

ibm.com/redbooks

Mastering DynaCache
in WebSphere
Commerce

Peter Swithinbank
Nadir Anwer

Judy Chan
Darl Crick

Cyrus Tishan Mills
Craig Oakley

Jennifer Schachter
Jianwei Song

Kevin Tobin
Jacob Vandergroot

Dramatically improve Web site
performance

Learn from practical examples
and tutorials

Benchmark Web site
performance with and
without Dynacache

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Mastering DynaCache in WebSphere Commerce

December 2006

International Technical Support Organization

SG24-7393-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2006)

This edition applies to Version 6 of WebSphere Commerce.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiv
Comments welcome. xiv

Part 1. Web site caching . 1

Chapter 1. Web site performance . 3
1.1 J2EE Web site topologies and caching . 4
1.2 Web site performance issues . 5

1.2.1 e-Commerce Web site types. 5
1.2.2 Unnecessary re-creation of page data . 5
1.2.3 Network traffic between tiers. 7
1.2.4 WebSphere Funnel model . 8
1.2.5 Reduce thread/process switches and CPU load. 10

1.3 Project planning. 10
1.3.1 Plan for caching early in the design phase . 11
1.3.2 Roadmap. 11
1.3.3 System performance tuning . 12
1.3.4 Performance tuning skills . 13
1.3.5 Training . 13
1.3.6 IBM Tech-line assistance . 14

1.4 Performance terminology . 14
1.4.1 Response time . 14
1.4.2 Load . 16
1.4.3 Throughput . 16
1.4.4 Throughput plateau . 16
1.4.5 Throughput saturation . 17
1.4.6 Path length . 20
1.4.7 Bottleneck . 20
1.4.8 Scalability . 23

Chapter 2. Caching . 25
2.1 Caching overview . 26

2.1.1 How caches work . 26
2.1.2 Where caching is performed . 29

© Copyright IBM Corp. 2006. All rights reserved. iii

2.1.3 The value of Web caching. 31
2.1.4 Static versus dynamic object caching . 33
2.1.5 Full Web page versus fragment caching. 33
2.1.6 Cache considerations . 34

2.2 Introduction to DynaCache . 34
2.2.1 DynaCache history . 34

2.3 Enabling WebSphere Application Server DynaCache 36
2.4 DynaCache technical overview . 38

2.4.1 Features of DynaCache . 41
2.5 Servlets and DynaCache. 42

2.5.1 Servlet technology. 42
2.5.2 Request attributes . 42
2.5.3 Servlet filters . 43
2.5.4 WebSphere Commerce caching filter . 43
2.5.5 JSP includes and forwards . 43

2.6 Configuring DynaCache using XML-based policies 44
2.6.1 Basic structure of the cachespec.xml file. 45
2.6.2 Cache entry element overview <cache-entry> 48
2.6.3 Cache ID Overview . 49
2.6.4 Cache IDs and the cache hit . 51
2.6.5 Cache programming support. 52
2.6.6 Dependency ID overview <dependency-id> 53
2.6.7 Invalidation rules overview <invalidation>. 55
2.6.8 Command-based invalidation . 56
2.6.9 Delay-invalidations . 58
2.6.10 The effect of updates to the cachespec.xml file 59

2.7 Putting items into the DynaCache . 60
2.7.1 Caching servlets and JSPs . 60
2.7.2 Java objects and the command cache . 61
2.7.3 Command interface. 63
2.7.4 DynaCache full page caching . 68
2.7.5 DynaCache fragment caching. 69

2.8 Invalidation: Getting stale objects out of the cache 73
2.9 The ConsumerDirect cachespec.xml file. 75

2.9.1 WebSphere Commerce ECActionServlet explained 76
2.9.2 Cache-id definitions for ConsumerDirect . 77

2.10 Impact of memory cache on JVM garbage collection 79
2.11 Configure disk offload . 84

2.11.1 Tuning the disk cache . 85
2.12 Displaying cache information . 87

2.12.1 Install the cacheMonitor.ear application . 87
2.12.2 Cache monitor viewing capabilities . 88
2.12.3 Cache monitor operational tasks. 89

iv Mastering DynaCache in WebSphere Commerce

Chapter 3. DynaCache invalidation . 91
3.1 DynaCache invalidation defined . 92

3.1.1 Invalidation overview. 92
3.2 DynaCache invalidation mechanisms and tools . 92

3.2.1 The invalidation process . 93
3.2.2 Cachespec.xml invalidation policies . 93
3.2.3 DynaCache invalidation API . 100
3.2.4 Scheduled invalidation . 101
3.2.5 Cache Monitor. 103

3.3 Invalidation best practices and techniques . 104
3.3.1 Time out considerations . 105
3.3.2 Cache monitor. 105
3.3.3 Dependency IDs . 105
3.3.4 Cache instances . 105
3.3.5 Warm shutdown . 106
3.3.6 Invalidation during the tuning phase . 106
3.3.7 Startup – use warm-up to create cache entries 106
3.3.8 Impact of maintenance . 106

Chapter 4. Clustering DynaCache . 107
4.1 Data Replication Service . 108

4.1.1 Failover and caching . 109
4.1.2 DRS and failover . 110
4.1.3 DRS and caching . 110

4.2 Replication in DynaCache . 114
4.2.1 Specifying the sharing policy declaration in the cachespec.xml . . . 116
4.2.2 Troubleshooting . 117

4.3 Best practices . 118

Chapter 5. Caching strategy. 121
5.1 Site requirements . 122
5.2 Identifying cache objects . 123

5.2.1 Characteristics of cacheable objects. 123
5.2.2 Tools and methodology. 124

5.3 Cache design . 126
5.3.1 Full-page caching and fragment caching . 126
5.3.2 Cache instances . 127

5.4 Invalidating cached objects . 127
5.5 DynaCache and JSP . 128

Chapter 6. Advanced topics . 133
6.1 What is new in Version 6 of DynaCache . 134

6.1.1 Disk cache enhancements . 134
6.1.2 Cache policy enhancements . 135

 Contents v

6.2 Edge Side Include (ESI) caching. 142
6.3 Priming the cache . 142
6.4 When you must not cache. 143
6.5 Multiple caching pools and cache instances . 143

6.5.1 Cache instance . 144
6.5.2 Cache instance definition . 144

6.6 DynaCache tuning. 145
6.7 Memory caching . 146

6.7.1 Cache sizing formula. 146
6.7.2 Disk caching . 147

6.8 Setting custom system properties . 148
6.9 Monitoring DynaCache . 149

6.9.1 DeveloperWorks tooling for monitoring DynaCache 152
6.10 Reference section . 153

6.10.1 Class element . 153
6.10.2 Name element. 153
6.10.3 Sharing policy . 154
6.10.4 Property. 155
6.10.5 Cache entry IDs . 157
6.10.6 Cache servlet filtering and Commerce DC_ variables 168
6.10.7 ConsumerDirect jspStoreDir issue . 170

Chapter 7. FAQs. 171
7.1 DynaCache FAQs . 172
7.2 Clustering FAQs . 175

Part 2. DynaCache implementation . 177

Chapter 8. DynaCache tutorial . 179
8.1 Environment setup . 180

8.1.1 Software stack. 180
8.1.2 WebSphere Commerce setup. 180
8.1.3 Enable DynaCache service. 182

8.2 Installing the Cache Monitor . 184
8.3 Caching ConsumerDirect store . 189

8.3.1 Catalog subsystem URLs . 189
8.3.2 TopCategoriesDisplay. 191
8.3.3 CategoryDisplay . 201
8.3.4 ProductDisplay . 204

Chapter 9. Benchmarking DynaCache . 209
9.1 Overview . 210

9.1.1 Benchmarking benefits . 210
9.1.2 Benchmarking considerations . 210

vi Mastering DynaCache in WebSphere Commerce

9.1.3 Benchmarking DynaCache . 213
9.2 Benchmark creation process. 214

9.2.1 Setting up benchmark-creation tests. 214
9.2.2 Executing tests and recording results . 216
9.2.3 Interpreting and analyzing the test results 217

9.3 Benchmarking example. 218
9.3.1 Test environment . 218
9.3.2 Test data set and scenario . 220
9.3.3 Execution and results . 223

9.4 Conclusion. 233

Chapter 10. Case study: A DynaCache anti-pattern. 235
10.1 Online shop project brief . 236
10.2 Issues encountered . 236

10.2.1 DynaCache not enabled . 236
10.2.2 Inability to cache page fragments . 237
10.2.3 Cache invalidations causing severe performance impacts 238
10.2.4 Cached page sizes greater than 200Kb . 238
10.2.5 Large numbers of duplicated similar cache areas. 239

10.3 Lessons learned from the exercise . 239
10.3.1 Include DynaCache in the design of applications 240
10.3.2 Retrofitting DynaCache will only be a limited success 240
10.3.3 Use accurate workload traffic for simulation 240
10.3.4 Invalidate as little as possible . 240
10.3.5 Warm up the cache . 240

10.4 Changes in the next version of the online shop 241
10.4.1 Break all pages into cacheable fragments 241
10.4.2 Reduce the number of dependency IDs . 241
10.4.3 Remove cache page expiries . 242
10.4.4 Incorporate DB triggers to update the CACHEIVL table 242
10.4.5 Write a scheduled task to clean the CACHEIVL table 242
10.4.6 Fix inefficiencies in the search fragments 242

10.5 Conclusion. 243

Chapter 11. Seven steps to get started caching your WebSphere Commerce
Web site . 245

11.1 Servlet caching . 246
11.2 Caching personalized fragments. 246
11.3 Excluding self-executing fragments from the cache 247
11.4 Fragment caching . 247
11.5 Command caching . 247
11.6 Invalidation . 248
11.7 Replication. 249

 Contents vii

Appendix A. Web services caching . 251
WebSphere Web service caching support . 252
WebSphere Commerce Web service caching . 252

Overview of the WebSphere Commerce Web services framework 252
Caching the business logic. 254
Caching the response . 255

Appendix B. Caching in WebSphere Extended Deployment. 257
Introduction to WebSphere XD. 258

Dynamic operations . 258
High performance computing . 258
Extended manageability . 259
On-demand router. 259

 WebSphere Commerce and WebSphere XD . 260
References . 263

Appendix C. Sales Center caching . 265
IBM Sales Center . 266
Caching the response in Sales Center. 267

Abbreviations and acronyms . 269

Related publications . 271
IBM Redbooks . 271
Online resources . 271
How to get IBM Redbooks . 273
Help from IBM . 273

Index . 275

viii Mastering DynaCache in WebSphere Commerce

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
alphaWorks®
ibm.com®
AIX®

DB2®
IBM®
Rational®
Redbooks™

Tivoli®
WebSphere®

The following terms are trademarks of other companies:

EJB, Java, Java Naming and Directory Interface, JDBC, JDK, JMX, JSP, JVM, J2EE, and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Microsoft, Windows Server, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x Mastering DynaCache in WebSphere Commerce

Preface

This IBM® Redbook describes how to use WebSphere® DynaCache to improve
the performance of WebSphere Commerce Web sites.

Today’s Web sites are a demanding mixture of static images surrounded by
mini-shopping carts, e-marketing spots, and other eye-catching fragments, all of
which change from view to view and user to user. Sites must be richly featured
and personalized to attract customers – and they must deliver this content at a
high level of performance as well. But the richness and personalization
customers want is often the enemy of good Web site performance.

DynaCache technology gives Web site developers a robust tool for achieving
excellent Web site performance. It can be applied retrospectively to existing Web
sites whose performance is not meeting the owning company’s requirements. It
is even better applied from the beginning of a J2EE™ Web project, and will yield
performance gains well beyond those achieved at a comparable cost by adding
more hardware or rewriting the solution.

This book leads you through an explanation of what caching is, and what is
special about caching Web sites. It then describes the capabilities offered by
WebSphere DynaCache and how to most effectively make use of those
capabilities. The discussion is enhanced by practical examples and tutorials to
help you configure DynaCache and implement a sample WebSphere Commerce
store. Finally, the book describes how to approach benchmarking for an online
store, and how to quantify the effectiveness of a dynamic caching policy on site
performance. It also presents a case study of a real-world Web site problem that
was turned around by an IBM team applying DynaCache technology.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Peter Swithinbank is a project leader at the ITSO, Hursley Center. He writes
IBM Redbooks™ and teaches IBM classes worldwide on Web services and
building business integration solutions. Peter has worked for IBM for 28 years
and has been with the ITSO for two years. He has a diploma in software
engineering from Oxford University and an MA in Geography from the University
of Cambridge.

© Copyright IBM Corp. 2006. All rights reserved. xi

Nadir Anwer is a Staff Software Engineer for the WebSphere Commerce
Advanced Technical Services group based in IBM Toronto Lab, Canada. He has
over 13 years of combined software development experience in Web
technologies. He holds a Master degree in Computer Science from the
Nottingham Trent University, UK. His areas of expertise include Web site
performance and emerging open-source technologies.

Judy Chan is a Advisory Software Developer in IBM Canada Lab. She has eight
years of experience in DB2® development and six years of experience in
WebSphere Commerce development. She holds a Bachelor degree in Computer
Science and Mathematics, and a Master degree in Mathematics from York
University. Her areas of expertise include DB2 development on CLP, SQLJ and
SQL procedure, WebSphere Commerce development on Admin Console,
inventory, RFQ, tickler and Sales Center development.

Darl Crick is a Senior Technical Staff member. Darl gave the team a great deal
of assistance and advice, as well as extensively reviewing the book. Many of
Darl’s insights and experiences with DynaCache have been incorporated into the
Redbook. Darl's experience comes from working in Commerce Development for
four years and DB2 Development for six years.

Cyrus Tishan Mills is an Application Solution Architect working with RBC Dexia
Investor Services. Previously, Mr. Mills worked as a WebSphere Commerce
Consultant for IBM Software Services for WebSphere. He holds a Master of
Applied Science degree in Computer Engineering and Bachelor of Mathematics
in Computer Science from the University of Waterloo. Mr. Mills also worked with
the WebSphere Commerce Suite Performance Team while completing his
research at IBM's Center for Advanced Studies (CAS).

Craig Oakley is a Technical Specialist in Online Technologies in Australia. He
has 12 years experience in the online technologies. He holds a Bachelors
Degree in Applied Science from Monash University, Melbourne. His areas of
expertise include WebSphere, WebSphere Commerce, Web Server Technology,
IP Networks and Web Server Performance.

Jennifer Schachter is a Software Developer in Toronto. She has two years of
experience with WebSphere Commerce, both as part of the Performance team
and as a member of the Marketing Team. She holds an Honours Bachelor of
Mathematics in Computer Science from the University of Waterloo. Her areas of
expertise include WebSphere Extended Deployment and WebSphere
Commerce, Dynamic Caching. She has written extensively on best practices with
WebSphere Commerce and Dynamic Caching.

Jianwei Song is a software developer in IBM Toronto Lab. He has five years of
experience in WebSphere Commerce System Testing. He holds a Ph.D. in
Mathematics and M.S. in Computer science from University of Saskatchewan,

xii Mastering DynaCache

Canada. His areas of expertise include software quality assurance, testing
automation and performance analysis.

Kevin Tobin is a Senior IT Specialist based in Sydney, Australia. He has 25
years of experience in developing real-time computer software systems. He
holds a degree in Computing and Information Systems from Monash University
in Melbourne. Kevin's principle areas of expertise include WebSphere
Performance Tuning and J2EE architecture, deployment and design. Kevin is a
qualified Education Center for IBM Software instructor and regularly runs
courses on WebSphere Application Server administration, development and
other J2EE-related technologies.

Jacob Vandergoot is a WebSphere Commerce developer in Toronto, Canada.
He has 6 years experience with the WebSphere Commerce product, mainly
focusing on the framework and integration. He holds a Bachelor of Science
degree from Ryerson University and is pursuing a Masters Degree in Software
Engineering at the University of Waterloo.

Thanks are due to the WebSphere Application Server performance teams who
assisted us enormously, and provided some of the charts used in the Redbook.
And special thanks are also due to the following colleagues from IBM:

Alex Budanitsky
IBM Toronto. Alex helped to write the chapter on benchmarking.

Stan Cox
IBM Raleigh. Thanks to Stan for permission to use Figure 1-5 on page 9.

Stacy Joines
IBM Raleigh. Stacy Joines is an STSM with IBM Software Services. Stacy helped
the team with information from her SW612 WebSphere Performance class,
provided great charts for use in the book, and helped to review drafts.

Rohit Kelapure
IBM Toronto. Rohit Kelapure is the team lead for WebSphere DynaCache. Rohit
gave us lots of help with the intricacies of DynaCache and the new features
shipped with WebSphere Application Server v6. He provided us with some
performance charts and reviewed the book thoroughly for us.

Andy Kovacs
IBM Toronto. Andy was our local manager in Toronto. This Redbook was not
written in an ITSO Center, as is usually the case. Andy made our residency in
Toronto possible and also a pleasant experience.

 Preface xiii

Brian Nolan
IBM Raleigh. Brian helped with the planning and resourcing of the book. Without
his assistance and support, it would not have happened.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept HYJ; Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xiv Mastering DynaCache

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Web site
caching

In the first part of this Redbook we introduce Web site caching. If DynaCache is
new to you, we recommend you read the first four chapters and then skip
chapters 4 and 6 and go to the second part of the Redbook.

Chapter 1, Web site performance, is important especially if you haven’t thought
about the underlying strategies you need adopt to build web sites with good
performance. Performance is not something that can be compartmentalized into
a tuning task right at the end of testing a web site. It should be a main
consideration before, during and after development, as no web site ever stands
still.

Chapter 2, Caching, starts and the beginning - how do caches work? By the end
of the chapter you should understand how to define a cache for WebSphere
Commerce and how to store and retrieve items from the cache.

Part 1

© Copyright IBM Corp. 2006. All rights reserved. 1

In Chapter 3, DynaCache invalidation, we discuss how to evict items from the
cache. This is just as import as building and using the cache. If stale items are
left in the cache then the web site will display wrong, out of date information.

Chapter 5, Caching strategy steps back from the mechanics of defining a cache
and putting items in and getting them out. We invite you to think about what to
cachem and how to design a good caching policy for a web site.

Chapter 4, Clustering DynaCache shows how to use the symmetric clustering in
WebSphere Network Deployment, with DynaCache. It explains how to control
cache replication across a cluster. How do you achieve the best balance between
using multiple processors and moving cached items to different servers on the
cluster. Appendix B, “Caching in WebSphere Extended Deployment” on
page 257 takes the use of clustering in WebSphere Commerce a further step
and shows how to partition a cache to make the most use of in memory caching.

Chapter 6, Advanced topics covers a number of topics including what’s new in
WebSphere Commerce v6, and tuning the cache. There is also a short reference
section which adds some additional usage notes to the descriptions in the
Infocenter.

Chapter 7, FAQs answers some commonly asked questions about WebSphere
Commerce and DynaCache.

2 Mastering DynaCache in WebSphere Commerce

Chapter 1. Web site performance

In this chapter, we describe common performance related issues encountered in
typical Web-based projects and discuss the importance of planning for
performance.

The following topics are discussed:

� Java 2 Enterprise Edition Web site topologies

� Common performance problems and solutions

� The importance of planning

� Performance terminology

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 J2EE Web site topologies and caching

J2EE-based systems commonly incorporate the Model-View-Controller (MVC)
design pattern, where the responsibilities of an application are assigned to layers
of code that support the user interface (View), business logic (Controller), and
data access (Model). Similarly, the physical topology of the hardware that serves
the application is often split into tiers:

� An edge tier made up of caching proxies and/or load balancers

� A Web tier consisting of Web servers such as Apache or IBM HTTP Server

� An application tier for managing data

� The data or persistence tier for storing and retrieving data

In these types of distributed architectures, such as the one shown in Figure 1-1,
caching can be used to maximize the performance and minimize the workload of
each tier, resulting in substantial performance improvements. Cached items fall
into two groups:

� Static data, such as HTML, images, and Java™ Script files

� Dynamically created data that contains the output results from the runtime
program execution of code components, such as servlets and JSPs.

.

Figure 1-1 Request/response path through various J2EE layers.

Directory
Services

Back-end
Server

Database
Server

Proxy
Server

Web
Server

Application
Server

Response
Request

4 Mastering DynaCache in WebSphere Commerce

1.2 Web site performance issues

Several factors can influence the performance capabilities of a Web site under
stress. The following sections take you through some of the important
contributing factors to consider and how caching can sometimes reduce the
contributing stresses.

1.2.1 e-Commerce Web site types

Understand your Web site’s characteristics. In general, Business to Consumer
(B2C) sites derive greater performance benefits from the caching of entire HTML
pages and/or HTML page fragments than do Business to Business (B2B) sites
because the number of clients requesting services from a B2C site is generally
much larger than that of a B2B. There are more successful cache hits per client
on a well structured B2C site than on a B2B site.

B2C sites typically have many requests that target the same data and the
benefits for caching that data are much higher when compared to the more
personalized, often highly client-specific B2B page requests. Despite this,
caching can still play an important role in a B2B site. For B2B sites, it is a case of
adjusting the caching strategy to better suit the data request models and
interactions occurring between the client and the site. The common caching
strategy for a B2B site takes into account the fact that there are often many page
fragments or parts of an HTML page that can be cached, rather than whole
pages.

Having a good understanding of your type of Web site and its inherent dynamics
is important when assessing the potential benefits of caching.

1.2.2 Unnecessary re-creation of page data

When analyzing a Web site, you will generally find pages that rarely change.
Often only a small part of the page may change. Caching pages or page
fragments that change on an infrequent basis improves performance
significantly.

The process of identifying the cacheable fragments and developing the correct
strategy will be one of the mandatory activities during your caching analysis
phase.

Figure 1-2 on page 6 shows an example Java Server Page (JSP™) made up of
several fragments.

 Chapter 1. Web site performance 5

Figure 1-2 An example parent JSP with its child JSPs fragments

We could analyze each of the individual JSPs and assess their cacheability
based on:

� What each child JSP fragment actually does

� How often the fragment changes

� The cost of generating each fragment

� Reducing the number of queries executed on the database server even if this
does not reduce response times directly

Characteristically, the header, menu, and footer JSPs rarely change in most
applications and therefore are ideal for caching.

Your analysis of the catalog and marketing page in Figure 1-2 should involve
assessing the volatility and processing overhead required to create the data for
those components. However, before dismissing these fragments as uncacheable,
you should still check whether there are subcomponents within them that could
be cached, such as inventory numbers displayed by the catalog.jsp or marketing
information targeting specific groups in the marketing.jsp.

It may be possible to reduce the volatility of data on a page without significantly
reducing the effectiveness of the page. For example, rather than displaying how
may items are in stock, just display whether the item is in stock or not.

Although inventory list items change over time, they may change infrequently
enough that they warrant consideration for caching. If you keep recreating parts
of pages that do not change you are wasting valuable system resources.

header.jsp

menu.jsp

catalog.jsp

mkting.jsp

menu fully
cacheable

header fully
cacheable

Catalog
subcomponents

Cacheable
Marketing

subcomponents
Cacheable

6 Mastering DynaCache in WebSphere Commerce

1.2.3 Network traffic between tiers

The next performance item we consider is the network. As illustrated in
Figure 1-3, the system network connects each tier. By caching as close to the
client as we can, significant gains can be achieved by reducing the number of
network hops taken while traversing through each of the remaining tiers to the
database server and back to the client.

Figure 1-3 Network of servers

Apart from the caching aspects, it is also important that your network design is
well thought out and the network is maintained in a healthy state. Many
performance problems are caused directly by poorly designed network
configurations. Before you engage in any DynaCache tuning exercise, ensure
there are no bottlenecks in the network. You should check that:

� Server network cards are configured correctly, meaning they are set to a fixed
address, and not auto detect.

� All components (routers, switches, IP sprayers, and so forth) are configured
and capable of running at the correct network speed.

� TCP/IP has been configured correctly, for example, with appropriate time-out
and keep-alive settings.

� You are not competing with other traffic, such as a WAN, on this network.

� The servers are on a separate subnet.

Directory
Services

Back-end
Server

Database
Server

Proxy
Server

Web
Server

Application
Server

Response
Request

 Chapter 1. Web site performance 7

TCP/IP keep-alive and time-out
If your site has a lot of objects (for instance images) that are sent to a user’s
browser during a single page request, and these objects are going to be cached,
then give careful consideration to the TCP/IP keep-alive setting.

Using keep-alive can help in certain situations where you do not want to be
continually tearing down the connection and then reestablishing it for each client
request. Turning keep-alive on can give you a performance improvement for that
individual client; this is especially important for SSL sessions. The downside is
you may lose scalability in terms of the number of connections available for your
other clients wanting site access. TCP/IP time-outs can be problematic and are
used to determine how long it takes to detect a failed server. Correct settings
may be crucial in keeping your site running smoothly during fail-over scenarios.

1.2.4 WebSphere Funnel model

.

Figure 1-4 Queue tuning points in a J2EE Web site: the Funnel model

In Figure 1-4 decreasing values are assigned to the tuning parameters for each
of the displayed Web site components. This deliberate reduction in the maximum
number of available resources assigned to each successive layer is called the
Funnel model methodology. The benefit of the funnel tuning model is that we
want as many clients to connect to our system as possible, but without
overwhelming the resources in each of the layers downstream (for example,
database connections). The funnel helps us place these requests into various
queues at each layer, where they will wait until the next layer has the capacity to
process them. In summary, the funnel model helps us handle bursts of client

10,000
Connections

Network Web
Server

EJB
Container

Servlet
Engine

Data
Source DB

200
Connection

Threads

80 Servlet
Threads

50 EJB
Threads

25 DB
Handles

8 Mastering DynaCache in WebSphere Commerce

requests without inundating the back-end application or database servers.
Figure 1-5 on page 9 provides an example of some queue tuning parameters.

Figure 1-5 IBM HTTP Web server request handling, queue settings, and architecture

As shown in figure Figure 1-5, Web requests arriving at the Web server plugin
are initially stored in a Listen queue, with a maximum depth set to
MaxConnectBacklog. The MaxConnectBacklog value is a custom property
configured in the application server. The Web server will hold up to
MaxConnectBacklog pending connection requests for the application server, and
then will reject any further requests until the application server has processed
some of the outstanding connection requests.

In the application server an Accepting thread pulls one request at a time from the
Listen queue, and stores it in the Accepted Connection Queue. The request waits
in the Accepted Connection Queue until it is processed by the Selector thread.

Note: When configuring WebSphere Commerce we recommend that the
Datasource connection pool is equal to the servlet thread pool plus the
number of scheduler threads plus one. Every incoming request to a
Commerce system requires a connection to the database, even if caching is
being used, to avoid deadlock.

WAS 6.0 Request Handling – Transport Channel Service
Incoming connections

from plugin
Listen
Queue

MaxConnectBacklog
(Default 511)

Accept
Thread

Incoming
connections
(Users direct to
internal HTTP server)

The much larger maximum number of requests that can
be queued within Transport Channel service is the sum of:
• 20,000
• MaxConnectBacking

Ready
Request
Queue

maximumPersistentRequests
(Default 100)

Accepted
Connection Queue

20,000
Selector Thread

Processes
Non-blocking I/O

A Web container thread performs
non-blocking reads and writes

Web Container threads
pull requests from the
queue as they become ready Thread handling a

KeepAlive connection
By default all

connections maintain
KeepAlive

I/O is processed asynchronously so
each Web container thread is no longer
associated with a specific connection

W
eb

 C
on

ta
in

er

 Chapter 1. Web site performance 9

In WebSphere Application Server v6 the selector threads unblock the Web
container threads from the connection threads.

Why so many queues?
Queues handle overflow requests. Their primary functions are to:

� Allow the HTTP requestor to make a connection

� Enable the request to wait in the queue to receive service without being lost

Queuing is especially useful for handling sudden, major increases in traffic
conditions, such as when a larger than normal number of clients hit the Web site
simultaneously. The downside of queuing is that it may impact your
failover/outage detection capabilities. Failover detection is usually triggered by a
failure to connect, and large queues can mask outage situations; hence delay
the failover. The WebSphere Application Server infocenter describes in great
detail the various queues and other parameter settings that you may need to
tune. You can access this information at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/tprf_tuneprf.html

1.2.5 Reduce thread/process switches and CPU load

Caching can effectively contribute to large reductions in CPU usage, particularly
in the application servers and back-end subsystems. Caching can significantly
free up worker threads running within the Web, application, and database tiers
depending on where the caching has been implemented. By off loading work
activities from these servers, the entire system copes better with much larger
volumes of requests. As demand increases, cached applications generally scale
better since they only have to deal with new data requests or provide update type
services.

1.3 Project planning

The inclusion of appropriately defined caching tasks in the project planning
phase is key to ensuring that your system will meet its service level agreements.

Timing
There are a number of times during the development cycle when the capabilities
and performance of DynaCache should be considered. Among those times are
the following project milestones:

� At project inception when determining performance requirements

10 Mastering DynaCache in WebSphere Commerce

� During system design when laying out the Web pages

� At each stage of component building by the Java developers

� During regression testing to capture any introduced performance issues

� At system completion when all known defects have been corrected

� After any code changes in a mature system

1.3.1 Plan for caching early in the design phase

Caching is best done as a planned activity, not as something that is retro-fitted
into an existing application. You do not want to be faced with having to make an
inflexible, sluggish system perform better.

In the worst cases, we have seen newly developed systems that are not only
frustratingly slow but start to disintegrate when placed under anything
approaching projected production system loads. When this happens, it can then
become a major exercise to change the application in order to remedy the
problems.

Be certain to spend sufficient time analyzing the performance requirements in
the early stages of development. This will help you to meet the project deadline
with the delivery of a well performing system, not just a functioning system, and
will ensure that you create a Web site that satisfies your end users.

The best candidates for caching are operations that are large, slow, or
resource-intensive to produce. When evaluating potential caching candidates,
make sure that they are publicly accessible. The more users that can take
advantage of a given cache entry the better. Obviously, do not cache pages that
are never reused.

Make sure developers and testers know the service level requirements of the
Web pages they are designing and testing. Have them consider caching aspects
at the outset, rather than retro-fitting caching considerations later in the project.

1.3.2 Roadmap

It is critically important to get your project off to a good start and lay down the
correct performance foundation from day one.

In our experience, the lack of a performance roadmap indicates a J2EE-based
project heading for trouble. Your performance roadmap must cover the salient
points of performance best practice. Key aspects of this roadmap include:

� Understanding your performance objectives

 Chapter 1. Web site performance 11

� Studying existing systems or modelling proposed systems

� Planning the key milestones within the project

� Communicating the objectives and ensuring that all participants are clear on
the meaning of any performance-related terminology

� Identifying the tooling that you are going to use for testing

� Identifying key personnel and skills

� Identifying skills gaps and providing for training

� Including a mandatory performance and caching section in design documents

� Mentoring developers on the plan and insisting that they do performance tests
early and often

� Developing and testing caching as part of development activity

1.3.3 System performance tuning

Performance tuning is best carried out by a subject matter expert. The important
thing to cover in the planning phase is the allocation of sufficient time for this
critical task. Include in your plan enough time for the execution of long running
tests.

A long running test establishes, among other things, the stability of the entire
system. Long running tests execute over several days and often need to be
repeated. In some cases, they can only be run on weekends when systems
become available, so do not overlook that possibility when determining
constraints, budget, project plans, personnel, and so forth.

Full system performance tuning cannot commence until the application is
complete: you cannot tune the performance of an incomplete or broken system.

System performance tuning includes the following steps:

� Performance test the completed system and establish a baseline.

� In an n-way, multi-node system, benchmark and tune the performance of an
individual node using 1/nth of the workload; then benchmark and tune the
complete cluster.

� Locate bottlenecks in your system.

� List bottlenecks in order of priority and remove them in that order.

� Minimize the impact of those bottlenecks that you cannot remove.

Note: The development environment now includes a full test server
(Rational® Application Developer v6).

12 Mastering DynaCache in WebSphere Commerce

� Once theperformance objectives have been obtained, measure the system to
establish a new baseline.

1.3.4 Performance tuning skills

Developers need to know how to derive performance numbers from the
components they are building and the importance of code path analysis.

Performance testers need to know the various tuning points within a WebSphere
Application Server and Commerce site, including:

� JVM™ tuning - Minimum and maximum heap memory allocations, garbage
collection, class loader options, parameter passing options, and so forth.

� Queue settings - WebSphere has many queues for buffering waiting requests,
such as Servlet container thread pools, EJB™ pools, JDBC™ connection
pools, RMI/IIOP buffer pools, prepared statement caches, and so forth.

� Network settings - For example time-outs, keep-alive intervals, and
connection sizing.

� Database tuning.

� JMS message tuning.

� DynaCache configuration, analysis, and tuning.

� Operating system tuning.

� CPU, hard disk, and general resource monitoring.

� Thread dump analysis for troubleshooting thread contention problems.

� Memory usage/dump analysis for detecting leaks.

� Performance test tool scripting and operation.

1.3.5 Training

An individual or group of individuals may require training to develop the
necessary skills to make configuration or application changes. Several
companies offer performance training classes on WebSphere Application Server
and WebSphere Commerce, and it is highly recommended that individuals in
need of training attend them.

Performance tuning is a specialist profession in its own right and training is no
substitute for real world experience. It takes experience just to know what
“normal” performance looks like when looking at a Web site’s performance
characteristics. If your company does not have a specialist performance
practitioner on its staff, we highly recommend that you engage a consultant
throughout the project life cycle.

 Chapter 1. Web site performance 13

If a consultant is engaged, ensure that someone from your organization shadows
them as much as possible to help develop performance tuning skills in-house.
Performance tuning is an on-going activity that often lasts the lifetime of an
application or system.

1.3.6 IBM Tech-line assistance

IBM Tech-line provides a highly skilled, readily accessible team of IT specialists
who can provide quality remote technical sales support to help with:

� Solution design

� Sales strategies

� Server sizing

� Technical recommendations

� Product research and positioning

� Configuration and pricing

� Upgrades, research, and configuration

� Performance and benchmark data from modelling tools

1.4 Performance terminology

By performance terminology we simply mean the fundamental vocabulary used
by performance experts.

The key terms that we discuss here are:

� Response time
� Load
� Throughput
� Path length
� Bottleneck
� Scalability
� Capacity

1.4.1 Response time

Response time measures an individual user’s wait for a request and is usually
expressed as an average, 95th or 99th percentile.

14 Mastering DynaCache in WebSphere Commerce

Average
In statistics, an average is calculated by adding together all the values in a
sample, then dividing by the number of members in the sample.

Percentile
A percentile is a ratio. There are a hundred percentiles in a sample. The 95th
percentile is the value that 95 percent of the sample lies below. The 99th
percentile is the value that 99 percent of the sample lies below. So in terms of
response times, the 95th percentile is a time period, by which 95 percent of
requestors have all received a response.

What is an acceptable value for a response time is generally set by de facto
industry standards.

Figure 1-6 Example of requests queuing on a Web site

Response time is measured from the time a request is made until the HTML
response is received.

Web site response time is a function of:

� Raw processing time

� Wait time at any number of queues (see Figure 1-6)

� Transfer time between multiple components

Response time is a critical measurement and poor response times result in
dissatisfied customers. Many Web sites fail simply because of response time
issues.

A performance practitioner considers response time:

� Under peak loading

� Under extreme loading (seasons such as Christmas, Easter, Thanksgiving,
and so forth)

� Over modest dial-up connections

HTTP
POST.GET

HTML
Response

Web
Server

Wait
Queue

Back-end Host

Wait
Queue

Application
Server

 Chapter 1. Web site performance 15

1.4.2 Load

Load is the pressure against the Web site and is expressed as:

� User activity

� Users arriving

� Users logging in

� Users sending requests

� Request activity

� Requests/second, pages/hour, and so forth

1.4.3 Throughput

Throughput measures things completed in a unit of time. For a Web site the most
common measurement of interest is the number of HTML pages served per
second.

Throughput applies to lots of concepts, not just Web sites. For example:

� Restaurants: Customers served/hour

� Bridges: Cars across/minute

1.4.4 Throughput plateau

Throughput plateau is a capacity measurement and is the maximum obtainable
system output in a unit of time. In other words, it is the maximum processing rate
that a system is capable of.

Consider a restaurant example where:

� The restaurant only has one server.

� It takes one minute to serve a customer.

The maximum throughput is one customer/minute.

16 Mastering DynaCache in WebSphere Commerce

Figure 1-7 Throughput plateau and the use of queuing

The throughput plateau is not a measurement of arriving requests, but how many
are fulfilled. Excess requests may:

� Queue: Requests start to line up behind one another waiting to be serviced.

� Leave: The requestor gives up waiting and goes elsewhere.

� Be discarded: The request is thrown away because there are insufficient
resources to process it.

1.4.5 Throughput saturation

When a Web site reaches maximum throughput, additional load does not yield
additional throughput. In other words, the maximum throughput is a saturation
point and can often be characterized as reaching a bottleneck, such as 100%
CPU utilization. Figure 1-8 shows the throughput saturation graph of transactions
versus users.

 Chapter 1. Web site performance 17

Figure 1-8 Throughput saturation curve

Response time is closely tied to maximum throughput. Once we reach maximum
throughput:

� New arrivals begin to queue.

� “Time in queue” must be added to compute the overall response time.

A server or system may support more load beyond maximum throughput.
Consider the example of a hamburger store. As shown in Figure 1-9, the
hamburger customers are probably being served faster than they arrive, and only
a short queue has built up as three customers arrive in a group. Queues only
exist for brief bursts of activity, and the response time is stable.

Figure 1-9 Arrival time greater than cooking time, stable response time

If customers arrive slightly faster than the attendant can produce the hamburgers
then a queue will rapidly build up, as illustrated in Figure 1-10.

Concurrent Users

50

40
30
20

10

Th
ro

ug
hp

ut
Tr

an
sa

ct
io

ns
/S

ec

Light Load Zone

Heavy Load Zone

Buckle Zone

Buckle
Point

Saturation Point

18 Mastering DynaCache in WebSphere Commerce

Figure 1-10 Arrival time less than cooking time: Response time increases as wait time
increases

A server or system may support more load beyond maximum throughput by
queuing requests.

Figure 1-11 shows that as the number of customers arriving increases, but can
be handled, the throughput increases linearly and the response time remains
stable. But when the maximum throughput is reached the response time climbs
rapidly.

Figure 1-11 Throughput versus response time

6

5

4

3

2

1

0

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

0 2 4 6 8 101214
Load (Number of customers)

Th
ro

ug
hp

ut

R
es

po
ns

e
Ti

m
e

Response Time
Regarding Throughput Saturation

Throughput
Response time
Response time
trend

 Chapter 1. Web site performance 19

1.4.6 Path length

Path length refers to the number of steps that an action takes.

Reducing the path length to speed up a Web site or application can consist of:

� Speeding up steps

� Reducing the number of steps an activity takes

For example, one optimization is called “loop n invariation,” where you move
static statements out of a loop to reduce statement execution n times.

The following sections present some examples of how to improve performance
on Web sites by decreasing path length.

Consolidating Web site pages
If a site has a “greeting” page, followed by a “logon” page, then a transaction
page, you could consolidate the first two pages into a greeting/logon page. The
consolidated pages can then transition to the transaction page. Having fewer
pages equates to less work for the servers and faster transition to the transaction
page.

Refactoring
Another technique involves reducing the application activity path length. For
example, if a particular operation consisted of:

1. Obtain connection
2. Store user information
3. Obtain connection
4. Store sale

You could refactor this into:

1. Obtain connection
2. Store user information and sale

1.4.7 Bottleneck

A bottleneck is a restriction or choke point in the system. All sites have
bottlenecks of one form or another. Bottlenecks impede the performance of your
site and can be caused by many things. Bottlenecks are often associated with:

� Multi-threaded and multi-user programs

� Shared resources such as a CPU, a pooled resource, or disk I/O

� Indiscriminate use of thread synchronization

20 Mastering DynaCache in WebSphere Commerce

� A badly tuned JVM heap

� Poor network configuration

� Poorly tuned databases, missing indexes

� Insufficient use of caching

The rule of thumb, adopted by most experienced performance practitioners, is to
resolve bottlenecks in descending order of their severity. The performance
mantra is that your system is a fast as your slowest component. Removing the
worst blockages first yields the biggest performance benefits. It is not uncommon
for the removal of one blockage to eradicate other bottlenecks entirely, simply
because they were really only symptomatic of the larger bottleneck.

It is important to identify bottlenecks and resolve them, rather than building more
slack into the system to cope with the effects of the bottlenecks. The slack will
hide the problem for a while before it remanifests itself, perhaps more seriously.

A simple analogy of a bottleneck is a sink filling up with water. It is self evident
that the plug covering the drain hole is the cause of rising water levels in a sink.
Building a bigger sink will not solve this problem, yet that is what some
performance novices initially attempt. They will notice that the system is running
out of some resource and will react by increasing the resources’ pool settings
hoping that the problem with go away. As in the sink analogy, all that does is
delay the inevitable, that is, we cause a larger queue of waiting requests to form,
which then exacerbates the performance issue further. Finding and removing the
true cause of the bottleneck is the only way forward. Then target the next biggest
remaining bottleneck and apply trade-offs as to how much effort versus potential
improvement gains when deciding whether to continue working on the next
bottleneck or to stop the process.

In WebSphere Commerce the biggest bottleneck is almost always the database.
Therefore, tuning the database and caching results can be critical factors in the
success of your Commerce applications.

 Chapter 1. Web site performance 21

Figure 1-12 Bottleneck caused by performance of the database

Figure 1-13 Bottleneck caused by insufficient database connection pool size

In summary:

� Almost every system you encounter has bottlenecks

� Eliminating every bottleneck is usually not feasible

� Not every bottleneck has the same performance impact

� Eliminate bottlenecks according to severity

The removal of significant bottlenecks is your primary activity in performance
analysis.

Bottlenecks
Web Site Examples

100%

CPU Busy

Simultaneous
DB Requests

DB Connection
Pool

Request
Queue

Database

22 Mastering DynaCache in WebSphere Commerce

1.4.8 Scalability

Scalability defines how easily a site can be expanded to accommodate
increasing levels of service requirements. You should consider the following
points:

� Sites must often expand, sometimes with little prior warning.

� Sites must be able to grow to support increased load.

� Increased loads can come from many sources, such as new markets, normal
growth, and extreme peaks such as Christmas, Easter, Thanksgiving, and so
forth.

Good scalability makes site growth possible and easy.

How can you grow a Web site to handle more load? You have a couple of
solutions based on either vertical or horizontal scaling.

Vertical scaling
Vertical scaling involves adding more processors, or in our case, more
WebSphere Commerces to a single copy of an operating system. However,
before doing this you should ask yourself:

� Can our JVM use these CPUs?
� Can we fully utilize the CPUs we already have?
� Do we need more JVMs?

Horizontal scaling
Horizontal scaling involves adding more machines hosting WebSphere
Commerce to the site cluster. The question posed then is “How many do we
need?”. Each machine hosts new JVMs and you need to consider the impact on
other parts of the infrastructure, such as:

� Network
� HTTP Servers
� Databases
� License costs

 Chapter 1. Web site performance 23

24 Mastering DynaCache in WebSphere Commerce

Chapter 2. Caching

In this chapter we review generic caching concepts and explain in detail what
DynaCache is and how you should expect to work with it.

We discuss how caches work and how DynaCache evolved. Then we explain
what items are cacheable in DynaCache and how you configure the DynaCache
policy to put items into the cache and later remove them.

Finally, we introduce the Cache Monitor application and provide a tutorial that
includes practical examples of using the Cache Monitor.

2

© Copyright IBM Corp. 2006. All rights reserved. 25

2.1 Caching overview

In the computer science world, a cache is a special high-speed mechanism for
storing and retrieving data. Two types of caching are commonly used:

� Memory-based caching
� Disk-based caching

Caching techniques are implemented by system designers to improve
application response times and reduce system load. Caching methodologies
have long been used to improve the performance of Internet applications. In
caching parlance, any request that can be satisfied directly by data held in a
cache is termed a cache hit. The effectiveness of a cache is judged by its hit
rate.

The strategies for determining what information should be kept in the cache
constitute some of the more interesting problems that a J2EE architect may
encounter.

Principally, the concerns of a cache designer are:

� How to get data into the cache.
� How to retrieve cached items quickly.
� What happens if cached data becomes invalid?
� How to remove invalid cache items.

2.1.1 How caches work

Caches have a number of working parts. The following sections describe the
important components that you need to be familiar with.

Cache identifiers
In simple terms, a caching service stores and retrieves objects from high-speed
devices such as memory or hard disk. In order to be able to quickly retrieve the
object, the caching system annotates each cached entry with a unique identifying
string called a cache identifier or a cache-id. The cache-id is then stored in an
index. Cache identifiers are like primary keys in a database, where the cache-id
“key” is composed from one or more parts of the data being cached.

A common technique for producing a cache key is to use a hashing algorithm,
where an algorithm is executed against the data and a key is produced. The Java
Hash Map (java.util.HashMap) utility used for storing and retrieving Java objects
is based on this concept.

26 Mastering DynaCache in WebSphere Commerce

In the Web world, caches often follow user-defined rules on how to construct
cache-ids from information associated with an application server request (to
execute a servlet, JSP, or Java command).

Cache hits and misses
Once an object with a particular cache-id is in the cache, a subsequent request
for an object with the same cache-id is served from the cache (a cache “hit”). If
the object is not in the cache, then the object will need to be created, and served
back to the client, as well as stored in the cache to service future requests for the
object.

Figure 2-1 A cache “hit” and a cache “miss”

Cache invalidation
Changes to your business or persistence models may impact the accuracy of
related items held in cache. Items that become stale or “invalid” need to be
evicted from the cache. The process of removing stale items from the cache is
called invalidation. Note that caches generally support a number of types of
invalidation mechanisms, such as rule based, time based and dependency
based.

Client

C
ac

he
 F

ilt
er

Application
Processor

Data
Storage

Cache
Entry Entry

Entry
Entry Entry

Entry

Cache "Miss"

Client

C
ac

he
 F

ilt
er

Application
Processor

Data
Storage

Cache
Entry Entry

Entry
Entry Entry

Entry

Cache "Hit"

 Chapter 2. Caching 27

You will find that putting data objects into the cache is a fairly straightforward
process. However, determining how to remove them, including managing the
potentially complex web of dependencies held between related data
components, will challenge most implementers. A solution architect needs to
choose wisely which mechanism best fits; we discuss benefits and pitfalls later.

It is critical to understand how the various invalidation mechanisms work and the
success of your caching project will be measured by how well you analyze,
design, and implement your strategy. The general rule to follow is to invalidate as
little as possible, without compromising the accuracy of requested data. This
topic is covered in more detail in Chapter 3, “DynaCache invalidation” on
page 91.

Cache item dependencies
To complicate matters, cached items may have dependent relationships with
other components held in the cache. A group of dependent items may all become
invalid if any of the associated components are changed.

For example, the contents of a shopping cart held in a cache may be invalidated
by changes made to an order by a customer. Furthermore, order item changes
could potentially invalidate any related, cached, inventory components.

Invalid related items present us with a tricky problem. We need to discard them
all at the same time. We therefore need a mechanism to evict all parties affected
by change.

One solution involves grouping related items with a dependency ID attribute.
When an item with a particular dependency ID is invalidated, then all related
items that share that same dependency ID are also discarded.

Refer to Figure 2-2 on page 29 for an example of invalidation based on using
dependency IDs to group objects together.

