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Abstract

Recently, the study of micro fluidic devices has gained much interest in various

fields from biology to engineering. In the constant development cycle, the need

to optimise the topology of the interior of these devices, where there are two

or more optimality criteria, is always present. In this work, twin physical sit-

uations, whereby optimal fluid mixing in the form of vorticity maximisation is

accompanied by the requirement that the casing in which the mixing takes place

has the best structural performance in terms of the greatest specific stiffness,

are considered. In the steady state of mixing this also means that the stresses

in the casing are as uniform as possible, thus giving a desired operating life with

minimum weight.

The ultimate aim of this research is to couple two key disciplines, fluids

and structures, into a topology optimisation framework, which shows fast con-

vergence for multidisciplinary optimisation problems. This is achieved by de-

veloping a bi-directional evolutionary structural optimisation algorithm that

is directly coupled to the Lattice Boltzmann method, used for simulating the

flow in the micro fluidic device, for the objectives of minimum compliance and

maximum vorticity. The needs for the exploration of larger design spaces and

to produce innovative designs make meta-heuristic algorithms, such as genetic
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algorithms, particle swarms and Tabu Searches, less efficient for this task.

The multidisciplinary topology optimisation framework presented in this ar-

ticle is shown to increase the stiffness of the structure from the datum case

and produce physically acceptable designs. Furthermore, the topology optimi-

sation method outperforms a Tabu Search algorithm in designing the baffle to

maximise the mixing of the two fluids.

Keywords: structural topology optimisation, design-dependent loads,

fluid-structure interactions, pressure loading problems, LBM, multidisciplinary

analysis

Nomenclature

2D Two-dimensional

3D Three-dimensional

BESO Bi-directional Evolutionary Structural Optimisation

BGK Bhatnagar-Gross-Krook

CPU(s) Computational Processing Unit (Seconds)

DNS Direct Numerical Simulation

ESO Evolutionary Structural Optimisation

FEA Finite Element Analysis

FEM Finite Element Method

FSI Fluid-Structure Interactions

LBE Lattice Boltzmann Equation

LBM Lattice Boltzmann Method

SED Strain Energy Distributions

SIMP Solid Isotropic Material with Penalisation

TS Tabu Search

1. Introduction

Over the last decade topology optimisation of continuum structures [1] has

matured to a level where it is slowly becoming a common design tool used by5
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industry [2]. The main idea is to find the optimal distribution of the material in

a predefined design domain considering an objective function and constraints.

Since its introduction [3], a wide variety of objective functions have been applied

with topology optimisation algorithms, diversifying their application to almost

all fields of engineering and design [4, 5, 6]. However, many applications are10

still open to research, such as design-dependent pressure loading problems [7].

Traditional topology optimisation methods seek to find the maximum stiff-

ness with a predefined fixed loading [8, 9, 10]. However, there are many appli-

cations in which the load location and magnitude vary as the design changes

during the optimisation process. One such application can be found in the15

design of micro fluidic mixers. Micro fluidic devices have two major fields of ap-

plication: firstly, in mechanical systems as flow control systems, pressure pumps

and many more; and secondly, as medical diagnostic devices, where the expres-

sion lab on a chip is commonly used [11]. Many medical technologies, such as

cell biology and protein crystallization, have advanced because of micro fluidics.20

Therefore, optimisation of such devices is imperative to maintain and improve

their impact across various fields. The implementation of topology optimisation

to the design of micro fluidic devices is limited due to the many design iter-

ations required, which necessitates the reduction of the problem size in order

to achieve acceptable execution times [12]. The problem is further complicated25

by Fluid-Structure Interactions (FSI) present between the mixing device and

the flow, making the design dependent on the pressure loading from the fluid.

The challenge in optimising a structure with an applied pressure load lies in

determining the loading surface on which the pressure acts. This becomes more

difficult for traditional density-based topology optimisation methods, such as30

Solid Isotropic Material with Penalisation (SIMP) [13] and homogenization [3].

In these methods, the structural boundaries, and hence loaded surfaces, are not

explicitly defined due to the presence of intermediate density elements [14].

In this article, an extended Bi-directional Evolutionary Structural Optimi-

sation (BESO) algorithm is applied to the design of micro fluidic mixers con-35

sidering FSI. A three-dimensional (3D) Lattice Boltzmann method (LBM) is
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used as the flow solver with two fluid species, extending beyond the basic two-

dimensional (2D) Stokes flow used in the literature. This presents a practical

example not yet seen in structural optimisation of design-dependent pressure-

loaded problems with fluid-structure interfaces. Finally, a novel formulation for40

the objective of viscosity maximisation is presented. To the best of the au-

thors’ knowledge, topology optimisation for viscosity maximisation is applied

here for the first time with an evolutionary topology optimisation procedure.

With the proposed framework, the design of micro fluidic devices can be easily

implemented with high fidelity algorithms incorporated at the conceptual and45

detailed design phases, efficiently coupling multiple disciplines.

The rest of this article is organised as follows. Sect. 2 outlines the necessary

background and literature for the manuscript. Sect. 3 presents the governing

equations for the fluid and structural models. Sect. 4 presents the topology

optimisation problems and outlines the BESO method employed in this work.50

In Sect. 5, the methodology for coupling the multiple disciplines and extending

the optimisation methods to the fluid-structure problem is outlined, along with

the introduction of the novel sensitivity analysis for vorticity maximisation. The

test case studied is then given in Sect. 6 along with a validation of the Lattice

Boltzmann method. The results from the BESO algorithm are given in Sect. 755

for the structural optimisation problem with design-dependent loads and for

the viscosity maximisation problem using a novel sensitivity analysis. Finally,

Sect. 8 concludes the article.

2. Background

A significant effort in attempts to solve topology optimisation problems con-60

sidering design-dependent pressure loads has been in the creation of the loading

surface using continuous topology optimisation techniques. In the literature,

several methods exist to achieve this; however, they can primarily be arranged

into two groups. The first group seeks to identify a fluid-structure bound-

ary and directly apply the loads onto the finite elements, such as is seen in65
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[14, 15, 16, 17]. Conversely, the second group of methods models the pressure

loading with alternative physics or utilise mixed formulations to avoid explicitly

defining a loading surface. Such examples can be seen in the work of Chen and

Kikuchi [18], which uses a fictitious thermal loading and a dryness coefficient

to identify the fluid and solid regions, or that of Zheng et al. [19], where they70

introduced a potential function modelled on the electric potential and applied

a fictitious electric field. Thus, the literature shows that the classic element

density-based topology optimisation algorithms become onerous when dealing

with FSI coupled systems.

