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The remnant star of a neutron star merger is an anticipated loud source of kilohertz gravitational waves
that conveys unique information on the equation of state of hot matter at extreme densities. Observations of
such signals are hampered by the photon shot noise of ground-based interferometers and pose a challenge
for gravitational-wave astronomy. We develop an analytical time-domain waveform model for postmerger
signals informed by numerical relativity simulations. The model completes effective-one-body waveforms
for quasicircular nonspinning binaries in the kilohertz regime. We show that a template-based analysis can
detect postmerger signals with a minimal signal-to-noise ratio (SNR) of 8.5, corresponding to GW170817-
like events for third-generation interferometers. Using Bayesian model selection and the complete inspiral-
merger-postmerger waveform model it is possible to infer whether the merger outcome is a prompt collapse
to a black hole or a remnant star. In the latter case, the radius of the maximum mass (most compact)
nonrotating neutron star can be determined to kilometer precision. We demonstrate the feasibility of
inferring the stiffness of the equation of state at extreme densities using the quasiuniversal relations
deduced from numerical-relativity simulations.

DOI: 10.1103/PhysRevD.100.104029

I. INTRODUCTION

The gravitational-wave (GW) signal GW170817 is com-
patible with the inspiral of a binary neutron star (BNS) of
chirp mass M ∼ 1.186ð1ÞM⊙, mass ratio q ∼ ½1; 1.34� and
tidal deformability parameter distributed around Λ̃ ∼ 300
and smaller than ∼800 [1–3]. The merger frequency of a
BNS GW can be accurately predicted using numerical
relativity (NR) results [4]. From the probability distribution
of Λ̃ measured for GW170817 one finds that the merger
frequency falls in the broad range fmrg ∼ ð1.2; 2Þ kHz
(Fig. 1). The sensitivity of the detectors in August 2017
was insufficient to clearly identify a signal at frequencies
f ≳ fmrg [5,6]. Indeed, LIGO-Virgo searches for short
(≲1 s), intermediate (≲500 s) and long (days) postmerger
transients from a neutron star (NS) remnant resulted in
upper limits of more than one order of magnitude larger

than those predicted by basic models of quasiperiodic
sources [7–12]. Various works have suggested that for
GW170817-like sources postmerger frequencies are acces-
sible only by improving the design sensitivity of current
detectors of a factor 2–3 or with next-generation detectors
[5,13–15].
NR simulations predict that BNS mergers can form a

black hole (BH) from gravitational collapse of the merged
object or a NS remnant depending on the binary mass and
the NS matter equation of state (EOS), e.g., [17–22]. NS
remnants can collapse on dynamical [∼Oð10Þ ms, short-
lived remnant] or longer timescales (long-lived remnant),
but can also reach a stable NS configuration. Kilohertz
GWs contain the imprint of the merger remnant dynamics.
The main signature is a short GW transient peaking at a few
characteristic frequencies, the dominant one being associ-
ated with twice the rotation frequency of the remnant NS at
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f2 > fmrg [16,21–30]. The transient is more luminous
for a short-lived remnant than for a long-lived one; an
absolute upper limit to the energy per unit mass is
≲0.126ð M

2.8 M⊙
Þ M⊙c2, where M is the binary mass [12].

Long postmerger transients are also possible for NS
remnants developing nonaxisymmetric instabilities and/or
magnetars, but they are expected to be less luminous than
the GWs on dynamical timescales, e.g., [7–11]. Recent
analysis of GW170817 based on premerger GWs combined
with the pulsar constraints on the maximum mass largely
disfavor prompt collapse to BH [31]. Using the NR rela-
tion between the frequency f2 and the tidal deformability
derived in [16] and the LIGO-Virgo posteriors for
GW170817, one finds that a tentative wave with peak
luminosity larger than 0.1 × 1056 erg · s−1 could have been
detected at f2 ∼ ½2.5; 3.2� kHz (Fig. 1) if the instruments
were more sensitive. This is compatible with the interpre-
tation of the electromagnetic counterparts that suggests the
formation of a short-lived NS remnant [32–36], although
other scenarios are possible [37–41].
The data analysis of (short duration) postmerger signals

can be performed with either morphology-independent
approaches [14,42] or using matched filtering techniques
based on waveform templates. While matched filtering is
proven to be an optimal method in the case of Gaussian
noise [43], its performance for postmerger analysis remains
unclear due to the uncertainties of postmerger templates.
Current postmerger models comprise frequency-domain
statistical representation of NR waveforms [13,44] or
simple analytical models [27,45–47]. A common aspect
of all these approaches is the use of NR information in

terms of quasiuniversal (EOS-independent) relations for the
characteristic frequencies [16,25,28,48–51]. The relevance
of these relations is twofold: on one hand they are used for
waveform modeling, on the other hand they can be used to
extract information from the analysis.
Observations of kilohertz GWs from NS remnants can

deliver constraints on the EOS of matter in a regime at
which nuclear interactions are still very uncertain. For a
canonical binary of mass M ¼ ð1.4þ 1.4ÞM⊙, tidal inter-
actions in the inspiral-merger part of the GW signal mostly
inform about the EOS at about twice the nuclear saturation
density ρ0 ≃ 2.3 × 1014 g cm−3, corresponding to the maxi-
mal densities of the binary components [31,52]. However,
NS remnants formed in mergers reach densities ∼3–5ρ0
and temperatures in excess of ∼50 MeV, e.g., [53]. The
strongest constraints on the EOS at those extreme densities
are currently provided by the mass measurements of two
pulsars in binary systems [54,55]. The latter give lower
bounds for the maximum mass of nonrotating stable NS in
equilibrium (MTOV

max , hereafter simply referred to as the
maximum NS mass): MTOV

max ≳ ð2.01� 0.04ÞM⊙ (PSR
J0348þ 0432) [54] and MTOV

max ≳ ð2.17� 0.11ÞM⊙ (PSR
J0740þ 6620) [55].
Additional constraints on matter at extreme densities can

be inferred from the kilohertz GW from merger remnants
by extracting NS properties via quasiuniversal relations
[16,48,56]. Moreover, new degrees of freedom or matter
phases at ∼3–5ρ0 can impact the remnant dynamics and
leave detectable imprints on the GW. Case studies consid-
ered matter models including hyperon production [57,58]
or zero-temperature models of phase transitions to quark-
deconfined matter [59,60]. The detectability of these effects
crucially depends on the densities at which the EOS
softening (or stiffening) takes place and would in principle
need detailed waveform models that are presently not
available.
In this paper we construct the first phase-coherent

inspiral-merger-postmerger model for the BNS GW spec-
trum and demonstrate its applications to constrain the NS
EOS in GW astronomy observations.
Section II introduces a NR postmerger model for

quasicircular binaries called NRPM, based on the quasiu-
niversal relations of [16] and implemented using the
NR database of the Computational Relativity (CoRe)
Collaboration [61].
Section III discusses performances of NRPM using a

validation set of NR simulations. Section IV discusses how
to complete effective-one-body waveforms with NRPM in
order to obtain a phase-coherent model of the complete
inspiral-merger-postmerger waveform, valid from the cir-
cular adiabatic regime to the kilohertz regime.
Section V demonstrates the use of the model in template-

based Bayesian data analysis applications. We discuss the
minimal requirement for postmerger detection. We dem-
onstrate how to infer prompt collapse using our complete

