
ETH Library

A synchronized visual-inertial
sensor system with FPGA pre-
processing for accurate real-time
SLAM

Conference Paper

Author(s):
Nikolic, Janosch; Rehder, Joern; Burri, Michael; Gohl, Pascal; Leutenegger, Stefan; Furgale, Paul; Siegwart, Roland

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010061790

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICRA.2014.6906892

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010061790
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICRA.2014.6906892
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A Synchronized Visual-Inertial Sensor System with FPGA
Pre-Processing for Accurate Real-Time SLAM

Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl,
Stefan Leutenegger, Paul T. Furgale and Roland Siegwart1

Abstract— Robust, accurate pose estimation and mapping
at real-time in six dimensions is a primary need of mobile
robots, in particular flying Micro Aerial Vehicles (MAVs), which
still perform their impressive maneuvers mostly in controlled
environments. This work presents a visual-inertial sensor unit
aimed at effortless deployment on robots in order to equip them
with robust real-time Simultaneous Localization and Mapping
(SLAM) capabilities, and to facilitate research on this important
topic at a low entry barrier.

Up to four cameras are interfaced through a modern ARM-
FPGA system, along with an Inertial Measurement Unit (IMU)
providing high-quality rate gyro and accelerometer measure-
ments, calibrated and hardware-synchronized with the images.
This facilitates a tight fusion of visual and inertial cues that
leads to a level of robustness and accuracy which is difficult to
achieve with purely visual SLAM systems. In addition to raw
data, the sensor head provides FPGA-pre-processed data such
as visual keypoints, reducing the computational complexity of
SLAM algorithms significantly and enabling employment on
resource-constrained platforms.

Sensor selection, hardware and firmware design, as well
as intrinsic and extrinsic calibration are addressed in this
work. Results from a tightly coupled reference visual-inertial
SLAM framework demonstrate the capabilities of the presented
system.

Index Terms— Visual-Inertial SLAM System, Camera, IMU,
FPGA, Calibration, Sensor Fusion.

I. INTRODUCTION

Many mobile robots require on-board localization and
mapping capabilities in order to operate truly autonomously.
Control, path planning, and decision making rely on a timely
and accurate map of the robots surroundings and on an
estimate of the state of the system within this map.

Accordingly, Simultaneous Localization and Mapping
(SLAM) has been an active topic of research for decades
[1]. Tremendous advances led to successful employments of
SLAM systems on all sorts of platforms operating in diverse
environments. Different interoceptive and exteroceptive sen-
sors such as 2D and 3D laser scanners, wheel odometry,
cameras, inertial sensors, ultrasonic range finders, and radar,
amongst others, provide the necessary data.

Yet it is often a challenge to equip a platform with a
reliable and accurate real-time SLAM system that fulfills
payload, power, and cost constraints. A “plug-and-play”
SLAM solution that achieves all requirements and runs ro-
bustly under the given conditions is seldom readily available,

1 Janosch Nikolic and Joern Rehder contributed equally to this work. All
authors are with the ETH, the Swiss Federal Institute of Technology Zurich,
Autonomous Systems Lab (www.asl.ethz.ch), Tannenstrasse 3, CLA, CH-
8092 Zurich, Switzerland.

Fig. 1: The SLAM Sensor unit in a fronto-parallel “stereo”
configuration(front- and side-view). The sensor interfaces
up to four cameras and incorporates a time-synchronized
and calibrated inertial measurement system. Access to high
quality raw- and pre-processed data is provided through
simple interfaces.

and thus significant engineering efforts often have to be
undertaken.

Visual SLAM systems that rely on cameras have re-
ceived particular attention from the robotics and computer
vision communities. A vast amount of data from low-cost,
lightweight cameras enables incredibly powerful SLAM or
structure-from-motion (SfM) systems that perform accurate,
large-scale localization and (dense) mapping in real-time [2],
[3]. However, SLAM algorithms that rely only on visual cues
are often difficult to employ in practice. Dynamic motion, a
lack of visible texture, and the need for precise structure and
motion estimates under such conditions often renders purely
visual SLAM inapplicable.

