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Driver and Passenger Identification from
Smartphone Data
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Abstract—The objective of this paper is twofold. First, it On the other hand, the remarkably fast growth of smart-
presents a brief overview of existing driver and passenger identifi- phone ownership has motivated the move towards exploiting
cation or recognition approaches which rely on smartphone data. smartphones versatile set of sensors, such as the Global

This includes listing the typically available sensory measurements S . . .
and highlighting a few key practical considerations for automo- Navigation Satellite System (GNSS) receiver and Inertial Mea-

tive settings. Second, a simple identification method that utilises surement Units (IMUs), in automotive applications. Examples
the smartphone inertial measurements and, possibly, doors signal include: traffic state estimation [11], navigation [12], driver

is proposed. It is based on analysing the user behaviour during assistance [13] and many others. Interestingly, the problem
entry, namely the direction of turning, and extracting relevant of determining the smartphone to vehicle position is closely
salient features, which are distinctive depending on the side of . . o

entry to the vehicle. This is followed by applying a suitable rela_lted (or corr_espon_ds_) to the driver anq passenger(s) identifi-
classifier and decision criterion. Experimental data is shown to Cation task. This capitalises on the premise that the smartphone

demonstrate the usefulness and effectiveness of the introducedis:

probabilistic, low-complexity, identification technique. 1) usually in the vicinity of its owner, and
Index Terms—Identification, connected vehicles, classification, 2) a personal item, which is not shared with other users,
intelligent vehicles, sensor data fusion. unlike a (smart) key-fob, which can be used/shared by multiple
vehicle drivers.
|. INTRODUCTION Smartphone-to-vehicle localisation, which covers inside
A. Background and Motivation and/or outside the vehicle, hence enables identifying the

There has been lately a considerable interest in leverag front R i b
the recent advances in the sensing, data storage-proces r or, Iront or réear passenger. Recognition can be per-
ed before or after entering the car. Locating the phone

and wireless communications technologies in vehicles to i hin th hicl ¢ oth b loved t
troduce smart functionalities. Their aim is to offer drivers ang' "' "€ VeNicle can, amongst ofhers, be employed fo
imise distractions induced by using a smartphone whilst

passengers, not only safer, but also a personalised and ] L '
pleasant driving experience [1], [2]. This goes beyond t Iving. For example, the driver's smartphone services and
' nctionalities can be accordingly restricted [9], [14].

classical Advanced Driver Assistance Systems (ADAS) [3], Additionally, realising a connected cooperative vehicle en-

[4] and route guidance services [5] to customising the vehicle . . .
vrznment is currently attracting immense interest from re-

interior an ing i m he driver an nger ) .
te.o and adapting its systems to the driver a d.passe gess rchers and OEMs around the world, mainly due to its
profiles and preferences [6], for example seat positions, settin - L
. . ; mgportance to autonomous driving [15]-[17]. This includes
reminders, temperature control, HMI, infotainment systen\wl hicle to vehicle, vehicle to infrastructure and vehicle to cloud
etc. Nevertheless, such functionalities rely fundamentally o '

identifying the vehicle user [7], [8], particularly when avehiclé:ommunlcatmns, typically with stringent latency and perfor-

has multiple drivers. Most importantly, they requigbelled mance requirements. Thus, a smartphone user identification

. . . solution can exchange data with the vehicle in a connected
pertinent data, i.e. for a known user, from various sources .
. . . set-up. It can also have access to the vehicle data (e.g. doors
such as in-vehicle sensing systems or smartphones or ©dighal, which indicates whether a given vehicle door is opened
infrastructure, to learn preferences, profiles and behaviours. gnal, ! : given P
r closed), user’s calendar, journeys history, etc.

Driver identification is also relevant to insurance telematlcg, . . e

. . . , .. Therefore, a smartphone-based driver/passenger(s) identifi-

for instance the driving style can guide setting the user’s . . o o

. : ; o . cation or phone-to-vehicle localisation, possibly in a connected

premium by insurance firms [9]. Establishing this style can be, . : . S L .

. . vehicle environment, has various applications in intelligent

based on recorded data from the vehicle On-Board Diagnostics . . : S L

. vehicles. This comprises, but not limited to, delivering per-

(OBD) system or present smartphone(s), assuming a known . s ; : S .

Y . . L . onalised driving experience via adapting in-vehicle systems,
driver identity. Other automotive applications that require daia . L . . :

. . - . nsurance telematics and minimising distractions. Vehicle key-

tagging, thereby driver recognition, encompass those aimed a

: : S , Ss entry systems, authentication and security in general, are
reducing the carbon footprint of driving as per the user’s trave : i .
X : other areas that can benefit from an additional modality for
history, traffic status and others [10].

confirming the identity of the present user(s), i.e. from his/her
B. I. Ahmad, P. M. Langdon, J. Liang and S. J. Godsill are witttmartphone data [18], [19]. In this paper, various categories

tche ':L”%neemg gggalrgnze”é’ Uf‘ivef;iéy of gimggdgge.‘ Tgr“mpingfon Skffe%ff existing smartphone-based driver and passenger(s) recog-
mbee:  Emaibias, pmi24, j1809, sjg3p@cam.ac.uk R,ition techniques are outlined. A simple, novel, identification

M. Delgado and T. Popham are with Jaguar Land Rover (JLR), Covent ;
UK. Emails: {tpopham, amunozd@jaguarlandrover.com. approach is subsequently proposed and evaluated.

