
Diss. ETH No. 18190

Large-Scale Mining and Retrieval of Visual
Data in a Multimodal Context

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Till Quack
MSc. ETH Zuerich

born 15. September 1978
citizen of Fällanden

accepted on the recommendation of

Prof. Dr. Luc Van Gool, examiner
Prof. Dr. Andrew Zisserman, co-examiner

September 2008

To my grandparents.

Abstract

In recent years significant progress has been made in the field of object
recognition, mostly due to the introduction of powerful local image fea-
tures. At the same time, a growing amount of images and videos are
being shared on the Internet. This dissertation tries to combine these
developments in proposing efficient retrieval and mining algorithms suit-
able for such visual data, while exploiting its multimodal context.

The work at hand advances the state-of-the-art with three main contri-
butions. Firstly, with the investigation of itemset mining algorithms in
the domain of visual data. This class of simple, but efficient algorithms
have proven to be a useful tool for other kinds of data. We adapt these
methods to work with local visual features. The resulting algorithms
are successfully employed to mine specific objects in video data, and
to identify frequent feature configurations as representatives of object
classes.

The second contribution consists of a multimodal data-mining method,
which automatically mines objects and events from community photo
collections on the Internet. After crawling geotagged photos, the method
automatically clusters photos showing the same object or event using
visual features. The system then proceeds with analyzing the mul-
timodal context of each identified cluster, in particular text associated
with the individual photos. This analysis results in a textual description
of the clusters. Furthermore, it is used to identify related Wikipedia
pages. Finally, building again on the mined visual data, this assignment
is verified, and refined up to an object-level annotation of mined entities
for applications such as retrieval or auto-annotation.

The third and final contribution consist of several prototype applications
for scalable retrieval in visual data, partly building on the data mined in
the previous steps. These retrieval applications focus on applications for

iv Abstract

mobile devices, again including multimodal context such as GPS location
of the user. In addition to the mobile retrieval applications, novel web-
and desktop applications are designed, for browsing and auto-annotation
in personal photo collections.

Zusammenfassung

In den letzten Jahren wurden erhebliche Fortschritte im Bereich der Ob-
jekterkennung erzielt. Diese Fortschritte basierten zu einem grossen Teil
auf der Einführung sogenannter lokaler Bildmerkmal Detektoren und
Deskriptoren. Im gleichen Zeitraum wurden rasant wachsende Mengen
von digitalen Bildern auf dem Internet zugänglich gemacht. Die vorlie-
gende Arbeit hat zum Ziel diese Entwicklungen zu kombinieren, indem
sie effiziente Such- und Mining Algorithmen unter einbeziehung des mul-
timodalen Kontextes analysiert.

Damit werden folgende Beiträge zum aktuellen Stand der Forschung ge-
leistet. Ein erster Beitrag besteht aus der Untersuchung der Anwendbar-
keit vom itemset mining Algorithmen im Bereich der visuellen Daten.
Diese Klasse von einfachen, aber effektiven Algorithmen wurde bereits
in anderen Gebieten erfolgreich angewendet. Wir passen die Methoden
an das Problem des Minings in Bilddaten an und zeigen ihre erfolgreiche
Anwendung um Objekte in Videos zu minen und um signifikante Feature
Konfigurationen als Repräsentanten für Objektklassen zu ermitteln.

Ein zweiter Beitrag besteht aus der Einführung einer multimodalen mi-
ning Methode, welche vollautomatisch Objekte und Ereignisse aus Com-
munity Photo-Plattformen aus dem Internet detektiert. Nach einem craw-
ling Prozess basierend auf geo-referenzierten Bildern, ermittelt die Me-
thode Cluster von Bildern, welche das gleiche Objekt abbilden. Im fol-
genden Schritt analysiert das System den multimodalen Kontext jedes
Clusters, insbesondere Textfragmente, die mit den Bildern im Cluster in
Verbindung stehen. Diese Analyse resultiert in einer Beschreibung des
Clusters mittels Worten. Die Methode findet ausserdem automatisch re-
levante Artikel aus Online Enzyklopdien für die Cluster. Basierend auf
diesen Daten wird ein System für Auto-annotation von Photos auf dem
Objektlevel eingeführt.

vi Zusammenfassung

Der dritte und letzte Beitrag besteht aus mehreren Prototypen für Bild-
suche unter besonderer Berücksichtigung mobiler Endgeräte. Hier wird
wieder der multimodale Kontext berücksichtigt, beispielsweise mittels
Einbezu der GPS Ortung des Benutzers.

Acknowledgements

I am grateful to a number of wonderful people who supported me during
the time this dissertation came into existence.

First and foremost I thank my advisor Prof. Dr. Luc Van Gool, for
offering great scientific freedom, and always being available when his in-
valuable expertise, guidance and advice were required. Particular thanks
go to Prof. Dr. Andrew Zisserman for being aware of my work and
agreeing to co-referee this thesis.

I received extraordinary support from Prof. Dr. Vittorio Ferrari and
from Prof. Dr. Bastian Leibe. Both were irreplaceable through their
availability for countless fruitful discussions, hands-on support in late
nights before paper deadlines, and being a constant source of motivation.

My colleagues at the Computer Vision Lab at ETH Zurich provided a
joyful and energetic atmosphere. Particular thanks go to Andreas Ess,
Stephan Gammeter, Raphael Hoever, Tobias Jaeggli, Alain Lehmann,
Stefan Saur, and Thibaut Weise, for being great pals.

I also thank my Semester and Diploma students, who made valuable
contributions to parts of this work.

I am particularly thankful to my friends at our startup kooaba. Being
able to apply and extend some of the research conducted in this thesis
in a business is a unique experience. This wouldn’t be possible without
a fantastic group of people, especially Dr. Herbert Bay, who had the
courage to start this adventure with me in the first place.

I thank the Sander family for providing not only a quiet and wonderful
place to write a large part of this thesis, but also making me feel at
home.

I am eternally grateful to my parents Roswitha and Martin, for 30 years
of love and support, and my brothers Niels and Manfred, who are still

viii Acknowledgements

my best friends. Finally, my very special and heartfelt thanks go to
Andra, without whom simply nothing would be the same.

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 State of the Art in Object Recognition 2
1.2 Contributions of this thesis 4
1.3 Organization of this thesis 5

2 A Set of Tools 7
2.1 Local Feature Detectors and Descriptors 7

2.1.1 SIFT . 10
2.1.2 SURF . 10
2.1.3 Hessian-Affine . 11
2.1.4 MSER . 11

2.2 Clustering . 12
2.2.1 k-Means . 12
2.2.2 Hierarchical Clustering 14
2.2.3 Measuring Cluster Quality 15

2.3 Image Representation with Visual Words 16
2.4 Frequent Itemset Mining 19

2.4.1 Frequent Itemset and Association Rules 20
2.4.2 Frequent Itemset Mining Algorithms 23
2.4.3 Interestingness Measures for Itemsets and Rules . 26

2.5 Graph Mining . 29
2.6 Boosting . 32

2.6.1 Discrete Adaboost 33
2.6.2 Classifier Cascades with Boosting 34
2.6.3 Adaboost Variants 35

x Contents

3 Frequent Itemset Mining in Visual Data 37
3.1 Introduction . 37
3.2 Mining Specific Objects in Video 39

3.2.1 Shot Detection, Features and Visual Words 39
3.2.2 Video Mining Approach 40
3.2.3 Mining an Entire Video 43
3.2.4 Experiments and Results 46

3.3 Mining Frequent Feature Configurations 52
3.3.1 Frequent Feature Configurations 54
3.3.2 Class-specific Feature Confidence 58
3.3.3 Experiments and Results 60

3.4 From Frequent Configurations to Objects 67
3.4.1 Review of the ISM Approach 67
3.4.2 Recognition with Rule Activations 68
3.4.3 Experiments and Results 70

3.5 Graph Mining as an Alternative to Itemsets 79
3.5.1 Mining of Frequent Feature Graphs 79
3.5.2 Classification using Boosting 84
3.5.3 Experiments and Results 88

3.6 Related work . 96
3.7 Discussion and Conclusions 98

4 Mining Objects and Events in large, multimodal Data-
sets 103
4.1 Introduction . 103

4.1.1 Outline of the chapter 104
4.2 Community Photo Collections on the Internet 105
4.3 Mining Clusters . 109

4.3.1 Gathering the data 109
4.3.2 Photo Clustering 110

4.4 Labeling Clusters . 117
4.4.1 Classification into Objects and Events 117
4.4.2 Linking to Wikipedia 118

4.5 Object-level Auto-Annotation 120
4.5.1 Estimating Bounding Boxes for Objects 121

4.6 Experiments and Results 125
4.6.1 Clusters . 125
4.6.2 Objects and Events 128

Contents xi

4.6.3 Multimodal Linking to Wikipedia 129
4.6.4 Auto-annotation 130

4.7 Related Work . 133
4.8 Discussion and Conclusions 134

5 Retrieval in a Multimodal Context 149
5.1 The Query by Example Paradigm Revisited 150
5.2 Object Recognition for Mobile Devices 152

5.2.1 Mobile Interfaces 154
5.2.2 Sample Applications 161
5.2.3 Hyperlinked Slides: Interactive Meeting Rooms . . 161
5.2.4 Hyperlinked Buildings: A Cityguide on a Mobile

Phone . 167
5.3 Object Recognition for Web Applications 174

5.3.1 Auto Annotation for Community Photo Collections 175
5.3.2 Browsing Photos in 3D 175

5.4 Detecting and Reading Text in Images 180
5.4.1 Text Detection Approach 180
5.4.2 Features . 182
5.4.3 Classifier Training 185
5.4.4 Detection and Reading 187
5.4.5 Experiments and Results 190

5.5 Related Work . 202
5.6 Discussion and Conclusions 204

6 Scaling Retrieval 207
6.1 Introduction . 207
6.2 Datasets, Features, and Evaluation Metrics 209
6.3 Overview of Methods . 210

6.3.1 Locality Sensitive Hashing 212
6.3.2 Redundant Bit Vectors 212
6.3.3 Metric Trees . 214

6.4 Evaluation in terms of NN Search 215
6.5 From NNs to retrieval in large databases 219

6.5.1 Forests of randomized metric trees 220
6.6 Evaluation on Large Datasets 222

6.6.1 Computation Times and Scaling 225
6.7 Related Work . 227

xii Contents

6.8 Discussion and Conclusions 228

7 Conclusions and Outlook 231
7.1 Contributions . 231
7.2 Perspectives . 234

A Amazon Example Results 237

Bibliography 241

Curriculum Vitae 257

List of Figures

2.1 Examples of local features. 8
2.2 Bag of Features approach 18

3.1 Creating transaction from a neighborhood. 41
3.2 Motion groups. 44
3.3 Creating transactions. 45
3.4 Results for clip “Come into my World” (I) 48
3.5 Results for clip “Come into my World” (II) 49
3.6 Results for clip “Come into my World” (III) 50
3.7 Results for clip “Can’t get you out of my head”. 50
3.8 Results for clip “Come into my World” mined with 40-NN 51
3.9 Example of mined rules 53
3.10 Neighborhood, activations, and transactions. 57
3.11 Discriminant Frequent Spatial Configurations 59
3.12 Results: Visual Examples. (See text for discussion.) . . . 62
3.13 Bounding box hit rates . 65
3.14 False positives on negative images 66
3.15 Performance per # tiles on TUD Motorbikes. 72
3.16 Recognition performance for minimal confidence values . . 73
3.17 Recognition performance for minimal support values . . . 73
3.18 Recognition performance for rulelengths 74
3.19 Performance on UIUC . 76
3.20 Performance on TUD Motorbikes 77
3.21 Examples of detections on the TUD motorbikes set. . . . 78
3.22 Example image and resulting graph variants. 81
3.23 Examples of Retrieved Subgraphs on the TUD motorbikes

dataset . 84
3.24 Distribution of edge lengths 88
3.25 Pseudo-Code: Training the Classifier 89

xiv List of Figures

3.26 Pseudo-Code: Classification Procedure 89
3.27 Motorbike BBHR Curve 91
3.28 Motorbike Activations . 91
3.29 Cars Activations . 92
3.30 ROC Curves of the motorbike-side class 93
3.31 ROC Curves of the cars-rear class 94

4.1 Most popular tags on Flickr 107
4.2 Tags and geotags on Flickr 108
4.3 Tiles over Paris . 110
4.4 Number of photos per tile 111
4.5 Feature matching with Homography 113
4.6 Histogram of visual distance values 114
4.7 Class examples . 118
4.8 Matching clusters to Wikipedia articles 121
4.9 Object-specific feature confidence values and bounding

boxes (I) . 123
4.10 Object-specific feature confidence values and bounding

boxes (II) . 124
4.11 Clusters found around the Pantheon 136
4.12 Clusters around the Louvre 137
4.13 Typical events mined by our methods. 138
4.14 Misclassified cluster example 138
4.15 Object and event clusters on a map 139
4.16 A world tour with Flickr and Wikipedia 140
4.17 Precision within selected clusters. 141
4.18 Additional, surprising mining result 141
4.19 Auto-annotation of novel images 142
4.20 Results of automatic object-level annotation 143
4.21 ROC curves for object-level annotation 144
4.22 Mean IOU values / ROC curves by cluster size 145
4.23 True positive detection examples 146
4.24 False positive detection examples 147

5.1 Time required to enter a keyword query on a mobile device152
5.2 SIFT and SURF on a mobile Phone 156
5.3 Client software for the cityguide application 157

List of Figures xv

5.4 Screenshots of our real-time, server side object recognition
system . 159

5.5 Motion detection for a mobile visual search interface . . . 160
5.6 Typical presentation slides from the AMI corpus database 162
5.7 The user ”tags” a presented slide using our mobile applic-

ation . 162
5.8 Geometric verification with a homography 165
5.9 Examples of query images 166
5.10 Virtual highlighting of slides 168
5.11 Client software for the cityguide application 170
5.12 Result images for the city-guide application 177
5.13 Recognition rate, and matching time vs. radius around

query location . 178
5.14 Interface for annotation 178
5.15 Examples of 3D reconstruction from community photo

collection data . 179
5.16 Examples of text in natural scenes 181
5.17 Block based features are parameterized by their location

and size. 182
5.18 The intensity based features used. 182
5.19 Counting the number of vertical edges inside the hori-

zontal stripe. 184
5.20 Parameterization of the scanlines. 186
5.21 Annotation Sample . 186
5.22 Different thresholding methods. 189
5.23 Detection results on Flickr 192
5.24 Visual Results: Text Detection examples. 193
5.25 Feature Selection and Combination by Adaboost. 194
5.26 Two difficult text areas from the ICDAR trial test set. . . 194
5.27 Examples of false positive text detections. 195
5.28 Example text detections (I) 196
5.29 Example text detections (II) 197
5.30 Example text detections (III) 198
5.31 Comparing different OCR engines. 199
5.32 A sample image from the low quality dataset. 200
5.33 Results with different binarization methods. 201
5.34 Guessing location from text in images. 201

xvi List of Figures

6.1 Query image and three true positives 211
6.2 Quality of NN search: Effective Distance Error 216
6.3 Quality of NN search: Fraction of True Nearest Neighbors 217
6.4 True NN vs. ranking score and mAP vs. number of near

neighbors . 221
6.5 Forests of metric trees . 223

A.1 Amazon Example Results (I) 238
A.2 Amazon Example Results (II) 239

List of Tables

2.1 Example: Transactions from a store 22

3.1 Motion Segmentation and 40-NN mining methods com-
pared. 49

3.2 Statistics for the mining experiments 65
3.3 Mining statistics for the experiments 75
3.4 Edge-Labeling Method A 80
3.5 Edge-Labeling Method B 80
3.6 Comparison of FSG, CloseGraph and Moss/MoFa 83
3.7 Soft assignment error rates on training set 87
3.8 Parameter variation for the motorbikes-side-class 93

4.1 Tag statistics . 106
4.2 Urban areas processed in this work 111
4.3 Cut-off distances for clustering 116
4.4 Dataset statistics . 125
4.5 Summary of Pantheon Results 126

5.1 Capabilities of typical mobile phones 155
5.2 Summary of recognition rates for slide database 167
5.3 Cell Global Identity . 169
5.4 Summary of recognition rates for cityguide 173

6.1 Dataset Statistics . 210
6.2 Evaluation of forests on various tasks 224
6.3 Computational Performance 225

1
Introduction

“Where is the wisdom we have lost in knowledge? Where is the know-
ledge we have lost in information?” T. S. Eliot, The Rock (1934)

Understanding the contents of an image is one of the fundamental prob-
lems of Computer Vision research. It is also a topic of increasing im-
portance. While at the beginning of this thesis in the year 2004 around
50 million digital cameras were sold, the number is expected to surpass
100 million devices this year. Hundreds of millions of cameras in use
produce a large amount of digital photos. People share these photos on
digital platforms on the Internet, allowing millions of visitors to access
their photo collections.

Computer Vision methods can simplify access to the data in these large
visual repositories. Especially methods which allow for identification of
objects in images are useful tools for easing organization and search.
The analysis of images at the object-level is typically divided into two
subtasks: detection of specific objects and object class detection. A
specific object could for instance be a landmark building such as the
Eiffel tower, or a specific car. Examples of occurrences of object classes
are the presence of a building or a car in an image, no matter which
building or which kind of car.

Research in both fields has made significant progress in recent years.
This thesis builds on this research and tries to extend it towards applic-
ations in the context of the Internet. This endeavor comes with several
open questions. The first challenge is posed by the large amounts of
data. Methods which can be applied to larger amounts of data have to
be efficient and scalable. We thus attempt to employ methods from data

2 1. Introduction

mining for the task of object detection. These methods are known to
scale in other fields, but are somewhat simpler than methods commonly
used for object detection. This raises the question, if they can compete
with the state-of-the-art in object detection.

Another unique characteristic of the visual data shared on the Internet
is that it is often embedded in a multimodal context. A photo has been
taken by a certain user, at a certain location and time. This is particu-
larly relevant for photos taken with mobile phone cameras. Furthermore,
images are often embedded in text or sometimes labeled with keywords.
Can we exploit this multimodal redundancy of descriptions to learn ob-
jects and their descriptions from the data? This is the second question
we investigate in this thesis.

Finally, apart from all scientifically motivated interest in the recognition
of objects in images, we also want to let real-world applications drive
our research. Relating to the introductory quote of this dissertation, the
constant flow of digital information on the Internet poses challenges to us
as individuals. Enormous amounts of information are only a mouse click
away, but the efficient extraction of desired or relevant information is an
increasingly difficult task. Thus, we try to create prototypes of applic-
ations, which help us to analyze and search large repositories of visual
data. With the hope, that they might eventually lead to applications,
which assist us in gaining knowledge from the constant information flow
we are faced with every day.

1.1 State of the Art in Object Recognition

While the topics dealt with in this thesis cover a variety of fields, the
common denominator is always the goal of recognizing objects in images.
In that sense, this dissertation builds on over 40 years of research. What
follows is a brief summary of the field, with the intent to give the reader
a general orientation in this rather wide area of research. Throughout
the thesis, we will discuss more specific related work at the end of each
chapter.

Object recognition methods can be roughly classified into geometry based
and appearance based method. Geometry based approaches try to model

1.1. State of the Art in Object Recognition 3

the (3D) characteristics of objects using global object properties, most
commonly the object’s contours. The task of detecting the an object
then corresponds to identifying the model and its pose, which might
have generated the features observed in the image. Notable works using
this paradigm include [Grimson and Lozano-Pérez, 1987; Wolfson and
Rigoutsos, 1997; Lowe, 1991]. The main disadvantages of model-based
methods include the requirement of a possibly rather complex 3D model
and the difficulty in detecting and interpreting its (contour-based) fea-
tures. These are probably some of the reasons why recent research has
focussed mostly on appearance based methods.

Appearance based methods are further subdivided into global appear-
ance methods and local appearance methods. Both have in common
that they don’t rely on a 3D model for recognition, but base recogni-
tion on (sample) images of the object only. Global methods attempt
to derive a compact representation of the objects appearance from an
entire image, e.g . by so-called eigenimages (dimensionality reduced rep-
resentations of the images in a manifold) [Murase and Nayar, 1995], by
matching templates [Dufour et al., 2002], or color histograms [Swain and
Ballard, 1991].

The disadvantages of the global appearance based methods are, that they
are not robust to clutter in a scene and partial occlusions of the object.
Local appearance methods try to overcome these challenges by treat-
ing an object as a collection of localized parts, or local features. Each
local feature is expressed as a descriptor vector of the appearance of
the corresponding image part. (A more detailed description of common
local feature types is given in Chapter 2.1). A database of model images
is then represented as a collection of these vectors. The presence of a
database object in a query images is determined by first extracting local
features from the query image, and then searching for the nearest neigh-
bor of each local feature patch in the database. The collection of matched
features will cast votes for a particular object in the database. By rely-
ing on local image patches this approach is robust toward occlusion and
clutter. Relying on geometric constraints for the possible location of
features in the image plane can further improve recognition. Examples
of early works building on this paradigm are [Schmid and Mohr, 1997;
Lowe, 1999]. Later on, local appearance based features were not only
used to recognize specific objects, but also to recognize the presence and

4 1. Introduction

even localize instances of object classes in images [Weber et al., 2000a;
Agarwal and Roth, 2002]

Local appearance based methods are at the heart of most state of the
art object recognition methods and are also the basis for the research
carried out in this thesis. Thus, a more detailed discussion of the more
recent work in this field is given in Chapter 2.3.

1.2 Contributions of this thesis

The work at hand advances the state-of-the-art in object-level retrieval
and mining with three main contributions. Firstly, with the investiga-
tion of itemset mining algorithms in the domain of visual data. This
class of simple, but efficient algorithms have proven to be a useful tool
for other kinds of data. We adapt these methods to work with local
visual features. The resulting algorithms are successfully employed to
mine specific objects in video data, and to identify frequent feature con-
figurations as representatives of object classes.

