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Abstract
Energy internet (EI) can alleviate the arduous challenges brought about by the energy
crisis and global warming and has aroused the concern of many scholars. In the research
of EI control systems, the access of distributed energy causes the power system to exhibit
complex nonlinearity, high uncertainty and strong coupling. Traditional control and
optimization methods often have limited effectiveness in solving these problems. With
the widespread application of distributed control technology and the maturity of artificial
intelligence (AI) technology, the combination of distributed control and AI has become
an effective method to break through current research bottlenecks. This study reviews the
research progress of EI distributed control technologies based on AI in recent years. It
can be found that AI‐based distributed control methods have many advantages in
maintaining EI stability and achieving optimal energy management. This combination of
AI and distributed control makes EI control systems more intelligent, safe and efficient,
which will be an important direction for future research. The purpose of this study is to
provide a reference as well as useful research ideas for the study of EI control systems.

1 | INTRODUCTION

1.1 | Energy internet

Nowadays, the rapid development of human society has led to
the massive consumption of fossil energy, forcing mankind to
face many challenges such as energy crisis, environmental
pollution and global warming. Therefore, people began to pay
attention to the production and utilization of renewable energy
[1, 2]. According to statistics in [3], the annual growth of the

world's total wind and solar power generation since 2000 is
22% and 40%, respectively. It is estimated that by 2050,
renewable energy will account for 80% of the total power
generation in the United States [4]. However, the traditional
power grid cannot adapt to the large‐scale access of renewable
energy due to their disadvantages of intermittence and ran-
domicity [5], which limit the use of clean energy. Taking wind
power as an example, China's wind power curtailment in 2016
was as high as 4.97 � 1010 kWÂůh, accounting for 17% of
China's total wind power generation [6].
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The continuous development of modern information
technology and renewable energy technology provides feasible
methods to solve these problems. The concept of energy
internet (EI) emerges as the time requires to realize a distrib-
uted and open sharing network based on renewable energy [7].
Resembling the functions of the routers in a modern infor-
mation internet, energy routers are usually added in the EI's
architecture to achieve the energy and information exchange
between power generation systems, energy storage devices and
loads [8, 9]. Based on the existing energy supply network, EI
combines renewable energy power generation technology,
advanced information technology and energy storage tech-
nology to achieve large‐scale utilization of distributed energy
resource [10, 11]. In addition, low‐carbon renewable energy,
such as wind, solar and nuclear energy, can be delivered to
different types of users through EI [12], thereby alleviating the
aforementioned problems.

According to Jiang et al. [13], EI has the following features:

� It replaces nonrenewable energy such as fossil energy with
renewable energy such as solar and wind energy;

� Energy is generated, stored and consumed at the same time
to achieve efficient system operation;

� Energy flows in both directions, and users can be both
energy producers and energy consumers;

� Cold, heat, electricity and gas networks interconnect with
each other to accomplish the conversion between different
forms of energy;

� A large‐capacity energy storage system is required to ensure
a stable output of energy;

� The energy flow and the information flow circulate in both
directions.

The implementation of EI requires a large number of
advanced supportive technologies, such as control technology
[14–17], energy storage technology [18, 19], power grid se-
curity technology [20], renewable energy‐based power gen-
eration technology [21] and big data technology [22]. It is
worth mentioning that EI is currently at the level of theo-
retical research. Many demonstrative projects have also
implemented EI's theoretical techniques and achieved rela-
tively satisfactory results, providing valuable experience for
EI's research and development. For example, Beijing Yanqing
Energy Internet Comprehensive Demonstration Zone in
China, Shanghai Chongming Energy Internet Comprehensive
Demonstration Project, France's Greenlys Project, Sweden's
Stockholm Royal Sea Port Project and the US Irvine SG
Demonstration Project [23].

1.2 | Distributed control technology in
energy internet

This study mainly focuses on the control technology of EI. In
recent years, the research on EI control and energy manage-
ment strategies has yielded many results. For example, Hua
et al. [24] describe the energy management problem as a

stochastic optimization problem, which can be solved using
dynamic programming. The modelling process combines the
recurrent neural network with Ornstein–Uhlenbeck process to
obtain the accurate power model of the photovoltaic (PV)
panel and load. The proposed control method can not only
effectively prolong the service life of energy storage equip-
ment, but also realize the reasonable use of microturbines and
avoid the situation of overcontrol. In [25], a short‐term wind
power forecasting algorithm based on noncooperative game
theory and deep learning is proposed in microgrid energy
management. The algorithm uses a stacked automatic encoder
to extract features from the training data, back‐propagation
algorithm to calculate the weight of the overall neural
network and genetic algorithm (GA) to optimize the learning
speed of the entire process. Their experiments show that ac-
curate wind power prediction results are helpful for the design
of management schemes. Kumrai et al. [26] propose a fitness‐
based modified game particle swarm optimization algorithm to
minimize the operating costs of microgrid and multimicrogrid
systems while minimizing pollutant emissions.

Energy management and control problems are usually
solved as optimization problems. Most existing solutions can
be divided into two categories, namely centralized methods
and distributed methods [27, 28]. A large number of existing
projects use centralized methods to solve management and
control problems. However, as more and more power devices
are deployed in the distribution network, the centralized
approach faces many challenges.

Centralized methods usually require the establishment of a
central controller to monitor the system and make decisions
[29, 30]. As the number of distributed generation devices in-
creases, centralized methods may become increasingly difficult
to operate. The main reasons are listed as follows [27, 31, 32]:

� Lack of specialized management units;
� Large amount of computing;
� Difficulty in timely communication due to large geograph-

ical span;
� Complicated to redesign, even replacing only one unit will

affect the central controller;
� Lack of data sharing;
� Reliability and security issues of the central controller.

In contrast, distributed control technology fully considers
the interaction between units, and assigns control tasks to
different units according to the control objectives of different
periods [32]. All smart devices work together to reach a col-
lective decision based on the set goals. Each controller only
needs to communicate with neighbouring nodes. Global in-
formation about the network (i.e. the status of all nodes) is not
required to make control decisions [33].

