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ABSTRACT

In this paper we analysis monocular sport videos, digitized from old VHS tape, where players and
camera are moving. It is very difficult to recover 3D information of the scene from these sequences,
due to noisy measurements, low quality of the images, very small translation of the camera and
almost no information concerning its parameters. Classic stereo algorithms are not always suitable
and perspective models can easily fail, due to zooming effects and baseline absence. We calibrated
a monocular sequence with perspective and projective approaches, comparing the methodologies
and the results. Moreover, applying some geometric image invariants, metric measurements of the
movements of the players are also recovered.

1. INTRODUCTION

Monocular video sequences are usually acquired with a moving camera (hand-held or on a small
railroad) or with a stationary but freely rotating one (e.g. on a tripod). In particular, sports videos
(football, basketball) are usually filmed far away from the scene and with a rotating camera. In the
last years various techniques have been applied to sport sequences for automatic extraction of
features, recovering of camera parameters and analysis of objects information from monocular
(Kim et al., 1998) or multiple video sequences (Reid et al., 1996; Bebie, 2000; Pingali et al., 2000;
Pera et al., 2001). Usually the problem is formulated within a projective framework because of the
absence of camera and object information. Infect, when old videos are analyzed, it is very difficult
to recover accurate 3D information of the scene and the camera parameters, mainly because of (1)
low image quality, providing for noisy measurements, (2) almost no information concerning the
camera parameters and (3) often absence of stereo-view. Classic stereo algorithms to retrieve the
camera parameters are not really suitable and perspective models can easily fail due to the
continuous changes of the internal parameters or the almost absence of baseline.

In the vision community many techniques have been presented to calibrate a stationary but freely
rotating image sequences (Hartley, 1994; De Agapito et al., 1999; Seo et al., 1999): they rely on the
homographies between the images and they retrieve the camera parameters with linear or iterative
methods. Usually changes of the internal parameters (mainly zooming) are allowed but they often
assume zero-skew or known pixel aspect ratio. All these approaches can also recover the position of
the principal point in each frame, even if its determination could not be considered reliable due to
the high correlation between the parameters.

Apart from camera parameters, other metric information, like persons heights or movements
distances, can be recovered from single images or videos (Criminisi et al., 1998). Projective
geometry provides different concepts that can be used to recover this knowledge from uncalibrated
images (Semple et al., 1952) and it is a good basis for accurate estimation algorithms. Person's
height is an important parameter for identification or scene analysis and different techniques have
been proposed, in particular for forensic image analysis, to obtain this information from videos
(Klasen et al., 1996; Bramble et al., 2001).
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The aim of this paper is to extract metric information about the imaged scene and the used camera
from old monocular videos of sport games, filmed with stationary but rotating cameras. After the
digitizing process, the artifacts created by the interlaced display were removed. Then we retrieve
the camera parameters, testing perspective and projective camera models; we are mainly interested
in the interior parameters, as, because of very small baselines, the 3D information of the scene can
not be recovered with forward rays intersection. Finally, an easy formulation and a reliable
approach to measure heights of persons and lengths of their movements in the images are presented.

2. IMAGES ACQUISITION AND ANALYSIS

The images were acquired digitizing an old VHS videotape. The analog signal was imported in a
PC through a video-recorder and a sequence of independent frames was obtained. Because of the
interlaced display, interlace artifacts are created in the digitized frames and are disturbing the
processing of the images as they unsharp the edges and do not allow the exact location of the
features. But de-interlacing an image (or a video) is not a perfect process; there is no one right way
to do it, even if some commercial software is available. Therefore several different techniques are
implemented and tested (Table 1). At the end of our tests, the images obtained with the
'interpolating mode' are used for the processing.