An alternative branch of topology optimisation, which lends itself to the ap-75

plication of design-dependent pressure loads, is based on discrete methods. Yang

et al. [20] applied evolutionary methods [21] to the design of structures, which

included structural downward surface loads. They extend the BESO method

to applications in fluid-loaded structural problems. Recently, Picelli et al. [7]

extended this method to the application of general movable fluid-structure in-80

terfaces with design-dependent pressure loads. Later, Picelli et al. [22] applied

this method to topology optimisation problems for frequency maximisation con-

sidering acoustic-structure interactions. The discrete update scheme present in

evolutionary methods allows the use of separate modules for the fluid and struc-

tural domains with different governing equations. This overcomes a well-studied85

challenge associated with the classic density-based methods, dealing with mov-

ing multiphysics loads and interfaces. Therefore, discrete methods such as BESO

present great potential applications in the areas of multiphysics optimisation.

Level-set methods have also been applied to solve pressure loading problems

[23, 24, 25, 26], having the advantage that material boundaries are implicitly90

defined. Challis and Guest [27] propose a level-set method for the optimisation

of fluid flow. They show that the discrete nature of the optimisation prob-

lem leads to significant advantages over density-based topology optimisation

algorithms. Furthermore, the no-slip boundary condition can be implemented

directly, which is accurate and removes the need for interpolation schemes and95

continuation methods. This gives notable computational savings, since it only
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requires flow to be modelled in fluid regions.

From this literature it is evident that, although methods for design-dependent

pressure loads have been studied, most examples given are two-dimensional,

with no practical application, using simple Stokes flow solvers with linear pres-100

sure fields [7]. Research into density-based methods with design-dependent load-

ing is limited to methods for determining the load surface [17]. It has been shown

that this is easily circumvented by using discrete algorithms; however, continu-

ous approaches are more common in topology optimisation, as they guarantee

steady, monotonic convergence [9, 28]. This is emphasised by the lack of liter-105

ature on discrete algorithms being applied to design-dependent pressure loads

for structural topology optimisation [20, 7].

3. Fluid and structural models: governing equations

This work considers the static analysis of flexible structures in contact with

two non-reacting isothermal and incompressible fluids. The fluid-structure sys-110

tem is modelled using small strain and displacement theory of linearly elastic

isotropic solids, for the structural domain, and a viscid and rotational fluid using

the Lattice Boltzmann method [29], for the fluid domain. In this section, the

governing equations for the fluid and structural domains are briefly outlined.

3.1. Structural model115

The structural model used in this work is a fixed mesh linear static Finite El-

ement Analysis (FEA). This avoids the computational burden of fitted meshes,

which are often not suitable for topology optimisation, as the entire structure

would have to be frequently re-meshed, which is inefficient and not straight-

forward [30]. The structure is modelled using four-node shell elements, with120

membrane, bending and transverse shear stiffness. The structure is governed

by the following equation:

f = [K]u (1)

where f and u are the nodal force and displacement vectors respectively, and

[K] is the global stiffness matrix of the structure. The element stiffness matrices
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are formulated as isoparametric bilinear elements, as given in [31]. In this work,125

only the Dirichlet boundary conditions are applied to the solid domain, such

that:

u = u0 on S0 (2)

where u0 is the vector of prescribed displacements along the boundary of the

structure defined by S0. Therefore, Eq. 1 can be solved along with the boundary

conditions (Eq. 2) to get the structural displacements, u, as a result of an applied130

load, f.

For further discussion of the finite element method, the interested reader is

advised to seek out the work of Chandrupatla and Belegundu [32].

3.2. Fluid model

Compared to structural dynamics, fluid dynamics has only recently been135

considered in topology optimisation. Since its inception, in evolutionary [5] and

continuous [33] algorithms, several methods have been considered for modelling

the fluid domain. Typically, a fluid problem is discretised by finite volume, finite

element or discontinuous Galerkin methods [34]. These methods have difficulty

with complex 3D geometries, since they require fine-body-fitted meshes. More-140

over, these approaches are not easily applied to multiphase flows with variable

complex interfaces. Thus, the literature of structural topology optimisation with

fluid pressure loads is limited to simple Stokes flow models and 2D cases [7].

In contrast, Lattice Boltzmann methods are built around the concept of

solving a discrete Boltzmann equation on Cartesian grids. Therefore, complex145

geometries can be easily handled with the LBM [35]. Further, the LBM has

been proven to converge to the incompressible Navier-Stokes equations for the

low Mach number regime, and recently has gained broad recognition for the

simulation of micro fluids, multi-phase problems and flows through porous me-

dia [35, 36, 37, 38]. The LBM has, thus far, seen limited application in topology150

optimisation of flows [27, 39, 40, 41, 42], and, furthermore, it has not yet been

coupled with structural topology optimisation with design-dependent fluid pres-

sure loads.
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Motivated by the previous success of the optimisation of flow channels [27,

39, 43], a 3D LBM method is used as the fluid model in this work. The code has155

been validated against Navier-Stokes simulations using commercial codes [44]

and experimental analysis [45], thus proving the stability and accuracy of this

method. The fundamental concept of the LBM is to construct kinetic models,

based on Newton’s laws, which incorporate the essential physics of microscopic

processes, such that the macroscopic processes are correctly modelled. Hence,160

the fluid is considered as a finite number of molecules, the motion of which

is governed by Newton’s laws of dynamics. Since the number of molecules of

a particular gas in a volume of one metre cubed is usually in the order of

Avogadro’s number, it is near impossible to simulate all particles individually

[29, 46]. Therefore, the averages over a sample of molecules are simulated,165

passing from a microscopic to a mesoscopic scale, making it possible to obtain

macroscopic values, such as fluid density and velocity, from the moments of the

velocity distribution functions that express the distribution state of the particles.

The LBM solves a discretised Boltzmann equation, known as the Lattice

Boltzmann Equation (LBE), which can represent macroscopic properties by170

incorporating velocity distribution functions. The lattice used in this work is

the D3Q19 lattice, meaning three dimensions and 18 moving particles per node

with one rest node. The Boltzmann equation can be represented using the

velocity distribution function, f(x, t, γ), by:

Sh
∂f

∂t
+ γ · ∇f = Q(f) (3)

where Sh is the Strouhal number, t represents time, x and γ represent the175

gas particle position and velocity respectively, and Q, known as the collision

operator, exhibits the effect of collisions between the particles. For simplicity

and without losing any generality, the Bhatnagar-Gross-Krook (BGK) collision

model [47] is employed in this work; where the BGK collision model is formulated

as follows:180

Q(f) = − 1

τB
(f − feq) (4)

here τB is the dimensionless relaxation time, which represents the average time
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until the next collision. feq is a Maxwell distribution and can be expressed as

a local equilibrium to the Boltzmann equation:

feq =
ρ

T
d
2

exp

(
−|γ − u|

2

T

)
(5)

where ρ and u represent the fluid density and velocity respectively, T is the

temperature, assumed constant to satisfy the isothermal condition, and d is185

the number of spatial dimensions. From kinetic theory, it follows that the

macroscopic variables in the flow field can be derived from the moments of the

velocity distribution function with respect to the velocity field, E, such that:

ρ =

∫
E

fdγ, u =
1

ρ

∫
E

γfdγ (6)

The fundamental concept of the LBM is the discretisation of the infinite

set of particle velocities, γ, in Eq. 3. This allows the calculation of macroscopic190

quantities from the moments of a finite number of velocity distribution functions

to be obtained as solutions to the Navier-Stokes equations. Thus, the discreti-

sation of the Boltzmann equation (Eq. 3) in time and space at the lattice site x

is found by:

fα(x+γα ·∆t, t+∆t)−fα(x, t) = − 1

τB
· [fα(x, t)− feqα (x, t)] for α = 0, . . . , 18

(7)

where ∆t is the time step and α is the number of particles per node. If the195

velocity is low or the flow has a low Mach number, the discrete local equilibrium

distribution function, feqα , obtained by the Maxwell distribution (Eq. 5), can be

approximated as the Taylor expansion [48]:

feqα = wαρ

[
1 + 3 · γα · u+

9

2
(γα · u)2 − 3

2
γα · γα

]
(8)

where wα are the weights as reported in [49]. The density, ρ, and fluid velocity, u,

are obtained from the following moments of the velocity distribution functions:200

ρ =

18∑
α=0

fα, u =
1

ρ

18∑
α=0

γαfα (9)
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The left-hand side of the discretised Boltzmann equation performs the stream-

ing operation: the particles move from one node to the nearest neighbours along

the velocity directions, α. The right-hand side represents the collision term, eval-

uated using the BGK collision model (Eq. 4), and describes the redistribution205

of the particles at each node at every time step. The LBE is solved according

to these two processes, where the collision step is evaluated as:

fnewα = fα(x, t)− 1

τB
· [fα(x, t)− feqα (x, t)] (10)

where feqα (x, t) is evaluated using the Taylor expansion of the Maxwell distribu-

tion function (Eq. 8). The second step is the streaming operation, which means

the transfer of the particle distribution, fnewα (x, t), to the particle distribution210

function at the next time step:

fnewα (x+ γα ·∆t, t+ ∆t) = fnewα (x, t) (11)

The relaxation time, τB , is related to the kinematic viscosity, κ, of the fluid

via:

κ =
2 · τB − 1

6
(12)

Therefore, the relaxation time is limited to τB > 0.5, since this constrains

the viscosity to be always positive. Consequently, the following LBE is obtained:215

fnewα (x+ γα ·∆t, t+ ∆t) = fα(x, t)− 1

τB
· [fα(x, t)− feqα (x, t)] (13)

Eq. 13 is solved to simulate the fluid dynamics of the system. The to-

tal number of iterations used for the LBM simulations is 4000, since stability

has been demonstrated and validated against Navier-Stokes simulations using a

commercial code, ANSYS R© CFX [44], and experimental analysis [45].220

For a further discussion of the Lattice Boltzmann method, the interested

reader is advised to seek out the textbook by Succi [29].

4. Topology optimisation

The first part of this work is concerned with compliance minimisation of

micro fluidic mixers under fluid pressure loading with volume constraints. The225
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objective is to find the distribution of a given amount of material to obtain a

structure with maximum stiffness. Therefore, the topology optimisation prob-

lem for this case can be stated as:

Minimise:
1

2
uT [K]u

subject to: [K]u = f

n∑
i=1

xi ≤ V

x = [0, 1]

(14)

where x is the vector of design variables, xi, n is the total number of elements

in the model and V is a predefined volume fraction. Since a discrete algorithm230

is used, the design variable, xi, is forced to become discrete where xi = 1

represents solid and xi = 0 represents void or fluid material.

The second part of this work is concerned with vorticity maximisation of

micro fluidic mixers for a given Reynolds number and volume fraction. The

objective is to find the topology of the mixer that gives the highest vorticity in235

the mixing region. Therefore, the topology optimisation problem for this case

is given by:

Minimise: −−→ω

subject to: Re = Re0

n∑
i=1

xi ≤ V

x = [0, 1]

(15)

where −→ω is the vorticity of the flow in the mixing region, Re is the Reynolds

number of the flow, and Re0 represents a predefined Reynolds number. For

this case, a design variable of xi = 1 represents fluid elements, whereas xi = 0240

represents solid elements.

4.1. Evolutionary Structural Optimisation

The original Evolutionary Structural Optimisation (ESO) algorithm is mono-

tonic, meaning elements can only be removed from the design domain [21].
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These early methods are based on the successive elimination of inefficient ma-245

terial from the initial, over-sized, structure, gradually evolving towards the op-

timal design [50]. Although the ESO method has been applied to a wide range

of problems [51, 5], it is limited by only removing material from the structure.

The consequences of this are that the initial model must be significantly over-

designed, and if material is prematurely removed, it cannot be recovered [2].250

Subsequent ESO methods, referred to as BESO, allow material, if deemed ben-

eficial, to be re-admitted to the design domain [52]. Modern BESO algorithms

are convergent and mesh-independent [53], simultaneously removing and adding

material from and to the design domain until the constraints and a convergence

criterion are satisfied. A further improvement to BESO methods introduced the255

use of soft material to model the void elements in the FEA [54]. This method

became known as soft-kill BESO with the former method being hard-kill BESO.

In this article, the proposed methodology uses a soft-kill BESO method. This

contrasts to the work of [7], which used a hard-kill BESO method, where the

fluid and structural models were solved together, and soft elements could there-260

fore not be handled. The work outlined in this article takes advantage of the

different governing equations (Sect. 3), using separate modules for the fluid and

structural domains, with information being passed between the two modules

(Sect. 5) to implement a coupled solution.

4.2. Mesh independency and checkerboarding265

In FEA, the change in the stiffness of the structure due to the removal of

an element is equal to the element strain energy [55]. This change is defined as

the element sensitivity for the compliance minimisation problem:

αe =
∂c

∂xi
=

1

2
pxp−1

i uTe [K]eue (16)

where c is the compliance, p = 3 is the penalisation factor, and the subscript e

represents elemental values. To smooth the element sensitivity numbers across270

the entire domain, a filter scheme is used that alleviates the problem of mesh-

independency and checker-boarding, which result from the sensitivity numbers
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becoming discontinuous across the element boundaries. The filter scheme is sim-

ilar to that presented by Sigmund and Petersson [56]; however, nodal sensitivity

numbers are used when calculating the updated element sensitivity numbers275

based on the surrounding structure. The nodal sensitivity numbers are defined

as the average of the element sensitivity numbers connected to the node:

αnj
=

M∑
i=1

wiαei (17)

where M is the number of elements connected to the jth node and αei is the ith

element sensitivity number (Eq. 16). The weighting factor of the ith element,

wi, is defined with respect to its distance from the jth node, as:280

wi =
1

M − 1

(
1− rij∑M

i=1 rij

)
(18)

where rij is the distance from the centre of the ith element to the jth node.