Compared with centralized control, distributed control has
many advantages. First, distributed control algorithms are
robust to the failure of a single controller node [34]. Moreover,
only limited information is shared between each pair of nodes,
which not only improves the security of the network, but also
reduces the construction cost of the basic communication
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facilities [35]. Since parallel computing is enabled, the
computing speed and the scalability of the system can be su-
perior to the centralized algorithm [36]. In addition, distributed
algorithms can protect privacy well, which is of great signifi-
cance in future practical applications. Therefore, more and
more studies focus on distributed control in recent years.

1.3 | Artificial intelligence‐based control

With the development of artificial intelligence (AI) technology
and computer hardware, using AI to solve complicated prob-
lems has become a research hotspot in recent years. In the
studies of renewable energy power generation and load fore-
casting, traditional physical methods usually require a large
amount of computing and are extremely sensitive to initial
conditions. It is difficult to improve their prediction accuracy at
the current level. Deep neural network can fuse massive data
information through the association of feature variables to
improve the accuracy of prediction and early warning [37, 38].

In the field of control, taking stability research as an
example, the randomness of renewable energy power genera-
tion makes it difficult to determine the operation mode of the
power grid, and the complexity of control continues to in-
crease. Outdated offline control strategies may not match
actual working conditions. The comprehensive guarantee
technology based on AI, such as machine learning, fuzzy set
theory or multiagent, can effectively improve the stability of
EI. For example, machine learning can continuously monitor
the operating status of the system [39], automatically determine
abnormal conditions, early warning of possible risks [40], and
reduce the risk of misoperation and refusal of relay protection.
The use of reinforcement learning (RL) can improve the de-
gree of matching of emergency control strategies with real
working conditions [41]. Data‐driven response technology can
cope with small probability accidents and prevent system
crashes.

AI is an effective tool for solving complicated situations
such as nonlinear problems [42]. Modelling errors in traditional
methods can also be reduced by AI‐based methods. Besides,
traditional control methods may sometimes be difficult to
achieve the desired control effect when the practical system's
operating state deviates unexpectedly from the theoretical as-
sumptions or models. In contrast, AI‐based control methods
can be more proficient in continuously tracking the changes of
the system, adjusting control strategies and improving the
ability to deal with uncertainty [43]. AI‐based methods also
have unique advantages in terms of computing speed,
modelling of complicated problems and system automation
degree.

1.4 | The difference between microgrid,
smart grid and energy internet

In particular, EI mentioned is a broad concept, including
smart grid and microgrid. A microgrid is a small energy

system composed of distributed power generation devices,
energy storage devices, energy conversion devices, loads and
related control and protection devices [44]. It can accom-
plish self‐control and self‐management due to its capability
of operating either in parallel with the external grid or in
isolation [45]. Compared with microgrid, smart grid con-
siders various problems in the energy system based on the
overall situation of regional power grid. It uses sensors to
monitor critical devices for power generation, transmission
and power supply in the energy network in real‐time and
further integrates and analyses the acquired data [46]. Smart
grid can achieve optimal management in a more extensive
energy network according to the analysis results. EI, in
contrast, further expands and deepens the concept of
smart grid. It differs with smart grid in the following ways
[47–49]:

� The physical entity of an EI is composed of electricity,
natural gas and transportation systems, while the physical
entity of smart grid is mainly the power system;

� The energy in an EI can be transformed into various forms,
such as electric energy and thermal energy. In contrast, the
energy in smart grid is only transmitted and used in the
form of electric energy;

� There are more participants in an EI. In addition, its energy
consumption forms include both local consumption and
wide‐area coordination. In smart grid, energy consumption
is mainly local.

Due to the lack of existing research work on the combi-
nation of AI and distributed control in high‐voltage energy
systems, the technologies discussed mainly focus on the low‐
voltage part. Therefore, the term ‘EI’ refers to the low‐
voltage type, a local energy system composed of microgrids
or smart grids.

1.5 | Contributions of this study

Today, more and more projects choose AI‐based methods to
solve specific problems in energy management and control
[50–53]. This study mainly focuses on the distributed control
based on AI technologies rather than the application of AI
technology in distributed systems. This study does not attempt
to list traditional distributed control methods and AI‐based
distributed control methods. Instead, this study first de-
scribes the development trend from centralized control to
distributed control and then to distributed control based on
AI, and then analyses the contingency and inevitability of this
trend combined with the development direction of energy
system. So far, although there is not much research work on
the combination of distributed control and AI, this is a
meaningful research direction. This study summarizes and
analyses some existing work to show readers a variety of
research methods and ideas in related fields and provides
specific reference value for scholars engaged in EI control
research.
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The rest of this study is organized as follows: Section 2
briefly describes traditional distributed control methods in EI;
Section 3 briefly introduces the AI technology; Section 4
summarizes the research work of the combination of AI and
distributed control in the study of EI; Section 5 concludes
this study and provides outlook for future work. The archi-
tecture of this study is shown in Figure 1.

2 | TRADITIONAL DISTRIBUTED
CONTROL METHODS IN ENERGY
INTERNET

This section briefly introduces traditional distributed control
methods in EI and outlines some existing research works.
These works do not use AI methods in modelling or problem
solving.

2.1 | Distributed control technology in
energy internet

The distributed control technology in EI needs to fully
consider the interaction between units. According to different
control objectives with respect to different time periods, tasks
are assigned to different units. Each unit retains sufficient
autonomy. When there are enough units, one way to perform
coordination strategies is to establish a control hierarchy.
Depending on the required time frame, the control hierarchy
can be divided into primary control, secondary control (also
called energy management system) and tertiary control [32].
Primary control is the fastest and responds to system dynamics
in real‐time. It is often used to ensure that the voltage and
frequency are within controllable ranges. The use of secondary
control can alleviate long‐term voltage and frequency de-
viations while coordinating units to achieve other goals, such as
power quality optimization or loss reduction. Tertiary control is
the most advanced control and is responsible for managing
multiple microgrids.

As summarized in [32], distributed control technologies
commonly used in EI include distributed model predictive
control‐based techniques [54], consensus‐based techniques
[55], agent‐based techniques [56] and decomposition‐based
techniques [57]. In the current research of EI control sys-
tems, distributed control has been widely used in economic
dispatch, frequency conversion speed regulation, voltage con-
trol and many other fields.

2.2 | Applications of traditional distributed
control in energy internet

The studies reviewed in this section use traditional distributed
control without involving AI methods in modelling and
solving.