FIG. 1. Gravitational-wave merger fmrg and postmerger peak
f2 frequency for GW170817. The distributions are estimated
from the LIGO-Virgo posterior distributions [3] for the Λ̃
parameters using (i) the quasiuniversal relation proposed in [4]
for the merger frequency; (ii) the relation proposed in [16] and
further refined in this work for the postmerger peak frequency.
The distribution of f2 is cut at κT2 < 70 to exclude binaries that
undergo prompt collapse at merger.
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spectrum model and Bayesian model selection. We show
how to set constraints on the minimum NS radius from a
single event. Finally, we discuss how to infer EOS stiffness
at the extreme densities reached in the merger remnant.
Conventions For waveform modeling we mostly use

geometric units c ¼ G ¼ 1 and measure masses in terms of
solar masses M⊙. The waveform strain is decomposed in
multipoles as

hþ − ih× ¼ D−1
L

X∞
l¼2

Xl
m¼−l

hlmðtÞ−2Ylmðι;ψÞ; ð1Þ

where DL is the luminosity distance and −2Ylm are the
s ¼ −2 spin-weighted spherical harmonics. In this paper
we shall compute the strain from the equation above
assuming only the l ¼ 2, m ¼ �2 modes and symmetry
across the orbital plane.1 The l ¼ m ¼ 2 waveform mode
is decomposed in amplitude AðtÞ and phase ϕðtÞ as

h22ðtÞ ¼ AðtÞ exp ð−iϕðtÞÞ; ωðtÞ ¼ _ϕðtÞ; ð2Þ

where ωðtÞ also indicates the GW frequency and the dot
denotes the time derivative. The corresponding spherical
harmonics are

−2Y2;�2ðι;ψÞ ¼
ffiffiffiffiffiffiffiffi
5

64π

r
ð1� cosðιÞÞ2e�2iψ ; ð3Þ

so that one obtains

hþ − ih× ≈
ffiffiffiffiffiffi
5

4π

r
AðtÞ
DL

�
1

2
ðcos2ðιÞ þ 1Þ cosðϕðtÞÞ

− i cosðιÞ sinðϕðtÞÞ
�
;

where one sets ψ ¼ 0. We work with quantities rescaled by
the total binary mass, i.e.,

ω̂ ≔ Mω ¼ 2πf̂; t̂ ≔ t=M; Â ≔ A=M; ð4Þ

and further define the moment of merger (t̂mrg ¼ 0) as
the time of the peak of AðtÞ (Fig. 2). Note that the time t̂
refers to the retarded time in the case of the NR data. The
binary mass is indicated with M ¼ MA þMB, the mass
ratio q ¼ MA=MB ≥ 1 and the symmetric mass ratio
ν ¼ MAMB=M2. GW spectra and frequencies are instead
discussed and shown in SI units with distances expressed
in Mpc.

II. NRPM MODEL

Our postmerger model builds on the results of [12,16,62]
that showed the postmerger frequency peak correlates with
the tidal polarizability parameter

κT2 ¼ 3

2
½ΛA

2 ðXAÞ4XB þ ΛB
2 ðXBÞ4XA�; ð5Þ

where Λi
2 ≡ 2ki2ðMi=RiÞ5=3, with i ¼ ðA;BÞ, are the

dimensionless quadrupolar tidal polarizability parameters
of the individual stars [63,64], ki2 the dimensionless
quadrupolar Love numbers [65–68], and ðMi; RiÞ the mass
and radius and Xi ≡Mi=M. Here we derive similar
relations also for other characteristic frequencies of the
spectrum and for the waveform’s amplitudes and character-
istic times. For nonspinning and slowly spinning BNS,
each of those quantities can be approximately modeled in
terms of the following set of physical parameters:

θ ¼ ðν;M; κT2 Þ; ð6Þ

that defines NRPM’s parameter space. The latter choice
is one of the key differences with respect to previous time-
domain models [27,45,46]. Other important differences
are the use of the largest-to-date set of NR simulations
and the possibility of constructing a time-domain approx-
imant that is phase coherent with inspiral-merger models
(see Sec. IV).

FIG. 2. Merger and postmerger waveform from two very
different BNS with mass M ¼ ð1.35þ 1.35ÞM⊙. The MS1b
BNS is an example of a long-lived remnant, and the SLy BNS is
an example of a short-lived remnant collapsing at t̂ ∼ 1200 after
merger time, t̂ ¼ t̂mrg. In both cases the postmerger waveform

amplitude has characteristic maxima and minima Âi at times t̂i
with i ¼ 0;…; 3. Note the jump in the phase at t̂0, where the
instantaneous frequency is not defined.

1We are considering here only nonprecessing systems.
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We use 148 simulations of the Computational Relativity
(CoRe) Collaboration [61], plus 24 simulations in part
reported in [69] and in part unpublished. The set of
simulations covers the range q ∈ ½1;1.5� and κT2 ∈ ½73;458�.
Figure 2 illustrates some of the qualitative features

common to all the merger þ postmerger NR waveforms
for short- and long-lived NS remnants. The waveform
frequency at early times is approximately constant around
the f̂2 value. In many waveforms a further frequency
modulation is clearly present in the first milliseconds after
merger. This feature is interpreted as the couplings between
f̂2 and a radial pulsation mode f̂0, in analogy to what
happens with nonlinear perturbations of equilibrium
NS [24,70–72]. In the latter case, nonlinear couplings
between proper modes result in new frequencies given
by f̂2�0 ¼ f̂2 � f̂0. In the case of BNS mergers, the two
secondary peaks in the GW spectra can be interpreted as
the nonlinear pulsations of the remnant f̂2�0 [24].
These secondary frequency peaks in the spectrum are
well studied, e.g., [21,22,73,74] and can be clearly seen
in Fig. 5.
Although we will often refer to discrete frequencies

(spectral peaks), we stress that the GW frequency is not
constant but evolves (chirplike) as the remnant becomes
more compact and eventually collapses (see SLy data in
Fig. 2). The largest GW luminosity is emitted at early times
after merger at which f̂ðtÞ is approximated by a certain
combination of f̂2; f̂2�0 [75]. The waveform’s amplitude
after the merger peak has typically a minimum, a maximum
and at least a second oscillation. In Fig. 2 these extrema are
labeled as Âi and occur at times t̂i with i ¼ 0, 1, 2, 3 where
the minima have even indices. Note that at t̂0 the GW phase
has a jump and the instantaneous frequency is not defined;
this corresponds to a moment in which the remnant
has a strongly suppressed quadrupolar deformation. At
timescales ∼10–20 ms corresponding to t̂ ∼ 1000–2000
(M ∼ 2.7 M⊙) the remnant has either collapsed (short-
lived) or dissipated most of its energy via GWs. There is no
significant GW emission at timescales τ ≳ 100 ms [29,76]
(see also the Appendix C).
In the following we describe in detail the construction of

the time-domain model and how the NR information is
extracted.

A. Time-domain model

1. Frequency and phase

We assume the GW frequency is composed of the three
main characteristic frequencies f̂2−0 < f̂2 < f̂2þ0 and con-
struct a C1 model for ω̂ðtÞ as follows. The frequency model
starts at t̂ ¼ t̂mrg ¼ 0with the value of the merger frequency

ω̂mrg and its derivative _̂ωmrg taken either from NR fits or
from an inspiral-merger time-domain approximant (see
Sec. IV). We impose

ω̂ðt̂mrgÞ ¼ ω̂mrg ð7aÞ

ω̂ðt̂0 ≤ t̂ ≤ t̂1Þ ¼ ω̂2−0 ð7bÞ

ω̂ðt̂2Þ ¼ ω̂2þ0 ð7cÞ

ω̂ðt̂ ≥ t̂3Þ ¼ ω̂2; ð7dÞ

and use a cubic interpolant to join ω̂mrg to ω̂2−0 in the
interval ðt̂mrg; t̂0Þ fixing the values of the function and of
the first derivatives at the interval’s extrema. The derivative
at t̂0 is taken as _̂ωðt̂ ¼ t̂0Þ ¼ 0. The frequency oscillation
in the intervals ðt̂1; t̂2Þ and ðt̂2; t̂3Þ is modeled with a sine
function in such a way that ω̂2þ0 is a maximum and
preserving the continuity and the differentiability of ω̂ðtÞ.
Note the model can be reduced to a single-frequency one
by simply joining ω̂mrg to ω̂2 at t̂3 and omitting ω̂2�0. The
phase of the waveform is finally given by integrating the
frequency model,

ϕðt̂Þ ¼
Z

t̂

0

ω̂ðt̂0Þdt̂0 þ ϕ0; ð8Þ

where ϕ0 is either arbitrarily chosen or fixed by requiring
continuity with an inspiral-merger phase.