The nodal sensitivity numbers (Eq. 17) are then converted to smooth element

sensitivities using a mesh-independency filter. A filter radius, rmin, is defined

to identify the nodes that will have an effect on the element sensitivity. The

value of rmin must be large enough such that the sub-domain, Ω, covers at least285

one element. For the purpose of this study, rmin = 3 times the spacing of the

LBM lattice and must remain constant for all mesh densities. Nodes located

inside Ω contribute to the smoothing of the element sensitivity, by:

αei =

∑N
j=1 w(rij)αnj∑N
j=1 w(rij)

(19)

where N is the total number of nodes in the sub-domain, Ω, and w(rij) is the

linear weighting factor, defined as:290

w(rij) = rmin − rij j = 1, 2, . . . , N (20)

The filter scheme smooths the nodal sensitivity numbers over the entire

design domain, including void regions. Therefore, it effectively addresses the

mesh-dependency and checkerboard problems. However, the objective function

and corresponding topology may not be convergent. In order to overcome this

13



problem, Huang and Xie [53] showed that the sensitivity numbers (Eq. 19)295

should be averaged with their previous values, thus:

αei =
αitrei + αitr−1

ei

2
(21)

where itr is the current iteration number. Therefore, the updated sensitivity

number includes the history of the sensitivity information from previous itera-

tions.

4.3. Convergence300

The BESO method defines a target volume for each iteration, defined as:

Vitr+1 = Vitr(1± ER) (22)

where ER, known as the evolutionary ratio, is a percentage of the current

structural volume, and increases or decreases Vitr+1 towards the desired volume

constraint, V , defined in Eq. 14. This, in turn, sets the threshold, αth, of the

sensitivity numbers. Therefore, solid elements are switched to void/fluid when:305

αei ≤ αth (23)

and void/fluid elements are switched to solid when:

αei > αth (24)

The amount by which the volume of the structure can increase between

iterations, AR, is restricted by a maximum addition ratio ARmax. Once AR >

ARmax, only the elements with the highest sensitivity numbers are added, such310

that AR = ARmax. Then the elements with the lowest sensitivity numbers

are removed, in order to satisfy the target volume Vitr+1. Void/fluid elements

can have a higher sensitivity than solid elements due to the soft material model,

which adds a small fictitious stiffness to these elements in the structural analysis.

Due to the mesh-dependency filter, void/fluid elements near solid regions with315

high sensitivity numbers have their sensitivities increased by the elements inside

their sub-domain Ω.
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Once the volume constraint is satisfied, the iteration target volume remains

constant at V . The topology evolves until a convergence criterion is satisfied.

This is defined as:320

∆C =

∑4
k=0 Citr−k −

∑4
k=0 Citr−5−k∑4

k=0 Citr−k
≤ δ (25)

where δ is a predefined error tolerance, C is the total compliance and itr is the

current iteration of the optimisation algorithm. Eq. 25 evaluates the change in

the compliance for the last 10 solutions. Therefore, the solution is said to be

converged if the change in the objective is minimal. More details on evolutionary

structural optimisation algorithms can be found in the latest textbooks [57] and325

review papers [2] on the subject.

5. Coupled fluid-structure system

This section outlines the extensions made to the topology optimisation al-

gorithm (Sect. 4) such that the fluid-structure interactions are considered in

the structural design of the micro fluidic mixer. First, the numerical frame-330

work, which shows the method for coupling the fluid and structural solvers, is

outlined. This is followed by the derivation of the updated sensitivity number

for the compliance minimisation problem with a design-dependent fluid pres-

sure load. Finally, the novel sensitivity analysis for vorticity maximisation is

introduced.335

5.1. Numerical framework

The numerical framework, which couples the topology optimisation algo-

rithm (Sect. 4) with the Lattice Boltzmann flow solver (Sect. 3.2) and structural

model (Sect. 3.1), is shown in Fig. 1. The problem is defined, setting the initial

topology and boundary conditions for the test case. The geometry is then in-340

put into the flow solver, which outputs the pressure, and ultimately the forces,

being applied to the topology. The current topology and loads are passed onto

the Finite Element Method (FEM) module, which defines the structural bound-

ary conditions and outputs the displacements and compliance of the structure.
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This is passed onto the topology optimisation algorithm, which calculates the345

sensitivities and updates the topology of the structure for the next iteration.

Fig. 1. Numerical framework for coupled LBM-topology optimisation.

The numerical framework (Fig. 1) provides two possible ways of looping.

The first is between the topology optimisation algorithm and the FEM module,

which is performed at every iteration in the optimisation process. The second

loop passes the updated topology back through the LBM flow solver. The main350

computational burden of the numerical framework (Fig. 1) is the LBM solver.

Therefore, the computational efficiency can be increased by restricting the sec-

ond loop to only be performed every nLBM iterations. However, this reduces the

degree of coupling, and hence, the impact of the FSI on the algorithm. Thus, it

is left for future work to quantify the impact of this coupling on the objective355

and computational efficiency of the algorithm. Further, to reduce the compu-

tational burden of the coupled LBM-topology optimisation method, identical

grids are used in the LBM and FEA analyses, thereby avoiding complex, time-

inefficient, spline methods to transfer the loads between the structural and fluid

modules and re-meshing of the domains [58].360

5.2. Compliance sensitivity analysis

For the design of micro fluidic devices, modifying an element leads to changes

in the load vector, which need to be considered in the sensitivity analysis. The
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sensitivity analysis (Eq. 16) is therefore modified, such that the change in the

load vector is considered [20, 7]:365

αe =
1

2
pxp−1

i uTe [K]eue + pxp−1
i uTe ∆fe (26)

where ∆fe is the change in the element load vector. Taking the isoparametric

bilinear elements used in this work, the load change in one element for a fluid

pressure load is given by:

∆fe =
1

4
piAi {1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 . . .)T24×1 (27)

where pi is the pressure load on the element and Ai is the elemental area. It is

assumed that the flow travels from left to right, i.e. in the positive x direction,370

and that the baffle plate is perpendicular to the flow, as shown in Fig. 2. Eq. 26 is

similar to the sensitivity analysis derived in [7], with some noticeable differences,

however. First, the algorithm in [7] is two-dimensional, so the flow and solid

domains are parallel, not perpendicular, as is the case here. This means that the

components of the load vector change. In contrast, in this study the magnitude375

of the load and the surface it acts on change. However, the direction of the

load remains constant, as it is always perpendicular to the surface, since the

problem is three-dimensional [20, 59], and, in consequence, a coupling matrix is

not required [7].