ﬁ}r‘i/sent vehicle user(s), i.e. if the smartphone owner is the
il
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B. Contributions [16], vehicle data and user information. The former can

The contributions of this paper are twofold. First, it give'gwcorporate the (raw or processed) signals: doors, suspensions,
a brief overview of the main six categories nbn-intrusive Steering, braking, pedals press and others. Such data can be
smartphone-based identification approaches. This exclud@geived from custom-made in-vehicle loggers or directly from
those that involve the drivers/passengers actively identifyitige OBD via a dongle [21]. Whereas, other user information
themselves to the vehicle, e.g. via a specialised automotf@" be available via the cloud, e.g. calendar, travel history, etc.
hardware-firmware for face or voice recognition. The key fea- Despite this wide range of phone sensory data, an identifi-
tures and limitations of the addressed techniques are outlinégtion solution should consider the following practical issues:
This follows listing relevant smartphone sensory data ande Data quality. built-in smartphone sensors are not primar-
highlighting a few crucial practical considerations. ily designed for vehicle telematics or accurate localisation

Second, a low-complexity driver/passenger(s) identification applications. For example, a smartphone IMU chipset can
method is introduced. It fuses the smartphone sensory data belong to a low grade of inertial sensors since their use is
and can utilise vehicle signals (namely, doors signal) in typically limited to correctly adjusting the phone display
a connected environment. The proposed approach relies on orientation (portrait or landscape). Whilst these IMUs can
analysing the user motion during entry to vehicle, capturing provide data rates in the range 2if — 300 Hz, their data
well defined salient features that vary depending on the entry can exhibit significant bias, drift factor, misalignment, and
side (driver or passenger). It considers the gradient of the random errors [22]. However, employing suitable data
turning angle during the entrynicro-movementsExtracted fusion and statistical filtering algorithms can mitigate the
features are utilised by a classifier to determine the prob- impact of such measurements imprecisions [23], [24].
ability of the user being a driver or passenger. A decisione¢ Phone Position the phone can be held in arbitrary
criterion is then applied; it can employ the doors signal to  positions-orientations (e.g. hand, pocket and bag), which
distinguish between front or rear present vehicle users. Unlike cannot be assumed to be fixed during approaching or en-
comparable prior work, e.g. in [14], [20], the smartphone- tering the vehicle. This causes ambiguities to processing
based method introduced here is: a) independent of the phone data from orientation dependent sensors such as IMUs.
position and orientation (thereby does not impose restriction® Automotive Settingsndoor (e.g. underground or covered
on where the user has to carry the phone during-after entry), car parks) and/or dense urban environments can have
b) unsusceptible to errors induced by, potentially, low quality detrimental impact on the data quality from several
smartphone sensory data, and c) less sensitive to variations smartphone exteroceptive receivers due to occlusions
in the entry behaviour. Overall, this paper presents a sim- and multipath fading in complex settings. For example,
ple, yet effective and generic, novel probabilistic smartphone quality of GNSS data (if available) can be poor [24]. Sim-
driver/passenger(s) recognition approach. It is enabled by a ilarly, the coverage or Received Signal Strength Indicator
principled treatment of the considered classification problem, (RSSI) for RF transmissions, e.g. Bluetooth/BLE, WiFi
careful processing of the sensory data and clearly identifying and cellular, can be notably attenuated, especially when
representative features. there are obstacles (cars and walls) between the phone

Finally, experimental data from various pilot studies and and transmitters. Contrary to classical indoor positioning
under several conditions illustrate the efficacy of the proposed applications, here obstacles and environment can dynam-
driver/passenger recognition technique, with and without the ically change, e.g. parked cars, pedestrians, etc.
availability of the doors signal. + Power Consumptiarthe power consumption of data col-

C. Paper Outline lection and processing of any smartphone-based service

The remainder of this paper is organised as follows. In is critical, given the limited a\_/z_ailabl_e POWET TESOUTCES.
Section Il, smartphone sensory data and various considerations For example, IMU sensors utilised in the identification
are listed. A short overview of existing identification methods,
including those reliant on analysing the user behaviour, TRBLE I: Selected smartphone sensors/receivers relevant to the
given in Section Ill. The proposed identification approach gnartphone-to-vehicle positioning problem and tme&asurements.

desc_rlbed in Sectm_n IV and its pgrforma_nce is assessed ggnsor/Receier I Obsenations
Section V. Conclusions are drawn in Section VI. nertial
Accelerometer Acceleration across x, y andxs.
Il. SENSORYDATA AND PRACTICAL CONSIDERATIONS Gyroscope Angular velocity across X, y andxis.
The common sensors/receivers in a smartphone, particularly SNSS P(I)Es),(ittieo?wcepﬁg\rgzr S (T
t_hose relevant to the phone-t(_)-veh_lcle positioning (|.dent|f|c Magnetometers Magnetic Tlux across X, y andxds.
tion) problem, can be categorised into (see Table I): Barometer Atmospheric pressure (altitudea).
« Inertial sensors:accelerometer(s) and gyroscope(s). Bluetooth/BLE RSSI and source/recipient credentialg
« Exteroceptive sensors/receiversGSNSS, magnetometer, NFC Source/recipient credentils
camera(s), microphone(s), Bluetooth/BLE, WiFi, cellulail WiFi and Cellular || RSSI and source credentfals
and Near Field Communication (NFC) and others. Cameras Images.
In a connected setup (e.g. via a mobile or local network) _Microphones || Audio.