2. Amplitude

We assume the postmerger amplitude has two minima,
Âi with i ¼ 0, 2, and two maxima, Âi with i ¼ 1, 3, and that
it decays exponentially after the second maximum. A C1

model for ÂðtÞ is constructed assuming

Âðt̂mrgÞ ¼ Âmrg ð9aÞ

Âðt̂iÞ ¼ Âi ð9bÞ

Âðt̂ ≥ t̂3 þ 5Þ ¼ Â3 exp ½−αðt̂ − t̂3Þ�; ð9cÞ

and using sine waves to connect maxima and minima. We
define fractional amplitudes βi ¼ Âi=Âmrg with i ¼ 0, 1, 2,
3 of the extrema with respect to the merger amplitude. The
damping term α is set as the timescale at which the
waveform amplitude is 1=100 of the merger value, i.e.,
when Â falls below the threshold

β4 ¼ 10−2: ð10Þ

Indicating t̂4 as such a time, one obtains

α ¼ lnð100β3Þ
t̂4 − t̂3

: ð11Þ

The timescale 1=α is identified from simulations and
has range ∼ð3; 70Þ ms for BNS masses distributed
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M ∼ ð2.5; 3ÞM⊙, if no collapse to a BH happens before [75]
(see also Sec. II B 2 for discussion on BH collapse).

B. NR information

The model’s parameters are summarized in Table I; their
values are fixed by constructing interpolating formulas of
NR data on the space of parameters θ.

1. Frequencies, amplitudes and times

The frequency information is extracted from the spectra
by identifying the three dominant peak frequencies.
Amplitudes Âi and the related times t̂i are extracted from
the waveforms (Fig. 2). Specifically, we construct fit
models using the variable [77] (see also Appendix A)

ξ ¼ κT2 þ cð1 − 4νÞ; ð12Þ

where the constant c is also a fitting parameter. The
frequency and amplitude at merger Âmrg and the peak
frequencies are well described by rational functions in the
form

FRationalðκT2 ; qÞ ¼ F0

1þ n1ξþ n2ξ2

1þ d1ξþ d2ξ2
; ð13Þ

where ðF0; n1; n2; d1; d2Þ are the fitting parameters. The
amplitudes Âi for i ¼ 0, 1, 2, 3 and the times t̂i are instead
fit by linear polynomials in ξ,

FLinearðκT2 ; qÞ ¼ p0 þ p1ξ; ð14Þ

where ðp0; p1Þ are fitting parameters. The results of the fits
are shown in Table I.
As an example, the peak frequency fits are shown in

Fig. 3. The uncertainty of the NR data computed from
simulations at multiple grid-resolutions is shown in the plot
as bars, if available. Note that the f̂2 peak’s determination is
affected by a further error of ∼2–8% due to the discrete
Fourier transform; larger errors affect the f̂2�0 determi-
nation. The χ2 coefficients for the frequencies fit are
typically ∼10−4 (note that the merger frequency has
χ2 ∼ 10−5), but some outliers are visible from the plots
at small ξ, or equivalently small κT2 (since these points
correspond to q ∼ 1). We note that most of these data points
correspond to low-resolution simulations for which error
bars either cannot be computed (one resolution available)
or are unreliable (two low resolutions available). For
example, the ENG simulation at κT2 ∼ 80 is a high-mass
M ¼ ð1.7þ 1.7ÞM⊙ BNS simulated at a maximal grid
resolution of h ≈ 0.365 km that does not guarantee con-
vergence even for the inspiral-merger (cf. [78–80] and
Appendix C). The frequency f̂2þ0 model is the most
uncertain for the available data.

Table I (see also Appendix A) shows that, while
postmerger amplitude fits are well captured by the model
(χ2 ∼ 10−3), the postmerger times are more uncertain
(χ2 > 1) with the uncertainty growing for larger times.
This is expected since the quantities at later times are less
correlated with premerger parameters and NR data are
themselves more uncertain the longer the simulation is.
While uncertainties on “late-time” quantities do not affect
significantly the time-domain waveform (see discussion in
Sec. III), they can affect the Bayesian parameter estimation
(Sec. V). Notably, the damping parameter α is degenerate
with part of the waveform amplitude in Fourier space, and
therefore fit biases can affect the estimation of the lumi-
nosity distance.

2. Prompt collapse

NR simulations indicate that a NS binary merger will
be followed by a prompt collapse to a BH, if the total
gravitational mass M of the binary exceeds a threshold
mass. The latter can be roughly estimated as [19,20]

Mthr ¼ kthrMTOV
max ; ð15Þ

whereMTOV
max is the gravitational mass of the heaviest stable

nonrotating NS. BothMTOV
max and kthr depend, in general, on

the EOS, mass ratio, and spins. For a sample of hadronic
EOS and equal-mass nonspinning binaries, the threshold
parameter in Eq. (15) is found in the range 1.3≲ kthr ≲ 1.7
[19,20,31]. Moreover, kthr shows an approximately EOS-
independent linear behavior in the compactness C of a
reference nonrotating NS at equilibrium; see [31] for a
recent collection of literature data, fit recalibration and dis-
cussion. Despite several NR efforts, it remains challenging
to construct a EOS-independent (universal) relation for
Mthr that is accurate and robust across the entire parameter
space. A data analysis approach based on Eq. (15), NRPM
and EOS inference is outlined in Appendix B.
We follow here an alternative route. By analyzing the

NR data of the CoRe Collaboration, we have found that all
the 30 prompt-collapse mergers are captured by the con-
dition κT2 < 80; see also Ref. [12]. Further combining the
estimate with Eq. (15) for a sample of nonrotating NS
model with 13 EOS leads to the following criterion for
prompt collapse [12]:

κT2 < κTthr ¼ 80� 40: ð16Þ

We adopt the above criterion in NRPM. In the context of a
Bayesian analysis, the threshold value can be either
prescribed or included in the set of intrinsic parameters.
This assumption is a simplification as the prompt-

collapse threshold is primarily determined by the EOS
pressure support at large densities (or the maximum mass).
For example, for a EOS sufficiently soft at the postmerger
densities ρ≳ 3ρ0, where ρ0 is the nuclear density, but
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admitting small compactness at inspiral densities (ρ ∼ 2ρ0),
Eq. (16) might incorrectly predict a NS remnant signal
instead of a prompt collapse. In practice, we do not have
such EOS in our hadronic EOS sample but interesting
examples are the EOS with hyperons [81] or with phase
transitions to quark deconfined matter. We will discuss
how to deal with these cases using a specific example
below. Improvements in the modeling of the prompt-
collapse threshold and the waveform amplitudes for the
short-lived cases are possible and will be considered in the
near future as more and more accurate simulations become
available.