Augmenting visual SLAM systems with inertial sensors
tackles exactly these issues. MEMS Inertial Measurement
Units (IMUs) provide valuable measurements of angular
velocity and linear acceleration. In tight combination with
visual cues, this can lead to more robust and accurate
SLAM systems that are able to operate in less controlled,
sparsely textured, and poorly illuminated scenes while un-
dergoing dynamic motion. However, this requires all sensors
to be well calibrated, rigidly connected, and precisely time-

synchronized.
This work makes a step towards a general-purpose SLAM

system by providing these capabilities. The sensor head
evolved through the development of several prototypes and
was tested in many applications, for instance in a coal fired
power plant [4] or on a car [5]. Fig. 1 shows our final
hardware iteration.

The remainder of this article is organized as follows:
in Section III, we outline the design concept, FPGA-pre-
processing (see Section III-C), and the calibration of such a
visual-inertial sensor unit (see Section IV). We then overview
our reference tightly coupled visual-inertial motion estima-
tion framework in Section V, which we use in Section VI to
illustrate the capabilities of the sensor system.

II. RELATED WORK

There exist different FPGA vision systems particularly
geared to robotics. The GIMME platform [6] is similar in
scope to this hardware in that it computes visual interest
points on an FPGA and transmits those to a host system
in order to bring visual pose estimation to platforms with
computational and power constraints. However, it is a purely
visual sensor setup and hence does not require elaborated
synchronization or calibration between different types of
sensors.

Another system that employs inertial sensors has been
developed by the DLR [7]. In this system, a general purpose
computer and an FPGA are closely interleaved in order
to enable ego-motion estimation and depth computation on
a handheld device. In contrast to our setup, cameras and
inertial sensors are not as tightly integrated into the system,
and images appear to be timestamped at the start of sensor
exposure, resulting in a varying, exposure dependent offset to
IMU measurements. Furthermore, its weight might prohibit
application on very payload-constrained platforms.

As heterogeneous sensor systems for motion estimation
and localization become increasingly popular, spatial cali-
bration has attracted some attention and resulted in a variety
of frameworks [8]–[10]. More recently, the importance of
accurate synchronization of the sensors became apparent and
was addressed in [8], [11], [12]. While this work makes
use of the calibration presented in [12] to determine the
transformation between cameras and IMU and to determine
fixed delays present when polling inertial data, its approach
to the problem is exactly antithetic: rather than connecting
a set of stand-alone sensors to a general purpose computer
and calibrating for potentially time-variant time-offsets after-
wards, we pursued a tight integration of all hardware com-
ponents with a central unit capable of concurrent triggering
and polling of all sensors.

III. THE VISUAL-INERTIAL SLAM SENSOR

This section outlines important design concepts and
“lessons learned” throughout the development of three suc-
cessive prototypes that led to the sensor presented here.

Subsection III-A provides a conceptual overview of the
sensor. Subsection III-B describes a synchronization method

that guarantees ideal alignment of all sensors in time. Sub-
section III-C describes the FPGA implementation of image
processing operations such as keypoint detection to reduce
CPU-load of successive SLAM software.

A. Sensor Design Concept

At the core of the SLAM sensor, we employ a modern
XILINX Zynq System-on-Chip (SoC), a device that com-
bines FPGA resources with a dual ARM Cortex-A9 on
a single chip. Hardware programmability allows a direct,
lowest-level interface to the CMOS imagers and inertial
sensors, enabling precise synchronization and a reliable data
acquisition process.

At the same time, the chip offers a powerful, industry
standard CPU running Linux. This facilitates simple
development and efficient execution of processes that
are time-consuming to implement on an FPGA (e.g.
host-communication or even a simple SLAM framework).
In contrast to previous prototypes which featured a
XILINX Spartan-6 FPGA - Intel ATOM combination, this
also offers a better integration and a higher bandwidth
between logic and CPU. Fig. 2 gives an overview of the
hardware architecture, and Table I summarizes the technical
specifications of the sensor unit.