2.2.1 | Traditional distributed control for system
stability

The stability of EI refers to the ability of the EI system to
resist disturbances. The massive access to renewable energy
increases the disturbances that the entire power system may
face. In the absence of an effective control scheme, voltage
and frequency fluctuations in a wide range caused by dis-
turbances may interrupt the entire power system and cause
significant losses. How to ensure the long‐term stable oper-
ation of the system is a problem that scholars are more
concerned about.

Energy storage
Energy storage system is an important device in EI, which can
be used to maintain the stability of the system. Bahramipanah
et al. [58] use a decentralized adaptive model with battery en-
ergy storage systems for real‐time power grid control. Its
control objectives include voltage control and congestion
management. The author in [58] partitions the entire energy
network into areas and conducts control to multiple areas.

F I GURE 1 Architecture of this study

66 - HUA ET AL.



Voltage regulation in real‐time network control is achieved by
considering the accurate dynamic model of battery energy
storage systems. Compared with the previous work in [59], the
distributed design in [58] effectively reduces the communica-
tion cost and computation workload. In order to coordinate
energy storage units, PV panels and controllable load units in
single‐phase low‐voltage microgrids, Golsorkhi et al. [60]
propose a novel distributed cooperative control framework to
regulate the voltage, and coordinate the charge and power state
between each energy storage unit. In addition, measures to
limit PV power are also configured in the system to avoid
overcharging or overdischarging of energy storage units. The
distributed method proposed can avoid the disadvantages of
single point failure or high communication cost that may occur
in the centralized method. It achieves better performance by
avoiding power quality degradation due to frequency and
voltage deviations.

Reactive power optimization
Reactive power optimization is a measure of reactive power
adjustment that optimizes one or more performance indicators
of the system under given structural parameters and load
conditions. It aims to maintain the voltage level by reasonably
allocating reactive power flow. Therefore, reactive power
optimization is an important means to maintain grid stability.

In [61], an optimal reactive control scheme based on a fully
distributed multiagent system is established. Compared with
previous centralized and semidistributed control methods, this
fully distributed control scheme can effectively reduce the
probability of single point of failure. In addition, it can not only
respond to environmental changes in a timely manner to
ensure the stability of the system, but also has scalability for
systems of different sizes and topologies. Similarly, Shafiee
et al. [62] propose a fully distributed control methodology for
secondary control of AC microgrids. This method guarantees
global voltage and frequency adjustment as well as accurate
active/reactive power sharing in droop‐based microgrids. Each
power supply participates in reactive power support according
to its predetermined rated power. The method also uses active
power measurements to successfully synchronize the fre-
quencies among multiple microgrids, so the controller no
longer requires additional measurement equipment, thereby
reducing costs.

Active power sharing
There are also some other works that study active power
sharing between microgrids. Considering the more practical
situation where multiple microgrids are interconnected, an
event‐based distributed consensus‐based control approach is
designed in [63]. The advantage of adopting the event‐based
method is that the communication between agents is greatly
reduced, and the flexibility and stability of the entire system are
improved. The use of distributed methods also enables the
plug‐and‐play function of the system, which can still maintain
the effectiveness in the case of islands and communication
link loss.

2.2.2 | Traditional distributed control for optimal
energy management

Optimal energy management is also an important research
direction of EI. The measures proposed in the studies of this
area can minimize the cost of power generation [64], maximize
social welfare [65, 66] and achieve economic dispatch, thereby
making EI operate more rationally and efficiently.

Social welfare maximization
Social welfare maximization is a goal to reduce the total pro-
duction cost of all power generators as much as possible, while
maximizing the total utility of all users [67]. On this issue, Xu
et al. [68] propose a distributed optimal control algorithm. The
construction of the objective function takes into account both
the generator and the load user. Each unit uses a consensus
algorithm to find the common incremental cost by minimizing
the incremental difference between adjacent units. The
adjustment rate is then controlled to optimize the power
generation or load change process. Therefore, the proposed
control method can achieve the dynamic minimization of
adjustment costs while ensuring the balance of smart grid
power generation demand. The algorithm is robust to
communication failures due to the distributed control method.
Moreover, it is adaptive to communication topology changes.
Future research on this issue should focus more on improving
distributed solutions, such as introducing energy storage sys-
tem constraints.

The Social Welfare Maximization energy management
problem in smart grid is also studied in [69]. The study aims to
maximize the overall social welfare that balances power gen-
eration costs, user‐side payments and transmission costs.
Through continuous information exchange, the distributed
projected control algorithm can obtain the global optimal so-
lution asymptotically. In order to save communication re-
sources, the event‐triggered condition of each generator and
each load is used to determine when its related states should be
sampled and transmitted to adjacent loads.

Demand response
Demand response research can promote the development of
the power industry towards higher efficiency. To achieve
optimal energy management scheduling between users and
utility companies, a distributed real‐time scheduling algorithm
is designed in [70]. The algorithm uses dual decomposition
technology to decompose the original problem into several
independent subproblems, which overcome the obstacles
caused by spatial coupling constraints.

Since a noncoordinated response of customers may lead to
severe peak rebounds at periods with lower prices, it is
sometimes necessary to coordinate demand to avoid peak re-
bounds. Safdarian et al. [71] propose a system‐wide demand
response management model to coordinate the demand
response of residential customers. The model is first described
as a bilevel optimization problem. Then the problem is con-
verted into an equivalent single‐level problem, which is finally
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solved by an iterative distributed algorithm so that the impact
to total load curve by user demand is minimized. Nevertheless,
the method in [71] fails to consider network constraints, which
can be a future research direction.

On the other hand, Diekerhof et al. [72] propose a hi-
erarchical robust distributed optimization method suitable
for day‐ahead and intraday scheduling of flexible devices
(electric thermal units) in urban areas. The optimization is
based on direction alternating of multipliers, which can
prioritize each individual customer and its own private
objective, and fully consider the needs of customers in the
scheduling process.