III. VALIDATION OF NRPM

We compare the NRPMmodel to all nonspinning binaries
in the CoRe database and to a “validation set” of ten
simulations that were not employed for the fits of Sec. II B.
The properties of the validation set are summarized in
Table II. The simulations span the relevant ranges in θ, in
particular covering the prompt-collapse and short-/long-
lived remnant cases. We compute the mismatch [82]

F̄ ¼ 1 −max
ϕ0;t0

ðh1ðϕ0; t0Þ; h2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1; h1Þðh2; h2Þ
p ; ð17Þ

based on the Wigner scalar product between two wave-
forms

ðh1; h2Þ ¼ 4ℜ
Z

fmax

fmin

h̃�1ðfÞh̃2ðfÞ
SnðfÞ

df; ð18Þ

and assuming advanced LIGO design sensitivity [83–85]
for the power-spectral-density (PSD) function SnðfÞ and
½fmin; fmax� ¼ ½fmrg; 4096 Hz�. The value of F̄ represents
the loss in signal-to-noise ratio (squared) for waveforms
that are aligned in time and phase. Additionally, we analyze
time-domain phasing between the model and the NR
waveforms.
Mismatches against the CoRe data used in the fits are

shown in Fig. 4; the points relative to the validation set
waveforms are shown as cyan triangle markers. The plot
orders the binaries according to κT2 . The largest mismatches
are of order ∼0.65 for κT2 ≲ 200, the smallest mismatches
are of order ∼0.1, and on average F̄ ∼ 0.3. We recall that a
mismatch F̄ roughly corresponds to a fractional reduction
in detection rate of ∼1 − ð1 − F̄Þ3 for sources that are
uniformly distributed in space [88,89]. Template banks for
detection are usually constructed such that the maximum
value of F̄ across the bank is 0.03, thus allowing for a

FIG. 3. Characteristic frequency information from NR simulations. Markers represent the frequencies extracted from the NR data and
the uncertainties are estimated using simulations at different resolutions; the black lines are the fits and the gray bands are the 90%
credible regions. Left and right panels show the same data: the colors on the left panel correspond to the EOS variation, those on the right
panel to the mass ratio.
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∼10% loss in the detection rate. The requirements for
parameter estimation are believed to be more restrictive
than those for detection, but current state-of-the-art binary-
black-hole EOB waveforms have F̄ ∼ ð0.001–0.01Þ, e.g.,
[90]. Mismatches of NRPM with NR waveforms are
obviously larger than those of models that directly use
the same NR data [13,44,46] (note however that less than
40 simulations were used in those works). They are instead
comparable to those of [47] obtained with a similar dataset
and overall model design.
The mismatches should also be compared to the NR

uncertainties. For each binary, we plot an estimate of the
NR uncertainty obtained by computing the mismatch
between simulations at different resolutions. For most of
the NR data available it is not possible to show either
convergence of the postmerger waveform phase or a
monotonic behavior with grid resolution (but see [29,58]
for counterexamples and Appendix C for a discussion on
error controlled postmerger waveforms). Hence, we prag-
matically compute mismatches between waveforms from
all the pairs of simulations at the different grid resolutions
available. From Fig. 4 it is clear that postmerger NR data do
not satisfy by themselves the F̄ ≲ 0.03 criterion, and NR
mismatches are in many cases comparable to those due to
the modeling. A necessary condition for the development
of faithful postmerger models is thus the improvement of
the NR postmerger waveforms.
We further discuss time-domain phasing and spectra for

three binaries taken from the validation set and shown
in Fig. 5. The best match case is the BHBΛϕ withTA
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FIG. 4. Mismatches between NRPM model and the CoRe NR
waveforms. The validation set is indicated with cyan triangle
markers. Vertical bars indicate the range of mismatches among
NR waveforms at different grid resolutions (when available); a
single marker indicates the mismatch between waveforms from
two grid resolutions or the average from many resolutions. LIGO
design sensitivity [83–85] is used in the calculation of F̄ and the
frequency ranges start from fmrg (computed with relation
extracted above) and reach 4 kHz.
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M ¼ ð1.25þ 1.25ÞM⊙ (F̄ ∼ 0.1) for which the peak fre-
quency f2 ¼ 2358 Hz is well reproduced by the model (fit
value ffit2 ¼ 2357 Hz) and the waveform remains in phase
for ≳10 ms after merger. Phase differences at late times
influence less the match since most of the energy is radiated
earlier. The DD2 with M ¼ ð1.50þ 1.50ÞM⊙ has a mod-
erate match with NRPM. The model slightly overestimates
f̂2 predicting ffit2 ¼ 2871 Hz instead of f2 ¼ 2761 Hz.
Some significant dephasing is observed around t̂ ∼ 200
for several cycles, and it is likely the main cause of the
mismatch. The worst mismatch is obtained with the SLy4
with M ¼ ð1.364þ 1.364ÞM⊙ that produces a short-lived
remnant collapsing in ∼13 ms. For this BNS the peak
frequency is underestimated by the model (f2 ¼ 3654 Hz
vs ffit2 ¼ 3367 Hz). The NR frequency evolution has
several oscillations and increases before collapse; these
features are not modeled by NRPM. Consequently, the
model has a poor match. Note that the f̂2�0 are rather
well estimated in this case.
Inspection of other waveforms confirms that maintaining

the phasing in the early postmerger signal is a key factor for
the overall accuracy of the model. In addition, since the f̂2
fits of Sec. II are less accurate for small κT2 , NRPM better
describes the waveforms of BNS with larger κT2 corre-
sponding to lower postmerger frequencies. Note that the
latter are the most favored in low SNR detections. In other
words, NRPM is more robust (uncertain) for a long-lived
(short-lived) remnant, as expected. Finally, we test a
simpler version of NRPM with the single frequency f̂2
and find that some short-lived data are actually better
described by this simpler model which averages the
frequency evolution.

IV. TIME-DOMAIN INSPIRAL-MERGER-
POSTMERGER MODEL

A model for the time-domain inspiral-merger-
postmerger (IMPM) waveform is obtained by smoothly
attaching amplitude and phase of NRPM at the peak
amplitude Âmrg of any time-domain inspiral-merger model.
Currently, the only time-domain waveforms that can
reproduce the merger peak amplitude are the effective-
one-body (EOB) ones. We thus use the tidal EOB model
developed in [86,90,93] and called TEOBResumS.
The attachment is done at the amplitude peak as

described in Sec. II A, but using the amplitude Âmrg,
the merger frequency ω̂mrg and its derivative _̂ωmrg of the
inspiral-merger waveform. Amplitudes Âi are then fixed
by computing the ratios βi. Examples of IMPM waveforms
are shown in Fig. 5 and compared to NR waveforms.
In order to perform a visual comparison, the NR and
TEOBResumS_NRPM waveforms are aligned in phase and
time at merger. The figure shows the smooth attachment at
merger and the phase coherence of the postmerger com-
pletion. The figure also highlights that NRPM is more
accurate for BNS with larger κT2 , as discussed in Sec. III.
A quantitative measurement of the phase coherence

is obtained by computing mismatches between the
TEOBResumS_NRPM model and hybrid waveforms con-
structed joining TEOBResumS to NR data. We built such
hybrid waveforms starting from a GW frequency of 50 Hz
and for each BNS of the validation set. The mismatches are
computed as functions of the lower cutoff frequency fmin,
which takes values from 50 Hz to fmrg, where the latter is
obtained by the NR fits. Figure 6 shows the mismatches as
a function of fmin for the validation set. Significant phase

FIG. 5. Complete TEOBResumS_NRPM (2, 2) waveforms and corresponding spectra. Left panel: Time-domain TEOBResumS_
NRPM (2, 2) waveforms compared with selected NR hybrids around merger. From top to bottom, BHBΛϕM ¼ ð1.25þ 1.25ÞM⊙ is the
best mismatch case, DD2 M ¼ ð1.50þ 1.50ÞM⊙ represents an intermediate case and SLy4 M ¼ ð1.364þ 1.364ÞM⊙ is the worst
mismatch case. Right panel: Corresponding spectra from 400 Hz to 4 kHz with sources located at 40 Mpc and analytical power spectral
densities of LIGO design [83–85] and Einstein Telescope [91,92].
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differences are accumulating between 500 and 800 Hz
where the NR merger is attached. The last point of each line
corresponds to the mismatch between NRPM and NR;
typical values are F̄ ≲ 0.3 with a minimum F̄ ∼ 0.1 con-
sistently with what was discussed in Sec. III.