The second contribution consists of a multimodal data-mining method,
which automatically mines objects and events from community photo
collections on the Internet. After crawling geotagged photos, the method
automatically clusters photos showing the same object or event using
visual features. The system then proceeds with analyzing the mul-
timodal context of each identified cluster, in particular text associated
with the individual photos. This analysis results in a textual description
of the clusters. Furthermore, it is used to identify related Wikipedia
pages. Finally, building again on the mined visual data, this assignment
is verified, and refined up to an object-level annotation of mined entities
for applications such as retrieval or auto-annotation.

The third and final contribution consist of several prototype applications
for scalable retrieval in visual data, partly building on the data mined in
the previous steps. These retrieval applications focus on applications for
mobile devices, again including multimodal context such as GPS location
of the user. In addition to the mobile retrieval applications, novel web-
and desktop applications are designed, for browsing and auto-annotation
in personal photo collections.

1.3. Organization of this thesis 5

1.3 Organization of this thesis

This thesis is organized as follows:

Chapter 2 introduces various basic methods and algorithms which are
important throughout this work. Most importantly they include local
visual feature types, and a more detailed discussion of local appearance
based methods for object (-class) detection, with a special emphasis on
visual vocabulary based approaches.

Chapter 3 describes our work with itemset mining algorithms in the
domain of visual data. The goal here is to come up with a method
for efficient detection of re-appearing structures of local features, using
data-driven mining algorithms rather than explicit model learning. The
resulting methods are applied to and evaluated on tasks in video mining
and object class detection using standard benchmark data.

Chapter 4 takes mining from the feature level to the object level. We
introduce a method to mine objects and events from community photo
collections on the Internet. The approach relies on geotagged photos,
which are clustered based on their similarities calculated from local fea-
ture matches. Beyond the visual cues we extend our mining method to
include cues from other modalities such as the textual tags describing
the photos. This allows for labeling of the mined objects and events.
Furthermore, using multimodal information from Wikipedia, we relate
Wikipedia articles to the identified object clusters using a multimodal
matching and verification procedure. Finally, we demonstrate how the
mined data can be used to derive object-level auto-annotations of objects
such as landmark buildings in holiday snaps. Experiments are conducted
on hundreds of thousand of photos downloaded from the Internet.

Chapter 5 deals with the user- or application-centric aspect of object
recognition. We demonstrate several prototypes for object recognition
applications, with a special focus on mobile devices. Several options for
user interaction with the system are investigated. The mobile applic-
ations are complemented with two applications for the desktop or the

6 1. Introduction

web, namely auto-annotation and 3D reconstruction – both applications
build directly on the results from Chapter 4. Finally, we introduce a
method to localize and read text in natural images, with the goal, to
make this information also accessible to visual retrieval systems.

Chapter 6 discusses methods which allow to scale object-level re-
trieval to large amounts of data in the order of up to 1 million images.
We investigate, which properties make nearest neighbor search for data-
bases of local features different from “general purpose” nearest neighbor
search. We then evaluate three methods (LSH, Redundant Bit Vectors,
and Metric Trees) under that aspect. Metric trees are further extended
to form forests of metric trees and their performance is compared to
state of the art visual vocabulary based methods.

Chapter 7 concludes by discussing the results of our work and point-
ing out further research directions based on our findings.

Since our work touches several independent research areas, each of the
main chapters 4 − 6 contains a section discussing related work specific
for the topic of that chapter.

2
A Set of Tools

In this chapter we introduce some basic tools and algorithms we build
on throughout our work. They include local feature extractors and
descriptors, clustering algorithms, visual vocabularies, itemset and min-
ing methods, and classifier boosting.

2.1 Local Feature Detectors and Descriptors

The introduction of very powerful local visual features in the late 90’s is
probably one of the main reasons for the astonishing progress the field
of computer vision has made in recent years. Unlike global features (e.g .
variations of global color histograms or texture features), which describe
the entirety of an image with a single feature vector, local features de-
compose the image into localized image patch descriptors around interest
points. An example is shown in Figure 2.1. Selecting the “right” image
patches, and describing them in a “meaningful” way is the important
contribution of the research that led to the local features we can build
on in our work. Describing an image with local features typically consists
of two steps: interest point detection, and construction of a descriptor
for the image patch around the interest point.

A good interest point detector locates points, that can be detected re-
peatedly, even if the original image is modified or the same scene is de-
picted under varying conditions. Such variations include e.g . viewpoint
changes (angle, zoom, etc.), lighting changes, or image compression. The
main criterion to judge the quality of an interest point detector is thus
its invariance to those perturbations, which is typically measured with

8 2. A Set of Tools

Figure 2.1: Examples of local features. SIFT, SURF, MSER, and

Hessian-Affine (clockwise from top-left).

a repeatability value [Mikolajczyk and Schmid, 2004a], expressing if the
same interest point can be reliably detected at the same position, even
after an image has undergone transformations. While locating “interest-
ing” points in images has a long history in computer vision (e.g . with
Harris corners [Harris and Stephens, 1988]), achieving discriminance,
reliable localization, and robustness to scale or affine changes is quite
challenging. A good overview and comparison of some of the most well-
known interest point detectors can be found in [Mikolajczyk and Schmid,
2004a; Mikolajczyk et al., 2005; Tuytelaars and Mikolajczyk, 2008].

After localizing an interest point, a region around it is usually encoded
using a descriptor vector, e.g . based on the histogram of gradients ob-
served in the image patch. The most important quality criteria for
descriptors are a compact representation and high precision and recall
when matching descriptors from a database of images (i.e. finding the
right point correspondences and finding all point correspondences). An

2.1. Local Feature Detectors and Descriptors 9

evaluation of some of the most well-known interest point descriptors can
be found in [Mikolajczyk and Schmid, 2005].

Comparing two images using local features boils down to the execution
of the following steps:

1. Feature extraction: extract interest points and their descriptors.

2. Feature matching: for each interest point find its corresponding
features in the other image, or from a database of images. This
involves often finding the nearest neighbor(s) of a feature descriptor
from a large database of reference images.

3. Recognition: based on the number and location of the matches
decide, if the two images show the same object or scene. This step
can include further verification using a model, either specific to
an object(-class) or general verification models, e.g . multiple view
geometry.

Steps 2 and 3 are known as the correspondence problem. While most
of this thesis focuses on the third step, we also have a look at feature
matching in Chapter 6, where we discuss options for scalable retrieval
from large databases of local features.

The basic processing pipeline above has a variety of additional or modi-
fied steps depending on the application it is deployed for. Such applica-
tions include:

• 3D Reconstruction

• Image Mosaicking

• Object Recognition

• Object Class Recognition

• Image and Video Retrieval

Below we summarize the properties of some of the local feature types
used in this thesis. They include features, which are invariant to scale
changes (SIFT [Lowe, 2004] and SURF [Bay et al., 2006b]) as well as
features, which are invariant to affine changes (MSER [Matas et al.,
2002] and Hessian-Affine [Mikolajczyk and Schmid, 2004a]).

10 2. A Set of Tools

2.1.1 SIFT

SIFT (Scale Invariant Feature Transform) [Lowe, 2004] consists of both
an interest point detector and descriptor. SIFT is scale and rotation
invariant.

The interest point detector builds – as most other approaches for in-
terest point detection – on scale-space theory, to obtain a scale-invariant
interest point. This involves convolving the image with a Gaussian at
several scales, creating a so called scale space pyramid of convolved im-
ages. Interest points are now detected by selecting points in the image,
which are stable across scales. In the case of SIFT this is done using a
Difference-of-Gaussians (DoG) approach, where the convolved images at
subsequent scales are subtracted from each other. (The DoG approach
is in fact simply an approximation of the Laplacian). Stable points are
searched in these DoG images by determining local maxima, which ap-
pear at the same pixel across scales. Afterwards, several refinement steps
are applied, to select the most robust points (e.g . eliminating edge re-
sponses etc.). Finally, the most dominant orientations are determined,
by creating a radial histogram of gradients in a circular neighborhood
of the detected point. The maxima from this histogram determine the
orientation of the point, and thus enable rotation invariance.

For the descriptor, around each interest point a region is defined, di-
vided into orientation histograms on (4 x 4) pixel neighborhoods. The
orientation histograms are relative to the keypoint orientation. Histo-
grams contain 8 bins each, and each descriptor contains a 4x4 array of
16 histograms around the keypoint. This leads to a SIFT feature vector
with (4 x 4 x 8 = 128 elements). This vector is normalized to enhance
invariance to changes in illumination.

2.1.2 SURF

SURF [Bay et al., 2006b] is a particularly fast and compact method.
Just like SIFT, SURF is scale- and rotation invariant.

The interest point detector used by SURF is based on the Determinant-
of-Hessian (DoH) blob detector. However, just as SIFT uses DoG as an

2.1. Local Feature Detectors and Descriptors 11

approximation of the Laplacian, SURF uses a more efficient approxim-
ation of the Hessian. This is done using a courageous approximation
of the Gaussian second order derivatives of the Hessian detector with
simple box filters. Using box filters allows using integral images [Viola
and Jones, 2001b] for efficient computation.

Just like its detector, the SURF descriptor is tuned for efficiency. It
calculates a set of simple Haar-like features in sub-regions of a rectan-
gular neighborhood around an interest point. As in the case of SIFT,
this is done after determining a dominant orientation and expressing the
descriptor in relation to that orientation to achieve rotation invariance.
The Haar-like feature responses can again be calculated very efficiently
using integral images.

2.1.3 Hessian-Affine

Hessian Affine interest point detectors [Mikolajczyk and Schmid, 2004a]
belong to a class of so-called affine-covariant detectors, which are not
only invariant to scale and rotation, but can even cope with affine changes.
The main concept of these detectors is to find first a stable interest point
in scale-space as with the methods described above, but afterwards to
fit an elliptical region around the interest point. (Instead of a square or
circle). This ellipse adapts – i.e. is covariant – with affine changes of the
underlying image structures. For Hessian-Affine detectors, the shape of
this ellipse is determined with the second moment matrix of the intensity
gradient.

Note, that the Hessian-Affine method is an interest point detector only,
and does not come with it’s own descriptor. It is thus typically combined
with other descriptors, such as SIFT. The descriptor is extracted on a
normalized region for all interest points, e.g . the ellipses are transformed
into a circle, before the descriptor is calculated on the pixels within this
circle.

2.1.4 MSER

MSER (Maximally Stable Extrema Regions) [Matas et al., 2002] also
belong to the class of affine-covariant detectors. They are not based

12 2. A Set of Tools

on one of the ’standard’ Gaussian scale space methods, but are based
on connected components of an appropriately thresholded image. The
word extremal refers to the property that all pixels inside the MSER have
either higher (bright extremal regions) or lower (dark extremal regions)
intensity than all the pixels on its outer boundary. The maximally stable
in MSER describes the objective optimized during the threshold selection
process: while changing the threshold value, these regions’ binarization
stays stable over a range of threshold values. “Maximally stable” is
defined as the local minimum of the relative area change as a function
of relative change of threshold.

Just as with the Hessian-Affine detectors, an ellipse can be fitted to
the output regions of the detector, and after normalization, a region
descriptor such as SIFT can be calculated on the pixels in the region [Mikola-
jczyk et al., 2005].

2.2 Clustering

Data clustering involves partitioning a data set into groups of related
items. The type of partitioning an algorithm is trying to achieve, and
the strategy it uses to reach its goal depend strongly on the kind of data.
Here, we consider clustering algorithms, which can operate with vector
data. Their goal typically consists of identifying areas of high density
(i.e. agglomerations of data points) in the space and forming clusters
around them. Throughout our work we apply two of the most popular
clustering methods, namely k-Means and hierarchical clustering, which
are described in the following.

2.2.1 k-Means

One of the best known and widely used clustering algorithms is the k-
Means algorithm [MacQueen, 1967]. It finds a partitioning of N points
from a vector space into k < N groups, where k is typically specified

2.2. Clustering 13

by the user. The objective it tries to achieve is to minimize total intra-
cluster variance, or, the squared error function

V =
k∑

i=1

∑
xj∈ci

(xj − µi)2

where there are k clusters ci, i = 1 . . . k, and µi is the mean of all the
points xj ∈ ci.

The most common form of the algorithm uses an iterative refinement
heuristic known as Lloyd’s algorithm. The algorithm starts with an ini-
tialization of k centroids as representatives for the clusters. Based on a
distance measure (the L2 Norm is the correct distance to minimize the
objective function, but other distances are often used, nevertheless), it
assigns all points in the dataset to their closest centroid. Then it re-
calculates the centroid of each cluster as the mean of all data-points in
the cluster. These steps are repeated until no points change clusters or
a threshold (number of iterations, change of V) is reached. It’s simpli-
city and rather fast execution times make k-Means a popular clustering
algorithm.

While k is the only parameter that needs to be specified for k-Means, its
choice is not trivial, in particular since it affects the outcome of the clus-
tering result greatly. A common way to work around this problem is to
just try several values for k. However, for large datasets this approach
is too time-consuming because k can vary in a wide range (we might
need a clustering with thousands of partitions) and the runtime of the
algorithm for each k obviously increases with increasing number of data-
points N . (The time-complexity of the k-Means algorithm is O(Nkld)
for N datapoints of dimension d, and l iterations).

Another challenge is the initialization of the algorithm, which also has a
substantial impact: for different initializations the algorithm may reach
different results. k-Means is known to be vulnerable to getting stuck
in local minima. It is not trivial to avoid this, so a common simple
solution is to start the algorithm with different initializations and to
keep the best outcome. Common variants of initialization include picking
k random data-points, or stepwise selection of the farthest away data-
point, beginning with the origin (“ping-pong” initialization).

14 2. A Set of Tools

Many improvements of the standard k-Means algorithm have been sug-
gested [Farnstrom et al., 2000; Elkan, 2003; Pelleg and Moore, 1999;
2000]. They either use efficient data structures or improve runtime and
memory requirements by reducing the number of distance calculations
based on some approximation criteria.

We tested the algorithm described in [Farnstrom et al., 2000]. It is a
single-pass algorithm with a buffer, i.e. it can work with limited memory
and uses only one pass over the data-set. This is achieved by mov-
ing points, that wont change their cluster with high probability from
memory to a retained set on the hard drive. However, it is an approxim-
ate method, which does not deliver the exact same results like standard
k-Means. (The method is related to the class of stream clustering al-
gorithms, which build on the notion that data is received as a constant
stream and can only be read once from a buffer).

Another method which significantly speeds up the exact k-Means al-
gorithm (in particular for high values of k) is described in [Elkan, 2003].
Here, lower bounds of distances are determined based on the triangle
inequality to avoid distance calculations. While the speed-up is impress-
ive, it is traded for memory usage: The implementation requires keeping
track of distance bounds in a table of dimensions N × k.

In our work we use k-Means mostly to cluster local visual features into so-
called visual vocabularies, see Section 2.3 of this chapter and Chapter 6.

2.2.2 Hierarchical Clustering

Unlike k-means, hierarchical clustering methods don’t create clusters by
iteratively climbing towards dense areas in feature space, but rather try
to merge pairs of items and clusters successively, starting with the closest
until some cutoff criterion is reached.

The clustering process begins by calculating all pairwise distances between
data items i, j j ∈ N . Then, starting with the smallest distance, pairs
of items or clusters are merged. This way, a hierarchical cluster tree, or
dendrogram, is created. On this dendrogram, clusters can be identified
by “pruning” the tree at a certain level.

2.2. Clustering 15

While merging pairs of clusters, the question arises, how the distance
between two clusters A,B should be defined. In fact, there are several
measures, the most popular being:

single-link: dAB = min
i∈A,j∈B

dij

complete-link: dAB = max
i∈A,j∈B

dij

average-link: dAB =
1

ninj

∑

i∈A,j∈B

dij

Single-link merges clusters based on the distance of the two closest items
in each cluster, complete link is based on the distance of the two items
farthest away from each other, and finally, average-link takes the average
distance as a criterion. Which distance measure is appropriate depends
on the application.

The advantage of hierarchical clustering over k-Means is, that it can
be applied to any kind of data, where a distance between two items
can be defined. (Thus, also any distance measure can be used). The
main disadvantage is, that it relies on a calculation of pairwise distances
between all items, which is O(N2). There are optimizations available,
e.g . [Leibe et al., 2008] rediscovered an optimized version for average
link clustering [Benzécri, 1982; de Rham, 1980], which runs in O(N2d)
and needs only O(N) space. They use it successfully for clustering image
feature descriptors into visual vocabularies (Section 2.3).

2.2.3 Measuring Cluster Quality

When clustering data and possibly comparing several methods, the ques-
tion arises, how the quality of the clustering result should be measured.
There are two main options: either one uses some general statistical
quality measure for the clusters (compactness etc.), or, if the clustering
module is part of a larger processing pipeline, measure its effect on the
output of the whole system.

The latter is the most pragmatic, but requires that a full system is in
place and the result may be specific to that system. Furthermore, if a
large range of parameters has to be varied, evaluation becomes very time
consuming. On the other hand, when using a statistical measure, it can

16 2. A Set of Tools

only measure certain properties, which may or may not correlate with
the effect on a complete system.

As an example, we mention one statistical measure, which we also use in
Chapter 3, namely the Silhouette. For a given cluster, Xj(j = 1, . . . , N),
this method assigns to each sample of Xj a quality measure, s(i)(i =
1, . . . , m), known as the Silhouette width. The Silhouette width is a
confidence indicator on the membership of the ith sample in cluster Xj .
The Silhouette width for the ith sample in cluster Xj is defined as:

s(i) =
a(i)− b(i)

max(a(i), b(i))

where a(i) is the average distance between the ith sample and all of
the samples included in Xj and b(i) is the minimum average distance
between the ith sample and all of the samples clustered in Xk (k =
1, . . . , c; k 6= j). From this formula it follows that −1 ≤ s(i) ≥ 1 . When
a s(i) is close to 1, one may infer that the i-th sample has been well
clustered, i.e. it was assigned to an appropriate cluster. When a s(i)
is close to zero, it suggests that the i-th sample could also be assigned
to the nearest neighboring cluster. If s(i) is close to 1, one may argue
that such a sample has been misclassified. Thus, for a given cluster, Xj

(j = 1, . . . , c), it is possible to calculate a cluster Silhouette Sj , which
characterizes its heterogeneity and isolation properties:

Sj =
1
m

m∑

i=1

s(i)

where m is number of samples in Sj .

Calculating the silhouette is computationally quite demanding for large
datasets.

2.3 Image Representation with Visual Words

The bottleneck of the recognition pipeline described in Section 2.1 is
often its second module, feature matching. This is due to several reas-
ons. Firstly, if the number of images in a database is large (possibly
hundred of thousands of images) determining matching features for a

2.3. Image Representation with Visual Words 17

query feature by calculating its nearest neighbors becomes infeasible in
reasonable time. Several methods for fast nearest neighbor search exist,
and have also been applied to this problem (e.g . [Lowe, 2004] uses an
optimized kd-tree). However, many of these approaches work well only
in low dimensional spaces, and also suffer from another problem: finding
matches for local image features is not necessarily solved best by simply
finding the nearest neighbor. It is rather a bounded nearest neighbor
search problem, where the bounds may depend both on the application
(e.g . object class detection versus detection of specific objects) and even
on the “meaning” of an individual feature. Some features may describe a
more specific element, some of them a more general one, i.e. the density
of a set of matching features in the vector space cannot be described
with the same parameter for all features.

Thus, several works [Weber et al., 2000a; Dance et al., 2004; Fergus et al.,
2003; Leibe and Schiele, 2003] have proposed grouping features into so
called visual vocabularies. Images are then represented as bags of visual
words1 or bags of features, i.e. groups or clusters of features describing
the same visual primitive element. All features assigned to the same
visual word are deemed matched. This representation is similar to a bag
of words, used in document analysis and text retrieval.

Visual vocabularies are typically obtained by clustering the feature descriptors
in high dimensional vector space. The dataset (or a sample) is clustered
into k representative clusters, where each cluster stands for a visual word.
The resulting clusters can be more or less compact, thus representing the
variability of similarity for individual feature matches. The value of k

depends on the application, ranging from a few hundred or thousand en-
tities for object class recognition applications up to 1 million for retrieval
of specific objects from large databases. This shows how the clusters are
used to form a vocabulary with more or less variability in the individual
visual words: in object class recognition, the individual instances of a
class can have large variations, while in retrieval for specific objects very
similar features have to be found.

The complete process for encoding an image with a visual vocabulary is
summarized in Figure 2.2. Features are clustered into a visual vocab-
ulary. Each feature is then assigned to its closest cluster. The image

1a bag is the same as a multiset, i.e. a set where multiple occurrences of an item
are considered

18 2. A Set of Tools

(a) (b) (c)

Figure 2.2: Bag of Features approach: The features from a database

of images (a) are clustered into a visual vocabulary. Each cluster is

represented by an id, the visual word (b). The features of any image are

then represented by the id of their closest cluster (c).

is now represented as a set of regions, which carry as a label the visual
word id, instead of a high dimensional descriptor vector. In other words,
the image can now be encoded as a histogram over the visual words
appearing in the image. Matching two images now consists simply of
comparing their visual word ids, or correlating their histograms. In a
retrieval scenario, where a query image is compared to the images in a
database, matching consists now of finding the closest visual word for
each feature, instead of finding the nearest neighbor from the whole data-
base. This is much more efficient, since typically k << N for k clusters
forming the visual vocabulary and N features in the database.

For image and video retrieval based on visual vocabularies often several
additional methods are borrowed from text retrieval [Salton and McGill,
1986], e.g . the most frequent and infrequent visual words are removed
from the images using a ‘stop-list’, or the features are ranked using a
tf ∗ idf variant, weighting frequently occurring features lower.

Using visual vocabularies has been successful in video retrieval [Sivic and
Zisserman, 2003] and many approaches in object class recognition [Weber
et al., 2000a; Agarwal and Roth, 2002; Dance et al., 2004; Fergus et al.,
2003; Leibe and Schiele, 2003]. For clustering, most often k-Means is
used, but other methods are used, too, e.g . [Leibe and Schiele, 2003] use

2.4. Frequent Itemset Mining 19

a hierarchical agglomerative method, which results in better clustering
results for their application.

