfName: EZAIQX18 IntfType: IPAQIQDX IntfStatus: Ready
 Datapath: 7803 DatapathStatus: Ready
 VMACAddr: 027482110003
 ReadStorage: MAX (2048K)
 IQDMultiWrite: Disabled
 Multicast Specific:
 Multicast Capability: No
 Interface Statistics:
 BytesIn = 384
 Inbound Packets = 4
142 IBM HiperSockets Implementation Guide

 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 718
 Outbound Packets = 5
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0

9.8 IBM z/VM Virtual Switch for IEDN

IBM z/VM V6.2 is a hypervisor that is managed by the URM. Apart from defining z/VM guests
as virtual servers, URM can also define z/VM virtual switches as part of the IEDN. The
purpose of defining the switches is either to connect z/VM guests that are directly attached to
the Virtual Switch and OSX channels as uplink ports, or to bridge OSX and IQDX and
therefore connect virtual servers that have an IQDX QEBSM interface the IEDN, or both.

As of the writing of this book, this type of IEDN connection only applies to Linux guests,
because z/OS has no QEBSM support, and z/VSE has no support for HiperSockets layer 2
interfaces.

For this book, we did not have a z/VM 6.2 available, so no example of an IEDN Virtual Switch
is included. See Building an Ensemble Using IBM zEnterprise Unified Resource Manager,
SG24-7921 for an example of how to set up an IEDN z/VM Virtual Switch. See 8.4, “The z/VM
Virtual Switch with HiperSockets bridge port” on page 112 for an example of how to configure
a HiperSockets Bridge Port for a z/VM Virtual Switch.

9.9 Network monitoring with Unified Resource Manager

The IEDN in the ensemble is a layer 2 data network and is managed by URM. It includes
VLANs, virtual switches, and vNICs. With the URM network monitoring function, you can get
IEDN network performance data from a layer 2 network perspective. The URM monitors the
IEDN network resources, collects metrics, and presents them through the following external
interfaces:

� Network Monitors Dashboard
� URM external APIs

URM monitors and collects network resource metrics at the following network interface levels:

� Virtual network interfaces (by VLAN) between virtual servers and virtual switches
� Physical network interfaces between virtual switches and physical NICs

The network monitoring is performed on all of the hypervisors in the ensemble, and collected
at fixed intervals. The following metrics are collected:

� Bytes sent/received, packets sent/received
� Packets dropped, packets discarded
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 143

Figure 9-18 shows the ensemble management view of the URM on your HMC. To set up
monitoring, follow these steps:

1. Log on to your HMC with a user ID that has the correct authority to perform ensemble
tasks, and select an ensemble. This opens a menu item Manage Monitors Dashboard in
the Monitor menu of your ensemble.

Figure 9-18 Unified Resource Manager—Ensemble view

2. Click Network Monitors Dashboard to get to the Network Monitoring window shown in
Figure 9-19. To view the metrics by vNIC, select Virtual switches and Appliances.

Figure 9-19 Network Monitoring — Virtual Switches
144 IBM HiperSockets Implementation Guide

3. To view the metrics by VLAN ID, select Virtual networks as shown in Figure 9-20.

Figure 9-20 Network Monitoring - Virtual networks
Chapter 9. HiperSockets in an IBM zEnterprise ensemble 145

146 IBM HiperSockets Implementation Guide

Appendix A. Gathering statistics in a
HiperSockets environment

IBM z/OS Resource Management Facility (IBM RMF™) provides a significant amount of
information for central processor (CP) usage purposes, including on the processor,
input/output (I/O), and memory. It correlates resources with products such as IBM Lotus®
Domino®, IBM WebSphere®, and so on.

Questions about Virtual Storage Access Method record-level sharing (VSAM RLS), Lotus
Domino, Hypertext Transfer Protocol (HTTP), UNIX System Services, Fibre Channel (FC)
activity, IBM System z HiperSockets, and coupling facility (CF) activity are frequently
addressed by using RMF data.

RMF has been integrated with several products and z/OS features. The traditional RMF
reporting is complemented by powerful workstation features that provide a state-of-the-art
graphical user interface (GUI). IBM Tivoli® integration is important, because it enables clients
to build an enterprise-class performance monitoring infrastructure.

This appendix describes the purpose of the report, the various fields of the report, and how to
use RMF for generating a report.

A

© Copyright IBM Corp. 2013, 2014. All rights reserved. 147

The Resource Measurement facility (RMF)

RMF gathers data using three monitors:

� Short-term data collection with Monitor III
� Snapshot monitoring with Monitor II
� Long-term data gathering with Monitor I and Monitor III

The system operator starts all monitors as non-interactive (background) sessions with a
variety of options that determine what type of data is collected and where it is stored.

Short-term data collection with Monitor III

A typical Monitor III gatherer session has a gathering cycle of one second, and consolidated
records are written for a range that is typically set to 100 seconds. You can collect short-term
data and continuously monitor the system status to solve performance problems using
Monitor III reports. You get actual performance data, such as response times and execution
velocity, on a detailed level for comparison with goals defined in your service policy.

The Monitor III Channel Path Activity Report

The Channel Path Activity report (CHANNEL) gives you information about channel path
activity for all channel paths in the system. The report contains data for every channel path
that is online during data gathering. The report identifies each channel path by identifier and
channel path type. It reports both the total channel usage by the central processing complex
(CPC) and the channel usage of the individual system image or logical partition (LPAR).

How to generate the report

The report displayed in Example A-1 was created using the RMF panels in z/OS Interactive
System Productivity Facility (ISPF). To reach those panels, follow these steps:

Note: Whenever three asterisks (***) are displayed, press Enter.

1. From the Master Application menu, select PDF.
2. From the ISPF Primary Option menu, select 12 (z/OS System).
3. From the z/OS System Programmer Primary Option menu, select 9 (RMF).
4. From RMF - Performance Management, select 3 (Monitor III).
5. From the RMF Monitor III Primary menu, select 3 (RESOURCE).
6. From the RMF Resource Report Selection menu, select I/O Subsystem option 12

(Channel path activity).

Example A-1 shows the output of a Channel Path Activity report.

Example A-1 Channel Path Activity report

MF V2R1 Channel Path Activity Line 1 of 19
Command ===> Scroll ===> CSR

Samples: 100 System: SC30 Date: 11/18/13 Time: 11.01.40 Range: 100 Sec

 Channel Path Utilization(%) Read(B/s) Write(B/s) FICON OPS zHPF OPS
ID No G Type S Part Tot Bus Part Tot Part Tot Rate Actv Rate Actv

00 OSD Y 0.0 0.0 0.0 60 2K 0 20
148 IBM HiperSockets Implementation Guide

0B OSM Y 0.0 0.0 0.0 0 138 0 0
19 OSX Y 0.0 0.0 0.0 0 0 0 0
40 13 FC_S Y 0.0 0.7 0.1 33K 743K 4K 116K 53 1 1 2
41 13 FC_S Y 0.0 0.6 0.0 26K 703K 4K 90K 54 1 1 2
42 13 FC_S Y 0.0 0.7 0.1 33K 731K 3K 116K 52 1 1 2
43 13 FC_S Y 0.0 0.7 0.1 29K 728K 3K 91K 54 1 1 2
44 13 FC_S Y 0.0 0.3 0.0 24K 273K 5K 117K 40 1 1 2
C8 ICP Y ---- ----
C9 ICP Y ---- ----
CA ICP Y ---- ----
CB ICP Y ---- ----
F0 IQD Y 0 0
F1 IQD Y 0 0
F2 IQD Y 0 0
F3 IQD Y 40 0
F4 IQD Y 0 0
F8 IQD Y 0 0
F9 IQD Y 0 0

Monitor III utility fields
You can use the Monitor III utility to customize the CHANNEL report in a way that the following
additional values are shown.

The following fields are used for HiperSockets:

WRITE (B/SEC) PART. This is the data transfer rates from the channel to the control
unit for this partition.

TOTAL. This is the data transfer rates from the channel to the control
unit for the CPC.

MESSAGE RATE PART. This is the rate of messages sent by this partition.

TOTAL. This is the rate of messages sent by the CPC.

MESSAGE SIZE PART. This is the average size of messages sent by this partition.

TOTAL. This is the average size of messages sent by the CPC.

SENT FAIL PART. This is the rate of messages sent by this partition that failed.

RECEIVE FAIL PART. This is the rate of messages (received by this partition) that
failed.

TOTAL. This is the rate of messages (received by the CPC) that failed.

References

For more information, see z/OS Resource Measurement Facility Report Analysis,
SC33-7991.
Appendix A. Gathering statistics in a HiperSockets environment 149

150 IBM HiperSockets Implementation Guide

Appendix B. IBM z/OS Sysplex subplexing
and HiperSockets

IBM z/OS Communications Server enables you to subdivide a sysplex network into multiple
subplex scopes from a sysplex networking function perspective. With subplexing, you are able
to build security zones. Therefore, only members in the same security zone can communicate
with each other.

This appendix describes how DYNAMICXCF, IBM System z HiperSockets, and virtual local
area network (VLAN) technology can be used to provide such a subplex communication
environment.

B

© Copyright IBM Corp. 2013, 2014. All rights reserved. 151

Sysplex subplexing

HiperSockets can also improve TCP/IP communications in a sysplex environment when the
DYNAMICXCF facility is used. When a DYNAMICXCF HiperSockets device and link are
activated, a subnetwork route is created across the HiperSockets link. The subnetwork is
created by using the DYNAMICXCF IP address and mask. See 3.3, “DYNAMICXCF
HiperSockets implementation” on page 36 for more information about how to set up
DYNAMICXCF for HiperSockets.

IBM z/OS Communications Server enables you to subdivide a sysplex network into multiple
subplex scopes from a sysplex networking function perspective. For example, some Virtual
Telecommunications Access Method (VTAM) and Transmission Control Protocol/Internet
Protocol (TCP/IP) instances in a sysplex might belong to one subplex, and other VTAM or
TCP/IP instances in the same sysplex might belong to different subplexes.

Before subplexing, VTAM and TCP/IP Sysplex functions were deployed Sysplex-wide, and
users had to implement complex resource controls and disable many of the dynamic XCF and
routing functions to support multiple security zones. For example, as shown in Figure B-1 on
page 153, TCP/IP stacks access different networks with diverse security requirements in the
same Sysplex:

� In the top configuration, two TCP/IP stacks in the left LPARs access an internal network,
and the TCP/IP stacks in the right two LPARs access the external network. Presumably,
the security requirements include isolating external traffic from the internal network.
However, all of the TCP/IP stacks in the Sysplex can dynamically establish connectivity
with all of the other TCP/IP stacks in the Sysplex.