Another difference between the sensitivity analysis of this work (Eq. 26)380

and [7] is that Picelli et al. use a hard-kill BESO algorithm, whereas a soft-kill

algorithm is used here. Thus, the sensitivity analysis derived in [7] is discrete,

i.e. it only has two states, whereas in this work the design variable, xi, must

be included. The sensitivity analysis has therefore been modified for 3D and

continuous topology optimisation problems.385

5.3. Vorticity sensitivity analysis

The second problem analysed in this work is maximising the vorticity, or mix-

ing of the two fluid species, for a given Reynolds number and volume fraction

(Eq. 15). This objective is imperative to the operation of micro fluidic mixers
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since their function is to efficiently mix two fluid species. Thus, as the flows390

have low Reynolds numbers, typically lower than 1000, vorticity is an efficient

measure of the degree of mixing, as shown in the work of [60] or [45]. Recently,

Romero and Silva [61] used the method of moving asymptotes to optimise the

shape of the channel between two blades of a rotor to minimise the energy dis-

sipation and vorticity. They noted that the combination of advanced numerical395

techniques, such as computational fluid dynamics and topology optimisation,

can be an efficient tool to obtain a significant enhancement in the rotor design

[61]. Kasumba and Kunisch [62] propose the use of a translation invariant cost

functional for the reduction of vortices in the context of shape optimisation for

a fluid flow domain. They derive different shape sensitivity derivatives based400

on different cost functionals, showing striking differences in the optimal shapes

found using the different derivations [62]. In this work, the vorticity is mea-

sured using the circulation method, which computes a circulation integral over

the eight nearest neighbour velocities. This method was chosen over the least-

squares approach as it has been shown to more accurately reproduce the Direct405

Numerical Simulation (DNS) field [63]. Therefore, the objective function can

be expressed through the functional given by [62]:

J(γ) =
1

2

∫
Ω

|curl γ|2dΩ (28)

where γ is the velocity field of the flow. The objective function (Eq. 28) has the

advantage that the vorticity, curl γ, is Galilean invariant [62], i.e. it is invariant

under changes of frames which move at a constant speed relative to each other.410

By using this objective function (Eq. 28), vortices in the flow can be thought

of as regions of high vorticity magnitude. Therefore, the sensitivity numbers

are the reciprocal vorticity values evaluated at each element, since we want to

maximise (rather than minimise) the vorticity, which gives:

αe = max(−→ω )−∆γTe x
p−1
i ∆γe (29)

where ∆γe is the change of the element velocity vector, defined as:415

γe = {∆γx,∆γy,∆γz,Wx,Wy,Wz}T (30)
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where x, y and z are the spatial components and W is the circulation. Therefore,

fluid elements are present where the vorticity values are high and solid elements

are formed in regions of low vorticity, such that the constraint on the predefined

volume fraction, V , is satisfied. The sensitivity number (Eq. 30) is then used in

the BESO formulation, outlined in Sect. 4, to obtain the topology of the micro420

fluidic mixer that gives a maximum vorticity.

6. Models and validation

This section presents the results of the BESO algorithm (Sect. 4) for the

structural optimisation problem with design-dependent loads. First, the case

study analysed in this work is detailed. This is followed by a validation of425

the LBM solution with previous numerical and experimental studies [44, 45].

Finally, the coupled results are given along with an analysis of the improvement

in the objective versus the computational expense of the algorithm.

6.1. Case study

The model used in this study is a baffled micro-reactor, as depicted in Fig. 2.430

The model consists of a tubular vessel fitted with a fuel inlet tube, located co-

axially in the main vessel, and a multi-holed baffle plate through which the

oxidiser is introduced. The fluid domain and layout of the micro-reactor model

are shown in Fig. 2.

The dimensions of the fluid domain (Fig. 2) are expressed in LBM nodes,435

where the dimensions of the lattice are 680×73×73 lattice units (2795×300×300

μm), with additional nodes used for the wall, in the x, y and z directions,

respectively. The baffle is located 60 lattice units (300 μm) downstream of the

flow inlet (Fig. 2). The imposed inlet conditions are the velocities of the flow in

the inlet tube and annulus area. At the outlet a convective boundary condition is440

applied, based on the velocity. The no-slip condition at the walls is implemented

by modelling them as full-way bounce-back. The mass flow rate between the

inner tube and annulus is set to 5% to mimic the experiments performed by

Moghtaderi [45].
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Fig. 2. (a) Fluid domain [64]; (b) Layout of micro-reactor model [64]; (c) Multi-holed baffle

plate.

In this section, the topology optimisation algorithm (Sect. 4) is applied to445

the multi-holed baffle plate (Fig. 2c) to maximise its stiffness for a given volume

fraction. FEA (Sect. 3.1) is therefore performed on the baffle only. The plate

is modelled using four-node quadrilateral elements, with all six degrees of free-

dom active, so membrane, bending and transverse shear stresses are present.

A clamped boundary condition, i.e. all six degrees of freedom are restrained,450

is applied along the boundary of the baffle. The boundary of the central hole

is designated as non-designable for the topology optimisation, since this is de-
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termined by the fuel line and inlet conditions, which have been constrained in

the fluid domain (Fig. 2a) to be identical to the previous numerical [44] and

experimental [45] studies.455

6.2. Validation of Lattice Boltzmann method

To validate the present LBM simulations, the test case (Fig. 2) with the

multi-holed baffle plate is performed for various baffle (d2) and fuel inlet (d1)

diameters. The same test case was used in previous numerical [60, 44] as well

as experimental [45] studies. Therefore, this provides a baseline for the present460

study. Fig. 3 shows the velocity map from this study for the reference geometry

as defined in [45] (d1 = d2 = 60 μm and R1 = 75 μm, see Fig. 2).

Fig. 3. Velocity map for micro fluidic mixer with the reference geometry.

The velocity vectors show two pairs of counter-rotating regions of recircu-

lation, one pair immediately after the baffle, one region is at the top and the

other at the bottom of the mixer, and another pair just after the exit of the465

fuel inlet line (Fig. 3). This flow pattern is similar to that demonstrated by the

experiments in [45], where the recirculation zones and reverse flow near the cen-

tral tube outlet was observed. Hence, this agreement indicates that the LBM
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simulations are able to reproduce the flow characteristics of the micro fluidic

mixer.470

Both the experimental study by Moghtaderi et al. [45] and the numerical

study by Woodfield et al. [60] examined the impact of the baffle plate geometry

on the mixing phenomena. First, the influence of the fuel inlet diameter (d1) on

the reverse flow region immediately after the exit of the fuel inlet line is investi-

gated. The velocity map from this study with a fuel inlet diameter reduced by475

50% (d1 = 30 μm) from that of the reference geometry is illustrated in Fig. 4.