Historically, vocabulary representations have been around for some time
before they were used in combination with local features, e.g . for tex-
ture analysis the textons by [Leung and Malik, 2001] or face recogni-
tion [Wiskott et al., 1997]. The earliest uses for categorization or detec-
tion of “arbitrary” objects were probably the ones by [Burl et al., 1998;
Weber et al., 2000b; Agarwal and Roth, 2002]. Many approaches have
used variations of this theme since, e.g . [Weber et al., 2000a; Fergus et
al., 2003; Fei-Fei et al., 2003; Agarwal and Roth, 2002; Borenstein and
Ullman, 2002; Feltzenswalb and Hutenlocher, 2005; Dance et al., 2004;
Leibe and Schiele, 2003; Sivic and Zisserman, 2003]. Various details and
directions are explored in these works, e.g. various applications (retrieval
or classification), types of clustering (k-means, hierarchical clustering),
manual selection of primitive parts rather than clustering, determining
the optimal number of clusters, investigation of the clusters in the feature
spaces, etc.

We use variations of these visual vocabularies in many parts of this
work. In Chapter 3 we mine configurations of visual words using itemset
mining methods. Note, that in this context we treat images as sets of
features, and not as bags of features, i.e. every occurrence of a visual
word is only counted once. This is an approximation, which is justified
by several reasons: first, multiple occurrences of a visual word often stem
from non discriminative, repeated patterns. Second, we typically create
a histogram of visual words from a localized neighborhood and not from
the entire image. Here, considering multiple occurrences of the same
feature is even less important.

In Chapter 6 we look at retrieval from large databases of local features
in more detail. We use both nearest neighbor and visual vocabulary
based approaches and investigate several properties of the image match-
ing process using local features.

2.4 Frequent Itemset Mining

Frequent itemset mining is a very popular family of methods to detect the
joint occurrence of certain items from a large body of data. They have

20 2. A Set of Tools

their origin in market basket analysis, where large databases of customer
transactions have to be analyzed to gain insights into the buying habits
of shoppers. A typical desired insight could be of the form: 90% of
customers who buy bread also buy milk. In a physical store this insight
would allow placing certain articles next to each other to generate higher
sales. In on-line stores, this enables making buying suggestions based on
items already placed in the shopping basket. This particular feature is
very common for book or music recommendation on platforms such as
amazon.com.

Market basket analysis was the main application considered in the first
publications on itemset mining [Agrawal et al., 1993], however, the same
kind of problem has been analyzed in various other contexts since. This
includes web usage mining [Cooley et al., 1993], robust collaborative fil-
tering [Sandvig et al., 2007], fraud detection in on-line advertising [Met-
wally et al., 2005], document analysis [Holt and Chun, 1999] or massive
recommendation systems for related search queries [Li et al., 2008a].

The remainder of this section is structured as follows: we start with
a formulation of the itemset mining problem, then discuss several al-
gorithms, which solve the problem efficiently, and finally look at some
alternative quality measures for the mining results.

2.4.1 Frequent Itemset and Association Rules

Here we summarize the relevant definitions and terminology for frequent
itemsets and association rules.

Let I = {i1 . . . ip} be a set of p items. Let A be a subset of I with l

items, i.e. A ⊆ I, |A| = l. Then we call A a l-itemset.

A transaction is an itemset T ⊆ I with a transaction identifier tid(T).
A transaction database D is a set of transactions with unique identifiers
D = {tid(T1) . . . tid(Tn)}, tid(Ti) 6= tid(Tj) ∀ {i, j} ∈ I | i 6= j.

We say that a transaction T supports an itemset A, if A ⊆ T . We can
now define the support of an itemset A in the transactions-database D

as follows:

2.4. Frequent Itemset Mining 21

Definition 2.4.1 (Support of an itemset). The support of an itemset
A ∈ D is

support(A) :=
|{T ∈ D | A ⊆ T}|

|D| ∈ [0, 1]

Conversely, for each itemset we can also find the transactions, which
support the itemset:

Definition 2.4.2 (Cover of an itemset). The cover of an itemset A in
D consists of the set of transaction identifiers of transactions in D that
support A:

cover(A,D) := tid(T) | (T ∈ D, A ⊆ T).

When mining itemsets, we are interested in those sets, that occur fre-
quently in the database:

Definition 2.4.3 (Frequent itemset). An itemset A is called frequent
in D if support(A) ≥ s where s is a threshold for the minimal support
defined by an expert.

Two special types of frequent itemsets are also often discriminated in
the literature:

Definition 2.4.4 (Closed itemset and maximal itemset). A frequent
item set A is called closed if no superset has the same support. A frequent
item set A is called maximal if no superset is frequent.

After mining frequent itemsets, one is often interested in the statistical
dependence between the individual items or subsets that form a set.
These dependences are typically expressed in the form of association
rules.

Definition 2.4.5 (Association rule). An association rule is an expres-
sion A→ B where A and B are itemsets (of any length) and A∩B = ∅.

The quality or interestingness of a rule is typically expressed in the
support-confidence framework, which was introduced in [Agrawal et al.,
1993].

22 2. A Set of Tools

TID Items
1 Bread, Milk
2 Beer, Diaper, Bread, Eggs
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Bread, Diaper, Milk

Table 2.1: Example: Transactions from a store

Definition 2.4.6 (Support of a rule). The support of an association
rule A→ B is

supp(A→ B) := supp(A ∪B) =
|{T ∈ D|(A ∪B) ⊆ T}|

|D|

In other words, the support of a rule is the support of the joined itemsets
that make up the rule. The support of a rule measures its statistical
significance.

Definition 2.4.7 (Confidence of a rule). The confidence of an associ-
ation rule A→ B is

conf (A→ B) =
supp(A ∪B)

supp(A)
=
|{T ∈ D|(A ∪B) ⊆ T}|
|{T ∈ D|A ⊆ T}|

The left-hand side of a rule is called antecedent, the right-hand side is
the consequent.

The confidence is a measure of the strength of the implication A → B.
Note that the confidence can be seen as a maximum likelihood estimate
of the conditional probability that B is true given that A is true [Hand,
2001].

To get a feel for the application of these measures, let’s consider a simple
example:

Example 2.4.1. The classic application for association rules is mar-
ket basket data analysis. In this context, an itemset refers to a set of
products. A transaction is the set of products bought by a particular cus-
tomer. Consider the transactions in table 2.1. Suppose we want to find

2.4. Frequent Itemset Mining 23

support and confidence of the famous rule {Diaper,Milk} → Beer:

support({Diaper,Milk} → Beer) =
support{Diaper,Milk, Beer}

|D| =
2
5

= 0.4

confidence({Diaper,Milk} → Beer) =
support{Diaper,Milk,Beer}

support{Diaper,Milk} = 0.66

That means, if a customer has already diapers and milk in his shopping
basket, with 66% probability he will also buy beer.

In summary, the task that itemset mining algorithms have to solve is,
given a minimal support threshold s, to detect all frequent itemsets (i.e.
A | support(A) > s) in a database D in an efficient manner. In a second
step they also have to create association rules from the mined itemsets.
Some algorithms which tackle this task are described in the following.

2.4.2 Frequent Itemset Mining Algorithms

The earliest algorithm to solve the itemset mining task was the APriori
algorithm [Agrawal et al., 1993]. Many improved algorithms have been
proposed since, among them most notably FP-Growth [Han et al., 2000]
and ECLAT [Zaki, 2000].

The key insight to be able to perform an efficient frequent itemset search
is summarized in the monotonicity property, or equivalently, the down-
ward closure property:

Lemma 2.4.1 (Downward closure of support). Given a transaction
database D, let A, B be two itemsets. Then, A ⊆ B → support(B) ≤
support(A).

Proof. This follows immediately from

cover(B) ⊆ cover(A)

In other words all l-subsets of frequent (l+1)-sets must also be frequent.

The APriori algorithm takes advantage of this property and allows us to
find frequent itemsets very quickly.

24 2. A Set of Tools

APriori

The APriori algorithm is shown in Algorithm 1. The algorithm per-
forms a breadth-first search through the search space of all itemsets by
iteratively generating candidate itemsets Cl+1 of size l + 1. It altern-
ates between two phases: a database pass phase, where the support of
the itemsets in Cl is calculated and checked if it surpasses the frequency
threshold s, and the phase of candidate formation for l+1 itemsets. The

Algorithm 1: APriori
1: l← 1, L← ∅
2: Cl ← {{A} | A item of size 1, A ∈ D}
3: while Cl 6= ∅ do
4: Ll ← ∅
5: database pass:
6: for A ∈ Cl do
7: if A is frequent then
8: Ll ← Ll ∪A

9: end if
10: end for
11: candidate formation:
12: Cl+1 ← sets of size l + 1 whose all subsets are frequent
13: Cl ← Cl+1

14: L← L ∪ Ll

15: end while
16: return L

main disadvantage of the APriori algorithm is that it requires multiple
passes over the database required for the support counting procedure,
thus most research towards improving performance has focused on that
aspect.

The computational complexity of the algorithm can be divided by the
two phases, the database pass phase and the candidate generation. As
derived in [Hand et al., 2001] the worst-case complexity for each iteration
of the database pass phase is approximately square in Ll, where Ll is
the number of frequent l-itemsets used to generate the l + 1 stes from.
In practice, however this part of the algorithm usually runs linear in Ll.

2.4. Frequent Itemset Mining 25

Checking a frequent set Cl for frequency (line 7 in Algorithm 1) requires
testing its presence in all transactions of the database D, in each iteration
the complexity is thus O(|Cl|np), where Cl is the number of candidate
l-itemsets, n is the number of transactions and p is the number of items.

The number of iterations of the algorithm depends on the data, with k

iterations where k is the number of items in the largest frequent set.

An improved version of APriori was already proposed in [Agrawal et al.,
1993]. The so-called AprioriTid algorithm reduces the time needed for
the support counting procedure by replacing every transaction in the
database by the set of candidate itemsets that occur in that transaction.
This is done repeatedly at every iteration l.

A detailed theoretical analysis of the complexity of mining frequent pat-
terns has recently been carried out in [Yang, 2006].

FP-Growth

Unlike APriori, some algorithms such as ECLAT and FP-Growth apply
a depth-first search. As an example, we describe FP-Growth (Frequent
Pattern Growth) [Han et al., 2000] in this section.

FP-Growth builds on two additional observations besides Lemma 2.4.1:

• Consider the cover(A) of an itemset A (i.e. the simple fact that an
itemset A is a subset of each transaction containing A). Thus, one
can select transactions containing A to form a conditional data-
base (CDB), and find patterns containing A from that conditional
database {a, b}, {a, c}, {a} → {a, b, c}.

• To prevent the same pattern from being found in multiple CDBs,
all itemsets should be sorted by the same manner (e.g., by des-
cending support)

The first observation allows for a divide-and-conquer approach: the con-
ditional databases are smaller sub-problems to be solved. To that end,
FP-growth uses a tree structure to store the database in a compressed
form. The first step that the algorithm performs is to remove infrequent

26 2. A Set of Tools

items and to sort the transactions based on the remaining items. FP-
Growth then compresses these cleaned transactions into a prefix tree (the
FP-tree), the root of which is the most frequent item (i.e. the FP tree is
very similar to the prefix trees used in Huffman coding). Each path on
the tree represents a set of transactions that share the same prefix; each
node corresponds to one item. Each level of the tree corresponds to one
item, and an item list is formed to link all transactions that possess that
item. Storing transactions in the FP-tree in support descending order
helps keeping the database small, since in general the more frequently
occurring items are arranged closer to the root of the FP-tree and thus
are more likely to be shared.

FP-Growth then starts to mine the FP-tree for each item whose support
is larger than s by recursively building its conditional FP-tree. With
this, the problem of finding frequent itemsets is converted to searching
and constructing trees recursively.

The algorithm is outlined in Algorithm 2. It starts with initializing
the data structures and then recursively the function Growth shown in
Algorithm 3, which builds and searches the conditional trees. Further
details and examples can be found in [Han et al., 2000].

2.4.3 Interestingness Measures for Itemsets and Rules

Above we used the measures support and confidence to judge the quality
or interestingness of frequent itemsets and association rules. However,
the mining literature proposes several alternative measures, which might
be more appropriate or serve simply as additional “filters”, depending
on the application. They include:

1. All-confidence [Omiecinski, 2003]

2. Collective strength [Aggarwal and Yu, 1998]

3. Conviction [Brin et al., 1997]

4. Leverage [Piatetsky-Shapiro, 1991]

5. Lift [Brin et al., 1997]

2.4. Frequent Itemset Mining 27

Algorithm 2: FP-Growth
Data: Database D,minimal support s

Result: Frequent itemsets
Define and clear F-List : F [];1

foreach Transaction Ti ∈ D do2

foreach Item aj ∈ Ti do3

F [aj] + +;4

end5

end6

Sort F [];7

Define and clear the root of FP-tree : r;8

foreach Transaction Ti ∈ D do9

Make Ti ordered according to F [];10

ConstructTree (Ti, r);11

end12

foreach Item ai ∈ I do13

Call Growth (r, ai, s);14

end15

6. Normalized χ2 [Silverstein et al., 1998]

7. Difference of support/confidence quotient to 1 [Borgelt, 2003]

All these measures and many more are compared e.g . in [Tan et al., 2002].
Another particularly interesting work is [Silverstein et al., 1998] since it
explores the commonalities as well as differences between correlations
and associations (roughly spoken, associations are positive correlations).
The interested reader is referred to the respective publications for further
detail.

In the work at hand, besides support and confidence, we also make use of
the last measure in the list above, the difference of the support quotient
to 1. The reasoning for this measure is as follows: when mining itemsets,
we are especially interested in sets whose items show strong dependence,
or, conversely weak independence. A measure for independence can be
defined as follows. Assuming perfect independence, the expected value
for the support of an itemset is computed from the product of the sup-
ports of the individual items. The ratio of actual and expected support

28 2. A Set of Tools

Procedure Growth
Data: r, a, s

if r contains a single path Z then1

foreach combination γ of the nodes in Z do2

Generate pattern β = γ ∪ a with support = minimum support3

of nodes in γ if support(β) > s then
Output (β)4

end5

end6

end7

else8

foreach bi in r do9

Generate pattern β = bi ∪ a with support = support(bi) if10

support(β) > s then
Output (β)11

end12

Construct conditional DB for β;13

Construct conditional FP-tree for β: Treeβ ;14

if Treeβ 6= then15

Growth (Treeβ , β, s)16

end17

end18

end19

of an itemset is computed and its difference to 1 serves as an interest-
ingness measure (i.e. the difference to perfect independence):

dep(A) = 1−
∏l

i=1 support(A[i])
support(A)

(2.1)

where A is an itemset of length l and A[i] is the i-th item of the itemset
A. Only itemsets for which this difference is above a given threshold are
then retained as interesting.

Itemset mining is one of the key techniques used in this thesis, and is
applied throughout Chapter 3 and in some parts of Chapter 4.

2.5. Graph Mining 29

2.5 Graph Mining

Graph mining belongs to the field of structured data mining, which, be-
sides graphs, includes mining XML data, relational databases etc. Graph
mining has a wide range of applications, many of them in chemical com-
pound analysis. A large body of research has thus been published about
graph mining, a good review can be found in [Washio and Motoda, 2003].
The authors categorize the approaches to graph-based data mining into
five groups:

• greedy search based approaches

• inductive logic programming based approaches

• inductive database based approaches

• mathematical graph theory based approaches

• kernel function based approaches

In the work at hand we focus on mathematical graph theory based
approaches, since they are conceptually close to itemset mining. For
a description of the other approaches the interested reader is referred
to [Washio and Motoda, 2003]. The approaches in this class have in
common, that they borrow essentially the same terminology and the
same search concepts from frequent itemset mining. The key measure
is the (minimal) support for frequent subgraphs (where frequent sub-
graphs are again those, which have a support higher than a threshold s),
and mining is based on candidate generation motivated by the downward
closure property (Lemma 2.4.1): the subgraphs of any frequent subgraph
must be frequent, too.

Algorithms from this class include e.g . AGM (Apriori-based Graph Min-
ing) [Inokuchi et al., 2003], FSG (Frequent SubGraph Discovery) [Kur-
amochi and Karypis, 2001], gSpan (graph-based Substructure pattern
mining) [Yan and Han, 2002], CloseGraph [Yan and Han, 2003], and
MoSS/MoFa [Borgelt and Berthold, 2002].

30 2. A Set of Tools

AGM

Just like the APriori algorithm (Section 2.4.2) for frequent itemset min-
ing, AGM [Inokuchi et al., 2003] starts from frequent one-vertex graphs
and generates candidate graphs of larger sizes by pairwise joining of
frequent subgraphs that satisfy the following two conditions:

First, the frequent sub-graphs G(Xk) and G(Yk) to be joined must con-
sist of k vertices with identical elements except for those in the k-th row
and k-th columns of their adjacency matrices Xk and Yk, respectively:

Xk =
(

Xk−1 x1

xT
2 0

)
, Yk =

(
Xk−1 y1

yT
2 0

)
.

Then the graphs are joined to form a new graph G(Zk+1) having the
adjacency matrix

Zk+1 =

Xk−1 x1 y1

xT
2 0 zk,k+1

yT
2 zk+1,k 0

 ,

where zk,k+1 and zk+1,k represent an edge label between the k-th vertices
of Xk and Yk.

Second, in order to avoid redundancy (the same graph can be produced
by switching Xk and Yk), the two graphs may only be joined if

code(the first matrix) ≤ code(the second matrix)

where code(g) stands for an invariant representation of a graph g – ex-
amples of invariant representations can be found in [Washio and Motoda,
2003].

Note that AGM executes a complete search and thus finds all frequent
subgraphs. AGM is also capable of handling labeled vertices and edges.
However, labeled edges require a conversion of the graph by inserting
a special node in place of each edge label. For a dense graph, this
conversion results in a graph much larger than the original one.

FSG

FSG [Kuramochi and Karypis, 2001; 2004] is similar to the AGM al-
gorithm. However, FSG achieves higher efficiency by using graph vertex

2.5. Graph Mining 31

invariants (e.g . degree of the vertices and the labels of the vertices and
edges) and keeps transaction ids (TIDs). (The latter is in fact similar
to the AprioriTID algorithm for itemset mining). Using TIDs, FSG
keeps for every frequent subgraph a list of the transaction identifiers
that support it. This allows pruning generated candidate subgraphs be-
fore calculating costly subgraph-graph isomorphism: if the intersection
of the TID lists of G(Xk) and G(Yk) is shorter than the minimal support
minsupp the new candidate graph created by joining G(Xk) and G(Yk)
couldn’t be frequent and can thus be pruned from the list of candidate
graphs to be checked for frequency. Otherwise its frequency is computed
by using a subgraph isomorphism algorithm on the limited search space
determined by the intersection of the TID-lists.

Like AGM, FSG performs a complete search and thus finds all frequent
subgraphs, but unlike AGM FSG is capable of handling labeled vertices
and edges without a modification of the graph.

gSpan

gSpan [Yan and Han, 2002] is based on a depth-first search (DFS) and
canonical labeling. The main difference to AGM and FSG is, that gSpan
uses a tree representation instead of an adjacency matrix to generate
an invariant code for the graphs. The frequent subgraphs are searched
beginning with the frequent one-edge graphs and expanding them by
one vertex at each step. gSpan relies on a special coding technique (so-
called DFS codes) to encode and search the graphs. By applying this
DFS coding and DFS search, gSpan can derive complete sets of frequent
subgraphs over a given minimal supports in a very efficient manner in
both computational time and memory consumption.

CloseGraph

CloseGraph [Yan and Han, 2003] is a modification of gSpan, which only
finds closed frequent subgraphs. Just as in frequent itemset mining,
a frequent subgraph S is called closed, if there exist no super-graphs
of S with the same support. CloseGraph uses certain conditions, for
a subgraph S, which — when satisfied — imply that all descendants

32 2. A Set of Tools

of S are not closed and thus do not have to be considered for further
expansions. As a result, the search branches of these subgraphs can be
pruned completely.

Thanks to the pruning of the search branches for closed subgraphs Close-
Graph outperforms gSpan in speed.

MoSS/MoFa

In contrast to the algorithms described previously, MoSS/MoFa [Borgelt
and Berthold, 2002] uses a depth-first search. MoSS/MoFa starts at a
graph consisting of a frequent vertex, and extends this graph iteratively
by adding an edge and a vertex. The search tree is pruned using three
criteria:

1. Support Based Pruning: A subtree of the search tree can be pruned,
if the subgraphs belonging to this subtree have not enough support.

2. Size Based Pruning: The search tree is pruned, if a user-defined
threshold for the size of the frequent subgraphs has been reached.

3. Structural Pruning: Structural pruning ensures, that every sub-
graph is considered only once. Structural pruning is obtained by
specifying rules, on how to expand the subgraphs. These rules
define an order, in which vertices and their edges can be added as
well as a criterion that defines when a vertex and an edge can be
added and when not.

In this work, graph mining is applied in Section 3.5, where we mine
frequent subgraphs as part of an object-class recognition algorithm.

2.6 Boosting

Boosting is a technique to combine a set of weak classifiers into a strong
classifier. Weak classifiers are classifiers that may be only slightly bet-
ter than chance, a strong classifier should show much stronger correl-
ation with the true classification. Thus, boosting is a meta-algorithm

2.6. Boosting 33

for supervised learning, where no specific requirements are posed on the
functionality of the algorithm, except that it must behave according to
the probably approximate correct learning framework (PAC) [Valiant,
1984]. There are a variety of boosting algorithms available, one of the
most popular is still the early Adaboost [Freund and Schapire, 1997],
which we will describe in the following.

2.6.1 Discrete Adaboost

Discrete Adaboost (or Adaboost for short – the term discrete is used to
distinguish it from recent Adaboost variants that use real-valued classi-
fier outputs) was introduced in [Freund and Schapire, 1997]. Boosting
combines several weak classifiers ht(x) into a strong classifier H(x). The
weak classifiers are only required to be slightly better than chance.