7

tData can also be exchanged with source/recipient or via a network

smartphones can additionally receive, with minimum delay
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method proposed in this paper, consume, on average.g. less than 50 cm) by fusing various sensory data such as
substantially less power compared with GNSS [25]; evenertial data, magnetometer, RSSI (either opportunistically, e.g.
with sampling the GNSS receiver at low rates due to ifsom existing WiFi and cellular transmitters, or from dedicated
cold/warm/hot-start nature [9], [26]. on-vehicle RF transmitters, e.g. bluetooth beacons) and possi-
In the next section, we briefly describe key identificatiohly an intermittent GNSS signal [24], [27]-[30]. Besides, ultra-
techniques that rely on smartphone sensory measurementsvideband (UWB) technology, which is poised to proliferate
in smartphones, can deliver high accuracy positioning, e.g. by
I1l. RELATED WORK ON SMARTPHONE-BASED using on-vehicle UWB beacons to measure time-of-flight to
IDENTIFICATION: AN OVERVIEW smartphone [31], [32]. It is noted that proximity technologies

Figure 1 depicts the in-vehicle regions for the Driver (D)yare addressed separately in Section IlI-F.
Passenger Front (P-F), Passenger Rear Offside (P-RO) and ) _
Passenger Rear Nearside (P-RN), in the UK; these regidiis”Analysing Human Motion
can be analogously defined for a left hand drive configuration.Another common approach is to analyse the user motion
The identification (smartphone-to-vehicle positioning) solutioduring-after entering the vehicle from the phone sensory
aims to associate a present user/smartphone with one of théa&; thus this category encompasses the driver/passenger(s)
four classes. In general, smartphone-based driver/passengég@)gnition technique introduced in this paper. As well as
identification approaches can be divided into six categorietry motion, other movements, such as those associated with
They are listed in Table II, highlighting when and wher&eat-belt fastening and pedal pressing, can be considered [14],
the classification is accomplished. Certain methods can ofgp]. For instance, the phone IMU data related to entering
identify a subset of the potential four users in Fig. 1, see Tabifee vehicle and seat-belt fastening incorporate distinct features
Il. We recall that intrusive none-smartphone-based techniquégpending on the entry side. Whereas, detecting a pedal press
which can involve the users identifying themselves to tHéom the smartphone accelerometer data indicates that the user
vehicle (e.g. via a biometric scanner or an HMI interface fdg the driver. This generally allows distinguishing between a
ID entry or camera for face recognition and others) are nétiver and passenger, which suffices in certain applications

discussed here. such as tagging the driver data. It cannot however differentiate
between front or rear passengers, e.g. the entry behaviours of
A. Accurate Localisation both D and P-RO, who are both on the same vehicle side, can

The ubiquitous GNSS positioning services on smartphon%g indistipguishable from.one anpther. :
Analysing human motion during and after entering the

is the obvious candidate for providing the sought phone-to-h_ | b tible to behavi | variati q
vehicle localisation information, including the user’s exact se ghicie can be susceptible to behavioural variations and errors

position, i.e. D, P-F, P-RO and P-RN. However, differentiatin ue to the poor quality of the available sensory measurements

between a driver and a passenger demands an accuracy hi as IMU. Ambiguities in orientation dependent data (e.qg.

than, approximately, half the width or length of the vehicl ). which can originate from the phone arbitrary positions,
e.g. ’errors should t;e less tharrsm. This performance re- ¢an also impose stringent restrictions on the phone location

quirement is excessively onerous for a smartphone Iocalisatfgnfn drnﬁr/ p?ssgnger ::pproa(;hes daTd enters éh? ctar. Eor
service [24], especially in indoor/covered car parks or den ance, the turning motion and peda’ pressing detectors in

urban areas. This is in addition to the high power consumpti 414]’ [20] assume that the fsr_nar_tphone is in a lower body
of GNSS solutions, quickly draining the phone battery [25]'pocket. Seat-belt-related activity is detectable only when the

Nonetheless, the current advances in Pedestrian Dead Ré)élgne Is in a user's upper-body pocket [14]. Nevertheless and

oning (PDR) and indoor positioning can enable smartphor& proposed in Section IV, capturing representative features

to-vehicle positioning that meets high accuracy specificatiol"}gd using qqdltlgnal datE} leads to formulating a reliable and
robust identification solution.

e e C. Modelling Driving Behaviour

\ Several studies have been conducted on performing driver
identification by studying individual driving styles and travel
behaviours [33], see [34] for an overview. This can include the
pedal use, steering, braking, travel history, previous routes and
even physiological signals (e.g. ECG and skin conductance).
These methods typically have high training requirements (e.g.
demand the availability of extensive labelled data sets) and
entails considerable computational cost. Furthermore, detec-
Passenger tion is restricted to the driver, and it is accomplished after
Offside the start of the journey. Whilst signals such as speed and
(P-RO) steering-turning can be obtained (albeit noisy) from the phone
sensors, such solutions assume that certain OBD or wearable

Fig. 1: Driver and passengers nonoverlapping zones in or near feehnology [35] data is available to the smartphone in a
vehicle; they can be accordingly extended. connected environment.




IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

TABLE II: Selected driver-passenger recognition approaches highlighting when, where and whoidamtiied.