28 Mastering DynaCache in WebSphere Commerce

Figure 2-2 Related items can be invalidated through the use of dependency ID

2.1.2 Where caching is performed

In a typical IBM WebSphere topology, caching can be performed at several
places. Some of the most notable caching locations are:

� At the Web client or browser

� At the Internet Service Provider (Akamai is an example)

� In a caching proxy server located in front of the application servers

� In the HTTP Web server (for example, static content and edge side includes)

� At the application server in DynaCache

� In the back-end database caching buffer pools

Cache Entry ID
101

Dependency
ID

storeid:10

Cache Entry ID
102

Dependency
ID

storeid:11

Cache Entry ID
102

Dependency
ID

storeid:22

Cache Entry ID
103

Dependency
ID

storeid:10

Cache Entry ID
104

Dependency
ID

storeid:11

X

X

DynaCache

Invalidation
Manager

Invalidate 101, 103

Dependency
Table

Lookup
Dependencies

Invalidate
Dependency ID

storeid:10

Here we will evict cache entry 101 and
cache entry 103 because they have the
same dependency ID (storeid:10).

1

2

3

 Chapter 2. Caching 29

Client-side caching
Caching capabilities are built in to most Web browsers today and in that case, the
cache works only for a single user. For example, the browser checks if a local
copy of a home page is available and if this is true, the timestamp of the local
copy in the browser cache is recorded.

This timestamp will be sent to the Web server in the following HTTP GET
request. The browser might request the home page by specifying the requested
URI as “/”. In that same home page request, the browser can use the HTTP
header request field If-Modified-Since to indicate to the Web server that it
already has a cached version that is timestamped “Sat, 10 July 200X 10:00:00
GMT.”

The Web server checks the page modification time against the time specified in
the HTTP request. The Web server determines that the page has not been
modified since “Thurs, 6 May 200X 09:50:00 GMT,” so it replies back to the
browser that the page has not been modified. A return HTTP 304 response code
is used to notify that a page has not changed since the specified date.

In this example, the Web server has indicated that the page has not been
modified, so the browser cache entry is current. Therefore the browser displays
the page from the cache. In this case, the browser also assumes that none of the
images contained in the page has been modified.

Server-side caching
Purpose built caching systems can be implemented between the client and the
application server and are known as proxy servers or proxy caches. Ideally,
caches are placed as close to the client as possible without compromising
security. DynaCache is an example of a server-side caching mechanism.

Proxy server caches are strategically placed near network gateways in order to
reduce traffic, increase network bandwidth, and lower the overall costs of internet
connections. A single proxy server can easily manage many users
simultaneously while maintaining cached objects derived from many sources.

Most of the benefits are derived from caching objects requested by one client for
later retrieval by another client. Several proxy servers can also be joined together
into a cluster or hierarchy such that any cache can request items from a
neighboring cache member, the assumption being that in doing so, we can
reduce the need to fetch the object directly from the source of origin.

Note: DynaCache does not do any processing of cache control headers.

30 Mastering DynaCache in WebSphere Commerce

Reverse proxy
Proxy caches can be placed directly in front of a particular server. The rationale
behind this is to reduce the number of requests that the server must handle,
thereby leaving it free to process new requests that it has not serviced before. A
front-end server such as this is called a reverse proxy server to reflect the fact
that it caches objects for many clients, but only on behalf of one server.

2.1.3 The value of Web caching

Web caching involves storing HTML pages, images, servlet responses, and other
Web-based objects for later retrieval. There are three significant advantages to
Web caching:

� Reduced bandwidth consumption (fewer requests and responses that need to
go over the network).

� Reduced server load (fewer requests for a server to handle).

� Reduced latency (since responses for cached requests are available
immediately, and closer to the client being served). Together, they make the
Web less expensive and better performing.

These advantages add up to a better performing Web site and therefore a better
user experience.

The advantages of using DynaCache (DC) can be seen in performance tests run
by the WebSphere performance team using the Trade application. Figure 2-3 on
page 32 shows comparative results for using DynaCache in an EJB and JDBC
application running on WebSphere Application Server 6.0.2, and Figure 2-4 on
page 33 shows the comparable results for WebSphere Application Server 6.1.
The Trade application used the Dynamic Mapping (DMAP) JSP interface to
DynaCache.

 Chapter 2. Caching 31

Figure 2-3 Impact of DynaCache in WebSphere V6.02

32 Mastering DynaCache in WebSphere Commerce

Figure 2-4 Impact of DynaCache in WebSphere V6.1

2.1.4 Static versus dynamic object caching

Most caching strategies target Web site content that rarely changes, such as
graphical images and text files. However, many sites serve dynamic content,
containing personalized information and data that changes more frequently.

Caching dynamic content requires more sophisticated caching techniques. The
IBM WebSphere Application Server DynaCache system provides an elegant
solution in terms of caching dynamic content.

2.1.5 Full Web page versus fragment caching

A fragment is a part or all of a rendered HTML page. Although a whole page may
not be “cacheable,” it may contain sections of varying cacheability that can be
separated into fragments and then cached independently. Any content that can
be independently requested can be cached. This means that a fragment cannot
depend on any information placed in its request scope by its parent or from other

 Chapter 2. Caching 33

fragments. That means, if the child object gets invalidated, the child object can be
executed on its own.

2.1.6 Cache considerations

The DynaCache caching policy that you have or will set up for your application is
critical in contributing to reduced response time and providing better end user
experience. It is critically important that you carefully specify the policies so that
the correct content is served out of the cache. For example, use language as part
of the cache key, so that an English fragment is not served out of the cache for a
French page. Not all Web site content should be cached.

You need to consider the cost of regenerating a response within a given time
frame. Calculate the number of CPU cycles that are needed and the critical
resources that are accessed (such as the number of database queries that are
executed), and then weigh that against the reusability of the response within the
window of time that a cached response would be valid. Heavy calculations that
stay valid for long periods are ideal cache candidates. Heavy calculations that
live for shorter periods are less beneficial as a cacheable item.

You may want to save Database Server CPU cycles at the expense of executing
more Application Server cycles since it is easier to add another Application
Server to a cluster than add another database server.

The reusability of the object should also be considered in terms of whether the
object is specific to a user, session, store, or if it is a site-wide or publicly reusable
object that is reusable across requests.

2.2 Introduction to DynaCache

In this section we provide a brief history of DynaCache and follow that up with a
high-level overview of the technology. We then spend the rest of the chapter
exploring the technical aspects of storing items in the cache. We introduce some
of the cache invalidation components but leave detailed explanations for the
specific chapter that deals with this important topic.

2.2.1 DynaCache history

For several years, IBM Research has developed and refined technologies that
enable the caching of dynamic content. These technologies were implemented,
deployed, and verified at various high-volume sporting event sites such as the
1998 Winter Olympic Games in Nagano. The success of the sports sites

34 Mastering DynaCache in WebSphere Commerce

demonstrated the feasibility of caching dynamic content and confirmed the
scalability and reliability of the caching technologies.

DynaCache has evolved from this research into a feature rich, cross platform,
WebSphere Application Server based caching system. DynaCache has been
built into all editions of WebSphere Application Server, from Express through to
Enterprise, and has existed with various degrees of capability since WebSphere
Application Server version 3.5. DynaCache can easily cache several types of
Web objects regardless of whether they are static or dynamic.

WebSphere Commerce caching history
Table 2-1 shows the evolution in caching technologies used by WebSphere
Commerce Business Edition (WCBE). Up until R4, Commerce used its own
proprietary caching engine and did not adopt DynaCache technology until
WebSphere Application Server V5.0.2 was released.

Table 2-1 Evolution of caching in WebSphere Commerce

Release R1, R2, R3 R4 R5

WC Level WCBE 5.4 WCBE 5.6 WCBE 5.7

WebSphere
Application Server
Level

V 4.0.5 (R3) V 5.0.2 V 5.1

Implementation Proprietary WCBE DynaCache DynaCache

Storage Disk Based Memory based +
Disk offload

Memory based +
Disk offload

Scope Full pages Full pages +
Fragments

Extended full
pages + Fragments

Invalidation Manual +
Database Triggers

Manual +
Database Triggers
WAS API
WCBE invalidation
command +
Time based proxy
invalidation

Manual +
Database Triggers
WAS API
WCBE invalidation
command +
Dynamic proxy
invalidation

External cache None Edge Server/
Caching Proxy

Edge Server/
Caching Proxy

Configuration <instance>.xml cachespec.xml cachespec.xml

Runtime
Management

None Cache Monitor Cache Monitor

 Chapter 2. Caching 35

2.3 Enabling WebSphere Application Server DynaCache

DynaCache is ready-to-go straight out of the box. It is available immediately after
you have installed WebSphere Application Server, although it needs to be
enabled by a simple administration switch setting. By default the service is
enabled. (See Figure 2-5 and Figure 2-6 on page 37)

Figure 2-5 DynaCache Service in the administration console

36 Mastering DynaCache in WebSphere Commerce

Figure 2-6 Enabling the dynamic caching service

You also need to enable servlet caching in the Web container to cache the output
from servlets and JSPs. In a base installation, navigate from the home page in
the Administration console to enable servlet caching, as shown in Figure 2-7, by
selecting:

Application Servers → Server1 → Web Container Settings → Web
Container

Figure 2-7 Enabling servlet caching on the Web container

 Chapter 2. Caching 37

In a clustered environment you need to do this for every member of the cluster.
Perform the following steps:

1. Application Servers → cluster member → Web Container Settings →
Web Container

2. Perform the enablement step.

3. Save the configuration and restart the server to make the changes take effect.

Apart from the a few administration enablement operations, there are no
time-consuming installation or integration efforts required. Java classes providing
support for the DynaCache subsystem are found in the DynaCache.jar file,
which is part of the standard WebSphere Application Server runtime library.

2.4 DynaCache technical overview

Think of DynaCache as a sophisticated Java hashtable. The code used to
provide the in-memory cache services extends the Java Dictionary class, which
is the abstract parent of Hashtable. You configure DynaCache to store objects,
and later, based on some data matching rules, DynaCache retrieves those
objects and serves them from its cache. Caching rules are stored in a
configuration file called cachespec.xml. Single or multiple caches are supported.
Caches are stored in the JVM heap memory and DynaCache supports overflow
to disk if enabled and when required.

The system administrator has some degree of control over what is placed in
memory and what (if anything) overflows to disk via configuration settings.
DynaCache also calls a least recently used (LRU) algorithm during the item
selection process for memory-based item eviction or overflow. The LRU
algorithm consults with a user-specified cache entry priority number before the
evictee is chosen. Higher numbered items stay in memory longer.

Disk offload of cache entries from memory occurs when the memory cache fills
up or when the server is in the process of performing a normal,
administrator-directed shut down and the “FlushToDiskOnStop” property is
enabled. Upon a server restart, requests for cache entries are fulfilled by
reloading the saved disk data into memory.

DynaCache removes stale cache items, both as individuals or dependent, related
groups. The process of removing these items is called invalidation. DynaCache
creates a user-defined, unique “key” to store and retrieve cache items and a
second, optional, shared group key for group invalidation. DynaCache also
provides an API for developers to call invalidation as a runtime function.

38 Mastering DynaCache in WebSphere Commerce

DynaCache is supported in WebSphere clustered environments using the
Distributed Replication Service.

A purpose-built DynaCache monitoring application can be installed from the
<WAS 6 Root>/installableapps subdirectory found in every installation of the
application server. You can use this application for:

� Cache administration
� Cachespec.xml rule debugging
� Statistics gathering
� Monitoring of the cache
� Invalidating the cache

Each cache instance is independent of and not affected by any other cache
instances.

Applications running on an application server can access cache instances on
other application servers as long as they are part of the same replication domain.
WebSphere Application Server V5.1 DynaCache provided a feature called cache
instance. In V6, this feature was extended and now provides two types of cache
instances: servlet cache instance and object cache instance.

The servlet cache instance stores servlets, JSPs, Struts, Tiles, command objects
and SOAP requests. It allows applications like WebSphere Portal Server and
WebSphere Commerce to store data in separate caches.

The object cache instance is used to store, distribute, and share Java objects.
The DistributedObjectCache and DistributedMap APIs are provided so the
applications can interact with the object cache instances.

The DistributedMap and DistributedObjectCache interfaces are simple interfaces
for the DynaCache. Using these interfaces, J2EE applications and system
components can cache and share Java objects by storing a reference to the
object in the cache. The default DynaCache instance is created if the DynaCache
service is enabled in the Administrative Console. This default instance is bound
to the global Java Naming and Directory Interface™ (JNDI) namespace using
the name services/cache/distributedmap.

 Chapter 2. Caching 39

Figure 2-8 WebSphere Application Server DynaCache overview

The DynaCache service works within an application server Java Virtual Machine
(JVM), intercepting calls to cacheable objects. For example, it intercepts calls to
the servlet service() method or a Java command performExecute() method, and
either stores the output of the object to the cache or serves the content of the
object from the DynaCache. For a servlet, the resulting cache entry contains the
output or the side effects of the invocation, like calls to other servlets or JSP files,
or both.

The DynaCache loads and builds a caching policy for each cacheable object
from its configuration cachespec.xml file located under the WEB-INF directory.
This policy defines a set of rules specifying when and how to cache an object
(that is, based on certain parameters and arguments), and how to set up
dependency relationships for individual or group removal of entries in the cache.

Each data request (meaning any invocation of a cacheable servlet, JSP, Web
service, or other object) is associated with a set of input parameters that are
combined to form a unique key, called a cache identifier or cache-id. A key policy
defines which cache identifiers result in a cacheable response. If a subsequent
request generates the same key, the response is served from the cache. If a
unique key does not match any of the rules, the response for the request is not
cached.

APIs

Dynamic Cache
Engine

Dynamic Cache

Dynamic Cache

Disk
Cache

Disk Files

Memory-based
Java Object Store Object Storage

Replacement Policy

Overflow to Disk

XML Cache Policy
Management

External Cache

Invalidation

Replication (DC-to-DC)

External Cache Support
(DC to other caches)

Data Replication
Service

Cache
Statistics

Cache
Policy XML

Servlet Command Web
Service Object

40 Mastering DynaCache in WebSphere Commerce

2.4.1 Features of DynaCache

The main features of DynaCache are described in Table 2-2.

Table 2-2 DynaCache features

Cache object Description

Servlet/JSP results DynaCache can cache any existing whole page or fragment
generated by a servlet or JSP. DynaCache matches data found
in the HTTP request header with the cache rules specified in the
XML configuration file - cachespec.xml.

Command cache
(Web Services,
POJOs and EJBs)

Used to cache dynamic data before it is transformed into a
presentable format (that is, HTML). These include EJB and Web
service responses. A cacheable command object must inherit
from the class
com.ibm.websphere.command.cachableCommandImpl for it to
work with DynaCache.

Replication support Enables cache sharing and replication in a clustered
environment.

Invalidation support Includes rules-based, time-based, group-based, and
programmatic cache invalidation techniques to ensure the
freshness, consistency, and accuracy of the content.

Edge of network
caching support

Extends the WebSphere Application Server caches into
network-based caches, through the implementation of external
cache control and distributed-fragment caching and assembly
support.

JSR168 compliant
portlets

DynaCache can cache any existing whole page or fragment
generated by a servlet, JSP or a JSR 168 compliant Portleta.
DynaCache matches data found in the HTTP request header
with the cache rules specified in the XML configuration file,
cachespec.xml.

a. Support added in WebSphere Application Server v6.1.0.0

Cache monitor Cached results can be viewed and managed via a cache monitor
J2EE application. The cache monitor provides a GUI interface to
change the cached data manually. You have to install the
application manually using the CacheMonitor.ear file (located in
the <WAS_HOME>/installableapps directory) using the WAS
Admin GUI.
This installable Web application provides a real-time view of the
state of the DynaCache. The only way to externally manipulate
the data in the cache is by using the cache monitor.
After installation, the cache monitor can be accessed as:
http://your host_name:your port_number/cachemonitor.

 Chapter 2. Caching 41

2.5 Servlets and DynaCache

In this section we discuss

� Servlet technology
� Requests and their attributes
� Servlet filters
� The caching filter in WebSphere Commerce
� JSP includes and forwards

2.5.1 Servlet technology

Servlets are Java classes that specifically handle HTTP requests and responses.
A request object is delivered to the service method of a servlet. The service
method determines which HTTP operation is required and calls the servlet
method that handles that operation. The most common HTTP operations are
GET and POST, which are handled by the equivalent servlet methods doGet()
and doPost().

Both doGet() and doPost() accept the same two parameters:

� An HTTP request object
� An HTTP response object

2.5.2 Request attributes

A servlet determines what processing is required by examining the contents of
the request object. The data sent as part of the request is called the request
attributes. After processing the request, a servlet generates the HTTP response
object (HTML, cookies, and so forth) and sends it back to the client.

Servlets also store request attributes or other state information in a memory
storage area called the HTTP Session object. This data can be used between
client calls to track the current status of an individual client’s transactions.

Note: We recommend taking great care if the cache monitor is enabled in
production not to clear the cache using the monitor. If the cache is cleared in a
production environment, it can lead to instability or poor performance until the
caches are repopulated. If environment access is not controlled, we
recommend not installing the cache monitor in production to eliminate any
inadvertent use of cache clearing.

42 Mastering DynaCache in WebSphere Commerce

2.5.3 Servlet filters

Servlets are preprocessed by filter objects when pre-pended at runtime or
declaratively. Servlet filters are chained together to perform multiple operations
on requests or responses associated with any targeted servlet. Each servlet filter
normally has a specific task, such as providing security checks, auditing, or
performing some kind of data validation or transformation. For details, see:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/InterceptingFi
lter.html

The WebSphere Web container hooks the inbound request and outbound
responses from servlets that you have selected for caching and presents them to
DynaCache. The container does not use the servlet filter mechanism but rather
uses an internal mechanism to do this.

2.5.4 WebSphere Commerce caching filter

Commerce provides a servlet cache filter to construct the cache ID from session
information. The servlet cache filter sets up Http request attributes from stored
session data. The DynaCache uses the request attributes as component
elements in constructing the cache ID. The caching filter is not a part of
DynaCache technology and its primary purpose is to enable WebSphere
Commerce specific data to be processed by the DynaCache filter.

Technically, the “caching filter” extracts data variables from the HTTP session
object and places them into the HTTP request prior to delivery to the DynaCache
filter. Doing so allows these variables to be referenced in the cachespec and
therefore used to augment the level of granularity for caching Commerce data
objects.

2.5.5 JSP includes and forwards

Suppose you have some common HTML code that you want to appear on every
page, such as a navigator or header. You could copy the code into each HTML
and JSP file, but if it changed, you would have to find all the files that used it and
update each of them. It would be much easier to have one copy and include it
everywhere you need it – and JSP developers do exactly that.

JSP include
The basic mechanism is to use a <jsp:include> with a PAGE attribute naming the
page to be included, and end with </jsp:include>.

A flush attribute is also required, and it must have the value "true". Once you
use an include in your JSP, the contents of the output are written. Therefore, you

 Chapter 2. Caching 43

can no longer do anything that involves sending HTTP headers, such as
changing content type or transferring control using an HTTP redirect request.

Examples of jsp:include and includes in JSTL and in Struts are provided in
section 5.5 “DynaCache and JSP” on page 128.

JSP forward
The jsp:forward request is similar to a jsp:include, but you cannot get control
back afterwards. The attribute flush="true" is required because once you
execute the include, you have committed your output. Prior to the include, the
output might all be in a buffer; therefore, you can no longer do anything that might
generate headers, including setContentType(), sendRedirect(), and so on.

An alternate include mechanism is <%@include file="filename"%>. This
mechanism is slightly more efficient (the inclusion is done at the time the JSP is
being compiled), but is limited to including text files (the file is read, rather than
being processed as an HTTP URL. The <jsp:include> can include a URL of any
type (HTML, servlet, JSP, CGI, even PHP or ASP).

2.6 Configuring DynaCache using XML-based policies

The sample WebSphere Commerce application ConsumerDirect is used
throughout this Redbook to help explain various aspects of DynaCache.
Figure 2-9 on page 45 shows the ConsumerDirect store catalog display home
page.

44 Mastering DynaCache in WebSphere Commerce

Figure 2-9 Section of the store catalog display home page in the ConsumerDirect application.

The process of caching Commerce Applications involves studying the application
thoroughly and determining which pages are the best candidates for caching.
Other chapters of this Redbook guide you through the process of how to select
the best candidates for caching. In this section we focus on how to cache once
you have identified your target components.

2.6.1 Basic structure of the cachespec.xml file.

To start caching the Consumer Direct application you first need to create a cache
specification file called cachespec.xml. A schematic view of cachespec.xml is
shown in Figure 2-10 on page 46.

 Chapter 2. Caching 45

Figure 2-10 General structure of the cachespec.xml file

The cachespec.xml file contains configuration entries for your caching definitions
and rules and is often referred to as the cachespec. Example 2-1 on page 47
shows a typical cachespec.

Cache stuf...

<cache>

</cache>

<cache-entry >

</cache-entry>

Cache stuf...

<cache-entry>

</cache-entry>

Cache stuf...

<cache-entry>

</cache-entry>

Cache stuf...

<cache-entry>

</cache-entry>

<cache-entry >
<class> Servlet...etc

<cache-id> 1...

<cache-id> N

<dependency-id> 1 ...

<dependency-id> N

<property id = “xyz” ...
<name> com.ibm.wcs. ...

<property… N

<dependency-id> 2 ...

</cache-entry >

<cache-entry >
<class> command

<property id = “xyz” ...
<name> com.ibm.wcs. ...

<invalidation> rule 1 ...

<property… N

<invalidation> rule 2 ...

<invalidation> rule N ...

</cache-entry >

46 Mastering DynaCache in WebSphere Commerce

Example 2-1 A simple cachespec.xml file with one JSP cache entry

<cache>
<cache-entry>

<class>servlet</class>
<name>/StoreCatalogDisplay.jsp</name>
<property name="save-attributes">false</property>
<property name="store-cookies">false</property>
<timeout>3600</timeout>
<priority>3</priority>
<cache-id>

<component id="storeId" type="parameter">
<required>true</required>

</component>
<component id="catalogId" type="parameter">

<required>true</required>
</component>

</cache-id>
<dependency-id>storeId

<component id="storeId" type="parameter">
<required>true</required>

</component>
</dependency-id>
<invalidation>storeId

<component id="action" type="parameter" ignore-value="true">
<value>update</value>
<required>true</required>

</component>
<component id="storeId" type="parameter">

<required>true</required>
</component>

</invalidation>
</cache-entry>

</cache>

In WebSphere vernacular, the cachespec is a deployable, XML policy
configuration file that allows you to specify:

� What is going to be cached (Servlets, JSP, Java commands, and so forth)
� Where it is going to be cached (memory or disk)
� When cache items are to be evicted (invalidation)
� How cache entries are related (invalidation dependencies)

Store the cachespec.xml file in the WEB-INF directory of your Web module.
Changes to the cachespec are automatically picked up by DynaCache.

 Chapter 2. Caching 47

Cachespec.xml can be stored in the WebSphere Application Server properties
directory. A cachespec in the property directory defines rules that are global to all
applications. It is uncommon to do this because caching policies are normally
application specific.

In the cachespec there a few important high-level XML elements that you will
need to master. They are:

� The cache entry element: <cache-entry>
� The cache ID element: <cache-id>
� The dependency ID element: <dependency-id>
� The invalidation rule element: <invalidation>

To introduce you briefly to these XML artifacts, we start off at a high level and
then work our way through the general cachespec structure. Later, we build on
that knowledge by taking each of these XML components in turn and exposing
more of the detail.

2.6.2 Cache entry element overview <cache-entry>

When enabled by an administrator, the WebSphere Application Server
DynaCache service parses the cachespec.xml file during startup, and extracts a
set of configuration parameters from each <cache-entry> element.

A cachespec.xml file can have one or several cache entries placed in it. Each
<cache-entry> element defines how we are going to cache some object on our
Web site. An object could be a servlet, a JSP, or some other Java-based object
such as an EJB or Web service.

Each <cache-id> element defines a rule for caching an object and is composed
of the following sub-elements:

� Component
� Timeout
� Inactivity
� Priority
� Property
� Idgenerator
� Metadatagenerator

The <component> sub-element can appear many times within the <cache-id>
element. Each time it specifies how to generate a component of a cache ID.
There are several different types of component elements, such as:

� Parameter
� Session
� Attribute

48 Mastering DynaCache in WebSphere Commerce

� Locale
� Method
� Field

The <timeout>, <priority>, and <property> sub-elements can be used to control
the cache entry expiry, cache eviction policy, and other generic properties for a
cached object with an identifier generated by its enclosing <cache-id> element.

Each cache entry has its own properties, including things like its:

� Sharing policy for clustered environments (which takes priority over the
sharing policy set for the replication domain)

� Invalidation Time-To-Live (TTL) value
� Single or multiple cache ID rules

Therefore, in each cache entry, you will find one or more cache identifiers that
uniquely identify what is to be cached. Beyond the list of properties, you may
encounter dependency or invalidation rules that tell DynaCache how and when to
remove an item and any group of dependent items from the cache.

The following pattern, expressed in pseudo XML, typically repeats for each
cache-entry you encounter:

<cache-entry>
< name and properties>
< list of cache-id‘s>
< list dependency-id’s> optional
< list of invalidation rules> optional

</cache-entry>

2.6.3 Cache ID Overview

As the DynaCache service places objects in the cache, it labels them with unique
identifying strings (cache IDs) constructed according to rules that you specify
inside your cache entry <cache-id> elements and sub-elements. Example 2-2
shows an actual cache ID generated by DynaCache.

Example 2-2 An internal cache ID generated by DynaCache.

/webapp/wcs/stores/ConsumerDirectATP/include/styles/style1/CachedFooter
Display.jsp:storeId=511:DC_userType=G:DC_lang=-1:UTF-8:requestType=GET

For now, ignore the Commerce-specific, DC_x type parameters that appear in
Example 2-2; they are covered later. Think how DynaCache built this ID.

 Chapter 2. Caching 49

You can probably deduce what happened: the ID generation logic appends the
full JSP path, selected JSP parameters and their values, and finally the HTTP
request type GET into a single text string. You also probably noticed that the
appended string items are separated from one another by a colon. Together,
these aggregated strings form the JSP’s unique cache lookup key.

How does the ID generator know how to do this, meaning which parts to include
when building cache IDs? It is the cachespec.xml file definitions that tell
DynaCache what parts or “components” are to be used in the assembly process
when forming various ID strings. Figure 2-11 shows the CachedFooterDisplay.jsp
output content as stored in the DynaCache1.

Figure 2-11 Cached JSP fragment CachedFooterDisplay.jsp

Figure 2-12 on page 51 shows diagramatically how a cachespec entry is
constructed from filtering a URL.

1 Note: the image is not displayed because it is stored as a separate fragment.

50 Mastering DynaCache in WebSphere Commerce

Figure 2-12 Defining cachespec entries (JSP example)

2.6.4 Cache IDs and the cache hit

Once a cache ID is safely stored in the cache, any subsequent requests that
match with the cache ID are served from the cache (a cache “hit”). The
<cache-id> rules define how to construct cache IDs from information associated
with a client HTTP request.

In Example 2-3, we provide an example of a cache entry that will cache the
output from the StoreCatalogDisplay JSP. The example shows two parameter
values (storeid and catalogId) that together with the name of the JSP will form

<cache-entry>
<class>servlet</class>
<name>show-catalog</name>

<cache-id>
<component id="/shopping/catalog/show" type="pathinfo">

<required>true</required>
</component>

<component id="product-type" type="parameter">
<required>true</required>

</component>

<component id="model" type="parameter">
<required>true</required>

</component>

<priority>3</priority>

</cache-id>

</cache-entry>
<required> This child element value
determines whether or not the
component must be present in the HTTP
request for a cache match to occur. A
true value means it must be present and
false means it is optional.

<priority> The number of passes the evictor will
make once the item starts appearing in the LRU
algorithm's "candidate for eviction list". The lower the
number the greater the chance the item could be
evicted from the memory cache. If disk caching is
enabled the item will be offloaded there.

<component> Defines one
of the data components of
the HTTP request header
that is used to form all or
part of the cache key.

<cache-entry> This
element defines a caching
rule. There can be many.

<class> This element
defines what type of object
we are caching.

<cache-id> In this example, the
cache key is defined as being
made up from the three
component elements defined
here – the path info, the product
type and mode parameters.

http://www.mycompany.com/shopping/catalog/show?product-type='chair'&model='antique'
Browser

parameterspathinfohostnameprotocol

/shopping/catalog/show ?product-type='chair'&model='antique'

 Chapter 2. Caching 51

the unique cache ID that is used to store and retrieve the object from cache.
Requests made to the StoreCatalogDisplay JSP containing previously unseen
storeid or catalogId parameter values will result in the creation of a new cache
entry.

Example 2-3 Cache entry defining a cache id

<cache-entry>
<class>servlet</class>
<name>/StoreCatalogDisplay.jsp</name>
<property name="save-attributes">false</property>
<property name="store-cookies">false</property>
<timeout>3600</timeout>
<priority>3</priority>
<cache-id>

<component id="storeId" type="parameter">
<required>true</required>

</component>
<component id="catalogId" type="parameter">

<required>true</required>
</component>

</cache-id>
</cache-entry>

2.6.5 Cache programming support

DynaCache provides other capabilities in addition to servlet and JSP caching.
Cache IDs also define how information is obtained programmatically from
Cacheable Command objects, that is, objects that implement the DynaCache
Command interface. There is more coverage on Command objects later.

In summary, for an object to be cached, DynaCache must know how to generate
a unique ID for different invocations of that object.

Cache IDs can be developed in one of the following ways:

� Using your XML <cache-id> element definitions inserted into the cache policy
of a cache entry.

� Writing custom Java code to build the ID from input variables and system
state. The custom Java code is placed in a WebSphere shared library so that
it can be accessed by the runtime. Custom ID generators, although not
common, are useful when application processing “state” is a factor in creating
the identifiers.

52 Mastering DynaCache in WebSphere Commerce

Although each cache entry may have multiple cache-ID rules, only one of the
entries in the list of rules is executed at any one time. DynaCache searches
through the list of cache IDs in the exact order you defined them in the
cachespec.xml file. It keeps looking for a rule until it finds one that matches, or it
exhausts the list.

In the case where none of the <cache-id> generation rules produce a matching
cache ID, then the object is not cached.

2.6.6 Dependency ID overview <dependency-id>

Dependency ID elements are used to ensure related cache items that become
out-of-date as a group are all evicted as a group. This process is known as
invalidation. Each related cache item shares the same dependency ID, so it only
takes one member of the dependency group to get invalidated, for the rest of the
group to be evicted.

The dependency ID can be as simple as just a name, such as “storeId,” for
example, <dependency-id>storeId</dependency-id>. In this example, storeId
can be referred to as the base string.

Dependency ID definitions are often more complex. You can specify additional
sub-components that are appended one-by-one to the dependency to create a
more refined invalidation key.

Suppose you want to invalidate only selected pages that apply to a particular
store. The dependency ID will need some way of identifying that store. You
implement this by using <component id> tags. Each <component id> tag
declares additional string data that is appended to the base name string to form
the final, fully qualified dependency ID string. Example 2-4 on page 54 shows an
actual dependency ID taken from the ConsumerDirect cachespec.xml file.
Figure 2-13 on page 55 shows a snapshot of dependency IDs viewed with the
cache monitor.

 Chapter 2. Caching 53

Example 2-4 Dependency ID: Sample cachespec definition

<dependency-id>storeId
<component id="" ignore-value="true" type="pathinfo">

<required>true</required>
<value>/StoreCatalogDisplay</value>
<value>/TopCategoriesDisplay</value>
<value>/CategoryDisplay</value>
<value>/ProductDisplay</value>

</component>
<component id="storeId" type="parameter">

<required>true</required>
</component>

</dependency-id>

Note that if any of the required <component> elements are missing, (meaning
the parameters that you specified as required) then the dependency ID rule is
discarded by the runtime engine. Multiple <dependency-id> rules can exist per
cache entry. All dependency ID rules execute separately. We cover dependency
IDs in greater detail in the invalidation chapter.

54 Mastering DynaCache in WebSphere Commerce

Figure 2-13 Sample dependency IDs generated from cachespec definitions

2.6.7 Invalidation rules overview <invalidation>

Invalidation rules inform DynaCache when and how to remove objects from the
cache. They are defined in exactly the same manner as dependency IDs and use
the <dependency-id> definitions to work out which objects to evict.

Example 2-5 shows a snippet of the command-based invalidation rules used in
the sample ConsumerDirect application.

Example 2-5 Extracted samples of invalidation rules used in ConsumerDirect application

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.commerce.catalogmanagement.commands.AddCatalogDescCmdImpl
</name>
<name>com.ibm.commerce.catalogmanagement.commands.UpdateCatalogDescCmdI
mpl</name>

 Chapter 2. Caching 55

<!-- StoreCatalogDisplay Invalidation -->
<!-- ******************************** -->
<invalidation>StoreCatalogDisplay:storeId

<component id="getStoreId" type="method">
<required>true</required>

</component>
</invalidation>
<!-- ********************************* -->
<!-- TopCategoriesDisplay Invalidation -->
<!-- ********************************* -->
<invalidation>TopCategoriesDisplay:storeId:catalogId

<component id="getStoreId" type="method">
<required>true</required>

</component>
<component id="getCatalogId" type="method">

<required>true</required>
</component>

</invalidation>
<!-- ********************************* -->
<!-- CategoryDisplay Invalidation -->
<!-- ********************************* -->
<invalidation>CategoryDisplay:storeId:catalogId

<component id="getStoreId" type="method">
<required>true</required>

</component>
<component id="getCatalogId" type="method">

<required>true</required>
</component>

</invalidation>
...

2.6.8 Command-based invalidation

Invalidation rules are activated by the execution of a Java command, which you
can write yourself. A Java command class extends from the WebSphere
Command Framework API. Invalidation IDs for command-based invalidation are
constructed based on methods and fields provided by the commands.

The values of the <name> elements in Example 2-5 are two classes that belong
to the Java package: com.ibm.commerce.catalogmanagement.commands.

56 Mastering DynaCache in WebSphere Commerce

The two classes are:

� AddCatalogDescCmdImpl
� UpdateCatalogDescCmdImpl

Both of these catalog management classes implement the command-based
interfaces defined in the command framework. DynaCache hooks into the
methods defined in the command interface. Command execution is carried out in
a method called performExecute(), which the latter classes must implement.

Both of these catalog management classes update the ConsumerDirect
application’s catalog descriptions. In this example, the cache designer has
created invalidation rules that run based on either of these classes having their
performExecute() methods called. By default, the invalidations occur prior to the
performExecute() command actually being called; however, you can change it to
occur after performExecute() returns if necessary using the delay-invalidations
property which we discuss later.

Example 2-5 on page 55 specifies a policy to invalidate any cache entries that
are identified by the same storeId and catalogId. DynaCache intercepts calls to
the AddCatalogDescCmdImp and the UpdateCatalogDescCmdImpl commands
(which add or update a catalog description entry) and generates the invalidation
ID based on the value returned by the getStoreId() and getCatalogId() methods.
Upon execution of the commands, the DynaCache compares the invalidation IDs
with each of the dependency IDs. Any cache entry for which any of its
dependency IDs matches with any of the invalidation IDs is removed.

The invalidation ID is generated by concatenating the invalidation ID base string
with the values returned by its component element. If a required component
returns a null value, then the entire invalidation ID is not generated and no
invalidation occurs. Multiple invalidation rules can exist per cache-entry. All
invalidation rules execute separately.

If you take a look at the snippet of XML that performs the CategoryDisplay
invalidation in Example 2-6, you can see that base ID (defined by the
<invalidation> tag) is CategoryDisplay:storeId:catalogId and there are two further
components making up the ID. The two components are the returned string
results obtained by calling the methods getStoreId() and getCatalogId().

With a store ID of 511 and a catalog ID of 8003, an invalidation ID of
CategoryDisplay:storeId:catalogId:511:8003 is created.

Example 2-6 CategoryDisplay invalidation example.

<!-- ********************************* -->
<!-- CategoryDisplay Invalidation -->
<!-- ********************************* -->

 Chapter 2. Caching 57

<invalidation>CategoryDisplay:storeId:catalogId
<component id="getStoreId" type="method">

<required>true</required>
</component>
<component id="getCatalogId" type="method">

<required>true</required>
</component>

</invalidation>

2.6.9 Delay-invalidations

For performance reasons DynaCache is not transactional. In terms of data
integrity, DynaCache is intentionally “best-effort” so that it can execute quickly. As
a consequence, the caching of incorrect data can occur under certain rare
conditions involving command-based invalidation.

In command-based invalidation, any data update command will call invalidations
before the performExecute() method is called. Since DynaCache is
multithreaded, it is possible that another data fetch command could potentially
read data immediately after an update command finishes its invalidation calls, but
before the update command commits its changes to the back-end database.

This is a problem. The fetch command would see the data that it has just read
(which is actually stale) is not in the cache, and so it places it back in there. The
scenario results in cache entries with stale data that do not get invalidated as
intended.

To circumvent this problem, the delay-invalidations property is set in the cache
policy. The delay-invalidations is used to delay command invalidations until after
the performExecute() method. You use delay-invalidations at the cache-entry
level in a policy for a command resource to delay all invalidations done by it.
Example 2-7 shows a cache entry using the delay-invalidations property.

Example 2-7 delay-invalidations sample definition

<cache-entry>
 <class>command</class>
 <name>UpdateCommand</name>
 <cache-id>
 <component id="userGroup" type="field" />
 <component id="getUserNumber" type="method" />
 </cache-id>
 <invalidation>USER
 <component id="userGroup" type="field" />
 <component id="getUserNumber" type="method" />

58 Mastering DynaCache in WebSphere Commerce

 </invalidation>
 <invalidation>GROUP
 <component id="userGroup" type="field" />
 </invalidation>
 <property name="delay-invalidations">true</property>
 </cache-entry>

In the example, invalidation IDs for both "USER" and "GROUP" basenames are
created and called after UpdateCommand executes. If the delay-invalidations
property is not set, the invalidation IDs are created and invalidations occur before
the command executes.

2.6.10 The effect of updates to the cachespec.xml file

Modify the cachespec.xml at any time and the caching service responds to
changes in the cachespec.xml file without the need for a server restart.

When new versions of the file are detected, the old policies are replaced. Objects
cached through the old policy file are not automatically invalidated from the
cache; they are either reused with the new policy or eliminated from the cache
through the replacement algorithm.

If you are caching static content and you are adding the cache policy to an
application for the first time, you must restart the application. You do not need to
restart the application server to activate the new cache policy.

Cache entry order is important
For each of the three IDs (cache, dependency, invalidation) generated by cache
entries, a <cache-entry> contains multiple elements. The DynaCache runs the
<cache-id> rules in order, and the first one that successfully generates an ID is
used to cache that output.

If the object is to be cached, each one of the <dependency-id> elements is run to
build a set of dependency IDs for that cache entry.

Finally, each of the <invalidation> elements is run, building a list of IDs that the
DynaCache invalidates, whether or not this object is stored in the cache at the
time the invalidation rule is matched.

 Chapter 2. Caching 59

2.7 Putting items into the DynaCache

In this section we explain the basics of how DynaCache can:

� Cache the output of a servlet or JSP
� Cache Java objects using command caching – for example, Java Beans,

EJBs, and Web Services

2.7.1 Caching servlets and JSPs

When the application server starts and a targeted servlet or JSP is called for the
first time, no cached entry is found and so the service() method of the servlet is
called. The DynaCache Web container intercepts the response from the service()
invocation and caches the results. This process is illustrated in Figure 2-14.

Figure 2-14 Before caching: A request must traverses all layers

The next time the servlet is called and a match is found in the caching rules
engine, the cached results are returned and the service() method is not called.
This avoids all of the processing that would have been done by the Servlet,
resulting in a substantial performance boost.

If, however, there isn't a cache entry for this ID, the service() method is executed
as normal, and the results are caught and placed in the cache before they are
returned to the requestor.

Figure 2-15 illustrates how DynaCache increases performance by bypassing the
service() method call entirely whenever a cache hit occurs.

Servlet/
JSP

Cache
Service

init()

doPost()

Business
Logic
Layer

Database

8

79

2 service()

1HTTP Request
D

ynacache Filter

HTTP Response

HttpServlet
service()

6

3

4

5

JVM

60 Mastering DynaCache in WebSphere Commerce

Figure 2-15 A cache hit means the servlet and business logic is not called

Servlets and JSPs are configured for caching via entries in the cachespec.xml. A
servlet cachespec entry is designated by its URI path or by its class name. The
classname option is more inclusive because it will catch any invocation of the
servlet, regardless of any servlet alias mappings defined. So which option should
you use? The answer is “it depends.”

Usually, the servlet is cached by its alias, since different aliases often imply
different processing operations. Determining whether to cache on URI or
classname depends entirely on the application. In most cases, the cache entry
for the servlet needs to be further qualified by additional inputs, such as the
request parameters or values from the user session information. This is
explained in the section on specifying cache entries.

2.7.2 Java objects and the command cache

DynaCache provides support for caching the returned results from Java object
calls. DynaCache provides a very straightforward mechanism that allows you to
cache the results from these Java command objects; it is called command
caching.

Commands written to the WebSphere command architecture access databases,
file systems, and connectors to perform business logic, and often execute
remotely on another server. Significant performance gains can be achieved by
caching command results and avoiding their repeated execution.

Servlet/
JSP

Cache
Service

init()

doPost()

Business
Logic
Layer

Database

2

3

1HTTP Request

D
ynacache Filter

HTTP Response

HttpServlet
service()

JVM

 Chapter 2. Caching 61

To take advantage of command caching, applications must be written to the
WebSphere command framework API. This API is based on a common
programming model, and uses a series of getters(), setters() and execute()
methods to retrieve its results. To use a command, the client creates an instance
of the command and calls the execute() method for the command. Depending on
the command, calling other methods could be necessary. The specifics will vary
with the application.

Implementing command caching involves software development. However, the
development requirements for command caching are not difficult. You can cache
the output from calls to:

� Java classes (POJO)
� Java Beans
� EJBs
� Web services

As an application architect you should establish a coding pattern that will allow
applications to use caching at a later stage in development without having to go
back and re-implement the code again.

For example, say you have a system that uses a Java Bean to query a database
and that bean reads in all of the names of the states, counties, or provinces
within your country, including tax rates per region. Rather than have each call to
the bean hit the database, you could do the following:

� Modify the bean by adding the necessary TargetableCommand methods.

� Update your cachespec.xml and add a new cache entry that includes this new
command.

By implementing the previous steps, DynaCache is now aware of your bean, and
can intercept calls made to that bean and serve responses from the cache
instead. Example 2-8 shows how this might look in the cachespec.xml file. Note
that the <sharing-policy> tag is for enabling clustered data replication support.

Example 2-8 Example of specifying a command cache entry

<?xml version="1.0"?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>
 <cache-entry>
 <class>command</class>
 <sharing-policy>shared</sharing-policy>

<name>com.ibm.myapp.statetaxation.StateTaxCacheCommand.class</name>
 <cache-id>
 <component type="method" id="getStateTaxList">

62 Mastering DynaCache in WebSphere Commerce

 <required>true</required>
 </component>
 <priority>1</priority>

</cache-id>
 </cache-entry>
</cache>

Commands cache the data before it is transformed into HTML. In order to take
advantage of command caching, you must make simple code changes to your
Java objects so that DynaCache can call them to retrieve the data. Command
objects inherit from com.ibm.websphere.command.cachableCommandImpl and
must provide certain methods to function properly.

2.7.3 Command interface

Commands are Java objects that follow a usage pattern that consists of three
operational methods. They are:

� Set: Initialize the input properties of the command object.

� Execute: Perform the specific business logic for which the command was
written.

� Get: Retrieve the output properties that are set by the execution.

Each command can be in one of three states based on which methods have
been executed:

� New: The command has been created but the input properties have not been
set.

� Initialized: The input properties have been set.

� Executed: The execute method has been called and the output properties
have been set and can be retrieved.

Executed command objects can be stored in the cache so that subsequent
instances of that command object's execute method can be served by copying
output properties of the cached command to the current command for retrieval by
its get methods.

DynaCache supports caching of command objects for later reuse by servlets,
JSPs, EJBs, or other business logic programming. To identify these cached
command objects, a unique cache ID is generated based on the fields and
methods that represent or are used to retrieve input properties of the command.

To cache a command in an application, a cache ID creation rule must be written
in the cache policy file, and the command must be changed to extend the

 Chapter 2. Caching 63

“CacheableCommandImpl” class instead of implementing the standard
“TargetableCommand” interface.

CacheableCommandImpl is an abstract class that implements the methods
necessary for the command to interact with the caching framework. Because the
CacheableCommand interface extends the TargetableCommand interface, the
command in the application must continue to implement the methods needed for
the TargetableCommand interface.

The standard TargetableCommand interface provides only the client-side
interface for generic commands and declares three basic methods:

� IsReadyToCallExecute()
This method is called on the client side before the command passes to the
server for execution.

� Execute()
This method passes the command to the target and returns any data.

� Reset()
This method resets any output properties to the values they had before the
execute method was called so that the object can be reused.

When a command is called to execute, the request is intercepted by the cache,
and a cache ID is generated based on the values of the input properties specified
in its cache policy. If a cache entry exists for this cache ID, the output properties
are copied from the cached object to this instance of the command, and the state
of this instance is changed to “executed” without actually executing the business
logic. If an entry with the generated ID is not found, the execute method is called,
and the executed command object is stored in the cache. If an ID is not
generated, this is considered not to be an instance of cacheableCommand
caching.

64 Mastering DynaCache in WebSphere Commerce

Figure 2-16 Implementing a quote command used in a stock quote application

Figure 2-16 shows the logic of the sample code in Example 2-9. The code has
been taken from a StockQuote application. In order to execute this command,
first invoke all of the setter methods. Once this is done, the
isReadyToCallExecute() method returns true, then the command is executed and
sets the output parameter which, in this case, is the QuoteDataBean variable
called quoteData. The getPrice() method returns the QuoteData bean object.

Example 2-9 QuoteCommand.java - A sample DynaCache command class

package com.ibm.cache.sample.command;
import javax.naming.InitialContext;
import com.ibm.cache.sample.QuoteDataBean;
import com.ibm.cache.sample.ejb.*;
import com.ibm.websphere.command.CacheableCommandImpl;
public class QuoteCommand extends CacheableCommandImpl {

public StockSession stockHome = null;
public QuoteDataBean quoteData = null;
public String symbol = null;

public QuoteCommand() {
 try {
 StockSessionHome StockSessionHome = null;
 if (StockSessionHome == null) {
 InitialContext ic = new InitialContext();

QUOTE COMMAND

symbol

price

Command logic

setSymbol(“IBM”)

execute()

getPrice()

Q
uo

te
 B

ea
n

Cached Object

H
IT

MISS

DB

Quote:id,value
Quote:IBM,$$$

performExecute()

 Chapter 2. Caching 65

 try {
 StockSessionHome = (StockSessionHome)
 (javax.rmi.PortableRemoteObject
 .narrow(ic.lookup("ejb/StockSession"),
 StockSessionHome.class));
 }
 catch (Exception e) {
 StockSessionHome = (StockSessionHome)
 (javax.rmi.PortableRemoteObject
 .narrow(ic.lookup("ejb/StockSession"),
 StockSessionHome.class));
 }
 }
 stockHome = StockSessionHome.create();
 }
 catch (Exception e) {
 System.out.println("Error on StockSession Lookup");
 e.printStackTrace();
 }
 }

public QuoteCommand(String symbol) {
 this();
 this.symbol = symbol;
 }
////////
// CacheableCommand interface methods
////////

public boolean isReadyToCallExecute() {
 return stockHome != null && symbol != null;
 }

public void performExecute() throws Exception {
 quoteData = stockHome.getPrice(symbol);
 }

////////////
//end Cacheable command methods
////////////

public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

public String getSymbol() {
 return symbol;
 }

66 Mastering DynaCache in WebSphere Commerce

public QuoteDataBean getPrice() {
 return quoteData;
 }
}

Example 2-9 is a simple example of a Java Command class in action. The
example shows how to cache the response to a call made against a stock quote
session EJB.