Assuming the classifiers have binary {−1,+1} output (discrete), the Ad-
aboost strong classifier has the form

H(x) = sign(
T∑

t=1

αtht(x)) (2.2)

where T is the number of weak classifiers being used (iterations), and αt

are coefficients chosen by Adaboost.

During training Adaboost assigns a weight wt
i to each training sample

i for boosting round t (with
∑

wt
i = 1) and calls the weak learning

algorithm to find the best weak classifier under the given weights. Then
αt and the new weights wt+1

i are calculated. This process is repeated
until T boosting rounds are completed. Since none of the calculations
depend on T , any other stopping criterion (like a target error rate) can
be used. The learning algorithm can be summarized as follows:

• Given: labeled training samples (x1, y1), . . . , (xn, yn) with yi ∈
{−1,+1}

• Initialize weights w1
i = 1

N for i = 1 . . . N

• For t = 1 . . . T

34 2. A Set of Tools

1. Use the weak learning algorithm to find the classifier ht(x) ∈
{−1, +1} that minimizes the error εt =

∑
i:ht(xi)6=yi

wt
i

2. Calculate: αt = 1
2 ln(1−εt

εt
)

3. Update weights: wt+1
i = wt

ie
(−yiαtht(xi))

4. Normalize weights such that
∑

i wt+1
i = 1

• The strong classifier is H(x) = sign(
∑T

t=1 αtht(x))

In other words, AdaBoost maintains a distribution of weights for the
training examples. This distribution is updated in each round - the
weights of misclassified examples are increased and the weights of well-
classified examples are decreased - thus, the weak learner is forced to
concentrate on the difficult examples.

2.6.2 Classifier Cascades with Boosting

One of the most successful applications of boosting was for the task of
real-time face detection in [Viola and Jones, 2001b]. The method is sum-
marized in detail in Chapter 5.4. One of the main ideas of the method is
to learn a cascade of classifiers which allows especially fast (real-time) re-
cognition with the learned classifier. The idea is to reject “easy” negative
matches early with little effort and then only to focus on the remaining
data with more complex classifiers. For instance in [Viola and Jones,
2001b] the first classifier in the cascade - called the attentional operator
- uses only two features to achieve a false negative rate of approximately
0% and a false positive rate of 40%. The effect of this single classifier
is to reduce by roughly half the number of times the entire cascade is
evaluated.

For learning, this means, that classifiers have to be arranged in a cascade
in order of complexity, where each successive classifier is trained only
on those examples which pass through the preceding classifiers. The
false positives F and the detection rate D of the entire cascade are the

2.6. Boosting 35

products of the false positives fi and detection rate di of the individual
stages:

F =
N∏

i=1

fi (2.3)

D =
N∏

i=1

di (2.4)

To reach a pre-defined training goal of the whole cascade (chosen by the
user), a training goal for each stage can be calculated, assuming that
all stages will have about equal performance. This typically leads to a
target detection rate of 0.99 and a false positive rate of 0.30 for each
stage, depending on the number of stages.

Adaboost will only try to minimize the misclassification error. However
by adding a constant value to the sum in equation (2.2) it is possible
to increase the hit rate at the expense of the false positives. Viola and
Jones have proposed the following method to train a stage:

1. Let Adaboost choose and add the next weak classifier.

2. Tune the threshold of the current strong classifier such that the
desired detection rate is reached on the validation set.

3. If the tuned classifier does not reach the target false positive rate
on the validation set, go back to 1.

In other words, features are added until the training goal is reached. The
stage goal is the stopping criterion for Adaboost training.

2.6.3 Adaboost Variants

Since the original Adaboost publication [Freund and Schapire, 1997],
many improved boosting algorithms have been proposed, for instance
for real valued weak classifiers (Real Adaboost), etc. One extension
worth mentioning is asymmetric boosting. The original Discrete Ada-
boost algorithm tries to minimize the number of missclassifications (this

36 2. A Set of Tools

is called the symmetric error). However when using boosting in combin-
ation with a classifier cascade, a false positive (e.g . background classified
as face) can still be rejected by the later stages, while a false negative
(e.g . face classified as background) at any stage is a final decision that
degrades the overall performance (equation 2.4). In other words, the
cost of the classification error is not symmetric.

Motivated by the scenario of face detection, [Viola and Jones, 2001a]
proposed the following solution. The authors introduced an approach to
modify the weights of the training samples before each boosting round
to force more attention to the positive samples. This both simplified and
improved accuracy of their classifier. (Note that in that particular work
Real Adaboost was used instead of Discrete Adaboost.)

We apply boosting in combination with graph mining for object class
detection in Chapter 3.5 and for text detection in images of natural
scenes in Chapter 5.4.

3
Frequent Itemset Mining in

Visual Data

3.1 Introduction

Detection of patterns in data is probably the most important task in
computer vision. It first appears at the lowest stages of a recognition
pipeline (e.g . feature extraction), and typically reappears at every higher
stage of the system. Especially at those higher stages, detection of re-
peating patterns allows us to gain valuable insights from the data. For
instance, given a set of images with cars, the frequent occurrence of a
certain set of local features in those images leads to the conclusion that
their presence might be valuable evidence for the presence of a car in
any other image.

While dealing with finding repeating patterns in data, we can discrim-
inate two closely related tasks: data mining and learning. The dis-
crimination of those tasks is not entirely clear in the literature, however,
generally spoken in a learning environment usually a set of labeled train-
ing data to reach a certain goal is given (e.g . learn a model for a car),
while a mining algorithm simply digs through a pile of data without a
previously defined goal on what to look for (e.g . find the most import-
ant objects in a video sequence). Further, (machine) learning is mostly
concerned with predictive models and an emphasis on performance of
trained models, while data mining puts emphasis on descriptive models
and patterns for existing data, and on handling large datasets.

Especially the last point, handling large dataset, was the main motiv-
ation to borrow techniques from data mining and apply them to visual

38 3. Frequent Itemset Mining in Visual Data

data. As outlined in the introduction, the abundance of visual data
available due to the rise of digital imaging devices and on-line sharing
of data poses both novel opportunities and challenges for computer vis-
ion research. To handle large amounts of data, efficient algorithms are
required. Specifically, we build on itemset mining algorithms as intro-
duced in Chapter 2.4. This choice is motivated by two factors: first,
a bag of visual words (quantized local appearance features) can be de-
scribed very naturally as a set. Second, itemset mining has been used
successfully in a variety of domains to detect repeating combinations of
items efficiently.

In this chapter, we use these algorithms first for mining tasks (find re-
peating patterns in existing data), but then also try to use their output
for learning, i.e. as predictor for unseen data. The chapter is structured
as follows: in Section 3.2 we look at a true mining task, the detection
of frequently occurring objects in video data, and try to apply itemset
mining to solve it. In Section 3.3 we extend the approach to tackle de-
tection of configurations of local features as evidence for the presence of
object classes. The usefulness of this evidence for object class recogni-
tion is investigated in Section 3.4 in the context of the ISM framework
of [Leibe and Schiele, 2003]. Finally, Section 3.5 explores an alternative
family of mining techniques namely graph mining for the same tasks.

3.2. Mining Specific Objects in Video 39

3.2 Mining Specific Objects in Video

The goal of the method to be described in this section is to mine in-
teresting objects and scenes from video data. In other words, to detect
frequently occurring objects automatically. Mining such representative
objects, actors, and scenes in video data is useful for many applications.
For instance, they can serve as entry points for retrieval and browsing,
or they can provide a basis for video summarization. Our approach to
video data mining is based on the detection of recurring spatial arrange-
ments of local features. The input to the mining algorithm consists of
subsets of feature-codebook entries for each video frame, encoded into
“transactions”, as they are known in the data mining literature [Agrawal
et al., 1993]. We also incorporate information on spatial arrangement of
features in transactions and on how to select the neighborhood defining
the subset of image features included in a transaction. For scenes with
significant motion, we define this neighborhood via motion segmenta-
tion. To this end, we also introduce a simple and very fast technique for
motion segmentation on feature codebooks.

The remainder of this section is organized as follows. First the pre-
processing steps (i.e. video shot detection, local feature extraction and
clustering into appearance codebooks) are described. We then introduce
the concepts of our mining method and show experiments on data from
music video clips.

3.2.1 Shot Detection, Features and Visual Words

The main processing stages of our system rely on the prior subdivision
of the video into shots. We apply the shot partitioning algorithm [Osian
and Van Gool, 2004], and pick four “keyframes” per second within each
shot. As in [Sivic and Zisserman, 2004], this results in a denser and
more uniform sampling than when using the keyframes selected by [Osian
and Van Gool, 2004]. In each keyframe we extract two types of affine
covariant features (regions): Hessian-Affine [Mikolajczyk and Schmid,
2004b] and MSER [Matas et al., 2002]. Affine covariant features are
preferred over simpler scale-invariant ones, as they provide robustness
against viewpoint changes. Each normalized region is described with

40 3. Frequent Itemset Mining in Visual Data

a SIFT-descriptor [Lowe, 2004]. Next, a visual vocabulary is construc-
ted by clustering the SIFT descriptors with an optimized hierarchical-
agglomerative technique described in [Leibe and Schiele, 2003]. In a
typical video, this resulted in about 8000 appearance clusters for each
feature type. (Remember, that the number of clusters is determined
automatically in agglomerative clustering, unlike in k-Means. The para-
meter that has to be set is a cut-off value for the distances used while
merging clusters. Those were chosen according to the experiments shown
in [Leibe and Schiele, 2003]).

We apply the ‘stop-list’ method known from text-retrieval and [Sivic
and Zisserman, 2004] as a final polishing: very frequent and very rare
visual words are removed from the codebook (the 5% most and 5% least
frequent). Note that the following processing stages use only the spatial
location of features and their assigned appearance-codebook id’s. The
appearance descriptors are no longer needed.

3.2.2 Video Mining Approach

Our goal is to find frequent spatial configurations of visual words in
video scenes. For the time being, let us consider a configuration to be
just an unordered set of visual words. For a codebook of size d there
are 2d possible subsets of visual words. For each of our two feature
types we have a codebook with about 8000 words, which means d is
typically > 10000, resulting in an immense search space. Hence we need
a mining method capable of dealing with such a large dataset and to
return frequently occurring word combinations.

Frequent itemset mining methods are a good choice, as they have solved
analogous problems for other kinds of data, as discussed in Chapter 2.4.

Incorporating Spatial Information

In our context, the items correspond to visual words. In the simplest
case, a transaction could be created for a frame, or around each feature,
and would consist of an orderless bag of all other words within some
neighborhood in the image. In order to include also spatial information
(i.e. spatial locations of visual words) in the mining process, we further

3.2. Mining Specific Objects in Video 41

Figure 3.1: Creating transaction from a neighborhood. The area

around a central visual word vc is divided into sections. Each section is

labeled (tl, tr, bl, br) and the label is appended to the visual word ids.

adapt the concept of an item to our problem. The key idea is to en-
code spatial information directly in the items. In each image we create
transactions from the neighborhood around a limited subset of selected
words {vc}. These words must appear in at least fmin and at most in
fmax frames (where fmin and fmax are parameters. This is motivated by
the notion that neighborhoods containing a very infrequent word would
create infrequent itemsets, neighborhoods around an extremely frequent
word have a high probability of being part of clutter. Each vc must also
have a matching word in the previous frame, if both frames are from the
same shot. Typically, with these restrictions, about 1/4 of the regions
in a frame are selected.

For each vc we create a transaction which contains the surrounding k

nearest words together with their rough spatial arrangement. The neigh-
borhood around vc is divided into B sections. In all experiments we use
B = 4 sections. Each section covers 90 ◦ plus an overlap o = 5 ◦ with its
neighboring sections, to be robust against small rotations. We label the
sections {tl, tr, bl, br} (for ”top-left”, ”top-right”, etc.), and append to
each visual word the label of the section it lies in. In the example in Fig-
ure 3.1, the transaction created for vc is T = {tl55, tl9, tr923, br79, br23, bl23, bl9}.
In the following, we refer to the selected words {vc} as central words.
Although the approach only accommodates for small rotations, in most
videos objects rarely appear in substantially different orientations. Ro-
tations of the neighborhood stemming from perspective transformations
are safely accommodated by the overlap o. Although augmenting the
items in this fashion increases their total number by a factor B, no

42 3. Frequent Itemset Mining in Visual Data

changes to the frequent itemset mining algorithm itself are necessary.
Besides, thanks to the careful selection of the central visual words vc, we
reduce the number of transactions and thus the runtime of the algorithm.

Exploiting Motion

Shots containing significant motion1 allow us to further increase the
degree of specificity of transactions: if we had a rough segmentation of
the scene into object candidates, we could restrict the neighborhood for a
transaction to the segmented area for each candidate, hence dramatically
simplifying the task of the mining algorithm. In this case, as the central
visual words vc we pick the two closest regions to the center of the
segmented image area. All other visual words inside the segmented area
are included in the transaction (Figure 3.3).

We propose a simple and very fast motion segmentation algorithm to
find such object candidates. The assumption is that interesting objects
move independently from each other within a shot. More precisely, we
can identify groups of visual words which translate consistently from
frame to frame. The grouping method consists of two steps:

Step 1. Matching words. A pair of words from two frames f(t), f(t+
n) at times t and t + n is deemed matched if they have the same visual
word ids (i.e. they are in the same appearance cluster), and if the trans-
lation is below a maximum translation threshold tmax. This matching
step is extremely fast, since we rely only on cluster id correspondences.
In our experiments we typically use tmax = 40 pixels and n = 6 since
operating at four keyframes per second.

Step 2. Translation clustering. At each timestep t, the pairs of
regions matched between frames f(t) and f(t+n) are grouped according
to their translation using k-means clustering. In order to determine
the initial number of motion groups k, k-means is initialized with a
leader initialization [Webb, 2002], on the translation between the first

1Since shot partitioning [Osian and Van Gool, 2004] returns a single keyframe for
static shots and several keyframes for moving shots, we can easily detect shots with
significant motion.

3.2. Mining Specific Objects in Video 43

two frames. For each remaining timestep, we run k-means three times
with different values for k, specifically

k(t) ∈ {k(t− 1)− 1, k(t− 1), k(t− 1) + 1} (3.1)

where k(t− 1) is the number of motion groups in the previous timestep.
This prevents the number of motion groups from changing abruptly from
frame to frame. Furthermore, k(t) is constrained to be in [2...6]. To
further improve stability, we run the algorithm twice for each k with
different random initializations. From the resulting different clusterings,
we keep the one with the best mean silhouette value [Kaufman and
Rousseeuw, 1990]. We improve the quality of the motion groups with the
following filter. For each motion group, we estimate a series of bounding-
boxes, containing from 80% progressively up to all regions closest to the
spatial median of the group. We retain as bounding-box for the group the
one with the maximal density number of regions

bounding box area . This procedure removes
from the motion groups regions located far from most of the others.
These are most often mismatches which accidentally translate similar to
the group.

The closest two visual words to the bounding box center are now selected
as the central visual word vc for the motion group. Figure 3.2 shows
detected motion groups for a scene of a music videoclip.

3.2.3 Mining an Entire Video

We quickly summarize the processing stages from the previous sections.
A video is first partitioned into shots. For rather static shots we create
transactions from a fixed neighborhood around each central word. For
shots with considerable motion, we use as central words the two words
closest to the spatial center of the motion group, and create two transac-
tions covering only visual words within it. For frequent itemset mining
itself we use an implementation of APriori from [Borgelt, 2003]. We
mine Maximal Frequent Itemsets and only sets with four or more items
are kept.

Note how frequent itemset mining returns sparse but discriminative de-
scriptions of neighborhoods. As opposed to the dot-product of binary

44 3. Frequent Itemset Mining in Visual Data

Figure 3.2: First row: motion groups (only region centers shown) with

bounding boxes. Second row: motion groups in translation space. Note:

colors do not necessarily correspond along a row, since groups are not

tracked along time.

indicator vectors used in [Sivic and Zisserman, 2004], the frequent item-
sets show which visual words cooccur in the mined transactions. Such
a sparse description might also be helpful for efficiently indexing mined
objects.

Choosing a Support Threshold

The choice of a good minimal support threshold s in frequent itemset
mining is not easy, especially in our untraditional setting where items
and itemsets are constructed without supervision. If the threshold is too
high, no frequent itemsets are mined. If it is too low, too many (possibly
millions) are mined. Thus, rather than defining a fixed threshold, we
run the algorithm with several thresholds, until the number of frequent
itemsets falls within a reasonable range (usually set to more than 100
and less than 100′000 sets). We achieve this with a binary split search
strategy. Two extremal support thresholds are defined, slow and shigh.
The number of itemsets is desired to be between nmin and nmax. Let n

be the number of itemsets mined in the current step of the search, and
s be the corresponding support threshold. If the number of itemsets is

3.2. Mining Specific Objects in Video 45

Figure 3.3: Creating transactions: (a) static shots: transactions are

formed around each vc from the k-neighborhood. (b) shots with consid-

erable motion: a motion group is the basis for a transaction, thus the

number of items in a transaction is not fixed but given by the size of the

motion group. With (b) in general fewer transactions are generated.

not in the desired range, we update s by the following rule and rerun
the miner:

s(t+1) =

{
s(t) + (shigh−s(t))

2 , slow = s(t) if n > nmax

s(t) − (s(t)−slow)
2 , shigh = s(t) if n < nmin

Since the mining algorithm is very fast, we can afford to run it several
times (runtimes reported in the result section).

Finding Interesting Itemsets

The output of the APriori algorithm is usually a rather large set of
frequent itemsets, depending on the minimal support threshold. Finding
interesting item sets (and association rules) is a much discussed topic in
the data mining literature, as outlined in Section 2.4, where we discussed
several approaches, which define interestingness with purely statistical
measures. For instance, itemsets whose items statistically dependent
are interesting. We thus applied the measure defined from equation 2.1,
which had in general a positive effect on the quality of our mining results.

Another strategy is to rely on domain-specific knowledge. In our do-
main, itemsets which describe a spatial configuration stretching across
multiple sections tl, tr, bl, br are interesting. These itemsets are less likely
to appear by coincidence and also make the most of our spatial encoding

46 3. Frequent Itemset Mining in Visual Data

scheme, in that these configurations respect stronger spatial constraints.
The number of sections that an itemset has to cover in order to be
selected depends on a threshold nsec ∈ {1 . . . 4}. Selecting interesting
itemsets with this criteria is easily implemented and reduces the number
of itemsets drastically (a typical value is nsec = 2, we observed reduction
of sets by a factor of about 10 to 100).

Itemset Clustering

Since the frequent itemset mining typically returns spatially and tempor-
ally overlapping itemsets, we merge them with a final clustering stage.
Pairs of itemsets which jointly appear in more than F frames and share
more than R regions are merged. Merging starts from the pair with the
highest sum R + F . If any of the two itemsets in a pair is already part
of a cluster, the other itemset is also added to that cluster. Otherwise,
a new cluster is created.

3.2.4 Experiments and Results

We present results on two music videos from Kylie Minogue [Minogue
and Gondry, 2002; Minogue and Shadforth, 2001]. In particular the clip
“Come into my world” [Minogue and Gondry, 2002] makes an interesting
test case for mining, because the singer passes by the same locations four
times, and she even appears replicated several times in later parts of the
clip. (Figure 3.4, bottom row). Hence, we can test whether the miner
picks up the reappearing objects. Furthermore, the scene gets more and
more crowded with time, hence allowing to test the system’s robustness
to clutter.

A few of the objects mined from the 1500 keyframes long clip “Come
into my world” [Minogue and Gondry, 2002] are shown in Figures 3.4
through 3.6. The full miner was used, including motion grouping and
itemset filtering with nsec = 2. The Figures show the most dominant
objects that were mined. In Figure 3.4 one of the main locations of the
clip is identified as important. The four rows show keyframes from each
of the singer’s walks through the location. Note how the “multiplica-
tion” of the main character leads to strong occlusion effects, especially

3.2. Mining Specific Objects in Video 47

in the fourth walkthrough shown on the last line. Also note the view-
point changes. All instances of the location are mined in spite of these
challenges.

Figure 3.5 shows the main character of the clip mined due to the pattern
on her clothes. The character is mined in all locations (including the one
from Figure 3.4) and in varying poses. However, some of the replicated
instances of the singer are missed by our algorithm (3rd and 4th rows).

Figure 3.6 shows a third mined object, this time again representing one
location of the video. The four rows of the Figure show again frames
from each pass through the location. However, here only two frames from
the last walk through the scene could be mined (the missing frames are
represented by the placeholders in the fourth row). This is probably due
to the increasing background occlusion throughout the video, which can
be observed in the second column of the figure. Such missing frames
could be recovered by adding an object-level tracking, connecting gaps
between keyframes. Figure 3.8 shows typical results for mining with a
fixed 40-neighborhood, i.e. without motion segmentation, akin to what
has been proposed by [Sivic and Zisserman, 2004]. As can be seen in
subfigures 3.8a and 3.8b, only smaller parts of the large objects from
Figures 3.4- 3.6 are mined. More examples of objects mined at the
40-neighborhood scale are shown in the other subfigures. Comparing
these results to those in Figure 3.4 highlights the benefits of defining
the neighborhood for mining based on motion segmentation. Thanks to
it, objects can be mined at their actual size (number of regions), which
can vary widely from object to object, instead than being confined to
a fixed, predefined size. Additionally, the singer was not mined when
motion segmentation was turned off.

Figure 3.7 shows example objects mined from the clip [Minogue and
Shadforth, 2001] with a 40-neighborhood. The results are less impressive
than ones obtained on the clip [Minogue and Gondry, 2002]. One reason
is the very dynamic nature of that particular clip, with many short
shots and little translational motion, which does not result in benefits
when applying our simple motion segmentation stage. Furthermore, our
algorithm is naturally challenged by sparsely textured, non-rigid objects.
As an example one could mention the legs of the main character. There
are few features to begin with and the walking motion strongly changes
the configuration of those, thus not the whole body is detected as object.