There are some other works focusing on minimizing the
total power generation cost while satisfying the total demand
and the power generation limit of a single generator. The
distributed algorithm provided in [64] is based on the results of
[73, 74] and incorporates the robust control methods in
[75, 76]. This algorithm can be used to solve optimal coordi-
nation of distributed energy resources in communication net-
works with packet loss. Compared with some previous research
works, the method in [64] is more robust and has a smaller
computational load. Further studies could extend the method
under more constraints, for example, transmission line loss,
power flow and transmission line flow constraints.

For the problem of inaccurate prediction, Nguyen et al.
[77] develop a distributed controller based on the work of [78].
A distributed model predictive controller is embedded in the
universal smart energy framework. There is also an aggregator
layer above the prosumer layer. These two layers are coupled
by an objective function to form a three‐tier structure, which
balances the responsible party, aggregators and prosumers. The
flexibility of the system is quantified in order to distribute the
day‐ahead planning to various integrators, and then a model
predictive controller is developed to minimize the imbalance
between grid forecast and actual supply and demand. The
improvement of [77] lies in integrating multiple tiers, such as
flexible consumption and congestion management, into one
model, which is more in line with practical application
requirements.

In [79], the real‐time scheduling problem of energy hub
under dynamic pricing market is studied. The interaction be-
tween energy hubs is modelled as a potential game, given the
accurate potential function of the energy centre game. The
authors prove that only the Nash equilibrium corresponds to
the global maximum of the potential function. The Nash
equilibrium is then determined by a distributed energy sched-
uling algorithm. This scheduling algorithm can be executed by
the energy management system of each energy hub in real‐time
to determine the profit maximization strategy of the user's
electrical and thermal devices.

2.3 | From traditional methods to artificial
intelligence

Nowadays, advanced AI algorithms are becoming more and
more consummate, and the functions of computer hardware

are constantly improving. Although the massive data generated
by EI devices increase the complexity of system control, they
provide possibility and feasibility for the practical application
of AI technologies at the same time.

In controlling and retrieving massive data streams, tradi-
tional methods usually require a local infrastructure to access
each device. This not only leads to increased costs, but also
limits the size of the data being processed. Therefore,
adaptive algorithms and AI‐based coordination mechanisms
are needed to achieve flexibility and distributed data man-
agement [80–82].

In addition, big data in the power grid conceal a lot of
valuable information. Through the analysis and utilization of
these data, AI technology can realize the automation and in-
telligence of the EI control system, thereby completing more
precise and intelligent control and scheduling. Traditional
methods may have overlooked the value behind these data. A
detailed comparison between traditional methods and AI
methods is shown in Figure 2.

On the prediction problem, AI methods can effectively
improve prediction accuracy and break through the
bottleneck of traditional methods. For example, in elec-
tricity price prediction, existing technologies include statis-
tical models, time series methods and AI‐based methods.
Compared with the high volatility of independent and
dependent variables in statistical models, AI‐based methods
have significant advantages in terms of estimation accuracy
[83]. In addition, AI technology can also deal well with
nonlinear problems related to short‐term electricity price
forecasting [84].

AI technology is also widely used in the prediction of
renewable energy power generation [24]. Wind speed, light
intensity and other factors that may affect the power gener-
ation of renewable energy could bring strong nonlinearity and
great uncertainty to the control problem, which makes it
rather difficult to solve the problem by traditional power
generation forecasting methods. AI methods such as neural
networks and GAs, however, are important means to solve
nonlinear problems [85]. These methods can discover pattern
from a large amount of historical data and improve predic-
tion accuracy. For example, extreme learning machines and
direct quantile regression can be combined to achieve
nonparametric probability prediction of wind power genera-
tion [86]. In addition, the hybrid of integrated deep learning
framework and an attention mechanism can be implemented
to predict PV power output. This high‐precision prediction
of the power generation equipment is indispensable in future
EI systems.

In terms of EI system control, traditional modelling
methods inevitably have errors, and sometimes they have
difficulties achieving the ideal control effect. For some
complicated problems, traditional physical modelling is even
infeasible. In contrast, AI‐based modelling methods can not
only improve the accuracy of the model, but also reduce the
difficulty of modelling complicated problems. For instance,
RL methods have the unique features of ‘no model’ and ‘no
prior information required’. In addition, the input and output
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data dimensions of EI are very high at present, and the data
are usually interrelated. Traditional control methods are
difficult to obtain comprehensive control and optimization
strategies, while AI methods such as deep learning, RL and
transfer learning are effective ways to solve these problems
[87, 88].

In other aspects of EI, AI is also a good auxiliary tool. In
power grid stability analysis, an AI‐based method can signifi-
cantly improve the efficiency of analysing large‐scale power
grid data [89]. Moreover, the online load modelling method
based on big data not only improves the accuracy of the model,
but also increases the processing speed while reducing the
repetitive workload of the staff. In the grid dispatching prob-
lem, the method based on AI can transform dispatching
method from empirical to intelligent, and complete better
adjustment under more constraints [90]. In the field of power
grid protection and control, emergency control schemes based
on RL can quickly provide real‐time control schemes based on
the operating state of the power grid, helping the grid resume
normal operation faster [91].

The operation and management of future EI will develop
in the direction of becoming more and more intelligent.
Massive data have been difficult to process with the experience
of the staff, and human participation in the operation of the
power grid needs to be reduced. AI is an effective way to
realize this concept. Similarly, as one of the important control
methods in recent years, the combination of distributed control
technology and AI will be a promising direction. The com-
bined use of these two technologies can not only solve some
nonconvex, nonlinear and other complicated problems, but
also has the advantages of fast calculation speed, low calcula-
tion cost and good privacy.

3 | OVERVIEW OF ARTIFICIAL
INTELLIGENCE TECHNOLOGY IN
ENERGY INTERNET

AI technology can be generally divided into four areas, namely
expert system (ESs), fuzzy logic, artificial neural networks
(ANNs) and GAs or generalized evolutionary computation
[92]. This section will briefly introduce some commonly used
AI methods in EI, including ANNs, RL, GAs and ESs and the
application of these methods in EI.

3.1 | Artificial neural networks

An ANN is an operation model composed of a large number
of interconnected nodes, also called neurons. Neurons can
handle the complicated behaviour of the system by the con-
nections between neurons and weight parameters [93]. Per-
ceptron is a commonly used model of neuron. It accepts
multiple different inputs, sums them with specified weights and
then gets the output through the activation function [94]. In
general, multiple parallel perceptrons form a layer, and the
layers are serially connected. The output of the previous layer is
used as the input of the next layer, forming a multilayer
network architecture as a whole. ANNs can solve problems
through massive data training. The main training modes are
supervised mode and unsupervised mode. The advantages of
ANN include adaptive learning, self‐organization, fault toler-
ance and easy integration with existing technologies [83].