Example 2-10 shows the cachespec.xml file entry to get the previous Java
command to work with DynaCache.

Example 2-10 Cachespec entry that matches QuoteCommand Java code

<?xml version="1.0"?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.cache.sample.command.QuoteCommand.class</name>
<cache-id>

<component type="method" id="getSymbol">
<required>true</required>

</component>
<priority>1</priority>
<timeout>180</timeout>

</cache-id>
</cache-entry>

</cache>

The Java snippet in Example 2-11 shows how the previous example,
QuoteCommand class, is called by client Java code.

Example 2-11 Calling QuoteCommand class

String id = “IBM”;
QuoteDataBean quoteData = new QuoteDataBean(id);
QuoteCommand cmd = new QuoteCommand(id);
cmd.execute();
quoteData = cmd.getPrice();

The cmd.execute() method call, as you can see from the code, is implemented in
QuoteCommand’s inherited class (CacheableCommandImpl), which is where the

 Chapter 2. Caching 67

caching management takes place. If there is no cache entry, the
CacheableCommandImpl parent class then calls the executeCommand() method
of a CommandTarget proxy class, which in turn calls the performExecute()
method of the target class (QuoteCommand). Once the performExecute()
method has finished, the parent class caches the results. Clients can then
retrieve information via getter methods on the Command object.

Under the covers, the CacheableCommandImpl.execute() implements the
execute() method defined in the Command interface, thereby overriding the
implementation provided in the TargetableCommandImpl class. During
execution, the execute() method does the following:

� It throws an UnsetInputPropertiesException if this command's
isReadyToCallExecute() method returns false.

� It retrieves the CommandTarget object for this command from the
TargetPolicy.

� If the target is already cached, it returns the cached value.

� If it is not cached, it calls the proxy CommandTarget.executeCommand()
method to execute the command, which in turn calls the
TargetableCommand.performExecute() method, and then caches the entire
object.

The command may be cached after execution, depending on the sharing policy. If
the hasOutputProperties() method returns true and the returned command is not
the same instance as this command, it calls the setOutputProperties method so
that the results will be copied into this command. Finally, it sets the time of
execution of the command.

2.7.4 DynaCache full page caching

Full page caching is exactly what it sounds like: the HTML output of an entire
page is cached as a single entity. You configure full page caching by specifying
the consume-subfragments property and setting its value to true in your
<cache-entry> definition for the servlet or JSP.

The advantage of using full page caching with the Commerce controller servlet is
performance. The disadvantage is that if this mechanism is used, then the page
output cannot contain any personalized information. If the cached page did
contain personalized information, then users see another user’s cached
information and not their own. In the following sections we show you how to use

Note: It is important to remember that any objects referenced in a command
must be serializable.

68 Mastering DynaCache in WebSphere Commerce

the consume-subfragments tag and the do-not-consume tag to allow you to
cache a full page except the portions that are cached as fragments.

Consume-subfragments
In DynaCache, full page caching is enabled by setting the <cache-entry>
property consume-subfragments to true for the main targeted parent servlet or
JSP, for example, <property name=”consume-subfragments”>true</property>.
When set to true, the consume-subfragments property tells DynaCache to cache
the targeted JSP and any of its children’s JSPs as a single page.

When a servlet is cached, only the content of that servlet is stored, with
placeholders for any other fragments it includes or to which it forwards.
Consume-subfragments(CSF) tells the cache to continue saving content when
the parent servlet includes a child servlet.

The parent entry (the one marked CSF) will include all the content from all
fragments in its cache entry (in the cache monitor you will see the include
statements being consumed), resulting in one large cache entry that has no
includes or forwards, but rather the content from the whole tree of entries. This
saves a significant amount of application server processing, but is typically only
useful when the external HTTP request contains all the information needed to
determine the entire tree of included fragments.

2.7.5 DynaCache fragment caching

In DynaCache, fragment caching generally means caching a part of a rendered
HTML page. In practice, a page may not be “cacheable” in its entirety, but it may
contain sections of varying cacheability that can be separated into fragments and
cached independently. Any content that can be independently requested can
make up a cacheable fragment.

For fragment (JSP) caching, WebSphere Commerce has to execute the
command (controller, task, and view commands) to identify which JSP is to be
executed before DynaCache can determine whether the JSP can be served from
the cache or not. The advantage of this method is flexibility, because different
cache entries could be reassembled to form a page based on user information.

In order for a fragment to be cacheable, the fragment has to be executable on its
own. That is, it must be able to execute independently of any other fragments of
the Web page. Because the fragment being excluded must be self-executing, it
cannot depend on any attributes set by the parent JSP fragment – unless an
attribute has been defined as being cached with the parent.

This can be a problematic because not all fragments in WebSphere Commerce
are self-executing. To test if the fragment is self-executing, pass the fragment's

 Chapter 2. Caching 69

URL to a Web browser, including the necessary parameters. For example, the
mini shopping cart contained in the ConsumerDirect sample store is accessed by
the following URL:

http://localhost/webapp/wcs/stores/servlet/ConsumerDirect/include/MiniS
hopCartDisplay.jsp?storedId=10001.

The following method describes an alternative way of determining if the fragment
is self-executing. After the cachespec.xml file is configured, click the servlet’s
page.

� Use the cache monitor to invalidate the child fragment.

� Execute the page request to confirm the execution of the fragment is
successful.

If the execution is successful, that fragment is self-executing.

Figure 2-17 Each of these three eMarketing Spots is self-executing and can therefore be
cached individually

In Figure 2-17, each eMarketing spot can be cached because it is self-executing,
so it can be cached as a fragment. By caching it separately it can be invalidated
without invalidating the parent.

You could cache the eMarketing spot by using the cache entry shown in
Example 2-12.

Example 2-12 Caching the eMarketing spot.

<class>servlet</class>
<name>/ConsumerDirect/include/eMarketingSpotDisplay.jsp</name>
<property name="store-cookies">false</property>
<property name="save-attributes">false</property>
<property name="do-not-consume">true</property>
<cache-id>

<component id=“emsName" type=“parameter">
<required>true</required>

</component>
<component id="maxNumDisp" type=“parameter">

<required>true</required>
</component>

70 Mastering DynaCache in WebSphere Commerce

http://localhost/webapp/wcs/stores/servlet/ConsumerDirect/include/MiniShopCartDisplay.jsp?storedId=10001
http://localhost/webapp/wcs/stores/servlet/ConsumerDirect/include/MiniShopCartDisplay.jsp?storedId=10001

<component id="catalogId" type=“parameter">
<required>true</required>

</component>
<component id="maxItemsInRow" type=“parameter">

<required>true</required>
</component>
<component id="maxColInRow" type=“parameter">

<required>true</required>
</component>
<priority>1</priority>
<timeout>3600</timeout>

</cache-id>

The cache-entry for the parent servlet contains values for those parameters
passed into the fragment using the jsp:include or c:import tags. This means that
on a cache hit, the parameters passed from the parent to the fragment are not
regenerated. To have new values passed to the fragment, invalidate or
re-execute the parent JSP

do-not-cache
This property, when set to “true,” instructs DynaCache to not cache a fragment
and not consume it in any parent cache item that incorporates it. The implication
of this is that the JSP will be re-executed every time the page is drawn.

Example 2-13 provides example cachespec definitions. In previous versions of
DynaCache the child cache entry had to be declared before any parent cache
entry for the property to work. This is not the case with DynaCache today, but the
convention has remained in common practice.

Example 2-13 do-not-cache used to prevent the caching of a child JSP

<cache-entry>
 <class>servlet</class>
 <name>/DNCChild.jsp</name>
 <property name="do-not-cache">true</property>
 <cache-id>
 <timeout>0</timeout>
 </cache-id>
</cache-entry>

<cache-entry>
 <class>servlet</class>
 <name>/DNCParent.jsp</name>
 <property name="consume-subfragments">true</property>
 <cache-id>

 Chapter 2. Caching 71

 <timeout>0</timeout>
 </cache-id>
</cache-entry>

The do-not-cache property also works with ESI servers.

do-not-consume
The purpose of this property is often misunderstood by the DynaCache novice.
When set to “true,” the do-not-consume property instructs DynaCache to cache
the item independently of any consuming parent that it belongs to. It does not
mean “do-not-cache.” A simple analogy to explain it is “do not make me live with
my all-consuming parent in the cache, I want to be independent, thank you.”

The do-not-consume property works particularly well for situations where only a
small portion of a candidate Web page contains personalized information, for
example, a personalized welcome message or a mini shopping cart. In this
scenario, you would want to cache the majority of the page, but separate the
personalized bit. By using the do-not-consume property, most of a page can be
rendered from the cache and completed with a portion that has been cached
elsewhere, or not cached at all.

So, for the latter scenario to work properly, the parent object’s <cache-entry>
would be marked with the property consume-subfragments and the child
fragment that contains the personalization area would be marked with the
do-not-consume property.

With this combination, you can achieve performance gains that approach those
of whole page caching and still provide personalized content.

Example 2-14 includes sample cachespec entries that show how to use the two
properties “do-not-consume” and “consume-subfragments.” Notice that the
“do-not-consume” child component (that is, the mini shopping cart) must be
declared before the parent object, which in the example is StoreCatalogDisplay.

Example 2-14 do-not-consume and consume-subfragments properties in action

<cache-entry>
 <class>servlet</class>
 <name>/MiniCurrentOrderDisplay.jsp</name>
 <property name="do-not-consume">true</property>
 <property name="save-attributes">false</property>
 <cache-id>
 <component id="DC_userId" type="attribute">
 <required>true</required>
 </component>

72 Mastering DynaCache in WebSphere Commerce

 </cache-id>
</cache-entry>

<cache-entry>
 <class>servlet</class>
 <name>com.ibm.commerce.server.EACActionServlet.class</name>
 <property name="store-cookies">false</property>
 <property name="save-attributes">false</property>
 <property name="consume-subfragments">true</property>
 <cache-id>
 <component id="" type="pathinfo">
 <required>true</required>
 <value>/StoreCatalogDisplay</value>
 </component>
 <component id="storeId" type="parameter">
 <required>true</required>
 </component>
 <component id="catalogId" type="parameter">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>

2.8 Invalidation: Getting stale objects out of the cache

A second, critical invalidation policy defines when to evict cache items. The
strategy for removing expired cache entries is an essential part of cache design.
Cache entries might:

� Expire after a given amount of time

� Be removed from the cache based on dependency rules

� Be removed on the basis of a Least Recently Used algorithm when the cache
needs space for new entries

The operation of removing entries from the cache is called invalidation. The
easiest method for cache invalidation is to set a time-to-live (TTL) value on the
cache entry, though we do not encourage this, as we explain later in the
invalidation best practices section.

Wherever possible, you should create an explicit invalidation policy for each
cache entry in the cachespec.xml file. This policy defines an invalidation rule very
similar to the cache ID rule, and an invalidation ID is generated based on that
rule. When an invalidation rule is specified for an object, DynaCache generates

 Chapter 2. Caching 73

an invalidation ID during the execution of that object and checks it against the
cache IDs of all entries currently in the cache. If a cache ID matching the
invalidation ID is found in the cache, the cache entry associated with this cache
ID is removed from the cache (meaning it is invalidated).

DynaCache also provides a group-based invalidation mechanism based on
dependency lDs. A dependency ID defines a cache entry’s dependency rule.
Different objects, based on their defined rules, might generate the same
dependency ID. If an invalidation ID is generated for a request that matches a
given dependency ID, all the cache entries associated with that dependency ID
are removed from cache.

The invalidation ID is generated by concatenating the invalidation ID base string
with the values returned by its component element. If a required component
returns a null value, then the entire invalidation ID is not generated and no
invalidation occurs. Multiple invalidation rules can exist per cache-entry. All
invalidation rules run separately.

We encourage defining invalidation rules to automate the invalidation of cache
entries. If you do not have invalidation rules configured, then you need to
invalidate the entire cache when content changes. This means that everything is
removed from the cache, and not just the changed pages. The invalidation of the
complete cache is not recommended and should be avoided whenever possible
since it leads to a poor user experience.

Time-based invalidation
The simplest way to invalidate cache entries is with time-based elements,
although it is not necessarily the best way. This method is useful for user-specific
objects when you cannot invalidate the cache entries by any other mechanism.

You can accomplish time-based invalidation by specifying the
<timeout>value</timeout> sub-element within a cache-entry in the
cachespec.xml file. Value is the amount of time, in seconds, the cache entry is
kept in the cache. The default value for this element is 0 (zero), which indicates
this entry never expires.

There is another time-based invalidation technique in WebSphere Application
Server 5.1 and later. You can use the <inactivity>value</inactivity> sub-element
to specify a time-to-live (TTL) value for the cache entry based on the last time the
cache entry was accessed. Value is the amount of time, in seconds, to keep the
cache entry in the cache after the last cache hit. The mini shopping cart should
use this type of invalidation rule so that your cache does not fill up with
user-specific data that is no longer being accessed.

74 Mastering DynaCache in WebSphere Commerce

Command-based invalidation
You can also invalidate entries in the cache through command-based invalidation
using dependency and invalidation IDs. A cache-entry needs dependency IDs
defined for each component that it relies on. When an object is cached for this
entry, the dependency IDs are generated and associated with it. You can build a
dependency tree, so that when object x is refreshed, so are objects y and z, and
so on.

These entries are invalidated using command-based invalidation rules.
Command-based invalidation means invalidation IDs are generated upon
execution of a command. These invalidation IDs are constructed based on the
methods and fields provided by the commands. When a request causes
invalidation IDs to be generated, the entries in the cache that have a dependency
ID matching the generated invalidation ID are invalidated.

To have cache invalidation triggered by a command, you must first declare the
dependency-id components for the cache-entries you want to invalidate. The
dependency-id components represent the components that, should they change,
would invalidate the content of this cache entry. See Example 8-4 on page 197
for an illustration of command-based invalidation.

Triggered invalidation
A final way to configure automatic cache invalidation is using the WebSphere
Commerce CACHEIVL table in combination with database triggers.

2.9 The ConsumerDirect cachespec.xml file

WebSphere Commerce provides a number of sample applications, and the
ConsumerDirect store is one of them. The ConsumerDirect sample application is
also provided with a ready-to-use cachespec.xml file and in this section, we are
going to put that file under the microscope. Let’s take a look at the first few lines
of the sample ConsumerDirect cachespec.xml file as shown in Example 2-15.

Example 2-15 Targeting a struts-based application for caching

<?xml version="1.0"?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>

<cache-entry>
<class>servlet</class>
<name>com.ibm.commerce.struts.ECActionServlet.class</name>
<property name="consume-subfragments">true</property>
<property name="save-attributes">false

<exclude>jspStoreDir</exclude>

 Chapter 2. Caching 75

</property>

Perhaps in examining the XML in Example 2-15, you have already deduced that
the <cache-entry> child elements, <class> and <name>, are part of a definition
that describes a servlet type of cache entry.

Element <class>
The <class> tag specifies the type of object (servlet) to cache and the <name>
tag tells us which: com.ibm.commerce.struts.ECActionServlet.class. The <class>
element is required and specifies how the application server interprets the
remaining cache policy definition. For more information on the supported <class>
types, see Table 6-2 on page 153.

Element <name>
The <name> element is an important part of the cache entry. Take another look at
the name element in the first ConsumerDirect cache entry in Example 2-16.

Example 2-16 Specifying the Struts controller Servlet in a cachespec entry

<cache-entry>
<class>servlet</class>
<name>com.ibm.commerce.struts.ECActionServlet.class</name>

To cache the output of the Commerce main action servlet we need the servlet’s
fully qualified package name so that the runtime DynaCache engine can locate it
in the Web container and then start to filter it. In the sample cachespec.xml, this
is provided as:

<name>com.ibm.commerce.struts.ECActionServlet.class</name>

The com.ibm.commerce.struts.ECActionServlet2 is an important servlet in the
context of the Commerce runtime architecture and is explained next.

2.9.1 WebSphere Commerce ECActionServlet explained

WebSphere Commerce V6 store applications use the Struts framework. In the
case of Struts, every request URI ending in .do maps to the same
ActionServlet.class. However, prior to WebSphere Application Server V6.0, only
one cache policy is supported per servlet in releases. Therefore, to cache Struts
responses, the cache policy has to be written for the ActionServlet servlet based
on its servlet path.

2 This was <name>com.ibm.commerce.server.RequestServlet.class</name> in earlier versions of
WebSphere Commerce.

76 Mastering DynaCache in WebSphere Commerce

For Commerce, the name of the Struts ActionServlet handling all inbound
store-based HTTP requests is com.ibm.commerce.struts.ECActionServlet.class.
In Version 5 of Commerce, the non-Struts-based store applications also funneled
requests through a single servlet, the RequestServlet.

In Example 2-15 you can see that ECActionServlet is the servlet that creates the
output we want to cache. It is the only servlet to be configured in the entire
cachespec file because all the Web traffic passes through it.

The meanings of the tags shown in Example 2-15 are given in Table 2-3.

Table 2-3 Explanation of the initial cache tags in ConsumerDirect

2.9.2 Cache-id definitions for ConsumerDirect

Appearing immediately after the cache entry definitions in the ConsumerDirect
cachespec.xml file, there is a list of <cache-id> definitions. The first <cache-id>
defines what is required to properly cache the ConsumerDirect “Store Catalog
Display” page shown in Figure 2-9 on page 45.

The XML fragment that specifically caches the “Store Catalog Display” page is
shown in Figure 2-18 on page 78.

Sample content Description

<cache-entry> We are defining a cache entry, the
child elements of which will define the
properties.

<class>servlet<class> We are going to cache a servlet.

<name>...ECActionServlet.class</name> ECActionServlet is the main servlet in
Commerce applications through
which all HTTP requests pass.

<property name="consume-subfragments... Cache the entire page. Any
subfragments or child JSPs must be
included in the cached output.

<property name="save-attributes">false Don’t save any of the HTTP request
attributes in the cached output.

<exclude>jspStoreDir</exclude> Do not save the jspStoreDir attribute.
Refer to “ConsumerDirect jspStoreDir
issue” on page 170 for more details.

 Chapter 2. Caching 77

Figure 2-18 Cache ID definitions for caching the StoreCatalogDisplay page

Refer to Table 6-5 on page 169 for an explanation of the Commerce attributes
DC_lang, DC_curr, DC_cont, and DC_mg, and how they are useful in Commerce
specific cachespec.xml files. Be aware, however, that if an application does not
have a dependency on language, there is no reason for your cache-id to contain
the DC_lang component.

TopCategoriesDisplay
Following the StoreCatalogDisplay is the next cache-id entry, shown in
Example 2-17, for the TopCategoriesDisplay page.

Example 2-17 Cache ID definitions for caching the TopCategoriesDisplay page

<cache-id>
<component id="" type="pathinfo">

<required>true</required>
<value>/TopCategoriesDisplay</value>

http://localhost/webapp/wcs/stores/servlet/StoreCatalogDisplay?storeid=10001& catalogid=10001

Browser requests:

<cache-id>
<component id="" type="pathinfo">

<required>true</required>
<value>/StoreCatalogDisplay</value>

</component>

<component id="storeId" type="parameter">
<required>true</required>

</component>

<component id="catalogId" type="parameter">
<required>true</required>

</component>

<component id="DC_lang" type="attribute">
<required>true</required>

</component>

<component id="DC_cont" type="attribute">
<required>true</required>

</component>

<component id="DC_curr" type="attribute">
<required>true</required>

</component>

<component id="DC_mg" type="attribute">
<required>true</required>

</component>
<cache-id>

This is the
start of a
cache id
definition

Both
parameters

must be
provided

in the
request

This is the
end of the
cache ID
definition

Define the path
used to access

the Store
Catalog Display

Define params
passed in the
HTTP request
(for example,
storeID and

catalogId

Make separate
Cache items

based on locale
information

78 Mastering DynaCache in WebSphere Commerce

</component>
<component id="storeId" type="parameter">

<required>true</required>
</component>
<component id="catalogId" type="parameter">

<required>true</required>
</component>
<component id="categoryId" type="parameter">

<required>false</required>
</component>
<component id="DynaCache" type="attribute">

<required>true</required>
</component>
<component id="DC_curr" type="attribute">

<required>true</required>
</component>
<component id="DC_cont" type="attribute">

<required>true</required>
</component>
<component id="DC_mg" type="attribute">

<required>true</required>
</component>

</cache-id>

The elements in this entry are very similar to the StoreCatalogDisplay entry. The
URL this cache ID executes against looks like:

/TopCategoriesDisplay?storeId=<storeId>&catalogId=<catalogId>

Notice that the categoryId parameter did not appear in this URL. This is because
categoryId is declared optional in the cachespec (see Example 2-17).
CategoryId is not required to be present for the rule to fire because its <required>
property is set to false. If the categoryId were present in the request URL, then a
different cache-id is generated because the DynaCache internal id-generator
class would then include the value of the categoryId parameter when generating
the unique cache ID.

2.10 Impact of memory cache on JVM garbage
collection

For large Web sites that cache many thousands of items, the cache designer
needs to be aware of the potential impact these objects can have on JVM
memory utilization. Implementing DynaCache without proper consideration can

 Chapter 2. Caching 79

easily lead to a large increase in memory resource consumption and therefore
cause serious side effects.

Some of the symptoms you may observe are OutOfMemory exceptions due to
heap fragmentation type problems. One of the root causes of this problem is
configurations that result in greater numbers of DynaCache objects accumulating
in the JVM heap than can be handled by existing resources.

For example, if the average page size is 50 KB and you set the in-memory cache
pool size to 10,000 objects, you end up needing 500,000 KB (half a gigabyte) of
JVM heap to accommodate the cache. DynaCache does not compress its cache
entries.

If the maximum heap size is set to one gigabyte, then this represents a significant
amount of the heap being allocated to DynaCache. It also means that the rest of
your application must operate within the remaining 500,000 KB of heap space,
which may not be what you intended.

In an effort to try to prevent some of these fragmentation issues, DynaCache will
reuse cached item memory objects via a technique called object pooling.
Nonetheless, incorrect caching and invalidation strategies eventually lead to
increased memory fragmentation and poorer garbage collection performance.

Some of the possible solutions are as follows:

� Applying iFixes related to diskoffload, replication (DRS), and external cache
management memory utilization might need to be done to your system
depending on its version.

� Changing replication policy to Push & Pull from the Push usage pattern might
need to be done. (The appropriate DRS replication policy is a difficult issue.
Push & Pull will actually end up using more memory, and is discussed at
length in Chapter 4, “Clustering DynaCache” on page 107).

� Applying a JDK™ upgrade to allow tuning of class block clusters.

� Creating additional JVMs to spread the load.

80 Mastering DynaCache in WebSphere Commerce

We now discuss the tuning of the Java heap and review some of the options
available to you to assist with your DynaCache design. Refer to Figure 2-19,
which illustrates the runtime layout of JVM memory segments, as you read
through the next few topics.

Figure 2-19 JVM memory segments

kCluster, pCluster, and fragmentation
Java objects located in the Java heap are usually mobile; that is, the garbage
collector (GC) can move them around if it decides to re-sequence the heap.
Some objects, however, cannot be moved either permanently or temporarily.
Such immovable objects are known as pinned objects. One kind of situation to
look out for, which is associated with pinning memory, is the use of the JNI to call
external programs. Use of JDBC-2 drivers is a case in point.

In the Java SDK Release 1.3.1, Service Refresh 7 and above, the garbage
collector (GC) allocates what is called a kCluster as the first region at the bottom
of the heap. A kCluster is an area of storage that is used exclusively for class
blocks. It is large enough to hold 1280 entries and each class block is 256 bytes
long.

The GC then allocates a pCluster as the second object on the heap. A pCluster
is an area of storage that is used to allocate any pinned objects. It is 16 KB long.

JVM
Data
Segment

Java
Heap

Operating System

JVM Runtime classes, extension
classes and objects

Interpreter, verifier, JIT
compiler, memory manager, etc.

JVM OS Interface

WAS Classes and Objects

Application classes and objects

JVM
Native
Heap

JVM
Stack
Segment

JVM
Native
Code

 Chapter 2. Caching 81

When the kCluster is full, the GC allocates class blocks in the pCluster. When the
pCluster is full, the GC allocates a new pCluster of 2 KB. Because this new
pCluster can be allocated anywhere in the heap and must be pinned, it can lead
to fragmentation problems.

How fragmentation occurs
The pinned objects effectively deny the GC the ability to combine free space
during heap compaction; this can result in a heap that contains a lot of free space
but in relatively small, discrete amounts, so that an allocation that appears to be
well below the total free heap space fails. When the request fails, we need to run
a full GC compaction to free up memory. During the compaction, processing in
the JVM comes to a halt. The more frequently we run compactions the larger the
degradation of performance.

How to avoid fragmentation
Java SDK Release 1.3.1 at SR7, and later, provides command-line options to
specify the size of the JVM kCluster and pCluster regions. Refer to Table 2-4 for
a summary of the switches. For additional information see the IBM Java
technology Web page “Diagnosis Documentation,” which has a section on
garbage collection and performance tuning. The Web address is:

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/142.html

Table 2-4 JVM kCluster and pCluster sizing switches

Set the initial sizes of the clusters large enough to help avoid fragmentation
issues occurring on your Web site. It is not unusual in a large Java application,
such as WebSphere Application Server, that the default kCluster space might not
be sufficient to allocate all class blocks.

Example 2-18 Sample garbage collection output using -verbosegc switch

<GC(VFY-SUM): pinned=4265(classes=3955/freeclasses=0) dosed=10388
movable=1233792 free=5658>

JVM
region

JVM
switch

kCluster -Xk

pCluster
overflowsize

-Xp sz,ovfl The -Xp switch has two parameters:
sz = the pCluster size parameter in KB
ovfl = the overflow size parameter in KB

82 Mastering DynaCache in WebSphere Commerce

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/142.html

In Example 2-18 on page 82, the pinned size value(4265) and classes size
value(3955) are about the right size needed for the -Xk parameter. However, we
recommend that you add 10% to the reported value (3955)

In the preceding example, -Xk4200 is probably a reasonable setting. The
difference between pinned (=4265) and classes (=3955) provides a guide for the
initial size of pCluster; however, because each object might be a different size, it
is difficult to predict the requirements for the pCluster and pCluster overflow
options.

Configuring the kCluster
Set -Xk to handle objects up to the specified size using the -Xk option:

-Xk maxNumClass

Here, maxNumClass specifies the maximum number of classes the kCluster can
contain.

-Xk instructs the JVM to allocate space for maxNumClass class blocks in
kCluster. The GC trace data obtained by setting -Xtgc2 can help provide a guide
for the optimum value of the maxNumClasses parameter. You must keep -Xtgc2
enabled until memory fragmentation is satisfactory.

Configuring the pCluster
Specify the pCluster and pCluster overflow sizes using the -Xp command-line
option:

-Xp sizeClusterKB[,sizeOverflowKB]

Here, sizeClusterKB specifies the size of the initial pCluster in KB and
sizeOverflowKB optionally specifies the size of overflow (subsequent) pClusters
in KB. The default values of sizeCluster and sizeOverflow are 16 KB and 2 KB,
respectively. If your application suffers from heap fragmentation, turn on the GC
trace (-Xtgc2) and specify the -Xk option. If the problem persists, experiment with
higher initial pCluster settings and overflow pCluster sizes.

Configuring the Large Object Area
IBM Sovereign 1.4.2 SDK SR1 and later (build date of 20050209 and later)
supports the configuration of Large Object Area to reserve the Java heap for
allocating large objects (>=64 KB). For details, refer to Technote 1236509 at:

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=large+o
bjects&uid=swg21236509&loc=en_US&cs=utf-8&lang=en

 Chapter 2. Caching 83

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=large+objects&uid=swg21236509&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=large+objects&uid=swg21236509&loc=en_US&cs=utf-8&lang=en

2.11 Configure disk offload

If the estimated total size of all cached objects is bigger than the available
memory, you can enable the disk offload option in WebSphere Application
Server. We would expect most WebSphere Commerce sites to use disk offload,
unless a Web site has a small catalog.

Priority weighting is used in conjunction with the least recently used (LRU)
algorithm to move objects from the cache onto disk. You configure priorities for
the cached objects in the cachespec.xml file. A higher priority entry is less likely
to be moved to disk.

If you decide to use the disk offload option, you need to also configure your file
system for fast I/O access. Depending on your hardware and software, you can
use various disk striping or caching techniques. Disk offload is configured on the
same panel where you enable the DynaCache service. You should investigate
using a high-speed Storage Area Network with memory.

The three settings related to the disk offload configuration are the following:

� Enable disk offload: Specifies whether disk offload is enabled. If a cache
entry that was moved to disk is needed again, it is moved back to memory
from the file system.

� Offload location: Specifies the location on the disk to save cache entries
when disk offload is enabled. If disk offload location is not specified, the
default location is used:

$install_root/temp/node/servername/_DynaCache/cacheJNDIname

If a disk offload location is specified, the node, server name, and cache
instance name are appended.

For example, $install_root/diskoffload generates the location as
$install_root/diskoffload/node/servername/cacheJNDIname. This value is
ignored if disk offload is not enabled.

� Flush to disk: Specifies if in-memory cached objects are saved to disk when
the server is stopped. This value is ignored if Enable disk offload is not
selected.

84 Mastering DynaCache in WebSphere Commerce

2.11.1 Tuning the disk cache

There are several custom properties for the JVM available to tune the disk
cache3.

All custom properties can be set using the following steps:

1. In the Administrative Console, select Servers → Application servers →
<AppServer_Name> → Java and Process Management → Process
Definition → Java Virtual Machine → Custom Properties → New.

2. Enter the Name of the custom property.

3. Enter a valid value for the custom property.

4. Save your changes and restart the application server.

Custom JVM properties
There are three custom properties available:

1. htodCleanupFrequency

2. htodDelayOffloadEntriesLimit

3. htodDelayOffload

The first, htodCleanupFrequency, is related to the disk cache cleanup time The
other two properties, described in the following sections, are related to tuning the
delay offload function.

htodCleanupFrequency
Tune the disk cache cleanup time using the com.ibm.ws.cache.CacheConfig.
htodCleanupFrequency custom property. This property defines the amount of
time between disk cache cleanups. By default, the disk cache cleanup is
scheduled to run at midnight to remove expired cache entries and cache entries
that have not been accessed in the past 24 hours. However, if you have
thousands of cache entries that might expire within one or two hours, the files
that are in the disk cache can grow large and become unmanageable.

Use com.ibm.ws.cache.CacheConfig.htodCleanupFrequency to change the time
interval between disk cache cleanups. The value is set in minutes, that is, a value
of 60 means 60 minutes between each disk cache cleanup. The default is 0
which means that the disk cache cleanup occurs at midnight every 24 hours.

3 WebSphere Application Server Version 5.0.2.18, 5.1.1.12 and 6.0.2.17 include APAR PK13460:
“DISK CACHE PERFORMANCE, GARBAGE COLLECTION, ADDITIONAL PMI MATRIX AND
CACHE POLICY ENHANCEMENTS” which should be installed. The APAR is found at
http://www.ibm.com/support/docview.wss?rs=180&uid=swg1PK13460

 Chapter 2. Caching 85

http://www.ibm.com/support/docview.wss?rs=180&uid=swg1PK13460

htodDelayOffloadEntriesLimit and htodDelayOffload
Tune the delay offload function using these custom properties:

� com.ibm.ws.cache.CacheConfig. htodDelayOffloadEntriesLimit

� com.ibm.ws.cache.CacheConfig. htodDelayOffload

The delay offload function uses extra memory buffers for dependency IDs and
templates to delay the disk offload and minimize the input and output operations.
However, if most of your cache IDs are longer than 100 bytes, the delay offload
function might use too much memory.

To increase or decrease the in-memory limit, use
com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit. This custom
property specifies the number of different cache IDs that can be saved in
memory for the dependency ID and template buffers. Consider increasing this
value if you have a lot of memory in your server and you want to increase the
performance of your disk cache. The default value in WebSphere Commerce is
100,000,4 which means that each dependency ID or template ID can have up to
100,000 different cache IDs in memory. Specify a value suitable for your
environment, but it must be a number higher than 100 because this is the
minimum setting allowed.

The com.ibm.ws.cache.CacheConfig.htodDelayOffloadcustom property specifies
whether extra memory buffers are used in memory for dependency IDs and
templates to delay disk offload and to minimize input and output operations to the
disk. The default value is true, which means enabled. With the property enabled,
there is a considerable performance boost in disk cache throughput. Consider
disabling it if your cache IDs are larger than 100 bytes because this option might
use too much memory when it buffers your data. If you set this property to false,
all the cache entries are copied to disk immediately after they are removed from
the memory cache.

Tip: If you are using objects that use inactivity or timeout to clean up, then you
need to configure this parameter to execute more frequently. If you use a 15
minute timeout we suggest you use a 15 minute cleanup interval.

4 WebSphere Commerce already modifies the WebSphere Application Server from its default of
1000.

86 Mastering DynaCache in WebSphere Commerce

2.12 Displaying cache information

The DynaCache monitor is an installable Web application that displays simple
cache statistics, cache entries, and cache policy information for servlet cache
instances. Figure 2-20 is an example monitor screen display.

Figure 2-20 Example Cache Monitor application window

2.12.1 Install the cacheMonitor.ear application

The cache monitor application is not installed automatically, so use the
administrative console or an equivalent wsadmin script to install the cache
monitor application from the <app_server_root>/installableApps directory. The
name of the application is cacheMonitor.ear.

Install the cache monitor into the application server you want to monitor. Refer to
Chapter 8, “DynaCache tutorial” on page 179 to see exactly how to perform the
cache monitor installation. The cache monitor has to be applied to each server
you want to monitor. It does not provide a unified view of the cache for all the
servers in the cluster.

 Chapter 2. Caching 87

Once installed, you can access the cache monitor using the following url:
http://host_name:port/cachemonitor where your port is the port associated
with the host on which you installed the cache monitor application. Once the
monitor is up and running you can verify the list of all cache instances that you
have configured.

If you did not configure any cache instances the Cache Monitor will only display
the cache entries stored in the default, base Cache instance.

2.12.2 Cache monitor viewing capabilities

For each cache instance configured, you can perform the following actions:

� View the Cache Statistics page and verify the cache configuration and cache
data. Click Reset Statistics to reset the counters.

� View the Edge Statistics page to view data about the current ESI processors
configured for caching. Click Refresh Statistics to see the latest statistics or
content from the ESI processors. Click Reset Statistics to reset the
counters.5

� View the Cache Contents page to examine the contents that are currently
cached in memory.

� View the Disk Offload page to view content that is currently offloaded from
memory to disk.

� View the Cache Policies page to see which cache policies are currently
loaded in the DynaCache. Click a template to view the cache ID rules for the
template.

Attention: Recall our recommendation that you only use the cache monitor on
production servers with security and access control applied to reduce the
chances of someone invalidating the whole cache and causing a massive
performance degradation of a Web site with potentially serious business
impact.

5 This has been the source of a lot of APARS. Prior to WebSphere Application Server v6.1, any and
only one server in a cluster would show the status and contents of all WSI caches configured to
work with DynaCache.

88 Mastering DynaCache in WebSphere Commerce

Figure 2-21 Cache monitor viewing capabilities

When you are viewing contents on memory or disk, you can click:

� A template to view all entries for that template
� A dependency ID to view all entries for the ID
� The cache ID to view all the data that is cached for that entry

2.12.3 Cache monitor operational tasks

You can use the cache monitor to perform basic operations on the data stored in
a cache instance as shown in Table 2-5.

Table 2-5 Cache Monitor operational tasks

Monitor operation Task execution

Remove an entry from cache. Invalidate when viewing a cache entry.

Remove all entries for a certain
dependency ID.

Invalidate when viewing entries for a
dependency ID.

Remove all entries for a template. Invalidate when viewing entries for a template.

Move an entry to the front of the LRU
queue to avoid eviction.

Refresh when viewing a cache entry.

 Chapter 2. Caching 89

In addition to using the cache monitor to track the cache, you can also use the
Performance Monitoring Infrastructure (PMI) and the mBean JMX™ API, as
explained in 6.9 “Monitoring DynaCache” on page 149.

Move an entry from disk to cache. Send to Memory when viewing a cache entry
on disk.

Clear the entire contents of the cache. Clear Cache while viewing statistics or
contents.

Clear the contents on the ESI
processors.

Clear Cache while viewing ESI statistics or
contents.

Clear the contents of the disk cache. Clear Disk while viewing disk contents.

Monitor operation Task execution

90 Mastering DynaCache in WebSphere Commerce

Chapter 3. DynaCache invalidation

This chapter discusses the mechanics and rationale behind removing items from
the DynaCache. The topics covered are:

� What invalidation is and why it is it important

� Invalidation techniques and capabilities

� Invalidation best practices

3

© Copyright IBM Corp. 2006. All rights reserved. 91

3.1 DynaCache invalidation defined

For each item cached by your Web site, you need to determine when the item is
no longer valid, and remove its cache entry. This process is known as
invalidation.

This section is a high-level overview of DynaCache invalidation in WebSphere.

3.1.1 Invalidation overview

Invalidation ensures that users of your e-commerce Web site are not browsing
stale or invalid content from your site as a result of caching items that have
changed.

In many cases, the validity of a cache entry is governed by business
requirements. For example, when a catalog is updated and a new product
description or price is created, the cache entry that contains the old product
information will be wrong. The entry is removed from the cache so it will not be
served up to a user as part of an outdated product page. Another scenario is a
marketing campaign. The cache entries will become invalid at the end of the
campaign.

Invalid cache entries are also known as stale entries. They must be evicted from
the cache. In most cases the invalid cache entry is regenerated and added as a
new cache entry.

A correct and efficient invalidation strategy will allow your Web site to react
appropriately to change and ensures your customers or business clients get the
most accurate information possible and in a timely manner.

3.2 DynaCache invalidation mechanisms and tools

This section provides some guidelines for the process of invalidation, as well as
describing how to use the following DynaCache invalidation mechanisms:

� Invalidation policies defined within the cachespec.xml

� Programmatic invalidation using the DynaCache API

� Scheduled invalidation

� Cache Monitor Web application

92 Mastering DynaCache in WebSphere Commerce

3.2.1 The invalidation process

To work out when a cached page is no longer valid, you need to know what might
make the cached page out of date. For example, a cached shopping cart page is
invalidated when a customer adds a new item to the cart. Cached items may also
be invalidated when an administrator updates the store with the WebSphere
Commerce Accelerator or when new catalog data is added using other
WebSphere Commerce tooling.

After you have listed the events or actions that make a cached page or fragment
invalid, you can use those events to track down which components are
responsible for building those pages. In cases where commands are invoked you
should define invalidation rules in the cachespec.xml to invalidate dependent
cache entries. In short, the steps are:

1. Identify the events that cause a page to become invalid.

2. Track down the components responsible for building those pages.

3. Build invalidation rules based on the components you have identified.

You can also define invalidation rules based on request parameters.

In some cases, it is not events or actions, but rather an elapsed amount of time
that invalidates a cache item. For these cases you define invalidation rules based
on the elapsed time since a cache entry was last used, or since a cache entry
was created. You can also configure the WebSphere Commerce scheduler to
invalidate cache entries at a scheduled time interval.

It is essential to have a solid understanding of the business logic and business
requirements of your application to know when and how to invalidate cache
items.

3.2.2 Cachespec.xml invalidation policies

What invalidation mechanisms are used to define invalidation policies in the
cachespec.xml?

Dependency identifiers
The dependency identifier is the key to configuring invalidation in the
cachespec.xml. The dependency identifier <dependency-id> is defined after the
<cache-id> element within the <cache-entry> element. A sample dependency
identifier is shown in Example 3-1 on page 94.

 Chapter 3. DynaCache invalidation 93

Example 3-1 Sample dependency identifier

<cache-entry>
<class>servlet</class>

<name>/ConsumerDirect/include/styles/style1/CachedHeaderDisplay.jsp</name>

<property name="do-not-consume">true</property>
<property name="save-attributes">false</property>

<cache-id>
<component id="storeId" type="parameter">

<required>true</required>
</component>
<component id="catalogId" type="parameter">

<required>true</required>
</component>
<component id="DC_userType" type="attribute">

<required>false</required>
<not-value>-1002</not-value>

</component>
<component id="DC_lang" type="attribute">

<required>true</required>
</component>

</cache-id>

<dependency-id>storeIdPages
<component id="storeId" type="parameter">

<required>true</required>
</component>

</dependency-id>

The dependency ID is a label that is used to identify which cache entries to
invalidate. The same label may be attached to one, or more than one, cache
entry, creating a group of cache entries. It is used in an invalidation rule to
invalidate a whole group of entries.

In Example 3-1, the dependency ID base string name is storeIdPages. In the
cache ID, the component sub-elements have component ID values. The
invalidation rule compares the component IDs with the dependency ID to identify
cache entries to invalidate. In the example, the component ID storeId matches
the dependency ID storeIdPages. The type attribute specifies that storeId is a
request parameter.

94 Mastering DynaCache in WebSphere Commerce

The value of the dependency-id element is generated by concatenating the
dependency ID base string with the values that are returned by its component
elements. An example of a dependency ID is:

storeIdPages:storeId:10001

Each cache entry may have multiple dependency IDs with one or more
component identifiers.

The <require> sub element indicates that storeId must have a value. If a required
component returns a null value, the entire dependency does not generate and is
not used.

In summary, dependency IDs label cache entries and are used by invalidation
rules to invalidate one or more cache entries at a time. Dependency IDs and
invalidation rules are defined in cachespec.xml. Figure 3-1shows a high-level
view of how two invalidation rules affect cache entries defined in the
cachespec.xml. These rules invalidate cache objects defined by the first cache
entry (dotted line) or cache objects defined by the second cache entry (solid line)
when their full dependency ID strings match. Note that in the cachespec.xml,
only the dependency ID base string is shown. This string is part of the
dependency ID but does not represent the full dependency ID.

Figure 3-1 Dependency ID: Invalidation rule relationship

 Chapter 3. DynaCache invalidation 95

In the following section, we describe how to define invalidation policies and how
dependency IDs are used by those invalidation policies to invalidate cache
entries in the cachespec.xml.

Command-based invalidation
Step one in the process of defining invalidation rules is to identify the events or
actions that will invalidate a cache entry. Step two, when using command-based
invalidation, is to identify the controller or task commands that are invoked when
those events occur. For example, when you use the WebSphere Commerce
Accelerator to update a product attribute, the ProductAttributeUpdateCmdImpl
command is invoked. You can use this command to trigger an invalidation of
product-related fragments or pages when the command is invoked.

Example 3-2 shows a portion of the sample invalidation cachespec.xml that can
be found at WC_installdir/samples/DynaCache/invalidation.

The cache entry in Example 3-2 shows how to invalidate product-related cache
entries after the product-related attributes have been updated. When the product
has been updated, one of the commands listed in the cache entry, such as
ProductAttributeUpdateCmdImpl or AttributeValueUpdateCmdImpl, is invoked.
These command names are specified within the <name> element. As a result,
the subsequent invalidation rules, which are defined within the <invalidation>
tags, are executed.

In the first invalidation rule all cache entries having the dependency ID productId
are invalidated if their product ID matches the ID returned by a call to the method
getCatentryId as specified in the component sub-element.

Example 3-2 Invalidation using commands

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>

<name>com.ibm.commerce.catalogmanagement.commands.ProductAttributeUpdateCm
dImpl</name>

<name>com.ibm.commerce.catalogmanagement.commands.AttributeValueUpdateCmdI
mpl</name>

<name>com.ibm.commerce.catalogmanagement.commands.UpdateAttributeCmdImpl</
name>

<name>com.ibm.commerce.catalogmanagement.commands.UpdateAttributeValueCmdI
mpl</name>

96 Mastering DynaCache in WebSphere Commerce

<invalidation>productId
<component id="getCatentryId" type="method">

<required>true</required>
</component>

</invalidation>

<invalidation>MiniCart:DC_storeId
<component id="getStoreId" type="method">

<required>true</required>
</component>

</invalidation>

<invalidation>storeId:productId
<component id="getStoreId" type="method">

<required>true</required>
</component>
<component id="getCatentryId" type="method">

<required>true</required>
</component>

</invalidation>

<invalidation>CategoryDisplay:storeId
<component id="getStoreId" type="method">

<required>true</required>
</component>

</invalidation>

</cache-entry>

The other invalidation elements describe how cache entries should be
invalidated based on different dependency IDs.

Rule-based invalidation
Another form of invalidation, less commonly used in WebSphere Commerce, but
similar to command-based invalidation, is rule-based invalidation. Example 3-3
on page 98 demonstrates this concept by invalidating a cache entry based on a
request parameter.

When the parameter with the name action has a value of update, the cache
entries having the dependency ID category are made invalid. They are removed
from the cache. Like command-based caching, the invalidation rule in rule-based
invalidation is specified inside the <invalidation> tags. The component
sub-element indicates the condition, that is, the action parameter must have the
string value update.

 Chapter 3. DynaCache invalidation 97

Example 3-3 Rule-based invalidation

<cache-entry>
<name>newscontroller </name>
<class>servlet</class>

 <cache-id>
<component id="action" type="parameter">

<value>view</value>
<required>true</required>

</component>
<component id="category" type="parameter">

<required>true</required>
</component>
<component id="layout" type="session">

<required>false</required>
</component>

</cache-id>

<dependency-id>category
<component id="category" type="parameter">

<required>true</required>
</component>

</dependency-id>

<invalidation>category
<component id="action" type="parameter" ignore-value="true">

<value>update</value>
<required>true</required>

</component>
<component id="category" type="parameter">

<required>true</required>
 </component>

</invalidation>

</cache-entry>

Timeout
A timeout rule specifies an absolute time-to-live (TTL) value for the cache entry.
When a timeout element is used, the cache entry will be removed from the cache
after the specified amount of time has elapsed, regardless of any other
invalidation rules.

98 Mastering DynaCache in WebSphere Commerce

Example 3-4 Using timeouts to invalidate

<cache-id>
<component id="storeId" type="parameter">

<required>true</required>
</component>
<component id="DC_userId" type="attribute">

<required>true</required>
</component>
<timeout>3600</timeout>

</cache-id>

The timeout value is specified in seconds, with a default value of zero. Zero
means that the entry will never expire. In Example 3-4, there is a a timeout of
3600 seconds or 60 minutes, so the cache entry is invalidated after 1 hour.

Inactivity
An inactivity sub-element specifies a time-to-live (TTL) value for the cache entry
based on the last time that the cache entry was accessed. In Example 3-5, the
inactivity value, given in seconds, indicates the amount of time to keep the cache
entry in the cache after the last cache hit. Note that if a timeout value is less than
the inactivity value, then the inactivity value has no meaning and the cache entry
is always invalidated before the inactivity time is reached.

Example 3-5 Using inactivity to invalidate

<cache-id>
<component id="storeId" type="parameter">

<required>true</required>
</component>
<component id="DC_userId" type="attribute">

<required>true</required>
</component>
<inactivity>240</inactivity>
<timeout>3600</timeout>

</cache-id>

Priority
The priority sub-element is used to keep some cache entries in memory while
evicting others when in memory cache is full. The priority value, a positive integer
between 1 and 255, delays removing cache entries from the in memory cache.
The least recently used (LRU) algorithm only removes items from the cache that
have a priority of zero. When the cache runs out of storage space the LRU
algorithm searches through the cache entries for those with a priority of zero, and
evicts them from the cache to make space for new items. Each iteration of the

 Chapter 3. DynaCache invalidation 99

LRU algorithm decrements the priority of currently cached elements by one, so
that eventually even the highest priority item has a priority of zero and is evicted.