48 3. Frequent Itemset Mining in Visual Data

Figure 3.4: Results for clip “Come into my World” using motion seg-

mentation. First mined cluster, a walk through the scene is shown on

each line by representative keyframes.

In Table 3.1 we compare quantitatively mining with motion segment-
ation, and with a fixed 40-neighborhood for the clip “Come into my
world” [Minogue and Gondry, 2002]. Note that there are only 8056
transactions when using motion segmentation, compared to more than
half a million when using a fixed 40-neighborhood. While the runtime is
very short for both cases, the method is faster for the 40-neighborhood
case, because transactions are shorter and only shorter itemsets were fre-
quent. Additionally, in the 40-NN case, the support threshold to mine
even a small set of only 285 frequent itemsets has to be set more than
a factor 10 lower. The mean time for performing motion segmentation
matching + k-Means clustering) was typically about 0.4s per frame, but
obviously depends on the number of features detected per frame. In con-
clusion, we showed that our mining approach based on frequent itemsets
is a suitable and efficient tool for video mining. Restricting the neighbor-

3.2. Mining Specific Objects in Video 49

Figure 3.5: Results for clip “Come into my World”. The second mined

cluster representing the main character of the clip. It is mined through-

out the clip in varying locations and poses

Method Regions #T t FIMI s # FI # FIF (ns) Cl (F ,R)
M.-Seg. 2.87 ∗ 106 8056 56.12s 0.015 27654 308 (2) 11 (2,2)
40-NN 2.87 ∗ 106 511626 18.79s 0.0001 285 285 (0) 55 (2,2)

Table 3.1: Motion Segmentation and 40-NN mining methods compared.

Regions: number of regions in entire video. #T: number of transactions.

t FIMI: runtime of frequent itemset mining. s: support threshold. #FI:
number of frequent itemsets. FIF: number of FI after filtering step with

ns sections. Cl: number of clusters for itemset clustering with paramet-

ers F ,R.

50 3. Frequent Itemset Mining in Visual Data

Figure 3.6: Results for clip “Come into my World”. Third mined

cluster, a walk through the scene on each line is shown. Only few frames

of the last pass through the location could be mined in this case (last

line).

Figure 3.7: Results for clip “Can’t get you out of my head”.

3.2. Mining Specific Objects in Video 51

Figure 3.8: Examples for the clip Come into my World mined at a fixed

40 neighborhood.

hood by motion grouping has proven to be useful for detecting objects
of different sizes at the same time.

52 3. Frequent Itemset Mining in Visual Data

3.3 Mining Frequent Feature Configurations

In the preceding section of this chapter we described an approach to mine
frequently occurring objects from video data using itemset mining on
quantized local features. The objects we were dealing with were specific
objects, that is a specific person or scene were the output of the mining
algorithm. Local features are also at the heart of the most successful
approaches to object class detection and image classification [Agarwal
et al., 2004; Dalal and Triggs, 2005; Dance et al., 2004; Feltzenswalb
and Hutenlocher, 2005; Fergus et al., 2005; Leibe et al., 2005; Sivic and
Zisserman, 2004; Opelt et al., 2006]. After learning a class model from
training images, these methods are capable of detecting whether a novel
object instance is present in a previously unseen test image. Several
recent methods go even a step further by localizing novel objects up
to a bounding-box [Agarwal et al., 2004; Dalal and Triggs, 2005] or
their segmentation and outlines [Shotton et al., 2006; Leibe et al., 2005].
These methods are robust to clutter, scale changes, and missing object
parts - properties which stem from the advantageous characteristics of
local features. However, these advantages come at a price. The local
feature extractor is run beforehand and without prior knowledge of the
object class. As a result, on a typical image it returns a large number
of features, of which only some fraction lie on the object of interest.
Especially when the object appears small in the image, the total set of
features has a low signal-to-noise ratio. This imposes a great burden on
object detectors and other higher-level processes, as they have to find
their way to the object through a sea of background features.

In this chapter we propose a mining-based method to filter this large
mass of features. It selects features which have high probability of lying
on instances of the object class of interest. Our technique is intended
as an intermediate layer between feature extraction and object class de-
tection. The filtered set of features our method delivers can then be fed
into a higher-level object detector. Thanks to this, it starts from a much
higher signal-to-noise ratio, and its performance is likely to improve. We
expect our method to lead to lower false-positive rates, and possibly also
higher detection rates. Besides, starting from a cleaner set of features
is likely to ease other tasks as well, such as segmenting objects from
the background, or determining their pose. The method’s input is a set

3.3. Mining Frequent Feature Configurations 53

->Motorbike

-> Background

Figure 3.9: Example of mined rules: on the left a frequent configuration

which infers background, on the right a configuration which infers the

object motorbike.

of positive training images, containing different instances of the object
class, and a set of negative background images. We organize local fea-
tures in semi-local neighborhoods and express these in a way suitable for
data mining. We adopt again Frequent Itemset Mining, which efficiently
analyzes the large set of all neighborhoods and returns spatial configur-
ations of local features frequently re-occurring over the training images.
From these frequent spatial configurations we now also collect discrim-
inative Association Rules. These rules infer the presence of the object in
positive images with high confidence and fire only rarely on background
images. Figure 3.9 shows two typical feature configurations and the cor-
responding rules produced by our miner. One rule infers the presence
of the motorbike, while the other corresponds to a feature configuration
mined from the background. When given a novel image, we first match
the mined configurations to it, and then we associate a confidence value
to each feature expressing how likely it is to lie on an instance of the
object class. This is obtained by accumulating the activation scores of
all matched configurations involving the feature.

This approach has several advantages. First of all, the mining algorithm
is designed for scalability and allows to process large training sets rap-
idly. Moreover, the set of rules collected from the data in this fashion are
discriminative and easy to interpret. Indeed, by considering spatial con-
figurations of neighboring features we gain higher discriminative power

54 3. Frequent Itemset Mining in Visual Data

compared to individual features. A single local feature, even from an in-
formative configuration, might not be distinctive enough and could occur
frequently also on the background. In addition, the rules often capture
configurations of local features corresponding to semantic object parts,
such as motorbike wheels (Figure 3.11). The per-feature confidence val-
ues produced by our approach effectively prune away the majority of
background features, and therefore act as a valuable focus-of-attention
mechanism for the benefit of subsequent object detectors, e.g. [Agarwal
et al., 2004; Fergus et al., 2005; Leibe et al., 2005].

Also note, that unlike in the video mining work presented in the pre-
ceding section, we have no motion cues, and thus can’t rely on a mo-
tion segmentation to identify neighborhoods to create transactions from.
Hence, we present an extended and refined method for including spatial
arrangement of features in the itemset mining process, which also works
for the kind of data we are confronted with now: unsorted images con-
taining instances of an object class, instead of an ordered sequence of
images showing a specific object.

The remainder of this section is organized as follows. First we de-
scribe our approach to mining frequent spatial configurations of local
features from training images. In subsection 3.3.2 we determine the con-
fidence that features appearing in new images cover an instance of the
object class. Finally, an extensive experimental evaluation is carried out,
demonstrating our approach primes features lying on class instances and
discards background ones.

3.3.1 Frequent Feature Configurations

Our technique for mining frequent feature configurations can be sum-
marized as follows. The training set is composed of positive images,
containing object instances annotated by a bounding-box, and of neg-
ative images, which do not contain any instance of the class of interest.
First, a large number of spatial configurations of local image features
are collected from all training images. An efficient mining algorithm is
then used to select frequently occurring configurations from this large
set. The next step transforms these frequent spatial configurations into
association rules. These rules are built by selecting frequent spatial con-

3.3. Mining Frequent Feature Configurations 55

figurations which imply the presence of the object class with high con-
fidence, while at the same time are discriminative against clutter (i.e.
they occur rarely on the negative images or on non-object areas of the
positive images).

These discriminative rules are the building blocks for a generating class-
specific confidence values for features of novel images. These convey the
probability that each feature belongs to an instance of the object class
(Section 3.3.2).

The itemset mining algorithm is the same as in the previous section
about video mining. However, now we also form association rules from
the mined itemsets. Association rules have several desirable properties.
Thanks to the efficient frequent itemset mining method they can be
extracted even from very large bodies of data. The rule notation is
easily interpretable and can be used to gain global insights into large
datasets or can be analyzed by experts. These properties have led to
their application in several fields such as web usage mining [Cooley et
al., 1993] or document analysis [Holt and Chun, 1999].

The lowest layer of our system is again built on a set of local features ex-
tracted in each image. We use a Difference of Gaussian (DoG) detector
to extract regions and the SIFT descriptor [Lowe, 2004] to describe their
appearance. The SIFT feature vectors are clustered into a visual vocabu-
lary with hierarchical agglomerative clustering, just like in the preceding
section.

In order to cope with the inherent uncertainty of the unsupervised clus-
tering process, we soft-match each feature by assigning it to all codebook
clusters whose center c is closer than a distance threshold dmin. This
yields a description of each region Ri by a set of codebook labels

ζi = {cj | d(Ri, cj) < dmin , j ∈ 1 . . . N} (3.2)

where N is the total number of appearance clusters.

Neighborhood-based Image Description

The second layer of our system builds an image representation from
the codebook labels. The simplest representation would be a global
histogram, i.e. a bag of features as discussed in Section 2.3. However,

56 3. Frequent Itemset Mining in Visual Data

we aim at unsupervised mining and at learning useful representations
for object classes. In this setting, a more informative description is
necessary. Encoding not only the presence of visual words, but also
their spatial arrangement yields a much stronger descriptor. Thus, we
describe each image as a set of semi-local neighborhoods.

Several methods have been proposed to sample spatial neighborhoods
from an image. In [Dalal and Triggs, 2005] a sliding-window mechanism
samples windows at fixed location and scale steps, followed by a spatial
tiling of the windows. The very different approach [Sivic and Zisserman,
2004] defines a neighborhood around each region Rc. This is represented
as the unordered set of the k nearest regions, without storing any spatial
information (k-neighborhoods).

Our approach tries to combine the best of both. We rely on the sampling
of the feature extractor to define the locations Rc of the neighborhood
centers. However, instead of using a k-neighborhood we use the scale of
the central region Rc to define the size of the neighborhood. More pre-
cisely, all regions falling within a square of side proportional to the scale
of Rc are inside the neighborhood. Subsequently, each neighborhood is
split into Q tiles as shown in Figure 3.10a. For each tile we create an
activation vector indicating which visual words it contains2. The res-
ulting Q activation vectors are concatenated to form the neighborhood
descriptor: a (N ∗ Q)-dimensional sparse binary vector. Figure 3.10b
shows a neighborhood descriptor for N = 10 and Q = 9. Note how in
this example the top-left region is soft-matched to appearance clusters
2 and 5. The activation vector can equivalently be written as a list of
non-zero indices – or, in itemset mining terminology, as a transaction
(figure 3.10c). Note how neighborhoods can be made rotation invari-
ant by aligning the tile grid with the dominant orientation of Rc. In
otherwords, the neighborhood description is a generalized version of the
neighborhood with only 4 tiles used in the previous section. Since we
form a neighborhood for every region in every training image, this res-
ults in a very large number of neighborhoods (or transactions). The
training sets in section 4.6 have between 26′000 and 74′000 transactions.
Note that itemset mining can handle these amounts of data with ease
– in a recent parallel implementation of FP-Growth [Li et al., 2008a]

2We do not count multiple occurrences of the same visual word in a particular
tile, i.e. we work with sets instead of bags.

3.3. Mining Frequent Feature Configurations 57

Figure 3.10: (a) An example neighborhood with 9 tiles and 10 appear-

ance clusters. Circles represent local features, and numbers indicate the

appearance cluster(s) they are assigned to. (b) Activation vector. (c)

Transaction.

datasets with 15′000′000 transactions and 85′000′000 items were mined
successfully.

Mining Frequent and Distinct Configurations

Equipped with the tools introduced in the previous sections, we can now
find frequent configurations of visual words efficiently. We are especially
interested in mining distinctive configurations, which appear frequently
on the object and rarely on the background.

As discussed above, each neighborhood is described by a list of non-zero
indices, and generates a transaction. The input to the mining algorithm
is the database containing all transactions. In order to discriminate
against background data, we add transactions from the negative train-
ing set to the database. All transactions originating from instances of
the object class are assigned the label “object” as an additional item,
while we append the item “background” to background transactions. For
example, the complete transaction for the neighborhood in figure 3.10 is
{2, 5, 62, 88, object} (assuming it lies on an object).

We run the APriori [Agrawal et al., 1993] algorithm on the transaction
database in order to mine frequent itemsets and association rules. We
filter the resulting rules to keep only those which infer the object label
with high confidence, i.e.

conf (C → object) > confmin (3.3)

58 3. Frequent Itemset Mining in Visual Data

where the antecedent C is a frequent configuration and confmin is a con-
fidence threshold. Notice how a rule does not have a high confidence if
it appears frequently on both objects and background. This can be un-
derstood by inspecting Definition (2.4.7), where confidence expresses the
strength of the implication C → object (see section 2.4). Hence, our ap-
proach finds frequent and distinctive feature configurations. Moreover,
frequent itemset mining finds these prototypical configurations very effi-
ciently from the immense search space of all 2N∗Q possible configurations
(typically N ' 3000 and Q ' 16).

As additional advantage, many of the mined rules have semantic qualit-
ies, as shown in Figure 3.11. The top left image shows activations of one
particular rule on the Caltech-4 set [Fergus et al., 2003] used to mine
rules for motorbikes. Activations on two novel test images are shown in
the second and third row (see next section for how to match the mined
configurations to new images). The regions matching the antecedent C
of the rule are marked in yellow. The central region Rc defining the
neighborhood P is shown in white3. Notice the variability in the shape
and appearance of the motorbikes, and the different scales of the neigh-
borhoods (automatically adapting to the image data). The rule in the
figure is {32909, 34622, 46292} → motorbike with s = 3% support and
c = 100% confidence. This rule is one of the most discriminant found for
motorbike. This makes sense, as wheels are its most characteristic parts.
Similar observations can be made for the giraffes in the right column.

3.3.2 Class-specific Feature Confidence

The frequent feature configurations C mined from the neighborhoods in
the training images represent frequent and discriminant fragments of an
object class. They describe neighborhoods characteristic for the object
class.

Given a new test image, we can now match the mined configurations
to it, and hence discover features lying on instances of the object class.
To achieve this, we start by generating all neighborhoods P of the new
image (one for each region, as described in section 3.3.1). Every mined
configuration C is now matched to each image neighborhood P as follows.

3Rc is not part of the rule. In this example the rule consists of the yellow regions
only.

3.3. Mining Frequent Feature Configurations 59

Figure 3.11: Discriminant Frequent Spatial Configurations. First row:

examples of activations on the training set. Second/third row: examples

of activations on the test-set. Note: Rc (white) is not part of the mined

rule in this example.

A configuration can be written as a sparse activation vector. Hence, the
test image neighborhoods can be matched efficiently by a sparse dot-
product:

m(C,P) =

1 if C ∗ P = |C|
0 if C ∗ P 6= |C| (3.4)

where |C| is the number of features in C, and m(C,P) = 1 indicates a
match. In other words, a frequent configuration C matches a candidate
neighborhood P if their dot product equals the number of visual words
in C.

60 3. Frequent Itemset Mining in Visual Data

From matched neighborhoods of the test image we can derive a measure
of the probability for a feature to lie on an instance of the object class.
This measure effectively enables to pre-select features lying on the ob-
ject, and hence it can substantially ease the life of a subsequent object
detector. Thanks to this, the latter can focus on higher level tasks, such
as localizing the object up to a bounding-box, determining its precise
extent (outlines), its pose, a part decomposition, and so on. We com-
pute this class-specific feature confidence measure as follows. For each
feature in the image, we count how often it is part of a matched neigh-
borhood. The more matched configurations a features participates into,
the more it is likely to cover part of an object instance. More precisely,
the confidence measure for each feature Ri is defined as:

conf(Ri) =
1

M ∗W

X
C

X

{P|Ri∈P}

1

k
∗m(C,P) (3.5)

where M is the number of configurations mined on the training data,
W is the number of neighborhoods in the test image, k is the number of
appearance clusters to which Ri was soft-assigned (equation (3.2)).

3.3.3 Experiments and Results

We present results on four diverse object classes. After discussing the
quality of the results via some visual examples, we perform a quantitative
performance evaluation. The experiments are conducted on the following
datasets. The objects in the positive training images were annotated by a
bounding-box, except for the TUD Motorbikes where full images without
bounding box were used for training.

ETHZ Giraffes. Training was conducted on 93 images of giraffes we
downloaded from Google Images. No background training data was used
in this case. The positive test images are the 87 Giraffes from the ETHZ
Shape Classes dataset [Ferrari et al., 2006]. All 168 images of the other
classes from [Ferrari et al., 2006] are used as negative test set (as done
for object detection from hand-drawings by [Ferrari et al., 2006]).

GRAZ Bikes. All training data and the positive test set are as defined
in the paper which originally proposed this dataset [Opelt et al., 2003].

3.3. Mining Frequent Feature Configurations 61

As negative test set we took the first 200 images from the CALTECH-
101 background [Fei-Fei et al., 2004] class. This negative test set is used
as well with all following datasets.

TUD Motorbikes. The TUD Motorbikes dataset [Various, 2005] con-
sists of 115 images containing 125 motorbikes, which we used as positive
test set. The positive training images are the Caltech-4 motorbikes [Fer-
gus et al., 2003] (no bounding-boxes given). As background training set
we randomly picked 200 images from the CALTECH-256 [Griffin et al.,
2007] background class.

CALTECH Cars Rear. This dataset features 126 rear-views of cars
and 1155 street scenes without cars, used as training set. Moreover,
the dataset also provides a test set of 526 images containing cars, as
described in [Fergus et al., 2003].

The first three datasets are particularly challenging, as objects appear
in severely cluttered images, and present scale and intra-class variations.
Moreover, the GRAZ Bikes and TUD Motorbikes are partially occluded
in several images. The CALTECH Cars are somewhat easier, in that
they appear rather centered in the images and vary only moderately in
scale.

Visual Examples

We present here visual examples to demonstrate the quality of the mined
feature configurations, and of features selected based on the confidence
values our approach delivers. Figure 3.12 shows several test images,
with all overlaid features having a confidence (equation 3.5) above 20%
of the maximum possible value. These features belong to configurations
deemed frequent and discriminative by our method. The brighter the
color of a feature, the higher its confidence.

The large majority of features are systematically selected on the ob-
ject, in spite of scale changes, clutter, and intra-class variations. It is
particularly interesting to notice how the selected features adapt to the
class so as to cover its most discriminative parts. For bikes, the rather

62 3. Frequent Itemset Mining in Visual Data

Figure 3.12: Results: Visual Examples. (See text for discussion.)

structural configurations of frame parts and wheel fragments dominate,
whereas for giraffes the pattern of the fur is selected (i.e. the miner ad-
apts to behave like a texture detector). Besides, notice how our measure
effectively selects object features, and discards background ones. These
results confirm that our approach effectively primes object features while
pruning away the majority of background ones. Hence, it is a valuable
intermediate step before applying higher-level processing such as object
localization algorithms.

Quantitative Evaluation of Feature Selection

We quantify the performance of our method for assigning class-specific
confidences to features, based on two experiments. In the first experi-
ment we measure bounding box hit rate (BBHR) over the positive test
sets. A bounding-box hit is counted if more than k features selected by

3.3. Mining Frequent Feature Configurations 63

our method lie on the object (inside the bounding box). Hence, BBHR
is the number of BBH divided by the total number of object instances
in the positive test set. To perform this evaluation we use ground-truth
bounding-box annotations available for the test images (these were not
used to produce the results). The rationale behind the BBHR measure
is that the later processes our method is intended to aid, need at least a
certain number of features to operate reliably (e.g recognition - deciding
whether the object is actually present in the image, or localization - de-
termining a bounding-box framing the object). We set BBHR in relation
with the false positive rate (FPR). This is the number of selected features
lying outside the bounding box, divided by the total number of selected
features in the image (averaged over all positive test images). Essentially
FPR measures the (inverse) signal-to-noise ratio output by our method,
i.e. the proportion of irrelevant features it delivers (the lower the better).
We compare our method against a baseline, where the confidence for a
feature is computed as follows. For each visual word in the codebook we
count how many times it appears inside the bounding-box annotations
of the training data. This way a visual word, which appears often on
the annotated training objects is weighted higher.

On a test image, we match features to the codebook and define BBHR
by summing up the weighted matches for each feature. That is, instead
of using configurations of features like our system does, the baseline
consists of weighted single feature matches – essentially a bag-of-words
scheme. This allows to compare our method to the default input to an
object recognition system.

Figure 3.13 shows FPR on the y-axis and BBHR on the x-axis, for k = 5
and for each dataset. The error bars show the standard deviation of the
FPR at a given BBHR. Curves are generated by varying the selection
threshold over the feature confidences. As the plots show, our feature
selection method is very precise, in that it consistently delivers a low
FPR (always below 20%, but for high BBHR on the Cars Rear dataset,
where it grows to a moderate 35%). This is an important characteristic,
because it enables later processes to rely on a clean input, composed
of a large majority of features on the object. This appears especially
valuable when compared to the low signal-to-noise ratio of the initially
extracted features (there are typically 500 − 1000 features in an image,
out of which about 10 − 200 lie on the object). The experiments also

64 3. Frequent Itemset Mining in Visual Data

reveal the substantial performance improvement over the baseline, which
we outperform substantially.

The feature selection ability comes at a low price in terms of missed
objects: on three of the datasets our method selected at least 5 features
(typically many more, as in figure 3.12) on about 90% of the object
instances. The lower BBHR on the TUD Motorbikes might be due to an
excessively high support threshold for mining or a bad visual vocabulary.