MT9V034
C

A
M

 0

XILINX FPGA (SoC)
Zynq-7020

LV
D

S

LV
D

S

Invensense
MPU9150

Analog Devices
ADIS16488 /
ADIS16448

U
SB

3 GPIFFX3

ARM
Cortex A9 dual-core

Linux

LV
D

S

C
A

M
 2

LV
D

S

C
A

M
 3

Imager

P
O

W
ER

D
D

R
3

Memory

TRIG /
SYNC

U
A

R
T

G
ig

E
TR

IG

C
A

M
 1

MT9V034

IM
U

 A

IM
U

 B

Imager

Artix-7 FPGA
Fabric

Fig. 2: Block-diagram of the SLAM sensor hardware ar-
chitecture. Camera chips and inertial sensors interface the
ARM-FPGA system-on-chip directly. Standard interfaces
provide fast access to the data provided by the module.

1) Visual Subsystem: The SLAM sensor offers four cam-
era extension ports. The ability to rely on several cameras
is crucial for many real-world applications. Even when
wide Field-of-View (FoV) optics are used, a single camera
may still point into a direction where keypoint tracking
is difficult (lacking texture, temporary obstruction of the
FoV, bad illumination). With the option to use four cameras
simultaneously, configurations such as the combination of a
“fronto-parallel” stereo pair and two fish-eye modules are
quickly realized.

In the current configuration, camera chips were selected
according to their low-light sensitivity and global shutter

Basic Characteristics Value/Characteristic Unit
Mass (for diff. configurations)

1 cam+MPU 60 g
2 cams+mount+ADIS16448 130 g
4 cams+mount+ADIS16488 185 g

Embedded Processing XILINX Zynq 7020
Processor 2xARM Cortex A9
FPGA ARTIX-7
Interfaces GigE, USB2/3

Camera System
Sensors Aptina MT9V034
Shutter type global
Opt. resolution 752×480 pixel
Max. frame rate 60 fps
Inertial System (ADIS16488)
Rate Gyroscope

Measurement Range ±1000 °/s
Noise Density 0.007 °/s Hz-1/2

Accelerometer
Measurement Range ±177 ms-2

Noise Density 0.66 · 10-3 ms-2 Hz-1/2

Max. sampling rate 2.4 kHz

TABLE I: Overview of the SLAM sensors technical specifi-
cations. High quality sensors that perform well in low-light
scenarios and when undergoing dynamic motion are inte-
grated in the sensor unit. The module’s relatively low weight
facilitates employment on payload-constrained platforms.

functionality. Aptina’s MT9V034 CMOS sensors offer good
performance and a direct interface to the FPGA through
LVDS ports. By default, Lensagon lenses of the type
BM2820 (122° diagonal FoV) or BM2420 (132° diagonal
FoV) are used.

In addition, a FLIR Tau 2 thermal imager can be
connected, which then occupies one of the camera ports.
Similar to the camera modules, it directly interfaces with the
Zynq providing time-synchronized digital (14 bit dynamic
range) thermal images to the host.

2) Inertial Subsystem: The current prototype allows two
options with regard to the IMU subsystem. By default, each
camera module is fitted with a low-cost MEMS IMU offering
a triple axis gyroscope, accelerometer, and magnetometer in
a single package. The MPU-9150 was selected due to its high
range in both angular rates and acceleration. Chip internal
filtering and processing are switched off, and only raw data
is used.

In addition, a factory-calibrated MEMS IMU system from
the ADIS family of Analog Devices can be connected.
The ADIS16448 and ADIS16488 are equipped with higher
quality gyroscopes and accelerometers, and they are factory-
calibrated over a large scale and temperature range. Depend-
ing on the application, one can trade-off sensor weight versus
accuracy of the inertial subsystem.