In the EI system, ANN can discover the nonlinear rela-
tionship between variables in complex environments through
good learning ability [83]. As a consequence, ANN has a

F I GURE 2 From traditional methods to artificial intelligence
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significant effect in solving prediction problems such as the
output power prediction of PV systems [95, 96], household
energy consumption forecasting [97, 98] and power system
state prediction [99]. In the research of demand response, the
use of ANN can complete the modelling of controllable loads
under complicated constraints. This modelling method is
simpler than traditional modelling methods, and the resulting
model is more accurate. For example, Mosaddegh et al. [100]
establish Bayesian regularization back‐propagation algorithm
to obtain a neural network model of controllable loads based
on the history of load data and achieve optimal energy man-
agement. In addition, ANNs have also been widely applied to
EI energy management [101, 102], fault detection [103],
network security [104] and many other research topics.

3.2 | Reinforcement learning and deep
reinforcement learning

RL is an important group of machine learning algorithms. In
RL, the agent learns in a ‘trial‐and‐error’ manner, and the ac-
tion taken for each ‘trial‐and‐error’ is random. Agents guide
their subsequent actions based on the reward and punishment
obtained from actions taken in the current environment. The
ultimate goal of the training is to enable agents to obtain the
maximum reward, so that the external environment can best
evaluate the learning system in a certain sense.

RL has a wide range of applications in EI since it is pro-
ficient in solving decision problems under uncertain condi-
tions. At the cybersecurity level of the grid, the online anomaly
detection can be described as a partially observable Markov
decision process problem, and the model‐free RL framework
of partially observable Markov decision process problems can
be utilized in establishing a general robust online detection
algorithm [105]. The algorithm can detect network attacks
against the power grid in time, which is convenient for the
system to take reasonable countermeasures before any damage
is caused by the attacks, ensuring the network security of the
system. In addition, RL is a common solution in the fields of
energy trading [106], dynamic pricing and energy consumption
scheduling [107] and demand response [108].

At present, the combination of RL and deep learning has
also brought a new field, deep reinforcement learning (DRL).
Some works have begun to use DRL in solving many
complicated problems. For example, Wan et al. [109] describe
the real‐time charging scheduling of electric vehicles as a
Markov decision process with unknown transition probabili-
ties, and propose a model‐free optimal scheduling method
using DRL to obtain charge and discharge scheduling. Mocanu
et al. [88] use the deep policy gradient method as part of the
DRL method to perform online optimization of energy man-
agement system scheduling. An et al. [110] propose a DRL‐
based scheme to detect integrity attacks in AC power grid.
In [111], the DRL method is used to obtain an optimal energy
management strategy, such that the operation cost of the
considered EI scenario can be minimized.

3.3 | Metaheuristic algorithms

Metaheuristic algorithms mainly refer to a general type of
heuristic algorithm. They are the product of the combination
of randomized algorithms and local search algorithms, such as
GA, simulated annealing algorithm and ant colony optimiza-
tion. These algorithms have great similarity in the optimization
process, and they all have ‘neighbourhood search’ structure. A
typical metaheuristic algorithm starts with a set of initial so-
lutions. Under the control of the key parameters of the algo-
rithm, the neighbourhood function generates multiple
neighbourhood solutions, and continuously updates the key
parameters and states until the convergence criteria are satis-
fied. The optimization mechanism does not depend too much
on the organizational structure information of the algorithm,
and can well solve combinatorial optimization and function
calculation. This study mainly introduces GAs commonly used
in EI.

GA is a randomized search method that borrows from the
evolutionary laws of the biological world (such as survival of
the fittest). Through the genetic operations of replication,
crossover and mutation, the group of ‘chromosomes’ repre-
sented by the problem code can ‘evolve’ from generation to
generation. When the result eventually converges to the most
suitable group, it can be considered that the optimal or satis-
factory solution to the problem is found. GA has the advan-
tages of simple principle and operation, strong versatility,
unlimited constraints and parallelism and global searching ca-
pabilities. At the same time, as a stochastic optimization
method, GA considers probabilistic factors in the algorithm,
which helps it escape from the local optimum and find the
global optimal solution [112].

There have been some studies using GA to solve prob-
lems in EI. The method proposed in [113] accomplishes a
two‐step forecasting of electricity prices: in the first step, a
set of relevance vector machines (RVM) is adopted, and each
RVM is used to make individual advance price predictions;
the second step is to integrate RVM prediction into multiple
linear regression ensemble, and use GA to get regression
coefficients. In order to achieve route optimization of electric
vehicles, a learnable partheno‐GA combining GA with a
knowledge model can be utilized to solve the optimal path
model [114]. Acquiring useful expert knowledge from these
dynamically updated solutions helps guide the subsequent
searching process to quickly discover a more accurate electric
vehicles route.

In EI, the application of GA can handle some optimization
problems pretty well. However, GA also has the problem of
premature convergence, especially when the problem is
nonlinear and there are multiple local minima. This defect can
be solved by making appropriate improvements to GA. In
[115], a memory‐based GA can automatically and optimally
fairly share power generation tasks among the distributed en-
ergy resources in microgrid. It is further pointed out that it is
beneficial to improve the performance of GA by using
memory schemes to reuse the stored useful information.
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3.4 | Expert system

ES is an intelligent computer program based on Boolean logic,
which covers massive knowledge or experience in a specific
field and can be utilized to solve problems in this field. The
core components of ES mainly include the knowledge base
and the inference engine. The knowledge base is composed of
knowledge, data, facts and sentences that support this knowl-
edge, which are the basis of reasoning. The inference engine is
used to control and coordinate the entire system. It relies on
the knowledge in the database to obtain the results of the
problem through algorithms.