The second experiment evaluates our method on the negative test sets
(i.e. on image without any instance of the object class). The idea is to
measure how distinctive the method is: does it select very few features
on negative images? This is relevant because the number of features
selected on negative images relates to the computational resources the
later processing stages will waste on irrelevant data (and to the chances
they will get confused and produce wrong results). Figure 3.14 reports
the percentage of negative images (y-axis) where at most v features are
selected (x-axis). The feature selection threshold is left fixed for each
curve, to the one yielding 70%/90% BBHR on the positive dataset (a
sensible operating point). As the plots show, at 70% BBHR the method
returns extremely few features on the negative images of giraffes and
bikes (on 90% of the images it returns less than 3 features). As in the
previous experiment, the performance is lower on Motorbikes, but it
remains good (in 70% of the images it returns less than 8 features). As
expected, at the challenging operating point of 90% BBHR the method
returns more features. Nevertheless, it remains distinctive even in this
case: 1 in 3 negative images have no selected features, and 70% of the
images have less than 10 (remember, we start from 500 − 1000). The
baseline is evaluated in the same manner as for the BBHR plots, and it
performs considerably worse than our method.

Computation times

The CPU-time measurements are given in Table 3.2. The time is meas-
ured for the frequent itemset mining stage including rule creation, but
after feature extraction and neighborhoods construction. This because
the required processing can be done offline and the required time scales
linearly with the number of images. For the mining we use an imple-
mentation of the APriori algorithm from [Borgelt, 2003]. All experiments

3.3. Mining Frequent Feature Configurations 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

Gira!es [k=5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

GRAZ Bikes [k=5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

TUD Motorbikes [k=5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

CALTECH Cars Rear [k=5]

Figure 3.13: Bounding box hit rates for Giraffes, Bikes, Motorbikes,

and Cars Rear Views (lower is better, baseline with diamond marker).

Data T suppmin/conf min Q t CPU
Giraffes 26054 0.20% / 100% 9 2.58 s

Bikes 42390 0.25% / 95% 9 0.91 s

Motorbikes 29001 0.28% / 100% 9 0.90 s

Cars Rear 74296 0.1% / 90% 9 53.02 s

Table 3.2: Statistics for the mining experiments. Columns: Number of

Transactions T , minimal support and confidence thresholds, number of

tiles Q, CPU time (in seconds).

66 3. Frequent Itemset Mining in Visual Data

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

Gira!es

90% Bounding Box Hit rate (baseline)

70% Bounding Box Hit rate (baseline)

90% Bounding Box Hit rate

70% Bounding Box Hit rate

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

Bikes

90% Bounding Box Hit rate (baseline)

70% Bounding Box Hit rate (baseline)

90% Bounding Box Hit rate

70% Bounding Box Hit rate

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

TUD Motorbikes

70% Bounding Box Hit rate (baseline)

68% Bounding Box Hit rate

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
%

 o
f

n
e

g
. i

m
g

s.
 w

it
h

 a
t

m
o

st
 v

 f
a

ls
e

 p
o

si
ti

v
e

s

max nr. of false positives [v]

Cars Rear View

90% Bounding Box Hit rate (baseline)

70% Bounding Box Hit rate (baseline)

90% Bounding Box Hit rate

70% Bounding Box Hit rate

Figure 3.14: False positives on negative test images for Giraffes, Bikes,

Motorbikes, Cars Rear View (higher is better). For the motorbikes we

show the experiment for the threshold at 68% BBHR since this is the

maximum we reached.

were done on a 3 GHz Intel Pentium 4 with 1GB RAM. These meas-
urements demonstrate the scalability of our mining approach, where the
most characteristic feature configurations can be extracted from tens of
thousands of candidates in a matter of seconds. The mined configur-
ations might be used readily within other frameworks. Table 3.2 also
summarizes the mining parameters used for each dataset.

In summary, our experimental evaluation demonstrates that the class-
specific confidence measure acts as a good feature selector. Hence, our
technique offers a valuable intermediate layer between feature extraction
and object detection or other higher-level processes.

3.4. From Frequent Configurations to Objects 67

3.4 From Frequent Configurations to Ob-

jects

In the preceding section we proposed a method, which mines class-
specific frequent feature configurations. In this section we try to feed
these configurations into an existing object class recognition framework,
which builds on (single) instances of local features. More specifically, we
combine our method with the Implicit Shape Model (ISM) of [Leibe and
Schiele, 2003; Leibe et al., 2005].

This combined recognition process can be summarized as follows: The
frequent feature configurations mined in the previous sections represent
semantic and discriminant fragments of objects. By matching these frag-
ments to the same kind of semi-local neighborhoods in candidate images,
we can estimate the probability for the presence of the object class. To
that end, we first collect activations of the rules on the training data.
In a second step, following the ISM framework, the activations are used
to vote in a Hough voting space for possible object locations, followed
by a mean-shift search for maxima in the voting space. The following
subsections describe these steps in more detail.

3.4.1 Review of the ISM Approach

In this section we summarize the main concepts of the Implicit Shape
Model (ISM). For that purpose we follow closely the description in [Leibe
et al., 2008] and adapt notation to our framework where necessary.

The ISM forms the core of a coupled object categorization and figure-
ground segmentation method proposed by [Leibe and Schiele, 2003; Leibe
et al., 2005]. It is a learned representation for object shape that can com-
bine the information observed on different training examples for recog-
nition using a probabilistic extension of the Generalized Hough Trans-
form [Ballard, 1981; Lowe, 2004]. The ISM(V) = (V, PV) consists of a
class-specific visual vocabulary V and a learnt spatial probability distri-
bution PV , which specifies where each visual word ck ∈ V may be found
on the object.

After a visual vocabulary has been created, the model training procedure
proceeds with learning PV . This is done by collecting all occurrences of

68 3. Frequent Itemset Mining in Visual Data

the visual words ck ∈ V and keeping their locations ` relative to the
object center (ox, oy):

`(k)
x = (c(k)

x − ox) (3.6)

`(k)
y = (c(k)

y − oy) (3.7)

`(k)
s = c(k)

s (3.8)

For each visual word ck a list L(k) of its occurrences is kept, i.e. PV is
expressed in L(k).

Recognition is done using the learnt ISM(V) in a Generalized Hough
Transform. To test a novel image for the presence of the learned object
class, we first extract its features and match them to the visual vocab-
ulary V . Each matched feature then casts votes for possible position
of the object center according to the learned spatial distribution PV .
Consistent hypotheses are then searched as local maxima in the voting
space.

The Hough voting space is 3-dimensional with the dimensions x, y, scale.
Coordinates for votes are thus given as follows

xvote = ximg − `(k)
x ∗ (simg/`(k)

s) (3.9)

yvote = yimg − `(k)
y ∗ (simg/`(k)

s) (3.10)

svote = simg/`(k)
s (3.11)

where (ximg, yimg, simg) is the location of an image feature that could
be matched to a visual word and (xocc, yocc, socc) is the kth item from
the list of occurrences L(k) for that visual word on the training data.

Finding the potential locations of an object consists now of finding max-
ima in the Hough voting space. [Leibe et al., 2008] propose to use a
Mean-Shift search procedure to identify maxima robustly and efficiently.

3.4.2 Recognition with Rule Activations

We now formulate object class detection using a combination of mined
frequent feature configurations and the ISM approach summarized above.
The main difference is, that votes do not originate at all feature loca-
tions, but only at locations of matched frequent configurations. Thus,
the slightly adapted derivation is now as follows.

3.4. From Frequent Configurations to Objects 69

Suppose we have a set of q annotations for objects on training data. For
each annotation, the mined frequent configurations C are matched to the
neighborhoods P within the annotation area according to Equation (3.4).
For each matched configuration we record the relative position ` of the
object center (ox, oy):

`(k)
x = (n(k)

x − ox) (3.12)

`(k)
y = (n(k)

y − oy) (3.13)

`(k)
s = n(k)

s (3.14)

where (n(k)
x , n

(k)
y , n

(k)
s) refers to the position of the central region of the

kth neighborhood matched with the rule. For each rule (P → object)
we keep a list of all the activations L(C) with relative positions of the
object center.

With the collected evidence we can now detect and locate object candid-
ates in previously unseen images. As proposed in [Leibe et al., 2005] we
collect votes for the object center location in a three dimensional Hough
voting space. That is, we use our discriminate frequent configurations to
detect objects in a generative recognition framework. In each candidate
image we match again the mined frequent configurations C to the neigh-
borhoods P as in equation (3.4). For each match m(C,P) we vote in a
scale invariant manner with the activations `(k) from the list L(C).

votex = mx − `(k)
x ∗ (ms/`(k)

s) (3.15)

votey = my − `(k)
y ∗ (ms/`(k)

s) (3.16)

votes = (ms/`(k)
s) (3.17)

where {mx,my,ms} stands for the (x, y, s)-location of the neighborhood
P from the match m(C,P).

Similar to the derivation in [Leibe et al., 2008], this Hough voting pro-
cedure can also be expressed in a probabilistic framework. Given a set of
neighborhoods P we want to determine the probability of the existence
of object on at location x. By matching P to the frequent configurations
C the voting can be formulated as follows:

p(on, x|P) =
∑

i

p(on, x|Ci,P)p(Ci|P) (3.18)

≈
∑

i

p(on, x|Ci)p(Ci|P) (3.19)

70 3. Frequent Itemset Mining in Visual Data

The simplification of the first term in equation (3.19) is justified, since
after mining only the frequent configurations influence the estimated
location of the object on. It follows further

p(on, x|P) =
∑

i

p(x|on, Ci)p(on|Ci)p(Ci|P) (3.20)

=
∑

i

|L(Ci | d(votei, x) ≤ ε)|
|L(Ci)| ∗ conf(Ci → on) ∗m (3.21)

The first term in equation (3.20) is the Hough vote for position x given
for object on given the rule (C → on). The second term is the confidence
that the presence of the object on can be inferred from the configuration
(Ci), and the final term is the probability that the rule is active. The
individual terms can be directly replaced by the terms shown in equa-
tion (3.21), where |L(Ci)| is the length of the activation list L(Ci) and
|L(Ci | d(votei, x) ≤ ε)| is the length of the partial list voting for position
x. The last term m is the match indicator from equation (3.4).

After filling the voting space, maxima in the space are found with a
mean-shift search. Each maximum generates a hypothesis h(x, y, s) with
a score derived from the value of the respective maximum. Overlapping
hypotheses are treated with an overlap filter, where from two overlapping
hypotheses the one with the higher score survives.

3.4.3 Experiments and Results

In this section we validate our approach quantitatively by a series of
experiments. A discussion of the mining parameters is followed by a
recognition evaluation in an object class detection task. The experiments
were conducted on two datasets:

TUD Motorbikes. (See previous section for description). As back-
ground data for this class a randomly selected subset of the CALTECH-
256 [Griffin et al., 2007] background class was used. The detections are
counted as correct if their bounding box matches the ground-truth an-
notation (with intersection-over-union > 0.5) and extra hypotheses are
counted as false positives.

3.4. From Frequent Configurations to Objects 71

UIUC Cars. The UIUC single-scale test set [Agarwal et al., 2004]
consists of 170 images containing 200 side views of cars of approximately
the same size. Challenges include partially occluded cars, instances that
have low contrast with the background, and images with highly textured
backgrounds.

Tiling Parameters

To investigate the effect of the number of tiles T for the creation of
the neighborhoods N , we ran experiments with different T on the TUD
motorbikes dataset [Various, 2005] ranging from a 3x3 to a 6x6 tiling.
The results are shown in Figure 3.15. (Curces are generated by varying
through the confidence values for detactions, obtained by aggregating
the Hough votes). The neighborhood size was set to S = 5 times the
size of the central regions Rc. The mining parameters were held constant
at smin = 0.5% support and cmin = 90% confidence. The best results
are obtained for 9 and 25 tiles. At first sight it is unexpected, that 9 tiles
perform better than the versions with 25 and 16 tiles. However, since
the neighborhood size and the mining parameters are kept constant, the
version with 9 (larger) tiles generates more rules. Having more evidence
leads usually to better performance. Increasing the number of tiles to
36 leads to higher precision in the low recall area, but is punished with
less recall overall. It is somewhat surprising, that the 15 tiles version
performs better than the 16 tiles configuration. It seems that the mining
is easily influenced in an uncontrolled way by changes in the underlying
data, at least on this particular dataset.

Mining Parameters

The following set of experiments discusses the effects of the mining para-
meters. The first experiment deals with the minimal confidence c. Fig-
ure 3.16(left) shows recognition results for different minimal confidence
thresholds. Using confidence values around 80% seems to be the best
trade-off between robustness of the rules against background data and
low recall values caused by rules that are too specific. Going to the ex-
treme of using only 100% confidence rules decreases recall dramatically

72 3. Frequent Itemset Mining in Visual Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Number of Tiles
R

ec
al

l

1 − Precision

36 Tiles, s=0.5% c=90%
25 Tiles, s=0.5% c=90%
16 Tiles, s=0.5% c=90%
 9 Tiles, s=0.5% c=90%

Figure 3.15: Performance per # tiles on TUD Motorbikes.

while giving nearly no improvement in precision. Using very low con-
fidence of 30% increases the danger of including false hypotheses with
high weight, as can be seen from the dent of the corresponding curve
at low recall. The next experiment looks into the minimal support
threshold and is shown in the middle plot of Figure 3.17. Again, we
measure the overall recognition rates, this time at different support val-
ues. The confidence is held constant at 80%. Using only the extremely
frequent configurations with more than 2% support for detection leads
to bad performance. This can be explained by the properties of the TUD
and CALTECH motorbikes databases: The CALTECH images used for
mining the rules in this specific example contain for the most part very
clean images of motorbikes in front of white background, such that even
small evidence has mostly positive influence on the recognition rate.

A last experiment was conducted to measure the influence of the length
of a rule. That is, how many features are part of a mined spatial con-
figuration. The recognition for different rule lengths are shown in the

3.4. From Frequent Configurations to Objects 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Confidence Test

R
ec

al
l

1 − Precision

25 Tiles s=0.5% c=100%
25 Tiles s=0.5% c=95%
25 Tiles s=0.5% c=80%
25 Tiles s=0.5% c=30%

Figure 3.16: Recognition performance for minimal confidence values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Support Tests

R
ec

al
l

1 − Precision

25 Tiles s=0.25% c=80%
25 Tiles s=0.5% c=80%
25 Tiles s=1% c=80%
25 Tiles s=2% c=80%

Figure 3.17: Recognition performance for minimal support values

74 3. Frequent Itemset Mining in Visual Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Rule Length

R
ec

al
l

1 − Precision

25 Tiles m=2 s=0.25% c=80%
25 Tiles m=3 s=0.25% c=80%
25 Tiles m=4 s=0.25% c=80%
25 Tiles m=5 s=0.25% c=80%

Figure 3.18: Recognition performance for rulelengths

rightmost plot of Figure 3.18, where m denotes the minimal rule-length.
Using a minimal rule length of m = 3 seems to be the best trade-off
between specificity and generality of the frequent configurations. Not
surprisingly, using only feature configurations with m = 5 or more ele-
ments leads to better precision at the cost of recall.

Mining Performance

This section discusses some of the properties of the frequent itemset
mining method. For the mining we use an implementation of the APri-
ori algorithm from [Borgelt, 2003]. All experiments were done on a
3GHz Intel Pentium 4. The CPU-time measurements are given for some
examples in table 3.3. The time is measured for the frequent item-
set mining step including rule creation, i.e. without feature extraction
and neighborhoods already created. This is usually the case for large
databases, since the required processing can be done offline. The meas-
urements demonstrate the scalability of the mining approach, where the
most characteristic configurations can be extracted from hundreds of
thousands of candidates in a couple of seconds. This clearly shows the
benefits of our approach. Most of the current approaches which rely on

3.4. From Frequent Configurations to Objects 75

Data # Transact. CPU Time suppmin/conf min

TUD 20771 2.46 s 0.25% / 80%
UIUC 113156 3.49 s 0.25% / 95%

Table 3.3: Mining statistics for the experiments. Columns: Num-

ber of Transactions T , CPU Time and minimal support and confidence

thresholds.

local features for object detection are built on single instances of these
features, or become quickly too complex to handle efficiently. With min-
ing approach we avoid such limitations. The mined configurations might
be used readily within other frameworks.

Object Detection

To demonstrate the performance of our method, we evaluate it on two
visual category detection tasks:

The plot Figure 3.20 (right) shows the performance measurement results
for the TUD motorbikes. In [Fritz et al., 2005] 81% EER are reported
on this set. With our approach we achieve an EER of 77%, which is
comparable. Since the approach in [Fritz et al., 2005] uses a verification
stage with a Minimum Description Length (MDL) filter and an optional
additional SVM layer. Our simple bounding-box-overlap filter could
be replaced by this verification stage. This would probably increase
performance to the same level, since many of the false positives in our
system are caused by overlapping objects, which are falsely removed
by the bounding-box overlap filter. Figure 3.21 shows a few examples
of detections on the motorbike set. Correct detections are shown in
yellow, false detections in red. Detections are robust to clutter and cover
examples in a variety of contexts. The wrong detection can be explained
by the covered rear wheel, which makes the precise estimation of the
object center difficult in this example. For the evaluation on the UIUC
dataset we followed the protocol of [Agarwal et al., 2004] and used the
evaluation software provided with the dataset. A codebook was created
on the provided training images. Frequent configurations were mined on
the same set, using the provided background set to find discriminative
rules and configurations as discussed in section 3.3.1. The results on this

76 3. Frequent Itemset Mining in Visual Data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
UIUC single−scale cars

R
ec

al
l

1 − Precision

UIUC Single Scale Performance

Figure 3.19: Performance on UIUC. EER (91%)

testset are shown in Figure 3.19. The Equal Error Rate (EER) on the
UIUC single-scale reaches 91%, which is within the state of the art.

3.4. From Frequent Configurations to Objects 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Recognition Performance

R
e

ca
ll

1 − Precision

[9] + SVM

[9] ISM

Our method

Figure 3.20: Performance on TUD Motorbikes. (EER 77%)

78 3. Frequent Itemset Mining in Visual Data

Figure 3.21: Examples of three correct and one false detection on the

TUD motorbikes set.

3.5. Graph Mining as an Alternative to Itemsets 79

3.5 Graph Mining as an Alternative to Item-

sets

In the previous sections we built on frequent itemset mining to detect fre-
quent combinations of visual words and extended the method to encode
spatial configurations in a semi-local grid. An alternative way to encode
spatial relations between local features is by the means of a graph. The
nodes consist of the images’ features labeled with their visual word ids,
and the edges describe the spatial relation between features in the im-
age plane. The idea is then to apply mining algorithms, which operate
directly on the graph to identify frequently occurring sub-graphs, which
are correlated with an object or object class. Some of the most popular
algorithms in this field are described in Section 2.5.

The collected the evidence in form of frequent sub-graphs can be seen
as weak classifiers to decide on the presence or absence of an instance
of the object class the graphs were mined for. Thus it is quite natural a
next step to add a boosting method on top of these simple classifiers to
learn a stronger classifier for the given object class.

These two steps, mining of frequent sub-graphs and their combination
into a classifier using boosting, are described in the following subsections
in detail. Please note that this chapter is a summary of joint work with
my former Master student Sarah Gugl. The interested reader can find
further details in her report [Gugl, 2007].

3.5.1 Mining of Frequent Feature Graphs

As in the previous sections about itemset mining, the image content
is first encoded using local features which are quantized into a visual
vocabulary. Here we use SIFT features [Lowe, 2004].

The visual words and their relative positions are now encoded in a graph
for each image as follows. Node labels are simply the visual word id.
Edge labels encode the relative positions of the features in a canon-
ical way. To that end we use the simple encoding schemes as shown in
Tables 3.4 and 3.5, respectively. The first labeling method only encodes
the relative position of features, the second method also includes their

80 3. Frequent Itemset Mining in Visual Data

edge label relative position of the end-vertices

0 xi > xj ∧ yi > yj

1 xi > xj ∧ yi ≤ yj

2 xi ≤ xj ∧ yi > yj

3 xi ≤ xj ∧ yi ≤ yj

Table 3.4: Edge labels for the edge connecting vertices i and j (i < j).

edge label relative position of the end-vertices

0 xi > xj ∧ yi > yj ∧ scalei > scalej

1 xi > xj ∧ yi > yj ∧ scalei ≤ scalej

2 xi > xj ∧ yi ≤ yj ∧ scalei > scalej

3 xi > xj ∧ yi ≤ yj ∧ scalei ≤ scalej

4 xi ≤ xj ∧ yi > yj ∧ scalei > scalej

5 xi ≤ xj ∧ yi > yj ∧ scalei ≤ scalej

6 xi ≤ xj ∧ yi ≤ yj ∧ scalei > scalej

7 xi ≤ xj ∧ yi ≤ yj ∧ scalei ≤ scalej

Table 3.5: Edge labels for the edges connecting vertices i and j (i < j)

relative scales. In both variants canonical labeling is achieved by fol-
lowing the convention that relations are expressed relative to the node
with the smaller label (i.e. smaller visual word id). Note that we don’t
encode distances (distances between nodes or scale difference), but only
smaller/larger relationships. Using these labeling conventions, we have
several options for building a graph per image:

• Complete Graph

• k-Nearest Neighbors of selected features (kNN)

• Neighborhood defined by area around selected features

The 2nd and 3rd option are considered due to scalability reasons: mining
fully connected graphs is computationally more complex. Connecting all
n vertices by an edge yields n(n−1)

2 edges. Assuming a typical image con-
tains about 500 features would result in a graph with 124′750 edges. A
toy example of such a graph is shown in Figure 3.22(b). Using the kNN
approach instead, results not in a single large graph per image, but in
multiple smaller graphs, i.e. for n images with m1,m2, . . . , mn features

3.5. Graph Mining as an Alternative to Itemsets 81

(a) Toy example image (b) Fully connected graph for
the example image (edge labeling
method A)

(c) k-nearest neighbor graphs for
k = 3

(d) Neighborhood area graphs

Figure 3.22: Example image and resulting graph variants.