Example 3-6 Prioritizing cache entries

<cache-id>
<component id="storeId" type="parameter">

<required>true</required>
</component>
<component id="DC_userId" type="attribute">

<required>true</required>
</component>
<priority>1</priority>
<inactivity>240</inactivity>
<timeout>3600</timeout>

</cache-id>

3.2.3 DynaCache invalidation API

Cache objects are also invalidated programmatically. This is done using the
DynamicCacheAccessor object in the DynaCache API. Example 3-7 shows how
to use the API.

Example 3-7 Invalidation using the DynaCache API

import com.ibm.websphere.cache.DynamicCacheAccessor;
import com.ibm.websphere.cache.DistributedMap;

.

.

.
if (DynamicCacheAccessor.isCacheEnabled()) {

DistributedMap map = DynamicCacheAccessor.getDistributedMap();
map.invalidate(cacheKey);

}

In Example 3-7, the static method isCacheEnabled() of the
DynamicCacheAccessor object is used to find out if caching has been enabled.
getDistributedMap() retrieves the cache. The invalidate method using a
cacheKey invalidates cache entries. The cacheKey is either a dependency ID or
a cache entry ID. If the cacheKey is a dependency ID, then all cache entries
having a matching dependency ID are invalidated. If the cacheKey is a cache ID,
then only that cache entry is invalidated.

For more information, refer to the WebSphere Application Server v6 Infocenter.
Navigate: Reference → Developer → API Documentation → Application

100 Mastering DynaCache in WebSphere Commerce

programming interfaces. Select com.ibm.websphere.cache to view
DynaCache-related APIs including the DynamicCacheAccessor.

3.2.4 Scheduled invalidation

We have discussed invalidating cache entries with time-based elements or
through a combination of command-based invalidation using dependency and
invalidation IDs. These entries are invalidated using command-based invalidation
rules.

Another way to invalidate cache content is by making use of the WebSphere
Commerce scheduler, which periodically invalidates cache content based on
entries in the CACHEIVL table, shown in Figure 3-2, using the
DynaCacheInvalidation command. After installing WebSphere Commerce APAR
IY886561 it is possible to invalidate cache entries after some future point in time.
That is, you can specify a future time to begin to apply invalidation rules. For
example, if you are planning to run a time-limited e-Marketing campaign, at the
time you develop the e-Marketing campaign Web pages, you can also specify
when the pages are to be evicted from the cache at the end of the campaign.

Figure 3-2 CACHEIVL table definition

The frequency at which the DynaCacheInvalidation command is called is set by
the WebSphere Commerce scheduler. To modify the frequency, launch the
WebSphere Commerce Administration Console and select Site →
Configuration → Scheduler. Figure 3-3 shows how this is done. For more
information, refer to the section on the scheduler in the WebSphere Commerce
Administration Guide.

1 Obtainable as an efix from IBM service - likely to be shipped in 6.0.0.2, 5.6.0.7 and 5.6.1.3.

 Chapter 3. DynaCache invalidation 101

Figure 3-3 Accessing the scheduler

The WebSphere Commerce scheduler runs the DynaCacheInvalidation
command at a set interval. This command processes the entries in the
CACHEIVL table as follows:

� The clearall string value in the TEMPLATE or DATA_ID columns of the
CACHEIVL table is used by DynaCacheInvalidation to clear the cache using
the DynaCache invalidation API (clear).

� If the TEMPLATE column is set, then the DynaCacheInvalidation command
calls the DynaCache invalidation API (invalidateByTemplate) and uses the
name as the template ID. If the clearall string value (which is case insensitive)
is found in the TEMPLATE column, then the DATA_ID column is ignored and
the DynaCacheInvalidation command clears the cache. If the TEMPLATE
column is not empty, the command invalidates using the template ID, ignoring
the DATA_ID column.

� If the DATA_ID column is set and the template name is not set, then the
DynaCacheInvalidation command calls the DynaCache invalidation API
(invalidateById) and uses the DATA_ID as the dependency ID of the cache
entries to invalidate. If the TEMPLATE column is empty and the clearall string
value is found in the DATA_ID column, then the command clears the cache.

� When the DynaCache invalidation API is called, it invalidates the cache
entries.

Create database triggers to populate the CACHEIVL table. Use the sample
triggers in Example 3-8 to detect and react to changes in the Store and Catalog
pages. This list is only a subset of several possible triggers, and is not
comprehensive. Ensure that the invalidation IDs have matching dependency ID
values for the cache entries you want to invalidate.

102 Mastering DynaCache in WebSphere Commerce

Example 3-8 Catalog and store triggers

CREATE TRIGGER cache_1
AFTER UPDATE ON catalog
REFERENCING OLD AS N FOR EACH ROW MODE DB2SQL
INSERT INTO cacheivl (template, dataid, inserttime)
(SELECT NULLIF('A', 'A'), 'storeId:' ||
RTRIM(CHAR(storecat.storeent_id)), CURRENT TIMESTAMP
 FROM storecat
 WHERE storecat.catalog_id = N.catalog_id);

CREATE TRIGGER cache_2
AFTER UPDATE ON storecat
REFERENCING NEW AS N FOR EACH ROW MODE DB2SQL
INSERT INTO cacheivl (template, dataid, inserttime)
(SELECT NULLIF('A', 'A'), 'storeId:' || RTRIM(CHAR(N.storeent_id)),
CURRENT TIMESTAMP
 FROM catalog
 WHERE catalog.catalog_id = N.catalog_id);

CREATE TRIGGER cache_3
AFTER UPDATE ON cattogrp
REFERENCING NEW AS N FOR EACH ROW MODE DB2SQL
INSERT INTO cacheivl (template, dataid, inserttime)
(SELECT NULLIF('A', 'A'), 'storeId:' ||
RTRIM(CHAR(storecat.storeent_id)), CURRENT TIMESTAMP
 FROM storecat
 WHERE storecat.catalog_id = N.catalog_id);

CREATE TRIGGER cache_4
AFTER UPDATE ON staddress
REFERENCING NEW AS N FOR EACH ROW MODE DB2SQL
INSERT INTO cacheivl (template, dataid, inserttime)
(SELECT NULLIF('A', 'A'), 'storeId:' ||
RTRIM(CHAR(storeentds.storeent_id)), CURRENT TIMESTAMP
 FROM storeentds
 WHERE storeentds.staddress_id_cont = N.staddress_id);

3.2.5 Cache Monitor

The WebSphere Application Server Cache Monitor has options to manually
invalidate cache entries. Once installed, you can launch the cache monitor using
one of the following methods:

� Use a Web browser with the Web address:
http://host_name:port/cachemonitor

 Chapter 3. DynaCache invalidation 103

� For more secure access the Administration host machine:
https://admin_host_name:port/cachemonitor

If the virtual host VH_instance_name_admin was used to install the Cache
Monitor, then the Cache Monitor can be accessed as:
https://admin_host_name:8002/cachemonitor

Capabilities
The Cache Monitor performs the following invalidation operations:

� Remove an entry from cache. Select Invalidate when viewing a cache entry.

� Remove all entries for a certain dependency ID. Select Invalidate when
viewing entries for a dependency ID or select Invalidate when viewing entries
for a template.

� Clear the entire contents of the cache. Select Clear Cache while viewing
statistics or contents.

� Clear the contents on the ESI processors. Select Clear Cache while viewing
ESI statistics or contents.

� Clear the contents of the disk cache. Select Clear Disk.

Installation
For details on how to install the Cache Monitor application refer to Chapter 8,
“DynaCache tutorial” on page 179, which covers the process in great detail.

3.3 Invalidation best practices and techniques

The best practice is to invalidate as little as possible! There is no value in
discarding a cache entry that is still valid just because a time-out has been
reached. You should adopt an attitude that it is best if you only invalidate when
you absolutely have to.

Define invalidation rules to automate the invalidation of cache entries. Without
invalidation rules, the whole cache is invalidated when content changes.
Everything will be removed from the cache, not just the changed pages.
Invalidation of the whole cache is not recommended and you should avoid it
whenever possible. It may be common for the business user to change the
campaigns that they are running, and once that has been done, they will expect
the system to change immediately. Establish a schedule for making changes to
Web pages with the result that multiple changes are made at one time and, if
some of the same pages are hit, the amount of cache invalidation required is
smaller.

104 Mastering DynaCache in WebSphere Commerce

Be very careful with operations that invalidate the whole cache. In a production
environment, accidently invalidating an entire cache may prove disastrous, so
consider removing that Clear Cache button from your production cache monitor
application. There are many sites that follow this policy.

It is important that you thoroughly check and test changes that require a large
part of the cache to be invalidated before you push the changes into production.
You don’t want to incur the hit of rebuilding a large part of the cache during peak
production times.

3.3.1 Time out considerations

The simplest way to invalidate cache entries is with time-based elements. You
should think of this is a last resort. Only apply this method to user-specific
objects when you cannot find any other way to invalidate the objects.

3.3.2 Cache monitor

From experience, we generally consider the cache monitor application to be too
dangerous for use in a production environment. The main problem is the
administrator may make mistakes, such as accidently pressing the Clear Cache
button, and the resulting performance impact could bring down a Web site for
many hours. We recommend using cache monitor for debugging activities,
viewing relationships, and testing.

3.3.3 Dependency IDs

Keep dependency names short. Doing so lowers the amount of memory required
to hold each identifier in the internal hashmap tables and can provide a
performance boost because it shortens processing time.

3.3.4 Cache instances

Multiple cache instances help to decrease invalidation overhead. A cache
performs better the smaller the cache size involved. Whenever DynaCache
invalidates a cached item it places a lock on the internal cache. Therefore, the
bigger the cache the longer the lock hold time and the slower the performance.

By spreading out cache entries into separate cache instances (also called cache
pools) you minimize the performance impact of these locks.

 Chapter 3. DynaCache invalidation 105

3.3.5 Warm shutdown

Prevent unnecessary invalidation at server shutdown by configuring disk offload
of all cache entries from the memory cache when the server is in the process of
performing a normal shutdown. On server restart, requests for cache entries are
satisfied by reloading the disk cache into memory.

3.3.6 Invalidation during the tuning phase

It is considered a best practice to test invalidations during the tuning phase and
measure the impact. Measure the benefit of dynacaching, as illustrated in
Chapter 9, “Benchmarking DynaCache” on page 209.

3.3.7 Startup – use warm-up to create cache entries

Most WebSphere Commerce sites depend on DynaCache to deliver satisfactory
performance. Before promoting the staging environment to production, run
automated scripts to cause the cache or caches to be created. The Web site is
then ready for production-level user request volumes. Warming the cache
removes unnecessary stress from the business logic layers and improves
stability and performance of the Web site. Be aware that warming the cache may
generate a lot of traffic in a replication domain.

3.3.8 Impact of maintenance

Don’t forget to take into account the impact of application and system
maintenance on your system caches when implementing your DynaCache
strategy.

Note: Several minutes are added to the shutdown of a server if this option is
used. The caching engine serializes Java objects to disk.

Ensure that your cached objects are serializable. Test this out beforehand.

106 Mastering DynaCache in WebSphere Commerce

Chapter 4. Clustering DynaCache

In this chapter we discuss how to use DynaCache effectively in a clustered
environment and explain how Data Replication Service (DRS) is used to copy
data from one WebSphere node to another.

We explore some of the issues you must deal with using DynaCache in a
clustered environment and, drawing upon best practices recommended by the
development team, explain how to configure the Data Replication Service.

4

© Copyright IBM Corp. 2006. All rights reserved. 107

4.1 Data Replication Service

The Data Replication Service (DRS) is an internal, proprietary component of the
WebSphere Application Server. The DRS is used by other components to move
data from node to node within a network of clustered application servers.

Figure 4-1 Moving a cache entry across cluster members using DRS

In Figure 4-2, DRS is used to share data between the four cluster members 1
through 4.

Cluster Server 2

Local Cache

Object X

Cluster Server 1

Local Cache

Object X

Data Replication Service
R

eplicate X R
ep

lic
at

e
X

P
ut X

in cache G
et

 X
fro

m
 c

ac
he

Application

108 Mastering DynaCache in WebSphere Commerce

Figure 4-2 Example of a clustered WebSphere topology

4.1.1 Failover and caching

The most well known use of DRS is to replicate persistent HTTP Session data. If
an application server fails, the request is routed to another application server,
and the session data will be available there.

In order to minimize the impact of a failure, DRS coordinates with the WebSphere
Cluster Workload Management routing algorithm to ensure requests and data
end up in the same place. For example, a new capability of WebSphere
Application Server v6 is to capture a stateful session bean and enable failover to
another instance of that bean in a different WebSphere Application Server.

IBM
HTTP
Server

Plugin

HTTP
Request

HTTP
Request

HTTP
Request

V6
Cluster

Member 1

V6
Cluster

Member 2

V6
Cluster

Member 3

V6
Cluster

Member 4

IBM
HTTP
Server

Plugin

HTTP
Request

HTTP
Request

HTTP
Request

Workload
Balancing

 Chapter 4. Clustering DynaCache 109

Figure 4-3 WebSphere supports failover in a clustered environment

The Data Replication Service caters to two scenarios: failover and caching.

4.1.2 DRS and failover

Failover support ensures that HTTP Sessions and EJBs can be moved to
another application server. This is transparent to the user but it is important that
the you understand how this is implemented internally to design the best
configuration to work with HTTP session and caching scenarios. The best
practice, as explained at the end of this chapter, is to implement separate
replication domains for each service.

4.1.3 DRS and caching

The second use of Data Replication Service is for caching. From the previous
chapters we know that once an object is available in the cache, repeated
requests for the same information are handled faster. Since the data in the cache
must be the same, no matter which application server the request arrived at, it
makes sense to cache the same data in of all the application servers. Data
Replication Service handles moving cache entries from server to server.

IBM
HTTP
Server

HTTP
Request

HTTP
Request

HTTP
Request

V6
Cluster

Member 1

V6
Cluster

Member 2

V6
Cluster

Member 3

V6
Cluster

Member 4

IBM
HTTP
Server

HTTP
Request

HTTP
Request

HTTP
Request

Workload
Balancing PluginPlugin

110 Mastering DynaCache in WebSphere Commerce

Replicators and replication domains
Replicators are the producers and consumers that are responsible for moving
data from one location to another in a clustered environment. In Version 5.x of
WebSphere Application Server, the underlying transport used is Java Message
Service (JMS) messages.

More configuration is required in WebSphere Application Server v5 than in v6.
Administrators need to create replicators within a replication domain. The default
configuration is for all the application servers in a domain to connect to all the
other application servers, as shown in Figure 4-4.

Figure 4-4 Default configuration for Version 5 DRS.

It is possible to reduce the overhead by limiting which application servers talk to
which by using partitions. Those that are configured to talk to each other are a
partition and also part of a Multi-Broker Replication Domain.

In WebSphere Application Server v6 it is not necessary to create and configure
replicators, and the concept of partitioning is masked. It is still possible to limit the
number of copies of the data, but it is not necessary to expose the details of the
configuration.

N-way peer to peer
Look at the configuration in Figure 4-4. The cluster members are application
servers that have been created as members of a cluster. Data Replication
Service is used to copy session data between the clustered application servers.

The default topology for Data Replication Service in Version 5 is for all replicators
to service all channels in the replicator domain. This means for four application

V5
Cluster
Member

1

V5
Cluster
Member

4

V5
Cluster
Member

3

V5
Cluster
Member

2

 Chapter 4. Clustering DynaCache 111

servers, there will be three backups and the original. You can see how this could
quickly consume a lot of memory.

To reduce the memory overhead without losing the backup, you can set the
Single Replica flag to limit the replicators to one backup copy. In the event of a
failover, the Session Manager will find the backup and make it available to the
application server where the request lands.

Single replica
The single replica configuration scales much better in terms of memory
consumption. In the event of a failure of an application server, the request will be
routed to the next clustered application server in the rotation. If the session
information exists in the new server, it is used; if not, the session manager
retrieves it from wherever it was backed up. As soon as the request hits the new
server, its updated session information is sent to another server, so there is
always a backup. (Unless the wrong two servers happen to fail at the same time.)

Client Server to Client Server topology is one where another application server is
configured to store backup session data in the local memory space.

This topology reduces the overhead on application servers handling requests,
but introduces a single point of failure (SPOF). It is useful to configure two
independent application servers to store backup session information. By
introducing a second server on a second machine, the single point of failure is
eliminated.

A replication domain consists of servers and cluster members that have the
capability to replicate information from one cluster member to any other cluster
member.

Some changes in WebSphere Application Server v6 include cooperation
between the Data Replication Service and the Workload Management
subsystem to coordinate which cluster members serve as backups for other
cluster members.

Ideally, session failover data and stateful session bean failover data should end
up in the same place – the place that a failed-over session will arrive in the event
it needs to be served by a cluster member other than the one that originated the
session.

Another improvement is that the underlying mechanism has been rewritten using
a proprietary transport to move data. This reduces overhead and improves
overall system performance.

112 Mastering DynaCache in WebSphere Commerce

WebSphere Application Server v5 to v6 migration
The change in the underlying communication mechanism removes the need for
replicators. The only configuration decision you make is how many backup
copies of the data will be needed. The default is one.

Version 6 benefits from a faster transport mechanism, the channel framework,
which eliminates the one-thread-per-queue limitation. Sitting on top of a more
robust transport also removes the need for manual partitioning.

Creating a replication domain is as easy as selecting a checkbox in the
Administrative console, or you can manually create a domain. Because Data
Replication Service is used for both cache replication and session data, you can
configure cache replication under Server, then Container Service, then select
DynaCache Replication.

Figure 4-5 Default topology configuration for V6 Distributed Replication Service

V6
Cluster
Member

1

V6
Cluster
Member

4

V6
Cluster
Member

3

V6
Cluster
Member

2

 Chapter 4. Clustering DynaCache 113

Figure 4-6 Topology required for DynaCache DRS to function properly

In the default topology (see Figure 4-5 on page 113), each server in the domain
holds a replica of the data from one other server. In the second example (see
Figure 4-6), the double headed arrows mean that data flows from each process
to every other process, so that for each replicated object, there are three remote
copies and the local original.

This topology would probably be more than what is needed for HTTP Session
replication, but in our DynaCache environment, it is the only allowable
configuration for cache replication because when caching dynamic content, the
cache is only useful if it is available on all the machines where a request could
arrive.

4.2 Replication in DynaCache

Highly available, load-balanced, WebSphere-based production environments will
have several application servers joined together in a cluster. With appropriate
HTTP session replication configurations in place, any arriving HTTP client
request is serviced by any member of the cluster.

DynaCache also supports data replication. Certain cache entries are highly
reusable across users, and shared between servers in a cluster. Configure cache
replication to accomplish this. Cache replication is also necessary to ensure that
invalidation messages are shared between the servers in a cluster.

V6
Cluster
Member

1

V6
Cluster
Member

4

V6
Cluster
Member

3

V6
Cluster
Member

2

114 Mastering DynaCache in WebSphere Commerce

Figure 4-7 Workload balancing between multiple servers

Sharing cache content creates some network traffic. To minimize the impact, only
replicate valuable content. Controlling what is replicated in the sharing policy
section is discussed next.

Sharing policy
When you are preparing your Web site to operate within a cluster and planning to
use DynaCache distributed capabilities, you should be aware of particular
operational aspects that you can control. The first thing to be aware of is the
sharing policy.

Specifying which cache entries are shared between the servers controls which
cache entries are replicated. Specify in each cache entry the cluster sharing
characteristics that control if a cached item is replicated to other the cluster
members.

The most likely sharing candidates are objects whose content is cached at the
servlet level since that content generally does not contain personalized data.
Those kinds of entries are a good starting point for your selection process.

One good practice to work with concerns the sharing of JSP fragments. Only
replicate cached JSP fragments that have a long life expectancy in cache, and

IBM
HTTP
Server

Plugin

HTTP
Request

HTTP
Request

HTTP
Request

V6
Cluster

Member 1

V6
Cluster

Member 2

V6
Cluster

Member 3

V6
Cluster

Member 4

IBM
HTTP
Server

Plugin

HTTP
Request

HTTP
Request

HTTP
Request

Workload
Balancing

 Chapter 4. Clustering DynaCache 115

are reusable across users. The only exception to this rule is if the cost to create
the JSP fragment is very high and it would be more economical to replicate to the
other cluster members than have them recreate it. Remember, if you have
chosen to use the Push policy, then once any cache item is replicated, the other
cluster members use that cache entry and do not recreate a local copy from
scratch.

4.2.1 Specifying the sharing policy declaration in the cachespec.xml

This sharing policy defines how data is replicated from server to server. By
default all cache entries are not shared across a cluster. You override that by
specifying the sharing policy for each cache entry you want replicated. You also
need to configure replication in your environment via the administration console.

Example 4-1 Sample cache-entry showing <sharing-policy> being used

<cache-entry>
<class>servlet</class>
<name>/ConsumerDirect/include/MiniShopCartDisplay.jsp </name>
<property name="save-attributes">false</property>
<property name="store-cookies">false</property>
<property name="save-attributes">false</property>
<property name="do-not-consume">true</property>
<sharing-policy>not-shared</sharing-policy>
<cache-id>
 <timeout>3600</timeout>
 <component id="storeId" type="parameter">
 <required>true</required>
 </component>
 <component id="catalogId" type="parameter">
 <required>true</required>
 </component>
 <component id="DC_userId" type="attribute">
 <required>true</required>
 </component>
 </cache-id>

Table 4-1 on page 117 explains in detail what options you have when setting the
value for the <sharing-policy> property. Note that if the <sharing-policy> element
is not present, a not-shared value is assumed.

In single server environments, not-shared is the only valid value. When enabling
replication, the default value is shared-push only. This property does not affect
distribution to Edge Side Include processors through the Edge fragment caching
property.

116 Mastering DynaCache in WebSphere Commerce

Table 4-1 Sharing policy options

4.2.2 Troubleshooting

To troubleshoot a DRS problem, examine the SystemOut.log for all servers in the
cluster, and their server.xml files, which contain the DRS configuration
information.

To search deeper, trace the group named DRS, or the com.ibm.ws.drs.*
component to find more detailed information.

Replication problem: Message size
The replication service has a default value of 5 MB for the maximum message
size transmitted over the wire. The maximum message size can be changed in
WebSphere Commerce v6. When the consumer service (Http session memory
to memory replication or WebSphere DynaCache service) tries to send
messages larger than the maximum message size, the replicator that is
instructed to send this message disconnects the client connection to the

Value Description

not-shared Cache entries for this object are not shared among different
application servers. These entries can contain non-serializable
data. For example, a cached servlet can place non-serializable
objects into the request attributes, if the <class> type supports it.

shared-push Cache entries for this object are automatically distributed to the
DynaCaches in other application servers or cooperating Java
virtual machines (JVMs). Each cache has a copy of the entry at the
time it is created. These entries cannot store non-serializable data.

shared-pulla

a. Shared-pull is not normally recommended, consider shared-push-pull instead.

Cache entries for this object are shared between application
servers on demand. If an application server gets a cache miss for
this object, it queries the cooperating application servers to see if
they have the object. If no application server has a cached copy of
the object, the original application server executes the request and
generates the object. These entries cannot store non-serializable
data. This mode of sharing is not recommended.

shared-push-pull Cache entries for this object are shared between application
servers on demand. When an application server generates a
cache entry, it broadcasts the cache ID of the created entry to all
cooperating application servers. Each server then knows whether
an entry exists for any given cache ID. On a given request for that
entry, the application server knows whether to generate the entry
or pull it from somewhere else. These entries cannot store
non-serializable data.

 Chapter 4. Clustering DynaCache 117

replication service, causing broken pipe exceptions. The exceptions happen
either immediately, or on subsequent message sends. The exceptions cause the
replication service instance to reset its connectivity to the current replicator and it
attempts to connect to an alternate replicator in the domain. Thus, this problem
may also manifest itself in the form of frequent reset attempts in the logs, as
shown in Example 4-2.

Example 4-2 Connect reset log

[6/25/04 11:32:57:888 EDT] 3d2b3 DRSResetJMS A DRSW0005I:
WebSphere internal replication has recovered from a previous connection
failure.

[6/25/04 11:32:58:038 EDT] 3d2b3 DRSCacheApp E DRSW0001E: A error
occured communicating over WebSphere internal replication. The
exception is: com.ibm.disthub.impl.jms.JMSWrappedException:
{800870265|java.io.IOException: Broken pipe|at
com.ibm.disthub.impl.jms.TopicPublisherImpl.publishInternal
(TopicPublisherImpl.java:511)
 at com.ibm.disthub.impl.jms.TopicPublisherImpl.publish
(TopicPublisherImpl.java:450)
 at com.ibm.disthub.impl.jms.TopicPublisherImpl.publish
(TopicPublisherImpl.java:375)
 at com.ibm.ws.drs.DRSJMS.jmsPubUpd(DRSJMS.java:200)
 at com.ibm.ws.drs.DRSCacheApp.jmsPubUpd(DRSCacheApp.java:3290)
 at com.ibm.ws.drs.DRSJMS.jmsPubUpd(DRSJMS.java:272)
 at com.ibm.ws.drs.DRSCacheApp.jmsPubUpd(DRSCacheApp.java:3290)
 at com.ibm.ws.drs.DRSAPI.updateEntryProp(DRSAPI.java:803)
 at com.ibm.ws.drs.DRSCacheApp.updateEntryProp(DRSCacheApp.java:

4.3 Best practices

The following recommendations are based on advice the authors received from
the development team.

� Do not replicate mini carts or sticky sessions.

� Do not use wsadmin scripts that are intended for version 5 because they use
multi-broker domains, which do not have the performance benefits of v6
replication domains.

� Create a distinct domain for HTTP and EJB session data, and another
domain for Cache replication.

� Use only a small number of replicas to improve performance. Increasing the
number of replicas may reduce the time it takes a session to move to another

118 Mastering DynaCache in WebSphere Commerce

server, but it does so at the cost of overall performance. One, two, or three
replicas should be sufficient in most cases.

� Use dedicated DRS servers for replication.

� When considering which replication policy to use, consider first using the
simplest, SHARED-PUSH, and perhaps only for the most expensive cache
entries.

 Chapter 4. Clustering DynaCache 119

120 Mastering DynaCache in WebSphere Commerce

Chapter 5. Caching strategy

In this chapter we describe important design considerations when creating a
cache policy for new and existing Web sites. We begin by discussing the
non-functional requirements of a Web site that may impact performance and help
to drive the need for and definition of a cache policy. Next, we discuss the
process of identifying objects that are suitable for caching, recommended
strategies for creating a cache, and the tools used to find cacheable objects. We
then analyze our cache objects to identify the policies that will determine when
we will invalidate those objects. Finally, we discuss important mechanisms used
to ensure that JSPs are correctly cached using DynaCache.

In particular, we discuss the following topics in this chapter:

� Site requirements

� Identifying cache objects

� Invalidating cache objects

� DynaCache and JSP

5

© Copyright IBM Corp. 2006. All rights reserved. 121

5.1 Site requirements

Requirements are key to any software project and it is no different with creating a
WebSphere Commerce site that can benefit from the caching capabilities of
DynaCache. These requirements can help you drive the design of your
WebSphere Commerce implementation so that its components can be cached at
the correct level of granularity, and can also help to create an effective cache
policy.

Listed here are some of the key performance requirements:

� Concurrent users: The total number of active users that are expected to be
using your e-commerce site. A user may visit your site many times but can
have only one session at a time. When considering a requirement for
concurrent users, an important metric is think-time, which refers the time
between requests for any given user. As you increase think-time, the number
of supported concurrent users will increase and think-time will vary by browse
scenario.

� Peak versus average usage: The variance in the load that is being placed on
your e-commerce site. This can depend on a variety of conditions, for
example, time of day, time of the year, or special events. Performance
requirements have to be maintained during peak usage as well as during
average usage.

� Page views per second: Throughput in terms of the total number of times a
user visits or views a page, measured per second and scaled over multiple
users. A page view includes requests for all the files that are contained on a
page as well as the page itself. A page view can include one or more hits,
where a hit is any type of request to the server.

� Response time: The amount of time required to complete a single page view
or page hit, and measured in seconds. Response time will depend heavily on
other requirements and caching needs to be taken into account to optimize
response time.

� Kilobytes per second: Throughput in terms of the total number of bytes that
can be transferred to a user per unit of time, usually seconds. Caching can
help to meet this type of requirement, especially when bandwidth is limited.

� Browse-buy ratio: The ratio of the number of users who are visiting your
e-commerce site but not buying products versus the number of users who are
buying products, meaning checking out from their shopping cart. Typically, a
B2B e-commerce site will have a smaller browse-buy ratio than a B2C site.
For example, a B2C browse-buy ratio might be 100:2 or 2 percent buyers
while a B2B site might have a browse-buy ration of 100:35 or 35 percent
buyers. In scenarios where the browse-buy ratio is extremely high, for
example in B2C sites, caching can play an especially crucial role in improving

122 Mastering DynaCache in WebSphere Commerce

performance since it is more likely that we can cache pages related to
browsing versus pages related to buying. In WebSphere Commerce, we
cache the catalog pages that many users will browse through rather than the
checkout pages, which are unique to a single users at a single instance.

� Locale: The location from which users will be browsing your Web site. This is
particularly significant if your Web site must support a variety of locales and
the amount of traffic from each locale may be known. For example, if your site
must support both English and French, but you know that 95% of your visitors
are English speaking, then clearly caching the English pages will yield a
greater benefit than caching the French ones.

When creating an e-commerce site, there are a variety of performance
requirements that the site must meet. Each of these requirements demand that
performance be fine tuned, including a strategy for caching to improve
performance. Furthermore, capacity planning models created and used by IBM
assume that any WebSphere Commerce implementation will implement caching
using DynaCache.

E-commerce applications must always be concerned with performance,
especially in the case of B2C WebSphere applications, and as a result the use of
DynaCache in these scenarios is not optional.

5.2 Identifying cache objects

When planning to use DynaCache as part of your caching strategy, first identify
the objects that are available to be cached and then identify which of those
objects have the qualities that make them good candidates for caching. A variety
of tools and methods are available to help you do this.

5.2.1 Characteristics of cacheable objects

Several types of objects, such as Java Server Pages (JSPs), servlets, and
WebSphere Commerce commands are cached in DynaCache. Among these
objects, identify those that have cacheable characteristics.

Good candidates for caching are usually:

� Long lived and more static so that they are less likely to be invalidated

� Reusable by many users and with little personalization or custom content

� Highly reusable across many parts of your site, for example, reusable JSP
fragments

 Chapter 5. Caching strategy 123

� Are large enough to have an impact on performance, for example, full-page
caching

� Self-executable even as fragments

� Free of security-sensitive dynamic data

Poorer candidates for caching are usually:

� Locale-sensitive

� Highly variable based on their request parameters

� Highly dynamic, that is, they are invalidated frequently

� Have security considerations that require finer grained access to the cache

Consider carefully:

� User-specific objects- these usually give a good return, but not as good as
generic candidates

Keep in mind that the greatest benefit from caching is achieved when objects are
cached closer to the client and earlier in the processing cycle of the request. In
the WebSphere Commerce architecture this means we should cache JSPs and
servlets, and consider caching commands within our application server, as
shown in Figure 5-1. Caching a request from a client at a later stage of
processing lowers the performance benefit since the earlier layers introduce
additional processing time and latency. Cached commands are processed by the
Web container. They improve performance by avoiding both EJB invocation and
requests to the database server.

Figure 5-1 Benefit of caching

5.2.2 Tools and methodology

How do we find objects of the types we have chosen to cache in our Web
application? There are many objects in a large Web application: how do we
select the ones we will work on to make them part of the cache policy? In this

Proxy
Server

Client

Web
Container

EJB
Container

Database
Server

Greatest Least

124 Mastering DynaCache in WebSphere Commerce

section we describe some of the tools that are available to identify cacheable
objects as well as some of the recommended methods of using the tools.

Analytics
Analyze Web server logs for existing Web sites to identify traffic patterns using
tools such as Perl scripts. This helps to identify important servlets to cache.
Count the number of hits for each unique servlet URL, ignoring any request
parameters. Servlets with a large number of hits are good candidates for
caching. Group the hits by hour to find out which servlets were accessed the
most at what time. These servlets must be in the cache at the right time in order
to reap the greatest performance benefit.

Web server logs also show the content length, or size of the servlet request.
When a servlet is cached, knowledge of its size helps us to fine tune the cache
by setting an appropriate cache size in terms of cache entries. JVM performance
is improved by reducing the amount of time spent doing compaction.

Use third-party analytics tools to identify servlets that should be cached. For
example, use such analytics reports to determine which pages are hit most
frequently by visitors to the site. If those pages are also suitable for caching, then
modify the cache policy to cache those pages and improve performance.

Tools on alphaWorks
The alphaWorks® Web site publishes new technologies and research for early
adopter developers to use and test. It contains many resources, including the
DynaCache Policy Editor (DCPE). The DCPE was built for WebSphere Studio
Application Developer 5.1 and may not be compatible with the latest WebSphere
Commerce toolkit, which runs on Rational Application Developer (RAD).

DynaCache Policy Editor
The DynaCache Policy Editor (DCPE) is an Eclipse plug-in that is used to
generate, create, or edit cache policies for DynaCache from within WebSphere
Studio Application Developer (WSAD).

The editor validates cache policies against an XML schema, assists in
completing cache policy XML, and ensures that invalid changes are flagged
immediately. The plug-in also includes a simple tool that analyzes servlets and
JSPs and then generates cache policies and adds them to the cache policy file.

For more information see:
http://www.alphaworks.ibm.com/tech/cachepolicyeditor

 Chapter 5. Caching strategy 125

http://struts.apache.org/1.x/struts-tiles/

Code review
Try to identify commands that are cacheable. Review the source code, JavaDocs
or other API documentation, and identify commands that conform to the
WebSphere Command Framework and extend the CacheableCommandImpl
class, as well as those that do not. You may be able to identify new commands or
commands that, if modified, can be made cacheable. You may also identify ways
to implement commands that lead to more efficient invalidation policies.

5.3 Cache design

In this section we recommend some approaches to defining an efficient cache
policy, including full-page and fragment caching as well as cache instances.

5.3.1 Full-page caching and fragment caching

Full-page caching must be performed by a servlet. In the cachespec.xml, we
specify that all fragments of a servlet are cached along with the servlet that
includes them, using the consume-subfragments property. The cache entry for a
full cached page contains:

� The servlet
� The content from the servlet’s fragments that have no includes or forwards

Full-page caching is encouraged when many, if not all, users share the page.
Good candidates in WebSphere Commerce for full-page caching are the catalog
pages. Even pages containing personalized information can be cached at the
this level.

Full-page caching maximizes what is contained in a given cache entry by
caching the largest possible result of any request to your servers, and minimizes
the time required to return the cached information on its subsequent requests.
For this reason, use full-page caching whenever possible.

Sometimes full-page caching is not possible, because of user-specific fragments
that need to be created for each user-page-view. Exclude those fragments from
the full page cache entry using the do-not-consume property. As a result,
DynaCache will achieve near full-page caching performance. The user-specific
fragments are cached using separate cache entries. All of the pieces are
reassembled from the cache when there is a request for the page. As the number
of fragments increases, so does the time required to reassemble them.

In the event that fragment caching is not possible, you can mark a fragment as
uncacheable. For example, a page is marked for full-page caching but has one or
more fragments that are not cacheable. By setting the do-not-cache property to

126 Mastering DynaCache in WebSphere Commerce

true for a fragment in the cachespec.xml, you ensure that the fragment will not be
cached or consumed by its parent. This way, you can still reap the benefit of
caching a page and most of its fragments.

When possible, instead of marking a fragment as uncacheable, first consider
spending some time to rewrite it or create the appropriate invalidation policies in
order to make it more suitable for caching.

5.3.2 Cache instances

Multiple cache instances are supported in WebSphere Application Server
version 6 and later. The pools are configured using the WebSphere Application
Server administration console, properties files, or resource references.

Create multiple cache instances to segregate cache entries into different pools
based on their types, namely servlets, JSPs, and commands. This prevents a
frequently occurring scenario where several small cache entries for commands
will cause a larger servlet cache entry to be removed from the cache.

Another use of cache instances is to segregate objects that are very costly to
build but are also infrequently used, and thus likely to be evicted.

Cache instances also improve performance by reducing synchronization time.
When under load, DynaCache will synchronize the cache in memory with the
cache on disk. During this time, nothing can be read from or written to the cache,
effectively disabling the cache. Creating multiple smaller caches will help to
reduce synchronization time.

5.4 Invalidating cached objects

As described in the previous chapter, invalidation of cache objects is initiated
declaratively through the cachespec.xml, programmatically using the DynaCache
API, or administratively, for example, using the WebSphere Commerce scheduler
or Cache Monitor. When possible, invalidation policies are declared in the
cachespec.xml. This allows you to remove only a stale subset of objects in the
cache, rather than clearing the entire cache. Invalidating the entire cache is not
recommended and should be avoided whenever possible.

Although invalidation policies are not included in the default cachespec.xml,
several invalidation examples can be found here:

WC_installdir/samples/DynaCache/invalidation

 Chapter 5. Caching strategy 127

In general avoid the use of timeouts since the timeout will override other
invalidation triggers and may invalidate a cached object that may not be stale.
Instead, use commands, database triggers, or inactivity to initiate invalidation of
cached objects.

To use command-based invalidation, your commands must conform to the
WebSphere Command Framework and extend the CacheableCommandImpl
class.

5.5 DynaCache and JSP

There are some important techniques and features of DynaCache for correctly
caching JSPs. They are discussed here with reference to the inventory count
example where applicable.

JSP dynamic includes
When using the <jsp:include> tag to dynamically include a JSP fragment into
another JSP, always set the flush attribute to true so that those fragments will
be cached correctly by DynaCache. In Example 5-1, we include the JSP
fragment to display in-stock inventory while ensuring that the flush attribute is
correctly set.

Example 5-1 JSP dynamic include with flush

<jsp:include
path="../../../Snippets/ReusableObjects/InventoryCountDisplay.jsp"
flush="true">

<jsp:param name="fulfillCentreId"
value="${CommandContext.store.fulfillmentCenterId}" />

<jsp:param name="itemSpcId" value="${catalogEntry.itemspc_id}" />
<jsp:param name="storeId" value="${WCParam.storeId}" />

</jsp:include>

The JSPWriter buffers the data rather than flushing it to the cache’s writer when
interpreting the include tag. The buffering prevents DynaCache from knowing
when the application stopped writing the data to the parent writer. As a result, the
child fragment’s content might also be cached as part of the parent’s cache entry,
causing the child fragment to appear twice.

Using the Java Server Tag Library (JSTL)
WebSphere Commerce also uses the Java Server Tag Library (JSTL) as an
alternate mechanism to dynamically include JSP pages. This is done through the
use of the <c:import> tag, which supports relative and absolute URLs, while the

128 Mastering DynaCache in WebSphere Commerce

standard <jsp:include> tag only supports relative URLs. If <% out.flush(); %>
does not surround the <c:import> tag, DynaCache will introduce problematic
behavior. The reason and result of this behavior is the same as what happens
when the flush attribute on the <jsp:include> tag is not set to true, which is
described in the previous section. To prevent this problem, surround the
<c:import> tags with <% out.flush(); %>. Flush the buffer before the import
begins, and after it ends, to ensure that none of the child content is written to the
parent’s cache entry.

Example 5-2 shows how the inventory count JSP fragment is dynamically
included into another JSP using the <c:import> surrounded with the appropriate
out.flush tags.

Example 5-2 JSTL import with flush

<%out.flush();%>
<c:import

url="../../../Snippets/ReusableObjects/InventoryCountDisplay.jsp">
<c:param name="fulfillmentCenterId"

value="${CommandContext.store.fulfillmentCenterId}" />
<c:param name="itemSpcId" value="${catalogEntry.itemspc_id}"/>
<c:param name="storeId" value="${WCParam.storeId}"/>

</c:import>
<%out.flush();%>

The out.flush statement is required for all <c:import> statements, not just those
for fragments. Even if the page is being cached using full-page caching, the
out.flush tags are still required to surround the <c:import> tags.

Caching with Struts
Another important technology framework for WebSphere Commerce is Struts. As
of version 6.0, WebSphere Commerce has moved from its proprietary
model-view-controller implementation to the Struts open source implementation,
developed by the Apache Software Foundation. Struts is a well-documented
framework for J2EE Web application development, and has become an industry
standard for deploying model-view-controller applications.

For more information on Struts, see:
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=
/com.ibm.commerce.developer.doc/concepts/csdstrutskeycompons.htm

Using WebSphere Application Server prior to version 6.0
In the previous version of WebSphere Application Server, only one cache entry
per servlet was supported, as shown in Example 5-3 on page 130. However,
when you are using Struts, every request that ends in .do maps to the same

 Chapter 5. Caching strategy 129

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.developer.doc/concepts/csdstrutskeycompons.htm

ActionServlet servlet. To cache Struts responses, write a cache policy for the
ActionServlet servlet based on its servlet path.

For example, consider two Struts actions: /HelloParam.do and /HelloAttr.do. To
cache the responses based on the id request parameter and the arg request
attribute respectively, use the cache policy shown in Example 5-3.

Example 5-3 Single cache entry for multiple Struts actions

<cache-entry>
<class>servlet</class>
<name>org.apache.struts.action.ActionServlet.class</name>
<cache-id>

<component id="" type="servletpath">
<value>/HelloParm.do</value>

</component>
</cache-id>
<cache-id>

<component id="" type="servletpath">
<value>/HelloAttr.do</value>

</component>
<component id="arg" type="attribute">

<required>true</required>
</component>

</cache-id>
</cache-entry>

Using WebSphere Application Server, Version 6.0 or later
The current version of WebSphere Application Server is capable of mapping
multiple cache entries per servlet. The cache policy in Example 5-3 has been
rewritten in Example 5-4 with more than one cache-entry.

Example 5-4 Multiple cache entries for each Struts action

<cache-entry>
<class>servlet</class>
<name>/HelloParam.do</name>
<cache-id>

<component id="id" type="parameter">
<required>true</required>

</component>
</cache-entry>
<cache-entry>

<class>servlet</class>
<name>/HelloAttr.do</name>
<cache-id>

130 Mastering DynaCache in WebSphere Commerce

<component id="arg" type="attribute">
<required>true</required>

</component>
</cache-id>

</cache-entry>

Caching with Tiles
Among the key benefits of the Struts framework in WebSphere Commerce is its
support for Tiles. Tiles is a templating system that is used to define layouts into
which content, called Tiles, can be dynamically inserted. Tiles allow developers
to create reusable content, layouts that are easy to manage, and a consistent
look and feel in a Web application.

For more information on Tiles, see:
http://struts.apache.org/1.x/struts-tiles/

The Tiles framework is built on the <jsp:include> tag, so everything that applies
to JSP caching also applies to Tiles. The flush attribute of the <tiles:insert> tag
must be set to true, as shown in Example 5-5, if any fragments that are included
using the <tiles:insert> tag are to be cached correctly.

Example 5-5 A JSP using Tiles

<html>
<body>
<tiles:insert page="layout.jsp" flush="true">

<tiles:put name="header" value="/header.jsp" />
<tiles:put name="body" value="/body.jsp" />
<tiles:put name="footer" value="/footer.jsp" />

</tiles:insert>
</body>
</html>

DynaCache also provides support for Tiles attributes. A layout template may
include or insert a page that requires attributes from its parent, as shown in
Example 5-6. In this example, the header Tile requires the userType attribute.
This attribute is defined in the layout.jsp template file and passed to the header
Tile using the nested <tiles:put> tag.

Example 5-6 layout.jsp

<%String userType = "123"; %>
<tiles:insert attribute="header">

<tiles:put name="userType" value="<%= userType %>" />
</tile:insert>

 Chapter 5. Caching strategy 131

http://struts.apache.org/1.x/struts-tiles/

<table>
<tr>

<td> <tiles:insert attribute="body"> </td>
</tr>
<tr>

<td> <tiles:insert attribute="footer"> </td>
</tr>

</table>
</body>
</html>

To cache the header Tile based on the userType attribute we must define a cache
entry for it in the cachespec where userType is marked as a Tiles attribute in the
cache-id. See Example 5-7.

Example 5-7 Cache entry for the header Tile

<cache-entry>
<class>servlet</class>
<name>/header.jsp</name>
<cache-id>

<component id="userType" type="tiles_attribute">
<required>true</required>

</component>
</cache-id>

</cache-entry>

132 Mastering DynaCache in WebSphere Commerce

Chapter 6. Advanced topics

This section discusses a number of more advanced topics concerning caching,
which are best studied after you have read the chapters on implementation.

The first section describes the improvements introduced in Version 6 of
WebSphere Commerce to the management of disk caching, and enhancements
to cache policies made in response to lessons learned from experiences using
DynaCache.

The chapter also includes tuning advice and guidance on how to monitor Edge
Side Includes with the Cache Monitor.

The last part of the chapter is devoted to a brief reference section largely derived
from the InfoCenter. This is primarily included for convenience when reading this
Redbook, and partly to add some usage notes to help you interpret the reference
information given in the Infocenter.

6

© Copyright IBM Corp. 2006. All rights reserved. 133

6.1 What is new in Version 6 of DynaCache

WebSphere Application Server provides Struts and Tiles caching, Web Services
client and server caching, edge caching using Edge Side Includes, JSR 168
Portlet caching, servlet/JSP fragment caching, distributed map, and command
caching. In WebSphere Application Server v6.1, WebSphere Dynamic Caching
can be configured as an in-memory or as a disk cache, or both. The majority of
the DynaCache improvements in WebSphere Application Server v6.1 are in the
disk cache infrastructure.

The DynaCache service allows persisting objects to disk (specified by a file
system location) so that objects evicted from the memory cache do not have to
be regenerated by the application server. The disk caching technology was
integrated as a overflow or spill-over cache.

However, the DynaCache designers have observed that the majority of
commercial implementations treat the disk cache as the primary cache and the
memory cache as a buffer. This has brought about a redesign in the disk cache
and memory cache integration services and it is in this area where most of the
infrastructure development changes occurred.

6.1.1 Disk cache enhancements

As more objects get stored on the disk, we need to limit the size or number of
entries that are on disk, and we need to have greater control over what gets put
on disk and what the behavior is when the disk is full.

The total number of objects that need to be cached and size of these objects
often imply that the primary store for these objects is the disk. The changes are
the following:

� A new option has been provided to use the disk cache as primary object store
(per cache instance and per cache entry).

� You can specify objects to be pinned in memory per cache entry based on the
expected frequency of use.

� In the past, administrators have been concerned about the impact of
DynaCache on memory usage, and its effect on the performance of their
systems. A new feature provides a mechanism to allow the administrator to
tune the amount of metadata that is kept in memory for more efficient cache
access and general book-keeping in order to reduce perceived outages
during background DynaCache activity.

� The programmer or solution architect can specify advanced caching criteria in
the application’s cache policy.

134 Mastering DynaCache in WebSphere Commerce

� You can exclude a child fragment from full page caching and that child
fragment is not to be cached as a separate fragment.

� You can selectively cache cookies along with the response. The existing
‘store-cookies’ property saves all the cookies.

� You can define a cache policy based on the range of values for a given
parameter or attribute.

� You can choose to not use the cache under certain conditions (skip-cache),
for example, to support the retrieval of preview content.

� Disk cache size is configurable, to limit the offload to disk. This has meant
implementing changes to the disk eviction algorithm so that it kicks in at some
threshold value before the disk cache fills up and keeps space available.

� Administrators are allowed to specify an upper bound on the size of a single
entry that is stored in the cache. Larger sized objects will still be managed for
invalidation propagation.

� Contention for cache was reduced by re-evaluating synchronization of
resources in cache.

� Deletion time for entries on disk cache was reduced by reorganizing disk
layout to separate metadata (dependencies) that group objects together for
invalidation from the actual serialized data.

� Disk scan times for expired entries on disk were reduced.

The following sections describe the latest developments and changes made to
DynaCache. Be aware, however, that the majority of these new features have
been backported to WebSphere Application Server v5.0.2.18, v5.1.1.13, and
v6.0.2.17 and above.