Method Action Image size Pro Contra
Single field . - very fast & sharp results}- half resolution lost
mode Use only even or odd lines 720x288 | 100% de-interlaced - lose of sharpness
Resize Reduce the size of the image 384x288 | VeY fast - lose of resolution
mode (4:3 aspect ratio) - sharp results
. . . - not completely de-interlaced
dAc'lap tllve Remove 1nter1acreezslzt;facts only when 720x576 | randomly sharp results |- slow and it eliminates wrong data
e-interlace P - it introduces blur effects randomly
Duplicating Remove one filed and - not completely de-interlaced
mode duplicate the other 720x576 - almost sharp edges - still blur results if there is motion
Interpolating | Remove one field and substitute it with - some smooth effects
mode the interpolation of the other 720x576 - almost sharp edges - slow method
Averaging | Each line is replaced with the average of 720x576 - slow with smoothed results
mode the line above and below - not completely de-interlaced
Anisotropic Non-linear noise filter based on - 1t removes arFefach - very slow (many iterations)
. C e 720x576 without removing lines
mode anisotropic diffusion (Perona et al., 1990) . - too many parameters
- it preserves edges

Table 1: Different techniques to remove interlace artifacts from digitized images (the original image size is 720x576).

3. CALIBRATION AND ORIENTATION OF MONOCULAR SEQUENCES

Generally calibration and orientation problems are formulated in terms of perspective or projective
camera model. Camera models based on perspective collineation have high stability, require a
minimum of three corresponding points per image and a stable optics. On the other hand, projective
approaches can deal with variable focal length, but need more parameters, a minimum of six
corresponding points and are quite instable (equations and coordinates need normalization).

Sport videos are usually acquired with zooming cameras, from relatively long distances, with small
or absent translations and mainly with rotations (on a tripod or on the shoulder of the cameraman).
In the next two sections we first analyze the case of videos acquired with pure rotations and then we
try to recover the camera interior parameters in sequences acquired with a zooming camera
undergoing rotations and very small translations.

3.1 Pure rotation case

If the camera undergoes a pure rotation R (around the projection center), we have no translation of
the camera center and the collinearity perspective model can be approximated with:
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o= —ouX TR Y 15,2

13X +1,3Y +1357 (1)
y'= —c JuX trpY +r,Z
03X +1,3Y + 1357
where (x', y') are already corrected of the principal point displacement. A perspective projection can
be represented with x=cX/Z and y=cY/Z, therefore the coordinates of a point undergoing pure
rotations can be computed as:

= —o QX 1Y T 13iC

N3X + 13y + 1335

y'=—c 12X * 0oy + 135C

3X + 13y +1335C

2)

1.e. the knowledge of 3D object coordinates is not required as the position of a point in one image,
after a rotation, can be recovered only with the camera parameters and its position in the previous
image. Equation (2) can also be seen as a projective transformation (8 parameters) between the two
images and it can be extended to include some additional parameters (e.g. radial distortion, not
unity of the aspect ratio or the skew parameter). If all the camera parameters and the rotations
angles are know, we can compute directly the position of an image point after the camera rotation
using (2). Instead, if we want to recover the correct camera parameters, we could solve:

Z l(Xi,CALC - Xi,CORR)2 +(¥i,cALC ~ Yi,CORR )% |= MIN 3)

i.j
i.e., for each point i in each image j we minimize the image distance between calculated and
measured points. The non-linear minimization can be solved over (c, Xo, Yo, R) differentiating (3)
and setting the partial derivatives to zero. A simulation has been performed to test the camera
model. A set of 3D points is back-projected onto 6 images that are only rotated between each other
around the projection center. The focal length and principal point position are kept fixed. Then,
starting from the second image, the coordinates of the points are computed with (2) and compared
with the correct ones minimizing (3) over R. The results are shown in Figure 1: while the average
RMS of all the points in all the images is 0.12 pixel in x direction and 0.30 pixel in y direction.
Therefore, equations (2) could be used to model a camera that undergoes pure rotations around its
projection center.

image image 3 image 4 images. im
com{o) and cale 7} corm{o) and eabe (7} com{o) and cale 7} ] cormfo) and ol () ] o] and calc {7)

00 o o 200 w o 200 a0 o 00 o o w0 0

Figure 1: Left: The set of 3D points used in the simulation and the camera position in (0,0,0). Right upper: The image
points back-projected onto the images (0) and the image points computed (+) with equations (2) and (3).
Right lower: The (amplified) difference image vectors between corrected and computed coordinates.