B. Sensor Synchronization and Data Acquisition
We configure the image sensors for external triggering. At

the same, the inertial measurement sensors are polled for data
acquisition. As stated earlier, accurate synchronization of dif-
ferent sensors was the driving motivation for a tight integra-
tion in hardware. It is an established fact in photogrammetry,

that images should be timestamped by their mid-exposure
time, and in previous work [12], it could be shown that
neglecting image exposure time in timestamping data has
an observable effect, which suggests that it could adversely
affect image-based state estimation. We made the design
choice to not correct for the exposure time in timestamping
images, but to account for the exposure time when triggering
the sensors. This way, the middle of the exposure times will
still be equally spaced despite varying lighting conditions,
which exhibits certain advantages when representing states in
a time-discrete manner. Fig. 3 illustrates the synchronization
scheme in comparison with periodically triggering, where
varying lighting conditions result in exposure midpoints that
are not equally spaced.

t

inertial

measurements

periodic

trigger

exposure

compensated

Fig. 3: This timing diagram shows strictly periodic polling
of an IMU as well as two schemes of camera synchro-
nization, where high levels mark exposure times. Triggering
the camera at the instance an inertial measurement is re-
trieved is a common approach to synchronization. However,
the exposure is asymmetrical with respect to the inertial
measurement. By taking varying exposure into account and
shifting each triggering instance accordingly, significantly
improved synchronization can be achieved, as demonstrated
in Fig. 6.

Note that also the inertial measurements may exhibit a
delay. This delay is in general fixed and can be a combination
of communication, filter and logic delays. Section IV will
detail on estimating this delay, which is compensated for in
the same way the exposure delay is addressed, by moving the
moment when a polling request is initiated with respect to
the point in time when the measurement is timestamped. As
part of the results section, Fig. 6 reproduces an experiment
from [12]. The results demonstrate that the delays can
be accounted for in the sensor data acquisition, thereby
improving the synchronization between sensors significantly.

C. FPGA Accelerated Image Processing

As depicted in Fig. 7, the detection of interest points
consumes a significant share of the processing time in the
state estimation pipeline. At the same time, many interest
point detectors operate on a rather confined neighborhood
of pixels and can be implemented exclusively using fixed-
point arithmetic, which renders them well suited for an
implementation as dedicated logic blocks inside an FPGA.
For this project, a fixed-point version of the Harris corner
detector [13] as well as the FAST corner detector [14]
have been implemented. While the resources of the FPGA

used in the setup are not sufficient to integrate them both
at the same time, it is possible to load the FPGA with
different configurations depending on the requirements of the
experiment. Note that the quantities reported in Table II have
been acquired for an earlier prototype based on the Xilinx
XC6SLX45T.

Harris Corner Detection: The Harris corner detector is
based on an approximation of the auto-correlation function
for small image patches. With Ix denoting the derivative in
x-direction of the image intensity at pixel x + u, y + v,
and w(u, v) denoting a weighted averaging function, the
approximated local auto-correlation is calculated as [13]

A(x,y)=
∑
u

∑
v

w(u,v)

[
I2x IxIy
IxIy I2y

]
. (1)

With A and a weighting factor k, the corner response
function r is calculated as

r = |A| − k tr(A)2. (2)

Larger positive values of this function correspond to corner
regions, while negative results indicate edges. Flat regions
trigger a small response. Examining this function reveals
pixel differencing operations, cascaded multiplications as
well as local averaging. Fig. 4 depicts the FPGA imple-
mentation of the corner score function. Derivatives of image
intensities are computed by means of Sobel filters, while
local averaging is performed by convolving with a Gaussian
kernel. As in [6], weighting the Trace of the matrix in
the cost function has been realized by a bit shift opera-
tion. Individual blocks like Sobel and Gaussian filters as
well as the multipliers in the pipeline operate at higher
frequency than the pipeline itself—25 MHz and 125 Mhz
respectively—allowing for the re-utilization of resources.
Furthermore, by making use of the separability properties of
Sobel and Gaussian filters, resource utilization can further
be reduced. The resulting resource utilization is shown in
Table II. The maximum clock rate is limited and thus
imposes upper bounds on the degree to which resources can
be shared. However, the pixel rate of the sensors used in this
sensor setup allows for a excessive re-utilization of resources,
resulting in a core that can be conveniently duplicated for
four cameras without exceeding the area of the FPGA.