Fig. 4. Velocity map for micro fluidic mixer with a 50% reduction in the fuel inlet diameter.

The results from this study show that the effect of the reduced fuel inlet

diameter on the reversed flow is to reduce the recirculation and reverse flow

zones after the exit of the fuel inlet line (Fig. 4). Therefore, the amount of

mixing compared with the reference geometry (Fig. 3) is reduced. This behavior480

was also observed in the experimental results of [45]. They attributed this to

the reduction in the fuel inlet diameter increasing the velocity of the flow in the

fuel line. These results are also in agreement with the numerical simulations of

[60]. They too showed that the reverse flow and recirculation region is reduced
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when the fuel inlet tube diameter is reduced. Lastly, the impact of the baffle485

hole diameters (d2) on the flow characteristics of the micro fluidic mixer is

studied. The velocity map from this study with a 50% reduction in the baffle

hole diameters is given in Fig. 5.

Fig. 5. Velocity map for micro fluidic mixer with a 50% reduction in the baffle hole diameter.

The velocity through the baffle holes is greatly increased when the diameters

are reduced (Fig. 5). The effect of this is to cause a reduction in the reverse flow490

and recirculation zone at the outlet of the fuel line compared with the reference

geometry (Fig. 3). However, the other pair of counter-rotating recirculation

zones, also seen in the reference geometry case, have, for this case, become larger.

A similar behaviour was found in the experimental results of [45]. They showed

that any deviation from the reference geometry results in a significant departure495

from the flow characteristics of the initial case. Likewise, in the numerical study

of [60], reducing the baffle hole sizes produced an increase in the velocities and

an expansion in the reverse flow region, eliminating the recirculation zone at

the exit of the fuel line. Therefore, it is suggested that, for improved mixing,
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an optimal velocity ratio between the fuel and oxidizer streams exists. From500

this validation study, it is clear that a low fuel velocity compared to that of the

oxidizer is valuable for enhanced mixing. The baffle design that produces such

an optimum is the aim of the optimisation problem solved in Section 7.2.

7. Results and discussion

7.1. Structural topology optimisation505

A BESO algorithm (Sect. 4) is implemented with fluid-structure coupling

present (Sect. 5). Thus, the pressure loads on the structure are updated by

performing the LBM with the updated topology after every iteration through

the optimiser. Therefore, extra complexities, which will carry a computational

burden, are involved in this analysis compared to conventional optimisation510

problems (Sect. 2). However, by modelling the fluid-structure interactions, a

more realistic implementation of the physics of the problem is considered, and

so the final topology should be superior to that found if the coupling was not

considered. This has been demonstrated in previous studies that considered

design-dependent pressure loads in their analyses [15, 7, 65].515

The initial structure is shown in Fig. 2c. The optimisation parameters (evo-

lutionary ratio, ER = 0.02, volume constraint, V = 0.58, maximum addition

ratio, ARmax = 0.02, and error tolerance, δ = 0.001) are defined before the

BESO algorithm (Sect. 4) is applied. The initial and final topologies are illus-

trated in Fig. 6.520

The final topology shows a strikingly different design compared to the ini-

tial topology (Fig. 6). The six holes from the initial topology are kept; however,

their shape has been modified from the initial circular holes to rounded rect-

angular and triangular cut-outs. Furthermore, their sizes have been reduced

allowing two more triangular holes, along the x-axis, to be created. Therefore,525

the material around the baffle is distributed more evenly, reducing the overall

strain energy density in the structure. The strain energy distributions for the

initial and final topologies are given in Fig. 7.

24



(a) Initial (b) Final

Fig. 6. Initial and final BESO-found topologies for the baffle with design-dependent loading

for compliance minimisation test case.

(a) Initial (b) Final

Fig. 7. Strain energy distributions for the baffle with design-dependent loading for the initial

and BESO-found designs of the compliance minimisation test case.

The strain energy density of the initial topology is significantly higher com-

pared to the final topology. The regions of concentrated strain energy in the530

initial topology are more severe, having a larger difference compared to the rest

of the material. The compliance of the initial topology is 5.13×109 Nm, whereas,

for the coupled topology, the compliance is reduced to 2.281 × 109 Nm. Thus,

the optimiser has produced a final topology that uses the material of the baffle

much more efficiently. Hence, the optimiser with the fluid-structure coupling is535
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able to improve the design of the baffle, reducing the compliance and energy

concentrations in the structure.

It is important to note that, for the final topology with fluid-structure cou-

pling present, the structural symmetry, and hence fluid loading about the x-

and y-axes, becomes identical (Fig. 7). The initial topology is symmetric about540

both the x- and y-axes (Fig. 7a), but not in the same way, i.e. if the topology

is rotated 90◦ it does not remain the same. Hence, initially the loading is not

symmetric about the x-axis in the same way as it is about the y-axis. Therefore,

if the coupling was not present, the loading would not be updated, and this dif-

ference in the symmetry would remain present for the entire analysis. Thus, the545

final topology would remain symmetrical about both the x- and y-axes. This

is known as 2-fold rotational symmetry, SO(2), about the centre point. How-

ever, the coupled solution updates the fluid mechanics, and hence the pressure

loading on the structure. Since there is no physical difference about the hori-

zontal and vertical axes, there is nothing present to introduce asymmetry into550

the topology. Therefore, it makes physical sense for the fully coupled solution

to have 4-fold rotational symmetry, SO(4), about the centre point. Hence, from

a physical standpoint, the coupled topology is shown to be optimal.

The convergence history for the topology optimisation problem with a design-

dependent pressure loading is given in Fig. 8. Due to the fluid-structure cou-555

pling, steep drops and jumps in the objective are observed when the updated

topology is run back through the fluid solver. It is found that initially the step

changes in the objective are larger, i.e. in the earlier iterations through the opti-

miser, since larger changes in the topology occur in the first iterations, whereas

near convergence only small changes occur. Thus, in the first few iterations560

the design, and hence pressure load, changes significantly resulting in large dif-

ferences in the objective function (Eq. 26). The sequence takes 179 iterations

to converge. Since the convergence criterion assesses the change in the objec-

tive in the previous 10 iterations (Sect. 4.3), a minimum of 10 LBM runs are

performed for the convergence of the algorithm. This results in a tougher con-565

vergence as the change in the pressure loading from the previous 10 iterations
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Fig. 8. Convergence history for the baffle with design-dependent loading using BESO for the

compliance minimisation test case.

must also be minimal. Consequently, for the convergence of the algorithm, the

last 10 LBM runs are considered. Hence, both the objective (structural) and

pressure loads (fluid) must demonstrate minimal change for convergence to be

achieved. Therefore, both the fluid and structural physics are converged not570

just the structural, as would be the case for non-design dependent loads.