V. INJECTION STUDIES

To demonstrate the applicability of NRPM in the context
of Bayesian GW data analysis we consider a set of
experiments in which known signals are injected using
zero-noise configuration and recovered using standard
Bayesian inference techniques. The experiments aim at
addressing the following questions:
(A) At which SNR can NRPM detect a PM signal?
(B) Is it possible to infer whether the merger remnant

collapsed to a BH or was a NS using the
IMPM model?

(C) What constraints can be set on the NS minimal
radius from the PM analysis solely?

(D) Is it possible to infer the EOS stiffness at the extreme
densities reached in the NS remnant using the IMPM
signal?

Given data d and hypothesisH, the posterior distribution
of the parameters Θ is defined from Bayes’s theorem,

pðΘjd;HÞ ¼ pðdjΘ; HÞpðΘjHÞ
pðdjHÞ ; ð19Þ

where pðΘjHÞ is the prior distribution for the parametersΘ
and pðdjΘ; HÞ is the likelihood function. For a single
detector i, the likelihood is defined as

logpiðdjΘ; HÞ ∝ −
1

2
ðd − hΘ; d − hΘÞi; ð20Þ

where hΘ is the GW template, which depends on the
parameters Θ. For a detector network it is obtained by
multiplying the likelihood of the single detectors. The term
pðdjHÞ is the evidence and it can be computed as the
marginalization of the likelihood function over the entire
parameter space.
We perform two sets of experiments using the amplitude

sensitivity densities (ASD) of the three Advanced LIGO
[83–85] and Advanced Virgo detectors [94]. In the first
set, we inject nine postmerger signals of the validation set
reported in Table II placing the source at 2, 3, 4, 5, 6, 7,
8 Mpc and located at right ascension and declination
ðα; δÞ ¼ ð0; 0Þ with angle of view ι ¼ 0, polarization angle
ψ ¼ 0 and sampled at 8192 Hz. In the injections, we apply
a Tukey window at merger in order to isolate the post-
merger signal and remove the contributions from the
inspiral. The distances approximately correspond to post-
merger SNRs from 4 to 16, with the exact values depending
on the particular BNS. The injected NR signals are
recovered with NRPM by analyzing the frequencies
[1024, 4096] Hz and fixing the sky location of the source.
Inference is performed on the extended set of parameters

Θ ¼ ðMA;MB;ΛA;ΛB;DL;ψ ; t0;ϕ0Þ; ð21Þ

where ðt0;ϕ0Þ are the time shift and the merger phase,
respectively, and ψ is the polarization angle. In this paper
we prescribe the collapse threshold as κTthr ¼ 70; for more
general analysis the parameter can be included into Θ. We
also use the α parameter in Eq. (11) as estimated from the
NR fits but, as discussed in Sec. II B 1, uncertainties on
the α fit can lead to incorrect distance estimates. In future
analysis the effect of promoting α to an inference para-
meter should be explored, effectively allowing for a more
agnostic analysis.
The posterior distributions of other parameters are

recovered using their definitions or from the fits in the
case of peak frequencies. Priors are set on chirp mass, mass
ratio and ΛA;B, that are bounded to Mc ∈ ½0.5; 2.2�M⊙,
q ∈ ½1; 1.5� and ΛA;B ∈ ½50; 5000�. The prior distributions
are uniform in the individual components MA;B and ΛA;B.
Bayesian inference is performed with the nested sampling
algorithm [95] as implemented in the LALInference
software package [96–98].
In the second set, we inject hybrid waveforms and

we recover with either the IM model or the IMPM
model. Specifically, we use the nonspinning surrogate of
TEOBResum developed in [99] and refer to the IM (IMPM)
model as TEOBResum_ROM (TEOBResum_ROM_NRPM).
The choice of the priors is identical to the previous cases,
except for the chirp mass for which we use a smaller range
Mc ∈ ½1; 2.2�M⊙, and the frequency range analyzed is [50,
4096] Hz. We note that the injection labeled as 2B M þ
ð1.35þ 1.35ÞM⊙ is a prompt-collapse signal. NRPM does
not include a template for these types of sources and then

FIG.6. Mismatches between hybridwaveforms (TEOBResumS+
NR) and the completemodelTEOBResumS_NRPM as a function of
lower cutoff frequency fmin ∈ ½50 Hz; fmrg�. The latter quantity is
taken from the NR fits.
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this waveform is excluded from the detectability applica-
tion, but it is included in the second set of injections
(Sec. V B).
Considering a GW170817-like source, an optimal

SNR ∼ 3 could be achieved by the Advanced LIGO-
Virgo detectors at design sensitivity, while SNR ∼ 10 is
expected to be achieved by third-generation detectors.
From now on, the SNR value we quote is the maximum
value coming from the matched-filtered SNR computation
between the NRPM model and the injected signal.

A. Postmerger detectability

We discuss the results of the first set of injections
employing only PM signals and NRPM. The matched
filtering analysis of the validation set gives evidence of
postmerger signals starting from network SNR ∼ 8–9.
The latter correspond to source distances of 4–6 Mpc.
We find that statistical errors are larger than systematic
uncertainties at SNR≲ 12 but the two become comparable
for higher SNRs.
The parameters recovered by the analysis at the minimal

SNR are reported in Table II. For most of the cases, the
posterior distributions of the physical parameters include
the injected values within the 95% confidence regions.
However, some cases show degeneracies among the
model’s parameters. In general, the largest discrepancies
in the recovered parameters are induced by the inaccuracy
of the NR frequency fit for the particular BNS. The
posterior distributions for f2 for three exemplary cases
at different SNRs are shown in Fig. 7. NRPM recovers the
correct peak frequency within the uncertainties for all the
injected binaries except for the DD2 M¼ð1.50þ1.50ÞM⊙
which will be discussed in Sec. V D.

For the injection BHBΛϕ M ¼ ð1.25þ 1.25ÞM⊙, the
estimation of the parameters with NRPM is in agreement
with the injected properties. The posterior distributions are
unimodal and centered around the injected value. In this
case, the model is able to reconstruct the spectrum of the
signal and this fact is also motivated by the low mismatch
between this waveform and the model.
A difficult case is SLy4 M ¼ ð1.364þ 1.364ÞM⊙ for

which the values of the masses and κT2 are underestimated to
compensate the smaller values of f̂2 estimated from the NR
fits, and to obtain a signal matching the injection
(f2 ∝ M−1). Moreover, the marginalized posterior distri-
bution of f2 has a bimodality. For this signal, f2 is at the
edge of the frequency range where the sensitivity is smaller
and the recovery with NRPM promotes the subdominant
peak f2–0 as the main frequency, especially for high SNR.
However, the f2–0 is aliased to high frequencies and the
maximum of the marginalized posterior distribution of f2
is well above the Nyquist frequency of ∼4 kHz (not shown
in the plot). The secondary maximum of the distribution is
compatible with the injected value within the uncertainties.
Another interesting case is BHBΛϕ M ¼ ð1.50þ

1.50ÞM⊙: this postmerger signal is very short and the
remnant collapses after ∼3 ms. As a consequence, the
frequency evolution is not trivial and none of the spectrum
peaks is relevantly dominant, since the remnant evolves
towards collapse. Then, the recovered f2 peak is overesti-
mated while the f2−0 peak is correctly captured (finj2–0 ¼
2.48 kHz vs frec2–0 ¼ 2535þ40

−48 Hz at SNR 11).
In general, we observe for some cases a shift in the

recovered value of the total massM: this parameter strongly
correlates with the position of the frequency peak and with
its amplitude in the frequency domain. The latter quantities

FIG. 7. Marginalized posterior distributions of f2 for three injected cases at different SNRs: the first case, BHBΛϕ
M ¼ ð1.25þ 1.25ÞM⊙, is a case where the peak frequency is well recovered and this is also supported by the low mismatch between
the NRPM model and the injected signal. In the second case, DD2 M ¼ ð1.50þ 1.50ÞM⊙, we can see that for high SNRs biases appear
systematically and the recovered peak is below the injected one. The third case, SLy4 M ¼ ð1.364þ 1.364ÞM⊙, shows a bimodal
distribution: a dominant peak appears at frequency ∼5.2 kHz (beyond the Nyquist limit, not in the plot) while the secondary peak is
close to the injected value. The primary peak is compatible with the frequency f2–0 aliased at high frequencies.
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are also determined by the damping time in Eq. (11), whose
behavior is not well captured by NR fits (Table I). These
uncertainties propagate during the parameter estimation
routine and the results are biased. However, these effects
could be avoided including α into Θ. Moreover, this
estimation can be inferred with high accuracy from the
inspiral measurement at these SNRs.