FAST Corner Detection: The FAST corner detector is a
heuristically motivated approach to interest point detection,
which compares intensities of image points on a circle around
the point in question. It identifies a pixel as an interest
point based on the number of pixels in a segment that is
either coherently lighter or darker than the central element.
In [14], different scores for nonmaximum suppression are
proposed. Taking the mere number of coherent intensity
comparisons can be efficiently implemented, but results in a
rather coarsely quantized score. On the other hand, consid-
ering the sum of absolute differences (SAD) of this segment
with the center pixel yields finer granularity in the score
at the expense of occupying a larger area on-chip. In this
project, both scores have been implemented with the resource

utilization displayed in Table II. Fig. 5 illustrates a detail of
the implementation as a block diagram, which depicts the
path testing for lighter pixels, which is duplicated for the test
for darker pixels. The central and surrounding pixel, grouped
in sets of four consecutive elements, feed into the block.
The design heavily employs identical blocks, which are
only shown in a number sufficient to convey the underlying
interconnection principles. As for the Harris implementation,
individual components of the detector are clocked at a higher
rate than the overall pipeline, resulting in a reduction in
resource utilization. To this end, the comparison with the
central pixel is executed in four clock cycles, decreasing the
number of comparators that operate on image data. Counting
of coherent segment lengths is done for each potential start-
ing point of the segment in parallel. The appropriate signal
connecting the counting units with the registers holding the
intensity comparisons are represented by a routing network
block in the schematic. Per clock cycle, each segment length
counter evaluates four comparisons. To this end, the counter
block depicted in Fig. 5 determines the position of the first
zero in the 4 bit segment, and accumulates these. Once the
coherency of a segment is interrupted, further accumulations
are blocked. In order to determine the maximum coherent
segment length from the parallel counter units, a recursive
comparator structure has been implemented. The comparison
for darker is implemented accordingly and results from the
two paths which are fused using an additional comparator
stage. The figure does not depict the extraction of the central
pixel and the surrounding circle that precedes the block
shown, as well as the non-maximum suppression succeeding
the block. Note that Fig. 5 depicts the case where the mere
segment length is employed.

>
5b

=
counter0

reg

=

0
reg

+4

4b

5b

>

=

0
reg

reg

ro
ut

in
g

 n
et

w
or

k

4b

4b

reg

reg

reg

reg

reg

reg

regreg

reg

reg

reg

counter

counter

+

>
5b

-

4px

t
1px

Fig. 5: Logic diagram of a detail of the fast implementation.
By reusing blocks, the area footprint of the core can be
reduced significantly.

RAMB16B DSP48A Slices
Harris 17 (14%) 8 (13%) 774 (11%)
FAST 5 (4%) 0 (0%) 1,124 (16%)
FAST+SAD 5 (4%) 0 (0%) 1,913 (28%)

TABLE II: Resource utilization of the implemented interest
point detectors for a WVGA image on a Xilinx Spartan 6
architecture. The number in brackets indicates the device
utilization for a Xilinx XC6SLX45T.

DSP48A

DSP48ADSP48A
Gaussian

DSP48A

line2buffer Sobel2dx

Sobel2dy

* line2buffer

line2buffer

line2buffer

DSP48ADSP48A
Gaussian

DSP48ADSP48A
Gaussian

8b3px8b 16b 5px

line2buffer

*

>>4 nonmax
suppression

*
*

-

*

+ * -
16b

32b 3px 32b

Fig. 4: Block diagram illustrating the implementation of the Harris corner detector. For improved readability, only the width
of the topmost path is shown, which also applies to any other path in the same column. Note that bit widths are shown
in oblique font, while line buffer widths in terms of numbers of pixels of the respective input bit width are displayed in
italics. Unless marked otherwise, bit widths propagate through blocks. For operations that potentially lead to an overflow, a
saturation operation is performed. Each gray box illustrates the location of a single DSP slice within the processing pipeline.