It is important to note that once the fluid dynamics converge, so too do

the structural dynamics of the system. This is seen in the convergence history

(Fig. 8) by observing that, as the sequence progresses, the jumps in the objective

are reduced. This is most clearly seen in the latter iterations (Fig. 8), where,575

after iteration 120, the history flattens out and the update runs, through the

LBM, produce very small differences in the objective. Therefore, it is plausible

that a looser coupling, where the LBM is solved less often, may result in com-

plementary final topologies, as both the fluid and structural domains converge,
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resulting in a similar final loading and hence topology. This would be a signifi-580

cant benefit of the proposed algorithm. If increasing the degree of coupling only

results in small improvements in the objective, albeit at a large computational

penalty, then lower degrees of coupling could be implemented with only small

sacrifices in the quality of the objective and with large improvements in com-

putational efficiency. This becomes significant when several designs are being585

considered at the conceptual design stage. For the sake of brevity, the testing

of this hypothesis is left for future work, hence the focus of this study is on the

development of the algorithm and physical analysis of the system.

The initial structure has a compliance of 5.13 × 109 Nm, so the compli-

ance is reduced by approximately 56% when using the coupled BESO algorithm590

presented in this article. Furthermore, the main computational burden comes

from the LBM runs, since one LBM run takes approximately 3000 CPU(s),

compared with 8 CPU(s) for the optimisation routine per optimisation run.

Hence, to achieve convergence the BESO algorithm takes approximately 6 days,

4 hours and 48 minutes when performed on an Intel R© Core
TM

i7-2720QM CPU595

architecture @ 2.20GHz when using 4 cores in parallel for the LBM simulations.

Therefore, at this computational expense, the algorithm is not suitable for use

at the preliminary design stage where hundreds, or even thousands, of designs

are being considered. However, more computationally efficient methods could

be implemented, with only a small number of designs being run through the600

fully coupled BESO algorithm to determine the final design.

7.2. Vorticity maximisation

The final analysis of this study presents the results of the topology opti-

misation algorithm (Sect. 5.3) for the fluid optimisation problem. First, the

initial topology is presented, along with the results from a Tabu Search (TS)605

meta-heuristic algorithm on the same problem, used for comparison. The topol-

ogy optimisation algorithm, with a novel sensitivity analysis, is then applied to

the fluid problem, and the results are analysed and compared with the meta-

heuristic solutions. Finally, a brief comparison of the topologies produced by

28



the two different criteria of this work is given.610

To verify the novel formulation derived in Sect. 5.3 for the maximisation of

vorticity in the flow, using a BESO algorithm, a TS algorithm was applied to the

optimisation problem. The TS algorithm used a level-set parameterisation to

maximise the vorticity and minimise the pressure difference of the flow. Again,

the centre hole was designated as non-designable material. The Reynolds num-615

ber of the flow was constrained to Re0 = 100, and the volume fraction was set to

have a maximum value of V = 0.8, the same value used in the BESO algorithm.

The corresponding Pareto front is displayed in Fig. 9.

Fig. 9. Pareto front produced by the TS algorithm for the vorticity maximisation design

(data produced by Dr Tiziano Ghisu).

The Pareto front (Fig. 9) shows a clear trade-off between vorticity and pres-

sure difference. As the pressure difference is increased so is the vorticity. The620

maximum vorticity achieved using TS is 5915 s−1 in 500 LBM evaluations. To

ensure the topology optimisation algorithm does not have a clear advantage over

the TS method, the starting topology is chosen as one of the previous solutions
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from the TS optimisation. The solution chosen is the one with the lowest vor-

ticity, so that the starting topology is not near the final solution. The chosen625

solution is indicated in Fig. 9 as the data point with a circle around it. The

initial topology thus has a vorticity of 4856 s−1. The volume fraction, V = 0.8,

and Reynolds number, Re0 = 100, are maintained from the TS optimisation.

The optimisation parameters used are: evolutionary ratio, ER = 0.02; maxi-

mum addition ratio, ARmax = 0.02; error tolerance, δ = 0.001. The initial and630

final structures for the fluid topology optimisation problem are shown in Fig. 10.

(a) Initial (b) Optimal

Fig. 10. Initial and final topologies for maximum vorticity.

The initial baffle design (Fig. 10a) has large holes, which allows the fluid to

flow past the baffle almost unimpeded. Hence, the pressure difference is low,

but so too is the vorticity. The final topology (Fig. 10b) displays a much more

interesting design: the baffle becomes symmetrical about the ±45◦ diagonals,635

with two interestingly shaped holes positioned along one of the diagonals. Unlike

the compliance objective, vorticity is not a symmetric phenomenon, and thus the

final structure is not SO(4). In fact, [44] observed that the “strong symmetrical

features” seen in the initial topology (Fig. 10) are disadvantageous for the

effective mixing of the flows.640

The convergence history for the fluid topology optimisation problem is given
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Fig. 11. Convergence history for the vorticity maximisation problem.

in Fig. 11. The first 15 iterations show a rapid increase in vorticity, as material

is added to reduce the size of the fluid region. Once the volume constraint is

reached, the algorithm adds and removes material, until the vorticity slowly

flattens out and convergence is achieved. The solution takes 76 iterations to645

converge, with the final structure having a vorticity of 6060 s−1. This is a

2.5% improvement compared to the optimum found using the TS algorithm

(Fig. 9) and a 25% improvement on the initial design. The TS algorithm, being

a meta-heuristic method, is computationally restrictive compared to topology

optimisation algorithms [9], requiring significantly more iterations to achieve650

convergence, 500 compared with 76 for the topology optimisation algorithm.

Thus, such methods are confined to parametric design variables, unlike topology

optimisation algorithms, which can handle 10, 000 or more design variables [9].

The corresponding flow solutions for the initial design and optimal designs found

by both the BESO and TS algorithms are given in Fig. 12.655
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(a) Initial design

(b) Optimal design found by BESO algorithm

(c) Optimal design found by TS algorithm

Fig. 12. Flow patterns for the initial and optimal designs for the maximum vorticity problem.

The flow speed of the initial design (Fig. 12a) is so low that it is impossible

to distinguish any flow pattern(s) for the chosen scale. This is because the

baffle has as little structure as possible, so as not to impede and effect the flow

behaviour. Mixing is not induced by the baffle, which is why the vorticity is so
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low. In comparison, the optimal designs have much higher vorticity and clear660

flow patterns (Fig. 12b). As the flow approaches the baffle it is accelerated to

more than double its initial velocity. This increase in energy promotes mixing

downstream of the baffle where the two flows combine. This can be more clearly

seen in the 3D flow visualisation plots, shown in Fig. 13.