� In the bottom configuration, TCP/IP stacks in the same LPAR have different security
requirements. The first stack in each LPAR connects to the internal network, and the
second stack connects to the external network. Through the IUTSAMEH connection, the
two stacks in each LPAR can dynamically establish connectivity with each other, possibly
violating security policies.
152 IBM HiperSockets Implementation Guide

Figure B-1 shows examples of Sysplex connectivity with different security requirements.

Figure B-1 Sysplex connectivity - examples

With subplexing, you are able to build security zones. Only members in the same security
zone can communicate with each other. Subplex members are VTAM nodes and TCP/IP
stacks that are grouped in security zones to isolate communication.

Concept of subplexing
As cited, a subplex is a subset of a Sysplex that consists of selected members. Those
members are connected and communicate through dynamic XCF groups to each other, using
the following methods:

� XCF links (for cross-system IP and VTAM connections)
� IUTSAMEH (for IP connections in an LPAR)
� HiperSockets (IP connections cross-LPAR in the same server)

Internal Network External Network
(e.g. Internet)

Appl1 Appl2

TCPIPA

Appl3 Appl4

TCPIPB

VTAM
z/OS LPAR

Appl1 Appl2

TCPIPA

Appl3 Appl4

TCPIPB

VTAM
z/OS LPAR

IUTSAMEH IUTSAMEH

XCFHiperSockets

 Communications with all TCP/IP
 stacks, including via IUTSAMEH

Multi-purpose LPARs
with dual TCP/IP stacks

XCFHiperSockets

External Network
(e.g. Internet)

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

Internal Network

 Communications with all TCP/IP stacks
Dedicated LPARs with
single TCP/IP stacks
Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 153

Subplexes do not communicate with members outside the subset of the Sysplex. For
example, in Figure B-2, TCP/IP stacks with connectivity to the internal network can be
isolated from TCP/IP stacks connected to external network using subplexing.

Figure B-2 Subplexing multiple security zones

TCP/IP stacks are defined as members of a subplex group with a defined group ID. For
example, in Figure B-2, TCP/IP stacks in subplex 1 are able to communicate only with stacks
in the same subplex group. They are not able to communicate with stacks in subplex 2.

In an environment where a single LPAR has access to internal and external networks over
two TCP/IP stacks, those stacks are assigned to two different subplex group IDs. Even though
IUTSAMEH is the communication method, it is controlled automatically through the
association of subplex group IDs, therefore creating two separate security zones in the LPAR.

Suggestion: Network connectivity provided through an OSA port in a multiple security
zone environment must not be shared across different subplex groups. The OSA ports
ought to be physically isolated or logically separated using firewall and VLAN technologies.

Dedicated LPARs with
single TCP/IP stacks

External Network
(e.g. Internet)

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

z/OS LPAR

Appl1 Appl2

TCPIP

VTAM

Internal Network

External Network
(e.g.Internet)

VTAM VTAM

z/OS LPAR

Appl3 Appl4

TCPIPB

 Subplex 2

Appl3 Appl4

TCPIPB

 Subplex 2

Appl1 Appl2

TCPIPA

Appl1 Appl2

TCPIPA

 Subplex 1 Subplex 1

IUTSAMEH

 Communications
 within same Subplex

 VLAN IDs may be
associated with Subplex

 VLAN IDs may be
associated with Subplex

No communications to
dissimilar Subplexes

Internal Network

IUTSAMEH

No communications to
dissimilar Subplexes

HiperSockets XCF

 Subplex 2 Subplex 1

HiperSockets

Multi-purpose LPARs
with dual TCP/IP stacks

z/OS LPAR

XCF
154 IBM HiperSockets Implementation Guide

Subplex implementation environment

Follow these steps to configure the test environment to enable IP subplexing using
DYNAMICXCF and HiperSockets, as shown in Figure B-3:

1. Configure stacks TCPIPD on LPAR A23 and TCPIPD LPAR A24 to be part of subplex 11.
2. Configure stacks TCPIPE on LPAR A24 and LPAR A25 to be part of subplex 22.

To implement subplexing, Configure the environment according to the following guidelines:

� Because a subplex uses DYNAMICXCF, the VTAM IQDCHPID and XCFINIT parameters
must be specified.

� The XCFGRPID and IQDVLANID parameters of the GLOBALCONFIG statements must be
specified for each TCP/IP stack participating in the subplex using the HiperSockets
connection.

� All TCP/IP stacks in the same subplex must have the same TCP/IP XCFGRPID.

� TCP/IP stacks in the same subplex using the same HiperSockets connection must have
the same VLANID to establish connectivity.

� When defining only a TCP/IP subplex, a default VTAM subplex is defined automatically.

� A TCP/IP subplex uses VTAM XCF support for DYANMICXCF connectivity, therefore, a
TCP/IP stack cannot span different VTAM subplexes. In this environment, the
automatically created VTAM subplex consists of all of the nodes in this sysplex, so the
TCP/IP subplexes do not span different VTAM subplexes.

Figure B-3 Sysplex subplex

HiperSockets channel F3

z/OS LPAR z/OS LPAR z/OS LPAR

VTAM
SC30

VTAM
SC31

VTAM
SC32

VTAM Subplex

TCP/IP D
192.0.11.4

TCP/IP E
192.0.22.5

TCP/IP D
192.0.11.5

TCP/IP E
192.0.22.6

IP Subplex 11

IP Subplex 22

XCFGRPID:(default to cp)

XCFGRPID:11

XCFGRPID:22

IQDVLANID:11

IQDVLANID:22

CF38 CF39
Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 155

XCF group names
Basically, XCF group names for subplexes are created through the XCFGRPID parameter for
the VTAM and TCP/IP environment:

� To define a VTAM subplex, use the XCFGRPID parameter in the VTAM start option. For
detailed information about group and structure names, see SNA Network Implementation
Guide, SC31-8777.

� To define a TCP/IP subplex, use the XCFGRPID parameter on the GLOBALCONFIG
statement in the TCP/IP profile.

For TCP/IP, both the VTAM group ID suffix and the TCP group ID suffix will be used to build
the TCP/IP group name. This group name is also used to join the Sysplex. Remember, when
starting TCP/IP under Sysplex Autonomics control in previous z/OS releases, the stack joined
the Sysplex group with the name EZBTCPCS. You can verify this using the D XCF,GROUP
command.

EZBTCPCS is the default TCP/IP group name. Actually, the format of this group name is
EZBTvvtt. The last four characters have the following meanings:

� In this example, vv is a 2-digit VTAM group ID suffix, specified on the VTAM XCFGRPID start
option. The default is CP if not specified.

� Likewise, tt is a 2-digit TCP group ID suffix, specified on the XCFGRPID parameter of the
GLOBALCONFIG statement. The default is CS if not specified.

In this test case, XCFGRPID 11 was defined for TCP/IP and an XCFGRPID was defined for VTAM.
The result was an XCF group name of EZBTCP11.

You might recognize that both XCFGRPIDs are important in creating the subplex group name.
Be aware that changing the VTAM XCFGRPID will change the XCF group name for the TCP/IP
stack. Therefore, the stack will no longer be a member of the previous TCP/IP subplex group.

For example, in this environment, no VTAM XCFGRPID was defined and XCFGRPID 11 was
specified for TCP/IP. Therefore, the XCF group name was dynamically built as EZBTCP11. If
you add XCFGRPID=02 to the VTAM start option, then the new XCF group name will be
EZBT0211.

Although nothing has been changed in the TCP/IP profile definitions in this example, the
TCP/IP stack with the new subplex group name is no longer a member of the previous
subplex (EZBTCP11). Therefore, the TCP/IP stack will lose the connectivity to the subplex.

Implementation steps

Perform the following steps to implement Sysplex subplex over HiperSockets:

1. Define the HiperSockets channel, control unit, and device.
2. Configure VTAM to specify XCFINIT=YES and to specify the IQDCHPID parameter.
3. Add the DYNAMICXCF statement to the TCP/IP profile.
4. Add XCFGRPID and IQDVLANID to the GLOBALCONFIG statement in the tcp profile.
5. Start the TCP/IP stacks.

This section uses the same definitions shown in 3.3, “DYNAMICXCF HiperSockets
implementation” on page 36. No additional changes were required. We verified that
channel-path identifier (CHPID) F7 and addresses in the range EB00-EB1F were online.
156 IBM HiperSockets Implementation Guide

VTAM configuration setup for Sysplex subplex

Subplexing requires VTAM to be configured to use XCF. XCFINIT=YES must be coded as a
VTAM parameter 1. The HiperSockets channel used for the TCP/IP DYNAMICXCF
connection must be specified in the IQDCHPID parameter. This example uses CHPID F7 2.
Specify the following values in the VTAM start options member (ATCSTRxx) for each of the
VTAM nodes, as shown in Example B-1.

Example B-1 VTAM configuration changes

IQDCHPID=F7, 2
XCFINIT=YES 1

The IQDCHPID value can be dynamically changed using the following command, where xx
specifies the HiperSockets channel:

V NET,VTAMOPTS,IQDCHPID=xx

Enable the VTAM XCFGRPID to default for all VTAM nodes in the sysplex. The XCFINIT=YES
statement causes the creation of a VTAM XCF group. Because you did not specify a VTAM
XCFGRPID, the default name for the VTAM XCF group is ISTXCF. This XCF group is the default
VTAM subplex. In this test environment, this default VTAM XCF group includes all VTAM
nodes in the sysplex.

TCP/IP configuration setup for Sysplex subplex

Configure two IP subplexes in a single VTAM subplex:

� TCPIPD on LPAR A23 and TCPIPD on LPAR A24 are defined to subplex 11.
� TCPIPE on LPAR A24 and TCPIPE on LPAR A25 are defined to subplex 22.

For IP stacks to communicate, they must be in the same subplex, so the XCFGRPID must be
the same. Additionally, because you are using HiperSockets as the link, the IQDVLANID must
also be the same. To configure the subplex, follow these steps:

1. Update the tcp profile for TCPIPD on LPAR A23, as shown in Example B-2.

2. Add the XCFGRPID with a value of 11 and an IQDVLANID of 11 1. These two values do not
have to match. XCFGRPID supports values from 2 to 31, and IQDVLANID supports values
from 1 to 4096.