But if the axis of rotation does not pass through the center of projection, the previous simplification
is no more valid. Infect the location of the point in one image is no more independent of its depth
and is also related to the camera translation.

3.2 General case: rotation and small translation

A short monocular sequence (Figure 2) is used to analyze this case and some control points,
measured semi-automatically in the images with adaptive least square matching (Gruen, 1985), are
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defined to recover the metric camera parameters. If the rotation arm is very small compared to the
distance of the scene, equations (2) could be employed to calibrate the sequence. But this
displacement is usually unknown and anyway too small to use stereo approaches.

We analyze the images with three different camera models. The results of every second frame are
presented in Table 2. For each frame, we recovered focal length and aspect ratio as the
determination of all the other camera (additional) parameters could lead to degradation
(unreliability) of the results.

— : = = _d2 — g K —

Figure 2: Evry second frame of the analyzed video sequence (supposed pixel size of 0.025 mm). In the central image
are visualized the two distances measured to control the increasing of the focal length of the camera.

3.2.1 Photogrammetric Space Resection. Space resection is usually applied to solve the
orientation of a single image knowing the image coordinates of some control points. If enough
control points are available, the interior parameters of the camera can also be recovered. It is a non-
linear problem, based on the collinearity condition and it requires initial approximations of the
unknowns. A resection is performed for each image. Then all the parameters of the camera are
refined with a bundle adjustment (allowing single ray intersection), where (1) we fix the position of
the first camera, (2) we allow very small translations and free rotations of the other cameras, (3) we
fix the principal points all the cameras in the middle of the images, (4) we estimate only the focal
lengths and pixel aspect ratio of the cameras. The results of the adjustment are presented in Table 2:
they show a constant increasing of the focal length and an almost constant aspect ratio of the pixel.
The correct increasing of the focal length can also be demonstrated by the increasing of the two
segments d; and d, drawn in the central image of Figure 2.

3.2.2 Direct Linear Transformation (DLT). This camera model, developed in the 70's to solve the
collinearity condition with a projective model (Abdel-Aziz et al, 1971), does not require initial
approximations of the unknowns. DLT model is represented by 11 coefficients, which form a linear
mapping between world and image coordinate system. The number of coefficients increases if we
consider also the additional parameters to model the lens distortion. The solution of the coefficients
is derived by means of least squares and from the recovered 11 coefficients of the projective
transformation, the 9 parameters of the perspective camera model (Xo, Yo, Zo, 0,9, K Xp, yp, f) are
then sequentially derived. DLT has mainly two limitations, i.e. the requirement for at least 6 control
points and a lower accuracy of the solution compared to rigorous bundle adjustment. In our test, the
DLT coefficients are computed for every frame and then refined minimizing the image distance
between the reprojected points and the measured ones. DLT results (Table 2) differ a little from
resection’s results but confirm the continuos increasing of the focal lengths and the not unity of the
affinity factor.

3.2.3 Decomposition of 3D Projective Camera Model. The projective camera model is
mathematically written as:

X
x| 1B R BB

Y=\ K B K
1 Py Py By B

(4) with x, y the image coordinate, (X, Y, Z) the object coordinates
z and P; are the coefficients of the projective matrix P.
1
Using some matrix factorization techniques, we can relate the projective model (4) to the DLT
coefficients (Hartley et al., 2000; Seedahmed et al., 2002). Infect the DLT model can be seen as a
non linear version of (4) and establishing a relationship between the projective and the perspective
camera model, we can simultaneously derived the interior parameters of the camera in a matrix
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form. The projective matrix P can be written as: P = KR(I3y3 | -Xp), with R the 3x3 rotation matrix,
Xy the camera exterior orientation vector and K a calibration matrix, generally so defined:

fr s X
K=|0 f, y|,with f. and f, the focal length along x and y axis, s the skew factor, (xo, yo) the
0 0 1

principal point position. Therefore we can write that KR = P13=(p; pz p3), with p; the i™ column of
P. As R is an orthogonal matrix and RR"=I, we can form a quadratic equation and write:
(KR)(KR)"=Py3(Py3)" (5)
KK'=P;3(P13)" (6)
Now, knowing Py3, we could use Cholesky factorization to recover the matrix K. But the direct
factorization of the right term of (6) will not provide for the correct results as P13(P13)T should be a
positive definite symmetric matrix to be uniquely decomposed as KK, with K an upper-triangular
matrix with positive diagonal elements. Therefore we have first to invert the right side to recover a
correct factorization result. The factorization leads to an un-normalized K matrix and we have to
divided it by K(3,3) to recover the correct calibration matrix.
This decomposition is performed on the coefficient matrix recovered with DLT approach. As
shown in Table 2, the results are quite instable compared to the parameters sequentially recovered
from the DL T model and with the space resection approach.

Images Space Resection DLT Decomposition
Nr. | Distances d;,d, | Focal L. | A. Ratio|[RMS x|RMS y|Focal L.| A. Ratio |RMS x|RMS y| Focal L. | A. Ratio
66 | 190.0 | 4863 914 1.13 68 46 89.3 1.17 90 54 79.5 1.03
68 | 192.1 |500.6 | 92.1 1.13 59 40 91.1 1.16 65 50 87.4 1.09
70 1195.0504.8| 93.9 1.13 55 47 93.7 1.17 60 52 85.3 1.08
72 1200.6 | 5152 954 1.14 73 61 95.4 1.17 73 66 89.8 1.06
74 120455194 98.1 1.14 72 69 96.1 1.18 78 63 90.1 1.10

Table 2: Results of the three calibration algorithms. Focal length and pixel aspect ratio are recovered.
The RMS of the image residuals are given in pm.

4. RETRIVING METRIC MEASUREMENTS FROM THE SEQUENCE

Projective geometry is strongly used in this section, with the goal of recovering metric distances
and dimensions of people in the images. Object and image points are represented with
homogeneous vector (a;, a;, az); a line can be represented with the cross product of two
homogeneous points while a point is given by the cross product of two lines (i.e. their intersection).

4.1 Vanishing points and lines

Assuming perfect projection, a set of parallel lines in the scene is projected into a set of lines in the
image that meet in a common point, the vanishing point. The three vanishing points can be real
(finite) or ideal (at infinite) and a pair of them that lie on the same plane in the scene define a
vanishing line in the image space. Different approaches have been presented to detect the vanishing
points of an image (Collins, 1993; Van den Heuvel, 1998, Liebowitz, 2001, Remondino, 2003). The
majority of the methods rely on straight-line segments extracted from the image and the use of a
parameter space to identify the three orthogonal directions. If low quality images are used, line
detectors do not provide reliable results and a manual identification of the end points of a line is
required. In general, once that a set of lines /; is identified, we can estimate the associated vanishing
point v minimizing the sum of the squares of the perpendicular distances of the line /; from v:

Zdé(li,v) = MIN 7

where the minimization is over v. If only two lines are involved, the minimization to find the closest
point near the lines is reduced to the cross product of the lines. In the general case, we can find the



Remondino, F.

solution setting the partial derivatives of (7) to zero, forming the normal equations and solving for v
by means of least squares.