IV. CALIBRATION

In order to achieve accurate motion estimates, the sensor
setup needs to be calibrated. As a factory calibrated IMU is
employed in the setup, the remaining quantities that need to
be estimated are
• the camera intrinsics,
• the extrinsics of the stereo setup,
• the transformation between the cameras and the IMU,
• and the fixed time delay between camera and IMU

measurements.
The camera intrinsics and stereo extrinsics are determined

from a set of stills of a checkerboard using the well-
established camera calibration toolbox by Bouguet1. The
toolbox is based on the pinhole camera model and employs
the radial-tangential distortion model established by Brown
[15].

The transformations between the cameras and the IMU
as well as the time delay is estimated using the unified
framework presented in [12]. The framework is based on the
idea of parameterizing time-variant quantities as B-splines—
introduced in detail in [16]—and solving for these as well
as a set of time-invariant calibration parameters in a batch
optimal fashion. Apart from requiring fewer parameters when
fusing measurements of significantly different rates such as
images and inertial data, this approach allows for an accurate
estimation of the fixed time delay between camera and IMU.
Like other frameworks [9], [10], the calibration procedure
requires waving the setup in front of a checkerboard, while
exciting all rotational degrees of freedom sufficiently in
order to render the displacement of camera and IMU well
observable. We also experimented with incorporating the
calibration for the stereo extrinsics directly into the unified
calibration framework, but observed degraded performance
when used in visual-inertial SLAM, an explanation to which
may be that the setups between calibration and SLAM vary
(mostly as far as scene depth is concerned).

The calibration process describes the position and ori-
entation of the IMU with respect to the world frame in
continuous-time, which also includes a continuous-time rep-
resentation of respective derivatives (velocity, acceleration,
and angular velocity). Furthermore, both accelerometer and

1Available at http://www.vision.caltech.edu/bouguetj/
calib_doc/

gyroscope biases—both modeled as random walks—obtain
a continuous-time representation. The calibration may then
be formulated as a batch optimization that combines repro-
jection error ey of checkerboard corners with errors on the
acceleration eα and eω , as well as terms concerning the
compliance of the biases with the random walk processes
(eba and ebω).

V. VISUAL-INERTIAL MOTION ESTIMATION

Since the sensor was designed to perform real-time visual-
inertial SLAM, we applied our framework [5] to an out-
door dataset. In short, the method is inspired by recent
advances purely vision-based SLAM that solve a sparse non-
linear least-squares problem. Such approaches optimize the
reprojection error of a fairly large number of landmarks
as observed by various camera frames. Our method tightly
integrates inertial measurements into the cost function J by
combining reprojection error er with an IMU error term es
obtained from propagation using standard IMU kinematics
in-between successive image frames:

J(x) :=
I∑
i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,kr

T
Wi,j,k

r ei,j,kr +

K−1∑
k=1

eks
T

Wk
s eks ,

(3)
where x denotes the estimated variables, composed of the
states at all camera snapshot time steps k, as well as all the
3D positions of the landmarks. Note that the states cover
not only 6D poses, but also velocity as well as gyroscope
and accelerometer biases. i stands for the camera index
of the sensor assembly, and j for the landmark index.
Landmarks visible in the ith camera are summarized in
the set J (i, k). Furthermore, Wi,j,k

r denotes the information
matrix of reprojection errors related to detection uncertainty
in the image plane. Finally, Wk

s represents the information
of the kth IMU error, as obtained from the IMU sensor noise
models as provided by the manufacturer (see Table I). We
furthermore include the extrinsic calibration of the cameras
in the optimization.

This fully probabilistically motivated batch optimization
problem over all cameras and IMU measurements quickly
grows intractable. We therefore bound the optimization win-
dow by applying the concept of marginalization. This allows
us to keep a fixed number of keyframes that are arbitrarily
spaced in time and that are still related to each other with

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

(linearized) IMU error terms. Consequently, drift during
stand-still is avoided, and nevertheless we are able to track
dynamic motions.