Approach Identification Time Detect Inside/Outside \éhicle Identifiable Users
AccurateLocalisation Before and after entry to thehicle Inside and/ooutside All
Motion Behaiour During-after entry; before journestarts Inside Driver andpassenget
Driving Behaviour After the start of the journe Inside Driver
In-vehicle Forces After the start of the jourme Inside All
Audio Ranging After entry and/or during the jousne Inside All
Proximity/MF/Other Before and aftentry Inside and/oputside -
D. Forces within a Moving Vehicle can be equipped with NFC or RFID radio(s) for key-less entry

This builds on the observation that specific forces, measur@gengine-start. NFC transceiver(s) can not only expedite the
by accelerometers, vary depending on where in the vehicle #ficle-phone pairing, they can identify the driver's smart-
accelerometer is placed [36]-[38]. This is detectable durig{i;ne (owner) or that closest to it, i.e. proximity. However,.t.he
significant dynamical events, e.g. when passing a pothdlgC coverage is notably short, which reduces the classifica-
or during notable cornering (lateral accelerations). Relaté@n range, and recognition can be limited to driver (e.g. when
methods require the presence of at least ¢atiaboratingin- unlocking door). Other proximity sensors with longer ranges
vehicle IMUs located at different positions in the car interio€an beé employed, e.g. BLE beacons infon the vehicle [27],
for instance a smartphone and a vehicle-fixed IMU. Sindé0l, [42], [43]. Nevertheless, any proximity-based solutions
the difference in the specific forces reported by the two (Ve to take into account the prevalent occlusions in the
more) IMUs only depends on their relative positions, an@pnmderepl automotive scenarios.
not on their absolute locations, this identification solution is Other signals measurable by the smartphone, such as Mag-
applicable when the “absolute” accurate position of one getic Field (MF) fluctuations due to starting the vehicle engine,
the IMU sensors is known. The delay in accomplishing tHea" permit determining if the phone is in the front or back half
user recognition task can be substantial, e.g. after the star@bfthe vehicle as in [20]. Alternatively, the phone-to-vehicle
a journey. This relies on the presence or undertaking high¥psition can be estimated, however coarse, by analysing the

dynamical events; see [38] for a recent overview. smartphone magnetometer observations [44]. Finally, amongst
others, pressure sensors can be used [45], e.g. mounted on
E. Audio Ranging each seat to estimate the driver/passenger(s) weight(s). Prior

It emp|0ys the Smartphone embedded microphone(s) to ggowledge of the users’ WEightS can then facilitate identifying
tablish the phone (owner) in-vehicle position. It uses audio siilem by sharing this data with the smartphone.
nals, of inaudible frequencies, emitted from several speakers o¥Vhilst the above brief overview serves the purpose of out-
the vehicle stereo system, possibly in a programmed sequeli@@g the main visible smartphone-based driver/passenger(s)
[39], [40]. Such signals can be instigated by the Smartphorf@'COgnition techniques, several methods can be implemented
e.g. after it pairs with the vehicle infotainment system viYy an identification system as in [14] and [20].
Bluetooth. The generated audio signals are then recorded by
the phone, and analysed to deduce the timing differentials, e.g. IV. PROPOSEDIDENTIFICATION APPROACH

b_etween_ the left, right, front and back '_spegkers. F_rom_ thesel’he simple driver/passenger(s) identification approach in-
dlfft-:_-rennals, the_ph(_)ne can se!f-detem_nne Its position in tmeoduced here predominately relies on analysing the user
veE!c:e. Her:jce, It t_narllgulaltesonhs Ioc§t|$n t% one of trr]]e_fmﬂehaviour whilst entering the vehicle, namely his/her turning
venhicle quadrants in Fig. 1. Other similar, basic, tec mqugﬁgle and direction. In particular, a driver has to turn clockwise

measure the magnitude of e.mitted inaqdible beeps by a giv r}ing entry, whereas a front or rear-nearside passenger has to
speaker [14], [20] or the vehicles turn signal [14], to establigy, 5 nticiockwise as depicted in Fig. 2. The proposed tech-
the phone proximity to the audio signal source. In [40], a

related seamless-voice-recognition approach is proposed.
Whilst audio-ranging-based user identification systems are
in general accurate and robust [39], [40], they necessitate
changing the vehicle firmware and recording audio in an
unsupervised manner, which can raise privacy concerns.

F. Dedicated Hardware, Proximity, Magnetic Field and Others 33
-

Vehicle-installed RF technology can identify the driver or G&?&
passenger from his/her smartphone; this might entail estimat-
ing the phone proximity to a given transceiver [41]. Examples
include Bluetooth via paring (paring can result in a significant
delay and only reveals the smartphone presence, not its in-
vehicle position), Bluetooth Low Energy (BLE) beacons anBlig. 2: Driver (right) and passenger (left); arrows show direction of
NFC. The latter is of particular interest since modern vehicl@4ming during entry (driver: clockwise and passenger anticlockwise).
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nigue accordingly captures salient relevant features by utilising
smartphone sensory data and doors signal (if available) in a
connected set-up. This is followed by a suitable classifier and
decision criterion to accomplish the identification task prior
to the start of a journey. A step by step description of this
recognition solution is given in Section IV-A.

The employed features, namely ingress micro-movements,
are clearly defined in this paper (see Section IV-B). They are
based on the gradient of the heading (yaw) angle with respect
to north; the Yaw angle is estimated by fusing the phone’'s . oomemeeee >
accelerometer, gyroscope and magnetometer data. Contrary to !
similar existing methods, e.g. [14], [20], we recall that the
introduced solution is independent of the vehicle and smart-
phone position-orientation. It is also tolerant of inaccuracies
in the heading angle estimations since it does not use their

Door
opened at
to?

Stop
Walking
to?

Read/calculate heading
angle 6; at time ¢

Door
closed at
tr?