B. Inferring prompt collapse

We discuss the results of the second injection set
focusing on two different BNS: 2B M ¼ ð1.35þ
1.35ÞM⊙ which ends in a prompt collapse, and BHBΛϕ
M ¼ ð1.25þ 1.25ÞM⊙ for which the outcome is a long-
lived remnant (see Fig. 5). In the context of Bayesian
analysis, a natural approach for prompt-collapse inference
is to perform model selection between inspiral-merger and
inspiral-merger-postmerger models for the given data. In
the case of prompt collapse, the IM model should be
favored with respect to the IMPM one, while in the case of
a long-lived NS remnant should be the opposite. Note that
this analysis relies on the existence of a coherent model for
the full spectrum (modeling the IMPM phases), as the one
proposed here.
Specifically, we perform model selection using the

Bayes’s factor B, which quantifies the agreement of two
different competitive hypotheses, HA and HB, with the
data. The Bayes’s factor is defined as the ratio of the two
posterior probabilities; however it is possible to prove that it
can be computed as the ratio of the evidences,

BA
B ¼ pðdjHAÞ

pðdjHBÞ
: ð22Þ

If BA
B > 1ð<1Þ, the hypothesis AðBÞ is favored. In our case,

the competitive models are TEOBResum_ROM for the IM,
and TEOBResum_ROM_NRPM for the IMPM. For this test
we remove the constraint given by κTthr on NRPM.
We inject the 2B and BHBΛϕ signals using a SNR ∼ 12,

sufficient to detect the postmerger signal with NRPM. We
recover with and without attaching NRPM model at merger.
The values of the Bayes’s factors obtained are reported in
Table III. The algorithm is able to distinguish whether
the remnant has undergone prompt collapse or not: the
Bayes’s factor for 2B M ¼ ð1.35þ 1.35ÞM⊙ correctly

favors the model without postmerger (logBIMPM
IM ¼

−70þ2
−2 ). Similarly, for BHBΛϕ M ¼ ð1.25þ 1.25ÞM⊙

the presence of a postmerger signal is favored with respect
to the prompt-collapse case (logBIMPM

IM ¼ 190þ2
−2 ).

We point out that numerical relativity simulations
indicate that in prompt-collapse waveforms a signal, not
described by EOB waveforms, is present after the ampli-
tude peak. We find that the SNR contribution of this short,
≲2 ms, postmerger signal in the full spectrum of 2B M ¼
ð1.35þ 1.35ÞM⊙ is below 4%.

C. Constraints on NS minimal radius

As shown in Table II, at the minimal SNR the inference
on f2 delivers a result accurate at 2–16% (two-sigma).
Using the EOS-independent relation of f2ðR1.6Þ from [45],
this measurement could be translated into an estimate of the
radius of a nonrotating equilibrium star of mass 1.6 M⊙
(R1.6) with an uncertainty of ∼1.5 km. In a real scenario
this is not particularly interesting since the radius (or
equivalently the tidal parameters, R ∼ Λ̃1=5 [100,101]) will
be known with an accuracy at least 100 times better from
the inspiral-merger analysis. We find from our runs that
inspiral-merger inference at the minimal postmerger SNR
delivers δΛ̃=Λ ∼ 0.04 and δR=R ∼ 0.008.
More interesting is to explore constraints on the radius of

the maximum mass (most compact) nonrotating equilib-
rium NS RTOV

max [48], since the latter corresponds to the
largest matter densities that can be reached for a given EOS.
Using the CoRe NR data, we find an approximate relation
in the form

R̂maxðf̂2Þ ¼ ð5.81� 0.13Þ − ð123.4� 7.2Þf̂2
þ ð1121� 99Þf̂22; ð23Þ

where R̂max ¼ RTOV
max =M and fitting χ2 ¼ 7.4 × 10−5.

Measurements of PM signals at the minimum SNR deliver
an estimation of Rmax accurate at the ∼8% level. The fit
uncertainty is smaller than statistical error at SNR 8, and
they become comparable for SNR 11. Figure 8 shows the
data and fit for Eq. (23) together with examples of the
posteriors for RTOV

max . The latter can be inferred with an
uncertainty of ∼1 km.
Some cases show biased results: for DD2 M ¼ ð1.50þ

1.50ÞM⊙ the expected maximum radius underestimates the
RTOV
max predicted by the related EOS, while for H4 M ¼

ð1.45þ 1.25ÞM⊙ the recovery overestimates the relative
value. These shifts are coherent with the erroneous estima-
tion of the total mass M, previously discussed in Sec. VA.

D. Inferring EOS stiffness at extreme densities

We demonstrate the possibility of investigating the EOS
stiffness at extreme densities using the postmerger GW
observations and NRPM. We discuss the specific case of

TABLE III. Evidences computed for the prompt-collapse in-
ference. The uncertainties are estimated with the criterion
introduced in Ref. [95]. The label “noise” refers to the template
identically equal to zero.

Injection logBIM
noise logBIMPM

noise logBIMPM
IM

2B M ¼ ð1.35þ 1.35ÞM⊙ 124845þ1
−1 124775þ1

−1 −70þ2
−2

BHBΛϕ M¼ð1.25þ1.25ÞM⊙ 107116þ1
−1 107306þ1

−1 190þ2
−2
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EOS BHBΛϕ and DD2, previously simulated by some of
the authors [58]. The BHBΛϕ EOS is identical to DD2
except that at densities ρ≳ 2.5ρ0 (where ρ0 is the nuclear
density) it softens due to the formation of Λ-hyperons.
Inspiral-merger GW signals from binaries described by the
two EOS and M ≲ 3 M⊙ are indistinguishable since the
individual NSs have maximal densities ρ≲ 2.5ρ0, similar
compactnesses and tidal parameters (same κT2 , Fig. 9).
We consider two pairs of binaries: a “low mass” with the

M ¼ 2.5 M⊙ pair and “high mass” with the M ¼ 3 M⊙
pair. The individual NS of the low-mass BNS have central
density ρ ≈ 2.35ρ0 and there are essentially no Λ-hyperons
at these densities in the BHBΛϕ EOS. The BNS remnants
relative to the latter EOS reach approximately ρ ≈ 2.80ρ0 at
which BHBΛϕ differs from the DD2 EOS. The GW
postmerger signals have very similar f2 frequencies, but
they are in principle distinguishable at sufficiently high
SNR [58]. The individual NS of the high-mass BNS
have ρ ≈ 2.75ρ0; the presence of Λ-hyperons significantly
affects the postmerger dynamics. The DD2 binary produces
a remnant surviving for ≳20 ms while the BHBΛϕ binary
collapses within ∼2 ms as a result of the EOS softening.
The postmerger signals are consequently very different, as
illustrated in Fig. 9 (bottom panel).
Figure 10 shows 68% and 95% confidence regions of the

marginal posterior distributions in the ðf2; κT2 Þ plane as a
summary plot of the inference results at two different SNR;
the left panels refer to the low-mass BNSs, right panels to
high masses. The postmerger analysis of the low-mass