VI. RESULTS

A. Sensor Synchronization

The box plot in Fig. 6 depicts the effect of exposure-
compensated sensor synchronization in comparison to a syn-
chronization scheme, where the camera trigger is temporally
aligned with polling the IMU. For each synchronization
paradigm, we collected about ten datasets for three fixed
exposure times by dynamically moving the sensor setup in
front of a checkerboard. The algorithm outlined in Section IV
was used to estimate the time-offset between the measure-
ments. The figure clearly shows the exposure dependency
of the inter-sensor delay for the synchronization where the
camera trigger events are equally spaced in time. In addition,
a fixed offset becomes apparent, which can be estimated
when extrapolating the graph for zero exposure time. As
detailed on in Section III-B, the sensor setup compensates
for the exposure as well as for the fixed time-offset, resulting
in an average inter-sensor delay of only about 7 µs.

0 1 2 3 4 5 6
Camera exposure time (ms)

0

1

2

3

4

Te
m

po
ra

lo
ffs

et
d

(m
s)

exposure compensated
periodic triggering

Fig. 6: Results for compensating relative delays of camera
and IMU. The dotted line marks the estimated time offset
between camera and IMU for a synchronization scheme,
where the camera is triggered periodically and the timestamp
represents the trigger time. This paradigm clearly results in
an exposure dependent delay. Note that there also exists a
fixed time-offset, which is induced by filter and communica-
tion delays in the IMU and can be estimated by extrapolating
for zero exposure time. Our setup compensates for both types
of delay, resulting in an almost perfect synchronization with
an average estimated delay of only about 7 µs.

B. Timing

Figure 7 shows profiling results for the visual-inertial
SLAM system. Timings were generated on our flying plat-
form equipped with a Core2Duo host computer. The sensor
assembly was operated in a two-camera configuration, with

CPU

CPU + FPGA

core 0

core 1

core 0

core 1

Fig. 7: Profiling for visual-inertial SLAM with and without
FPGA accelerated keypoint detection on a Core2Duo. De-
tection complexity is directly related to camera resolution
and consumes a significant amount of time. Outsourcing
this operation to the FPGA frees up resources and thus
enables processing on resource-constrained platforms, larger
optimization windows, or other tasks.

both cameras running at 20 Hz, and with an IMU rate of
200 Hz.

The most expensive operation in this configuration is key-
point detection using an SSE-accelerated CPU implementa-
tion of Harris corners, followed by optimization in the visual-
inertial SLAM backend algorithm. With an optimization
window of more than five keyframes, the optimization is not
able to finish in time and starts dropping frames. Using the
FPGA for corner detection resolves this issue.

The computational complexity of the detection further
grows when camera resolution or frame rate is increased,
or when more cameras are integrated. Outsourcing detection
to the FPGA thus significantly reduces CPU load. The re-
maining parts of the visual-inertial SLAM algorithm are then
largely independent of the system’s hardware configuration.

C. Visual-Inertial SLAM Evaluation

We recorded a dataset walking around the ETH main
building. The sequence contains changing illumination, vary-
ing depth, and dynamic objects such as people and cars. The
length of the trajectory was 700 m. Two video streams were
captured at 20 Hz and the IMU at 200 Hz. Processing was
performed with the algorithm outlined in Section V.

Fig. 8 shows the trajectory and structure reconstruction
manually overlaid onto an orthophoto. The position error at
the end of the trajectory amounts to 5 m laterally and 1 m
vertically, thus about 0.7 % of the distance traveled. Note
that no loop-closure constraint was applied when reaching
the point of origin.

VII. CONCLUSION AND OUTLOOK

This work presented the design of a time-synchronized,
calibrated sensor head which is targeted at mobile robotic
applications in need of accurate, robust, real-time pose
estimation and mapping in uncontrolled environments. Hard-
ware synchronization includes compensation for variable
shutter opening, resulting in provably virtually zero time
offset between images and IMU measurements. Low-level
image processing tasks such as keypoint detection were

20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

x [m]

y
 [

m
]

Fig. 8: Reconstructed trajectory (red) and estimated land-
marks (black) for a hand-held sequence with the SLAM
system in stereo configuration. A distance of 700 m around
the ETH main building was covered, and drift accumulates
to approximately 5 m laterally and 1 m vertically.

implemented in programmable hardware in order to speed
up processing and free CPU resources. The measurements
taken by the presented sensor head were finally fed to a
tightly-coupled real-time visual-inertial SLAM framework,
the output of which demonstrated the capabilities of the
sensor head.