6.1.2 Cache policy enhancements

A number of caching policy enhancements have been made, including the
following:

� Do-not-cache property
� Skip-cache-attribute
� Value/not-value ranges
� Store-cookies property
� Consume-subfragments exclude
� Portlet caching support
� Disk Cache Enhancements

 Chapter 6. Advanced topics 135

Property do-not-cache
Use this property when you want DynaCache to totally ignore the fragment. This
means that DynaCache will neither cache nor consume the fragment, meaning
no part of that fragment will come from the cache and the fragment must be
processed by the application server runtime.

Example 6-1 Using do-not-cache to prevent the caching of a child JSP

<cache-entry>
 <class>servlet</class>
 <name>/AChildOfParentMainPage.jsp</name>
 <property name="do-not-cache">true</property>
 <cache-id>
 <timeout>0</timeout>
 </cache-id>
</cache-entry>

<cache-entry>
 <class>servlet</class>
 <name>/ParentMainPage.jsp</name>
 <property name="consume-subfragments">true</property>
 <cache-id>
 <timeout>0</timeout>
 </cache-id>
</cache-entry>

Even though ParentMainPag.jsp is consuming subfragments and includes
AChildOfParentMainPage, AChildOfParentMainPage.jsp will not be cached or
consumed.

Do-not-cache can also be extended for use in edge side includes and therefore
cached on the edge of your network.

Example 6-2 do-not-cache and edge-cacheable properties

<cache-entry>
 <class>servlet</class>
 <name>/DoNotCache.jsp</name>
 <property name="do-not-cache">true</property>
 <property name=“edge-cacheable”>true</property>
 <cache-id>
 <timeout>0</timeout>
 </cache-id>
</cache-entry>

136 Mastering DynaCache in WebSphere Commerce

Notice the presence of the edge-cacheable property in Example 6-2. This
property and the “do-not-cache” property must be present to define a fragment
that is not cacheable on the edge.

When to use do-not-cache
A fragment must be self-executing to be cacheable; however, not every
self-executing fragment is cacheable. Instead of rendering this entire page
uncacheable, you can elect to cache the full page and leave some fragments
uncached.

There are very few fragments that are not cacheable. Before designating
something as not cacheable, determine the value of caching the fragment versus
the possible changes required to make the fragment cacheable. We recommend
that you use this technique infrequently.

Before you decide a fragment is uncacheable, consult the different invalidation
techniques available for cache content.

do-not-cache anti-pattern
We have seen cases where the do-not-cache property has been incorrectly used
to compensate for poor page design. For example, don’t use do-not-cache to
bypass rarely used page fragments like personalized e-mail address details. If
ninety-five percent of your clients don’t use that e-mail fragment then it should
really have been placed on a separate page and a link inserted in its place.

A poor design forces everyone to have to absorb the performance costs of
generating that e-mail detail for the sake of the few who actually will use it. If the
site is a high volume Web site with many hundreds of thousands of hits per hour,
we will hit the database for every singe page request in order to provide that
e-mail address, even though the vast majority of the users don’t want it. Attention
to small details like that can make big performance differences.

Skip-cache-attribute
This defines an attribute that, when present in a request, specifies that the
response cannot be retrieved from or stored in the specific cache instance. The
following three examples illustrate the use of this attribute.

Example 6-3 applies to the base cache; Example 6-4 applies to cacheinstance1.
To invoke the skip-cache functionality, simply set the request attribute
previewRequest to true as shown in Example 6-5. SkipCache.jsp is then not
retrieved from cache regardless of its cache policy.

 Chapter 6. Advanced topics 137

Example 6-3 cachespec.xml (Base Cache)

<cache>
 <skip-cache-attribute>previewRequest</skip-cache-attribute>

.

.

.
</cache>

Example 6-4 cachespec.xml (cacheinstance1)

<cache-instance name=“cacheinstance1”>
 <skip-cache-attribute>previewRequest</skip-cache-attribute>

.

.

.
</cache-instance>

Example 6-5 Invoking skip-cache from a filter

public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain) {
 try {
 String parm = request.getParameter("previewRequest");
 if (parm == null)
 request.setAttribute("previewRequest",null);
 else if (parm.equals("true"))
 request.setAttribute("previewRequest","true");
 else if (parm.equals("false"))
 request.setAttribute("previewRequest","false");

 chain.doFilter(request, response);
 }
 catch (Throwable t) {}}

Value/not-value ranges
Values and Not-values ranges are used to define ranges of integer values that
specify whether or not a fragment is cached. They are specified using the <range
tag and specifying low and high values.

Example 6-6 Specifying value range

<value>
 <range low=“1" high=“100" />
</value>

138 Mastering DynaCache in WebSphere Commerce

Example 6-7 Case 1: Specifying value range

<component id=“parm1" type="parameter">
 <required>true</required>
 <value>
 <range low=“10" high=“20" />
 </value>
</component>

Example 6-8 Case 1 results: Value range

Request = ../jspname.jsp?parm1=10Result: Cached
Request = ../jspname.jsp?parm1=-1Result: Not cached

Example 6-9 Case 2: Specifying not-value range

<component id=“parm1" type="parameter">
 <required>true</required>
 <not-value>
 <range low=“-10" high=“25" />
 </not-value>
</component>

Example 6-10 Case 2 results: Not-value range

Request = ../jspname.jsp?parm1=5Result: Not cached
Request = ../jspname.jsp?parm1=85Result Cached

Store-cookies property
Specify any number of cookies to save in the cache object. The value defaults to
false, saving no cookies. The following examples are from cachespec.

Example 6-11 Store all cookies except cookie1 and cookie2

<property name="store-cookies">true
 <exclude>cookie1</exclude>
 <exclude>cookie2</exclude>
</property>

Example 6-12 Store only cookie1

<property name="store-cookies">false
 <exclude>cookie1</exclude>
</property>

 Chapter 6. Advanced topics 139

Consume-subfragments exclude
Consume-subfragments exclude allows you to mark an included fragment to not
be consumed by its parent.

The cache entry shown in Example 6-13 does not consume the subfragment. It
caches only if it has its own entry in the cache policy.

Example 6-13 Consume all subfragments except child.jsp

<property name="consume-subfragments">true
 <exclude>/child.jsp</exclude>
</property>

In Example 6-14 the cache entry also does not consume child.jsp, but caches it
since it has a cache policy.

Example 6-14

<property name="consume-subfragments">true</property>
…
<cache-entry>
 <class>servlet</class>
 <name>/child.jsp</name>
 <property name=“do-not-consume">true</property>
 <cache-id>
 <timeout>0</timeout>
 </cache-id>
</cache-entry>

Portlet caching
Portlet caching is essentially the same as servlet caching. There are new request
components available and some servlet request components are unavailable.

Note that there are interactions between enabling portlet and servlet caching
such that if portlet caching gets enabled, servlet caching does, too.

140 Mastering DynaCache in WebSphere Commerce

Figure 6-1 Enabling portlet caching

If servlet caching is disabled, so is portlet caching.

Example 6-15 Portlet caching in cachespec.xml

<cache-entry>
 <class>portlet</class>
 <name>WorldClock</name>
 <cache-id>
 <component id="*" type="parameter">
 <required>false</required>
 </component>
 <component id="currentTimeZone" type="portletSession">
 <required>false</required>
 </component>
 <timeout>180</timeout>
 </cache-id>
</cache-entry>

Table 6-1 show a list of the available new portlet components (all servlet
components are also valid for portlets unless specified).

Table 6-1 Portlet components for the cachespec.xml file

component description

portletSession Only applicable for portlets. Retrieves the portlet scoped (scoped
by portletwindow) values from the HTTPSession.

timeout The value in portlet.xml overrides the one in cachespec.xml.

portletWindow New; uses the portlet window identifier as part of the cacheId.

 Chapter 6. Advanced topics 141

6.2 Edge Side Include (ESI) caching

Edge Side Include (ESI) is a simple markup language used to define Web page
components for dynamic assembly and delivery of Web applications at the edge
of the Internet.

For details of how to configure ESI caching, refer to the “Configuring Edge Side
Include caching” section in the WebSphere Application Server Information
Center.

The ESI processor's cache can be monitored through the cache monitor
application. In order for the ESI processor's cache to be visible in the cache
monitor, the DynaCacheEsi application esiInvalidationMonitor property must
be set to true in the plugin-cfg.xml file, as shown in Example 6-16.

Example 6-16 Monitoring Edge Side Include caches

<?xml version-"1.0"?>
<Config>
<Property Name="esiEnable" Value="true"/>
<Property Name="esiMaxCacheSize" Value="1024"/>
<Property Name="esiInvalidationMonitor" Value="true"/>

6.3 Priming the cache

Some business Web sites, such as those of stock exchanges and event ticketing
companies, are regularly subject to extreme load pressures at a particular time of
day. For example, at a stock exchange, loads can peak at the start of the
business day when trading commences. Other sites may simply change their
product catalog or update prices on a daily basis. Either way, the cache will need
to be rebuilt in order to accommodate the new changes.

portletMode,
windowState

New; represents the portlet mode or window state of the portlet.

sessionId New; applicable to portlets and servlet. Uses the session ID as
cache property.

Not applicable Cannot be used for portlets: cookie, pathInfo, servletpath.

component description

142 Mastering DynaCache in WebSphere Commerce

We recommend that you run automatic scripts to ensure that your site’s most
frequently accessed pages and data are loaded into cache well before they are
needed by your clients. Then, when a large number of requests come flooding in,
your site is ready to cope.

This caching pre-loading activity is often referred to as warming up or priming
the cache. Again, the objective of cache warming is to be as responsive as
possible before the commencement of very heavy processing periods by having
the application server primed to cope with these loads.

Priming the cache can be very effective in clustered environments, where the
distributed replication service may take quite a while to update all the cluster
members, especially if the number of cache entries to distribute is large.

6.4 When you must not cache

When creating your high-level caching strategy, you first need to determine what
pages in your store should be cached. Pages that are good candidates for
caching are pages that are accessed frequently, but are also stable for a period
of time, and contain content that can be reused by a variety of users. You should
beware of caching security information and cookies.

Personalized fragments
Any servlet and JSP file content that is private, requires authentication, or uses
SSL should not be cached externally. The authentication required for those
servlet or JSP file fragments cannot be performed on the external cache.

Cookies and attributes
By default, dynamic caching caches the cookies (when caching by servlet class)
and all request attributes (servlet and JSP pages) along with the cache entries.
However, WebSphere Commerce cookies and request attributes contain
user-specific information that should not be cached. As a result, the following
property names and values are mandatory when caching full pages:

<property name="save-attributes">false</property>
<property name="store-cookies">false</property>

6.5 Multiple caching pools and cache instances

DynaCache supports the configuration of multiple separate caching pools to
store, retrieve, and share data objects within the DynaCache. Each pool is called
a cache instance.

 Chapter 6. Advanced topics 143

6.5.1 Cache instance

Properties such as cache size, priority, and disk offload are configured
independently for each cache instance. Objects that are stored in a particular
cache instance are not affected by other cache instances.

As a system designer, you now have more granularity of control in terms of what
happens to your cached objects. For example, one cache pool may not allow disk
offload while the other does – allowing you to pin certain objects in a high speed
in-memory cache and place other objects into a second cache, where there is
greater potential of being offloaded to disk.

You may even separate objects by size, keeping smaller objects in one cache
and larger objects in another. This helps prevent situations where a small object
squeezes out a larger valuable object from the memory cache and onto the disk.

Objects that are stored in a particular cache instance are available to
applications on other servers by accessing a cache instance of the same name.
The two servers must be within the same replication domain to share data.

6.5.2 Cache instance definition

The root element of the cachespec.xml file is cache and contains cache-instance
and cache-entry elements. The cache-entry elements can also be placed inside
cache-instance elements to make that cache entry part of a cache instance that
is different from the default.

Each cache-instance element must contain at least one cache-entry element. A
cache entry that is matched within a cache-instance element is cached in the
servlet cache instance that is specified by the name attribute. If identical
cache-entry elements exist across cache-instance elements, the first cache-entry
element that is matched is used.

Example 6-17 Defining multiple cache instances

<cache>
<cache-instance name="cache_instance_1">

<cache-entry>
...
</cache-entry>

</cache-instance>

<cache-instance name="cache_instance_2">
<cache-entry>
...
</cache-entry>

144 Mastering DynaCache in WebSphere Commerce

...
</cache-instance>

</cache>

6.6 DynaCache tuning

Tuning DynaCache is much like tuning any other performance-enhancing
component: it is an iterative process. It should begin at application design, with
guidance from the application architect on what should and should not be cached
based on input from the requirement stage and knowledge of the application
scenarios.

This process is further refined through the development, validation, and
production phase of the project. It is invaluable during validation and
pre-production phases of development to monitor performance changes so as to
understand and rectify the impact of cache policies and tuning on system
behavior.

You need to run some projected workload without caching to determine values
such as the cost of generating the object, although you may choose to rely on the
intuition and experience of the application architect.

Guidelines for determining the effectiveness of caching should take into account
the following:

� The cost of generating a response should be greater than the maximum
cache access time, where the maximum cache access time should factor in
overhead for disk access, distribution policy, and so on.

� The lower the validity of the object and response, the more likely that it will not
be reused. This can result in larger latencies due to cache misses and
cleanup overhead, than simply not caching the object.

� The objects with more popularity and business value should be assigned a
higher relative priority.

� The higher the degree of connectivity of an object, the more costly it is to
invalidate and evict the object from the cache. Take this into account when
determining where to cache the object in terms of keeping it in the memory
cache, disk cache, or distributing the object across the cluster.

� The DynaCache specification provides attributes that can be used to declare
properties of the cached object such as timeout (in seconds), priority
(LOWEST PRIORITY = 0, DEFAULT PRIOIRTY = 3, HIGHEST PRIORITY =
16), and inactivity, to affect the treatment of these cached objects.

 Chapter 6. Advanced topics 145

6.7 Memory caching

DynaCache accesses and retrieves objects primarily from the memory cache.
This cache keeps references to the cached objects and can be configured with
limits on the number of entries that are cached in memory. After the limit of
entries that is specified for the memory cache is reached, adding additional
entries in the cache will require that entries be evicted out of memory, based on
how recently the evicted entry was last accessed, and the priority of the object
that is inserted into the cache.

6.7.1 Cache sizing formula

Choosing the size of the memory cache, in terms of the number of entries,
should be done based on how much memory is available for caching.

The average memory, in bytes, that is used by the system to reference a cached
object with its dependency IDs can be computed as:

size = o + c + (k* (dp + tm + 128))
o = the average size of the object
c = the average size of the cache ID
k = is 4 for 32-bit platforms and 8 for 64-bit platforms
dp = the number of templates
tm = dependency IDs that are associated with this object

The number of entries that is specified should be large enough to hold the cache
entries that are associated with the popular or more frequently used categories.
The memory cache and therefore memory dedicated for the cache should be
large enough not only to cache content belonging to categories that have higher
business value, but also enough additional entries to form a working set in order
to minimize the amount of thrashing due to Least Recent Used (LRU) eviction.

The Java Virtual Machine (JVM) heap settings should also be set. The
recommended setting for the JVM heap is to have 40% of free heap after
caching. This tuning involves either increasing the size of JVM or reducing the
size of the in-memory cache (or cache objects that require less memory). There
are lots of trade-offs here, such as higher JVM causing longer garbage
collection. It is a fine balance that can only be determined with proper testing.

DynaCache cleans expired entries from the memory cache in the background.
The daemon responsible for this cleanup will wake up every five seconds. This is
sufficient for most deployments. On the other hand, for deployments that do
infrequent invalidation and possibly invalidate entries only once a day, this can be
set higher. If the deployment has a lot of automated or trigger-driven invalidation,
the cleanup interval should be set lower.

146 Mastering DynaCache in WebSphere Commerce

6.7.2 Disk caching

DynaCache has the option to cache content in disk when the content is evicted
from the memory cache. It is highly recommended that the offload directory be
located on a high speed, separate disk or partition that is dedicated for caching
only.

A dedicated disk drive enables better response times for the disk cache by
reduced contention for disk space with application data and code on the file
system where WebSphere Application Server is installed. We recommend a
minimum partition size of twice the expected volume of cached content.

Controlling offload with the persist-to-disk property
The storage and access of objects from disk involves serialization and
de-serialization of objects. This feature comes at a higher cost, and should be
taken into consideration when deciding what content should be persisted to disk.

It is possible for you to selectively cache content to the disk through cache
policies that are defined in the cachespec.xml file, in particular the persist-to-disk
property. The persist-to-disk property has two values: true or false. The default
value is true. When this property is set to false, the cache entry is not written to
the disk when overflow or a server shutdown occurs.

Disk cache cleanup and tuning
Objects that are in the disk cache are cleaned up when they are explicitly
invalidated through either programmatic or policy-based invalidations, or when
the objects expire. When the disk cache is cleaned up the tables that host the
dependency ID to cache ID mappings and template ID to cache ID mappings are
updated and the disk space occupied by the cache entries is returned to the
internal storage manager. The available space on the file system does not
increase after the objects are deleted from the cache because the space is
claimed back by the internal storage manager and reused by other objects that
are cached to the disk.

The cleanup is done in the background as a low priority thread to reduce
contention for the disk from active request and response threads. The time to
perform this cleanup, as reported in the logs, tracks the duration of the scan. With
the low priority of the scan, it can take several minutes.

 Chapter 6. Advanced topics 147

6.8 Setting custom system properties

Disk cache cleanup

You can activate the disk cache cleanup once a day at a specified time by using
the com.ibm.ws.cache.CacheConfig.htodCleanupHour system property. In the
Administrative Console:

1. Select Application servers → <your server> → Process Definition → Java
Virtual Machine → custom properties

2. Click the New button and declare the system property as the key and its value
in the value field, which defaults to 0 (= 12:00 midnight). Or you can specify
the cleanup to run at a specific frequency by setting the
com.ibm.ws.cacheCacheConfig.htodCleanupFrequency system property. Its
value is expressed in minutes.

The disk cache cleanup occurs in two phases: scan and delete. In the scan
phase, the algorithm identifies objects that have expired on disk. Since the
cleanup algorithm is only looking for expired entries, cached objects without an
expiration value (an expiration value of 0) will always remain on disk until
explicitly invalidated.

The policy of never expiring objects should be reconsidered if disk space is an
issue in the deployment. The delete phase returns disk space to the internal
storage manager and ensures that all references to the object are correctly
purged. Most large deployments that have a large amount of content on the disk
typically choose to specify that cleanup occurs at a frequency that ranges from
30 minutes to a couple of hours, depending on the average expiration time of
content in the cache.

You can optimize the disk cache cleanup for disk I/O by buffering the metadata
that is associated with cached objects in memory. These auxiliary buffers can
hold the dependency and template information for the objects so that the object
deletion time is decreased.

com.ibm.ws.cache.CacheConfig.htodDelayOffload
By setting the com.ibm.ws.cache.CacheConfig.htodDelayOffload system
property to true you will enable this optimization.

Important: You should use the administrative console to set the following
three custom properties in V6.1. Setting them manually is not recommended.

148 Mastering DynaCache in WebSphere Commerce

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntiresLimit
You can tune the memory that is utilized by this optimization by setting the
com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntiresLimit system property
to a value that specifies the maximum number of cache IDs that any dependency
ID can map to in the auxiliary buffer.

Any dependency that maps to more cache IDs than those specified using the
htodDelayOffloadEntriesLimit are not buffered and are written to disk.
Administrators managing large deployments prefer to set this to a value that
approximates the total number of entries in the entire cache for optimal
performance.

6.9 Monitoring DynaCache

If the Performance Monitoring Infrastructure (PMI) service is enabled, then there
are two ways to collect DynaCache PMI statistics without a server restart:

� Perform all the steps listed in the following discussion on the Runtime tab
instead of the Configuration tab.

� Write a client program that will issue MBean JMX API calls to enable the
DynaCache PMI module and collect DynaCache PMI statistics.

The PMI service is enabled by default on server startup.

Starting from WebSphere Application Server v5.0.2.18, v5.1.1.13, v6.0.2.17 and
v6.1.0.0, Dynacache has introduced a number of statistics exposed via the
DynaCache MBean for monitoring and tuning DynaCache.

About 50 statistics, such as ExplicitInvalidationsFromDisk and
ObjectsReadFromDisk400K, have been exposed to provide a comprehensive
view of the cache. For more details refer to the technote for APAR PK13460
found at http://www-1.ibm.com/support/docview.wss?uid=swg27007969.

 Chapter 6. Advanced topics 149

http://www-1.ibm.com/support/docview.wss?uid=swg27007969

Figure 6-2 Selectable custom monitoring performance metric modules in DynaCache

You can select the “Custom monitoring level” and select and enable all of
modules listed under DynaCache. This will require server restart.

Monitoring will not impact performance significantly. You can collect metrics from
a few servers as a sample in order to establish a pattern.

150 Mastering DynaCache in WebSphere Commerce

Any data collected can be viewed with WebSphere’s internal Tivoli®
Performance Viewer (TPV), or you can collect the data in TPV logs.

Figure 6-3 Monitoring and Tuning PMI main menu

To creating TPV logs:

1. Select Monitoring and Tuning → Performance Viewer → Current
Activity → server_name → Settings → Log in the console navigation tree.

2. To see the Log link on the Tivoli Performance Viewer page, expand the
Settings node of the TPV navigation tree on the left side of the page. After
selecting Log, the TPV log settings are displayed on the right side of the
page.

3. Select Start Logging when viewing summary reports or performance
modules.

 Chapter 6. Advanced topics 151

4. When finished, select Stop Logging.

Note that logging stops when any one of the following events occurs:

� The logging duration expires

� Stop Logging is clicked

� The file size and number limits are reached

The settings are adjustable in the Log Settings panel, described previously in
step one. By default, the log files are stored in the profile_root/logs/tpv directory
on the node on which the server is running. To conserve space, TPV
automatically compresses the log file when it has finished writing to it. There is a
single log file in each .zip file and the file will have the same name as the .zip file.

View the logs locally or remotely using a standalone TPV.

6.9.1 DeveloperWorks tooling for monitoring DynaCache

The DynaCache team has produced a cache statistics script and parser that is to
be released on DeveloperWorks. The script is written in Jython and collects the
DynaCache statistics collected by the DynaCache mbean.

The Java parser (DynaCacheStatisticsParser.class) imports the results into a
Microsoft® Excel® file. The DynaCache team is currently working on a visualizer
to graph the mbean counter values over time. The tool is extremely useful to see
what the cache is doing and identify potential performance improvements.

152 Mastering DynaCache in WebSphere Commerce

6.10 Reference section

This section reproduces information from the WebSphere Application Server
infocenter, together with some usage notes we have added for your assistance.
The information will not be updated to reflect changes to WebSphere Application
Server and the infocenter. You should always refer to the infocenter if there is any
doubt about the currency of the information reproduced in this section.

6.10.1 Class element

Table 6-2 DynaCache class types supported

Example 6-18 illustrates the class element.

Example 6-18 Class element examples

<class>command</class>
<class>servlet</class>
<class>webservice</class>
<class>JAXRPCClient</class>

6.10.2 Name element

<name>name</name>

The following guidelines help you specify a cacheable object in DynaCache.

Valuea

a. DynaCache is not recommended for caching static pages, so Static has been
omitted from the DynaCache class types. See 7.2, “Clustering FAQs” on
page 175 for a discussion about caching static pages.

Description

servlet Refers to both servlets and Java Server Pages (JSP) files that are
deployed in the WebSphere Application Server servlet engine

webservice Extends the servlet with special component types for Web services
requests

JAXRPCClient Used to define a cache entry for the Web services client cache

command Refers to classes using the WebSphere Application Server
command programming model

 Chapter 6. Advanced topics 153

<name>Command</name>
For the required element <name>, you must include the fully qualified Java
package name, including a trailing .class, of the configured object, for example:

com.ibm.commerce.wcs.DoSomeCommand.class

<name>Servlet</name>
If you placed the cachespec.xml file in the WebSphere Application Server
properties directory, then this required element must include the full URI of the
JSP file or servlet you want cached.

However, if you placed the cachespec.xml file in the Web application, which is
where we recommend that you put it, then this required element can be relative
to the specific Web application context root.

Remember that placing the file in the properties directory makes it global to all
applications.

<name>webservices</name>
For Web services entries, you must include the URI of the SOAP router that is
associated with the Web service that you want to cache.

For the Web services client cache, the name is the target end point of the
cacheable Web service or the URI of the SOAP router that is associated with the
cacheable Web service. You can use the SOAP address location in the Web
Services Description Language (WSDL) file to define the name for the Web
services client cache.

6.10.3 Sharing policy

When working within a cluster with a distributed cache, these values determine
the sharing characteristics of entries that are created from this object.

Example 6-19 Sharing policy

<sharing-policy>
not-shared | shared-push | shared-pull | shared-push-pull

</sharing-policy>

If this element is not present, a not-shared value is assumed. In single server
environments, not-shared is the only valid value. When enabling a replication, the
default value is not-shared. This property does not affect distribution to Edge
Side Include processors through the Edge fragment caching property. See
Table 4-1 on page 117 for more information.

154 Mastering DynaCache in WebSphere Commerce

Example 6-20 shows the sharing policy list.

Example 6-20 Sharing policy possible values

<sharing-policy>not-shared</sharing-policy>
<sharing-policy>shared-push</sharing-policy>
<sharing-policy>shared-pull</sharing-policy>
<sharing-policy>shared-push-pull</sharing-policy>

6.10.4 Property

You can set optional properties on a cacheable object, such as a description of
the configured servlet. The following syntax is used:

property name="key">value</property>

Key is the name of the property for this cache entry element, and value is the
corresponding value.

The class determines valid properties of the cache entry. Table 6-3 identifies the
properties that are currently defined.

Table 6-3 Cachespec.xml property definitions

Property Valid classes Value

ApplicationName All Overrides the J2EEName application ID so that multiple
applications can share a common cache ID namespace.

EdgeCacheable Servlet True or false. The default is false. If the property is true, then the
given servlet or JSP file is externally requested from an Edge Side
Include processor. Whether or not the servlet or JSP file is
cacheable depends on the rest of the cache specification.

ExternalCache Servlet Specifies the external cache name. The external cache name
needs to match the external cache group name.

 Chapter 6. Advanced topics 155

consume-
subfragments

Servlet,
Web service

True or false. The default is false. When a servlet is cached, only
the content of that servlet is stored, and includes placeholders for
any other fragments to which it includes or forwards.
Consume-subfragments (CSF) tells the cache not to stop saving
content when it includes a child servlet. The parent entry, the one
marked CSF, includes all the content from all fragments in its
cache entry, resulting in one big cache entry that has no includes
or forwards, but the content from the whole tree of entries.
Consume-subfragments can save a significant amount of
application server processing, but is typically only useful when the
external HTTPrequest contains all the information needed to
determine the entire tree of included fragments.Use the
<exclude> element to tell the cache to stop consuming for the
excluded fragment and instead, create a placeholder for the
include or forward. For example, exclude A.jsp from the
consume-subfragment, as follows:
<property name="consume-sbufragments">true
<exclude>/A.jsp<exclude>
</property>

do-not-consume Servlet,
Web service

True or false. The default is false. When a fragment parent has the
consume-subfragment property set to true the child fragment
content is saved in the cache entry of the parent. Do-not-consume
(DNC) tells the cache to stop saving the content for this fragment
in the parent cache-entry and create a placeholder instead for the
include or forward.

do-not-cache Servlet and
Portlet

Defines a fragment that is neither cached nor consumed by its
parent.
<cache-entry>
...
<property name="do-not-cache">true</property>
or
<cache-id>
<property name="do-not-cache">true</property>
</cache-id>
</cache-entry>

alternate_url Servlet Specifies the alternate URL that is used to invoke the servlet or
JSP file. The property is valid only if the EdgeCacheable property
also is set for the cache entry.

persist-to-disk All True or false. The default is true. When this property is set to false,
the cache entry is not written to the disk when overflow or server
stopping occurs.

Property Valid classes Value

156 Mastering DynaCache in WebSphere Commerce

6.10.5 Cache entry IDs

To cache an object, the application server must know how to generate a unique
ID for different invocations of that object. These IDs are built either from
user-written custom Java code or from rules that are defined in the cache policy
of each cache entry. (Note that custom Java code needs to be placed into a
shared library.)

save-attributes Servlet True or false. The default is true. When this property is set to false,
the request attributes are not saved with the cache entry.
Use the <exclude> element to specify the request attributes that
do not apply to the save-attributes property. For example, to save
only the attr1 attribute with the cache entry:
<property name="save-attributes">false
<exclude>attr1</exclude>
</property>
To save all attributes except the attr1 attribute in the cache entry,
set the property to true in the preceding sample. If you do not use
the <exclude> element, either all or no request attributes are
saved with the cache entry.

delay-invalidations Command True or false. When this property is set to true, the commands that
are invalidating cached objects based on the invalidation rules in
this cache entry invalidate the cache entries after running. By
default, the invalidation occurs before the command runs.

store-cookies Servlet Takes one or more cookie name as its argument which is saved
along with the cache object and restored by the servlet cache in
the response with a set-cookie header.
Save all cookies except cookie1 as part of the cache-entry as
follows:
<property name="store-cookies">true
<exclude>cookie</exclude>
</property>
Save only cookie1 as part of the cache-entry, as follows:
<property name="store-cookies">false
<exclude><cookie1</exclude>
</property>

ignore-get-post Servlet True or false. The default is false. When the property is set to true
the request type is not appended to the cache-id for GET and
POST requests unless the requestType component sub-element
is defined. By default the request type is automatically appended
to the cache-id for GET and POST requests.

Property Valid classes Value

 Chapter 6. Advanced topics 157

Each cache entry can have multiple cache ID rules that run in order until either a
rule returns a non-empty cache ID, or no more rules are left to run. If none of the
cache ID generation rules produce a valid cache ID, the object is not cached.

Each cache-id element defines a rule for caching an object and is composed of
the following sub-elements:

� Component
� Timeout
� Inactivity
� Priority
� Property
� Idgenerator
� Metadatagenerator

Example 6-21 on page 158 illustrates a cache-id element.

Example 6-21 cache-id definition grammar

<cache-id>
 component* | timeout? | inactivity? | priority? | property* | idgenerator? |
metadatagenerator?
</cache-id>

In this example, * = zero or more, | = or, and ? = value.

Component sub-element
Use the component sub-element to generate a portion of the cache ID. The
component sub-element consists of the following attributes and elements:

� Attributes

– Id
– Type
– Ignore-value

� Elements

– Index
– Method
– Field
– Required
– Value
– Not-value

Use the ID attribute to identify the component.

Use the type attribute to identify the type of component. Table 6-4 lists the values
for type.

158 Mastering DynaCache in WebSphere Commerce

Table 6-4 Cachespec.xml component types

Type Object Meaning

method Command Calls the indicated method on the command or object.

field Command Retrieves the named field in the command or object.

parameter Servlet Retrieves the named parameter value from the request
object.

parameter-list Servlet Retrieves a list of values for the named parameter.

session Servlet Retrieves the named value from the HTTP session.

cookie Servlet Retrieves the named cookie value.

attribute Servlet Retrieves the named request attribute.

header Servlet and Web
service

Retrieves the named request header.

pathInfo Servlet Retrieves the pathInfo element from the request. Dynacache
pulls out the pathinfo using:
(String)
request.getAttribute("javax.servlet.include.path_info");

servletpath Servlet Retrieves the servlet path. Dynacache pulls out the servlet
path using:
(String)
request.getAttribute("javax.servlet.include.servlet_path");

locale Servlet Retrieves the request locale.

requestType Servlet Retrieves the HTTP request method from the request.

tiles_attribute Servlet Retrieves the value of an attribute from a tile.

SOAPEnvelope Web service and
client

Retrieves the SOAPEnvelope element from a Web services
request. An ID attribute of Hash uses a Hash of the
SOAPEnvelope element, while Literal uses the
SOAPEnvelope element as received.

SOAPAction Web service Retrieves the SOAPAction header, if available, for a Web
services request.

serviceOperation Web service Retrieves the service operation for a Web services request.

serviceOperation
Parameter

Web service Retrieves the specified parameter from a Web services
request.

 Chapter 6. Advanced topics 159

Ignore-value
Use the ignore-value attribute to specify whether or not to use the value that is
returned by this component in cache ID formation. This attribute is optional, with
a default value of false. If the value is true, only the ID of the component is used
when creating a cache ID, or no output is used when creating a dependency or
invalidation ID.

Index element
Use the index element with the previous component type to add the value of the
element at the specified index position in the collection or array to the ID that is
being created.

Example 6-22 Use of Index element

<cache-entry>
<class>servlet</class>
<name>xxx.jsp</name>
<cache-id>

.

.
<component id="users" type="attribute">

<required>true</required>

operation Web services
client cache

Indicates an operation type in the Web Services Description
Language (WSDL) file. The id attribute is ignored and the
value is the operation or method name. If the namespace of
the operation is specified, format the value as
namespaceOfOperation:nameOfOperation.

part Web services
client cache

Indicates an input message part in the WSDL file or a request
parameter. Its ID attribute is the part or parameter name, and
the value is the part or parameter value.

SOAPHeaderEntry Web services
client cache

Retrieves special information in the Simple Object Access
Protocol (SOAP) header of the Web services request. The id
attribute specifies the name of the entry. In addition, the entry
of the SOAP header in the SOAP request must have the
actor attribute, which contains com.ibm.websphere.cache.
For example:
<soapenv:Header>
<getQuote
soapenv:actor="com.ibm.websphere.cache">IBM</getQuote>
</soapenv:Header>

sessionID Servlet Retrieves the HTTP session ID.

Type Object Meaning

160 Mastering DynaCache in WebSphere Commerce

<index>1</index>
</component>

.

.
</cache-id>
<dependency-id>dep

<component id="users" type="attribute" multipleIDs="true">
<required>true</required>

</component>
</dependency-id>

</cache-entry>

The previous cache policy generates the following component to use in the
cache ID: users: b. Use the <method> element to call a void method on a
returned object.

Method: Calling Java methods
Use the method element to call a method on a returned object. Method and field
objects are infinitely nestable in any combination. The method must be public
and is not valid for edge-cacheable components. For example:

<component id="getUser" type="method"><method>getUserInfo
<method>getName</method></method></component>

This method is equivalent to getUser().getUserInfo().getName().

Component types attribute, method, or field can return an object. When the
object returned is a collection or array, the index ID is created with a comma
separated list of the elements in the collection or array. For example, if the
request attribute users returns an array [a, b] and the cache entry is defined like
Example 6-23, then the cache ID will contain the string users: a,b. The
dependency ID will be dep: a,b.

Example 6-23 cachespec.xml where attribute users returns an array [a, b]

<cache-entry>
<class>servlet</class>
<name>xxx.jsp</name>
<cache-id>

.

.
<component id="users" type="attribute">

<required>true</required>
</component>
.
.

 Chapter 6. Advanced topics 161

</cache-id>
<dependency-id>dep

<component id="users" type="attribute">
<required>true</required>

</component>
</dependency-id>

</cache-entry>

Use the multipleIDs attribute with the component types to specify and generate
multiple dependency IDs (or invalidation IDs), based on the items in the
collection or array (see Example 6-24).

Example 6-24 Using multipleID attribute in generating a dependency ID

<cache-entry>
<class>servlet</class>
<name>xxx.jsp</name>
<cache-id>

...
<component id="users" type="attribute">
<required>true</required>

</component>
...

</cache-id>
<dependency-id>dep

<component id="users" type="attribute" multipleIDs="true">
<required>true</required>

</component>
</dependency-id>

</cache-entry>

Based on Example 6-24, the cache policy will generate the following dependency
IDs:

dep:a,b
dep:a
dep:b

Field element
Use the field element to access a field in a returned object. Method and field
objects are infinitely nestable in any combination. The field must be public. This
field is not valid for edge-cacheable components. For example:

<component id="getUser" type="method"><method>getUserInfo
<field>name</field></method></component>

162 Mastering DynaCache in WebSphere Commerce

This method is equivalent to the getUser().getUserInfo().name method.

Required element
Use the required element to specify whether or not this component must return a
non-null value for this cache ID to represent a valid cache. If set to true, this
component must return a non-null value for this cache ID to represent a valid
cache ID. If set to false, the default, a non-null value is used in the formation of
the cache ID and a null value means that this component is not used at all in the
ID formation. For example:

<required>true</required>

Value element
Use the value element to specify values that must match to use this component
in cache ID formation. For example:

Example 6-25 Use of value

<component id="getColor" type="method">
<required>true</required>
<value>blue</value>
<value>red</value>

</component>

Not-value
Use the not-value element to specify values that must not match in order to use
the component in cache ID formation. This method is similar to value element,
but instead prescribes the defined values from caching. You can use multiple
not-value elements when more than one value that is not valid exists. This is
shown in Example 6-26.

Example 6-26 Use of not-value

<component id="getColor" type="method">
<required>true</required>
<not-value>blue</not-value>
<not-value>red</not-value>

</component>

The component sub-element has either a method and a field element, a value
element, or a not-value element. The method and field elements apply to
commands only. The following example illustrates the attributes of a component
sub-element:

<component id="isValid" type="method" ignore-value="true"><component>

 Chapter 6. Advanced topics 163

Timeout
The timeout sub-element is used to specify an absolute time-to-live (TTL) value
for the cache entry. For example,

<timeout>value</timeout>

Value is the amount of time, in seconds, to keep the cache entry. Cache entries
that are in memory are kept indefinitely, as long as the entries remain in memory.
Cache entries that are stored on disk are evicted if they are not accessed for 24
hours.

Inactivity
The inactivity sub-element is used to specify a time-to-live (TTL) value for the
cache entry based on the last time that the cache entry was accessed. It is a
sub-element of the cache-id element.

<inactivity>value</inactivity>

Here value is the amount of time, in seconds, to keep the cache entry in the
cache after the last cache hit.

Priority
Use the priority sub-element to specify the priority of a cache entry in a cache.
The priority weighting is used by the least recently used (LRU) algorithm of the
cache to decide which entries to remove from the cache if the cache runs out of
storage space. For example,

<priority>value</priority>

Value is a positive integer between 1 and 255, inclusive.

Example 6-27 keeps the cache entry in the cache for a minimum of 35 seconds
and a maximum of 180 seconds. If the cache entry is accessed within each 35
second inactivity period, the inactivity period is extended for another 35 seconds.
However, because the timeout element is also configured, the cache entry is
always invalidated after 180 seconds. If the cache entry is not accessed within
the 35 second period, the entry is removed from the cache.

Example 6-27 inactivity and timeout usage - Sample 1

<cache-id>
<component id="timeout" type="parameter">

<required>true</required>
</component>
<timeout>180</timeout>
<inactivity>35</inactivity>
<priority>1</priority>

164 Mastering DynaCache in WebSphere Commerce

</cache-id>

Example 6-28 keeps the cache entry in the cache for a minimum of 600 seconds.
If the cache entry is accessed within each 600 second period, the inactivity
period is extended for another 600 seconds. If the cache entry is not accessed
within the 600 second period, the cache entry is removed from the cache.

Example 6-28 Another inactivity and timeout - Sample 2

<cache-id>
<component id="timeout" type="parameter">

<required>true</required>
</component>
<inactivity>600</inactivity>
<priority>1</priority>

</cache-id>

In Example 6-29 the value for inactivity has no meaning because the timeout
period is less than the inactivity period. The cache entry is always invalidated
after 180 seconds, no matter how often the cache entry is accessed.

Example 6-29 Timeout value < inactivity period

<cache-id>
<component id="timeout" type="parameter">

<required>true</required>
</component>
<timeout>180</timeout>
<inactivity>600</inactivity>
<priority>1</priority>

</cache-id>

Property sub-element
Use the property sub-element to specify generic properties for the cache entry.
For example:

<property name="key">value</property>

Key is the name of the property to define, and value is the corresponding value.

For example:

<property name="description">The Snoop Servlet</property>

 Chapter 6. Advanced topics 165

Idgenerator and metadatagenerator sub-elements
Use the Idgenerator element to specify the class name that is loaded for the
generation of the cache ID. The Idgenerator element must implement the
com.ibm.websphere.servlet.cache.Idgenerator interface for a servlet or the
com.ibm.websphere.webservices.Idgenerator interface for the Web services
client cache. An example of the Idgenerator element follows:

<Idgenerator> class name </Idgenerator>

Class name is the fully qualified name of the class to use. Define this generator
class in a shared library. Example 6-30 shows an example of a custom written
command cache ID generator.

Example 6-30 Cache ID generator for a command object

package com.ibm.ws.cache.command;
import com.ibm.websphere.command.*;
import java.util.*;
public class QuoteIdgenerator implements CommandIdgenerator {
 public String getId(CacheableCommand command, ArrayList groupIds) {
 QuoteCommand cs = (QuoteCommand)command;
 // add dependency ids for quotecommand the ticker for this command
 groupIds.add("QuoteCommandIDGen");
 groupIds.add("ticker:"+cs.getTicker());
 return "QuoteCommmandIdGen Ticker:"+cs.getTicker();
 }
}

Use the metadatagenerator element inside the cache-id element to specify the
class name loaded for the metadata generation. The MetaDataGenerator class
must implement the com.ibm.websphere.servlet.cache.MetaDataGenerator
interface for a servlet or the
com.ibm.websphere.cache.webservices.MetaDataGenerator interface for Web
services client cache. The MetaDataGenerator class defines properties like
timeout, inactivity, external caching properties or dependencies. An example of
the metadatagenerator element is:

<metadatagenerator> class name </metadatagenerator>

In this example, class name is the fully qualified name of the class to use. Define
this generator class in a shared library.

Example 6-31 Sample metadata generator source code

package com.ibm.ws.cache.servlet;
import javax.servlet.http.*;
import com.ibm.websphere.servlet.cache.*;

166 Mastering DynaCache in WebSphere Commerce

public class MyMetaDataGenerator implements MetaDataGenerator {
 private int timeout=0;
 private int priority=0;
 public void setMetaData(ServletCacheRequest req, HttpServletResponse
resp) {

 System.out.println("**** setMetaData***");
 FragmentInfo fragmentInfo = (FragmentInfo)
req.getFragmentInfo();
 String tout = req.getParameter("metaDataTimeout");
 if (tout != null) {
 timeout = new Integer(tout).intValue();
 if (timeout != 0) {

 fragmentInfo.setTimeLimit(timeout);
 }
 }
 String pri = req.getParameter("metaDataPriority");
 if (pri != null) {
 priority = new Integer(pri).intValue();
 if (priority!=0) {

 fragmentInfo.setPriority(priority);
 }
 }
 }
 public void initialize(CacheConfig cc) {
 }
}

Dependency-id element
Use the dependency-id element to specify additional cache identifiers that
associate multiple cache entries to the same group identifier.

The value of the dependency-id element is generated by concatenating the
dependency ID base string with the values that are returned by its component
elements. If a required component returns a null value, the entire dependency
does not generate and is not used.

Validate the dependency IDs explicitly through the DynaCache API, or use the
invalidation element. Multiple dependency ID rules can exist in one cache-entry
element. All dependency rules run separately.

 Chapter 6. Advanced topics 167

Invalidation element
To invalidate cached objects, the application server must generate unique
invalidation IDs. Build invalidation IDs by writing custom Java code or through
rules that are defined in the cache policy of each cache entry. The following
example illustrates an invalidation in the cache policy:

<invalidation>component* | invalidationgenerator? </invalidation>

Invalidationgenerator sub-element
The invalidationgenerator element is used with the Web Services client cache
only. Use the invalidationgenerator element to specify the class name to load for
generating invalidation IDs. The InvalidationGenerator class must implement the
com.ibm.websphere.cache.webservices.InvalidationGenerator interface. An
example of the invalidationgenerator element is:

<invalidationgenerator>class name</invalidationgenerator>

In this example, class name is the fully qualified name of the class that
implements the com.ibm.websphere.cache.webservices.InvalidationGenerator
interface. Define this generator class in a shared library.

6.10.6 Cache servlet filtering and Commerce DC_ variables

Prior to WebSphere Commerce Version 5.5, WebSphere Commerce provided its
own caching mechanism. Using the previous mechanism, Web pages could be
cached based on either of two methods:

� Session-independent (SI) caching: Pages were cached based on URL
parameters.

� Session-dependent (SD) caching: Pages were cached based on URL
parameters, user's language, preferred currency, parent organization,
contract IDs, and member groups.

Cache IDs for SI caching were generated based on the URL parameters; for SD
caching, the cache IDs were created with the URL parameters plus the session
information.

In order to provide the same functionality as the previous session-dependent
caching, but using the WebSphere Application Server dynamic caching
mechanism, WebSphere Commerce has introduced the servlet filter known as
the cache filter. This cache filter is designed to set up the request attributes from
the session information to be used by the DynaCache to construct the cache ID.
Since the session information is set by the WebSphere Commerce Server
runtime, the cache filter will not be able to set all of the request attributes until the
second request against the Web site.

168 Mastering DynaCache in WebSphere Commerce

Table 6-5 WebSphere Commerce-specific attributes

Since a user can be eligible for multiple contracts and can belong to multiple
member groups, the request attributes DC_cont and DC_mg might contain
multiple values. For such a user, the values are sorted and concatenated
together with a semicolon (;) as a separator.

In addition, multiple contract and member group request attributes are defined
(for example, DC_cont0, DC_cont1, ... DC_contN where N is the number of
contracts to which the user is entitled).

For example, if a user is eligible for contracts 10004 and 10005, then the
following request attributes are set up: DC_cont is 10004;10005, DC_cont0 is
10004, DC_cont1 is 10005.

The purpose of setting request attribute DC_cont is to allow construction of a
cache ID that has a limited number of components.

The purpose of setting individual request attributes DC_cont0, DC_cont1, ...,
DC_contN is to allow construction of dependency IDs for more granular cache
invalidations.

Since the member group information is not part of the session data, the cache
filter has to retrieve this information from the database based on the user ID. In
order to prevent performance degradation due to repeating database queries, the
cache filter uses WebSphere command caching to accomplish this task. A
command class called MemberGroupsCacheCmdImpl extends directly from the

Request attribute Description

DC_curr User's preferred currency

DC_lang User's preferred language

DC_porg User's parent organization

DC_cont User's current contract

DC_mg User's explicit member groups

DC_storeId Store identifier

DC_userId User's identifier

DC_portal WebSphere Portal's adapter identifier

DC_buyCont Buyer's eligible contracts (only valid for Supply Chain
business model)

DC_userType Type of logged on user (G/R/S)

 Chapter 6. Advanced topics 169

WebSphere command framework, and is used to cache the member groups to
which users belong, based on user IDs.

6.10.7 ConsumerDirect jspStoreDir issue

At the time of writing the jspStoreDir cachespec entry definition is a temporary
work around for an internal JSP caching problem that you may run into with
multiple hosted sites running ConsumerDirect.

For stand-alone sites, the problem will not occur.

170 Mastering DynaCache in WebSphere Commerce

Chapter 7. FAQs

This chapter answers some commonly asked questions about DynaCache. The
first set of questions are about general DynaCache topics. The second set deal
specifically with DynaCache and clustering.

7

© Copyright IBM Corp. 2006. All rights reserved. 171

7.1 DynaCache FAQs

Do I have to write any Java code to start caching objects?
No. DynaCache loads and processes the cachespec.xml file and starts caching
without the need for any developer code. Many objects in WebSphere Commerce
will automatically appear in the cache without any effort from the system builder.
Developers can use DynaCache APIs if they wish, but it is not necessary.

Do I have to restart the server if I change the cachespec.xml?
No. DynaCache continues to monitor the file and automatically implements
updates. It will work out what to do with the previous cache entries and remove
them if required.

Can I still cache parts of a page and avoid caching the personalized
bits so that I get at least some benefit from caching?