3. Because Sysplex subplexing requires that the TCP/IP stack be configured for
DYNAMICXCF, add the DYNAMICXCF parameter to the IPCONFIG statement with a host
address, subnet mask, and cost metric 2.

Example B-2 LPAR A23 TCPIPD tcp profile configuration

GLOBALCONFIG NOTCPIPSTATISTICS XCFGRPID 11 IQDVLANID 11 1
IPCONFIG DYNAMICXCF 192.0.11.4 255.255.255.0 1 2
Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 157

4. Update TCPIPD on LPAR A24, as shown in Example B-3. Note that TCPIPD on LPAR A23
and TCPIPD on LPAR A24 have matching values for XCFGRPID, so these two stacks will be
part of the same XCF group. The XCF created EZBTCP11. Because these two stacks
also have matching IQDVLANID parameters, they will be able to establish communication
over the HiperSockets channel defined by the VTAM IQDCHPID statement F7.

Example B-3 LPAR A24 TCPIPD tcp profile configuration

GLOBALCONFIG NOTCPIPSTATISTICS XCFGRPID 11 IQDVLANID 11
IPCONFIG DYNAMICXCF 192.0.11.5 255.255.255.0 1

5. TCPIPE on LPAR A24 and LPAR A25 will be defined as subplex 22. Update the tcp profile
on LPAR A24 shown in Example B-4. Add the XCFGRPID and IQDVLANID parameters to the
GLOBALCONFIG statement:

a. Assign a value of 22 for XCFGRPID and a value of 22 for IQDVLANID 1.

b. Also add the required DYNAMICXCF parameter to the IPCONFIG statement along with
the host IP address, subnet mask, and cost metric 2.

Example B-4 LPAR A24 TCPIPE tcp profile configuration

GLOBALCONFIG NOTCPIPSTATISTICS XCFGRPID 22 IQDVLANID 22
IPCONFIG DYNAMICXCF 192.0.22.5 255.255.255.0 1 2

6. Update TCPIPE’s tcp profile on LPAR A25, as shown in Example B-5. Because TCPIPE
on LPAR A24 and LPAR A25 have matching XCFGRPIDs, they will join the same sysplex
group. The XCF group created is EZBTCP22. Because these two stacks also have
matching IQDVLANID parameters, they will be able to establish communication over the
HiperSockets channel defined by the VTAM IQDCHPID statement, F7.

Example B-5 LPAR A25 TCPIPE tcp profile configuration

GLOBALCONFIG NOTCPIPSTATISTICS XCFGRPID 22 IQDVLANID 22
IPCONFIG DYNAMICXCF 192.0.22.6 255.255.255.0 1

Verification of the IP subplex over HiperSockets

This section provides information about the verification of the IP subplex over HiperSockets.

Verify the VTAM setup before starting the IP stack
Before starting a TCP/IP stack to use the DYNAMICXCF connection, verify that the VTAM
configuration is active:

1. Use the display VTAM options command to make sure that IQDCHPID=F7 1 and
XCFINIT=YES 2 were defined.

2. Issue the command to each VTAM node in the sysplex to verify that the required
parameters were correct. Note that you did not specify a value for XCFGRPID 3. See
Example B-6.

Example B-6 Vtamopts display (partial display)

-D NET,VTAMOPTS
 IST097I DISPLAY ACCEPTED

IST1189I IQDCHPID = F7 1 IQDIOSTG = 7.8M(126 SBALS)
IST1189I XCFGRPID = ***NA*** 3 XCFINIT = YES 2
158 IBM HiperSockets Implementation Guide

TCP/IP startup
After the configuration changes are made and the VTAM configuration has been verified, the
IP stacks can be started. The first IP stack in a subplex that starts will cause the creation of an
XCF group.

From the SYSLOG message generated at the IP stacks initialization, you can verify that
DYNAMICXCF is enabled 1, that IP stack has joined its sysplex group 2, and that the
DYNAMICXCF HiperSockets IUTIQDIO device has successfully started 3. The SYSLOG
messages when TCPIPD is started on LPAR A23 are shown in Example B-7.

Example B-7 TCP syslog messages

...
EZZ0624I DYNAMIC XCF DEFINITIONS ARE ENABLED 1
...
EZD1176I TCPIPD HAS SUCCESSFULLY JOINED THE TCP/IP SYSPLEX GROUP
EZBTCP11 2
...
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE IUTIQDIO 3
...

Verify the DYNAMICXCF device and link
To verify the status of devices and links defined to the TCP/IP stack, follow these steps:

1. Use the D TCPIP,procname,NETSTAT,DEVLINKS command to request NETSTAT information.
The Netstat device display shows the HiperSockets connection with VLANID 11 1, which
was what was specified for TCPIPD’s IQDVLANID parameter, as shown in Example B-8.

Example B-8 Netstats device display showing IUTIQDIO (HiperSockets) VLANID

-D TCPIP,TCPIPD,NETSTAT,DEV
 EZD0101I NETSTAT CS V1R8 TCPIPD 952
DEVNAME: IUTIQDIO DEVTYPE: MPCIPA
 DEVSTATUS: READY
 LNKNAME: IQDIOLNKC0000B04 LNKTYPE: IPAQIDIO LNKSTATUS: READY
 NETNUM: N/A QUESIZE: N/A
 IPBROADCASTCAPABILITY: NO
 CFGROUTER: NON ACTROUTER: NON
 ARPOFFLOAD: YES ARPOFFLOADINFO: YES
 ACTMTU: 8192
 VLANID: 11 1 VLANPRIORITY: DISABLED
 DYNVLANREGCFG: NO DYNVLANREGCAP: NO
 READSTORAGE: GLOBAL (2048K)
 SECCLASS: 255
 BSD ROUTING PARAMETERS:
 MTU SIZE: 8192 METRIC: 01
 DESTADDR: 0.0.0.0 SUBNETMASK: 255.255.255.0
 MULTICAST SPECIFIC:
 MULTICAST CAPABILITY: YES
 GROUP REFCNT

----- ------
 224.0.0.1 0000000001
 LINK STATISTICS:
 BYTESIN = 316
 INBOUND PACKETS = 1
 INBOUND PACKETS IN ERROR = 0
Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 159

 INBOUND PACKETS DISCARDED = 0
 INBOUND PACKETS WITH NO PROTOCOL = 0
 BYTESOUT = 316
 OUTBOUND PACKETS = 1
 OUTBOUND PACKETS IN ERROR = 0
 OUTBOUND PACKETS DISCARDED = 0

Verify transport resource list element definitions
To verify the transport resource list element (TRLE) definitions, follow these steps:

1. Use the D NET,TRL,TRLE=trle_name command to verify that the dynamically created
TRLE, IUTIQDIO, for the HiperSockets connection, was active 1, as shown in
Example B-9.

Example B-9 IUTQDIO TRLE display

D NET,TRL,TRLE=IUTIQDIO
IST097I DISPLAY ACCEPTED
IST075I NAME = IUTIQDIO, TYPE = TRLE
IST1954I TRL MAJOR NODE = ISTTRL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV 1
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = QDIO MPCUSAGE = SHARE
IST1716I PORTNAME = IUTIQDF7 LINKNUM = 0 OSA CODE LEVEL = ...(
IST1577I HEADER SIZE = 4096 DATA SIZE = 16384 STORAGE = ***NA***
IST1221I WRITE DEV = EB01 STATUS = ACTIVE STATE = ONLINE
IST1577I HEADER SIZE = 4092 DATA SIZE = 0 STORAGE = ***NA***
IST1221I READ DEV = EB00 STATUS = ACTIVE STATE = ONLINE
IST1221I DATA DEV = EB02 STATUS = ACTIVE STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1717I ULPID = TCPIPD
IST1815I IQDIO ROUTING DISABLED
IST1918I READ STORAGE = 2.0M(126 SBALS)
IST1757I PRIORITY1: UNCONGESTED PRIORITY2: UNCONGESTED
IST1757I PRIORITY3: UNCONGESTED PRIORITY4: UNCONGESTED
IST1801I UNITS OF WORK FOR NCB AT ADDRESS X'0EAEC010'
IST1802I P1 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P2 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P3 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1802I P4 CURRENT = 0 AVERAGE = 0 MAXIMUM = 0
IST1221I DATA DEV = EB03 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1221I DATA DEV = EB04 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1221I DATA DEV = EB05 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1221I DATA DEV = EB06 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1221I DATA DEV = EB07 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1221I DATA DEV = EB08 STATUS = RESET STATE = N/A
IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST1221I DATA DEV = EB09 STATUS = RESET STATE = N/A
160 IBM HiperSockets Implementation Guide

IST1724I I/O TRACE = OFF TRACE LENGTH = *NA*
IST314I END

Verify XCF groups
To verify the XCF groups, follow these steps:

1. Verify that the expected XCF groups have been created by issuing the D XCF,GROUP
command, as shown in Example B-10. Subplex 11 (TCPIPD on LPAR A23 and LPAR A24)
specified XCFGRPID on the tcp profile GLOBALCONFIG statement. So you expected an
XCF group name of EZBTCP11 (CP is the default if no VTAM XCFGRPID value is specified)
1. For subplex 22 (TCPIPE on LPAR A24 and LPAR A25), you expected a group name of
EZBTCP22, because 22 was specified on the GLOBALCONFIG XCFGRPID parameter 2.