Sitting
action at

No tr?

instantaneous values. For instance, a classifier is directly used ! Yes Yes

on the roll and pitch angles (not yaw) during entry in [14], v

[20], e.g. from gyroscope; thus their restriction of having Extract features from 6; : t € [to + torr .1, t7- torr.2]
the phone in a lower-body pocket. Additionally due to the *

varying positions-orientations of the phone before and after Doors — —

entry, detecting pedal press or seat belt movements from IMU signal =~ P [

data (where phone has to be in a certain body side) are not
considered here.

The proposed technique also incorporates detecting the start
(at time ty) and end (at time) of an entry action to the Fig. 3: Overall system flowchart from the onset of entry tat
vehicle. This can be achieved via detecting a walking arqerations related to the vehicle doors signal are in blue.
stopping activities fromrotated accelerometer observations,
i.e. with respect to the Global Coordinates System (GCS). In
this paper, we only use the linear accelerations in the GCS
(see Section IV-C), which simplifies the step-detection and
minimises the required parameters fine-tuning. Additionally, )
doors signal (if available) from the vehicle OBD/CAN-bus, )
which reports the status (i.e. open or closed) of all vehicle
doors can instead set or rectify the attaitgdand¢r. 6)

Whilst analysing the entry behaviour permits establishing
if the phone/user is in the right (driver) or left (P-F) vehicle
side, the doors signal can enable differentiating between D
and P-RO or P-F and P-RN in Fig. 1. It is noted that the

-

Passenger Driver None

3) Detect stop of walking (i.e. start of entry @ via step
detection; check for doors open/close events; otherwise
restart.

Calculate/refine the heading anglew.r.t. GCS.

Detect the sitting event at timg-; check doors open-
close signal. Otherwise, repeat the previous action.
Extract N features{wn} , from all calculatedb; for

t € [to+torrs tr —topgg] durlng the entry movements.
Offsets torr1 and torr2 are introduced to permit ad-
justing the period of interest in the entry action, e.g.
excluding events shortly after entering the vehicle.

doors signal alone is insufficient for identification, even if )
only one user is present, as the vehicle does not know which
smartphone/user is approaching-entering. Since obtaining the
doors signal by the smartphone involves creating a data link

Apply a classifier to obtain the probability of a user en-
tering from the right (driver) side(R|) and left (front

passenger) side(L|1) wherey = [y, ¢, ..., ¥n]'s @'
is the transpose of vector/matrix

with the vehicle, it can be necessary here only when any of
the rear doors (R-PO or R-RN) are opened or more than
users are simultaneously returning to vehicle.

8) Apply a decision criterion; utilise available door signals.
“ﬁ‘ﬂe heading (yaw) angles used in the features vagtare: i)
unwrapped to circumvent erratic changes, e.g. aradngD®,
and ii) smoothed with a moving average (filter) to reduce the
A. Overall System impact of fast fluctuations. This does not have any visible

Figure 3 depicts the flowchart of the proposed solutioiPact on recognition since the examined features are related
time instantt, denotes the start of the entry and/or end df the angle’s gradient, rather than its instantaneous values.
the walking action. At the arrival of a new accelerometer, Therefore, it is a probabilistic approach that can meet pre-

magnetometer and gyroscope observations at the current t#fEbed certainty requirements via a decision criterion. Below,
instantt, the system implements: we detail each of the above eight operations, starting with the

1) Align the phone axes to GCS: calculate rotation matri)(eritical feature extraction, classification and decision aspects.
2) Detect (steps) walking by fusing phone data; otherwise,
repeat the previous action at the next time instanth, B. Features, Classification and Decision
(h is the time step between two successive IMU sensoryLet 6(t) = 94(t)/dt, t € T, be the gradient of the heading
measurements). angle within7 = [to+torr1, tr —torr2], Which is split intoV
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nonoverlapping time segmerffis= 7; U7,...U7y. Whereas, C. Estimating Rotation Matrix and Heading Angle

1 ~ The smartphone’s accelerometer, gyroscope and magne-
Yn=—Y_0(t), n=12,.,N, (1) tometer observations are with respect to the phone’s reference
Hn feT., Local Coordinates System (LCS). On the other hand, a global

. . s coordinate system has: 1) an x-axis tangential to the ground
and i, is the number of dlfferentllalﬁt in 7,. Hence, the anq is pointing East, 2) y-axis is tangential to the ground
features vector) = [t)1, ¢, ...,¢n]" of dimensionsN x 1 and points towards north and 3) z-axis points up and is
represents the entry turning micro-movements in each timerpendicular to the ground. A conventional way to perform

segmentZ,,. It is intuitive to assume that the user undertakd§is coordinate transformation at timeis by the rotation

several micro-turning-movements during ingress, e.g. at 20%‘:"”"‘ M, comprised of the following three basic matrices

40%, 60% and 80%; each of varying characteristics. They 1 0 0 cos¢y 0 sindy

collectively capture the distinctive entry behaviour. It is emM,,: = [0 cospy —sin Sﬁz] y My = [ 0 1 0 ]

phasised that identifying the suitable features is fundamental 0 sing:  cosepy

and several standard classifiers can then be applied [46]. [cos 0: —sinb, 0]
M., = )

—sing: 0 cos s
For illustration and since this classification problem has only sinf, cosfy O (4)
two classe€ = {R, L}, the linear logistic regressor/classifier 0 o 1

is described here. The resultant probabilities for each class ¢g@fere, (pitch), ¢, (roll) and¢; (yaw) are the rotation angles

be expressed by about ther, y and = axes, respectivelyyl; = M, ; M, ;M, ;.
(R, B) =a(B), p(Lip,B)=1—-p(Rlp,B), 2) AnLCS to GCS transformation ofcg vector, fé% 3D acceler-