In EI systems, ES has a wide range of applications. In
terms of improving power quality, Moreira et al. [116]
propose an ES to select the most suitable compensator
through k‐nearest neighbour pattern recognition algorithm
and the knowledge base, thereby reducing losses and
increasing power quality. Compared with the technology
based on decision trees or neural networks, the classifica-
tion system based on ES has higher classification accuracy
in such problems. On the issue of energy management, ES
can be combined with a variety of learning algorithms to
enhance the classification function to achieve energy saving
and management of smart homes [117]. In addition, ES
can also be applied to problems like power grid fault re-
covery [118].

4 | DISTRIBUTED CONTROL BASED
ON ARTIFICIAL INTELLIGENCE IN
ENERGY INTERNET

By deeply integrating energy systems and the internet, EI
emphasizes the characteristics of energy equivalence, openness,
intelligence and timely response. Traditional technologies
generally have difficulties in establishing accurate models,
obtaining results in a short time and meeting the requirements
of high intelligence [119]. On the other hand, intelligence‐
enabled modelling, control and optimization methods can
quickly adapt to the environment and have dynamic predict-
ability, strong fault tolerance and robustness to disturbances
[120]. That is why AI‐based distributed control and manage-
ment methods are more and more favourable in solving
complicated problems.

4.1 | Distributed control based on artificial
intelligence for system stability

The stability of the power system has always been regarded as
an important guarantee for the safe and efficient operation of
EI. Stability refers to the ability of the power grid to withstand
disturbances [121, 122]. With the large‐scale access to distrib-
uted energy and the integration of information technology, EI
faces disturbances from both the physical layer and the
network layer. Therefore, maintaining system stability becomes
more challenging [123].

Optimization studies with system stability as the research
goal, such as transient voltage stability, are of great significance
for maintaining the effective and safe operation of power
systems [124]. Among many system control methods, distrib-
uted control can give consideration to remote data and mini-
mize the requirements of communication. At the same time,
distributed controllers are more reliable in terms of network
security [123]. In view of the advantages of AI technology,
research on AI‐based distributed control methods with respect
to system stability has achieved some results, which are sum-
marized in Table 1.

4.1.1 | Voltage control

Voltage instability is one of the most common causes of power
quality degradation of the system. In extreme cases, a voltage
collapse will cause the entire system to power off [131]. It is a
basic idea to keep the voltage stable within a controllable range
and avoid large fluctuations during operation. AI approaches
such as neural networks and machine learning can be well
combined with distributed methods to provide effective solu-
tions for voltage control.

For example, Karim et al. [125] bring up a distributed
secondary control method for maintaining rated voltage in an
independent microgrid. This method trains a distributed ma-
chine learning algorithm based on different voltage stability
conditions. The algorithm first takes available wind energy,
available solar energy, controllable load and load mutation as
input attributes, and takes a binary class representing system
stability or instability as the target attribute. It then uses a set of
bagged decision trees to prepare for the classification process.
If the classifier predicts possible instability, an appropriate
neural network will be selected based on cluster values corre-
sponding to the specific events prepared in advance. The
selected neural network will then make necessary modifications
to the main controller in a single cluster. Elmitwally et al. also
propose a control scheme without energy storage that uses
pulse width modulation to track the maximum power of the
PV array [132]. In addition, a fuzzy logic‐based diesel generator
speed control scheme is designed for the same research
problem. This method is sufficiently effective for diesel PV
power generation systems, but it fails to suit microgrids based
on wind PV, which indicates the meaningfulness of [125].

There are other research ideas about distributed secondary
voltage control methods, like the distributed collaborative
control strategy adopted in [126]. In more detail, it combines
radial basis function neural network with sliding mode control
to stabilize the system in a short time. The radial basis function
neural network is used to adjust the switching gain of the
sliding mode control in real‐time to reduce chattering, where
the sliding mode control is used to restore the microgrid
voltage. However, the microgrid model in [126] does not
conform to the real situation because the authors fail to
address the delay and interference of communication links. It
would be more sensible if future research can be conducted in
a more realistic microgrid model.
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On the other hand, Amoateng et al. [127] design an
inverter‐based distributed voltage controller based on ANN
and collaborative control theory under the multimicrogrid
structure. In their study, the model‐based controllers are first
designed using Lyapunov theory and the dynamics of the
distributed generation system. Then ANN is used to approx-
imate these dynamics and minimize the cooperative tracking
error function, thus obtaining a smart controller that does not
require much prior information. The proposed controller
achieves good active and reactive power sharing in distributed
multiple microgrids, and it has strong robustness to power
system disturbances. Compared with the previous work in
[133], the controller proposed in [127] is simpler and requires
less information. Future studies can explore how the controller
of [127] can keep running in the presence of system failures.

4.1.2 | Frequency control

In the EI system, distributed power generation has great un-
certainty. Some power system components also have nonlinear
characteristics, so they are prone to frequency fluctuation issue,
which affects the stability of the power grid [134]. Frequency
control is also an important means to ensure the stable oper-
ation of the power grid.

Regarding the imbalance between power generation and
load, the traditional centralized load frequency control struc-
ture is not convenient for exchanging information in large
scale. In addition, the increasing calculation and storage costs
make this structure more and more difficult in practical
implementation. To solve this problem, Singh et al. [128]
propose a distributed controller that combines RL and multi-
agent systems. The frequency controller in [128] has lower
communication costs, higher flexibility and better effective-
ness. It is used to implement load frequency control in a smart
grid environment where the communication topology can
change dynamically. Using the event‐triggered control method,
the proposed solution improves the dynamic system perfor-
mance and reduces the burden of network communication.

Similarly, Sun et al. propose an actor‐critic neural network
that integrates a distributed RL control scheme to compensate
for the frequency regulation of the power grid [129]. The
online learning algorithm of this neural network is derived
from the constructed error function. The purpose of the
learning process is to reduce the error between the actual value
and the estimated value of the radial basis, so as to approximate
the strategic utility function and optimize the control output.
The network structure also establishes the relationship be-
tween control output and performance estimation, which
further improves the efficiency of energy utilization. Compared
with previous methods of separating actors and critics in [135,
136], this combination of actor and critic neural network yields
two advantages. First, the relationship between the strategic
utility function estimation and the expected control output
estimation is established to improve the long‐term perfor-
mance. Second, the stability and the bound of performance can
be obtained through theoretical analysis.