82 3. Frequent Itemset Mining in Visual Data

∑n
1 mn graphs will be created in total. So the the mining problem shifts

from mining few large graphs to mining many smaller graphs. Expressing
a local neighborhood by the selection of the k nearest neighbors around
each feature is inspired by [Sivic and Zisserman, 2004]. The resulting
graph for a toy example is shown in Figure 3.22(c). Following our ap-
proach from the previous sections about itemset mining, a neighborhood
can also by obtained by defining a scale-invariant area around a feature.
The difference to the previous sections is that we don’t encode feature’s
locations within the area using a tiled grid, but use the graph to encode
the relative positions of features within the neighborhood. The resulting
graph for a toy example is shown in Figure 3.22(d).

Having the images encoded as graphs, the next step consists of mining
frequent subgraphs. As outlined in Section 2.5 we can choose among sev-
eral methods to solve this task. From those we selected FSG, gSpan/CloseGraph
and MoSS/MoFa for closer inspection. (SUBDUE did not qualify be-
cause it is an approximate method, AGM since it does not support edge
labeling.) For each of the algorithms we retrieved an implementation
from the respective authors’ websites and run tests on a sample graph.
This graph set was constructed from the Caltech-4 motorbikes set [Fergus
et al., 2003] by extracting SIFT features and clustering them into 2788
visual words. Graphs were constructed as proposed above, with visual
word ids as node labels and encoding relative positions of the nodes as
shown in Table 3.5. From Table 3.6 it can be seen that FSG is the fast-
est algorithm, followed by gSpan/CloseGraph. The slowest algorithm is
MoSS/MoFa which could not finish the computation within reasonable
time for a support of 5%. The numbers of retrieved subgraphs differ for
the same support value. This could be due to differences in the ways of
computing the support values, for example the usage of different round-
ing methods. While FSG and gSpan seem to be quite similar, we chose
gSpan for our further experiments because it was shown to outperform
FSG in [Yan and Han, 2002].

Figure 3.23 shows the result of a gSpan run on a real dataset. The dataset
is the caltech-4 motorbikes set [Fergus et al., 2003]. This dataset consists
of 153 images and gSpan was run with a support of 5%. In figure 3.23
one subgraph is shown, consisting of seven vertices and ten edges and
occurring in eight images. As can be seen from the figure, the subgraph
has the same semantical meaning in all images, i.e. its location is roughly

3.5. Graph Mining as an Alternative to Itemsets 83

FSG gSpan/ MoSS/MoFa
CloseGraph

Search breadth-first depth-first depth-first
TID-Lists yes yes yes
Runtime (s = 5%) a few minutes a few minutes hours
largest 2 edge 1 edge 1 edge
subgraph for
s = 10%

] graphs

supp num

20% 0
15% 2
10% 32
7.5% 124
6% 274
5.5% 447
5% 447

supp num

20% 0
15% 2
10% 22
7.5% 103
6% 247
5.5% 405
5% 700

supp num

20% 0
15% 2
10% 22
7.5% 103
6% 247
5.5% 405
5% −

largest graph

supp]edges
20% 0
15% 1
10% 2
7.5% 3
6% 10
5.5% 19
5% 19

supp]edges
20% 0
15% 1
10% 1
7.5% 3
6% 6
5.5% 10
5% 19

supp]edges
20% 0
15% 1
10% 1
7.5% 3
6% 6
5.5% 10
5% −

Table 3.6: Comparison of FSG, CloseGraph and MoSS/MoFa based on

implementations downloaded from the internet.

84 3. Frequent Itemset Mining in Visual Data

Figure 3.23: In all these images a frequent subgraph consisting of seven

vertices and ten edges is shown. As can be seen, the subgraph has the

same semantical meaning in all images

the same on all images — on all eight images out of the seven activated
features, three lie on the back wheel, two on the front wheel, one between
the back wheel and the seat and the last one between the front wheel and
the fender. These figures show, that just like frequent itemsets, frequent
subgraphs have the pleasant property to be easily interpretable.

3.5.2 Classification using Boosting

Having mined frequent subgraphs we want to investigate if they are
a suitable choice for object class recognition and detection. Instead of
combining them with an existing object recognition framework as we did
with the frequent itemsets, here we treat the graphs as simple classifier
and combine them into a stronger classifier using boosting.

That is, we want to find a classification rule that constructs a graph
GI for any given image I and then decides from GI and subgraphs
previously mined on a training set if the image I contains an instance
of the trained object class. Thus, the input to our classification rule is a
set of subgraphs {s1, s2, . . . , sn} = Sn and an image graph GI ∈ G, and
the output is a class label y ∈ Y. In other words the goal is to find a
classification rule

h : Sn × G → Y (3.22)

3.5. Graph Mining as an Alternative to Itemsets 85

A simple classifier, which adheres to this rule can be constructed by
counting the occurrences of the mined subgraphs si ∈ S in the graph GI

and base the classification decision on a threshold t for the count value:

h(S, GI) =
{

0, numEmbeddings < t

1, numEmbeddings ≥ t ,
(3.23)

where t is the predetermined threshold value and numEmbeddings is
the number of subgraph occurrences in the graph GI . This number
is computed by computing a subgraph-graph-isomorphism for all sub-
graphs si ∈ S and GI , which for all subgraphs si gives a number
ni = SubgraphGraphIso (si, GI) that counts the embeddings of si in
GI . numEmbeddings then is determined by summing up all these num-
bers:

numEmbeddings =
∑

i

SubgraphGraphIso (si, GI) .

To boost the performance of our simple classifier we use AdaBoost [Fre-
und and Schapire, 1997]. Our simple classifier (equation 3.23) is now
extended with a weight wi for each subgraph. Taking the weighted sum
of the sub-graph counts leads to the following confidence value confGI

for the graph GI of the image I:

confGI
=

∑

i

wi ∗ ni .

In this manner for each graph a confidence value can be obtained. The
weak classifier now chooses a threshold, that minimizes the error rate:

T = arg

(
min

t

(∑

i

Iht(xi)6=yi

))
,

where ht (xi) is the classifier obtained by choosing t as threshold T . The
final classifier then returned to AdaBoost is

hT (x) =
{

1 if confGx ≥ T,

−1 otherwise.

From the weights WI obtained from the re-weighting procedure of Ada-
Boost the subgraph weights wi can be computed by determining a pos-
itive and negative weight for each subgraph. The positive weight is

86 3. Frequent Itemset Mining in Visual Data

computed from all images belonging to the class (positive examples) by
first determining for each positive example P how often a given subgraph
occurs in the graph GP of this example (giving a number of occurrences
nP) and then multiplying this number by the weight WP of P and finally
summing them up:

posWeighti =
∑

P

nP ∗WP .

The negative weights are obtained similarly, by looking at the images N

not belonging to the class (negative examples):

negWeighti =
∑

N

nN ∗WN .

The final weight wi of the subgraph Si then can be obtained by comput-
ing

wi =
posWeighti

negWeighti + 1

and finally normalizing all weights

wi =
wi∑
j wj

.

Matching Graphs

When classifying a previously unseen test image, the first step consists
of determining the occurrences of the mined frequent subgraphs in the
test image. This requires matching the mined sub-graphs to the image
graph(s) using a subgraph-graph isomorphism. Two extensions to a
standard isomorphism turned out to be crucial for performance: soft-
matching and edge-length filtering.

The effect of the soft-matching feature (i.e. assigning feature vectors to
several visual word centroids instead of only the single closest one) can
be observed from Table 3.7. It shows the error (false negatives) when
applying the classifier to the set it was trained on (here for the TUD
motorbikes positive training set), depending on the number of visual
words features were assigned to. Clearly, assigning to more than one
centroid helps to increase recognition rates, while the benefit diminishes

3.5. Graph Mining as an Alternative to Itemsets 87

numAssign

support 1 2 5 10
15% 0.7843 0.7320 0.6013 0.5752
10% 0.3006 0.2353 0.1308 0.0915
7.5% 0.1765 0.1308 0.0327 0.0261
6% 0.1503 0.0850 0.0327 0.0196
5.5% 0.1373 0.0784 0.0261 0.0196
5% 0.1307 0.0654 0.0196 0.0131

Table 3.7: Error rates obtained by using soft assignments to build the

image graphs with numAssign = 2, 5 and 10 and the simple classifica-

tion rule.

when increasing the number of visual words assigning to. In summary,
introducing soft-matching helps us reduce false negatives that occurred
due to the quantization of the feature space in visual words.

Another observation concerned false positive graph matches, mostly on
background data. Investigation of a few sample cases revealed, that
many of the false positives appeared due to strongly varying relative
edge lengths within the graphs between training and test-data. This is
further illustrated by the histogram plots in Figure 3.24. These plots
show the distribution of edge lengths for several selected node pairs of
frequent subgraphs. The edge length is made scale invariant and canon-
ical by determining it relative to the scale of the node with the smaller
label (i.e. visual word id). While all the plots show some strong peaks,
some of them even form a single peak Gaussian-like distribution. This
means that for many sub-graphs the distance between nodes is a rel-
evant feature, which was not included in our graph model, which just
contains the relative location of nodes. At the same time it seems to
be a feature which is not very stable (not always clear peaks) and also
depends on the sometimes very imprecise scale assignment of the feature
detector. Thus, rather than quantising the edge lengths and encoding
it in the graph model, we extended the basic graph isomorphism with
an edge-length filter, which rejects edges which do not fall into a valid
length-range. The range was determined by selecting peaks higher than
c ∗ 1

numbins and filtering outside k neighboring bins of the peak. In

88 3. Frequent Itemset Mining in Visual Data

Figure 3.24: Distribution of normalized edge-lengths for node pairs

summary, the combined elements leads to the training and classification
procedures summarized in Figures 3.24 and 3.25, respectively.

3.5.3 Experiments and Results

We present experiments and results for several tasks. First, we want to
compare the feature selection capabilities of the graph mining algorithm
to the ones obtained using itemset mining in Section 3.3. We then con-
tinue with classification experiments and some measures on computa-
tional performance.

3.5. Graph Mining as an Alternative to Itemsets 89

TrainClassifier(supp, numAssign, label, ratio, T , posTrainImg, negTrainImg)
1: Construct the graph set G for posTrainImg;
2: Learn the frequently occurring subgraphs for the support-values supp;
3: Determine all occurrences of the frequent subgraphs in the graph set G;
4: Learn the distribution of the edge-lengths;
5: Compute the subgraph-graph isomorphisms on positive and negative training data;
7: Discard the subgraph-occurrences, which do not fall within valid edge length ranges;
8: Train the AdaBoost classifier using the remaining subgraph-graph isomorphisms;

Figure 3.25: Pseudo-Code representing the overall training proced-

ure. supp is the support-value used while mining frequent subgraphs,

numAssign is the soft assignment used while matching to a visual vocab-

ulary, ratio and T are two parameters for the learning of the AdaBoost

classifier and posTrainImg and negTrainImg are the images of the

positive and negative part of the training set.

Classify(supp, numAssign, label, classif , testImg, intervals)
1: Compute the graph set G for testImg;
2: Compute the subgraph-graph-isomorphisms;
3: Discard isomorphisms, which do not fall within valid edge length ranges;
4: Classify using the remaining isomorphisms and the given classifier classif ;

Figure 3.26: Pseudo-Code representing the final classification proced-

ure. supp is the support-value used for the learning of the frequently oc-

curring subgraphs, numAssign is the soft assignment used while match-

ing to a visual vocabulary, classif is the previously learned AdaBoost

classifier, testImg are the images of the testset and intervals are the

previously learned intervals for the edge-lengths.

90 3. Frequent Itemset Mining in Visual Data

The evaluation was conducted on the following datasets already intro-
duced in the experiments of the previous chapters:

TUD Motorbikes. The TUD Motorbikes dataset [Various, 2005] con-
sists of 115 images containing 125 motorbikes, which we used as positive
test set. The positive training images are the Caltech-4 motorbikes [Fer-
gus et al., 2003] (no bounding-boxes given). As (negative) background
training set we randomly picked 180 images from Flickr4. We also col-
lected 38 negative test-images.

CALTECH Cars Rear. This dataset features 126 rear-views of cars
and 1155 street scenes without cars, used as training set. Moreover,
the dataset also provides a test set of 526 images containing cars, as
described in [Fergus et al., 2003]. Due to the computational restrictions
posed by the runtimes of the graph isomorphisms we used only 65 images
as testsets. The negative training and test sets consisted again of the
180 and 38 images from Flickr, respectively. For both sets SIFT features
were extracted and clustered into a visual vocabulary of 446 visual words
using a hierarchical agglomerative clustering algorithm,

Feature Selection

We first show results on feature selection, using the same Bounding
Box Hit Ratio (BBHR) measure as in Section 3.3.3. The results are
plotted in 3.27 for motorbikes and cars, respectively. Clearly, overall the
values are below the ones reported in Section 3.3.3 for itemset mining, in
spite a simpler negative testset (i.e. one would expect lower FP rates).
However, for the TUD motorbikes case, more instances of the object
class are detected overall than with itemset mining, which is probably
due to soft-matching the visual words. Figures 3.28 and 3.29 show
a visualization of feature activation counts. Compared to the results
obtained using itemset mining, the features seem to cover larger fraction
of the object surface, and there are few discriminant peaks over the false
positives occurrences on the background.

4http://www.flickr.com

3.5. Graph Mining as an Alternative to Itemsets 91

Figure 3.27: Bounding box hit rate on TUD Motorbikes (left) and Cal-

tech Cars Rear (right) (minimal suport 11%, soft assignment parameter

1 and k = 5).

Figure 3.28: Some examples of the activations of the motorbikes test-

set. The examples where taken for a support value of 11%, the edge-

labeling method A and the soft assignment parameter 1. The color of

the activated features gives the number of activations, where blue means

that the feature is not often activated, and red means that the features

is activated often.

92 3. Frequent Itemset Mining in Visual Data

Figure 3.29: Some examples of the activations of the cars-rear testset.

The examples where taken for a support value of 47.5%, the edge-labeling

method A and the soft assignment parameter 1. The color of the activ-

ated features gives the number of activations, where blue means that

the feature is not often activated, and red means that the features is

activated often.

Classification

For the classification task we report quantitative results in the form of
ROC curves. Experiments were done by varying the parameters through
the value ranges shown in Table 3.8. ROC curves were obtained by vary-
ing the number of AdaBoost iterations T .The best Equal Error (EER)
rates achieved using this method are 70% for the TUD motorbikes and
82% for cars. These results are slightly below state-of-the-art classifica-
tion results on these datasets.

3.5. Graph Mining as an Alternative to Itemsets 93

Parameter Values
T 1..50
support 20%, 15%, 12.5%, 12%, 11% and 10%
soft assignment 1, 2, 5 and 10
ratio 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000

Table 3.8: Information about the variation of the parameters. Here

T means the number of AdaBoost iterations, support the different sup-

port values for the computation of the frequently occurring subgraphs,

soft assignment the soft assignments and ratio is the minimal value of

npos : nneg for a subgraph to be used for the classification, npos and nneg

here are the number of subgraph embeddings in the positive training

images and the negative training images, respectively.

(a) soft assignment 1 (b) soft assignment 2

(c) soft assignment 5 (d) soft assignment 10

Figure 3.30: ROC curves of the motorbikes-side class. The curves

were obtained by varying the parameter T from 1 to 50, setting the

support value to 11% and letting the soft assignment parameter and the

ratio constant. The curves for the same soft assignment parameter and

different ratios are showed in the same plot.

94 3. Frequent Itemset Mining in Visual Data

(a) support 37%, soft assignment 1 (b) support 37%, soft assignment 2

(c) support 36%, soft assignment 1 (d) support 36%, soft assignment 2

Figure 3.31: ROC curves of the cars-rear class. The curves were ob-

tained by varying the parameter T from 1 to 50, setting the support

value to 36% and 37%, setting the soft assignment parameter to 1 and

2 respectively and letting the ratio constant. The curves for the same

support value, the same soft assignment parameter and different ratios

are showed in the same plot.

Computational performance

The bottleneck in the recognition pipeline based on graph mining turned
out to be the subgraph-graph isomorphisms, which is an NP-complete
problem. In contrast, for the itemset mining based method presented in
the previous sections, matching of mined configurations could be done
using sparse dot-products of vectors. Depending on the graph and the
subgraph set the computation time for the subgraph-graph isomorphism
varied between one second (for a support of 20% and a soft assignment of
1) and two hours (for a support of 5% and a soft assignment of 10). For
the training of the classifiers the required time varies between some milli-

3.5. Graph Mining as an Alternative to Itemsets 95

seconds and ten minutes, depending mostly on the number of AdaBoost
iterations T and the number of frequently occurring subgraphs.

Overall, using graphs to express configurations of features is a compel-
ling idea, and subgraph mining turned out to be a suitable method to
detect some of the configurations common between instances of an object
class. However, in the end the results were less interesting than those
obtained with the simpler grid-based configurations. Furthermore, ex-
tensive experimentation on additional datasets and deeper investigation
of the effects of the parameters were inhibited by the computational
demands of the graph-based methods.

96 3. Frequent Itemset Mining in Visual Data

3.6 Related work

Our work relates to two strands of research: object recognition in com-
puter vision, and data mining. From the data mining perspective, a few
earlier works have tried to apply frequent itemset mining to visual data.

In [Tesic et al., 2003] an extended association rule mining algorithm was
used to mine spatial associations between five classes of texture-tiles in
aerial images (forest, urban, pasture etc.). For this purpose the authors
propose a modified APriori algorithm, which mines so called perceptual-
associations, i.e. which types of tiles appear jointly in the data. This
allows for analysis of the aerial image dataset characteristics, but not for
any kind of object (-class) recognition. It is interesting to note, that the
authors cluster the texture descriptors of the aerial tiles into what they
call a “visual thesaurus”, conceptually quite similar to the visual words
that are so popular these days.

In [Ordonez and Omiecinski, 1999] a straight-forward application of as-
sociation rule mining is used to identify jointly occurring geometric prim-
itives as a means for object detection. However, the approach is only
evaluated on quite simple artificial data and thus cannot be compared
with the state of the art in object recognition.

In [Antonie et al., 2003] association rules were used to create a classifier
for breast cancer detection from mammogram-images. Each mammo-
gram was first cropped to contain the same fraction of the breast, and
then described by photometric moments. Compared to our method,
both works were only applied to static image data containing rather
small variations.

[Zaiane et al., 1998] mines databases of annotated images using a di-
verse set of features such as keywords, file type, and global color and
texture features. The focus is on finding hidden correlations between
the different modalities of the data, rather than on the visual data itself.

From the object recognition perspective our work relates to several sub-
fields. For our first contribution, mining specific objects from video, a
large body of work obviously exists that deals with mining some kind of
information from videos. However, few works have dealt with the prob-
lem of mining objects composed of local features from video data. In

3.6. Related work 97

this respect, the closest work to ours is by Sivic and Zisserman [Sivic and
Zisserman, 2004]. However, there are considerable differences. [Sivic and
Zisserman, 2004] starts by selecting subsets of quantized features. The
neighborhoods for mining are always of fixed size (e.g. the 20 nearest-
neighbors). Each such neighborhood is expressed as a simple, orderless
bag-of-words, represented as a sparse binary indicator vector. The ac-
tual mining proceeds by computing the dot-product between all pairs
of neighborhoods and setting a threshold on the resulting number of
codebook terms they have in common.

While this definition of a neighborhood is similar in spirit to our trans-
actions, we also include information about the localization of the feature
within its neighborhood. Furthermore, the neighborhood itself is not of
fixed size. For scenes containing significant motion, we can exploit our
fast motion segmentation to restrict the neighborhood to features with
similar motions, and hence more likely to belong to a single object. As
another important difference, unlike [Sivic and Zisserman, 2004] our ap-
proach does not require pairwise matching of bag-of-words indicator vec-
tors, but it relies instead on a frequent itemset mining algorithm, which
is a well studied technique in data mining. This brings the additional
benefit of knowing which regions are common between neighborhoods,
versus the dot-product technique only reporting how many they are. It
also opens the doors to a large body of research on the efficient detection
of frequent itemset and many deduced mining methods.

Our extended method for mining frequent feature configurations for
object-class type of data, has to be seen in a wider context of using spa-
tial arrangements in object class recognition. The idea of using spatial
configurations of local features is widely used in object class recognition.
For instance, the constellation model [Fergus et al., 2003] models the
spatial arrangement of local features as a joint probability distribution.
Inference in this fully connected model has high computational complex-
ity and thus supports only a few features in practice. Fergus et al . thus
suggest a simplified and more efficient star topology in [Fergus et al.,
2005].

Closer to our approach is the work of Lazebnik et al ., who propose semi-
local arrangements of affine features for object detection [Lazebnik et al.,
2004]. Their method builds directly on features, without vector quant-
ization, and starts by detecting geometrically stable triples of regions in

98 3. Frequent Itemset Mining in Visual Data

pairs of images. The candidate pairs are summarized by a description
which averages over their geometric arrangement. This description is
validated on other examples and, if found repeatedly, used for recogni-
tion. Our approach instead, builds on vector-quantized features, defines
a scale invariant tiled neighborhood, and employs established data min-
ing techniques to find recurring neighborhoods. In addition to being
computationally much more efficient, this allows for more variability in
the feature appearances. We avoid searching over pairs of images, and
mine the whole, large dataset globally at once.

Expressing configurations of features as graphs is a quite natural idea,
and many works have built on it, e.g . the just mentioned [Fergus et al.,
2003]. However, graphs are a complex data structure, and thus, un-
like [Fergus et al., 2003], few works have proposed scalable algorithms.
This was our motivation to look into graph mining algorithms for that
purpose, as discussed in Section 3.5 of this chapter. Here, little work
had been done, and only recently, in parallel to our work, [Nowozin et
al., 2007] have proposed some related methods. They propose learning a
classifier based on boosting weighted substructures. The substructures
are selected from the powerset of visual words in an image. In each
iteration of the learning process, the most relevant substructures are
found using a graph mining or itemset mining method. In contrast to
our mining methods, the heart of their system is the classifier, which
uses itemset or graph mining at every learning stage as an optimization.
Furthermore, unlike our method for mining frequent feature configura-
tions, their itemset mining method does not encode any kind of spatial
configurations of features.