] _ o ation vector, is accomplished vig'“® = M;a %,

where3 is an N x 17\z/et_:tor obtained from the training data gy yiilising the gravitational accelerations and magnetome-

ando(z) =1/ (1 +e™*) is the logistic function. Maximizing ter gata at time, the rotation matrix can be expressed by, as

the likelihood from labelled data (i.e. supervised training) cagith the original Android implementation [47],

be used to set the optimal values forThis can be performed

!/
offline from recorded data (i.e. batch learning) or it can be an M(t) = [62 " Ué] ) (5)
online learning process, for msta_mce grat_jlgnt-asce_nt, I\!evvtog S_ a% x m, /|ad x my|, s = e; x a9/|e; x a¥
method, etc. We recall that nonlinear logistic classification arg%du

- i = . Vector ay"™® is the gravitational
other classifiers, such as Support Vector Machines (SVM) L= e X /e X myl o | gravitati
be employed in an analogous way [46].

“&Ccelerations from IMU data aneh; denotes the magne-
The dimension of the features vector, i¥, is a design

tometer observation vector; product of twhbx 1 vectors
) b= (ayb, —a.by)i+ (asby — azb,)j+ (azb, — ayb,)k.
arameter that should adequately reflect the level of variabjl: Y Y . ; vy
ir:ies in the user entry micrg-moviments. Although the valuehe Euler angles can be easily attained fib using
of N can be fixed in practice (e.gV =2 or N =5), itcan ¢, =sin"'(M,(3,2)), ¢; = tan~'(—=M,(3,1)/M,(3,3)),
be customised for a par'ucula_r driver/passenger. For |.nstance, 0, = tan~1(—M,(1,2)/M,(2,2)). (6)
a larger N value can be applied for a user who consistently
exhibits drastically changing(t) during entries to vehicle. It is noted that the accelerometer measures both the gravita-
Having determined the sought probabilitig&R|+, 3) and tional af™™ and linearal forces. A low-pass filter extracts the
p(L|v, B), a decision can be made based on minimising gravitational component for estimatifgl; in (5) .
5 . Whilst accelerometers and magnetometers suffer from vari-
C = argmine_rp, ) [e(C.cM)l ] ) ous sources of errors, the gyrosc?)pe has a short response time
wherec(C;,CT) is the cost of an incorrect classification. It carand is capable of giving accurate measurements of angular
be easily seen that a binary cost function results in a Maximwspeeds, i.ew; = [wm Wyt wzyt]/ around the phone
a Posteriori (MAP) estimate, i.e. the most probable class ikCS axes. Orientation angles can subsequently be tracked
chosen without a “none” outcome as in Fig. 3. Alternativel\fgy integrating the gyroscope output. This demands accurate
a threshold criterion can be used, engR|v, 3) > vr deems initialisation and the gyroscope observations generally can
that the user is entering from the vehicle right side. Thidrift over time leading to erroneous orientations.
permits quantifying the certainly level of the identification Several methods, of varying complexities, fuse results from

operation and establishing cases when the system carfgficlerometer-magnetometer, @\, in (5), with those from

a gyroscope, e.g. a rotation matrii from w; using a

determine, with sufficiently high probability, the user ide”tifyquaternion representation. A quaternignhas two parts, a

In scenarios where two or more users (i.e. a Qr.iver aNlcior [ y Z]/ and a scalar termo, such thatq —
passengers) are rgturnmg to t.he vehicle, dgtermmmg entry, (w(ai+bj + ck)/2) =w+ai+yj+2k, a= wy/ s
from the left or right hand sides can suffice, except fgy = Wy /Ut ¢ = wsi/V, 9y = ||wil, and anglew =
differentiating between a driver and P-RO or front passengﬁﬁét 9,dt. The left-handed rotation matrix is constructed
and P-RN in Fig. 1. The doors signal is consequently employéd
to resolve the in-vehicle position (seat) of the present users, 1-2y? -2 2uy — 22w 20z + 2yw
i.e. rear or front. This is handled by linking the smartphone M? = | 2oy +2zw  1-22% -2 2z —2zw | (7)
that detected a stop-walking event (as per Section IV-E) closest 2zz = 2yw 2yz 420w 1 =207 =2y
to the timestamp of a door opening event, see Fig. 7 for and (6) is applied [47]. A simple fusion approach is the
illustration of this basic, yet effective, strategy. complimentary filter:0;, = a6 + (1 — )89 with
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coefficienta. Other methods focus on the yaw angle due i 5 PeakCriterion 5 Peakto Valley Criterion
its relevance in general navigation tasks, e.g. [24], [28], [4¢ - , [
As the focus of this paper is not localisation, the comple£
mentary filter or the iOS implementation for estimatifygcan
be employed. Heading angle estimation from a phone wi -25
arbitrary positions-orientations and low quality inertial datai T o o
distinct from navigation systems that use high precision IMLU time (s) time (s)

or IMUs at known (stable) positions, e.g. on a helmet or be  ,___Slope Gradient Criterion 5 Detected Steps as per (8)

5

N
w»

0

ccel (
accel (mlsz)
o

N
w»

O TpeakToValley

&

w
(&2

D. Step Detection Using GCS Acceleration Vector g 20 11 ﬂ%ﬁﬂ% ”% 25
Similar to calculating the heading (yaw) angle from smar?-E 0 ! ?Ef E 0
phone data, step detection is critical to PDR and seve © 25 N ] 28
methods exist [24], [28]. To simplify the detection routinean 5 ——————— — S T e 1
taper variabilities in the utilised IMU data, in this paper wt time (s) time (s)

only use the linear accelerations in the GCS z-axis. This alﬁ@. 4: Step detection with (8) ShowinGreaktovaiey and Tsiopecradient
minimises any fine-tuning of the detector parameters.