4.1.3 | Power grid monitoring and fault recovery

Real‐time monitoring during power grid operation and timely
recovery when a fault occurs can further improve the stability
of grid operation and the resilience to small faults. In order to
achieve the above purpose, Karim et al. [130] integrate the
concepts in [137, 138] and propose a novel algorithm that
detects dynamic events from distributed generator data in a
sectionalized way. Its purpose is to facilitate the decision‐
making process after a fault occurs, so that the independent
microgrid can resume normal operation without intervention
from the central station. As for data preparation that requires a
lot of time and resources, the algorithm considers an alterna-
tive method to avoid real‐time feature selection by imple-
menting a set of preprocessed input features. In dynamic event
detection algorithms and fault recovery mechanisms, machine
learning methods are used to improve their performance.
Compared with traditional methods, this method reduces the
calculation cost and is suitable for practical applications.

TABLE 1 Distributed control methods for system stability

Control problem Scenario Methodology Reference

Voltage control Wind‐PV‐based isolated
microgrid

Distributed secondary control based on machine learning. [125]

Inverter‐based islanded
microgrid

Secondary controller using radial basis function neural network sliding
mode control algorithm.

[126]

Multimicrogrid structure Adaptive voltage control using distributed cooperative control and adaptive
neural networks.

[127]

Frequency control Smart grid An intelligent controller with communication topology changes using
multiagent RL.

[128]

An actor‐critic neural network that integrates a distributed RL control scheme. [129]

Power grid monitoring and fault
recovery

Stand‐alone microgrid Feature selection‐based distributed machine learning approach. [130]

Abbreviation: PV, photovoltaic; RL, reinforcement learning.
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4.2 | Distributed control based on artificial
intelligence for optimal energy management

In addition to stability‐oriented control and management
strategies, there are also many works that aim to optimize
energy use by minimizing costs or maximizing benefits,
extending the life of energy storage systems, or minimizing the
energy utilization cost. This study summarizes the two main
research directions of optimal energy management, namely the
demand response problem and the economic dispatch problem
that do not consider demand response. Table 2 provides a brief
comparison of existing works on these two problems. Note
that some existing studies adopt distributed approaches, others
use centralized approaches. This study mainly focuses on
distributed control methods based on AI since distributed
methods have many advantages in the optimal operation
problem over centralized methods [27].

4.2.1 | Economic dispatch

The goal of the economic dispatch problem is to establish a
reasonable dispatch plan based on predicted energy pro-
duction and consumption conditions, in order to minimize
the total operating cost and achieve the economic operation
of EI.

In [139], a fully distributed algorithm based on neural
network is designed to reduce the total cost. The essential
feature of the proposed neurodynamic optimization method is
its inherent parallel computation and theoretically guaranteed
optimality that can be obtained in real‐time without specific
initialization. This algorithm can solve the problem when the
objective function is not necessarily strictly convex and smooth,
with the existence of multiple coupling constraints. Compared

with previous methods in [149, 150] that only consider local
constraints, their results have a wider range of applications.

From the perspective of the operator, the authors in [140]
design the energy management algorithm for networked
microgrids using the registration minimization and online
alternating direction method of multiplier (ADMM) in machine
learning. Standard ADMM requires forecast data, and inaccu-
rate forecast results may increase the cost of power generation.
What is more, when the standard ADMM uses robust opti-
mization formulation, it may lead to conservative results.
Combining ADMM with machine learning and registry mini-
mization can make up for these defects. Furthermore, the al-
gorithm proposed in [140] is implemented in a distributed
manner, which significantly reduces the workload in computing
and communication. Although [151] also proposes an online
optimization algorithm for single microgrid based on regret
minimization, the underlying physical power network is
ignored in the algorithm design. When designing online energy
management, [140] considers both the underlying grid and the
networked microgrid, so the method in [140] is more
complicated.

In economic dispatch, existing control methods not only
consider the operating cost, but also consider other constraints
such as the combination of cost‐effectiveness and system
stability, so that the proposed control method can simulta-
neously optimize multiple problems.

Kohn et al. [141] propose a new distributed intelligent
control and management architecture based on hybrid systems.
The uniqueness of this architecture is that it includes a
distributed inductive engine in learning local dynamics of
generators and loads in the microgrid. Aiming at solving the
problem of insufficient accuracy of the load model in tradi-
tional methods, an optimization method based on machine
learning is adopted, and the load prediction can reflect the

TABLE 2 Distributed control methods for optimal energy management

Control problem Scenario Methodology References

Economic
dispatch

Energy internet A fully distributed algorithm based on neural networks, applicable for nonsmooth and general
convex objective functions

[139]

Networked microgrids A distributed algorithm for energy management based on online alternating direction method
of multipliers and machine learning

[140]

Microgrid A fully distributed algorithm based on neural networks, capable of solving convex
optimization where objective function is not necessarily strict convex or smooth

[141]

A cooperative RL algorithm [142]

Smart grid PI frequency controller and neural network‐based frequency controllers are used to
implement distributed economic dispatch control

[143]

Multiple energy carrier
systems

A novel multiagent bargaining learning algorithm [144]

Demand response Smart grid A GA‐based solution [145]

A novel deep transfer Q‐learning method associated with a virtual leader–follower pattern [146]

Stand‐alone microgrid Multiagent cooperation system based on fuzzy Q‐learning [147]

Microgrid Distributed energy and load management approach based on RL [148]

Abbreviations: GA, genetic algorithm; RL, reinforcement learning.
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dynamic change of the load in real‐time. In addition, the
control method has good scalability, meaning that the calcu-
lation amount of each node remains unchanged as the number
of nodes increases.

Although some existing research works can achieve
optimal economic dispatch [152–154], the acquisition of ac-
curate a priori statistical information of all distributed gener-
ator sets and loads in the microgrid is not simple, which limits
the practical application of these methods. In order to avoid
establishing a random model in advance, when trying to use
RL‐based methods, the studies in other aspects, such as
household energy management [155] and power generation
control [156], have achieved good results. However, in the
distributed economic dispatch of microgrids, the state space
and decision variables are continuous. Classical RL faces the
problem of ‘curse of dimensionality’, and the fuzzy Q‐learning
algorithm that solves this problem has a slow convergence rate.