Example B-10 Display of XCF groups

D XCF,GROUP
IXC331I 16.40.41 DISPLAY XCF 917
 GROUPS(SIZE): COFVLFNO(3) DBCDU(3) EZBTCPCS(6)
 EZBTCP11(2) 1 EZBTCP22(2) 2 IDAVQUI0(3)
 IGWXSGIS(6) IOEZFS(3) IRRXCF00(3)
 ISTCFS01(3) ISTXCF(3) IXCLO00A(3)
 IXCLO00B(3) IXCLO006(3) SYSATB01(2)
 SYSATB02(2) SYSATB03(2) SYSBPX(3)
 SYSCNZMG(3) SYSDAE(4) SYSENF(3)
 SYSGRS(3) SYSGRS2(1) SYSIEFTS(3)
 SYSIGW00(3) SYSIGW01(3) SYSIGW02(3)
 SYSIGW03(3) SYSIKJBC(3) SYSIOS01(3)
 SYSJES(3) SYSMCS(8) SYSMCS2(8)
 SYSRMF(3) SYSTTRC(3) SYSWLM(3)

 SYSXCF(3) WTSCPLX5(3) WTSC77(1)

2. The D XCF,GROUP,GROUPNAME command will list the members of the XCF group, as shown
for EZBTCP11 in Example B-11.

Example B-11 Display of XCF group EZBTCP11

D XCF,GROUP,EZBTCP11
IXC332I 16.44.32 DISPLAY XCF 930
 GROUP EZBTCP11: SC30TCPIPD SC31TCPIPD

3. Issue the D XCF,GROUP,GROUPNAME command to verify the member list of EZBTCP22, as
shown in Example B-12.

Example B-12 Display of XCF group EZBTCP22

D XCF,GROUP,EZBTCP22
IXC332I 16.44.32 DISPLAY XCF 930
 GROUP EZBTCP22: SC31TCPIPE SC32TCPIPE

4. The D TCPIP command can also be issued to display the sysplex group that a specific IP
stack belongs to, as shown in Example B-13.

Example B-13 Display of Sysplex group to which an IP stack belongs

-D TCPIP,TCPIPD,SYSPLEX,GROUP
 EZZ8270I SYSPLEX GROUP FOR TCPIPD AT SC30 IS EZBTCP11
...
-RO SC31,D TCPIP,TCPIPD,SYSPLEX,GROUP
Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 161

 EZZ8270I SYSPLEX GROUP FOR TCPIPD AT SC31 IS EZBTCP11
...
-RO SC31,D TCPIP,TCPIPE,SYSPLEX,GROUP
 EZZ8270I SYSPLEX GROUP FOR TCPIPE AT SC31 IS EZBTCP22
...
-RO SC32,D TCPIP,TCPIPE,SYSPLEX,GROUP
 EZZ8270I SYSPLEX GROUP FOR TCPIPE AT SC32 IS EZBTCP22

Verify XCFGRPID and IQDVLANID
To verify the parameters, follow these steps:

1. The Netstat config display shows the XCFGRPID and IQDVLANID for stack D, as shown in
Example B-14. Verify that the IQDVLANID and XCFGRPID values displayed match what was
specified on the GLOBALCONFIG statement.

Example B-14 Netstat config display with XCFGRPID and IQDVLANID for TCPIPD

-D TCPIP,TCPIPD,NETSTAT,CONFIG
 EZD0101I NETSTAT CS V1R8 TCPIPD 946
GLOBAL CONFIGURATION INFORMATION:
 TCPIPSTATS: NO ECSALIMIT: 0000000K POOLLIMIT: 0000000K
 MLSCHKTERM: NO XCFGRPID: 11 IQDVLANID: 11
 SEGOFFLOAD: YES SYSPLEXWLMPOLL: 060
 SYSPLEX MONITOR:

2. The Netstat config display shows the XCFGRPID and IQDVLANID for stack E, as shown in
Example B-15.

Example B-15 Netstat config display with XCFGRPID and IQDVLANID for TCPIPE

-RO SC31,D TCPIP,TCPIPE,NETSTAT,CONFIG
 EZD0101I NETSTAT CS V1R8 TCPIPE 940
GLOBAL CONFIGURATION INFORMATION:
 TCPIPSTATS: NO ECSALIMIT: 0000000K POOLLIMIT: 0000000K
 MLSCHKTERM: NO XCFGRPID: 22 IQDVLANID: 22
 SEGOFFLOAD: YES SYSPLEXWLMPOLL: 060

IP subplex connectivity test
Test connectivity between the IP stacks to verify that the stacks cannot communicate across
subplex boundaries:

1. Attempt a ping command using TCPIPD on LPAR A23 to LPAR A24 (same subplex 11).
The results are successful, as shown in Example B-16.

Example B-16 Ping attempt to same subplex (subplex 11)

===> ping 192.0.11.5 (tcp tcpipd)
CS V1R8: Pinging host 192.0.11.5
Ping #1 response took 0.000 seconds.

2. Attempt a ping command using TCPIPD on LPAR A23 to LPAR A24 (subplex 11 to
subplex 22). This fails, as shown in Example B-17.

Example B-17 Ping attempt to another subplex (subplex 11 to subplex 22)

===> ping 192.0.22.5 (tcp tcpipd)
CS V1R8: Pinging host 192.0.22.5
162 IBM HiperSockets Implementation Guide

sendto(): EDC8130I Host cannot be reached.

Also verify that multiple stacks in the same z/OS LPAR but in different subplexes cannot
use an IUTSAMEH device to communicate. In this example, A24 has two IP stacks,
TCPIPD in subplex 11 and TCPIPE in subplex 22.

3. First, display the status of the IUTSAMEH TRLE, as shown in Example B-18. You see that
stacks TCPIPE and TCPIPE are defined to this link.

Example B-18 Display of IUTSAMEH dynamic TRLE

RO SC31,D NET,TRL,TRLE=IUTSAMEH
IST097I DISPLAY ACCEPTED
IST075I NAME = IUTSAMEH, TYPE = TRLE
IST1954I TRL MAJOR NODE = ISTTRL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES
IST1715I MPCLEVEL = HPDT MPCUSAGE = SHARE
IST1717I ULPID = TCPIPE
IST1717I ULPID = TCPIPD
IST314I END

4. Attempt to ping across the stacks, which will use the IUTSAMEH rather than the IUTIQDIO
(HiperSockets) link and fail, as shown in Example B-19.

Example B-19 Ping attempts between TCPIPD and TCPIPE on LPAR A24

PING 192.0.22.5 (TCP TCPIPD)
CS V1R8: Pinging host 192.0.22.5
sendto(): EDC8130I Host cannot be reached.
READY
PING 192.0.11.5 (TCP TCPIPE)
CS V1R8: Pinging host 192.0.11.5
sendto(): EDC8130I Host cannot be reached.
READY

References

� IBM z/OS V2R1 Communications Server TCP/IP Implementation Volume 1: Base
Functions, Connectivity, and Routing, SG24-8096

� IBM System z Connectivity Handbook, SG24-5444

� z/OS Communications Server, IP Configuration Guide, SC31-8775

� z/OS Communications Server, IP Configuration Reference, SC31-8776

� z/OS Communications Server, SNA Resource Definition Reference, SC31-8778

These publications are available online from IBM:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv
Appendix B. IBM z/OS Sysplex subplexing and HiperSockets 163

http://www.ibm.com/servers/eserver/zseries/zos/bkserv

164 IBM HiperSockets Implementation Guide

Appendix C. Useful commands

This appendix lists the commands that were used to set up and verify the various local area
network (LAN) environments described in this IBM Redbooks publication.

C

© Copyright IBM Corp. 2013, 2014. All rights reserved. 165

IBM z/OS commands
The following z/OS commands were used in this publication. For a complete list and
description of Transmission Control Protocol/Internet Protocol (TCP/IP) Console and Time
Sharing Option (TSO) commands, see IP Systems Administrator’s Commands, SC31-8781.

To enter the commands in Table C-1, follow these steps:

1. In the Master Application Menu (panel you see after logon) enter SD to go to the System
Display and Search Facility.

2. Enter ULOG in the System Display and Search Facility.

3. Type a backslash (/) followed by one of the listed commands.

Table C-1 IBM z/OS TCP/IP operator commands

Command Description

D U,,,dddda,nnn Gives the status of the device or devices

D U,,ALLOC,dddd,nnnb Shows to whom the device or devices are allocated

D M=DEV(dddd) Gives the status of the paths defined to a device

D M=CHP Gives the status and type of all CHPIDs defined to
the z/OS

D M=CHP(ccc) Gives the status of the path to the defined devices

D A,L List of the jobs running in the system

V dddd-dddd,ONLINE Varies a device or range of devices online

V dddd-dddd,OFFLINE Varies a device or range of devices offline

CF CHP(cc),ONLINE Configures a channel-path identifier (CHPID) online

CF CHP(cc),OFFLINE Configures a CHPID offline

D TCPIP Lists TCP/IP stacks that have started since the last
initial program load (IPL) and stack status

D TCPIP,tcpproc,NETSTAT,ARP Displays contents of Address Resolution Protocol
(ARP) cache for the TCP/IP stack

D TCPIP,tcpproc,NETSTAT,DEV Status of a device or devices, or interface or
interfaces, defined in TCP/IP stack profile

D TCPIP,tcpproc,NETSTAT,HOME Displays the home IP address or addresses defined
in the TCP/IP stack profile

D TCPIP,tcpproc,NETSTAT,ND Displays the contents of the IPv6 neighbor cache

D TCPIP,tcpproc,NETSTAT,ROUTE Displays the routing information for the TCP/IP stack

D TCPIP,tcpproc,OSAINFO,INTFN= Displays information for an active
IPAQENET/IPAQENET6 interface.

V TCPIP,tcpproc,PURGECACHE,linkname Purges ARP cache for the specified adapter
(linkname or intfname from NETSTAT,DEV)

V TCPIP,tcpproc,START,tcpipdev Starts a device or interface defined in a TCP/IP stack

V TCPIP,tcpproc,STOP,tcpipdev Stops a device or interface defined in a TCP/IP stack

a. dddd indicates the device number.
166 IBM HiperSockets Implementation Guide

Table C-2 TCP/IP TSO commands

For a complete list and description of Virtual Telecommunications Access Method (VTAM)
commands, in addition to those shown in Table C-3, see SNA Operation, SC31-8779.

Table C-3 VTAM commands

b. nnn indicates the number of devices to be displayed.
c. cc indicates the CHPID number.

Table C-2 lists additional TCP/IP TSO commands.

Command Description

NETSTAT ? Displays Netstat options

NETSTAT ARP ALL Displays ARP cache

NETSTAT DEV Displays the TCP/IP devices and links

NETSTAT HOME Displays the TCP/IP Home IP addresses

NETSTAT GATE Displays the TCP/IP Gateway addresses

PING ipaddress Performs one PING to specified address

TRACERTE ipaddress Traces router hops to a specified address

OBEYFILE Executes selected TCP/IP profile statements

Command Description

D NET,VTAMOPTS Displays the current VTAM start options

F vtamname,VTAMOPTS,
optionname=value

Modifies the current VTAM options (vtamname is the STC
name; optionname is from VTAMOPTS.)