Comparing the flow of the initial and final structures (Fig. 13), it can be665

seen that the optimal baffle designs clearly promote mixing, by increasing the

velocity of the flow, as suggested by [60, 44, 45] (Sect. 7.1). This is confirmed

by analysing the streamlines produced by the different baffle topologies, shown

in Fig. 14.

Clearly the initial topology does not produce significant mixing, since the670

streamlines are almost unchanged before and after the baffle, having a dominant

x component (Fig. 14a). However, by comparing Figs. 14b and 14c, it is seen

that downstream of the baffle mixing is promoted. For the BESO topology

(Fig. 14b), mixing occurs mainly along the 45◦ diagonal that does not contain

the holes, whereas, for the TS topology (Fig. 14c), mixing occurs around the675

holes. Since the area of mixing is larger in the BESO topology, as the spacing

between its two holes is larger than that between the 6 holes of the TS topology,

the BESO design is able to increase the vorticity more than the TS one. Further,

by comparing the flow paths for the optimised topologies using the BESO and TS

algorithm (Figure 15), it is seen that the BESO design has larger recirculation680

zones, indicating a bigger mixing region.

Due to its flexibility and ability to explore a larger design space, the topol-

ogy optimisation algorithm has produced an innovative baffle design, which

surpassed the TS design. The optimiser only took 76 iterations to achieve con-

vergence, whereas meta-heuristic algorithms, such as the TS method, require685

many more function evaluations [66], 558% more in this case.

Finally, it is noted that the topologies produced for the two single-objective

optimisation problems of this manuscript are considerably different. This is

more easily shown by comparing the strain energy distributions (SED) and flow

fields for the fully coupled BESO-found designs with compliance and vorticity690
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objectives (Fig. 16).

Clearly, the strain energy is significantly lower for the topology with a mini-

mum compliance objective (Fig. 16a). When plotted on the same scale (Fig. 16)

the strain energy features are almost unidentifiable (Fig. 16a). In contrast, the

structure with a vorticity maximisation objective has comparatively clear con-695

centrations and portions of material where the strain energy is low. The final

compliance of the two structures is 2.281 × 109 and 5.8494 × 109 Nm for the

compliance and vorticity objectives, respectively. It is clear that the flow is ac-

celerated more by the baffle designed with a vorticity objective (Fig. 16d). The

baffle designed with a compliance objective (Fig. 16c) has less noticeable flow700

features when plotted on the same scale as the baffle designed with a vorticity

objective. Consequently, the vorticity is 5381 s−1 and 6060 s−1 for the final

designs with compliance and vorticity objectives, respectively. Thus, the objec-

tives are conflicting. Ideally, both objectives should be considered in the design

of the micro fluidic mixer, so that a trade-off can be made. A multi-objective705

optimisation of this sort is beyond the scope of this study and is left as future

work.

8. Conclusions

A numerical framework for a coupled fluid-structure topology optimisation

problem with design-dependent pressure loads has been presented, with the baf-710

fle plate of a micro fluidic mixing device being optimised. A BESO topology

optimisation algorithm has been applied for a minimum compliance objective,

with fluid-structure coupling. A BESO algorithm was developed for fluid opti-

misation with a maximum vorticity objective, to optimise the performance of

the mixer. To the best of the authors’ knowledge, this has not yet been seen715

in the literature of topology optimisation. The BESO algorithm was used due

to its discrete nature, and hence clear description of fluid-structure boundaries.

Previous studies have focused on simplified 2D problems due to the intensive

computations required. The application of topology optimisation to the de-
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sign of micro fluidic devices has also been handicapped by the numerous design720

iterations required, with problem sizes being restricted so that acceptable com-

putation times are achieved [12].

A coupled analysis was also performed with the BESO topology optimisation

algorithm, where the pressure loads on the baffle were updated with the change

in structural topology. Thus, the fluid-structure interactions were considered in725

the optimisation of the baffle. It was shown that the coupled algorithm was able

to significantly improve the objective compared to the initial design. Further-

more, it was shown that the final design produced by the optimiser was physi-

cally acceptable, since 4-fold rotational symmetry is observed even though the

initial structure has only 2-fold rotational symmetry. Therefore, it is concluded730

that the fluid-structure interactions have a notable effect on the optimisation

problem. This was due to the convergence of both the fluid and structural do-

mains in the coupled analysis. Thus, it is thought that the solution may not be

sensitive to the degree of coupling. It was shown that the fully coupled BESO

algorithm has a significant computational expense, which means it is not suit-735

able for evaluating many designs, as is seen at the preliminary design phase.

However, it was noted that the main computational burden of the algorithm is

the LBM. Therefore, it may be possible to use lower degrees of coupling, with

small penalties on the objective, but at a comparatively lower computational

cost. The optimisation process and solution quality can be further improved by740

initially setting a loose coupling and tightening the constraint by increasing the

coupling once the general optimal topology has been identified. Thus, at the

conceptual design phase, where several structural concepts are being considered,

this analysis would become beneficial. The sensitivity of the algorithm to the

degree of coupling along with other types of topology optimisation methods, i.e.745

SIMP and level-set, is left for future work.

Finally, a BESO algorithm with a novel sensitivity analysis for the maximisa-

tion of the vorticity in the fluid was developed. This method was compared with

a TS meta-heuristic algorithm. It was found that the final structure produced

by the BESO method was able to increase the vorticity of the flow, outper-750
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forming the TS design by 2.5%. The BESO algorithm produced an exotic and

innovative final design in a relatively small number of iterations, exploring a

larger design space than the TS method.

The work presented here brings high-fidelity methods, such as Lattice Boltz-

mann flow simulations, forward to the conceptual/preliminary design stage.755

Furthermore, multiple disciplines are coupled in a topology optimisation anal-

ysis to better simulate the physics of the problem to achieve the best possible

designs. This type of analysis is key for the continued application of topol-

ogy optimisation to real design problems, where the consideration of multiple

disciplines is a very frequent requirement.760
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(a) Initial design

(b) Optimal design found by BESO algorithm

(c) Optimal design found by TS algorithm

Fig. 13. 3D flow visualisations for the initial and optimal designs for the maximum vorticity

problem.
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(a) Initial design

(b) Optimal design found by BESO algorithm

(c) Optimal design found by TS algorithm

Fig. 14. Streamlines for the initial and optimal designs for the maximum vorticity problem.
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(a) Optimal design found by BESO al-

gorithm

(b) Optimal design found by TS algo-

rithm

Fig. 15. BESO and TS flow paths for maximum vorticity.

(a) SED for the compliance objective (b) SED for the vorticity objective

(c) Flow field for the compliance ob-

jective

(d) Flow field for the vorticity objec-

tive

Fig. 16. Strain energy distributions and flow fields for designs found by the BESO algorithm

with a compliance and a vorticity objective.
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