Yes. You can nominate an entire page for caching with exclusion instructions that
omit any parts you do not want (using the do-not-cache command). The parts
that are excluded are always executed by the application server and DynaCache
will assemble the response page from both the cached and executed parts. The
design of personalized fragments and the impact on caching is an important
consideration for the Web site designer.

What is the best way to serve static content in WebSphere
Commerce?

WebSphere Commerce serves static content directly through the Web server. An
alias is created in the httpd.conf file during the instance creation to point to the
stores directory in the following fashion:

Alias /wcsstore C:\WebSphere\AppServer\profiles\demo\installedApps\
WC_demo_cell\WC_demo.ear/Stores.war

All static content gets picked up directly on the Web server, and the application
server only handles dynamic requests. If the Web server resides on a separate
machine, the assets are copied over to the Web server.

What types of servlets and JSPs does DynaCache support most
effectively?

� Caching a simple presentation JSP file gives moderate performance gains.

� Caching a servlet that requests large amounts of information from EJBs or
databases reduces WebSphere Application Server and database loading and
the number of network interactions.

172 Mastering DynaCache in WebSphere Commerce

� Caching servlets that pull information from outside WebSphere Application
Server produce the biggest performance gains.

DynaCache caches the JSP and servlet output. Does this mean it
caches the HttpServletResponse object only?

Not quite. DynaCache caches the output of the servlet, that is, what is written to
the response.getWriter() method. Unless your cachespec.xml file expressly
prohibits this, DynaCache also caches “side effects” of the servlet’s execution,
like setting cookies and headers, including and forwarding to other servlets, and
setting content type and character encoding.

Is this an “in memory” cache, or an “on disk” cache? Does it use the
Java heap?

Both. DynaCache resides primarily on the Java heap. This keeps it in memory.
However, DynaCache also supports the use of virtual memory, which we call
Hash Table On Disk or HTOD.

The HTOD subsystem is used for overflow situations and to provide support for
very large caches. It is an optional capability. Cache entries will also be offloaded
to disk upon server shutdown and can be reused when the server is restarted.

Note that the effect of heap fragmentation and garbage collection is always a
consideration when caching memory objects.

Can I influence what goes into the memory cache and what will
overflow to disk?

Yes. Each cachespec entry has a priority value. DynaCache shunts lower
priority items to the disk cache if the memory cache becomes full.

DynaCache also uses a LRU (Least Recently Used) algorithm to assist in
selecting candidates to move. The priority is essentially the number of free
passes an entry can have to stay in the cache when the LRU algorithm is looking
for cache entries to evict. The bigger the number, the higher the priority to remain
in memory. Recent changes have been made to provide even greater control
over the memory and disk. Refer to the section “What is new in Version 6 of
DynaCache” on page 134.

Does the DynaCache need an external cache for caching?
No. DynaCache does not require an external cache to be present for caching. It
will, however, extend the abilities of such caches to include caching certain
servlet and JSP files.

 Chapter 7. FAQs 173

What are the security implications of using the DynaCache?
DynaCache does all the processing within the Web container after the security
processing completes. Within the application server, there are no extra security
problems to be considered.

However, when using an external cache, security risks change dramatically.
Caches outside of WebSphere Application Server do not undergo security
processing. It is important not to store sensitive data in an external cache.
Anyone with JNDI namespace access can look up a cache instance and examine
the contents of the cache.

What happens if cache data becomes stale?
You can use dependency IDs and invalidation rules that will automatically evict
stale cache entries. This book describes in detail how to go about planning,
configuring and implementing invalidation.

What about clusters? Does DynaCache work in a clustered
environment?

Yes. DynaCache provides Distributed Replication Support (DRS) for distributing
cached entries across a cluster.

Does each node in a cluster have its own disk cache? Can I use
network attached storage devices to share the disk cache for all
members in the cluster?

No. You cannot do this. DynaCache keeps a per node, “in memory” index of all
items that are located on the disk, which would break if you attempted to share
disk cache files across a cluster. The index would have to be shared across all
cluster members, but for now there is no support for such a concept.

I have a very large catalog that I am thinking of caching. I can’t fit it
all into memory so how much disk space will I need?

The approximate guide for computing your disk cache space is:

page size x number of entries = disk size

Would a SAN improve the performance for a disk cache?
Yes.

174 Mastering DynaCache in WebSphere Commerce

I have read that there is an option to allow the persisting of the
memory cache to disk on an application server shutdown. What
impact will saving the cache have on shutting down the server?

Significant. Several minutes are added to the shutdown of a server if this option
is used. DynaCache serializes Java objects to disk. Your cached objects must be
serializable. Test this out beforehand.

Should I always use timeouts on my cache entries for invalidation?
No. Use timeouts sparingly! The best practice for invalidating a cached item and
any dependent items is to invalidate only when you need to.

We have found many examples of using timeouts throughout the cachespec.
This often forces objects out of the cache that are still perfectly valid. The server
wastes considerable time recreating the same objects in the cache, completely
unnecessarily.

Use timeouts as a last resort, or if you know that your object will change within
every timeout period.

7.2 Clustering FAQs

I don't really see how having a separate replicator for each domain
can provide increased availability in the case where the other
replicator goes down, since each of application instances would
have a replicator defined and can't jump over to use the next
replicator.

The assignment of application servers to replicators is to be viewed only as an
initial startup mapping. If in the course of operations, one of the replicators in the
domain goes down or becomes unavailable, the server will fail over to one of the
remaining replicators in the domain.

If an application server goes down for thirty minutes, when it comes
back up, would it receive all the invalidation requests from DRS? Or
would it be out of sync with the rest of the application servers? If it
is the first, is the only way out to disable flush to disk on startup?

When it comes back up, if flush to disk is off, it will be bootstrapped. If push/pull,
it will only push metadata.

 Chapter 7. FAQs 175

What happens if a replicator goes down? Would the second
replicator pick up any invalidations that didn't get pushed by the first
one?

Yes. Invalidations will be picked up automatically because both replicators see all
invalidations.

Is there a recommended hardware guideline for DRS? One CPU per
replicator? The size of the JVM?

512 MB is a reasonable size for the JVM. Updates are buffered in memory so
memory is at more of a premium than the CPU.

What protocol does DRS use for communication in WebSphere
Application Server 5.1?

JMS

176 Mastering DynaCache in WebSphere Commerce

Part 2 DynaCache
implementation

In this part we provide a tutorial to help you set up DynaCache and perform
benchmarking.

The last chapter, “Case study: A DynaCache anti-pattern” is a real example,
provided by IBM Software Services, of how they used DynaCache to bring a Web
site back from premature extinction. On delivery from test the Web site turned out
to have completely unacceptable performance. With a tight schedule, and limited
access to the original developers (who had left the project), the service team
implemented a caching scheme and were able to achieve a just barely
acceptable level of performance, but sufficient to publish the Web site. With the
time this bought them, they were able to fix some of the underlying problems in
the design of the Web site, and then apply DynaCache more effectively with even
better results.

Part 2

© Copyright IBM Corp. 2006. All rights reserved. 177

178 Mastering DynaCache in WebSphere Commerce

Chapter 8. DynaCache tutorial

Part 1 of this book explained the theory and practice of DynaCache. This chapter
demonstrates how you can put that knowledge and skill into practice by giving
you a tutorial in doing several basic DynaCache tasks in WebSphere Commerce
V6.0 to improve performance.

This chapter shows how to do the following:

� Configure DynaCache
� Set up Cache Monitor
� Configure the cachespec.xml file
� Verify DynaCache setup

Upon completion of this tutorial, you should be able to:

� Implement full-page caching
� Separately cache page fragments, such as eSpots and mini-cart
� Implement cache command invalidation for mini-cart fragments
� Build cache-ids from different components
� Understand the additional requirements to use DynaCache in a production

environment

8

© Copyright IBM Corp. 2006. All rights reserved. 179

8.1 Environment setup

Before starting the tutorial, you must set up the environment correctly as
explained in this section.

8.1.1 Software stack

This tutorial is based on single-tier installation of WebSphere Commerce on
Microsoft Windows® Server 2003. If you are using a platform other than
Microsoft Windows, you need to substitute the platform-specific tasks in this
tutorial accordingly.

The WebSphere Commerce software versions we used were the following:

� IBM HTTP Server 6.0
� IBM WebSphere Application Server 6.0.2.5
� IBM WebSphere Commerce 6.0
� IBM DB2 Enterprise Server Edition 8.1 Fix Pack 10

8.1.2 WebSphere Commerce setup

After installing the identified software stack, create a WebSphere Commerce
instance as explained in Part 7 of the WebSphere Commerce installation guide.

This tutorial guides you through publishing and using the B2C ConsumerDirect
sample store included in WebSphere Commerce. The approaches illustrated in
this tutorial are general in nature and can be applied to any WebSphere
Commerce store.

The names shown in Table 8-1 are used in this tutorial.

Table 8-1 Tutorial setup configuration

Modify the WebSphere Commerce instance to handle “double
clicks”

When a user clicks on cacheable link A and then cacheable link B, DynaCache
creates two placeholder entries with different cache keys (one for A and one for

Setup variable Tutorial-specific name

Web server instance name webserver1

WC instance name demo

DB2 instance name DB2-0

180 Mastering DynaCache in WebSphere Commerce

B). By default, in WebSphere Commerce, if the user clicks on B before A can
return, then a feature called “DoubleClickHandler” will drop request B and
process only request A. The result is that both the DynaCache placeholders
wrongly end up being filled with the response to A.

The solution is to selectively disable DoubleClickHandler for certain commands
in the WebSphere Commerce instance_name.xml file. Make a backup copy
before the file is edited.

When switching between non-SSL and SSL requests, the parameters are
encrypted. Encryption must be suppressed so that the parameters in the
cachespec.xml file are used. To suppress the encryption, make the following
changes to the file:

1. Open the <wc_instance_name>.xml file (in our case demo.xml) in a text
editor.

2. Search for the following text:

</ProtectedParameters>

3. Add the following text immediately below it:

<NonEncryptedParameters>
<Parameter name="storeId" />
<Parameter name="langId" />
<Parameter name="catalogId" />
<Parameter name="productId" />

</NonEncryptedParameters>

The default instance creation enables an option named DoubleClickHandler.
This option is used to handle multiple requests for the same command from the
same user. This code does not work well with dynamic caching. It must be
selectively disabled on a command basis. For the purposes of this example it has
been disabled for the commands CategoryDisplay, ProductDisplay,
TopCategoryDisplay, and StoreCatalogDisplay, as shown in the next steps.

4. Add the following text below </NonEncryptedParameters>:

<DoubleClickMonitoredCommands>
<excludeCommands>

<command name="CategoryDisplay" />
<command name="ProductDisplay" />
<command name="TopCategoryDisplay" />
<command name="StoreCatalogDisplay" />

</excludeCommands>
</DoubleClickMonitoredCommands>

5. Save your changes and close the text editor.

 Chapter 8. DynaCache tutorial 181

8.1.3 Enable DynaCache service

Although the DynaCache service is enabled by default, it is important to make
sure that the service is enabled correctly.

Perform the following steps to enable DynaCache service:

1. Start WebSphere Commerce server.

a. Ensure that your database management system is started by selecting
Control Panel → Administrative Tools → Services → DB2 - DB2-0 →
Start.

b. Ensure that the Web server configured for WC is started by selecting
Control Panel → Administrative Tools → Services → IBM HTTP
Server for WebSphere Commerce (demo) → Start.

c. Start a WebSphere Commerce instance by selecting Control Panel →
Administrative Tools → Services → IBM WebSphere Application
Server V6 - WC_demo → Start.

2. Configure DynaCache using the WebSphere Administrative Console.

a. Expand Servers from the left navigation menu (Figure 8-1).

Figure 8-1 WAS Servers menu

b. Navigate to the DynaCache service screen (Figure 8-2) by selecting
Application servers → server1 → Container Settings → Container
Services → DynaCache Service.

c. Ensure that “Enable service at server startup” is checked.

d. Ensure that “Enable disk offload” is checked.

e. Optionally, you can specify the Disk Offload location on your file system.

f. Ensure that “Flush to disk” is checked.

g. After you have made any necessary changes, click Apply and then Save
all changes.

182 Mastering DynaCache in WebSphere Commerce

Figure 8-2 DynaCache service

h. Restart the WebSphere Commerce instance by selecting Control
Panel → Administrative Tools → Services → IBM WebSphere
Application Server V6 - WC_demo → Restart.

 Chapter 8. DynaCache tutorial 183

8.2 Installing the Cache Monitor

The DynaCache monitor is an installable Web application that displays simple
cache statistics, cache entries, and cache policy information. We use Cache
Monitor to verify the cachespec.xml configuration for the ConsumerDirect store in
this tutorial.

1. Use the WebSphere Application Server Administrative console to install
CacheMonitor.ear

a. Expand Applications from the left navigation menu (Figure 8-3).

Figure 8-3 Applications

b. Navigate to the Install New Application screen by selecting
Applications → Install New Application.

c. Click Browse and locate the CacheMonitor.ear under the
WAS_install_root/installableApps directory.

d. Click Next to accept the default settings (Figure 8-4).

184 Mastering DynaCache in WebSphere Commerce

Figure 8-4 CacheMonitor.ear

e. Click Next on the Preparing for the application installation screen. You will
receive a warning; click Continue.

f. On the Select installation options screen, accept the default values and
click Next.

g. On the Map modules to servers screen, select the application server to
monitor. Select both server names for the servers to monitor from the list
of available servers you can map to. Then, check the box beside the
DynaCache Monitor module, and click Apply. As part of the entry in the
server column of the table, you should now see both server names as
shown below in Figure 8-5.

 Chapter 8. DynaCache tutorial 185

Figure 8-5 Map modules to servers

h. On the Map virtual hosts for Web modules screen, select VH_demo as the
virtual host (Figure 8-6).

Figure 8-6 Map virtual hosts for Web modules

i. On the Map security roles to users/groups screen, accept the default
values and click Next.

j. On the Summary screen, accept the default values and click Finish.

k. Save the changes.

2. Regenerate the Web server plug-ins.

a. Using the WebSphere Administrative Console, navigate to Servers →
Web Servers.

b. Select webserver1 → Generate Plug-in (Figure 8-7).

186 Mastering DynaCache in WebSphere Commerce

Figure 8-7 Web servers

3. Restart the Web server and application server.

a. Stop WC_demo by selecting Control Panel → Administrative Tools →
Services → IBM WebSphere Application Server V6 - WC_demo →
Stop.

b. Stop IHS by selecting Control Panel → Administrative Tools →
Services → IBM HTTP Server for WebSphere Commerce (demo) →
Stop.

c. Start IHS by selecting Control Panel → Administrative Tools →
Services → IBM HTTP Server for WebSphere Commerce (demo) →
Start.

d. Start WC_demo by selecting Control Panel → Administrative Tools →
Services → IBM WebSphere Application Server V6 - WC_demo →
Start.

4. Verify that you can access the Cache Monitor by pointing your Web browser
to:

http://host_name/cachemonitor

You should now be able to see the Cache Monitor screen in your browser as
shown in Figure 8-8.

 Chapter 8. DynaCache tutorial 187

Figure 8-8 Cache Monitor

5. Reading cache statistics

Use the cache monitor’s main screen to watch cache hits versus misses. By
comparing these two values, determine how much DynaCache is helping
your application, and whether there are any additional steps you can take to
improve performance further and decrease the load on the Application
Server.

Cache Monitor displays the cache statistics described in Table 8-2.

Table 8-2 Cache statistics

Cache statistic Description

Cache Size The maximum number of entries that the cache can
hold.

Used Entries The number of cache entries used.

188 Mastering DynaCache in WebSphere Commerce

8.3 Caching ConsumerDirect store

The ConsumerDirect store included with WebSphere Commerce contains the
most commonly used shopping functions. Consumer Direct supports commerce
transactions involving products, services, or information between businesses
and consumers. A user, either registered or not, can shop at ConsumerDirect
and enjoy a variety of features provided by the store. It is available on all the
editions of WebSphere Commerce.

In this tutorial, you will use the default implementation of ConsumerDirect sample
store to cache the catalog-related pages.

8.3.1 Catalog subsystem URLs

Catalog subsystem URLs include all logic and data relevant to a catalog,
including categories, products and their attributes, items, and groupings of each,
and any associations or relationships among them.

Cache Hits The number of request responses that are served
from the cache.

Cache Misses The number of request responses that are cacheable
but cannot be served from the cache.

LRU Evictions The number of cache entries removed to make room
for new cache entries.

Explicit Removals The number of cache entries removed or invalidated
from the cache based on cache policies or were
deleted from the cache through the cache monitor.

Default priority Specifies the default priority for all cache entries.
Lower priority entries are moved from the cache
before higher priority entries when the cache is full.
You can specify the priority for individual cache
entries in the cache policy.

Servlet Caching Enabled If servlet caching is enabled, results from servlets
and Java Server Pages (JSP) files are cached.

Disk Offload Enabled Specifies if entries that are being removed from the
cache are saved to disk.

Cache statistic Description

 Chapter 8. DynaCache tutorial 189

A typical catalog page’s flow looks like this:

StoreCatalogDisplay → TopCategoriesDisplay → CategoryDisplay →
ProductDisplay

Table 8-3 shows what the URLs in this group can do.

Table 8-3 Catalog subsystem URLs

In order to cache these catalog URLs, we use the recommended strategy of
full-page caching. WebSphere Commerce v6 sample stores are based on Struts
main servlet name, which is different from WebSphere Commerce v5. The new
servlet name is ECActionServlet; the old Stores main servlet name was
RequestServlet.

Add a full page cache-entry for ConsumerDirect store into the cachespec.xml
file:

WAS_install_root\profiles\demo\installedApps\WC_demo_cell\WC_demo.ea
r\Stores.war\WEB-INF\cachespec.xml

The cache-entry structure is shown in Example 8-1.

Example 8-1 Full page cache-entry structure

<cache-entry>
 <class>servlet</class>
 <name>com.ibm.commerce.struts.ECActionServlet.class</name>
 <property name="consume-subfragments">true</property>
 <property name="save-attributes">false
 <exclude>jspStoreDir</exclude>
 </property>

 <!-- TopCategoriesDisplay?storeId=s&catalogId=s -->

 <!-- CategoryDisplay?storeId=s&catalogId=s&categoryId=s -->

URLs Description

StoreCatalogDisplay Display all the catalogs for a given store. However, in
the default ConsumerDirect store, this URL is not used
and is mapped to TopCategoriesDisplay.

TopCategoriesDisplay Display the root categories for a given catalog.

CategoryDisplay Display a category within a catalog.

ProductDisplay Display a catalog entry.

190 Mastering DynaCache in WebSphere Commerce

 <!-- ProductDisplay?storeId=s&productId=s -->

</cache-entry>

You are now ready to create cache-ids for each of the URLs created in
Example 8-1:

� TopCategoriesDisplay
� CategoryDisplay
� ProductDisplay

8.3.2 TopCategoriesDisplay

TopCategoriesDisplay displays the root categories for a catalog.
ConsumerDirect uses this URL as the home page for the store Web site. The
URL structure and parameter values are shown in Figure 8-9.

Figure 8-9 TopCategoriesDisplay

Table 8-4 explains the parameter values that are used by the
TopCategoriesDisplay URL.

Table 8-4 TopCategoriesDisplay parameter values

Parameter name Description

langId Sets or resets the preferred language for the duration of the
session. The supported languages for a store are found in the
STORELANG table.

storeId (Required) The reference number of the store associated with
the categories.

catalogId The reference number for the catalog that is associated with the
given store. The catalog contains root categories.

identifier The external identifier for the category.

 Chapter 8. DynaCache tutorial 191

By default ConsumerDirect uses the following parameters:

� StoreId
� CatalogId
� CategoryId (ConsumerDirect store specific parameter)

Based on this information, add the cache-id for TopCategoriesDisplay shown in
Example 8-2.

Example 8-2 TopCategoriesDisplay cache-id

<cache-id>

 <component id="" type="pathinfo">
 <required>true</required>
 <value>/TopCategoriesDisplay</value>
 </component>

 <component id="storeId" type="parameter">
 <required>true</required>
 </component>

 <component id="catalogId" type="parameter">
 <required>true</required>
 </component>

 <component id="categoryId" type="parameter">
 <required>false</required>
 </component>

</cache-id>

Now check that cachespec.xml is loaded correctly by verifying the
TopCategoriesDisplay cache policy in Cache Monitor.

1. Check that cachespec.xml is reloaded.

a. Point your Web browser to the Cache Monitor:

http://host_name/cachemonitor

memberId The reference number of the member who owns the category.
The memberId along with the identifier uniquely identify the
category. If a memberId is omitted, then the owner of the current
store along with the identifier are used to uniquely identify the
category.

Parameter name Description

192 Mastering DynaCache in WebSphere Commerce

b. Navigate to Cache Policies → /webapp/wcs/stores/
com.ibm.commerce.struts.ECActionServlet.class.

c. You will see the TopCategoriesDisplay cache policy that you defined. It
should look like Figure 8-10.

Figure 8-10 TopCategoriesDisplay cache policy

2. Verify that TopCategoriesDisplay URL is being cached.

a. Clear any existing cache and reset statistics using Cache Monitor by
selecting Cache Monitor → Cache Statistics → Clear Cache → Reset
Statistics.

b. The cache statistics are reset as shown in Figure 8-11.

Figure 8-11 Cache Statistics

c. Open a new Web browser and point to the ConsumerDirect home page:

http://host_name/webapp/wcs/stores/servlet/TopCategoriesDisplay?l
angId=-1&storeId=10001&catalogId=10001

The home page is shown in Figure 8-12.

 Chapter 8. DynaCache tutorial 193

Figure 8-12 ConsumerDirect Home page

d. Refresh the Cache Monitor to view updated statistics. You will see some
Cache Misses because the cache was cleared. This is shown in
Figure 8-13.

194 Mastering DynaCache in WebSphere Commerce

Figure 8-13 Cache Statistics after TopCategoriesDisplay call

3. Find the fragments that we do not want to consume with the full page.

a. Navigate to this cached page using Cache Monitor and selecting Cache
Contents → .../ECActionServlet.class Template →
...:pathinfo=/TopCategoriesDisplay Cache ID.

b. To find the included JSPs that are consumed with this full page cache,
look for the "CONSUMED include" term.

i. You will find the first entry for TopCategoriesDisplay.jsp. This is the
parent JSP and we want it to be consumed - this is the correct
behavior.

ii. CachedHeaderDisplay.jsp is the second JSP that is consumed.

CachedHeaderDisplay.jsp is a dynamic fragment that causes the home
page content to change when a user logs in. However, it is cached with
the TopCategoriesDisplay page. The result is that the home page
content does not change when the TopCategoriesDisplay page is
displayed again. When another user logs in and displays the
TopCategoriesDisplay page, the CachedHeaderDisplay is loaded from
the cache and displays the previous user’s details.

To correct this you need to stop CachedHeaderDisplay.jsp from being
consumed by TopCategoriesDisplay. Create a new cache-entry in your
cachespec.xml file as shown in Example 8-3.

 Chapter 8. DynaCache tutorial 195

Example 8-3 CachedHeaderDisplay.jsp cache-entry

<cache-entry>

 <class>servlet</class>

<name>/ConsumerDirect/include/styles/style1/CachedHeaderDisplay.jsp</name>

<name>/ConsumerDirect/include/styles/style2/CachedHeaderDisplay.jsp</name>
 <property name="do-not-consume">true</property>
 <property name="save-attributes">false</property>

 <cache-id>

 <component id="storeId" type="parameter">
 <required>true</required>
 </component>

 <component id="catalogId" type="parameter">
 <required>true</required>
 </component>

 <component id="DC_userType" type="attribute">
 <required>false</required>
 <not-value>-1002</not-value>
 </component>

 <component id="DC_lang" type="attribute">
 <required>true</required>
 </component>

 </cache-id>

</cache-entry>

iii. Continue to search for more consumed fragments in Cache Monitor.

The next entry is MiniShopCartDisplay.jsp.

MiniShopCartDisplay.jsp displays the number of items in the user cart
and the subtotal. We handle the caching of this JSP fragment
differently from the rest of the page. Use command-based invalidation
to re-cache the MiniShopCartDisplay.jsp every time the user makes a
change to their shopping cart.

Add the snippet shown in Example 8-4 to the cachespec.xml file.

196 Mastering DynaCache in WebSphere Commerce

Example 8-4 /MiniShopCartDisplay.jsp

<cache-entry>
 <class>servlet</class>
 <name>/ConsumerDirect/include/MiniShopCartDisplay.jsp</name>
 <property name="do-not-consume">true</property>
 <property name="save-attributes">false</property>
 <cache-id>
 <component id="DC_storeId" type="attribute">
 <required>true</required>
 </component>
 <component id="DC_userId" type="attribute">
 <required>false</required>
 <not-value>-1002</not-value>
 </component>
 <component id="DC_lang" type="attribute">
 <required>true</required>
 </component>
 <component id="DC_curr" type="attribute">
 <required>true</required>
 </component>
 <priority>1</priority>
 <timeout>3600</timeout>
 <inactivity>600</inactivity>
 </cache-id>
 <dependency-id>DC_storeId
 <component id="DC_storeId" type="attribute">
 <required>true</required>
 </component>
 </dependency-id>
 <dependency-id>DC_userId
 <component id="DC_userId" type="attribute">
 <required>true</required>
 </component>
 </dependency-id>
 <dependency-id>MiniCart</dependency-id>
 <dependency-id>MiniCart:DC_storeId
 <component id="DC_storeId" type="attribute">
 <required>true</required>
 </component>
 </dependency-id>
 <dependency-id>MiniCart:DC_userId
 <component id="DC_userId" type="attribute">
 <required>true</required>
 </component>
 </dependency-id>
 <dependency-id>MiniCart:DC_storeId:DC_userId
 <component id="DC_storeId" type="attribute">
 <required>true</required>

 Chapter 8. DynaCache tutorial 197

 </component>
 <component id="DC_userId" type="attribute">
 <required>true</required>
 </component>
 </dependency-id>
</cache-entry>

<cache-entry>
 <class>command</class>
 <sharing-policy>not-shared</sharing-policy>
 <name>com.ibm.commerce.order.commands.OrderCalculateCmdImpl</name>

<name>com.ibm.commerce.order.commands.PromotionEngineOrderCalculateCmdImpl</nam
e>
 <name>com.ibm.commerce.orderitems.commands.OrderItemMoveCmdImpl</name>

<name>com.ibm.commerce.usermanagement.commands.UserRegistrationAddCmdImpl</name
>

<name>com.ibm.commerce.usermanagement.commands.UserRegistrationUpdateCmdImpl</n
ame>
 <!-- Used by the advanced order -->
 <name>com.ibm.commerce.order.commands.OrderProcessCOCmdImpl</name>
 <name>com.ibm.commerce.orderitems.commands.OrderItemAddCOCmdImpl</name>
 <name>com.ibm.commerce.orderitems.commands.OrderItemDeleteCOCmdImpl</name>
 <name>com.ibm.commerce.orderitems.commands.OrderItemUpdateCOCmdImpl</name>
 <name>com.ibm.commerce.order.commands.OrderCancelCOCmdImpl</name>
 <!-- Used by the classic order -->
 <name>com.ibm.commerce.order.commands.OrderProcessCmdImpl</name>
 <name>com.ibm.commerce.orderitems.commands.OrderItemAddCmdImpl</name>
 <name>com.ibm.commerce.orderitems.commands.OrderItemDeleteCmdImpl</name>
 <name>com.ibm.commerce.orderitems.commands.OrderItemUpdateCmdImpl</name>
 <name>com.ibm.commerce.order.commands.OrderCancelCmdImpl</name>

 <invalidation>MiniCart:DC_storeId:DC_userId
 <component type="method" id="getCommandContext">
 <method>getStoreId</method>
 <required>true</required>
 </component>
 <component type="method" id="getCommandContext">
 <method>getUserId</method>
 <required>true</required>
 </component>
 </invalidation>
</cache-entry>

iv. Continue to search for more consumed fragments in Cache Monitor.

The next fragment is CachedSidebarDisplay.jsp.

198 Mastering DynaCache in WebSphere Commerce

This stays constant and is best left being consumed with the page for
better performance.

v. The next fragments in the Cache Monitor are ContentContainerTop.jsp
and ContentSpotDisplay.jsp.

These can be added to cachespec.xml by navigating to WebSphere
Commerce Accelerator by selecting ConsumerDirect → Store →
Content → Home spot - Top and/or Bottom.

If the home spots are updated frequently, it is better to cache this
fragment separately by adding an entry as shown in Example 8-5.

Example 8-5 ContentContainerTop.jsp

<cache-entry>
 <class>servlet</class>
 <name>/ConsumerDirect/Snippets/Marketing/Content/ContentSpotDisplay.jsp</name>
 <property name="do-not-consume">true</property>
 <property name="save-attributes">false</property>
 <cache-id>
 <component id="emsName" type="parameter">
 <required>true</required>
 </component>
 <component id="DC_storeId" type="attribute">
 <required>true</required>
 </component>
 <component id="DC_lang" type="attribute">
 <required>true</required>
 </component>
 <inactivity>600</inactivity>
 </cache-id>
</cache-entry>

vi. Continue to search for more consumed fragments in Cache Monitor.

The next entry is for StoreCatalogProductESpot.jsp. This alternates the
eSpots on the main page. In order to avoid consuming these with
TopCategoriesDisplay, so that the eSpots change, add the cache-entry
shown in Example 8-6 to cachespec.xml file.

Example 8-6 StoreCatalogProductESpot.jsp

<cache-entry>
 <class>servlet</class>
 <name>/ConsumerDirect/include/StoreCatalogProductESpot.jsp</name>
 <property name="do-not-cache">true</property>
 <cache-id>
 </cache-id>
</cache-entry>

 Chapter 8. DynaCache tutorial 199

vii. The last fragment is CachedFooterDisplay.jsp. If the footer is session
dependant then follow Example 8-7 and cache
CachedFooterDisplay.jsp separately.

Example 8-7 CachedFooterDisplay.jsp

<cache-entry>
 <class>servlet</class>
 <name>/ConsumerDirect/include/styles/style1/CachedFooterDisplay.jsp</name>
 <name>/ConsumerDirect/include/styles/style2/CachedFooterDisplay.jsp</name>
 <property name="do-not-consume">true</property>
 <property name="save-attributes">false</property>
 <cache-id>
 <component id="storeId" type="parameter">
 <required>true</required>
 </component>
 <component id="DC_userType" type="attribute">
 <required>false</required>
 <not-value>-1002</not-value>
 </component>
 <component id="DC_lang" type="attribute">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>

4. Verify that the fragments are now cached separately.

a. Select the Cache Policies page in Cache Monitor and verify all the
modified fragments are listed in the cache policies.

b. Clear the cache using Cache Monitor’s main page.

c. Resubmit the request for TopCategoriesDisplay home page.

d. Navigate to the Cache Contents page in Cache Monitor. Verify the
fragments you modified are now cached separately and not consumed
any longer.

You will see the following templates cached with their Cache IDs:

/webapp/wcs/stores/ConsumerDirect/include/MiniShopCartDisplay.jsp
/webapp/wcs/stores/ConsumerDirect/include/styles/style1/CachedFoo
terDisplay.jsp
/webapp/wcs/stores/ConsumerDirect/include/styles/style1/CachedHea
derDisplay.jsp
/webapp/wcs/stores/com.ibm.commerce.struts.ECActionServlet.class

200 Mastering DynaCache in WebSphere Commerce

8.3.3 CategoryDisplay

The CategoryDisplay URL displays a category within a catalog. Figure 8-14
shows the URL structure and parameter values.

Figure 8-14 CategoryDisplay structure

Table 8-5 describes the parameter values that are used by CategoryDisplay.

Table 8-5 CategoryDisplay parameter values

Parameter names Description

langId Sets or resets the preferred language for the duration of
the session. The supported languages for a store are
found in the STORELANG table.

storeId The store's reference number associated with the
category being displayed.

catalogId (Required) The reference number of the catalog in which
the category exists. You must specify either catalogId or
catalogIdentifier.

catalogIdentifier (Required) The external identifier for the catalog. You must
specify either catalogIdentifier or catalogId.

catalogMemberId The reference number of the member who owns the
catalog.

categoryId The unique reference number of the category to be
displayed.

identifier The external identifier for the category.

 Chapter 8. DynaCache tutorial 201

By default ConsumerDirect uses the following parameters:

� StoreId
� CatalogId
� CategoryId
� PageView (ConsumerDirect store-specific parameter)
� CurrentPage (ConsumerDirect store-specific parameter)

Based on information from Table 8-5 on page 201, Example 8-8 shows how to
add the cache-id for CategoryDisplay:

Example 8-8 CategoryDisplay cache-id

<cache-id>

 <component id="" type="pathinfo">
 <required>true</required>
 <value>/CategoryDisplay</value>
 </component>

 <component id="storeId" type="parameter">
 <required>true</required>
 </component>

 <component id="catalogId" type="parameter">
 <required>true</required>
 </component>

 <component id="categoryId" type="parameter">
 <required>true</required>
 </component>

 <component id="pageView" type="parameter">
 <required>false</required>
 </component>

 <component id="currentPage" type="parameter">
 <required>false</required>
 </component>

</cache-id>

memberId The reference number of the member who owns the
category. The memberId along with the identifier uniquely
identify the category. If a memberId is omitted, then the
owner of the current store along with the identifier are used
to uniquely identify the category.

Parameter names Description

202 Mastering DynaCache in WebSphere Commerce

Perform the following steps to verify that the cachespec.xml file is loaded
correctly by verifying the cache policy in Cache Monitor.

1. Verify cachespec.xml is reloaded.

a. Point your Web browser to the Cache Monitor:

http://host_name/cachemonitor

b. Navigate to Cache Policies → /webapp/wcs/stores/
com.ibm.commerce.struts.ECActionServlet.class

c. Figure 8-15 shows the CategoryDisplay cache policy that you defined in
Example 8-8.

Figure 8-15 CategoryDisplay Cache Policy

2. Verify that the CategoryDisplay URL is being cached.

a. Navigate in the ConsumerDirect store to any of the CategoryDisplay
pages as shown in Figure 8-16. For example, select Home Page →
FURNITURE.

 Chapter 8. DynaCache tutorial 203

Figure 8-16 CategoryDisplay

3. Using Cache Monitor, navigate to Cache Contents →
.../ECActionServlet.class Template → ...:pathinfo=/CategoryDisplay Cache
ID

b. Notice that all the fragments that must be separately cached are the same
as TopCategoriesDisplay, so they are already cached separately. The rest
of the contents of the CategoryDisplay page is consumed with the full
page caching of CategoriesDisplay.

8.3.4 ProductDisplay

The ProductDisplay URL displays a catalog entry, which consists either of a
single item or of all the items contained within a product, package, or bundle.
Figure 8-17 shows the URL structure and parameter values.

204 Mastering DynaCache in WebSphere Commerce

Figure 8-17 ProductDisplay URL structure

Table 8-6 describes the parameter values that are used by the ProductDisplay
URL.

Table 8-6 ProductDisplay parameter values

By default ConsumerDirect uses the following parameters:

� StoreId
� ProductId
� SummaryOnly (ConsumerDirect store-specific parameter)

Parameter names Description

langId Sets or resets the preferred language for the duration of the
session. The supported languages for a store are found in
the STORELANG table.

storeId The store's reference number associated with the catalog
entry to be displayed.

productId (Required) The reference number for the catalog entry (item,
product, package, or bundle) that is to be displayed. You
must specify either productId or partNumber.

partNumber (Required) The store's unique identifier (or code) for the
catalog entry that is to be displayed. You must specify either
partNumber or productId.

memberId The reference number of the member who owns the catalog
entry. The memberId, along with the partNumber, uniquely
identifies the catalog entry. If the memberId is omitted, then
the owner of the current store and the partNumber are used
to uniquely identify the catalog entry.

 Chapter 8. DynaCache tutorial 205

Based on Table 8-6, Example 8-9 shows how to add the cache-id for
CategoryDisplay.

Example 8-9 ProductDisplay cache-id

<cache-id>

 <component id="" type="pathinfo">
 <required>true</required>
 <value>/ProductDisplay</value>
 </component>

 <component id="storeId" type="parameter">
 <required>true</required>
 </component>

 <component id="productId" type="parameter">
 <required>true</required>
 </component>

 <component id="summaryOnly" type="parameter">
 <required>false</required>
 </component>

</cache-id>

Perform the following steps to verify that the cachespec.xml file is loaded
correctly by verifying the cache policy in Cache Monitor.

1. Verify cachespec.xml is reloaded.

a. Point your Web browser to the Cache Monitor:

http://host_name/cachemonitor

b. Navigate to Cache Policies → /webapp/wcs/stores/
com.ibm.commerce.struts.ECActionServlet.class

Figure 8-18 shows the ProductDisplay cache policy that you defined in
Example 8-9.

206 Mastering DynaCache in WebSphere Commerce

Figure 8-18 ProductDisplay Cache Policy

2. Verify the CategoryDisplay URL is being cached.

a. Navigate in the ConsumerDirect store to any of the ProductDisplay pages.
For example, Figure 8-19 shows the results of selecting Home Page →
FURNITURE → Lounge Chairs.

 Chapter 8. DynaCache tutorial 207

Figure 8-19 ProductDisplay

b. Using Cache Monitor, navigate to Cache Contents →
.../ECActionServlet.class Template → ...:pathinfo=/ProductDisplay Cache
ID

Notice that all the fragments that must be separately cached are indeed
already not consumed. The rest of the contents of the ProductDisplay
page is consumed with the full page cache.

208 Mastering DynaCache in WebSphere Commerce

Chapter 9. Benchmarking DynaCache

In this chapter, we discuss benchmarking DynaCache. Any Web application has
its target uses and users. Web application performance (how fast a page is
returned) and capability (how many concurrent users the system can support)
are key issues in ensuring the users are left satisfied with the service and the
Web-based business can attain the desired profits. Unlike Web application
functionality, however, performance and capability are concepts that are
inherently vague and relative. The purpose of a benchmark, then, is to make their
discussion more concrete and to provide a point of reference for their
measurement.

This chapter contains the following:

1. A brief discussion of the general benchmarking methodology and key
considerations for benchmarking Web applications and WebSphere
Commerce with DynaCache specifically

2. A discussion of the benchmark-creation testing process

3. A discussion of the design, execution, and results of a sample
benchmark-creation test for a WebSphere Commerce system with
DynaCache

9

© Copyright IBM Corp. 2006. All rights reserved. 209

9.1 Overview

A benchmark is a set of performance test results used for comparison purposes.
A good and reliable benchmark serves as a reference point for improvement or
degradation measurement when a Web application undergoes any changes.

9.1.1 Benchmarking benefits

Benchmarking plays an important role in evaluating a Web application. It
provides valuable information, explicitly or implicitly, for a Web-based business
both before and throughout its operation.

� A benchmark provides a quantitative expression of business requirements.

Before building a Web application, any business organization will have certain
types of requirements, such as the cost and profit associated with building
and maintaining the application, acceptable time for a page to be returned to
the user, the number of users the system can handle concurrently, and so on.
These requirements are both relative and interdependent. A benchmark can
provide a clear cross-product view of the requirements by means of numbers,
tables, and figures.

� A benchmark reliably predicts the performance of a production system under
stress and after long-term operation.

A typical Web application can be accessed by end-users without limits on
location, time, or duration. As a result, it is bound to experience periods of
peak demand and operate under stress. A typical Web application may also
go several years without major upgrades. How will the system behave under
stress, and what would be the best possible time for a system upgrade?
Measuring the difference in resource usage between the current state of the
system and the benchmark can help answer these questions.

� A benchmark may help identify performance issues.

Any Web application will undergo some changes, such as patches, layout
modifications, or functional enhancements in its lifetime. All such changes are
possible candidates for performance degradation. Before finalizing a change
to the production site, it is highly beneficial to run a suite of tests to identify
potential performance issues. A benchmark can serve as an excellent
reference point for those tests.

9.1.2 Benchmarking considerations

Although a benchmark, as a reference point, is merely a set of test results, it can
reflect many aspects of the Web application, such as cost, profit, user

210 Mastering DynaCache in WebSphere Commerce

satisfaction, and so forth. Furthermore, it can be used for both current evaluation
and for prediction.

To define and to obtain a benchmark, we need to carefully investigate what our
target criteria are. Then, by investigating the workload characteristics of the Web
site, and comparing the test configuration with the production environment, we
can understand how the test results will reflect the behavior of a real production
site.

Target criteria
The target criteria are the business scenarios that are given to the benchmarking
team for planning benchmarking tests. Here are three typical types of target
criteria.

� Mapping business requirements to the benchmark

The benchmark should reflect the business requirements and provide enough
information to ascertain that the Web application can be used to fulfill the
business requirements. The benchmark should be selected based on the type
of Web application under consideration: an online store may worry most
about the number of orders the application can handle, while an online
download site may worry most about the download speed.

� Predicting workload for special events

Every year, e-Commerce sites see seasonal peaks of shopping activity,
Christmas gift sales or back-to-school supply sales being familiar examples.
What the possible workload will be during such special events and how the
system can handle it need to be considered early.

� Estimating long-term system status

A Web application can be expected to operate for several years. We would
like have a rough idea about how many new users will be registered, how
many new products will be added, how many orders will be placed, and so on,
over the course of its operation. This kind of information should be considered
during benchmarking setup.

Workload characteristics
It goes without saying that a benchmark test is only as good as its input. It is very
difficult to predict Web site traffic and weight the importance of different kinds of
traffic. It is a good idea to break down the workload into different categories so
that the results can be analyzed.

� Choose a good mix of test cases

Good test cases reflect the typical workload of a site. Selecting the most
frequent and the most important user activities is key. Because the
benchmark will be used as a reference point and is unlikely to be recreated,

 Chapter 9. Benchmarking DynaCache 211

we need to make sure that it is comparable with other performance-type tests
and contains enough information for comparison purposes.

� Account for error conditions

Benchmarking setup should also include considerations for error conditions,
such as a wrong password or wrong credit card information supplied by the
user since a typical system behaves differently upon encountering these. Your
own experience should convince you that handling invalid passwords and
credit card information is nearly as common as entering the correct
information first time.

� Test for system failures

We must always have a plan for partial or total system failure. How long does
the system need to resume normal operation? What kind of information will
be lost when the system fails? If, as a preventative measure, we were to
perform periodic system backups, how long will they take and will they fit into
the desired maintenance window?

Test environment versus production environment
After a Web site goes live, using it as a test environment is very dangerous.
Therefore, common practice is to keep a separate test environment. The best
possible scenario is when the test environment and production environment are
identical. However, due to cost and maintenance considerations, that is rarely the
case; the test environment is usually both smaller and simpler.

In most cases, we use the test environment both to create benchmarks and to
run any further tests. We then map the results onto the production environment.
The following information about both test and production environments is useful
for establishing this mapping:

� Resources versus capacity

CPU, memory, and hard drive characteristics are key for the capacity of a
system. Doubling CPU or memory, however, does not yield twice the capacity.
To get an accurate mapping, we must carefully monitor the test environment
resource usage during test runs. Generally speaking, if you decide to make
the test environment, say, a fifth the size of the production environment, then
the components should be scaled to a fifth the size too. Memory may need to
be the same as in the production environment. For example, a test database
server would need to have the same memory as production because you will
be testing with a full size database. The same applies to application servers
and the JVM size.

� Capacity, workload, and response time

The number of concurrent users and the response time are two inseparable
measurements. Higher capacity can handle more concurrent users. More

212 Mastering DynaCache in WebSphere Commerce

concurrent users mean longer response times. Different Web applications will
have different relationships between capacity, workload, and response time.
We should consider this relationship when mapping the benchmarking results
from the test environment to the production environment.

9.1.3 Benchmarking DynaCache

Since this book focuses on the use of DynaCache with WebSphere Commerce
v.6.0, we next mention several points specific to benchmarking DynaCache.

Obtaining the baseline results and measuring improvements
The test of system performance without using DynaCache yields the baseline
results. Getting the results with DynaCache may require several
parameter-tuning runs. Together, these two sets of results are used for direct
comparison between system performance without and with DynaCache. We
typically will also want to run additional tests on the system with DynaCache to
investigate system scalability, saturation point, and so forth. All of these results
belong in the benchmark.

Identifying possible impacts of DynaCache
In general, DynaCache will improve system performance, but it might also have
side effects:

� JVM heap and fragmentation

DynaCache uses JVM heap to store cached objects. A large number of
cached objects occupy a large portion of the JVM heap and contribute to
heap fragmentation. During benchmark-creation tests, we need to monitor the
JVM usage in relation to the number of DynaCache entries, adjusting the
number of entries as necessary.

� DynaCache overhead

Cached object search and invalidation use resources. If the cache hit ratio is
too low or the cache refresh rate is too high, the resulting overhead might be
significant. It is important to keep the hit ratio high by adjusting the number of
DynaCache entries as well as the number of cacheable objects.

� Time required to stop the WebSphere Commerce server with the “Flush to
disk” option enabled

DynaCache contents can be flushed to a file on a disk when the WebSphere
Commerce server is shut down. If the cache size is big, the shutdown may
take a long time. On the other hand, if we disable the “Flush to disk” option,
the cached objects will be lost and will need to be regenerated and cached
after the WebSphere Commerce server is restarted. Several experiments
may be necessary to establish the optimal strategy for your site.

 Chapter 9. Benchmarking DynaCache 213

Tuning DynaCache parameters
Several DynaCache basic parameters are outlined in this section. Despite being
relatively simple, they have a significant effect on DynaCache performance and,
therefore, need to be considered as part of the benchmark-creation testing
activities.

� Number of cache entries

Increasing the number of cache entries can optimize performance by
increasing the hit ratio and reducing the movement of cached objects. There
is no universal rule for defining this number, but the number of cacheable
pages in the site, the JVM heap size, typical user activities, and the average
cacheable object size are all among the aspects to consider.

� Invalidation policy

Because, after a while, it becomes impossible to keep all the cached objects
in memory, an invalidation policy must be defined. The choice of invalidation
policy has significant effect on DynaCache performance and has to be
considered carefully. Refer to Chapter 3, “DynaCache invalidation” on
page 91 for details.

� Disk offload and the size of offload files

With the “Enable disk offload” option turned on, if there is no space for a new
object, an existing cached object is pushed to disk according to the offload
policy in effect. Depending on the policy and the number of cached objects,
the size of the offload files may become very large, negatively impacting the
overall system performance. Consequently, we should investigate the utility of
enabling disk offload as part of our benchmark-creation testing activities.

9.2 Benchmark creation process

How do we a create a benchmark? Test environment, test results, and test result
analysis are the key components of the benchmark-creation process, and we
consider them next.

9.2.1 Setting up benchmark-creation tests

To generate a benchmark we need to set up a test environment, select a tool to
be used to simulate Web application users, and develop the test scenarios.

Environment
The test environment for benchmarking should be as similar to the production
environment as possible. At a minimum, it should contain all the major production

214 Mastering DynaCache in WebSphere Commerce

environment components with similar layout. Usually, the test environment is a
scaled-down version of the production site.

Tools
A number of load-testing tools can be used for Web application testing. Several
considerations go into selecting a load-testing tool; for instance:

� Can the tool provide all the functionality necessary for testing?

� What are the tool’s hardware requirements, particularly for generating large
volumes of workload or simulating a large number of concurrent users?

� Does the test report produced by the tool contain enough detail, and is the
format convenient?

� How easily can the testing scripts be created or modified?

Test scenarios for benchmark-creation testing
The scenarios for benchmark-creation testing should cover the most common
and typical user behavior. The workload characteristics should be similar to
those in the actual site usage. For e-Commerce applications, some of the
characteristics to be considered are as follows:

� Buy versus browse ratio
� Average size of shopping cart
� Guest versus registered user ratio

If the production site already exists you should use the web-logs to define the
workload characteristics.