The modular design is ready for integration of higher
resolution imagers. Our future activities will on the one
hand focus on integration on different platforms ranging from
fixed-wing unmanned aircraft to legged robots. On the other
hand, we plan to port a light-weight visual-inertial SLAM
solution onto the ARM of the sensorhead, in order to obtain
a true “SLAM in a box” module.

ACKNOWLEDGMENT

The research leading to these results has received funding
from armasuisse Science and Technology, project No. 050-
23, research contract No. 8003501880.

This project also received funding from the Swiss Com-
mission for Technology and Innovation (CTI), project No.

13394.1 PFFLE-NM (Visual-Inertial 3D Navigation and
Mapping Sensor), and from the European Commission’s
Seventh Framework Program under grant agreement nr.
285417 (ICARUS), nr. 600958 (SHERPA), and nr. 231143
(ECHORD/TUAV).

The authors would also like to thank Markus Bühler, Dario
Fenner and Fabio Diem for mechanical design and fabrica-
tion, and Simon Lynen for support in driver development.

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part i,” Robotics Automation Magazine, IEEE, vol. 13, no. 2,
pp. 99–110, 2006.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[3] H. Strasdat, A. Davison, J. M. M. Montiel, and K. Konolige, “Double
window optimisation for constant time visual slam,” in Computer
Vision (ICCV), 2011 IEEE International Conference on, 2011, pp.
2352–2359.

[4] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and
R. Siegwart, “A uav system for inspection of industrial facilities,” in
Aerospace Conference, 2013 IEEE. IEEE, 2013, pp. 1–8.

[5] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, and
R. Siegwart, “Keyframe-based visual-inertial slam using nonlinear op-
timization,” in Robotics Science and Systems (RSS), Berlin,Germany,
2013.

[6] C. Ahlberg, J. Lidholm, F. Ekstrand, G. Spampinato, M. Ekstrom,
and L. Asplund, “Gimme-a general image multiview manipulation
engine,” in Reconfigurable Computing and FPGAs (ReConFig), 2011
International Conference on. IEEE, 2011, pp. 129–134.

[7] K. Schmid and H. Hirschmüller, “Stereo vision and imu based real-
time ego-motion and depth image computation on a handheld device,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany, May 6-10 2013.

[8] M. Fleps, E. Mair, O. Ruepp, M. Suppa, and D. Burschka, “Optimiza-
tion based IMU camera calibration,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011,
pp. 3297–3304.

[9] J. Kelly and G. Sukhatme, “Fast relative pose calibration for visual
and inertial sensors,” in Experimental Robotics. Springer, 2009, pp.
515–524.

[10] F. Mirzaei and S. Roumeliotis, “A kalman filter-based algorithm
for IMU-camera calibration: Observability analysis and performance
evaluation,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 1143–
1156, 2008.

[11] J. Kelly and G. S. Sukhatme, “A general framework for temporal
calibration of multiple proprioceptive and exteroceptive sensors,” in
12th International Symposium on Experimental Robotics, 2010, Delhi,
India, Dec 2010.

[12] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spa-
tial calibration for multi-sensor systems,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2013.

[13] C. Harris and M. Stephens, “A combined corner and edge detector.”
in Alvey vision conference, vol. 15. Manchester, UK, 1988, p. 50.

[14] E. Rosten and T. Drummond, “Machine learning for high-speed
corner detection,” in Proceedings of the 9th European conference on
Computer Vision-Volume Part I. Springer-Verlag, 2006, pp. 430–443.

[15] D. C. Brown, “Close-range camera calibration,” Photogrammetric
engineering, vol. 37, no. 8, pp. 855–866, 1971.

[16] P. T. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch
estimation using temporal basis functions,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), St.
Paul, MN, 14-18 May 2012, pp. 2088–2095.