D NET,MAJNODES Displays the VTAM major nodes

D NET,ID=mnodename,E Displays information about a specified ID (for example, a
Line, PU, or LU)

D NET,TRL Displays the list of TRLEs

D NET,TRL,TRLE=trlename Displays the status of a TRLE

V NET,ID=ISTTRL,ACT,UPDATE=ALL Deletes inactive TRLEs from the TRL list

V NET,ID=mnodename,ACT Activates a major node

V NET,ID=mnodename,INACT Deactivates a major node

Important: If your static transport resource list element (TRLE) definition is incorrect,
remember that an active TRLE entry can not be deleted. In such cases, you can use these
steps:

1. Vary activate the TRL node with a blank TRLE to cause the deletion of previous entries.
2. Code the correct TRL with correct TRLE entries and definition.
3. Vary activate this corrected TRL/TRLE node.
Appendix C. Useful commands 167

Editing network profiles in z/OS

For somebody not familiar with z/OS, its concepts, panels, and tools might be quite confusing.
The following section describes step-by-step how to edit a network profile. If you are familiar
with z/0S already, this information might be obvious to you.

Multiple TCPI/IP stacks

In z/OS you can define multiple TCP/IP processes that operate independently. These
processes are called TCPIP stacks. You first have to determine which TCPIP stack you want
to work with. In this example you choose TCPIPA.

Find the active profile

To find the active profile, follow these steps:

1. Log on. After logon you will see the Master Application Menu, as shown in Example C-1.

Example C-1 IBM z/OS Master Application Menu

Master Application Menu - SC30
 Opt => sd 1 Sc => HALF

 USERID - AWINTER
 Enter SESSION MANAGER Mode ===> NO (YES or NO) TIME - 07:27

 AO AOC - Automated Operations Control/MVS Dialogs
 CN CONS - Console Display and Search Facility
 CP CPSM - CICSPlex SM
 EJ EJES - (E)JES from Phoenix Software
 HC HCD - Hardware Configuration Definition
 IH IHV - ESCON Manager
 IP IPCS - Interactive Problem Control Facility
 IS ISMF - Interactive Storage Management Facility
 LR LOGREC - Interactive LOGR (CF) LOGREC Viewer
 OL OPERLOG - Interactive OPERLOG (Syslog) Browser
 WLM WLM - WLM Administrative Dialog
 TWS TWS - Tivoli Workload Scheduler
 TWSA TWS - Tivoli Workload Scheduler (TWSA)
 P PDF - ISPF/Program Development Facility
 R RACF - Resource Access Control Facility
 SD SDSF - System Display and Search Facility
 SJ J3SD - System Display and Search Facility (JES3)
 SM SMP/E - SMP/E Dialogs
 PA DB2PA - DB2 Performance Analyzer 1.1.0
 PM DB2PM - DB2PM 6.1
 P7 DB2PM - DB2PM 7.1
 PE DB2PE - DB2PE 1.1
 PES DB2PES - DB2PE 1.1 PERFORMANCE EXPERT SERVER ADMINISTRATOR
 Q7 QMF - QMF 7.1 SSN DB2G
 8A DB8A - DB2 V8 SSN -DB8A beta !!
 DBCD DBCD - DB2 V8 GROUP DCD1, DCD2, DCD3
 QMF8A QMF V8 - QMF for DB8A
 8B DB8B - DB2 V8 SSN -DB8B QCC
 8E DB8E - DB2 V8 SSN -DB8E
168 IBM HiperSockets Implementation Guide

 8F D8FG - DB2 V8 SSN -D8FG (D8F1, D8F2 data sharing)
 8Q DB8Q - DB2 V8 SSN -DB8Q
 QMF8Q QMF V8 - QMF for DB8Q
 8X DB8X - DB2 V8 SSN -DB8X
 9K D9KG - DB2 V9 SSN -D9KG (D9K1, D9K2 data sharing)

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

2. 1 Enter option sd to go to the System Display and Search Facility shown in Example C-2.
Note that upper or lower case does not matter in z/OS.

Example C-2 System Display and Search Facility

 Display Filter View Print Options Search Help

 HQX7790 ----------------- SDSF PRIMARY OPTION MENU

 COMMAND INPUT ===> da 1 SCROLL ===> CSR

 DA Active users INIT Initiators
 I Input queue PR Printers
 O Output queue PUN Punches
 H Held output queue RDR Readers
 ST Status of jobs LINE Lines
 NODE Nodes
 LOG System log SO Spool offload
 SR System requests SP Spool volumes
 MAS Members in the MAS NS Network servers
 JC Job classes NC Network connections
 SE Scheduling environments
 RES WLM resources RM Resource monitor
 ENC Enclaves CK Health checker
 PS Processes
 ULOG User session log
 END Exit SDSF

 Licensed Materials - Property of IBM

 5650-ZOS Copyright IBM Corp. 1981, 2013.
 US Government Users Restricted Rights - Use, duplication or
 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

3. 1 Enter command da to display a list of all processes (the active users), as shown in
Example C-3.

Example C-3 Display active users

Display Filter View Print Options Search Help
 --
 SDSF DA SC30 SC30 PAG 0 CPU/L/Z 1/ 1/ 0 LINE 1-5 (5)
 COMMAND INPUT ===> SCROLL ===> CSR
 NP JOBNAME StepName ProcStep JobID Owner C Pos DP Real Paging SIO
 TCPIP TCPIP TCPIP STC04733 TCPIP NS FE 7306 0.00 0.00
 TCPIPF TCPIPF TCPIPF STC04697 TCPIP NS FE 7152 0.00 0.00
Appendix C. Useful commands 169

 TCPIPE TCPIPE TCPIPE STC04854 TCPIP NS FE 6922 0.00 0.00
s 1 TCPIPA TCPIPA TCPIPA STC05215 TCPIP NS FE 6921 0.00 0.00

 TCPIPD TCPIPD TCPIPD STC05202 TCPIP NS FE 6810 0.00 0.00

4. 1 Enter s in front of TCPIPA to select TCPI/IP stack A, as shown in Example C-4.

Example C-4 Output display for TCPIPA

Display Filter View Print Options Search Help

 SDSF OUTPUT DISPLAY TCPIPA STC05215 DSID 2 LINE 0 COLUMNS 02- 81
 COMMAND INPUT ===> f profile= 1 SCROLL ===> CSR
********************************* TOP OF DATA

 J E S 2 J O B L O G -- S Y S T E M S C 3 0 -- N O D E

07.16.46 STC05215 ---- TUESDAY, 26 NOV 2013 ----
07.16.46 STC05215 IEF695I START TCPIPA WITH JOBNAME TCPIPA IS ASSIGNED TO
U
07.16.46 STC05215 $HASP373 TCPIPA STARTED
07.16.47 STC05215 IEE252I MEMBER CTIEZB00 FOUND IN SYS1.IBM.PARMLIB
07.16.47 STC05215 IEE252I MEMBER CTIIDS00 FOUND IN SYS1.IBM.PARMLIB
07.16.47 STC05215 IEE252I MEMBER CTINTA00 FOUND IN SYS1.PARMLIB
07.16.47 STC05215 EZZ7450I FFST SUBSYSTEM IS NOT INSTALLED
07.16.49 STC05215 EZZ0162I HOST NAME FOR TCPIPA IS WTSC30A
07.16.49 STC05215 EZZ0300I OPENED PROFILE FILE DD:PROFILE
07.16.49 STC05215 EZZ0309I PROFILE PROCESSING BEGINNING FOR DD:PROFILE
07.16.49 STC05215 EZZ0318I ZE WAS FOUND ON LINE 111 AND ROUTE OR ENDROUTES WAS
07.16.49 STC05215 EZZ0318I ZE WAS FOUND ON LINE 113 AND ROUTE OR ENDROUTES WAS
07.16.49 STC05215 EZZ0316I PROFILE PROCESSING COMPLETE FOR FILE DD:PROFILE
07.16.49 STC05215 EZZ0641I IP FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED
07.16.49 STC05215 EZZ0623I PATH MTU DISCOVERY SUPPORT IS ENABLED
07.16.49 STC05215 EZZ0688I IQDIO ROUTING IS ENABLED
07.16.49 STC05215 EZZ0338I TCP PORTS 1 THRU 1023 ARE RESERVED
07.16.49 STC05215 EZZ0338I UDP PORTS 1 THRU 1023 ARE RESERVED
07.16.49 STC05215 EZZ0613I TCPIPSTATISTICS IS DISABLED
07.16.49 STC05215 EZZ4202I Z/OS UNIX - TCP/IP CONNECTION ESTABLISHED FOR
TCPIPA
07.16.49 STC05215 EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE HIPERLF0
07.16.49 STC05215 EZZ4313I INITIALIZATION COMPLETE FOR DEVICE OSA2160
07.16.49 STC05215 EZB6473I TCP/IP STACK FUNCTIONS INITIALIZATION COMPLETE.
07.16.49 STC05215 EZAIN11I ALL TCPIP SERVICES FOR PROC TCPIPA ARE AVAILABLE.
07.16.50 STC05215 EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE EZ6OSM02
07.16.51 STC05215 EZD1176I TCPIPA HAS SUCCESSFULLY JOINED THE TCP/IP SYSPLEX
GR
07.16.51 STC05215 EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE EZ6OSM01
 1 //TCPIPA JOB MSGLEVEL=1
 2 //STARTING EXEC TCPIPA,PROFILE=PROFA30D 2
 XX***
 XX* SYS1.PROCLIB(TCPIPA)
 XX***
 3 XXTCPIPA PROC PARMS='CTRACE(CTIEZB00),IDS=00',
 XX* PROFILE=PROFA&SYSCLONE.,TCPDATA=DATAA&SYSCLONE
170 IBM HiperSockets Implementation Guide

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

5. 1 Enter f profile= to find 2 in the output of TCPIPA. This tells you that the name of the
currently active profile for TCPI PA is PROFA30D.

Edit a profile

To edit a profile, follow these steps:

1. In the Master Application Menu, as shown in Example C-1 on page 168, enter option p to
go to the Interactive System Productivity Facility/Program Development Facility
(ISPF/PDF) shown in Example C-5.