Benchmark-creation tests are not the same as system tests or performance
tests.

� Benchmark-creation tests build up a set of reference points and are not
intended for finding defects or solving performance issues. However, they can
be combined with other types of tests.

� Functional coverage of benchmark-creation tests is typically much smaller
than that of system or performance tests, including only the most prominent
elements of a site’s daily workload.

� Because of their limited coverage, benchmark-creation tests rarely include
special-purpose features, such as discounts, promotions, or marketing
experimentation: some features may not be always active in the site, others
do not have a significant impact on the performance. If necessary, we can
create separate benchmarks for such features.

 Chapter 9. Benchmarking DynaCache 215

9.2.2 Executing tests and recording results

We must have a clear idea of the metrics and conditions for the
benchmark-creation tests and know what kind of information to record for future
reference. Rerunning a test might be very expensive – and sometimes
impossible (for instance, due to lack of unique data generated at runtime).

Performance metrics
Performance measurements come in two flavors:

� Activity metrics

Activity metrics reflect the system’s reaction to workload and can be used to
measure business requirement fulfillment and customer satisfaction.
Examples of such metrics include:

– Number of Web site hits
– Page response times
– Number of orders placed
– Volume of data transferred

� Resource metrics

Resource metrics reflect system capacity and are important for predicting
system behavior under stress or after long-term operation. Examples of such
metrics include:

– CPU usage
– RAM usage
– JVM heap usage
– Hard disk usage

Execution conditions
By execution conditions we mean understanding and controlling the execution of
benchmarking tests so that we know the initial conditions of the test and can
repeat the tests. Here are two sets of best practices to help you manage test
execution.

Test repeatability
� To ensure that a test can be repeated, we should back up the environment

prior to the test run. Database and configuration are the two most important
parts of the environment.

� We should run comparison-type tests (for example, WebSphere Commerce
with and without DynaCache) in the same environment.

216 Mastering DynaCache in WebSphere Commerce

Constancy of workload
� We should keep the number of concurrent users constant across

comparison-type tests to ensure the workload remains the same.

� Think time between two hits has a significant impact on workload: longer think
time means lower workload and vice versa. To ensure the workload remains
the same, we should keep think time constant across comparison-type tests
as well.

� Whether DynaCache has been preloaded, JSP pages precompiled, and the
database warmed up also impact the actual workload on the system. In
benchmark-creation tests with DynaCache, we should make sure DynaCache
is fully loaded and stabilized, JSP pages precompiled, and the database
warmed up. Typically, allow half an hour warm up and a one hour run.

� Make two or three runs to confirm the consistency of the results.

Information to be recorded
The baseline result forms the basis of a benchmark. Usually, we also run
additional tests, characterized by changes to workload, configuration, features, or
hardware. These additional tests are all part of the benchmark. For example:

� The size of workload can be used to find the saturation point and study how
the system behaves under stress. The type of workload can reflect the
business model, such as B2B versus B2C.

� We should test any newly-introduced as well as any special-purpose features
if we expect them to impact performance or if their impacts are unknown.

� The optimal values of DynaCache parameters depend on a number of
aspects, including workload size and type, hardware, and software. Changes
to configuration usually require a lot of experimentation. We should keep
thorough records of all the changes introduced in each test run in order to get
the best tuning.

� Running tests with different hardware configurations (for example, a different
number of CPUs or amount of memory) provides important insight into
system scalability.

� System performance is bound to change after long-term operation, due, in no
small part, to changes to the database and logs. Running a test with a larger
database and logs will give us an idea of system performance after extended
periods of operation.

9.2.3 Interpreting and analyzing the test results

The test results that we obtain may not give us the desired information directly.
Therefore, interpreting and analyzing them is a necessary and important part of

 Chapter 9. Benchmarking DynaCache 217

the benchmark-creation work. This phase is also crucial for making corrections to
the initial assumptions, setup, and so forth, should the results prove contrary to
our expectations. It is very important to review the application logs to make sure
there are no unexpected errors. If the test involves a database, you should also
review the database for deadlocks and any other database issues.

9.3 Benchmarking example

There are no unique rules for creating a benchmark. In the preceding sections,
we have discussed some general benchmarking process considerations. In this
section, we use a WebSphere Commerce version 6.0 system with DynaCache to
illustrate the process. In addition, our results demonstrate clear performance
benefits that DynaCache brings.

9.3.1 Test environment

Our choice of test environment, like yours, was constrained by the hardware that
was available to us. We would have liked to run the tests on P5 servers using a
SAN, and stored the database on disks with non-volatile cache.

The hardware we used is, however, a typical component of many small to
medium sized Web sites today. The results show for the non-cached benchmark
we were limited by the speed of the processors and not the disks; however, when
caching is used processing power is no longer the gating factor, and more
performance analysis is required to see how we can keep response times
constant for an increasing numbers of users.

Topology
Most WebSphere Commerce customers use a multi-tier cluster environment.
The environment is easy to maintain and easy to scale by adding more
WebSphere Commerce server machines as the business expands. In our
benchmarking example, we used a 3-tier environment with two clustered servers,
as Figure 9-1 on page 219 illustrates.

218 Mastering DynaCache in WebSphere Commerce

Figure 9-1 Topology of the benchmarking environment

Stack configuration
As Table 9-1 shows, we are using AIX® machines at each node of our test
environment. The software stack follows the requirements outlined in the
WebSphere Commerce version 6.0 installation guide available at:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibi
n/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104259

Table 9-1 Stack configuration

Node Hardware Software

Database p630
CPU: 4x1.45GHz Power 4
Mem: 16 GB

AIX5.3 ML01
DB2 8.2.3

Commerce(1) p630
CPU: 4x1.45GHz Power 4
Mem: 16 GB

AIX5.3 ML01
DB2 8.2.3 Client
WAS 6.0.2.5

Commerce(2) p630
CPU: 4x1.45GHz Power 4
Mem: 16 GB

AIX5.3 ML01
DB2 8.2.3 Client
WAS 6.0.2.5

Web Server p630
CPU: 4x1.45GHz Power 4
Mem: 16 GB

AIX5.3 ML01
IHS 6.0.2
WAS Plugin 6.0.2.5

WAS ND Server p610
CPU: 1x450MHz Power 3
Mem: 8GB

AIX5.3 ML01
WAS ND 6.0.2.5

HTTP

ND Server
(p610, power 3)

Database
Server

(p630, power 4)

Web Server
(p630, power 4)

HTTP

HTTP

Managed
WC Server

Cluster
(p630, power 4)

 Chapter 9. Benchmarking DynaCache 219

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC104259

9.3.2 Test data set and scenario

The test data set and scenario represent a medium sized Web site with 50,000
registered customers. This is typical of a specialized retailer.

Data set
The size of the data set is an important consideration in WebSphere Commerce
benchmarking. How big should the catalog be? How many registered users
should there be in the system? Sometimes, we also need to consider other
elements, such as the number of orders, campaigns, discounts, and so on. For
our tests, the WebSphere Commerce database initially contained the following
data1:

� Users
– 50,000 registered users
– 150,000 guest users

� Catalog: 500,000 entries
– 10 top-level categories
– 20 second-level categories per top-level category
– 25 third-level categories per second-level category
– 10 products per third-level category

• 8 available (in-stock) items
• 1 backorder (out-of-stock) item
• 3 attributes (1 integer and 2 string attributes) per product

– 1 top-level dynamic kit category
– 10 second-level dynamic kit categories
– 10 third-level dynamic kit categories per second-level dynamic kit category
– 20 dynamic kits per third-level dynamic kit category

• 20 available (in-stock) items per dynamic kit
� Orders

– 170,000 completed orders
– 20,000 pending orders
– 10,000 canceled orders

Test scenario
WebSphere Commerce implements several business models, such as B2C, B2B,
and hosting, with user behavior differing widely by model.

In our tests, we use a B2C (consumer direct) store. To reduce the amount of
preparatory work, we use a custom version of the WebSphere Commerce
consumer direct starter store with the data described here.

1 For detailed explanations of WebSphere Commerce terminology, please refer to the WebSphere
Commerce v6.0 Information Center at
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

220 Mastering DynaCache in WebSphere Commerce

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

For a B2C e-commerce site, the typical workload is dominated by customer
activities. To reflect that, we assumed the following workload distribution in our
tests:

� Users:
– Guest users: 60%
– Existing registered users: 20%
– New registered users: 20%

� Buy ratio:
– Browse only: 85%
– Browse and add to cart: 5%
– Browse, add to cart, add billing/shipping information, view order summary:

5%
– Browse, add to cart, add billing/shipping information, view order summary,

add payment information, and complete order: 5%
� Errors on logon

– Wrong logon ID or password for an existing registered user: 10%

Figure 9-2 on page 222 depicts the overall scenario flow.

 Chapter 9. Benchmarking DynaCache 221

Figure 9-2 Scenario flow diagram

As mentioned previously, think time is a particularly important parameter for the
workload. The best way to assess the characteristics of think time is to analyze
an existing Web activity log. As a general rule, however, end users of a Web
application tend to spend large amounts of time between hits. The longer the
think time, the more concurrent users it takes to create the same workload. In the
context of benchmarking, this means that, to get the same amount of workload
for the benchmark, we require more machines that simulate end users, because
the maximum number of concurrent users that a single machine can simulate is
limited. Conversely, for our test purposes, we can reduce the think time in order

store front

logon register

browse

add to cart

billing/shipping info

order summary

order process

registered
(20%)

new registered
(20%)

Loop 1-3 times

85%

Loop 1-5 times

5%

50%

Log out

guest (80%)

Log out

Log out

Incorrect
Logon
(10%)

 User types
 guest user: 60%
 existing registered user: 20%
 new registered user: 20%

 From storefront to
 browse: 85%
 add to cart: 5%
 view order summary: 5%
 process order: 5%

222 Mastering DynaCache in WebSphere Commerce

to reduce the number of concurrent users and the number of machines required
to simulate them.

Table 9-2 lists the think times that we used in our tests.

Table 9-2 think times in the tests

9.3.3 Execution and results

As stated at the opening of the Benchmarking example section, the purpose of
our tests is to create a benchmark for a WebSphere Commerce system with
DynaCache, as well as to show performance improvements that DynaCache
brings. As discussed in “Obtaining the baseline results and measuring
improvements” on page 213, we therefore need a baseline test without
DynaCache and a test with the finalized parameter set, reflected by the
cachespec.xml descriptor, to serve as the new DynaCache baseline for any
possible changes at a future time. Sometimes, we also require additional tests,
for example, to confirm that we get performance benefit from such changes or to
investigate system behavior under a different set of circumstances.

We ran four tests in preparation of this book:

� 100 concurrent users without DynaCache

� 100 concurrent users with caching the product display page only

� 100 concurrent users with the cachespec.xml file provided as part of the
WebSphere Commerce consumer direct starter store

Web action Think time
(second)

Web action Think time
(second)

Select shipping address 5 View order summary 10

Add shipping address 10 Add payment info 10

Display category 3 Display product 3

Log off 2 View shipping method 5

Log on 5 Display top category 5

Go to log on page 0 Visit store front 0

Add item to cart 5 Register user 10

View billing address 5 Go to register page 0

Process order 5

 Chapter 9. Benchmarking DynaCache 223

� 200 concurrent users with the cachespec.xml file provided as part of the
WebSphere Commerce consumer direct starter store

We ran each test for 3 hours, using the JVM heap size of 1GB and identical
scenarios, ratios, and think times (see “Test data set and scenario” on page 220).

100 concurrent users without DynaCache
Table 9-3 shows the resource usage for the baseline test without DynaCache.

Table 9-3 Resource usage in the test with 100 users without DynaCache

As we can see, the database server has reached its capacity with 100% CPU
usage. Since, according to the test scenario, browse only accounts for 85% of
the site activity, the database update volume should be very low, and the bulk of
database activity should come from retrieval. To narrow down the most common
or expensive types of retrieval, we next look at the response times per activity.

Table 9-4 Response times in the test with 100 users without DynaCache

CPU usage Minimum JVM
heap usage

Hard disk
usage
increase

Commerce server 1 46.27% 300MB

Commerce server 2 47.39% 300MB

Database server 100% 23MB

Web server 2.72%

Web action Average
response
time (second)

Count Total time
(second)

Overall 6.524 35,459 231334.516

Select shipping address 0.465 447 207.855

Add shipping address 0.301 321 96.621

Display category 2.277 16,137 36743.949

Log off 0.29 795 230.55

Log on 0.508 473 240.284

Go to log on page 0.376 473 177.848

Add item to cart 1.235 1,078 1331.33

224 Mastering DynaCache in WebSphere Commerce

From Table 9-4 and Figure 9-3 on page 226, we can see that the response time
for the product display page is huge (35.3 seconds) and the page is used 81%
(=187468/231334x100%) of the total time. Without caching, the server has to
retrieve product information from the database whenever a user browses the
catalog. But product pages are user-independent, can be “shared” by users, and
are likely to remain unchanged for days or even months. This makes the product
display page an excellent first candidate for dynamic caching.

View billing address 1.14 865 986.1

Process order 1.368 92 125.856

View order summary 2.219 192 426.048

Add payment info 1.314 92 120.888

Display product 35.338 5,305 187468.09

View shipping method 0.618 863 533.334

Display top category 0.335 5,388 1804.98

Visit store front 0.2 2,128 425.6

Register user 0.61 405 247.05

Go to register page 0.373 405 151.065

Web action Average
response
time (second)

Count Total time
(second)

 Chapter 9. Benchmarking DynaCache 225

Figure 9-3 Total time for URL actions in the100 users test without DynaCache

100 concurrent users caching the product display page only
In this test, we enabled the DynaCache full page caching of the product display
page. Since the page contains a header bar, footer bar, and a mini shopping cart,
all realized as JSP fragments, we also had to enable fragment caching in
cachespec.xml.

To get the benefit from product display page caching, we fully populated the
cache prior to the formal test by running a browsing-only scenario and using the
cache monitor to get information about the state of the cache.

Table 9-5 and Table 9-6, and Figure 9-4 on page 228 summarize the results of
the test.

Table 9-5 Resource usage in the test with 100 users and caching of product display page

CPU usage Minimum JVM
heap usage

Hard disk
usage
increase

Commerce server 1 85.98% 350MB

Commerce server 2 86.13% 350MB

Database server 36.12% 40MB

Select shiping address
Add shipping address
Display category
Log off
Log on
Go to log on page
Add item to cart
View billing address
Process order
View order summary
Add payment info
Display product
View shipping method
Display top category
Visit store front
Register user
Go to register page

226 Mastering DynaCache in WebSphere Commerce

Comparing Table 9-5 on page 226 with Table 9-3 on page 224, we can observe
that the CPU usage on the database server has dropped to 36.12% from 100%,
while the CPU usage on both WebSphere Commerce servers has increased.
The database server is thus no longer the bottleneck.

Table 9-6 Response times in the test with 100 users and caching of product display page

Web server 4.72%

CPU usage Minimum JVM
heap usage

Hard disk
usage
increase

Web action Average
response
time (second)

Count Total time
(second)

Overall 1.625 210,572 342179.5

Select shipping address 0.595 2,623 1560.685

Add shipping address 0.336 1,890 635.04

Display category 2.946 95,236 280565.256

Log off 0.34 4,924 1674.16

Log on 0.589 2,654 1563.206

Go to log on page 0.465 2,654 1234.11

Add item to cart 1.694 6,514 11034.716

View billing address 1.558 5,380 8382.04

Process order 2.022 595 1203.09

View order summary 3.404 1,179 4013.316

Add payment info 1.795 595 1068.025

Display product 0.135 31,714 4281.39

View shipping method 0.807 5,376 4338.432

Display top category 0.484 31,769 15376.196

Visit store front 0.182 12,377 2252.614

Register user 0.758 2,546 1929.868

Go to register page 0.43 2,546 1094.78

 Chapter 9. Benchmarking DynaCache 227

As we can see from Table 9-6, the response time for the product display page is
now only 0.135 seconds, down considerably from 35.338. Because of this
dramatic drop, the total number of pages visited in 3 hours has increased from
35,459 to 210,572, marking a six-fold increase in throughput. This is typical of
many implementations of DynaCache.

Figure 9-4 Total time for URL actions in the test with 100 users and caching of product
display page

100 concurrent users using cachespec.xml
In the previous test, we saw a considerable performance improvement brought
on by DynaCache. We also saw that the category display page now consumes
most of the total time, and the CPU usage on both WebSphere Commerce
servers is up. Dynamically caching other pages should help us improve response
time and reduce resource usage. In this next test, we use the sample
cachespec.xml file provided with the WebSphere Commerce consumer direct
starter store, which enables caching of a number of other pages (including the
category display page) as well as WebSphere Commerce commands.

Table 9-7 and Table 9-8 on page 229, and Figure 9-5 on page 230 summarize
the results of the test.

Select shiping address
Add shipping address
Display category
Log off
Log on
Go to log on page
Add item to cart
View billing address
Process order
View order summary
Add payment info
Display product
View shipping method
Display top category
Visit store front
Register user
Go to register page

228 Mastering DynaCache in WebSphere Commerce

Table 9-7 Resource usage in the test with 100 users and sample cachespec.xml

Table 9-8 Response times in the test with 100 users test and sample cachespec.xml

CPU usage Minimum JVM
heap usage

Hard disk
usage
increase

Commerce server 1 18.74% 450MB

Commerce server 2 18.01% 420MB

Database server 8.17% 58MB

Web server 6.36%

Web action Average
response
time (second)

Count Total time
(second)

Overall 0.238 289,004 68782.952

Select shipping address 0.385 3,596 1384.46

Add shipping address 0.276 2,609 720.084

Display category 0.197 130,859 25779.223

Log off 0.292 6,644 1940.048

Log on 0.355 3,683 1307.465

Go to log on page 0.305 3,683 1123.315

Add item to cart 0.82 9,097 7459.54

View billing address 0.787 7,381 5808.847

Process order 0.86 810 696.6

View order summary 1.21 1,646 1991.66

Add payment info 0.784 811 635.824

Display product 0.129 43,591 5623.239

View shipping method 0.467 7,372 3442.724

Display top category 0.127 43,648 5543.296

Visit store front 0.157 16,864 2647.648

Register user 0.433 3,355 1452.715

 Chapter 9. Benchmarking DynaCache 229

Figure 9-5 Total time for URL actions fin test with 100 users and sample cachespec.xml

We see a significant drop in CPU usage for both the WebSphere Commerce and
database servers, as well as an increase in the total number of pages visited in 3
hours, from 210,572 to 289,004. We still see the category display page dominating
the total time column of Table 9-8 on page 229. However, this results largely from
the sheer number of hits it gets (~50% of total hits); the response time has gone
down from 2.496 seconds to 0.197 seconds.

200 concurrent users using cachespec.xml
]The test with sample cachespec.xml shows that our test environment is very
capable of handling 100 users: the page response times are low, as is the CPU
usage on all the servers. We can therefore use the test results as the final
benchmark of WebSphere Commerce with DynaCache.

What happens if we increase the number of concurrent users, however? Will the
throughput (number of pages) and CPU usage increase linearly? What about the
response time?

Go to register page 0.332 3,355 1113.86

Web action Average
response
time (second)

Count Total time
(second)

Select shiping address
Add shipping address
Display category
Log off
Log on
Go to log on page
Add item to cart
View billing address
Process order
View order summary
Add payment info
Display product
View shipping method
Display top category
Visit store front
Register user
Go to register page

230 Mastering DynaCache in WebSphere Commerce

The final benchmark-creation test, which we tackle in this section, is an
illustration of the kinds of additional tests that we would typically include in a
benchmark suite, intended to investigate issues of performance under stress,
scalability, and so on. Here, we double the number of concurrent users to see
how the system reacts.

Table 9-9 and Table 9-10 and Figure 9-6 on page 232 summarize the results of
the test.

Table 9-9 Resource usage in the test with 200 users test and sample cachespec.xml

Table 9-10 response times in the test with 200 users and sample cachespec.xml

CPU usage Minimum JVM
heap usage

Hard disk
usage
increase

Commerce server 1 27.99% 450MB

Commerce server 2 28.02% 430MB

Database server 13.74% 101MB

Web server 10.2%

Web action Average
response
time (second)

Count Total time
(second)

Overall 0.938 468,303 439268.214

Select shipping address 1.145 5,837 6683.365

Add shipping address 0.988 4,129 4079.452

Display category 1.004 211,692 212538.768

Log off 0.801 10,872 8708.472

Log on 0.858 6,044 5185.752

Go to log on page 0.797 6,044 4817.068

Add item to cart 1.666 14,876 24783.416

View billing address 1.749 12,118 21194.382

Process order 1.85 1,306 2416.1

View order summary 2.354 2,689 6329.906

Add payment info 1.839 1,306 2401.734

 Chapter 9. Benchmarking DynaCache 231

Figure 9-6 Response times in the tests with 100 and 200 users and sample
cachespec.xml

The test results show that the throughput, response time, and CPU usage do not
increase linearly. Doubling the number of concurrent users does not double the
throughput, even though a considerable amount of unused resources remains.

As a next step, we would run more tests to determine the saturation point.

Display product 0.757 70,515 53379.855

View shipping method 1.328 12,107 16078.096

Display top category 0.655 70,617 46254.135

Visit store front 0.478 27,261 13030.758

Register user 0.845 5,445 4601.025

Go to register page 1.201 5,445 6539.445

Web action Average
response
time (second)

Count Total time
(second)

0

0.5

1

1.5

2

2.5

Se
le

ct
 s

hi
pi

ng
 a

dd
re

ss

Ad
d

sh
ip

pi
ng

 a
dd

re
ss

D
is

pl
ay

 c
at

eg
or

y

Lo
g

of
f

Lo
g

on

G
o

to
 lo

g
on

 p
ag

e

Ad
d

ite
m

 to
 c

ar
t

Vi
ew

 b
ill

in
g

ad
dr

es
s

Pr
oc

es
s

or
de

r

Vi
ew

 o
rd

er
 s

um
m

ar
y

Ad
d

pa
ym

en
t i

nf
o

D
is

pl
ay

 p
ro

du
ct

Vi
ew

 s
hi

pp
in

g
m

et
ho

d

D
is

pl
ay

 to
p

ca
te

go
ry

Vi
si

t s
to

re
 fr

on
t

R
eg

is
te

r u
se

r

G
o

to
 re

gi
st

er
 p

ag
e

100 users
200 users

232 Mastering DynaCache in WebSphere Commerce

The results also confirm the common-sense observation that the response time
is unlikely to stay unchanged when the number of concurrent users increases –
but we need to take more measurements to determine why the response time is
increasing.

9.4 Conclusion

In this chapter, we have discussed the general benchmarking methodology and
key considerations for benchmarking Web applications and WebSphere
Commerce with DynaCache specifically. Although there is no hard and fast rule
for planning, designing, or obtaining a benchmark, we have attempted to provide
enough guidance to make the task practicable. A benchmark is grounded in
business requirements and can be used for both current and future, ongoing,
evaluation of system performance. It is our sincere conviction that every site
should have a benchmark.

In the final section of the chapter, we have also given an example of
benchmarking WebSphere Commerce with DynaCache. As our tests have
shown, the use of DynaCache in WebSphere Commerce systems is not merely
an option, but an imperative. Well-defined and customized dynamic caching can
improve system performance ten- or even a hundred-fold, helping us shorten
response times, increase workload, get the most out of the hardware we have,
and inform us where best to spend our hardware budget to improve performance
or support more customers as the popularity of our Web site grows.

 Chapter 9. Benchmarking DynaCache 233

234 Mastering DynaCache in WebSphere Commerce

Chapter 10. Case study: A DynaCache
anti-pattern

It is a truism to say we learn from our mistakes. This case study is based on a
real Web site. We can learn from the experience of the IBM service team who
helped to get the Web site on track again. Of course this would never happen to
us. Or would it?

One of the interesting lessons to draw from this case study, whether or not you
are involved in troubleshooting a problematic Web site, is how to use the many
options to configure DynaCache. You have read the theory in the previous
chapters. Now you can read about putting the theory into practice in a real-world
scenario.

10

© Copyright IBM Corp. 2006. All rights reserved. 235

10.1 Online shop project brief

This case study follows the re-release of an online shop using WebSphere
Commerce. The subject company hired another company to create a customized
WebSphere Commerce application, and consulted with IBM on machine sizing
and configuration. The online shop application was developed, integrated with
the back-end systems, and tested. Only then was performance considered.

Once stress and load testing commenced the company become aware that
performance was well short of expectations. On minimal user load, the quickest
page was over 20 seconds at the 95 percentile (that is, 5% of the pages took over
20 seconds). The slowest pages were well over 90 seconds.

It was also determined that the WebSphere Commerce application was using
100% of the CPU, even though very little content was being delivered.

By the time user testing was completed, the team customizing the WebSphere
Commerce application had all but disbanded. This severely limited the options
available to adjust the application.

10.2 Issues encountered

During the performance tuning process on the online shop, a number of issues
were encountered. The only options available for performance tuning were
environmental setup. WebSphere Commerce application modification was not
possible because most of the application developers were unavailable, but
without significant gains in performance the online shop project was at risk of
being cancelled.

In this section we discuss the issues encountered in the order they were
discovered and resolved. The following issues were handled:

1. DynaCache not enabled
2. Inability to cache page fragments
3. Cache invalidations causing severe performance impacts
4. Cached page size greater than 200Kb
5. Large numbers of duplicated similar cache areas

10.2.1 DynaCache not enabled

The first issue we identified was that DynaCache had not been enabled.

236 Mastering DynaCache in WebSphere Commerce

Although this seems obvious in hindsight, it was not considered by the
application development team because they were focused on function, not
performance. Since this was the first WebSphere application to be deployed for
the company that had response time issues, the integration team had no prior
knowledge of DynaCache.

Just enabling DynaCache in it's “out of the box” configuration did not yield any
significant gains in page performance. The cachespec.xml needed
customization.

10.2.2 Inability to cache page fragments

Initial attempts at configuring cachespec.xml were unsuccessful. Caching
fragments caused the application to fail in unexpected ways. For fragment
caching to be successful, the fragments must be independent. The design of the
application was that the page fragments were dependant on the parent page for
information. For example, the page header displayed a user name which was
derived from page headers and the navigation menus were customized based on
the identified user profile.

Once full page caching (com.ibm.commerce.server.RequestServlet.class) was
enabled, performance improvements were realized.

Having enabled full page caching, some fragments (such as the mini-shopping
cart) had to be un-cached. The version of WebSphere Application Server being
used did not support the “do not cache” option on consumed fragments.
Consequently, these fragments needed to be invalidated using a short timeout (1
second). This workaround is scheduled to be eliminated in the next version of the
online shop using a later release of WebSphere Commerce.

To set up caching to work with WebSphere Commerce we needed to determine
the parameters being passed to WebSphere Commerce. We set all parameters
passed to WebSphere Commerce in NonEncryptedParameters and analyzed the
logs of all Web traffic generated during testing, determining the parameters from
the URL request lines. We also enabled DoubleClickMonitoredCommands and
excluded the full page JSPs being cached. Both of these segments are modified
within the <instance>.xml file.

Full page caching provided significant enough gains in performance to allow the
online shop to be implemented in production. Statistics gained from the test runs
now indicated the slowest pages were 10 seconds at the 95 percentile (that is,
5% of the pages taking over 10 seconds). Previously, the same pages were over
90 seconds at the 95 percentile. Although this was over a 900% gain in
performance, it was only just inside the acceptable range and further
improvements would need to be made in the near future.

 Chapter 10. Case study: A DynaCache anti-pattern 237

10.2.3 Cache invalidations causing severe performance impacts

Cache invalidation was not carefully considered before the shop was opened to
the public. Initially the online shop cache pages were set to never expire. This
had great performance, but content updates became a problem. We found there
was no way to identify the cache pages invalidated by database updates.
Consequently, a method was developed to invalidate the entire cache when data
propagation from the staging instance to the production database was
completed.

Emptying the cache caused an immediate and catastrophic performance impact.
As mentioned before, the online shop was open to the public when this was
found.

Because there was no identifiable correlation between cache pages and
database updates, and we could not invalidate the entire cache in one operation,
the only remaining solution was to invalidate pages after an elapsed time period.

The cache invalidation policy was changed to invalidate pages 8 hours after page
generation. This was a less than ideal policy, but it was the best compromise
available at the time. The business unit responsible for owning and running the
online shop was made aware that it could be as much as 8 hours from product
update to cached page update. This meant old data could still be on display to
real customers.

A proposal to build an application to warm up the cache was rejected for three
reasons:

1. No accurate traffic pattern had emerged to show the pages to pre-warm the
cache with.

2. The inefficiency of the WebSphere Commerce application code ensured a
warm-up operation would cause an operational outage to the online shop.

3. During a programmatic warm-up, the online shop would perform so poorly it
appeared to users to be unavailable.

10.2.4 Cached page sizes greater than 200Kb

It was discovered during testing that pages constructed by WebSphere
Commerce were large and filled with white space. To avoid poor performance,
pages are compressed by the Web server prior to transmission to the user's
browser.

Unfortunately, the uncompressed pages are stored by DynaCache in the JVM.
With up to 3000 cached pages stored, this could take 600Mb of heap memory.

238 Mastering DynaCache in WebSphere Commerce

Care had to be taken to ensure the maximum heap memory could accommodate
this amount of storage.

The initial heap size of the online shop was too small and the JVM would
regularly run out of memory during peak loads or abnormal circumstances.

To avoid memory problems, the number of in-memory entries in the cache was
reduced to 2000 to provide an appropriate memory buffer. Any entries over 2000
are stored in the disk cache. Only the least recently used cache entries were
stored to disk. It was also found to be quicker to restore a cached page from disk
than to re-render its contents.

Since making this change, the online shop has run continuously for a month
without any restarts or failures.

10.2.5 Large numbers of duplicated similar cache areas

On inspection of the cache contents, we found a large number of what appeared
to be duplicated pages. The duplicated pages were found to be the same page
called with slightly different parameters.

Because we are caching full pages, we are unable to reduce the number of
calling parameters. The solution to this problem is to redesign the pages into
cacheable fragments and call and cache the fragments with a minimum number
of parameters.

10.3 Lessons learned from the exercise

The following are key findings from retro-fitting DynaCache onto an existing
WebSphere Commerce application. The points will be discussed in detail in the
paragraphs that follow.

1. Include DynaCache in the initial design of WebSphere Commerce
applications.

2. The best constructed cachespec.xml will not compensate for poor application
design.

3. Simulate Web site traffic using a workload as close to production traffic as
possible.

4. Invalidate as little as possible.

5. Warm up your cache offline.

 Chapter 10. Case study: A DynaCache anti-pattern 239

10.3.1 Include DynaCache in the design of applications

When designing a WebSphere Commerce application, to ensure performance,
you must incorporate DynaCache into the initial design. Specific techniques to
apply to your design include the following:

� Design the pages in independent cacheable fragments.
� Ensure the fragments are of reasonable size.
� Consider cached fragment invalidation.
� Ensure you invalidate as little of the cache as possible with each data change.
� Avoid cache entries requiring timeouts.

10.3.2 Retrofitting DynaCache will only be a limited success

Retrofitting a WebSphere Commerce application with a DynaCache will not solve
all your performance issues. Where possible try fragment caching prior to using
full page caching. Also do not define dependency IDs that are not going to be
used.

10.3.3 Use accurate workload traffic for simulation

When testing your application for performance, simulate actual user traffic as
closely as possible. Analyze traffic from a running system to profile how users will
visit your site. Only with accurate load simulation can you expect to learn how
your WebSphere Commerce application will perform under pressure.

10.3.4 Invalidate as little as possible

Remember the golden invalidation rule: “Less is more.” The less you invalidate,
the less time you spend rebuilding the cached content. The more you can get
from the cache, the better your WebSphere Commerce application will perform.

10.3.5 Warm up the cache

Where possible, warm up your cache offline before bringing WebSphere
Commerce online. Do this by running scripts of pre-prepared operations against
the offline instance. This way your site will perform better for the first user through
the door.

240 Mastering DynaCache in WebSphere Commerce

10.4 Changes in the next version of the online shop

A project to enhance the online shop for the company is in progress. This is
giving us an opportunity to correct some past mistakes.

Once these solutions were implemented in the test environment, the online shop
reached its performance targets of every page responding within five seconds at
the 95th percentile (that is, all pages return a response to the browser within five
seconds, 95% of the time) under anticipated peak load. This is over a four-fold
improvement in performance on the online shop that was initially released, and a
twenty to thirty times improvement on the original Web site.

The application changes that were implemented were:

1. Breaking all pages into cacheable fragments
2. Reducing the number of dependency IDs
3. Removing cache page expiries
4. Incorporating DB triggers to update the CACHEIVL table
5. Writing a scheduled task to clean the CACHEIVL table
6. Fixing inefficiencies in the search fragments

10.4.1 Break all pages into cacheable fragments

The online shop pages are broken into cacheable and non-cacheable fragments.

For example, the custom header, which varies on user ID, is its own fragment.
The side menus are a separate fragment. The footer is a separate fragment. The
body of the page is another separate fragment.

Any fragments with user-specific data are kept to a minimum size. That means, if
a fragment is used to display a product and a rental plan together, and the rental
plan is based on a business or residential user type, the fragment would be
broken into two fragments.

Only the parameters required to uniquely create a fragment are passed to that
fragment, and the cachespec.xml is being modified to work with these new
fragments instead of caching the full pages.

10.4.2 Reduce the number of dependency IDs

The dependency IDs for the cached pages of the shop are being reduced to the
minimum values required to uniquely identify the page for invalidation.

For example, for a cached page that refers to a single product, we use that
product as a dependency ID. For a cached page that refers only to products of a

 Chapter 10. Case study: A DynaCache anti-pattern 241

specific group, we use the group ID as a dependency ID. By using this type of
method, we could construct an invalidation scheme based on database updates.
This was achieved by using database triggers, but more on that later.

Also, reducing the number of dependency IDs for the cache elements further
reduces the memory footprint in the JVM of the cached pages.

10.4.3 Remove cache page expiries

The update to the online shop ensured cache entries will no longer expire. Cache
entries are only removed using invalidation rules.

Now only page fragments are being cached (not full pages). The sub-fragments
that required short expiries because they were consumed fragments are no
longer require as cache entries and there are no more 1 second timeouts.

10.4.4 Incorporate DB triggers to update the CACHEIVL table

As mentioned earlier, the online shop was altered to enable invalidation of pages
based on database updates. This was achieved by using database triggers to
populate the CACHEIVL table whenever updates were performed. This enabled
only the relevant cache fragments to be invalidated.

For example, if the details for an “acme” widget are updated in the database, the
database trigger will put entries in the CACHEIVL table to remove:

� All cache page entries with specific information on the updated “acme”
widget.

� All cache page entries that deal only with “acme” widgets and have multiple
“acme” widgets on the one page.

� All cache page entries that deal with any brand of widget and may have a
number of widgets from different manufacturers.

10.4.5 Write a scheduled task to clean the CACHEIVL table

As the CACHEIVL table does not clear automatically, run the DBClean as a
scheduled task to remove old entries from the CACHEIVL table.

10.4.6 Fix inefficiencies in the search fragments

The search fragment was the most inefficient operation in the online shop. This
function was re-written to reduce the number of DB operations from over a
thousand SQL queries per call to fewer than twenty.

242 Mastering DynaCache in WebSphere Commerce

Although this is not a DynaCache operation, it was included in this list because it
highlights the need to optimize the application as well as the DynaCache.
Frequently called base operations that take too long to complete will adversely
impact the overall performance of your site.

10.5 Conclusion

Significant gains can be made by retro-fitting DynaCache to an existing
WebSphere Commerce instance, but the best results can only be achieved if
performance is designed into the application.

 Chapter 10. Case study: A DynaCache anti-pattern 243

244 Mastering DynaCache in WebSphere Commerce

Chapter 11. Seven steps to get started
caching your WebSphere
Commerce Web site

I've been working through your tutorial on caching and have seen
incredible results. We went from 8.5 hits/second and 0.18
transactions/second to 172.2 hits/second and 2.86 transactions/second.
Thanks!

WebSphere Commerce Customer

How do you get started with caching your WebSphere Commerce site? You read
this book, and now are wondering, “What do I do next?” Or perhaps you saw this
chapter in the contents and thought, “That’s a good place to start.”

To help you get started we have made the conclusion to this book a brief list of
steps you can take to tune up your WebSphere Commerce Web site with
DynaCache.

11

© Copyright IBM Corp. 2006. All rights reserved. 245

11.1 Servlet caching

What: Servlet caching is equivalent to full-page caching and provides the same
benefits. When you configure a page to be full-page (or servlet) cached, its entry
in the cache contains the servlet along with the content from its JSP fragments.
Think of this as taking the complete request to the servlet and making one
cached object.

How: Take the sample cachespec.xml from the samples directory in WebSphere
Commerce that is under the ConsumerDirect directory. This sample will show
you how to cache the browsing pages in the sample B2C WebSphere Commerce
site. Refer to Figure 2-12 on page 51 to see how to change the PATHINFO to
match your store if you have used custom names. See 2.7.4, “DynaCache full
page caching” on page 68 for more detailed information on servlet caching and
the consume-subfragments property.

Why: We use servlet caching whenever possible because it gives the greatest
performance benefit. Caching at the servlet level allows you to maximize what is
contained in a given cache entry, thereby minimizing the time required to return
the cached information on its subsequent requests. Servlet caching entirely
removes the execution of Java code and database lookups on a cache-hit. It also
removes execution of most of the runtime code in WebSphere Commerce.

11.2 Caching personalized fragments

What: Some of the pages you cached at the servlet level will have content that
needs to vary page to page depending on many different factors. With these
pages, you need to exclude the fragments containing varying content from the
servlet’s cache using the do-not-consume property, and cache the variable
fragments using JSP caching (fragment caching) separately.

How: A cachespec.xml entry must be made for each fragment you wish to cache
separately. The fragment being excluded must be self-executing. Not all
fragments in WebSphere Commerce are self-executing. To test if the fragment is
self-executing, pass the fragment's URL to a Web browser, including the
necessary parameters. See 2.7.5, “DynaCache fragment caching” on page 69 for
more information on fragment caching.

Why: The page, and its personalized page fragments, are stored in separate
cache entries. When the page is transmitted again, the pieces are assembled
from the fragments in the cache. Keep in mind that the more pieces there are to
assemble into a page, the longer it will take to retrieve entries from the cache. In

246 Mastering DynaCache in WebSphere Commerce

general, combining servlet caching with fragment caching results in near full
page caching performance for pages with personalized content.

11.3 Excluding self-executing fragments from the cache

What: A fragment is sometimes truly uncacheable, but that does not make the
complete request uncacheable. Use the do-not-cache property to exclude truly
uncacheable fragments from servlet caching the full page.

How: To use do-not-cache successfully, the fragment must still be self-executing.
With some reworking, nearly every fragment can be made self-executing. Tell the
WebSphere cache to ignore a fragment in a servlet by having the fragment's JSP
defined in the cachespec.xml with the do-not-cache property. See 2.7.5,
“DynaCache fragment caching” on page 69 for more information on
do-not-cache.

Why: The technique of not caching a fragment should be used very rarely and
only when it cannot be avoided. Very few things are not cacheable and you need
to weigh the value of not caching versus the possible changes needed to make it
cacheable.

11.4 Fragment caching

What: You will find cases, like the flow of a shopping order request, that are not
amenable to servlet-level caching but still have cacheable fragments. In these
cases use JSP fragment caching, but by itself.

How: See 2.7.5, “DynaCache fragment caching” on page 69 for more detailed
information on fragment caching.

Why: These areas are still important to cache and good performance gains can
be achieved so it is important not to give up looking for performance tweaks too
soon.

11.5 Command caching

What: The final option open to you at this point is Command caching.
Implementing business logic as a Java command allows the logic to be cached,
yielding performance benefits when the same result set is repeatedly returned.
Command caching can be viewed as result set caching. WebSphere Commerce
uses command caching in its runtime.

 Chapter 11. Seven steps to get started caching your WebSphere Commerce Web site 247

How: See 2.7.3, “Command interface” on page 63 for more information on
Command caching.

Why: When you have concluded that you have exhausted the possibilities of
servlet and JSP caching, look at the possibility of using command caching.

11.6 Invalidation

What: Invalidation is the term applied to a number of different techniques used to
flag cache entries as out-of-date and force their eviction from the cache. Next
time the page or page fragment is requested, or the command re-executed, the
content is re-generated and the cache entry stored away for use next time.

How: The simplest (and discouraged) method of invalidation is to used a
time-based method. Usually, time-based methods do not make best use of the
cache and do not guarantee accurate (timely) page contents.

The recommended cache invalidation technique is to use fine-grained
invalidation methods like command-based invalidation using dependency and
invalidation IDs. A cache entry has dependency IDs defined for each component
that it relies on. When an object is cached for this entry, the dependency IDs are
generated and associated to it. Invalidation IDs are constructed based on
methods and fields generated by command-based invalidation commands. When
an invalidation ID is generated, the entries in the cache that have a dependency
ID matching the generated invalidation ID are invalidated.

A final way to configure automatic cache invalidation is using the CACHEIVL
table in combination with database triggers.

See Chapter 3, “DynaCache invalidation” on page 91.

Why: Invalidation is essential to remove out of date cache entries so they can be
regenerated with different contents. We recommend using invalidation rules to
automate the invalidation of cache entries. This allows you to maximize the time
content stays in the cache as well it make sure that any content change is
presented to customers immediately.

If you do not have invalidation rules configured, then you will need to invalidate all
of the cache when content changes. This means that everything will be removed
from the cache, not just the changed pages. The invalidation of the complete
cache is not recommended and should be avoided whenever possible. See
Chapter 3 for more detailed information on fragment caching.

248 Mastering DynaCache in WebSphere Commerce

11.7 Replication

What: Identify cache entries to be shared. These are likely to be content cached
at the servlet level, since that does not contain personalized cache content. Do
not replicate any cached JSP fragments that do not have a long life, or are not
reusable across users, unless their creation costs are very high.

How: Add an element to their cache entries

<sharing-policy>Value<sharing-policy>

See Chapter 4, “Clustering DynaCache” on page 107 for more details.

Why: In a clustered environment, certain cache entries are highly reusable
across users and can be shared among servers in a cluster.

At a minimum you need to use replication to make sure invalidation messages
are sent to all members of a cluster and Web pages are showing current
information.

Some cache entries are very expensive to recreate, and even with low usage, it
can be worth bearing the costs of replication to achieve even a small cache hit
rate.

In a dynamic clustered environment (see Appendix B, “Caching in WebSphere
Extended Deployment” on page 257), there is the opportunity to partition a very
large cache between different members of a cluster, and so increase the
proportion of the cache that is held in memory rather than on disk.

 Chapter 11. Seven steps to get started caching your WebSphere Commerce Web site 249

250 Mastering DynaCache in WebSphere Commerce

Appendix A. Web services caching

The Web services runtime in WebSphere Application Server and the Web
services framework in WebSphere Commerce both provide caching to help
improve the performance of Web Service requests.

A

© Copyright IBM Corp. 2006. All rights reserved. 251

WebSphere Web service caching support
WebSphere Application Server caches Web service requests. Instead of
processing the request it returns the cached response if there is one. The same
fundamental caching principle, which we described in chapter 2, is employed
again. A cache key is computed from a hash of the SOAP envelope. When a
Web service request is made, the SOAP envelope is hashed and the key used to
retrieve a previously cached response (or to store the response to the new
request as a cache entry).

Details of Web service caching support can be found from the WebSphere
information center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.web
sphere.express.doc/info/exp/ae/rdyn_webservicescaching.html

WebSphere Commerce Web service caching
Caching Web services using WebSphere Application Server is similar to caching
static Web pages. As long as the request and response do not change, it is the
simplest and most effective type of Web services caching. However, for those
Web service requests that have dynamic data, such as a timestamp, simple
caching does not work. The hash algorithm always generates a different hash
key value even if the request is unchanged and appears cacheable. As an
example, an OAGIS XML message contains CreationDateTime which is a
mandatory element of ApplicationArea. Since this element changes on a per
request basis, the hash algorithm produces a different value even though the
request could be cacheable.

WebSphere Commerce caches Web service requests that contain dynamic
elements. The WebSphere Commerce Web services framework leverages
DynaCache to cache Web service requests instead of using WebSphere Web
services caching.

Overview of the WebSphere Commerce Web services framework
The WebSphere Commerce Web service framework uses the
Model-View-Controller (MVC) approach to process Web service requests. As
shown in Figure 1, when the Web service request enters the system, the
processing steps are broken down as follows:

1. Controller: Determine the business logic
2. Model: Execute the business logic
3. View: Render the response

252 Mastering DynaCache in WebSphere Commerce

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.express.doc/info/exp/ae/rdyn_webservicescaching.html

Controller commands are used to perform the business logic of the operation and
JSPs are used to create the Web service response. By using both types of
assets, DynaCache is leveraged to cache Web service requests that contain
dynamic elements which do not change the result.

Figure A-1 Web services framework

DynaCaching of Web services requests and Web requests only differ in how the
business logic is determined. Web requests use the Struts configuration file to
identify the controller command interface and JSP response. Web service
requests use the messaging mapping component to identify the controller
command interface and JSP response.

The message mapping component uses the XML document type to identify the
controller command interface and JSP response. It also breaks the XML
document down into a set of name-value-pairs that are used as input parameters
to the controller command. Based on the XPath configuration, the XML elements
of the Web service request are represented in a similar name-value-pair format
to a Web request. For simple XML documents, the structure is mapped exactly
like a Web request. The mapping facility uses an additional list structure to
represent more complex XML documents. The resulting data structure is similar

Message
mapping

configuration

Business
logic facade

JSP
composition

service

WebSphere
Application Server

Web service engine
NetworkWeb service client

generated code

Client code

Application
window

Published
WSDL
description

Web
service client

WebSphere
Commerce Server

WebSphere Commerce
Web service framework

WebSphere Commerce
Web service controller

 Appendix A. Web services caching 253

to the one created for Web requests and DynaCaching of Web services is able to
reuse the same controller and task commands as a Web request.

The WebSphere Commerce Web services framework uses the SOAP element
binding to route the request to the Web Service controller. It passes the XML
body of the SOAP request to the controller. The controller uses the message
mapping feature to work out which controller command to use to service the
request. It then parses the XML body into name-value pairs and passes them to
the controller command.

Message mapping is also used to construct the success or error response. The
name-value-pairs returned by the business logic are merged with the initial
name-value-pairs and passed as request parameters and attributes to the JSP
responsible for rendering the response.

If you specify that a request only returns data in the message mapping
configuration then the controller command calls the JSP directly to build the
response. In this case, the name-value-pairs returned from the message
mapping will be the request parameters and attributes to the JSP.

The Web service response is built with JSPs and leverages existing JSP
technology and assets. The JSP uses the Web service definition to generate the
document structure and XML element tags of the SOAP response. The user task
is to write the JSP code to populate the XML elements. Although the purpose of
the JSP is to return XML instead of HTML, the same JSP concepts apply,
including JSTL, JSP fragments, and caching.

Related Information
WebSphere Commerce Web services:
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.webservices.doc/concepts/cwvwc55webservicesguide08.htm

Message mapping:
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.integration.doc/concepts/ccvmapper.htm

Caching the business logic
Business logic is implemented as a controller command that extends the
cacheable command, so you create a command caching policy to cache
business logic. Of course, the business logic must be cacheable and the
command implementation must implement the appropriate caching hooks.

254 Mastering DynaCache in WebSphere Commerce

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.webservices.doc/concepts/cwvwc55webservicesguide08.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.integration.doc/concepts/ccvmapper.htm

In many cases business logic is used to update data. In these cases try to
bypass the business logic and call the JSP directly to build the response.

Caching the response
The concepts that apply to caching JSPs for Web requests also apply to the
caching of JSPs for generating Web service responses. The only difference is
that the JSP produces XML instead of HTML.