4.2 The Cross-ratio
Given 4 points on a line, with d(P;, P;) the Euclidean distance between P; and P;, their cross-ratio

d(P,R)u(P,p) .
d(P. B ) (P,.R) ®)

is preserved under any projective transformation (Figure 3-A). As projective geometry does not
preserve distances or ratios of distances but ratio of ratio of distances, it follows that:

CR(fLPz:Ple): CR(P'19P'29P'3 7P'4) (9)

This concept goes back to (Semple et al., 1952) and other permutations of the points in (8) will also
lead to an image invariant. There are 24 possible permutations of the four points P;, but only 6
distinct values of the CR within the permutations. These different values could create confusions in
using CR as index for measurements, because the order of the points along a line can change after a
projective transformation (even if the 6 values can be obtained from any one of them).

CR(R,P,P,P,) =

4.3 Measurements between parallel planes using vanishing points and cross-ratio invariant
The cross-ratio invariant can also be applied to points lying on (parallel) planes. Consider Figure 3-
B, where point T and B, lying respectively on plane P' and P, are at a distance H and perpendicular
to a reference direction V3. In image space they are specified respectively by the corresponding
image points t and b that are on two planes defined by the two vanishing points v; and v, (Figure 3-
C). The image point c is defined as the intersection of the line joining the corresponding points with
the vanishing line /,;,,. The image point ¢ (representing the camera center C in Figure 3-D) lies on a
plane at distance H¢ from the reference plane P. With this configuration, the four points b, t, ¢ and
vy are aligned (along the vertical reference direction) and they define a cross-ratio. At the same
time, in object space, the points B, T, C' and V3 define the same cross-ratio, therefore, from (9):

d(p,c)ai(,v,) _ d(B,C)(r,) .
d(t.c)@(p,v,) ~ d(r,C)m(B,w) (10)
as V3 in object space is at infinity. The right side of (10) becomes Hc/(Hc-H) and we obtain:

H o, dlc)tbys) -

CR =

If a reference distance H is known, we can compute the distance of the camera H¢ and then any
other distance between two planes perpendicular to the reference direction. The reference direction
does not need to be the vertical one; moreover, if the camera position C is between the points B and
T, the cross ratio is still valid, but equation (11) is slightly different (because of the different order
of the points).

, polnt at

infinite V; Vs ul:l“]:::}:‘t« A
» ]:'__ P —//l ‘_’. ~ |\-1\_~ € ) o ]1!1\'2
| 4 /
. - : /%
> ;
; P
. A

Figure 3: Four points aligned defining the cross-ratio invariant (A). Two planes, in object (B) and image (C) space,
perpendicular to a reference direction. The cross-ratio defined by the distances between the parallel planes (D).

Similar results, with an algebraic representation of (11) and an uncertainty analysis, are presented in
(Criminisi, 1999), involving the 3x4 projection matrix of the camera and complicate formulas but
avoiding possible problems with the order of the cross-ratio.
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4.4 Accuracy of the measurements

The covariance estimation of the measurements can be handled with the error propagation law. If
we consider our equations as a continuously differentiable function y=f(x), with Z,, the covariance
matrix of the data x, we can find the covariance matrix 2,y of y as

> =0f T O (12)

with [J operator representing the Jacobian of y function, i.e. dy/0x.

The accuracy of the measurements obtained with equation (11) depends on the accuracy of the
measured distances d; between the points, the variance of the vanishing points and the accuracy of
the reference distance. The precision of the points defining the distances is determined by the
(manual) measurement or by the cross product used to find them. The variance of a cross product ¢
=x Xy can be computed for each single component of the resulting homogeneous vector using (12):

2 2.2 2.2 2.2 2.2
0. =y30. +X50° +y50. +Xx30
€ Y3 X 2 Y3 Y2 X3 3 Y2
2 2 .2 2 2 2 2 2 2
0O, =yj0. +x30. +y30. +Xx;0
€ i X3 3 Y1 Y3 X] 1 bA] (13)
2 _ 2.2 2.2 2.2 2.2
003 _YZOXI X 0—yz Ty oxz +X20y1