After rotating the accelerometer measurement vectat, at
the z-axis component®CS(t) is extracted, i.e. last elementr Potential Implementation and Final Remarks
in af“S. A high-pass filtering (e.g. cut-off frequengy = 0.9 In practice, a user can download and install an Application
Hz) is first applied to obtain the linear acceleratieh(t), on his/her smartphone, which implements and seamlessly
followed by a low-pass filter to remove high frequency noismins the proposed driver/passenger identification approach
(e.g. fc = 5 Hz) yielding é' (t); simple filters can be utilised, as with the last pilot study in the next section. Thus, no
such as a moving average. Here, we adopt the three stagecialised/proprietary hardware is needed. The smartphone
thresholding procedure in [28]. Each threshold producescan receive, imearlyreal-time, data from the vehicle, such as
set of time instants within a predefined time wind@v= the doors signal, and potentially send back (share) the recog-
[t — W, t+ W] around the current observation timeas per nition results, for instants via a cloud service, in a connected

o Tpeak argmax,, al(t,) s.t.al(t,) > vp andt, € . vehicle enviroment (e.g. with V2X technology [16], [17]).

o Tpeaktovalley €Nnsures that the peak-to-valley differencélternatively, doors signal as well as (refined) identification
(before and after a step) is above a certain threshakelults can be exchanged after the user's smartphone pairs
value vpy . This eliminate scenarios where acceleratiowith the vehicle, e.g. the infotainment system via Bluetooth.
fluctuations do not vary enough to constitute a step. Similar to other smartphone-based identification techniques,

e Tsiopecradient €nsures that the accumulative acceleratiom common challenge is determining when the user is near or
slope is negative on the left-side and positive on the froattering the vehicle, i.e. when to perform the identification
side to eliminate sharp-sudden data fluctuations. operation. Whilst walking-stopping and door signals are used

This requires rotated-filtered z-axis acceleratiohg) for the above, the unavailability of the doors signal can lead to: a)
time window €. A step is detected with a time lag 6¥; collecting-processing smartphone data that does not pertain to
whereT < 1 s is typical and depends on the IMU data ratean entry action (e.g. non-driving sitting actions in daily life)

For a given IMU measurement and time wind@&y the producing incorrect classifications as well as increasing the

detected step(s) time(s), if any, is given by: power consumption requirements of the identification solution,
and b) restrict the recognition capability to left or right side
entry which does not permit differentiating between driver and
Figure 4 depicts an example of these times. Threshgldand P-RO or P-F and P-RN. Nonetheless, the former limitation
~vpy can be set for a common scenario or adaptively modifiecan be mitigated by utilising data from other modalities such
The former is often sufficient as in the experiments below. as phone pairing with vehicle, inaccurate proximity-to-vehicle
sensing or localisation, presence of a key-fob, contextual
E. Detect Stop Walking and Sitting Actions information (e.g. time, calender and learnt pattern of life), etc.
Let Tsiep be the set of step timessp in (8) from the The simplicity of this smartphone-based approach, such that
beginning of the ongoing walking action up to the currentone of its modules apply a complex algorithm, is pivotal to
time instant. An up-to-date running average of step durationits appeal. Whilst it predominantly relies on capturing salient
i.e. time gap between two successive steps, is kept and iféatures from the smartphone IMU data, it presents an effective
denoted byT's mean A Stop-walking action is detected at timedriver/passenger(s) identification solution as per the results
to if no steps are detected fatl's mean for instancex = 2.5, below. Ultimately, it can be applied in conjunction with other
and a sitting action at timer is indicated by an additional detection methods, e.g. those listed in Table I, to improve the
step-like-activity (with a shorter time window, i.e. smalléf) overall recognition accuracy.
measured after the stop action. Several measures can be taken
to eliminate short or initial detected steps, e.g. a nominal stop V. EXPERIMENTAL RESULTS
action is preceded by at lea&t consecutive steps (e.@ = Several pilot experimental studies are conducted in various
8). Offset times can be set @rr1= torr2= 0.57'3mean cars, namely Land Rover and Jaguar XF, XJ and F Pace. The

tStep = TpeakN TPeakToVaIIeym TSIopeGradient (8)
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total number of assessed approaches-entries is 107 trials/tracks &

undertaken by seven participants (one female). In these pilot ; 32;’5;nger i

studies, a participant walks to the car from behind, left and 4 =~ Dedision Boundary| _~ * «x

right sides of the vehicle. He/she then enters to the designated \‘\\ X x

seat position, namely driver D or front passenger P-F, see Fig. 2l RO X Xf §§ : o
1. Two phone positions were considered, i.e. in hand and in a Thal % XX x X *

front or back trouser pocket; orientation is arbitrary. The split o PN :;‘x x

is nearly even between the tested conditions, i.e. approach =~ o o °o e SOES . xx *
side, in-car seat and phone position. In each trial, a developed ° 0% g o oo’ TN "

iOS application provides the raw accelerometer, gyroscope 27 . ° o 0% \\\
and magnetometer data at rates30f— 50 Hz. A CAN-bus o RSy
analyser reports the doors signal, whichnist utilised for A4ry °

identification in these trials. For the step detection and data o®

fusion, the parameters are fixed V&t = 0.5, vp = 0.5 m/s’ i °

andTpeaktovalley= 1.5 M/S* anda = 0.95. Whilst 2-D features 6 “ 2 0 2 4 6
vector ¢ € R?, for equal partitions7;| = |72/, and equal 1