BNSs returns the injected values and it agrees with the
inference from the inspiral analysis. At SNR 16 some
deviations are visible in the posteriors’ distribution indicat-
ing that such small differences might be detectable with
more accurate models and measurements.
The postmerger analysis of the high-mass DD2 M ¼

ð1.50þ 1.50ÞM⊙ shows that the injected frequency is
correctly captured by the recovery, while the frequency
estimated from the inspiral-merger analysis and the fit is
slightly overestimated (as expected, cf. Fig. 5). As a
consequence of this, the κT2 posterior from the postmerger
analysis is not compatible with the inspiral measurement at
the minimal SNR (upper right panel). However, at higher
SNR the correct κT2 is consistently recovered within the
68% confidence region (lower right panel).
For the BHBΛϕ high-massM ¼ ð1.50þ 1.50ÞM⊙ case,

we find instead inconsistencies between κT2 and f2 poste-
riors computed from the IM and PM analysis respectively.
The postmerger analysis returns a f2 higher than the
injected signal, especially at high SNR. At the same time,
the κT2 distribution from the postmerger analysis is shifted
towards lower values at larger SNR and rails against the
prompt-collapse value κT2 ∼ 70, significantly departing
from the inspiral measurement κT2 IM ¼ 93þ2

−3 . The tem-
plated-analysis of the postmerger clearly tries to fit the
higher frequencies of the signal (f2 ¼ 3.39 kHz) and the

FIG. 9. Binary neutron stars described by the BHBΛϕ and the
DD2 EOS and simulated signals [58]. Top: Mass of individual
spherical equilibrium NS as a function of the central density.
Markers refer to simulated BNS. Bottom: Real part of the (2, 2)
waveforms for BNSs with mass M ¼ ð1.50þ 1.50ÞM⊙ and
M ¼ ð1.25þ 1.25ÞM⊙.

FIG. 8. Characteristic postmerger frequency f̂2 against R̂max
extracted from NR data for different EOS. The black solid line
represents the fit with its 90% credible region. The right panel
shows the marginal posterior distributions of f̂2 for three selected
injections while the top panel shows the respective R̂max marginal
distributions.
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short postmerger signal collapsing to BH. The high
frequencies of the BHBΛϕ binary are incompatible with
the quasiuniversal of the NRPM model, due to the physical
softening of the EOS. Thus, the analysis of the postmerger
signal effectively implies a softer EOS than the analysis of
the inspiral implies.
In a real GW measurement the difference in the infer-

ences of κT2 (PM vs IMPM results in the high-mass BHBΛϕ
case) will give an indication of the EOS softening at
densities larger than those of the individual NS. The
constraint follows from the breaking of the quasiuniversal
relation f2ðκT2 Þ, but the latter does not necessarily imply the
presence of new degrees of freedom or phase transitions
(cf. [59]). The case studies suggest that a measurement at
SNR≳ 11 leads to deviations from the expected values
larger than the 90% credible regions, which is sufficient to
make a prediction with significance greater than the one-
sigma level.

VI. CONCLUSION

NRPM is a time-domain analytical model for post-
merger waveforms with minimal, but physically moti-
vated, parameters describing the morphology of the
postmerger waveforms in the binary (intrinsic) parameter
space defined by Eq. (6). Combined with inspiral-merger
effective-one-body waveforms, it forms an approximant
coherent in phase on the full frequency range observed
by ground-based interferometers. Future directions in the
modeling of the postmerger waveform will include the
extension of the CoRe database and the application of
statistical/data reduction methods for the construction of
more accurate and reliable templates [13,44]. Central
goals for numerical simulations are a better characteri-
zation of the prompt-collapse threshold and error-
controlled postmerger waveforms with microphysical
EOS and unequal masses.

FIG. 10. Inference of EOS properties at extreme densities. Left panel: Marginalized posterior distributions of f2 and κT2 for the low-
mass cases (SNR 11 and 16). The postmerger posteriors agree with the value predicted by the fit and with the measurement from the
inspiral. Right panel: Marginalized posterior distributions of f2 and κT2 for the high-mass cases (SNR 11 and higher). The panels also
shows f2ðκT2 Þ fits related to the injected values with the associated 90% credible regions. The uncertainties associated to the injected f2
are the widths of the relative peaks in the frequency domain.
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The current accuracy of the model seems sufficient for
the recovery of signals with postmerger SNR ∼ 8.5. These
results, although for a limited set of injections, suggest that
Bayesian template-based analyses of the postmerger require
higher SNRs than the morphology-independent analysis
[14,42]. The latter references claim that about 90% of the
signal can be reconstructed at SNR ∼ 5. Although a direct
comparison of a detectability threshold in the two types
of methods is difficult, the apparent higher requirement in
SNR of the template-based methods is unsurprising, since
these methods attempt to model and recover the entire
postmerger signal, as opposed to only capturing its dominant
feature. Additionally, the uncertainties associated with
numerical relativity simulations and with the related fits
significantly contribute to the mismatch (averaging to
F̄ ∼ 0.3, Fig. 4) and therefore affect the detectability in
the template-based method. An advantage of our method
is the possibility of performing coherent analysis of the
inspiral-merger-postmerger spectrum. We showed that a
straightforward application of our models in the context
of Bayesian model selection is the inference of prompt-
collapse/remnant star scenarios.
The quasiuniversal (approximately EOS-independent)

relations established in this paper extend previous results
and can be employed also with other modeling techniques.
On the one hand, they are the key to building waveform
models because they connect the main signal’s features
with the binary (progenitor NS) properties. On the other
hand, their direct use in constraining the EOS is not always
relevant. GW measurements of R1.6 or κT2 from f2 will not
add significantly new information about the EOS at
extreme densities because the inspiral signals of the same
sources will deliver more accurate measurements (stronger
EOS constraints) of the same quantities. For example, the
NS radius at fiducial masses would be known at ≲10
meters precision from inspiral measurements against the
kilometer precision of postmerger measurement, with the
meter precision being more accurate than any quasiuni-
versal relation known to date.
With this in mind, we have explored a recalibration

[Eq. (23)] of the relation RTOV
max ðf2Þ connecting the peak

frequency to the radius of the most compact NS [48]. The
latter effectively corresponds to the maximal NS central
densities, and it is unlikely that such NS will be compo-
nents of a binary system. A single postmerger signal at
minimal SNR would deliver RTOV

max within an error of ∼8%
(few kilometers). Assuming no systematic effect from the
template-based inference, the uncertainty on RTOV

max at
minimal SNRs is comparable.
A second constraint of the EOS at extreme densities

could come from the identification of softness effects. We
demonstrated that inconsistencies in the tidal polarizability
and in the characteristic frequency peak inferred independ-
ently from the inspiral-merger and postmerger analysis
can indicate EOS stiffening/softening at densities ∼3–5ρ0

already at minimal SNR for detection. Note that this
approach has similarities to the inspiral-merger-ringdown
consistency tests performed on BH signals [102–105]. It is
important to stress that no specific physical mechanism
determining the softening/stiffening is modeled in NRPM
(nor in the NR relations), but the information follows from
the breaking of the specific quasiuniversal relation. An
interesting development would be to perform model selec-
tion on different postmerger models, should NR quasiuni-
versal models based on specific EOS parametrization/
families become available.
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APPENDIX A: QUASIUNIVERSAL RELATIONS