The precision of the vanishing point determined with (7) is related to the residuals of the least
squares and is controlled by its covariance matrix. The accuracy of the euclidean distance between
two points is instead given by:

2 2 2 2
o'é = ﬂ 0-2 + ﬂ 0-2 + ﬂ 0-2 + ﬂ 0-2 (14)
aXi Xi 6y1 Yi aXJ Xj ByJ Yi
Finally, we can compute the variance of the estimated measurement H (11) as:
2 2
2 oH 2 OH 2
oh=|—|oq.+Y|—|oO
! [aHCJ e Z[adiJ . (15)

and the same when we have to estimate Hc.

4.5 Mosaic of the images
The result (11) can be applied to single image metrology (Criminisi, 1999) or to sequence of
images, where camera and person are moving. But due to the camera movements, the scenario can
change and it is not always possible to determine the required reference distance or the entire
movement of the person. Therefore, in these cases, a mosaic of the sequence has to be performed.

Figure 4 shows three frames of a basketball match sequence where we want to recover the height of
the jump and its length. It is clear that is not possible to perform measurements on the single
images, as e.g. in the central frame, we do not see the floor of the field; therefore a mosaic of the
images has to be created.

Figure 4: The three images used to create a mosaic of the player's movement and the resulted mosaic (right).

The mosaic is realized with a projective transformation (8 parameters) between the central image
(reference) and the other two. The corresponding points are measured semi-automatically with
Adaptive LSM (Gruen, 1985) and the transformation parameters are computed with a least squares
adjustment. Then the transformed images are merged together automatically, but no radiometric
correction is performed. The resulted mosaic is presented in Figure 4, right.
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4.6 Recovering metric measurements: distances and heights

Using the created mosaic, we can now derive e.g. the length of the jump and its height. At first the 3

vanishing points of the image are recovered. Due to the low image quality, a line detector did not

produce accurate results; therefore with manual measurements, the end points of the segments
representing the convergent lines are identified in each direction and then equation (7) is applied.

Afterward some reference distances (Figure 5-A) are required and must be measured in the image:

- the height of the basket (Hr=3.05 m): the base point b is identified as the intersection between two
lines: (1) the line through the top point t on the basket and the vertical vanishing point v; and (2)
the line through the vanishing point v; and the point i (middle point of the upper red area);

- the distance between the baseline and the free-throw line (H'r=5.8 m);

- the width of the red area (H"r=4.9 m).

Then we use this knowledge and equation (11) to recover the lengths presented in Table 3. To

compute the length of the jump, we suppose that the player is moving in a vertical plane defined by

his starting and ending position. To check the metrology technique, its reliability and repeatability,
each measure is repeated 3 times: the presented measures are an average of the results while in the
last column of Table 3 is reported the standard deviations of the measures.

Kind of length/distance Length (m) | Accuracy (cm) | measures STD
height of the player at the beginning of the jump 1.71 +2.7 0.033
height of the player at the end of the jump 1.52 +23 0.028
length of the jump (distance b;bs) 4.94 +3.7 0.093
height of the jump (ball) 3.28 +3.0 0.030
height of the jump (waist) 2.02 +2.8 0.033
height of the second player 1.97 2.8 0.031

Table 2: Results of the sequence metrology and related accuracy (average of 3 measures).

The correct height of the (standing) jumping player is 1.98 m while the height of the second player
15 2.01 m.

Figure 5: Distances between parallel planes with respect to a reference plane. The reference distances on the basketball
field (A), the distances measured to recover the length and height of the jump (B and C).

5. CONCLUSION

In this paper we discussed the possibility of recovering metric information from old monocular
sequences of sport events. The techniques used to find the camera parameters produced accurate
and fairly similar results, even if the network geometry was not adequate, in particular for the
perspective camera model. On the other hand, the presented metrology approach showed to be
reliable and applicable to other class of problems (traffic accident, video surveillance) to provide
useful information about the course of events or the size of items and persons.
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