Example C-5 The ISPF/Program Development Facility

Menu Utilities Compilers Options Status Help
 ••
 ISPF Primary Option Menu
 Option ===>3 1

 0 Settings Terminal and user parameters User ID . : AWINTER
 1 View Display source data or listings Time. . . : 08:16
 2 Edit Create or change source data Terminal. : 3278
 3 Utilities Perform utility functions Screen. . : 1
 4 Foreground Interactive language processing Language. : ENGLISH
 5 Batch Submit job for language processing Appl ID . : PDF
 6 Command Enter TSO or Workstation commands TSO logon : IKJACCT
 7 Dialog Test Perform dialog testing TSO prefix: AWINTER
 9 IBM Products IBM program development products System ID : SC30
 10 SCLM SW Configuration Library Manager MVS acct. : ACCNT#
 11 Workplace ISPF Object/Action Workplace Release . : ISPF 7.1
 12 z/OS System z/OS system programmer applications
 13 z/OS User z/OS user applications

 Enter X to Terminate using log/list defaults

2. 1 Enter option 3 to go to the Utilities panel shown in Example C-6.

Example C-6 Utility selection panel

Menu Help
 ••
 Utility Selection Panel
 Option ===> 4 1

 1 Library Compress or print data set. Print index listing. Print,
 rename, delete, browse, edit or view members
 2 Data Set Allocate, rename, delete, catalog, uncatalog, or display
 information of an entire data set
 3 Move/Copy Move, or copy members or data sets
 4 Dslist Print or display (to process) list of data set names.
 Print or display VTOC information
 5 Reset Reset statistics for members of ISPF library
 6 Hardcopy Initiate hardcopy output
 7 Transfer Download ISPF Client/Server or Transfer data set
 8 Outlist Display, delete, or print held job output
Appendix C. Useful commands 171

 9 Commands Create/change an application command table
 11 Format Format definition for formatted data Edit/Browse
 12 SuperC Compare data sets (Standard Dialog)
 13 SuperCE Compare data sets Extended (Extended Dialog)
 14 Search-For Search data sets for strings of data (Standard Dialog)
 15 Search-ForE Search data sets for strings of data Extended (Extended Dialog)
 16 Tables ISPF Table Utility
 17 Udlist Print or display (to process) z/OS UNIX directory list

3. 1 Enter option 4 to display the data sets shown in Example C-7.

Example C-7 Data Set List Utility

Menu RefList RefMode Utilities Help
 ss
 Data Set List Utility
 Option ===>

 blank Display data set list P Print data set list
 V Display VTOC information PV Print VTOC information

 Enter one or both of the parameters below:
 Dsname Level . . . TCPIPA.TCPPARMS 1
 Volume serial . .

 Data set list options
 Initial View Enter "/" to select option
 1 1. Volume / Confirm Data Set Delete
 2. Space / Confirm Member Delete
 3. Attrib / Include Additional Qualifiers
 4. Total / Display Catalog Name
 Display Total Tracks
 Prefix Dsname Level

 When the data set list is displayed, enter either:
 "/" on the data set list command field for the command prompt pop-up,
 an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
 "=" to execute the previous command.

4. 1 Enter TCPIPA.TCPPARMS to search for the TCPIPA data set, as shown in Example C-8.

Example C-8 Search results for TCPIPA data set

Menu Options View Utilities Compilers Help
 ss
 DSLIST - Data Sets Matching TCPIPA.TCPPARMS Row 1 of 3
 Command ===> Scroll ===> PAGE

 Command - Enter "/" to select action Message Volume

 e 1 TCPIPA.TCPPARMS COMCAT
 TCPIPA.TCPPARMS.GESESC30 COMCAT
 TCPIPA.TCPPARMS.OLD COMCAT
 ***************************** End of Data Set list

172 IBM HiperSockets Implementation Guide

5. 1 Enter e in front of the TCPIPA.TCPPARMS data set to edit it, as shown in Example C-9.

Example C-9 Content of TCPIPA.TCPPARMS data set

Menu Functions Confirm Utilities Help
 ss
 EDIT TCPIPA.TCPPARMS Row 0000084 of 0000161
 Command ===> l profa 1 Scroll ===>
PAGE
 Name Prompt Size Created Changed ID
 _________ PAGENV30 5 2007/09/12 2007/09/14 11:16:54 CS02
 _________ PROFAAAA
 _________ PROFAD 270 2007/09/05 2007/09/05 14:03:33 CS02
 _________ PROFAGS 473 2013/07/18 2013/08/09 10:58:24 CS05
 _________ PROFAGS1 2 2013/07/24 2013/07/24 15:28:46 CS05
 _________ PROFAO30 270 2007/09/07 2007/09/07 11:44:03 CS06
 _________ PROFAS 274 2007/09/04 2007/09/04 18:01:25 CS03
 _________ PROFASNS 273 2007/09/04 2007/09/05 13:30:20 CS04
 _________ PROFATST 280 2007/09/11 2007/09/11 10:00:04 CS03
 _________ PROFA30
 _________ PROFA30B 251 2006/08/02 2006/08/04 07:13:31 CS02
 _________ PROFA30C 254 2006/08/08 2006/08/21 14:24:19 CS01
 ___e 2___ PROFA30D 127 2013/11/21 2013/11/26 07:14:48
AWINTER
 _________ PROFA31 363 2008/10/28 2011/11/02 09:49:46 CS01
 _________ PROFA31B 257 2006/07/27 2006/08/04 07:11:12 CS02
 _________ PROFA31C 259 2003/04/03 2006/08/21 14:25:51 CS01
 _________ PROFA31D 125 2013/11/20 2013/11/27 09:02:20
AWINTER
 _________ PROFA31K 484 2013/11/21 2013/11/21 22:25:06
KURIADI
 _________ PROFA31O 62 2006/10/05 2006/10/30 07:52:04 CS03
 _________ PROFA319 266 2009/08/26 2009/08/26 10:59:02 CS08
 _________ PROFA32 217 2007/08/31 2011/11/01 16:49:00 CS01
 F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap
 F10=Left F11=Right F12=Cancel

6. 1 Enter the l profa command to locate files beginning with profa.

7. 2 Enter e in front of PROFA30D (the active profile) to edit it.

A few tips for using the editor

You can put the following letters into the line number field:

i Insert a line.
r Repeat a line.
c Copy a line, then:

a Insert the copied line after this one.
d Delete a line.

Files often have a fixed line length. Therefore, if it is not possible to insert characters, delete
some of the spaces at the end of the line.
Appendix C. Useful commands 173

Terminate and restart a TCP/IP stack

In order for a profile to become active, you need to terminate and restart the TCP/IP stack:

1. Go to the Display Active Users panel, as shown in Example C-2 on page 169.
Example C-10 shows the list of active users. Note that TCPIPA is active.

Example C-10 Terminate a TCPIP stack

. .
 Display Filter View Print Options Search Help

 SDSF DA SC30 SC30 PAG 0 CPU/L/Z 2/ 1/ 0 LINE 1-5 (5)
 COMMAND INPUT ===> /p tcpipa 1 SCROLL ===> CSR
 NP JOBNAME StepName ProcStep JobID Owner C Pos DP Real Paging SIO
 TCPIP TCPIP TCPIP STC04733 TCPIP NS FE 7306 0.00 0.00
 TCPIPF TCPIPF TCPIPF STC04697 TCPIP NS FE 7154 0.00 0.00
 TCPIPE TCPIPE TCPIPE STC04854 TCPIP NS FE 6922 0.00 0.00
 TCPIPA TCPIPA TCPIPA STC05215 TCPIP NS FE 6921 0.00 0.00
 TCPIPD TCPIPD TCPIPD STC05202 TCPIP NS FE 6814 0.00 0.00

2. 1 Enter the /p tcpipa command to terminate TCPIP stack A. Press Enter until it is gone
from the list of active users, as shown in Example C-11.

Example C-11 Start a TCPIP stack

. .
 Display Filter View Print Options Search Help

 SDSF DA SC30 SC30 PAG 0 CPU/L/Z 2/ 1/ 0 LINE 1-4 (4)
 COMMAND INPUT ===> /s tcpipa,profile=profa30d 1 SCROLL ===> CSR
 NP JOBNAME StepName ProcStep JobID Owner C Pos DP Real Paging SIO
 TCPIP TCPIP TCPIP STC04733 TCPIP NS FE 7306 0.00 0.00
 TCPIPF TCPIPF TCPIPF STC04697 TCPIP NS FE 7154 0.00 0.00
 TCPIPE TCPIPE TCPIPE STC04854 TCPIP NS FE 6922 0.00 0.00
 TCPIPD TCPIPD TCPIPD STC05202 TCPIP NS FE 6814 0.00 0.00

3. 1 Enter the /s tcpipa, profile=profa30d command to restart TCPIP stack A with profile
profa30d. Press Enter until TCPIPA displays again in the list of active users.

Work with a TCP/IP stack

To work with a TCP/IP stack, follow these steps:

1. Go to the Program Development Facility, as shown in Example C-5 on page 171. Enter
option 6 to go to the command panel, as shown in Example C-12.

Example C-12 Targeting TCPIPA

Menu List Mode Functions Utilities Help
 ss
 ISPF Command Shell
 Enter TSO or Workstation commands below:

 ===> tcpa 1

174 IBM HiperSockets Implementation Guide

 Place cursor on choice and press enter to Retrieve command

 => netstat route
 => ping 192.168.6.44
 => netstat home
 => ping 192.168.6.1
 => netstat dev
 => tcpa

2. 1 Enter tcpa first to indicate that the following commands target TCPIPA. Use the
commands displayed in the list of commands in the previous example to display status or
ping an IP address.

Alternatively, you can use the SD > ULOG command line, as described in “IBM z/OS
commands” on page 166.

Linux on System z commands

Table C-4 shows some useful commands for HiperSockets for Linux support.

Table C-4 Useful commands

Command Description

cat
/sys/bus/ccwgroup/drivers/qeth/<device_bus
_id>/if_name

Displays the network interface name, for
example, hsi1 for the device_bus_id 0.0.7000.

echo <text> > <file> Writes text into a file.

ifconfig
ifconfig <nw_if_name>
ifconfig <nw_if_name> down
ifconfig <nw_if_name> up
ifconfig <nw_if_name> <ip_adrs> netmask
<subnet_mask>

Displays all network interfaces defined.
Displays the given network interface.
Brings down a network interface.
Starts a network interface.
Defines the network interface with the given IP
address and subnet mask with default values.

lscss Displays the channel subsystem.

lsqeth

lsqeth <nw_if_name>

Displays all qeth information.
Displays the specific qeth information for given
network interface name.

readlink /sys/class/net/<nw_if_name>/device Displays the device_bus_id, for example,
0.0.7000, for the network interface name, hsi1.

route Displays the current network routes.

znetconf -u Displays a list of unconfigured network devices.

znetconf -c Displays a list of configured network devices.

znetconf -a <device_number> Adds a network device.

znetconf -r <device_number> Removes a network device.
Appendix C. Useful commands 175

IBM z/VM commands
For information about z/VM TCP/IP operations commands, see z/VM CP Command and
Utility Reference, SC24-6175. Also see Table C-5.