weights are used, a MAP decision is applied. Thus, the OUtRL 6: Considered entry featuresV(= 2) in (1) for a driver and

is either a driver (clas®) or passenger (class) as per (2). passenger with the decision boundary of the linear logistic regressor.
Overall, the identification success rate of the introduced

approach is approximatel§8% in all trials without using the

Drlver

doors signal. The phone position (hand or pocket) did not ha_"" ' ‘ f\liﬂ—
a visible impact on the success rate and majority of incorreg, ;| [ @ Detected Step/Siting
classifications are attributed to erroneous estimatiorig, ofe. 0l * * * &% |5 et oer aoanen |
detecting a stopping-entering event. e m  h  h h h & h s e w
Figure 5 shows two examples where a user walks a time (s)
enters the vehicle; it displays the heading angle estima 50— R ORR R
and detected steps from phone data. It can be noticed thz‘l’gwof //f\\ﬂ»
driver turns clockwise and front passenger turns anticlockwi § sw N /.../ oSk Enr)
during entry. Figure 6 depicts the 2-D featuréé,= 2 in =, . . & WO
(1), capturing the turning behaviour &% and 100% of ¥OWT BB ey R e
the ingress action from all trials; doors signal is employed ' | — Door Signals - High = Close and Low = Open

correctty (when relevant). The figure also shows the decisic \ T
boundary between the two classes (D and P-F) of the logis .~~~ .
regressor in (2). It is attained from maximising the likelihoor - . . .o |
function via a gradient-ascent optimiser. Figure 6 clear * * ¥ *® @ @ g © ¢ wow ¥
illustrates that the selected representative features depenq:on

Ig. 7: Heading angle and door signals (high “1” closed and low
the side of entry, i.e. entering from left (front passenger) @ gpened) for D and P-RO concurrently approaching-entering car.

Green square is the last detected step prior to the corresponding user
entering car. The black x-mark and blue plus markers indicate the
time instants the D and P-RO doors opened, respectively.

o
T
T
wl
pge]
8=
23
38
o O
29
]
S
3
Q
Q
=
E i
2
@
--1 o
o
9

400
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2 00t Last Step Before Entry T‘ |

E” 100 - | | right (driver) sides, and the linear logistic classifier can suffice.

E ol f”w | Another pilot study was conducted where: i) a driver first

* 100 [ Hsgin M ‘ opens the car-boot or R-PO door prior to entering the vehicle,
14 15 16 17 18 19 20 21 22 and ii) two or more participants simultaneously approach

time (5) the car (from behind or left or right) and enter. In both

(230Drivef (D) entry from the right side of the forward facing car.  scenarios, the smartphone is either in hand or pocket. An iOS

~ ‘ ‘ m ‘ application, which implements all the system components in
;;ZSO\W . 1 Section 1V, was developed; this incorporates the door signals.
g0 The obtained success rates are:
:5:150 ) - Driver first opens car boot or P-RO door (to put bag) prior
g1oof 2 E:;tecstfei S;:gfeitgggry 1 to sitting: 87.5% (8 trials).
50 ‘ ‘ ‘ | | - Driver and P-RO approach-enter cafl00% (8 trials).
o e R - Four users (D, P-F, P-RN, P-RO) approach-enter vehicle

approximately 90% (24 trials).

. . . . Figure 7 depicts heading angle, steps and doors signal for

(b) Front Passenger (P-F) entry from left side of the forward facing car.
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the vehicle, i.e. both enter from the driver (right) side of
the vehicle. Thereby, their entry behaviours (direction of th 1
turning angle) is noticeably similar. This figure exhibits how a
door signal, i.e. door opening action closest to a detected stofg}
walking activity, facilitate distinguishing between a driver and 5
P-RO. For example, the time gap between the last detecteé
step prior to entry (marked by the green square at40.1s

in the top row plot in Fig. 7) and opening the driver door (i.e.;,
the black x-mark at = 40.9s) is significantly smaller than
the time gap between the driver door opening and the P-RB
stop-walking event (marked by the green square-at37.7s

in the middle row plot of the figure). Whereas, the P-RO dooyg)
is opened at = 38.5s (i.e. the blue plus).

In summary, these pilot studies clearly demonstrate th
usefulness and effectiveness of the proposed Iow-complexi@
smartphone-based identification solution. It is noted that other
comparable identification methods, i.e. those which utilise th&!
smartphone IMU data to analysis the user entry behaviour,
e.g. [14], [20], produced substantially poor recognition success
(less than50%) when applied to the collected experimental[9
IMU data, albeit using a more complex classifier such as
the SVM and a features vector of dimensions well above theé]
consideredV = 2. This is especially the case for experiments
with multiple approaching vehicle users and for a driver whay]
first opens the car boot or another door prior to entering.

[12]
VI. CONCLUSIONS

This paper introduces a simple probabilistic approach 6]
driver/passenger(s) identification using the smartphone and
vehicle doors signal (if available). It analyses the user motigt#]
during entry and captures salient ingress features. It is shown
to deliver a notably high (e.g. exceeding 90%) in selecteg;
pilot studies; even when doors signal is not used. Future work
includes extended experimental evaluations in naturalistic s&f!
tings and devising more principled formulation for associating
the doors signal with each present smartphone (i.e. instead of
the rule-based approach applied above). (17]

It is emphasised that the strength of the proposed approach
is its simplicity. It is expected that it will be employed within[18]
a hierarchical system that implements several identification

] J. Wahlstom, |I.
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