Based on this, a collaborative RL algorithm is designed in
[142] for microgrid economic dispatch. This algorithm not
only minimizes the operating cost of the microgrid, but also
keeps the voltage stability of the entire system. A coordina-
tion mechanism is introduced in the RL algorithm with
function approximation to make up for the deficiencies
mentioned above. In this distributed collaboration mecha-
nism, each controller makes action decisions based not only
on its own state, but also on the state of neighbouring
controllers. The algorithm uses ‘trial‐and‐error’ interaction
with the dynamic environment to find the optimal decision
sequence to minimize operating costs. Future work may as
well consider designing a hierarchical RL structure to achieve
coordination between multiple microgrids, or adding more
constraints.

When studying multiobjective optimization problems, some
research works consider reducing the energy loss of the system
in the process of economic dispatch. By embedding frequency
control into a distributed economic dispatch method based on
consensus, the scheme developed by Li et al. [143] can overcome
the shortcomings of previous works, such as relying on a
centralized information centre to calculate the initial value of
mismatch and strong assumptions about the availability of po-
wer mismatch [65, 157, 158]. In addition, Li et al. also show an
idea of combining a consensus protocol with a control algo-
rithm, which can be generalized in the future.

For the distributed energy hub economic dispatch of the
multiple energy carrier systems, the use of the multiagent
bargaining learning method can significantly reduce en-
ergy loss while ensuring the minimum total cost [144]. In
order to avoid the shortcomings of slow convergence, curse
of dimensionality and weak disposal ability to deal with
continuously controllable variables in previous research
[159–161], Q‐learning with associative memory is adopted for
the learning process of each agent. In addition, nonuniform
mutation operators are used to process continuous control
variables. This combination has the advantages of fast
convergence speed and strong global search ability. It has
strong competitiveness compared with other distributed
heuristic optimization algorithms.

4.2.2 | Demand response

Solving the demand response problem needs to consider the
supply and demand relationship between customers and sup-
pliers. In order to reduce or shift the power load within a
certain period of time and respond to the power supply, a
reasonable energy management plan can be formulated by
combining the energy consumption and load distribution
of EI.

In [145], Mosaddegh et al. propose a distributed
computing architecture based on smart grid communication
middleware system. This architecture is used to solve the
distribution optimal power flow model of the distribution
network. To achieve voltage and reactive power control of
large‐scale systems based on the network model and reduce
the computation cost, previous works have proposed neural
networks and heuristic algorithms that decompose the
problem into subproblems. Although the methods introduced
by [162, 163] reduce the complexity of the distribution
optimal power flow model and the amount of calculation, the
solution obtained might be suboptimal. Accordingly,
Mosaddegh et al. [145] adopt a GA‐based method to solve
the distribution optimal power flow model. The distributed
computing method is applied to the smart grid communica-
tion middleware system, which reduces the calculation time
and obtains the optimal solution of controllable distributed
feeder devices.

For the supply–demand Stackelberg game in the smart
grid, a novel deep transfer Q‐learning algorithm based on a
virtual leader–follower model is proposed in [146]. Its goal is to
maximize the total revenue of all agents on the premise of
satisfying the power balance between supply and demand.
Compared with traditional gradient‐based optimization
methods, such as Newton's method, quadratic programming
method and interior point method, deep transfer Q‐learning
can better achieve global search and avoid falling into local
optima. In addition, compared with centralized metaheuristic
optimization algorithms, deep transfer Q‐learning has a faster
convergence speed, stronger online learning capabilities and
can effectively protect users' private information.

To conduct energy management for stand‐alone micro-
grid, Kofinas et al. [147] also propose a cooperative multi-
agent system. This method takes into account the uncertainty
of user demands, and can ensure the power supply of the
independent microgrid while maintaining the stability of the
entire system. The learning method utilizes local rewards and
state information related to each agent. As a result, the state
space is reduced and the learning mechanism is enhanced. In
addition, fuzzy Q‐learning is introduced in each agent to deal
with the continuous state space and action space. Compared
with previous works, the algorithm in [147] can obtain the
management strategy faster. Therefore, this technology can
be applied to more complex EI scenarios in the future, for
example, the EI systems with wind turbines or hybrid electric
vehicles.

There are also some research results on the issue of elec-
tricity market transactions. Foruzan et al. [148] design a
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distributed energy and load management method based on
multiagent strategies. Through RL, agents can adapt to
competitive and random markets, and optimize the utility of
both supply and demand in the hourly market based on
microgrid auctions. The model‐free Q‐learning algorithm en-
sures that each agent can find the optimal strategy, thereby
maximizing its own profit. Different from most research work
based on multiagent systems, [148] models the energy supply
and demand sides of the microgrid as a single unified agent to
further study the interaction and demand of both sides. In
addition, the distributed design in [148] can effectively reduce
the volume of information exchange and improve the response
speed.

5 | CONCLUSION

This study reviews the distributed EI control methods based
on AI in recent years. Compared with centralized control
methods, the traditional distributed control method has made
great progress, with fast calculation speed, low communication
cost and high security. However, there are still some limitations
in solving nonconvex and nonlinear problems. The rapid
development of computer hardware makes AI technology
widely used in electronic information systems, and provides
effective solutions to problems that traditional methods are
difficult to solve. AI‐based distributed control methods not
only maintain the advantages of distributed control itself, but
also have good adaptability to the characteristics of nonline-
arity, strong uncertainty, strong coupling, and multivariables of
EI system. In addition, flexibility has a positive effect on
improving the stability, operating efficiency and intelligence of
electronic information systems.

There are not many research results in this area currently,
but it will become a research direction with great potential.
Future work can try this combination more, or try to add more
constraints in previous studies. At present, some existing
projects have been completed under ideal conditions. Although
they provide good ideas, they are still far away from practical
applications, so it is recommended that future works consider
situations that are more in line with actual conditions.

The concept of EI covers low‐voltage, medium‐voltage,
and high‐voltage energy systems. Most existing researches on
the combination of AI technology and distributed control
focus on the low‐voltage side, while the research on the high‐
voltage side is rare. In the future, the combination of AI
technology and distributed control on the high‐voltage side
will also become a direction of great potential. In addition,
some existing projects are too slow to achieve real‐time con-
trol. Therefore, optimizing the time cost of solving control
problems is another important goal for future research.
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