To cache a full Web service create the JSP cache entry that produces the Web
service response, as shown in Example A-1. The parameters passed to the JSP
appear as the request parameters and the command context and request
properties appear in the request attribute. These parameters and attributes are
used as cache keys to specify the cache entry for the JSP.

Example: A-1 Cache entry for a Web service

<cache-entry>
 <class>servlet</class>
 <name>/webservices/MyCompany/ProductInformation.jsp</name>
 <property name="save-attributes">false</property>

 <cache-id>
 <component id="productId" type="parameter">
 <required>true</required>
 </component>
 <component id="CommandContext" type="attribute">

 <method>getStoreId</method>
 <required>true</required>
</component>

 </cache-id>
 </cache-entry>

A JSP fragment can be reused in other JSPs so if a JSP caching policy is
created for a fragment, other JSP will reuse the cached fragment. Suppose, for
example, a response returns a list of products. Suppose a product node is a
separate JSP fragment; then each product fragment is cached separately. When
a different list of products is displayed in another page, the cached products are
used rather than re-executing the JSP fragment for each individual product.

For an example of caching a Web service response, refer to step 8 of the
Defining an inbound Web service tutorial.

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.co
mmerce.webservices.doc/tutorial/twvinboundws.htm

 Appendix A. Web services caching 255

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.webservices.doc/tutorial/twvinboundws.htm

256 Mastering DynaCache in WebSphere Commerce

Appendix B. Caching in WebSphere
Extended Deployment

In October 2004, WebSphere released a new offering called WebSphere
Extended Deployment (XD). This product is the first on demand offering from
WebSphere. This appendix explains how to configure a WebSphere Commerce
application to use WebSphere XD to eliminate offloading DynaCache to disk
storage.

B

© Copyright IBM Corp. 2006. All rights reserved. 257

Introduction to WebSphere XD
WebSphere XD extends WebSphere Network Deployment (ND) by providing on
demand capabilities in three separate areas:

� Dynamic operations
� High performance computing
� Extended manageability

The most notable change in the deployment of a WebSphere XD system is the
introduction of an On Demand Router (ODR) to manage the dynamic allocation
of resources.

For a list of references on WebSphere XD, refer to the resource section at the
end of this appendix.

Dynamic operations
WebSphere Extended Deployment monitors the Application Server environment
and makes optimizations or recommendations based the servers’ behavior. This
is called WebSphere Dynamic Operations. WebSphere XD tries to meet the
demands of work coming into the system by balancing resources in the system
according to policies and goals.

To manage resources WebSphere XD creates a virtualized environment.
Resources in the virtual environment are unified into a pool, called a node group.
For our purposes a node group is simply a collection of managed computer
systems into which WebSphere deploys applications1. This group of machines
defines a boundary for cluster formation. Within a node group one or more
dynamic clusters are created, and the node group's computing power will be
distributed between clusters according to the policies and goals that have been
established. This is done by assigning priorities to the requests the system
receives based on these policies and goals.

Resources are expanded and contracted within the node group to ensure the
business goals are achieved. In this way, clusters are no longer a static entity, as
in a WebSphere ND environment, and become dynamic. In XD these clusters are
known as dynamic clusters.

High performance computing
High performance computing has three main aspects: data partitioning for high
volume transaction applications, the high availability manager for failover

1 For information on having more than one node per machine consult WebSphere documentation.

258 Mastering DynaCache in WebSphere Commerce

support, and the WebSphere Partitioning Facility (WPF) for relieving the
bottlenecks that sometimes occur in large transactional environments.

Extended manageability
The extended manageability function within WebSphere Extended Deployment
provides the ability to configure the dynamic operation environment and
visualization capability to enable the administrator to understand the operational
state of the environment.

On-demand router
The topology of a WebSphere XD environment is different than a typical cluster
setup. Most notable is the introduction of an On Demand Router (ODR) node.
Figure B-1 shows an example of WebSphere Commerce running in an XD
environment.

Figure B-1 WebSphere Commerce in a WebSphere XD environment

The ODR routes traffic, controls logic, and handles caching and partition
decision-making in the WebSphere XD environment. It is an application that runs
on WebSphere Application Server.

 Appendix B. Caching in WebSphere Extended Deployment 259

All requests are routed through the ODR. It is possible to have a cluster of ODRs
so that the routing does not become a bottleneck in the system. In a partitioned
environment, the ODR extracts the partition name from the HTTP request and
routes it to the application server hosting the application instance that is currently
serving this partition.

The partition name is constructed from information contained in the HTTP
request. HTTP Partitioning assumes incoming HTTP requests contain sufficient
information to identify the partition associated with the request in its URL. There
is a special file, called partitions.xml, which specifies two configuration lists:
expressions and partitions. The expression list consists of all regular expressions
that will be used to extract valid partition names from incoming HTTP requests.
The partitions list contains all valid partition names identifying all partitions that
should be managed by XD and activated in back-end target servers.

For existing applications the deployment specialist must find some constant and
recurring information in each HTTP request to construct a partition name. For
new applications the partition name can be designed into the HTTP request.

The scenario described in the next section uses HTTP partitioning, where
partitions are defined using the URL of an HTTP request.

 WebSphere Commerce and WebSphere XD
We have already discussed the problem of managing large caches in
WebSphere Commerce. We recommended extensive use of disk caching to
reduce the size of the in-memory cache and reduce its impact on the Java heap.
Clustering in a WebSphere ND environment gave us no solution to this problem
because in an WebSphere ND clustered environment each server has the same
elements in its cache as the other servers, and the same elements in its memory
cache.

Would it be possible to partition the cache differently for each server and then
route requests to the server which is most likely to have a requested element in

Note: In order for an application to be recognized as partitioned, it must
contain a Partitioned Stateless Session Bean (PSSB). A PSSB is a stateless
session bean that implements the PartitionHandlerLocal interface, and can
utilize the PartitionManager to create partitions from the WPF framework. A
PSSB must be introduced into the WebSphere Commerce EAR as a
prerequisite to partitioning it. You can find more information about the PSSB
and the PartitionHandlerLocal interface in the XD references listed at the end
of this appendix.

260 Mastering DynaCache in WebSphere Commerce

memory? This is just what WebSphere XD can do for your WebSphere
Commerce Web site.

Figure B-2 illustrates a catalog that contains 50,000 products. Each node has
enough memory to hold at most 20,000 pages at any given time. Suppose the
next request is for the product with the id 20001. This will result in a cache miss,
and since the cache of each node is full, an entry will be expelled or offloaded to
disk to make room for the requested page.

Figure B-2 Traditional Commerce topology with a large catalog

In a WebSphere XD environment it is possible for all of the catalog pages to be
in-memory at one time. Create partitions in your cluster using WebSphere
Partitioning Facility (WPF) and divide the catalog among the nodes, or groups of
nodes. The partition could be defined using the product identifier (for example,
products 1-15000 are assigned to partition 1, products 15000-30000 are
assigned to partition 2, and so forth). A node (or node group) is then responsible
for a subset of the catalog and it could be contained entirely in memory.
Figure B-3 on page 262 illustrates the partitioned XD environment.

 Appendix B. Caching in WebSphere Extended Deployment 261

Figure B-3 Partitioned WebSphere Commerce topology

Note: To achieve maximum performance benefits, each partition must be
carefully defined to be no larger than the memory you have decided to allocate
from the JVM heap on each node. If the number of catalog pages each
partition is responsible for is at most the size of the in-memory cache, then
disk caching is avoided altogether. Avoiding disk cache is not always
achievable and is not necessary to get reasonable performance.

262 Mastering DynaCache in WebSphere Commerce

What happens when a request is received from a Web client? The request is
received by the ODR. The ODR uses the expression defined in partitions.xml to
identify the product ID in the incoming HTTP request and map the request to a
partition. The request is then sent to a node in the partition. If the page has been
accessed before, and not invalidated, the node will have the catalog page in
memory. When looking at what partitions to create you should start with
separating browsing traffic from buying traffic. Once you have achieved this level
of partitioning you can then determine if more partitioning is required.

References
XD Information Center:

http://publib.boulder.ibm.com/infocenter/wxddoc51/index.jsp?topic=/com.
ibm.wasxd.doc/cwpfoverview.html

WPF User Guide:

http://publib.boulder.ibm.com/infocenter/wxddoc51/topic/com.ibm.wasxd.d
oc/WPFUserGuide.pdf

 Appendix B. Caching in WebSphere Extended Deployment 263

http://publib.boulder.ibm.com/infocenter/wxddoc51/topic/com.ibm.wasxd.doc/WPFUserGuide.pdf
http://publib.boulder.ibm.com/infocenter/wxddoc51/index.jsp?topic=/com.ibm.wasxd.doc/cwpfoverview.html

264 Mastering DynaCache in WebSphere Commerce

Appendix C. Sales Center caching

IBM Sales Center provides call center representatives with the functionality they
need to service and up-sell cross-channel customers.

DynaCache plays an important role to improve the performance of IBM Sales
Center. This appendix shows how DynaCache command caching support
improves the performance on constructing the response Business Object
Document (BOD) from a WebSphere Commerce server.

C

© Copyright IBM Corp. 2006. All rights reserved. 265

IBM Sales Center
The IBM Sales Center architecture is comprised of the IBM Sales Center client,
WebSphere Commerce server and a messaging architecture.

A data model is used to cache business objects on the client. The default IBM
Sales Center data model contains model objects that represent the operator,
customers, orders, products, and other commonly used objects. If a valid data
model instance (data object) is not available, a service request is sent to the
server to retrieve the information to create or update the data model in the client.

Figure C-1 illustrates the messaging architecture.

Figure C-1 IBM Sales center architecture

The interactions are as follows:

1. The IBM Sales Center client performs a service request.

266 Mastering DynaCache in WebSphere Commerce

2. The service request handler prepares a Business Object Document
message.

3. A message is sent from the client to the host machine.

4. The message mapper receives the message and maps the Business Object
Document to a WebSphere Commerce BOD command.

5. The WebSphere Commerce BOD command is invoked.

6. The WebSphere Commerce BOD command calls a WebSphere Commerce
Controller command, which may call one or more task commands.

7. The reply or response builder constructs the response BOD.

8. A response is returned to the client machine.

9. The request handler receives and handles the response BOD.

10.The client user interface is updated on screen.

Caching the response in Sales Center
As well as caching the data model in the client, further performance gains can be
made by caching the BOD that is returned to the Sales Center client by the Sales
Center server in response to a service request.

Constructing the BOD may be a very resource consuming process. With the use
of command caching the response BOD can be cached, and returned on the
next request rather than recomputing it again. For example, the response builder
command for GET store request (see Example C-1) is cacheable based on the
retrieved properties such as search criteria, store ID, language ID, user parent
member ID, user member group IDs and user roles.

Example: C-1 Cache Entry for the response BOD of Get Store request

<cache-entry>
 <class>command</class>
 <sharing-policy>not-shared</sharing-policy>

<name>
com.ibm.commerce.telesales.messaging.bodreply.ShowStoreCach

eCmdImpl
</name>

 <cache-id>
 <component type="method" id="getSearchCriteria">
 <required>true</required>
 </component>
 <component type="method" id="getStoreId">
 <required>true</required>

 Appendix C. Sales Center caching 267

 </component>
 <component type="method" id="getLanguageId">
 <required>true</required>
 </component>
 <component type="method" id="getUserParentMemberId">
 <required>false</required>
 </component>
 <component type="method" id="getUserMemberGroupIds">
 <required>false</required>
 </component>
 <component type="method" id="getUserRoles">
 <required>false</required>
 </component>
 <component type="method"
id="getEligibleTradingAgreementIds">
 <required>false</required>
 </component>
 <priority>1</priority>
 <inactivity>3600</inactivity>
 <timeout>86400</timeout>
 </cache-id>
 <dependency-id>Stores</dependency-id>
 </cache-entry>

The result of the response builder command is cached and is used by
subsequent calls to avoid constructing the same response BOD again. The
cached response BOD for GET store request is invalidated only if the
store-related information is updated; for example, when the state of the store is
changed. For example, to list stores with names beginning with “Special,” the
response BOD is constructed and cached. It takes time to search for the eligible
list of stores using a database query. Subsequent calls to get the list of stores
with names beginning with “Special” will be very fast. The cached response BOD
is returned rather than executing the search query and there is no need to create
the response BOD again.

268 Mastering DynaCache in WebSphere Commerce

acronyms
API Application Programming
Interface

ASP Active Server Page

CGI Common Gateway interface

CPU Central Processing Unit

CSF Critical Success Factor

DB Database

DCPE DynaCache Policy Editor

DRS Data Replication Service

EJB Enterprise Java Bean

FAQ Frequently Asked Question

GMT Greenwich Mean Time

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I/O Input/output

IBM International Business
Machines Corporation

IHS IBM HTTP Server

IT Information Technology

ITSO International Technical
Support Organization

JDBC Java Database Connection

JDK Java Development Kit

JMS Java Message Service

JNDI Java Naming and Directory
interface

JSP Java Server Page

JSR Java Specification Request

JSTL Java Standard Tag Library

JVM Java Virtual Machine

LRU Least Recently Used

MVC Model-View-Controller

ND Network Deployment

Abbreviations and

© Copyright IBM Corp. 2006. All rights reserved.
OAGIS Open Applications Group
Integration Specification

ODR On-Demand Router

PHP Hypertest Pre-Processor,
Previously, Personal Home
Page

PMI Performance Management
Instrumentation

POJO Plain Old Java Object

RAD Rapid Application
Development

RAM Random Access Memory

RMI/IIOP Remote Method
Invocation/Internet
Interoperability Protocol

SDK Software Development Toolkit

SI System Integration

SOAP SOAP

SPOF Single Point Of Failure

SQL Structured Query Language

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol
/ Internet Protocol

TTL Time To Live

UK United Kingdom

URI Universal Resource Identifier

URL Universal Resource Locator

WAN Wide Area Network

WSDL Web Services Definition
Language

XD Extended Deployment

XML eXtensible Markup Language

 269

270 Mastering DynaCache in WebSphere Commerce

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this Redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 273. Note that some of the documents referenced here may be available
in softcopy only.

� Best Practices and Tools for Creating WebSphere Commerce Sites,
SG24-6699-00

Online resources
These Web sites and URLs are also relevant as further information sources:

� Enhancing the performance of WebSphere Commerce applications through
dynamic caching

http://www-128.ibm.com/developerworks/websphere/library/techarticles
/0603_crick/0603_crick.html

� Caching WebSphere Commerce pages with the WebSphere Application
Server dynamic cache service

http://www-128.ibm.com/developerworks/websphere/library/techarticles
/0405_caching/0405_caching.html

� Tutorial: Improve WebSphere Commerce performance with dynamic caching

http://www-128.ibm.com/developerworks/websphere/library/tutorials/05
07_crick/0507_crick_reg.html

� Disk cache enhancements

http://www-1.ibm.com/support/docview.wss?uid=swg27007969

� Dynamic cache and data replication service tuning guide

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dy
namic+cache+tuning+guide&uid=swg27006431&loc=en_US&cs=utf-8&lang=en

© Copyright IBM Corp. 2006. All rights reserved. 271

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0603_crick/0603_crick.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0405_caching/0405_caching.html
http://www-128.ibm.com/developerworks/websphere/library/tutorials/0507_crick/0507_crick_reg.html
http://www-128.ibm.com/developerworks/websphere/library/tutorials/0507_crick/0507_crick_reg.html
http://www-1.ibm.com/support/docview.wss?uid=swg27007969
http://www-128.ibm.com/developerworks/websphere/library/tutorials/0507_crick/0507_crick_reg.html
http://www-128.ibm.com/developerworks/websphere/library/tutorials/0507_crick/0507_crick_reg.html
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dynamic+cache+tuning+guide&uid=swg27006431&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=dynamic+cache+tuning+guide&uid=swg27006431&loc=en_US&cs=utf-8&lang=en

� Clearing up the dynamic cache using WebSphere Application Server
scripting/mbean API

http://www-1.ibm.com/support/docview.wss?uid=swg21243042

� WebSphere Commerce InfoCenter

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

� WebSphere XD InfoCentre:

http://publib.boulder.ibm.com/infocenter/wxddoc51/index.jsp?topic=/c
om.ibm.wasxd.doc/cwpfoverview.html

� WebSphere Partition Facility User Guide:

http://publib.boulder.ibm.com/infocenter/wxddoc51/topic/com.ibm.wasx
d.doc/WPFUserGuide.pdf

� WebSphere Commerce Web Services:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.webservices.doc/concepts/cwvwc55webservicesguide08.htm

� Web Service Caching

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.
websphere.express.doc/info/exp/ae/rdyn_webservicescaching.html

� Message Mapping:

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm
.commerce.integration.doc/concepts/ccvmapper.htm

� Performance tuning

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.
websphere.nd.doc/info/ae/ae/tprf_tuneprf.html

� Struts

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?top
ic=/com.ibm.commerce.developer.doc/concepts/csdstrutskeycompons.htm

� Tiles

http://struts.apache.org/1.x/struts-tiles/

� CacheAdvisor

http://alphaworks.ibm.com/tech/cacheadvisor

� Dynacache Policy Editor

http://www.alphaworks.ibm.com/tech/cachepolicyeditor

� Java Techology, Diagnosis Documentation

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/142.html

272 Mastering DynaCache in WebSphere Commerce

http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.webservices.doc/concepts/cwvwc55webservicesguide08.htm
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/topic/com.ibm.commerce.integration.doc/concepts/ccvmapper.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_tuneprf.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_tuneprf.htm
http://www.alphaworks.ibm.com/tech/cachepolicyeditor
http://alphaworks.ibm.com/tech/cacheadvisor
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.developer.doc/concepts/csdstrutskeycompons.htm
http://struts.apache.org/1.x/struts-tiles/
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.express.doc/info/exp/ae/rdyn_webservicescaching.html
http://publib.boulder.ibm.com/infocenter/wxddoc51/index.jsp?topic=/com.ibm.wasxd.doc/cwpfoverview.html
http://publib.boulder.ibm.com/infocenter/wxddoc51/topic/com.ibm.wasxd.doc/WPFUserGuide.pdf
http://www-1.ibm.com/support/docview.wss?uid=swg21243042
http://www-128.ibm.com/developerworks/java/jdk/diagnosis/142.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 273

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

274 Mastering DynaCache in WebSphere Commerce

Index

A
activity metrics

see benchmarking, activity metrics
Akamai 29
analytics 125

tools 125
anti-pattern 137, 235

build more slack 21
APAR

IY88656 101
PK13460 85, 149

application tier 4
associated components 28
AttributeValueUpdateCmdImpl 96
auto detect

see network, auto detect

B
B2B 5, 122, 217, 220
B2C 5, 122–123, 180, 217, 220–221, 246
bandwidth

see network, bandwidth
baseline

see benchmarking, baseline
benchmarking 12, 14, 209–211, 213–218,
222–223, 230–231, 233

activity metrics 216
baseline 12, 213, 217, 223–224
benefits 210
considerations 210
creation process 214
DynaCache 209, 213

best candidates for caching 11, 45
bottlenecks 7, 12, 14, 20–22, 259

build more slack, see anti-pattern, build more
slack
choke point 20

broken system 12
browse-buy ratio 122
budget 12, 233
bursts

see network, bursts
Business to Business (B2B) site, see B2B

© Copyright IBM Corp. 2006. All rights reserved.
Business to Consumer (B2C) site, see B2C

C
cache

administration 39
analysis 5
applications generally scale better 10
capacity 14, 123, 212
clear button 105
client 5, 7–8, 27, 29–31, 42, 51, 62, 64, 67, 114,
117, 124, 134, 149, 153–154, 166, 168, 263
ConsumerDirect store 189
contents 88, 195, 200, 204, 208
design 126
entry 47–49, 52, 54–55, 57–59, 62–63, 67–69,
71–77, 93–94, 96–98, 116, 130, 132, 136,
140–141, 144, 160–162, 167, 190, 195–196,
198–200, 248, 255

default priority 189
entry element overview 48
entry ids 157
filter 42–43
fragment 6, 33–34, 41, 50, 69, 71–72, 77, 93,
116, 126, 128, 134–138, 140, 154, 195–196,
198–200, 226, 237, 240–242, 246–248, 255
fragmentation 80–83, 173, 213
full-page 126
generic concepts 25
hit 26, 51, 60–61, 71, 74, 99, 164, 188–189,
213, 249
id 26–27, 40, 43, 47–49, 51–53, 58–59, 62–64,
67, 70–74, 77–79, 88–89, 93–94, 98–100,
116–117, 130, 132, 136, 140–141, 146–147,
158, 160–166, 168–169, 192, 196–197,
199–200, 202, 206, 255

overview 49
identifiers 26, 40, 49
instance 39, 84, 88–89, 105, 127, 134,
137–138, 143–145, 174
item dependencies 28
java objects 60
Misses 189, 194
monitor 25, 35, 41, 53, 69–70, 87–90, 92, 103,

 275

127, 133, 179, 184, 187–188, 192–196,
198–200, 203–204, 206, 208

explicit removals 189
policy 52, 58–59, 63–64, 76, 87–88, 121–122,
124–126, 130, 134–135, 137, 140, 157,
161–162, 168, 184, 189, 192–193, 200, 203,
206
prepared statement 13
programming support 52
proxy server 29
service 26, 37, 59
servlet filtering 168
servlets and JSPs 60
size 188
sizing formula 146
statistics 87–88, 188, 193
strategies 33
unnecessary recreation of page data 5
warming 143

cacheability, see cacheable
cacheable 6, 25, 33–34, 40–41, 69, 121, 123,
125–126, 136–137, 153–155, 161–162, 189,
213–214, 239–241, 247, 252, 254, 267

fragments 5, 241, 247
CacheableCommandImpl 64–65, 67, 126, 128
CachedFooterDisplay.jsp 49–50, 200
CachedHeaderDisplay.jsp 94, 195–196, 200
CachedSidebarDisplay.jsp 198
cache-entry 267–268
cache-id 267–268
CACHEIVL 75, 102, 241–242, 248

table 101–102
cacheKey 100
CacheMonitor.ear, see cache monitor
cachespec.xml 35, 38–41, 45–48, 50, 53, 59,
61–62, 67, 70, 73–78, 84, 92–93, 95–96, 116,
126–127, 138, 141, 144, 147, 154–155, 159, 161,
172, 179, 184, 190, 192, 195–196, 199, 203, 206,
223–224, 226, 228–232, 237, 239, 241, 246–247
catalog 6, 44–45, 57, 84, 92–93, 103, 123, 126,
142, 174, 189, 191, 201, 204–205, 220, 225,
261–263

jsp 6
subsystem 189

CategoryDisplay 54, 56–57, 97, 190–191,
201–204, 206–207
Central Processing Unit

cycles 34
usage 10, 216, 224, 226–232

child JSP fragment 6
choke point

see bottlenecks, choke point 20
Christmas 15, 23, 211
client 266–267
code

changes 11, 63
review 126

com.ibm.commerce.struts.ECActionServlet.class
75–77
command

based invalidation 55–56, 58, 75, 96
interface 52, 57, 63, 68
objects 39, 52, 61, 63

concurrent users 122
connection sizing

see network, connection sizing
consolidating website pages 20
constancy of workload 217
consultant

see also experience 13–14
ConsumerDirect

jspStoreDir issue 170
consume-subfragments 68–69, 71–72, 75, 77, 135,
140
ContentContainerTop.jsp 199
ContentSpotDisplay.jsp 199
cookies 42, 47, 52, 70, 73, 116, 135, 139, 143, 173
CPU, cycles

see Central Processing Unit, cycles
CPU, usage

see Central Processing Unit, usage
CSF

see consume-subfragments
custom content 123
custom JVM Properties 85
custom monitoring level 150

D
data or persistence tier 4
Data Replication Service 107–108, 110–113
database 23

connections 8
server 6–7, 34, 124, 212, 224, 227
triggers 75, 102, 128, 241–242, 248
tuning 13

datasource 9
connection pool 9

276 Mastering DynaCache in WebSphere Commerce

DCPE
see DynaCache, Policy Editor

deadlock 9
default priority

see cache, entry, default priority
defects 11, 215
delay-invalidations 57–59
demand increases 10
dependency 28, 40, 47, 49, 53–55, 57, 59, 73–75,
78, 86, 89, 93–98, 100, 102, 104–105, 146–149,
160–162, 166–167, 169, 174, 197, 240–241, 248,
268

based 27
id 28–29, 47–49, 53–55, 59, 74–75, 86, 89,
93–95, 98, 161–162, 167, 197
items 28, 49, 175

dependency-id 268
design

documents 12
pattern 4

developerWorks 152
dial-up connections 15
disk cache 26, 133–134, 147

cleanup 147–148
enhancements 134–135
eviction algorithm 135
offload 35, 38, 84, 86, 88, 106, 144, 182, 214

enabled 189
scan times 135

displaying cache information 87
dissatisfied customers 15
distributed architecture 4
Distributed Replication Service 39, 113
distributedMap 39, 100
distributedObjectCache 39
do-not-cache 71–72, 126, 135–137, 172, 199, 247
do-not-consume 69–70, 72, 94, 116, 126, 140,
196–197, 199–200
DRS

see Disk Replication Service
DynaCache

class element 153
field element 162–163
fragment caching 69
full page caching 68
history 34
Ignore-value 158, 160, 163
invalidation API 100, 102
overhead 213

Policy Editor 125
DynaCache.jar 38
DynaCacheEsi 142
dynamic clusters 258
DynamicCacheAccessor object 100

E
Easter 23
ECActionServlet 75–77, 190, 193, 195, 200,
203–204, 206, 208
Eclipse plug-in 125
e-commerce web site 92, 122–123, 221

types 5
edge

statistics 88
tier 4

Edge Side Include 29, 116, 136, 142, 154
EJB pools 13
eMarketing spot 70
enable disk offload 84, 182, 214
ESI

see Edge Side Include
eSpots 179, 199
experience

see also consultants xii–xiii, 11, 13, 31, 34, 74,
105, 145, 210, 212, 235

explicit removals
see cache, monitor, explicit removals

extended manageability
see WebSphere, Extended Deployment, extend-
ed manageability

extreme load pressures 142

F
failover 10, 109–110, 112, 175, 258

detection 10
filter objects

see servlet, filter objects
flush 43–44, 128–129, 131, 175
flush to disk 84, 182, 213
FlushToDiskOnStop 38
Funnel 8

G
garbage collection 13, 79, 81–82, 146, 173
GC

see garbage collection

 Index 277

getDistributedMap() 100
group objects together 28, 135

H
hard disk usage 216, 224, 226, 229, 231
hash table on disk 173
hashing algorithm 26
heap fragmentation 80, 83, 213
hit rate 26, 249
horizontal Scaling 23
HTML

see Hyper-Text Markup Protocol
HTOD

see hash table on disk
htodCleanupFrequency 85, 148
htodDelayOffload 85–86, 148
htodDelayOffloadEntriesLimit 85–86, 149
HTTP 304

see Hyper-Text Transfer Protocol, 304
HTTP, GET request

see Hyper-Text Transfer Protocol, GET request
HTTP, servers

see Hyper-Text Transfer Protocol, servers
HTTP, session object

see Hyper-Text Transfer Protocol, session ob-
ject

HTTP, web server
see Hyper-Text Transfer Protocol, web server

httpd.conf 172
HttpServletResponse object 173
Hyper-Text Markup Protocol 4–5, 15–16, 31, 33,
41–44, 63, 68–69, 254–255

page 5
Hyper-Text Transfer Protocol

304 30
GET request 30
servers 23
session object 42–43
web server 29

I
IBM Tech-line 14

capacity planning guides 14
Identifying cache objects 121, 123
Idgenerator 48, 158, 166

and metadatagenerator sub-elements 166
If-Modified-Since 30
images 4, 8, 30–31, 33

inactivity 48, 99, 158, 164
infoCenter 133
invalidation 27–28, 34–35, 38–39, 41, 47–49,
53–59, 70, 73–74, 80, 88, 91–98, 101–102,
104–106, 114, 121, 126–127, 135, 137, 146, 160,
162, 168, 174–175, 179, 196, 198, 213–214, 238,
240–242, 248

best practices and techniques 104
element 167–168
generator sub-element 168
mechanisms 27, 92–93
policies 92
programmatic 92
rules 49, 55–57, 74–75, 93, 95–96, 98, 101,
104, 248
the whole cache 105

inventory
list items 6
numbers 6

IP sprayers 7
isCacheEnabled() 100
IT Specialists 14

J
J2EE

see Java 2 Extended Edition
Java

Dictionary class 38
heap 81, 173, 260
Messaging Service 111, 176

message tuning 13
Naming and Directory Interface 39, 174
Native Interface 81
script 4
SDK Release 1.3.1, Service Refresh 7 81
Server Page 4–6, 27, 31, 37, 39–41, 43–44,
47–48, 50–52, 60–61, 63, 68–69, 71, 77, 115,
121, 123–125, 128, 131, 134, 136, 143,
153–154, 170, 172–173, 189, 195–196, 217,
226, 237, 246–249, 253–255

forward 44
Tag Language 44, 128, 254

Server Pages
self-executing 69, 124, 137, 246–247

Server Tag Library 128
Specification Request 168 41, 134
Virtual Machine

heap 21, 38, 80, 146, 213–214, 216, 224,

278 Mastering DynaCache in WebSphere Commerce

226, 229, 231, 262
tuning 13

Java 2 Extended Edition xiii, 4, 8, 11, 26, 39, 41,
129
Java Database Connection-2

connection pools 13
drivers 81

java.util.HashMap 26
JDBC-2, connection pools

see Java Database Connection-2, connection
pools

JDBC-2, drivers
see Java Database Connection-2, drivers

JMS
see Java, Messaging Service

JMS, message tuning
see Java, Messaging Service, message tuning

JNDI
see Java, Naming and Directory Interface

JNI
see Java, Native Interface

JSP
see Java, Server Page

JSP, forward
see Java, Server Page, forward

JSR 168
see Java, Specification Request 168

JSTL
see Java, Server Page, Tag Language

JVM, heap
see Java, Virtual Machine, heap

JVM, tuning
see Java, Virtual Machine, tuning

K
kCluster 81–83
keep-alive 7–8, 13
kilobytes per second 122

L
language as part of the cache key 34
Large Object Area, configuring 83
latency 31, 124
least recently used 38, 73, 84, 89, 99, 146, 164,
173, 189, 239
license costs 23
load 14, 16
locale 49, 123

locale-sensitive 124
long running

test 12
loop n invariation 20
LRU

see least recently used

M
maintenance 106, 212
major increases in traffic 10
marketing

campaign 92, 101
page 6

marketing.jsp 6
maximum obtainable system output 16
maximum processing rate 16
memory

caching 26, 146
usage/dump analysis 13

mentoring 12
metadatagenerator 48, 158, 166–167
milestones 12
mini shopping cart 70, 72, 74, 226
mini-cart

see mini shopping cart
MiniShopCartDisplay.jsp 70, 116, 196, 200
missing indexes 21
modelling 12, 14
Model-View-Controller 4, 252
monitoring 39, 90, 149–151
multi-node 12

N
name element 153
network 7, 21, 23, 84, 258

auto detect 7
bandwidth 30–31, 122
bursts 8, 18
cards 7
connection sizing 13
design 7
gateways 30
settings 13
speed 7
wide area 7

Node Group 258, 261
non-functional requirements 121
Not-value 135, 138–139, 158, 163

 Index 279

number of connections 8
n-way 12

O
objectives 11–12
ODR

see on Demand router
offload location 84, 182
on Demand router 258–259
Operating system tuning 13
OutOfMemory 80
overflow requests 10

P
page

fragments 5, 137, 179, 236–237, 242, 246
modification time 30
rarely change 5
views per second 122

parameter-tuning 213
participants 12
password 212, 221
pathlength 14, 20
pCluster 81–83
peak loading 15
peak versus average usage 122
peer to peer 111
percentile 14–15, 236–237, 241
performance

best practice 11
foundation 11
mantra 21
metrics 216
objectives 11
problems 3, 7
requirements 10–11, 122–123
terminology 14
tests 12, 31, 215

performExecute() method 40, 58, 68
persistence models 27
persist-to-disk property 147
personalization 72, 123
personalized

fragments 172
information 33, 68, 72, 126

personalized fragments 246
personnel 12
pinned objects 81–82

planning
activity 11
phase 10, 12

portlet caching 134–135, 140–141
predicting workload 211
primary object store 134
processing

overhead 6
time 15, 105, 124

ProductAttributeUpdateCmdImpl 96
ProductDisplay 54, 190–191, 204–208
production system loads 11
project

heading for trouble 11
inception 10
life cycle 13
planning 10

property sub-element 165
proxy

caches 30
servers 30

push 80, 116
putting items into the DynaCache 60

Q
queue 8–10, 13, 15, 18, 21, 89, 113

settings 13

R
race conditions 58
RAM usage

see random access memory, usage
random access memory

usage 216
Rational Application Developer v6 12
redbooks Web site 273

Contact us xiv
refactoring 20
regression testing 11
remote method invocation/internet interoperability
protocol

buffer pools 13
reorganizing disk layout 135
request

activity 16
attributes 42–43, 77

required element 154, 163
resource metrics 216

280 Mastering DynaCache in WebSphere Commerce

response time 14–15, 18–19, 122
retro-fitting 239, 243
reusability 34
reverse proxy 31
RMI/IIOP buffer pools

see remote method invocation/internet interop-
erability protocol, buffer pools

roadmap 11
routers 7
rule

based 27
of thumb 21

rule-based invalidation 97

S
SAN

see storage area network
saturation point 17, 213, 217, 232
scalability 8, 14, 23, 35, 213, 217, 231
scheduled invalidation 92, 101
scheduler threads 9
secure sockets layer 8, 143
security

implications 174
sensitive 124

self-executing, see Java, Server Pages, self execut-
ing
serialization and de-serialization 147
server restart 38, 59, 106, 149–150
server Side Caching 30
servlet 4, 13, 27, 40–43, 52, 60–61, 68, 76–77, 134,
153–154, 165, 172–173, 189, 246

caching 37, 140–141, 189
filter objects 43
filters 42–43
responses 31
technology 42
thread pool 9

servlet caching 246–247
session

dependent (SD) caching 168
independent (SI) caching 168

shared resource 20
sharing-policy 154–155
shopping cart

see also mini shopping cart 28, 70, 72, 74, 93,
122, 196, 215, 226, 237

shut down 38, 106, 173, 213

simple object access protocol 39, 154, 252, 254
skills 12–14

gaps analysis 12
skip-cache 135, 137–138
Skip-cache-attribute 135
SOAP

see simple object access protocol
software stack 180
solution

architect 28, 134
design 14

special events 122, 211
spill-over cache 134
SSL

see secure sockets layer
stability 12, 106
stale

cache items 38
entries 92
items 27
objects 73

stateful session bean 109, 112
static

content 29, 59, 172
data 4

statistics 39, 88, 90, 188, 193, 195, 237
storage area network 174, 218
StoreCatalogDisplay 47, 51–52, 54, 56, 72–73, 78,
190
StoreCatalogProductESpot.jsp 199
Store-cookies property 135, 139
Struts 39, 44, 75–76, 129–131, 134, 190, 253
subject matter expert 12
subnet 7
switches 7, 10, 82
synchronization of resources in cache 135
system

administrator 38
design 11
network 7
Performance Tuning 12
resources 6

T
TCP/IP

see transmission control protocol/internet proto-
col

technical sales support 14

 Index 281

template 86, 88–89, 102–104, 131, 147–148
terminology 3, 12, 14, 220
test xiii, 11–12, 105, 146, 209, 212, 214–215, 236,
238, 240

environment versus production environment
212
repeatability 216
server 12
tool scripting 13

Thanksgiving 15, 23
think time 122, 217, 222
thread

dump analysis 13
synchronization 20

throughput 14, 16–17, 122
Plateau 16
Saturation 17

tiers 4, 7, 10
Tiles 39, 131, 134
time based 27, 35, 248

invalidation 74
time-out 98, 105

settings 7
timestamp 30, 252
Tivoli Performance Viewer 151
tooling 12, 93, 152
tools and methodology 124
TopCategoriesDisplay 54, 56, 78, 190–193, 195,
199–200, 204
TopCategoriesDisplay.jsp 195
TPV

see Tivoli Performance Viewer
traffic 7, 10, 30, 77, 106, 115, 123, 125, 211,
237–240, 259
training 13
transactional 58, 259
transfer time 15
transmission control protocol/internet protocol 7–8
triggered invalidation 75
tuning

parameters 8–9
points 8, 13

U
uncacheable 126–127, 137, 247
upper bound 135
Used Entries 188
Users

activity 16
arriving 16
logging in 16
sending requests 16

V
value element 163
value/not-value ranges 135, 138
Vertical Scaling 23
virtualized environment 258
volatility 6

W
wait time 15, 19
WAN

see network, wide area
warm shut down 106
warm up 106, 217, 238, 240
web

browsers 30
server logs 125
services xi, 62, 153–154, 166, 251–254
site

performance issues 5
under stress 5

tier 4
WebSphere

Command Framework 56, 126, 128, 170
Commerce

DC_ variables 168
Commerce Accelerator 93
Commerce Administration Console 101
Commerce Business Edition 35
Commerce scheduler. 101
Commerce Web service caching 252
Commerce web sites xi, 288
Dynamic Operations 258
Extended Deployment xii, 257–261

extended manageability 258–259
Funnel model 8
ND

see WebSphere, Network Deployment
Network Deployment 258
Partitioning Facility 259, 261
Portal Server 39
Studio Application Developer 125
Web service caching support 252
XD

282 Mastering DynaCache in WebSphere Commerce

see Websphere, Extended Deployment
weekends 12
worker threads 10
workload 4, 12, 145, 211–213, 215–217, 221–222,
233, 239–240

characteristics 211, 215
WPF

see Websphere, Partitioning Facility
wsadmin 87, 118

X
XPath 253

 Index 283

284 Mastering DynaCache in WebSphere Commerce

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

M
astering DynaCache in W

ebSphere Com
m

erce

®

SG24-7393-00 ISBN 0738489522

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Mastering DynaCache
in WebSphere
Commerce
Dramatically
improve Web site
performance

Learn from practical
examples and
tutorials

Benchmark Web site
performance with
and without
Dynacache

This IBM Redbook describes how to use WebSphere DynaCache to
improve the performance of WebSphere Commerce Web sites.

Today’s Web sites are a demanding mixture of static images surrounded
by mini-shopping carts, e-marketing spots, and other eye-catching
fragments, all of which change from view to view and user to user. Sites
must be richly featured and personalized to attract customers – and they
must deliver this content at a high level of performance as well. But the
richness and personalization customers want is often the enemy of good
Web site performance.

DynaCache technology gives Web site developers a robust tool for
achieving excellent Web site performance. It can be applied
retrospectively to existing Web sites whose performance is not meeting
the owning company’s requirements. It is even better applied from the
beginning of a J2EE Web project, and will yield performance gains well
beyond those achieved at a comparable cost by adding more hardware or
rewriting the solution.

This book leads you through an explanation of what caching is, and what
is special about caching Web sites. It then describes the capabilities
offered by WebSphere DynaCache and how to most effectively make use
of those capabilities. The discussion is enhanced by practical examples
and tutorials to help you configure DynaCache and implement a sample
WebSphere Commerce store. Finally, the book describes how to approach
benchmarking for an online store, and how to quantify the effectiveness
of a dynamic caching policy on site performance. It also presents a case
study of a real-world Web site problem that was turned around by an IBM
team applying DynaCache technology.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Web site caching
	Chapter 1. Web site performance
	1.1 J2EE Web site topologies and caching
	1.2 Web site performance issues
	1.2.1 e-Commerce Web site types
	1.2.2 Unnecessary re-creation of page data
	1.2.3 Network traffic between tiers
	1.2.4 WebSphere Funnel model
	1.2.5 Reduce thread/process switches and CPU load

	1.3 Project planning
	1.3.1 Plan for caching early in the design phase
	1.3.2 Roadmap
	1.3.3 System performance tuning
	1.3.4 Performance tuning skills
	1.3.5 Training
	1.3.6 IBM Tech-line assistance

	1.4 Performance terminology
	1.4.1 Response time
	1.4.2 Load
	1.4.3 Throughput
	1.4.4 Throughput plateau
	1.4.5 Throughput saturation
	1.4.6 Path length
	1.4.7 Bottleneck
	1.4.8 Scalability

	Chapter 2. Caching
	2.1 Caching overview
	2.1.1 How caches work
	2.1.2 Where caching is performed
	2.1.3 The value of Web caching
	2.1.4 Static versus dynamic object caching
	2.1.5 Full Web page versus fragment caching
	2.1.6 Cache considerations

	2.2 Introduction to DynaCache
	2.2.1 DynaCache history

	2.3 Enabling WebSphere Application Server DynaCache
	2.4 DynaCache technical overview
	2.4.1 Features of DynaCache

	2.5 Servlets and DynaCache
	2.5.1 Servlet technology
	2.5.2 Request attributes
	2.5.3 Servlet filters
	2.5.4 WebSphere Commerce caching filter
	2.5.5 JSP includes and forwards

	2.6 Configuring DynaCache using XML-based policies
	2.6.1 Basic structure of the cachespec.xml file.
	2.6.2 Cache entry element overview <cache-entry>
	2.6.3 Cache ID Overview
	2.6.4 Cache IDs and the cache hit
	2.6.5 Cache programming support
	2.6.6 Dependency ID overview <dependency-id>
	2.6.7 Invalidation rules overview <invalidation>
	2.6.8 Command-based invalidation
	2.6.9 Delay-invalidations
	2.6.10 The effect of updates to the cachespec.xml file

	2.7 Putting items into the DynaCache
	2.7.1 Caching servlets and JSPs
	2.7.2 Java objects and the command cache
	2.7.3 Command interface
	2.7.4 DynaCache full page caching
	2.7.5 DynaCache fragment caching

	2.8 Invalidation: Getting stale objects out of the cache
	2.9 The ConsumerDirect cachespec.xml file
	2.9.1 WebSphere Commerce ECActionServlet explained
	2.9.2 Cache-id definitions for ConsumerDirect

	2.10 Impact of memory cache on JVM garbage collection
	2.11 Configure disk offload
	2.11.1 Tuning the disk cache

	2.12 Displaying cache information
	2.12.1 Install the cacheMonitor.ear application
	2.12.2 Cache monitor viewing capabilities
	2.12.3 Cache monitor operational tasks

	Chapter 3. DynaCache invalidation
	3.1 DynaCache invalidation defined
	3.1.1 Invalidation overview

	3.2 DynaCache invalidation mechanisms and tools
	3.2.1 The invalidation process
	3.2.2 Cachespec.xml invalidation policies
	3.2.3 DynaCache invalidation API
	3.2.4 Scheduled invalidation
	3.2.5 Cache Monitor

	3.3 Invalidation best practices and techniques
	3.3.1 Time out considerations
	3.3.2 Cache monitor
	3.3.3 Dependency IDs
	3.3.4 Cache instances
	3.3.5 Warm shutdown
	3.3.6 Invalidation during the tuning phase
	3.3.7 Startup - use warm-up to create cache entries
	3.3.8 Impact of maintenance

	Chapter 4. Clustering DynaCache
	4.1 Data Replication Service
	4.1.1 Failover and caching
	4.1.2 DRS and failover
	4.1.3 DRS and caching

	4.2 Replication in DynaCache
	4.2.1 Specifying the sharing policy declaration in the cachespec.xml
	4.2.2 Troubleshooting

	4.3 Best practices

	Chapter 5. Caching strategy
	5.1 Site requirements
	5.2 Identifying cache objects
	5.2.1 Characteristics of cacheable objects
	5.2.2 Tools and methodology

	5.3 Cache design
	5.3.1 Full-page caching and fragment caching
	5.3.2 Cache instances

	5.4 Invalidating cached objects
	5.5 DynaCache and JSP

	Chapter 6. Advanced topics
	6.1 What is new in Version 6 of DynaCache
	6.1.1 Disk cache enhancements
	6.1.2 Cache policy enhancements

	6.2 Edge Side Include (ESI) caching
	6.3 Priming the cache
	6.4 When you must not cache
	6.5 Multiple caching pools and cache instances
	6.5.1 Cache instance
	6.5.2 Cache instance definition

	6.6 DynaCache tuning
	6.7 Memory caching
	6.7.1 Cache sizing formula
	6.7.2 Disk caching

	6.8 Setting custom system properties
	6.9 Monitoring DynaCache
	6.9.1 DeveloperWorks tooling for monitoring DynaCache

	6.10 Reference section
	6.10.1 Class element
	6.10.2 Name element
	6.10.3 Sharing policy
	6.10.4 Property
	6.10.5 Cache entry IDs
	6.10.6 Cache servlet filtering and Commerce DC_ variables
	6.10.7 ConsumerDirect jspStoreDir issue

	Chapter 7. FAQs
	7.1 DynaCache FAQs
	7.2 Clustering FAQs

	Part 2 DynaCache implementation
	Chapter 8. DynaCache tutorial
	8.1 Environment setup
	8.1.1 Software stack
	8.1.2 WebSphere Commerce setup
	8.1.3 Enable DynaCache service

	8.2 Installing the Cache Monitor
	8.3 Caching ConsumerDirect store
	8.3.1 Catalog subsystem URLs
	8.3.2 TopCategoriesDisplay
	8.3.3 CategoryDisplay
	8.3.4 ProductDisplay

	Chapter 9. Benchmarking DynaCache
	9.1 Overview
	9.1.1 Benchmarking benefits
	9.1.2 Benchmarking considerations
	9.1.3 Benchmarking DynaCache

	9.2 Benchmark creation process
	9.2.1 Setting up benchmark-creation tests
	9.2.2 Executing tests and recording results
	9.2.3 Interpreting and analyzing the test results

	9.3 Benchmarking example
	9.3.1 Test environment
	9.3.2 Test data set and scenario
	9.3.3 Execution and results

	9.4 Conclusion

	Chapter 10. Case study: A DynaCache anti-pattern
	10.1 Online shop project brief
	10.2 Issues encountered
	10.2.1 DynaCache not enabled
	10.2.2 Inability to cache page fragments
	10.2.3 Cache invalidations causing severe performance impacts
	10.2.4 Cached page sizes greater than 200Kb
	10.2.5 Large numbers of duplicated similar cache areas

	10.3 Lessons learned from the exercise
	10.3.1 Include DynaCache in the design of applications
	10.3.2 Retrofitting DynaCache will only be a limited success
	10.3.3 Use accurate workload traffic for simulation
	10.3.4 Invalidate as little as possible
	10.3.5 Warm up the cache

	10.4 Changes in the next version of the online shop
	10.4.1 Break all pages into cacheable fragments
	10.4.2 Reduce the number of dependency IDs
	10.4.3 Remove cache page expiries
	10.4.4 Incorporate DB triggers to update the CACHEIVL table
	10.4.5 Write a scheduled task to clean the CACHEIVL table
	10.4.6 Fix inefficiencies in the search fragments

	10.5 Conclusion

	Chapter 11. Seven steps to get started caching your WebSphere Commerce Web site
	11.1 Servlet caching
	11.2 Caching personalized fragments
	11.3 Excluding self-executing fragments from the cache
	11.4 Fragment caching
	11.5 Command caching
	11.6 Invalidation
	11.7 Replication

	Appendix A. Web services caching
	WebSphere Web service caching support
	WebSphere Commerce Web service caching
	Overview of the WebSphere Commerce Web services framework

	Caching the business logic
	Caching the response

	Appendix B. Caching in WebSphere Extended Deployment
	Introduction to WebSphere XD
	Dynamic operations
	High performance computing
	Extended manageability
	On-demand router

	WebSphere Commerce and WebSphere XD
	References

	Appendix C. Sales Center caching
	IBM Sales Center
	Caching the response in Sales Center

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