We collect in this Appendix various plots of quasiuni-
versal relations for amplitudes and times. Figure 11 shows
amplitude and time fits extracted from NR data of the CoRe
Collaboration and implemented in the NRPM model. The
robustness of those relations is further demonstrated using
the independent data from SACRA code [51] that were not
used in this work. To this purpose Fig. 12 shows a
comparison between the f2 extracted from the SACRA
catalog [51] and the CoRe data and fits.
We give a heuristic justification of the quasiuniversal

relations (employed here and elsewhere to summarize NR
information) and of the choice of the parametrization. The
discussion follows from the original argument given
in [86].
While the choice of the parameter in Eq. (12) should

be primarily considered as an operative choice, it can be in
part justified based on perturbative arguments. In the
effective-one-body (EOB) description of the two-body
dynamics or, equivalently in this case, in the post-
Newtonian formalism, the interbinary potential AðuÞ,
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where u ¼ GM=ðrc2Þ, is the main quantity which describes
the binary dynamics. The radial force governing the
circular motion is given by

dA
dr

¼ −u2ð−2þ â00ðν; uÞ þ â0TðκAl ; ν; uÞÞ; ðA1Þ

where â0 and âT are the point-mass and the tidal corrections
to the Newtonian term respectively (we neglect here spin
interactions). The tidal contribution is in general para-
metrized by the multipolar tidal polarizability coefficients
κAl of each NS [64]. At leading order in 1=c2 the two terms
above read

â0ðν; uÞ ∝ νu2; âTðκAl ; ν; uÞ ∝ −κT2u3: ðA2Þ

Hence, finite mass-ratio and tidal effects are parametrized
at leading order by ν and κT2 ¼ κA2 þ κB2 . Note that the two
contributions are associated with different powers in u
(different post-Newtonian orders) and have opposite sign.
As noted in [86], in the strong-field regime (where the

expansion above is not accurate), and in particular close to
the EOB last stable orbit u ∼ 0.14, the tidal term âT can
become numerically comparable to â0 as κT2 ∼Oð100Þ.
This reflects the physical fact that the tidal term grows
faster (∼1=r3) at small separations than the nontidal one
(∼1=r2). Based on this picture, it is thus natural to interpret
the NR data in terms of κT2 because the latter is the
theoretically justified parameter that encodes the main
effects of the EOS and masses on the dynamics.
Interestingly, the κT2 parameter approximately captures

the collapse threshold and disk masses for nearly equal
mass BNS [12,35]. On the one hand, this might be intuitive
since κT2 contains information on the compactness of the
binary. On the other hand it is not necessarily expected,
given that the collapse is controlled by the maximum mass
(pressure) supported by the EOS at densities much higher
than those of the individual NSs. Thus, one should not
expect the κT2 parameter to completely or accurately capture
the strong-field dynamics; for this reason we defined the
NR relations as quasiuniversal relations. For example, to
capture the luminosity of binaries with mass ratios signifi-
cantly different from unity, it is necessary to correct the
leading-order post-Newtonian coefficient by a function of ν
[12]. Similarly, in this paper we have introduced the
parameter ξ in Eq. (12) to better capture mass-ratio effects.
The logic behind Eq. (12) is precisely to introduce a term
that can account for the strong-field effect of â0ðν; uÞ.
However, for the reasons above, the ξ parameter cannot

FIG. 11. Characteristic amplitude and time information from NR simulations. Markers represent the quantities extracted from the NR
data; the black lines are the fits with their 90% credible regions. All upper panels show the same data; the colors on the left panel
correspond to the EOS variation, and on the right panel to the mass ratio. Note that we impose a lower bound for Â0 equal to zero for all
those values of ξ that lead to negative results in the fits.

FIG. 12. Postmerger frequencies f2 from the CoRe database
(gray crosses) and the SACRA catalog [106,107] (colored dots),
averaged on different resolutions. The black solid line is the
quasiuniversal relation for f̂2 extracted from CoRe data with its
90% credible region.
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properly describe quantities affected by significant tidal
disruption. An extreme case is for example the disk mass in
BH-NS binaries [108,109].

APPENDIX B: BAYESIAN ANALYSIS
WITH EOS INFERENCE

Constraints on the matter EOS can be extracted from the
GW signal by performing inference on a parametrized
family of EOS [52,110–112]. Instead of sampling macro-
scopic EOS-related parameters, we can directly sample the
function pðρÞ that defines the EOS. Given this information,
it is possible to infer the properties of each NS, such as tidal
parameters and radii.
This method can be applied also with the complete

model proposed in this work, as described in Sec. IV. In
this case, it is possible to use Eq. (15) in combination
with information from the EOS [instead of the tidal
parameters and Eq. (16)], in order to infer whether the
remnant undergoes a prompt collapse to a BH. In particular,
MTOV

max and the maximum NS compactness Cmax would be
calculated from the inferred EOS while kthr can be
estimated from the inferred Cmax using NR fits [20,31].
This approach gives an alternative way to include prompt
collapse in complete waveform models based on NRPM
which we will further explore in future work.

APPENDIX C: ROBUSTNESS OF NR
POSTMERGER WAVEFORMS

As discussed in the main text a main limitation in the
construction of accurate postmerger models is the quality of
NR postmerger waveforms. While the accuracy of inspiral-
merger BNS waveforms has been studied in some detail
and clear waveform convergence can be shown using
high-order finite-differencing methods [79,80,113–115],
the latter are less effective in postmerger simulations.
Except for notable cases [29,58], the robustness of a
postmerger waveform with grid resolution has not been
studied in detail. We discuss here a resolution study of a
long postmerger waveform.
Among the validation binaries, we simulated the evolu-

tion of the long-lived remnant employing a microphysical
EOS SLy4 [116] starting from a binary system of individual
NS masses of 1.30 M⊙ at different resolutions. These
simulations span six orbits before merger and last for
more than 100 ms after merger. Such integration times
can be demanding in terms of computational time but NR
codes allow stable evolutions at rather low grid resolution,
e.g., [76,117–119]. Evolutions are performed with the
WhiskyTHC code [79,115,120,121] using a fifth-order
monotonicity-preserving reconstruction within a standard
second-order finite volume scheme [79]. Stars are covered
with resolutions of h ¼ ½0.415; 0.246; 0.185; 0.135� km in
each direction, respectively, very low resolution (VLR),
low resolution (LR), standard resolution (SR), and high

resolution (HR), where SR is our standard for production
runs [69] (but note that we performed also several HR
simulations in past work). We use seven 2∶1 refinement
levels and a Courant-Friderich-Lewy factor of 0.075 for the
time step.
The (2, 2) waveforms from runs at different resolution

are shown in Fig. 13. The waveform’s amplitude has a
nonmonotonic behavior with increasing resolution. For
example, the extrema in the time window t∈ ð30;60Þms
are similar for VLR and SR but different from those of
the LR data. The numerical high-frequency noise affect-
ing the frequency decreases in magnitude the higher the
resolution is, but it is mainly correlated to the amplitudes’
minima. Hence, also the frequency noise is not converg-
ing with resolution at the considered resolutions. We
checked the waveform phase convergence and found that
the phase has a monotonic behavior with the grid
resolution only until a few milliseconds after merger;
the long-term data are not in the convergence regime at
these resolutions.
Results at resolution VLR show the appearance of

spurious frequencies at f < f2 around 40 ms; the latter
are not present at higher resolutions. These frequencies
have been erroneously interpreted as physical convective
modes [118], which are instead not developed on these
timescales even using a microphysical EOS. A careful
inspection of the dynamics and multipolar waveform
reveals instead physical spiral modes with m ¼ 1 geometry
[29,49,122,123]. The GW frequency of the mode is f1 ¼
f2=2 and could be added to the NRPM model [49], but it
corresponds to a weak GW emission [29].
We conclude that, to the best of the current knowledge,

postmerger waveforms on timescales of ∼100 ms are well
described in terms of the frequencies and amplitudes
modeled by NRPM. The production of high-quality NR
postmerger waveforms is an urgent goal.

FIG. 13. Dependence of NR waveform on the grid resolution
for the simulation SLy4 M ¼ ð1.30þ 1.30ÞM⊙. VLR, LR, SR,
HR stand respectively for maximal resolutions h ¼
½0.415; 0.246; 0.185; 0.136� km in each direction.
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