Table C-5 IBM z/VM TCP/IP operations commands

These commands can be used to create and verify virtual LAN (VLAN), network interface
card (NIC), and COUPLED definitions for the HiperSockets emulation called z/VM guest LAN.

Table C-6 z/VM guest LAN commands

Table C-7 and Table C-8 on page 177 list z/VM commands for TCP/IP and Virtual Switches.

Command Description

Q OSA ACTIVE|ALL Displays the status of network devices, Open Systems
Adapter (OSA) and internal queued direct communication
(IQD)

Q rdev|rdev-rdev Displays the status of real devices

Q PATHS rdev|rdev-rdev Displays the path status to real devices (PIM, PAM, LPM)

Q CHPID cc Displays the real CHPID status

VARY OFF|ON rdev|rdev-rdev Varies devices off or online

VARY OFF|ON CHPID cc Configures a CHPID off or on to both hardware and software

Command Description

ATTACH <rdev> <vmid> <vdev> Attaches real device address to the virtual machine (VM)
ID at its virtual address

DEFINE LAN Creates a VM LAN segment managed by the CP system

DEFINE NIC Installs a virtual network adapter (a NIC) in the invoker's
virtual machine configuration

DETACH LAN Eliminates a VM LAN segment from the CP system

DETACH NIC Removes a virtual network adapter (a Network Interface
Card) in the invoker's virtual machine configuration

QUERY <dev_adrs> Displays information about the device

QUERY CHPID <xx> Displays information about CHPID xx

QUERY LAN Displays information about the designated VM LAN (or
every LAN in the System LAN Table)

QUERY NIC Displays information about a virtual NIC (vNIC) in your
virtual machine configuration

QUERY OSA Displays information about the OSA defined to z/VM

QUERY VMLAN Determines the status of VM LAN activity on the CP host

SET LAN Modifies the attributes of a VM LAN

UNCOUPLE Disconnects a virtual channel-to-channel adapter (CTCA)
from a coupled CTCA device, or disconnects a virtual
network adapter from a VM LAN segment
176 IBM HiperSockets Implementation Guide

Table C-7 IBM z/VM TCP/IP commands

Table C-8 IBM z/VM Virtual Switch commands

Defining and coupling a NIC using CP commands

To create a virtual NIC, use the following command syntax:

DEFINE NIC vdev [operands]

Command Description

NETSTAT ? Displays Netstat options

NETSTAT ARP Displays the ARP cache

NETSTAT DEV Displays the TCP/IP devices and links

NETSTAT HOME Displays the TCP/IP Home IP addresses

NETSTAT GATE Displays the TCP/IP Gateway addresses

NETSTAT OBEY START|STOP DEV Starts or stops the device name identified in NETSTAT DEV
output

IFCONFIG (z/VM4.3) Displays the TCP/IP devices and links (similar to the
NETSTAT DEV command, but has other uses; see note)

PING ipaddress Performs one PING to a specified address

TRACERTE ipaddress Traces router hops to a specified address

OBEYFILE Executes selected TCP/IP profile statements

Note: IFCONFIG can help to temporarily modify network interfaces in the current TCP/IP stack. See
z/VM TCP/IP Planning and Customization, SC24-6238, for detailed uses. For more information about
the other z/VM TCP/IP commands, see z/VM TCP/IP User’s Guide, SC24-6240.

Command Description

DEFINE VSWITCH Defines the virtual switch and attributes

DEFINE NIC Defines the simulated NIC

COUPLE Helps to connect the NIC to the virtual switch

SET VSWITCH Controls the attributes of an existing virtual switch

QUERY CONTROLLER Displays the controller service machines

QUERY VSWITCH Displays information about the virtual switch

QUERY VSWITCH DETAILS Displays detail information about the virtual switch

QUERY VSWITCH name ACCESS Displays authorized user IDs

QUERY VMLAN Displays system-wide MAC addresses

Tip: You might choose to use the DEFINE NIC and COUPLE approach rather than the
NICDEF z/VM user directory statement. In that case, consider adding those two
commands into your guest’s PROFILE EXEC file so that they are automatically executed at
IPL, or whenever the guest logs on.
Appendix C. Useful commands 177

In this syntax, vdev specifies the base virtual device address for the adapter, and operands
defines the characteristics of the vNIC. Operands accepted by the DEFINE NIC command are
listed in Table C-9.

Table C-9 Operands for the DEFINE NIC command

After the NIC is installed, use the COUPLE CP command to connect the adapter to a guest LAN
or virtual switch. The following syntax is used for the COUPLE command in this scenario:

COUPLE vdev TO [operands]

In this syntax, vdev specifies the base virtual device address for the adapter, and operands
defines where to connect the NIC. Table C-10 lists the operands that are accepted by the
COUPLE command for the purpose of connecting a vNIC to a Guest LAN.

Table C-10 Operands for the Couple command

Remember that a virtual NIC can only be coupled to a compatible guest LAN. For example, a
QDIO NIC cannot be coupled to a guest LAN of type “HiperSockets”.

Operands Description

TYPE This operand specifies the type of NIC adapter to be created, specifically the hardware and protocol
that the adapter is to emulate. This is an optional keyword that you can specify with HIPERsockets or
queued direct input/output (QDIO).

HIPERsockets This operand defines this adapter as a simulated HiperSockets NIC. This adapter functions similar to
the HiperSockets internal adapter. A HiperSockets NIC can function without a z/VM Guest LAN
connection or can be coupled to a HiperSockets Guest LAN.

QDIO This operand defines this adapter as a simulated QDIO NIC. This adapter functions similar to the
OSA-Express (QDIO) adapter. A QDIO NIC is only functional when it is coupled to a QDIO
Guest LAN.

IEDN This operand defines this adapter as a simulated intraensemble data network NIC. This adapter will
function like an OSA-Express CHPID type OSX adapter (device model 1732-02) that is connected to
an IEDN internal network that is managed by the Unified Resource Manager. An IEDN NIC is
functional only when it is coupled to an IEDN virtual switch.

INMN This operand defines this adapter as a simulated intranode management network NIC. This adapter
will function like an OSA-Express CHPID type OSM adapter (device model 1732-03) that is
connected an INMN internal network that is managed by the Unified Resource Manager. An INMN
NIC is only functional when it is coupled to an INMN virtual switch.

DEVices devs Determines the number of virtual devices associated with this adapter. For a simulated HiperSockets
adapter, devs must be a decimal value between 3 and 3072 (inclusive). For a simulated QDIO, IEDN,
or INMN adapter, devs must be a decimal value between 3 and 240 (inclusive). The DEFINE NIC
command creates a range of virtual devices from vdev to vdev + devs -1 to represent this adapter in
your virtual machine. The default value is 3.

CHPID nn A two-digit hexadecimal number that represents the CHPID number that the invoker wants to allocate
for this simulated adapter. If the requested CHPID number is available, all of the virtual devices
belonging to this adapter share the same CHPID number. This option is useful only if you need to
configure a virtual environment with predictable CHPID numbers for your simulated devices.

Operands Description

vdev This is the base address (hex) of the network adapter.

ownerid lanname The ownerid is the name of the owner of the Guest LAN (such as SYSTEM).
The lanname is the name of the Guest LAN.
178 IBM HiperSockets Implementation Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in
this document. Note that some publications referenced in this list might be available in
softcopy only.

� IBM z/OS V2R1 Communications Server TCP/IP Implementation Volume 1: Base
Functions, Connectivity, and Routing, SG24-8096

� IBM System z Connectivity Handbook, SG24-5444

� OSA-Express Implementation Guide, SG24-5948

� Enhanced Networking on IBM z/VSE, SG24-8091

� Introduction to the New Mainframe: z/VSE Basics, SG24-7436

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� Linux on System z, Device Drivers, Features, and Commands, SC33-8281

� Stand-Alone Input/Output Configuration Program User’s Guide, SB10-7152

� SNA Operation, SC31-8779

� IP Systems Administrator’s Commands, SC31-8781

� Device Drivers, Features, and Commands, SC33-8281

� z/OS Communications Server, IP Configuration Guide, SC31-8775

� z/OS Communications Server, IP Configuration Reference, SC31-8776

� z/OS Communications Server: SNA Network Implementation, SC31-8777

� z/OS Communications Server, SNA Resource Definition Reference, SC31-8778

� z/OS Hardware Configuration Definition (HCD) Planning, GA22-7525

� z/OS Hardware Configuration Definition (HCD) User's Guide, SC33-7988

� z/OS Resource Measurement Facility™ (RMF) Performance Management Guide,
SC33-7992

� z/OS Resource Measurement Facility (RMF) Report Analysis, SC33-7991

� z/OS Resource Measurement Facility (RMF) User's Guide, SC33-7990

� z/VM V6R3 Connectivity, SC24-6174
© Copyright IBM Corp. 2013, 2014. All rights reserved. 179

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� z/VM V6R3 CP Commands and Utilities Reference, SC24-6175

� z/VM V6R3 CP Planning and Administration, SC24-6178

� z/VM V6R3 TCP/IP Planning and Customization, SC24-6238

� z/VM V6R3 TCP/IP User's Guide, SC24-6240

� z/VM V6R3 TCP/IP Messages and Codes, GC24-6237

� z/VM V6R3 TCP/IP Diagnosis Guide, GC24-6235

� z/VSE Planning, SC33-8301

� z/VSE Administration, SC33-8304

� z/VSE Operation, SC33-8309

� z/VSE V5R1 e-business Connectors User's Guide, SC34-2629

� z/VSE V5R1 TCP/IP Support, SC34-2640

� IPv6/VSE IPv6 V1R1.0 Installation Guide, SC34-2616

Online resources

These websites are also relevant as further information sources:

� z/OS V2R1 information center

http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp

� z/VM information and documentation

http://www.vm.ibm.com

� z/OS Internet Library

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/

� Linux on IBM System z

http://www-03.ibm.com/systems/z/os/linux/
http://www.vm.ibm.com/linux
http://www.ibm.com/servers/eserver/zseries/os/linux/

� IBM developerWorks

http://www-128.ibm.com/developerworks
http://www-128.ibm.com/developerworks/opensource/

� IBM performance benchmarks in developerWorks

http://www.ibm.com/developerworks/linux/linux390/perf/index.html/

� HiperSockets NTA FAQ document and link

http://ibm.biz/BdRFgz

http://www.ibm.com/systems/z/hardware/networking/products.html#hipersockets

� CSI international for z/VSE TCP/IP

http://www.csi-international.com

� Barnard Software Inc. for z/VSE

http://www.bsiopti.com

� z/VSE documentation

http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip
180 IBM HiperSockets Implementation Guide

http://ibm.biz/BdRFgz
http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp
http://www.ibm.com/developerworks/linux/linux390/perf/index.html/
http://www.vm.ibm.com
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-03.ibm.com/systems/z/os/linux/
http://www.vm.ibm.com/linux
http://www-128.ibm.com/developerworks
http://www-128.ibm.com/developerworks/opensource/
http://www.csi-international.com
http://www.bsiopti.com
http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip
http://www.ibm.com/systems/z/hardware/networking/products.html#hipersockets
http://www.ibm.com/servers/eserver/zseries/os/linux/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 181

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

182 IBM HiperSockets Implementation Guide

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 HiperSockets Im

plem
entation Guide

IBM
 HiperSockets Im

plem
entation

Guide

IBM
 HiperSockets Im

plem
entation

Guide

IBM
 HiperSockets Im

plem
entation Guide

IBM
 HiperSockets Im

plem
entation

Guide

IBM
 HiperSockets Im

plem
entation

Guide

®

SG24-6816-02 ISBN 0738439444

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, clients, and Business
Partners from around the
world create timely technical
information based on realistic
scenarios. Specific
recommendations are
provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM HiperSockets
Implementation Guide

Understand
HiperSockets
architecture,
functions, and
operating systems
support

Learn tips for
planning and
implementing
HiperSockets

See examples for IBM
z/OS, IBM z/VM, and
Linux on System z

This IBM Redbooks publication provides information about the IBM
System z HiperSockets function. It offers a broad description of the
architecture, functions, and operating systems support. This
publication will help you plan and implement HiperSockets. It provides
information about the definitions needed to configure HiperSockets for
the supported operating systems.

This book is intended for system programmers, network planners, and
systems engineers who want to plan and install HiperSockets. A solid
background in network and Transmission Control Protocol/Internet
Protocol (TCP/IP) is assumed.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Overview
	1.1 Overview
	1.2 Server integration with HiperSockets
	1.3 HiperSockets benefits
	1.4 HiperSockets mode of operation
	1.4.1 Unicast operations
	1.4.2 Multicast and broadcast

	Chapter 2. HiperSockets environment definitions
	2.1 System configuration considerations
	2.1.1 Channel parameters for HiperSockets

	2.2 HCD definitions
	2.2.1 Dynamic Channel Path Management
	2.2.2 Channel path definitions
	2.2.3 Control unit definitions
	2.2.4 I/O device definitions
	2.2.5 Dynamic reconfiguration
	2.2.6 References

	2.3 IBM z/VM definitions
	2.3.1 Hardware assists
	2.3.2 Implementation example
	2.3.3 IBM z/VM I/O verification
	2.3.4 IBM z/VM definitions for guest systems

	Chapter 3. Software configurations for HiperSockets
	3.1 Test configuration
	3.2 HiperSockets in z/OS
	3.2.1 HiperSockets implementation environment
	3.2.2 Implementation steps
	3.2.3 No IBM VTAM setup for HiperSockets
	3.2.4 TCP/IP profile setup for HiperSockets
	3.2.5 Verification of the HiperSockets configuration

	3.3 DYNAMICXCF HiperSockets implementation
	3.3.1 HiperSockets DYNAMICXCF connectivity
	3.3.2 DYNAMICXCF implementation environment
	3.3.3 Implementation steps
	3.3.4 VTAM configuration for DYNAMICXCF
	3.3.5 TCP/IP configuration for DYNAMICXCF
	3.3.6 Verification of the DYNAMICXCF configuration

	3.4 HiperSockets definitions for a z/VM host system
	3.4.1 Permanent TCP/IP definitions for a z/VM host system
	3.4.2 Dynamically define HiperSockets for a z/VM host system
	3.4.3 TCP/IP verification
	3.4.4 References

	3.5 HiperSockets in Linux on System z
	3.5.1 Software requirements
	3.5.2 Linux configuration example
	3.5.3 Linux I/O definitions for the initial installation of the Linux system
	3.5.4 Linux I/O definitions for adding to an existing Linux system
	3.5.5 Permanent Linux definitions
	3.5.6 References

	3.6 HiperSockets in z/VSE
	3.6.1 HiperSockets Support in z/VSE
	3.6.2 Configuring HiperSockets devices in z/VSE
	3.6.3 Configuring a HiperSockets link in TCP/IP
	3.6.4 Related publications

	Chapter 4. Performance considerations
	4.1 HiperSockets for highest performance
	4.2 Processor considerations
	4.3 Physical memory structure
	4.4 Maximum transmission unit size
	4.5 Input buffer count
	4.5.1 Input buffer count in IBM z/OS
	4.5.2 Input buffer count in Linux for System z
	4.5.3 Input buffer count in z/VSE

	4.6 References

	Chapter 5. Layer 2 and layer 3 modes
	5.1 Concept of layer modes for HiperSockets
	5.2 Layer 3 mode
	5.2.1 IPv4
	5.2.2 IPv6
	5.2.3 IP takeover

	5.3 Layer 2 mode
	5.3.1 MAC address generation
	5.3.2 HiperSockets layer 2 mode software support

	Chapter 6. Virtual local area network support
	6.1 Overview
	6.2 Types of connections according to IEEE
	6.2.1 HiperSockets as a virtual switch in trunk mode with VLAN control

	6.3 Out-of-band VLAN management using the IBM zEnterprise Unified Resource Manager Network Virtualization Manager
	6.4 Benefits of HiperSockets VLAN
	6.5 An example of HiperSockets VLAN in z/OS
	6.5.1 Implementation steps
	6.5.2 Virtual Telecommunications Access Method setup for VLAN HiperSockets
	6.5.3 TCP/IP profile customization for VLAN HiperSockets
	6.5.4 Verify VLAN implementation

	6.6 HiperSockets VLAN for a z/VM host system
	6.6.1 VLAN definitions
	6.6.2 VLAN verification

	6.7 HiperSockets VLAN in Linux on System z
	6.7.1 Temporary VLAN for RHEL—VLAN 2 on LNXRH1
	6.7.2 Temporary VLAN for SLES11—VLAN 3 on LNXSU1
	6.7.3 Verifying your setup
	6.7.4 Permanent VLAN definition for Red Hat Enterprise Linux
	6.7.5 Permanent VLAN definition for SLES11

	6.8 HiperSockets VLAN in z/VSE

	Chapter 7. More HiperSockets features
	7.1 HiperSockets multiple write facility
	7.1.1 HiperSockets multiwrite for z/OS

	7.2 HiperSockets network traffic analyzer
	7.2.1 Overview
	7.2.2 NTA authorization on the SE
	7.2.3 HiperSockets NTA for Linux on System z
	7.2.4 Reference

	7.3 Completion queue function
	7.3.1 Details about completion queue
	7.3.2 Completion queue for the z/VM HiperSockets Bridge Port
	7.3.3 IUCV Sockets over HiperSockets (Linux, z/VSE)
	7.3.4 Linux Fast Path (Linux, z/VSE)

	Chapter 8. Connect HiperSockets to other networks
	8.1 Connecting HiperSockets to external networks
	8.2 HiperSockets Accelerator on z/OS
	8.2.1 The QDIO Accelerator function
	8.2.2 HiperSockets Accelerator implementation
	8.2.3 HiperSockets Accelerator implementation steps
	8.2.4 VTAM configuration
	8.2.5 TCP/IP configuration
	8.2.6 HiperSockets Accelerator verification
	8.2.7 References

	8.3 HiperSockets Network Concentrator on Linux
	8.3.1 Example
	8.3.2 References

	8.4 The z/VM Virtual Switch with HiperSockets bridge port
	8.4.1 The z/VM Virtual Switch
	8.4.2 Bridging a HiperSockets LAN with a z/VM Virtual Switch
	8.4.3 Benefits of a bridged HiperSockets network
	8.4.4 HiperSockets Bridge Port details
	8.4.5 Path MTU Discovery
	8.4.6 References
	8.4.7 Example

	Chapter 9. HiperSockets in an IBM zEnterprise ensemble
	9.1 The IBM zEnterprise System
	9.2 The intraensemble data network
	9.3 HiperSockets for IEDN (IQDX)
	9.4 MAC management by the URM
	9.5 VLAN management by the URM
	9.6 Using URM to manage IQDX
	9.6.1 Reserve MAC address ranges
	9.6.2 Define VLANs
	9.6.3 Add virtual servers to a VLAN
	9.6.4 Verify details of a VLAN

	9.7 The z/OS converged interface
	9.7.1 How to define the converged interface

	9.8 IBM z/VM Virtual Switch for IEDN
	9.9 Network monitoring with Unified Resource Manager

	Appendix A. Gathering statistics in a HiperSockets environment
	The Resource Measurement facility (RMF)
	Short-term data collection with Monitor III
	The Monitor III Channel Path Activity Report
	How to generate the report
	References

	Appendix B. IBM z/OS Sysplex subplexing and HiperSockets
	Sysplex subplexing
	Subplex implementation environment
	Implementation steps
	VTAM configuration setup for Sysplex subplex
	TCP/IP configuration setup for Sysplex subplex
	Verification of the IP subplex over HiperSockets

	References

	Appendix C. Useful commands
	IBM z/OS commands
	Editing network profiles in z/OS
	Multiple TCPI/IP stacks
	Find the active profile
	Edit a profile
	A few tips for using the editor
	Terminate and restart a TCP/IP stack
	Work with a TCP/IP stack

	Linux on System z commands
	IBM z/VM commands
	Defining and coupling a NIC using CP commands

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