3.7 Discussion and Conclusions

In the preceding sections we have applied itemset mining methods on a
variety of object recognition tasks. This was motivated by the recently
popular visual words, which allow us to encode an image as a set of
items.

Based on this basic notion, we derived methods for video mining, for
mining of feature configurations for object class recognition, and also
evaluated alternative graph mining methods. In all of these areas we

3.7. Discussion and Conclusions 99

proposed methods, which consider local features not as an orderles set,
but add an extra processing layer which encodes their spatial relation-
ships prior to mining. This resulted in datasets with up to hundreds of
thousands of transactions and up to millions of items.

We could show that itemset mining offers a suitable method to handle
these large amounts of data and to find frequent patterns efficiently. Ex-
periments for a video mining task showed, that our method is able to
mine the most frequently occurring objects in music video clips. Our ex-
tended method for mining frequent feature configurations was evaluated
in the context of object class recognition. We could show that the mined
configurations of features have far higher discriminative power than indi-
vidual features (Section 3.3.3). Moreover, the mined itemsets and rules
exhibit the same pleasant properties as their counterparts in other fields:
they can be analyzed and are easily interpretable by humans.

Motivated by these positive results, we combined our method with a
very successful object-class recognition and localization method (the ISM
framework of [Leibe et al., 2008]), hoping, that the use of configurations
over individual features would improve recognition performance. While
only a simpler, un-optimised version of the ISM pipeline was used, the
object localization results of the combined system were not better than
the method using only single features as input. Qualitative observations
showed, that the maxima in the voting space were less discriminative
with configurations than with single features. This would lead to the
explanation, that the ISM relies on an agglomeration of (possibly very
weak) evidence from many sources, i.e. every single contribution to col-
lect the maxima in the space counts. In the contrast, our method mines
the bare essence of important feature configurations. Having less evid-
ence makes the voting procedure more vulnerable to outliers.

A side path, which investigated graph mining lead to some interesting
initial results, as the mined patterns showed the same semantic inter-
pretability as the frequent configurations of visual words obtained using
itemset mining. However, it turned out that the graph mining algorithms
are by far not as scalable as itemset mining, especially for dense graphs,
as they are very typical for a fully connected graph of all local features in
an image. While we proposed some initial solutions (semi-local graphs
based on k-NN or spatial neighborhood), further work towards optimiz-
ing the encoding and mining process would be required.

100 3. Frequent Itemset Mining in Visual Data

The probably largest disadvantage of the itemset and graph mining based
approaches is that the outcome of the mining is sometimes rather uncon-
trollable and does not always behave “linearly”, in the sense that small
changes in parameters can lead to unexpected fluctuations of the results.
It could be, that these flucations are exactly due to the limited amount
of data usually available in the common benchmark datasets for object
class recognition.

Several elements of our method could be further optimized. One possible
extension would be to make matching of already mined configurations in
novel images even more efficient using approaches inspired by FP-trees
used in itemset mining algorithms such as FP-Growth. An interesting
combination with another work would be to try to express configurations
of local features as spatial pyramids. Similar to the spatial pyramid
match kernels used in [Lazebnik et al., 2006], but on a local level instead
of a global level. The resulting “hierarchical configurations” could then
again be treated with itemset mining methods to find interesting spatial
patterns of local features.

Overall, while only the first few steps with itemset mining in databases
of visual words have been presented here, we believe that the approach
has further potential. This is for two reasons: philosophically, mining
fits quite well between the two extremes of learning a model, or using
a simple exemplar based approach. While popular methods methods
such as pLSA are able to learn the hidden concepts [Sivic et al., 2005],
that make up an object(-class) they suffer from scalability. On the
other extreme of the spectrum, exemplar-based approaches have been
shown [Chum and Zisserman, 2007] to be a very straightforward and
powerful approach for object class recognition, too. (Itemset) mining
methods fit just between those: No hidden concepts can be learned as
in pLSA, but the data is efficiently analyzed for the most essential pat-
terns, neglecting irrelevant information. The latter is directly leads to
the second reason: the availability of huge datasets. Enormous amounts
of data (e.g . on the Internet) might lead to approaches which do not
require any models any more, but efficient analysis of the data. Fur-
thermore, thinking towards on-line learning, unsupervised learning, or
on-line relevance feedback, methods are required, that answer every po-
tential user query or intent sufficiently well. Methods, which require

3.7. Discussion and Conclusions 101

extensive training for each individual object (-class) to be recognized
are not of much use in such a scenario.

4
Mining Objects and Events in

large, multimodal Datasets

4.1 Introduction

In this chapter we take data mining in visual data to a higher level and
to larger amounts of data. Instead of mining basic visual entities such as
frequent feature configurations, we deal with the task of automatically
detecting objects (such as landmark buildings) from large amounts of
visual data on the Internet.

This task has to be seen in the context of the astonishing growth of
the Internet in the last 10 years, both in terms of users and tech-
nical capabilities. Combined with the widespread use of digital cam-
eras, this growth has led to the creation of large online databases of
visual data, most notably community photo collections such as Flickr
(http://www.flickr.com). These collections contain vast amounts of
images, which pose both great challenges and opportunities to the com-
puter vision researcher. While the large number of data items demands
extremely scalable algorithms and systems, the collections also contain
a great deal of multi-modal information with redundand descriptions
across modalities, which is the key for unsupervised mining from the
Internet.

Against the backdrop of the state-of-the-art object recognition, these de-
velopments allow us to deal with a crucial but often neglected building
block towards Internet-scale image retrieval: the automated collection
of a high quality image database with complete annotations. More pre-
cisely, from the large amount of sparsely labeled content in community

104 4. Mining Objects and Events in large, multimodal Datasets

photo collections, the task is to mine clusters of images containing ob-
jects in a fully unsupervised manner. For each mined item, we auto-
matically derive a textual description and links to related content on
the Internet. The resulting “cleaned” image database for the mined
objects and events is of far higher quality than the original data and
facilitates a variety of applications. For example, the mined entities can
be used for automated annotation of photos uploaded to community
collections, for retrieval and browsing of landmark buildings [Philbin
et al., 2007], automatic 3D reconstruction of landmarks [Vergauwen
and Van Gool, 2006; Goesele et al., 2007], or for tourist guide ap-
plications on mobile devices [Paletta et al., 2006; Quack et al., 2008;
Takacs et al., 2008] (where users can point the integrated camera of
their device to a sight and retrieve information about it).

4.1.1 Outline of the chapter

In this chapter we demonstrate fully automatic, world-scale image min-
ing from community photo collections.

We first introduce the most relevant sources for photos on the Internet
(Section 4.2). We collect data from some of these sources and cluster
the retrieved photos according to several different modalities (including
visual content and text labels) and clustering strategies (Section 4.3.2).

For each cluster, we additionally calculate a set of cues, such as the
number of different days the photos in the cluster were taken on, the
number of users who took the photos, etc. We show how these additional
features can be used to train a subsequent classifier, which determines if
an image cluster represents an object or an event (Section 4.4).

We then apply Frequent Itemset Mining on the text associated with each
cluster in order to assign cluster labels. We propose an algorithm that
employs the resulting frequent itemset labels to link clusters to Wiki-
pedia pages providing additional information about the cluster content,
and that then in turn takes the Wikipedia entries to verify clusters and
filter out false assignments (Section 4.4.2).

Closing the loop, we finally demonstrate how the verified clusters can be
used to automatically label and geo-locate additional photos, for which
no geotags were available in the first place (Section 4.5).

4.2. Community Photo Collections on the Internet 105

Results for all steps of the processing pipeline are then shown in Sec-
tion 4.6.

4.2 Community Photo Collections on the

Internet

Sharing information is one of the main purposes of the Internet. While
in early years most of the published content consisted of text documents,
technical advances led to the ability to share multimedia data such as
photos and videos. The sharing aspect gained increasing attention and
led to the formation of specific destinations on the Internet focussing
on this key ability. Being able to share photos with friends and family
is probably one of the most popular activities in this area. The sites
which offer these desired functionalities to the end-user are becoming a
great pool of imagery for computer vision research. One of the most
popular photo-sharing sites, Flickr, shall serve as an example to explain
the available features and their use for our purposes.

Flickr (http://www.flickr.com) was founded in early 2004, just a few
months before the research for this thesis started. As of end of 2007 it
hosted more than 2 billion images. Some of the features relevant for our
purpose include:

Tagging / Folksonomy: The term folksonomy [Mathes, ; Smith,
2004; Wal, 2005] stands for the concept of collaborative annotation of
documents by the means of so-called tags. A tag is a keyword or term
assigned to a piece of information, e.g . a text document or an image. In
contrast to classical annotation, tagging does rely neither on a controlled
vocabulary nor on specially trained editors. In other words, anyone can
assign any word to a given piece of data. Figure 4.1 shows the most
popular tags on flickr. This approach simplifies annotation for the an-
notating person drastically. On the other hand, classic problems such as
synonymy, polysemy or imprecise descriptions due to the typically very
short single-word tags are not dealt with. While the resulting annotation
of data is of far lower quality than its counterparts created by trained
professionals for traditional archives, they are much more precise than

106 4. Mining Objects and Events in large, multimodal Datasets

Type Example Count
Location/Travel nyc, italy, trip 54
People girl, baby, 7
Activity/Event wedding, party, concert 14
Other/Abstract animal, sky, red 67

Table 4.1: Tag statistics

for instance the text of a web-page an image is embedded in. In fact,
the large user base (up to millions of users) contributing to the tagging
efforts leads to an increased probability that a data item referring to the
same content is indeed frequently labeled with the same tag. For the vis-
ion research community photo collections with tagging capabilities thus
provide access to a large database of images with weak annotations. Note
that the most popular tags in Figure 4.1 also give an insight on the type
of pictures uploaded to Flickr. Table 4.1 shows statistics for the most
popular tags (as of September 2008). As can be seen, a large fraction of
photos is related to some location or travel. Many of these photos will
contain pictures of touristic sights such as landmark buildings, and are
thus optimal for our endeavor.

Geotagging: Geotagging is a special form of tagging, where a piece
of data is labeled with a geographic location it is related to. For image
databases this typically is the location a photo was taken at. Geotagging
can be provided in several forms, the most precise being longitude and
latitude values obtained from a Global Positioning device (GPS). Fur-
ther possibilities are annotation with a mobile phone cell tower identifier
(CGI, Cell Global Identity, see Chapter 5.2 for a detailed description),
manual assignment to a postal address, or placing the item manually
onto a digital map. Flickr introduced geotagging officially in August
2006. Users can provide GPS locations with their photos or drag them
to a map manually. Furthermore, so called “machine tags” allow users
to provide information about mobile network cell-tower ids in a special
tagging format, Figure 4.2 shows an example. Flickr reports that over 2
million such geotagged photos are currently uploaded each month. As we
will discuss below, we make extensive use of this geotagging information.

4.2. Community Photo Collections on the Internet 107

Figure 4.1: Most popular tags on Flickr. The size of the text is pro-

portional to the tag’s popularity.

API: In context of the “Web 2.0” movement, many on-line platforms
offer access to their data and services by means of an Application Pro-
gramming Interface (API) usually implemented as a web-service. For
instance, Flickr allows querying their database of photos using several
criteria, e.g. by tag, by time, by user or by geographic location. The list
of returned photos for an API call allows to download the image itself
and related meta-data such as tags, descriptions, user comments, or geo-
information. Having this kind of access allows us to integrate databases
such as Flickr in our software easily.

Besides Flickr, the following photo-sharing sites may also be of interest
to the vision researcher:

Panoramio.com: Panoramio focusses on geotagging. All photos on
the platform are geotagged, however, the only available textual descrip-
tion is a title, i.e. no tagging functionality is offered to end-users. Like
Flickr, Panoramio also offers an API. Most photos on Panoramio are
travel related photos.

108 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.2: Tags and geotags on Flickr. Dashed Box: Textual tags, and

machine tags (describing the mobile network location in form of a Cell

Global Identifier). Solid Box: Location name based on GPS coordinates.

Facebook.com: Facebook is a digital community with a focus on so-
cial life and student life, rather than photo sharing. However, the integ-
rated ability to upload fotos quickly made it the largest photo-sharing
web-site in the world. The stumbling number of 24 million photos are up-
loaded to Facebook – daily. The photos on facebook cover a wide range
of topics. The largest fraction seems to cover events, people etc. due to
the platform’s focus on social networking rather than photography.

Picasa Web Albums: Picasa is a desktop photo management tool
provided by Google. Users can export their albums to their Google
account to share the albums. While several features including tagging
and geotagging are available to users, at the time of writing the platform
seems to be a conglomerate of individual web-albums rather than a large
pool of photos with global search and sharing abilities. An API to the
Picasa web-albums is available.

4.3. Mining Clusters 109

In this work we focus on data from Flickr. While it is not the largest
pool of photos on the Internet, it is the one with the best quality of data
and content.

4.3 Mining Clusters

Our approach is based on photographs which have been tagged with
their geographic location. This allows us to mine the world in a scalable
manner without any prior knowledge on landmarks and their locations.
To that end, we partition the world into a grid of square tiles and retrieve
for each tile all the corresponding geotagged photos from Flickr. The
geographic tiling allows us to handle the size of this vast problem and
to parallelize computations.

4.3.1 Gathering the data

To gather the raw data, we query community photo collections such
as Flickr. First, we divide the earth’s surface into square tiles Tk of
about 200m side length. A tile center is set every 100m (in longitude
and latitude direction), such that the tiles have a high overlap. For
each tile, we query the Flickr API with the tile’s center coordinates and
bounding box to obtain all geotagged photos for that area. Figure 4.3
shows a section of a map with the tiles used for querying overlaid. In
total, we processed about 70′000 tiles for this work, covering several
European urban centers, namely Paris, Rome, Venice, Oxford, Zurich,
Pisa, Munich, Tallinn, Prague, and St. Petersburg. Table 4.2 lists the
urban areas we covered and the number of tiles and photos retrieved for
each area. In total, we covered an area of about 700 square kilometers.
The majority of tiles (about 52′000) were empty. The remaining tiles
contained on average 10 and a maximum of 3750 photos. For each photo
we downloaded, we also obtained the associated metadata, namely the
textual descriptions (tags, title, description), user-id, and timestamps.

110 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.3: Tiles over Paris. The size of a tile is marked in red. Note

the overlap of 50% (100m horizontally and vertically).

4.3.2 Photo Clustering

Once the photos for each tile have been downloaded, we process each cell
to find clusters of photos with similar content as object candidates. We
first create dissimilarity matrices for several modalities (visual and text)
by calculating the pairwise distances between photos for each modality.
A hierarchical clustering step on the dissimilarity matrices then creates
clusters of photos for the same object or event. In the following we
discuss the features and distances used for each modality.

Visual Features and Similarity

To identify pairs of photos which contain the same object, we employ
matching based on local, scale invariant features and projective geo-
metry. We first extract visual features from each photo. For this, we
employ again SURF [Bay et al., 2006b] features due to their fast ex-
traction times and compact description shown in earlier works. Each

4.3. Mining Clusters 111

0 500 1000 1500 2000 2500 3000 3500 4000

10
0

10
1

10
2

10
3

10
4

10
5

Number of Photos

N
um

be
r

of
 T

ile
s

Figure 4.4: Number of photos per tile (log scale).

Name # tiles #photos area (km2)

Munich 18’228 24’069 184.99

Oxford 2’112 7’431 22.05

Paris 12’532 87’452 127.57

Pisa 723 1’950 7.78

Prague 11’110 28’872 113.22

Rome 14’397 48’750 146.38

St. Petersburg 3’400 2’573 35.18

Tallinn 890 1’350 9.51

Venice 449 7’708 4.92

Zurich 5’663 12’602 58.15

Total 69’504 222’757 709.74

Table 4.2: Urban areas processed in this work and the number of tiles

and photos per area.

112 4. Mining Objects and Events in large, multimodal Datasets

image is thus represented as a bag of 64-dimensional SURF feature vec-
tors. For each pair of images in a tile Tk, we find matching features by
calculating the nearest neighbor (NN) in Euclidean distance between all
feature pairs, followed by a verification with the 2nd nearest neighbor
criterion from [Lowe, 2004]. Note that this linear matching procedure is
fast enough, since the problem is separated into the geographic tiles. Us-
ing scaleable indexing methods such as the ones discussed in Chapter 6
could lower the processing times of the system even further, while slightly
compromising matching precision.

To find object candidates from the matching features we next calculate
homography mappings for each matched image pair {i, j} [Hartley and
Zisserman, 2004]

Hxi
n = xj

n , n ∈ 1 . . . 4 , (4.1)

where H is the 3×3 homography whose 8 degrees of freedom can be
solved with four point correspondences n ∈ 1 . . . 4. To be robust against
the aforementioned outliers, we estimate H using RANSAC [Fischler
and Bolles., 1981]. The quality of several estimated models is measured
by the number of inliers, where an inlier I is defined by a threshold on
the residual error. The residual error for the model is determined by the
distance of the true points from the points generated by the estimated
H. We accept hypotheses with at least 10 inliers I as a match.

Using this kind of homography mapping works well in our case, since
we have many photos taken from similar viewpoints. A fundamental
matrix could handle larger viewpoint changes, but it is also more costly
to compute, since it requires more inliers to find the correct model.
Furthermore, mapping planar elements (such as building facades) works
very well with homographies. An example is shown in Figure 4.5. In spite
of the strong viewpoint change, a reasonable homography mapping could
be found in this example, while most of the true outliers are removed. A
similar approach (using affine transformations estimate from single affine
covariant features) has also been successfully applied in [Philbin et al.,
2007] for a retrieval engine on a database of landmarks from Oxford
handling astonishing viewpoint and scale changes. As mentioned above,
the accuracy achieved with these kinds of visual features is far better
than with any kind of global features, which are still often used for
mining and retrieval in visual databases.

4.3. Mining Clusters 113

Figure 4.5: Feature matching with Homography. SURF feature

matches are shown in red, inlying matches for the estimated homography

in green.

The distance matrix is built from the number of inlying feature matches
Iij for each image pair, normalized by the maximum number of inliers
found in the whole dataset.

dij =

{
1− Iij

Imax
if Iij ≥ 10

∞ if Iij < 10
(4.2)

In our implementation we set Imax = 1000, since we extract at most
1000 SURF features per image (sorted by their discriminance), i.e. the
distance dij ranges in [0 . . . 0.99]. Figure 4.6 shows the distribution of
distances for all pairs with distance dij < inf in the dataset. It can
be observed, that the majority of pairs have a rather large distance,
corresponding to 10-20 inlying feature matches.

114 4. Mining Objects and Events in large, multimodal Datasets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Distance

N
um

be
r

of
 p

ai
rs

Figure 4.6: Histogram of visual distance values (log scale).

Text Features and Similarity

Three sources for text meta-data were considered for each photo down-
loaded from Flickr: tags, title, and description. We combine these three
text fields into a single text per photo for further processing stages.
The first stage consists of a stoplist. In addition to the common stop-
words, this list also contains collection-specific stopwords such as years,
months, and terms such as “geotagged”, “trip”, “vacation”, “honey-
moon”, etc. Furthermore, from each photo’s geotag we know its location
and (through reverse geocoding [Lewis et al., 2007]) the corresponding
place name, for instance “Rome, Italy”. These location-specific place
names were added to the stoplist for each photo depending on its geotag.
Filtering terms with these custom stop-lists turned out to be crucial to
obtain good cluster labels in later processing stages.

As with the visual features, we proceed by calculating the pairwise text
similarities between the documents (photos). A vector space model with
term weighting of the following form is applied:

wi,j = Li,j ∗Gi ∗Nj

Note that in the standard tf ∗ idf ranking [Salton and McGill, 1986]
Li,j = tf i,j , Gi = log D

di
and Nj = 1, where tf i,j is the frequency of

4.3. Mining Clusters 115

term i in document j, di is the number of documents containing term i,
and D is the total number of documents. In our system, the weighting
elements are as follows

Li,j =
log(tf i,j) + 1∑
j

(
log(tf i,j) + 1

) (4.3)

Gi = log
(

D − di

di

)
(4.4)

Nj =
Uj

1 + 0.0115 ∗ Uj

where Uj is the number of unique terms in document j. The rationale
behind the modifications of the weighting terms over the standard tf ∗
idf are as follows. The logarithm in Li,j adjusts/dampens weights of
multiple occurring words per document. Gi is a probabilistic inverse
document frequency as proposed in [Croft and Harper, 1997], which,
unlike idf , assigns negative weights to terms that appear in more than
half the documents. Finally, the additional term Nj is a pivoted unique
normalization which is used to correct for discrepancies in document
lengths [Singhal et al., 1996]. We use the mySQL (www.mysql.com) full-
text search, which can be configured to use the modified tf ∗ idf ranking,
to compute the text distance matrix for the photos belonging to each
geographic grid tile.

Additional Features

Besides the visual and text similarities between photos, we also con-
sidered several additional cues. We store the timestamps and the user
data (i.e. the Flickr user, who took or uploaded a photo). As we will
show below, these cues allow us to classify each cluster candidate into
event or object types.

Clustering

For each tile Tk, we apply hierarchical agglomerative clustering [Webb,
2002; Jain and Dubes, 1988] to the distance matrix of each modality.
This clustering approach was chosen, since it builds on a dissimilarity

116 4. Mining Objects and Events in large, multimodal Datasets

Visual Text

Single-link 0.985 0.989

Complete-link 0.99 0.99

Average-link 0.99 0.99

Table 4.3: Cut-off distances for clustering

matrix and is not restricted to metric spaces. It is also rather flexible
and very fast, once the full distance matrix is available. Using different
linking criteria for cluster merging allows us to create different kinds of
clusters. We employed the linkage methods described in Chapter 2.2,
namely single-link, complete-link, and average-link.

The motivation behind these measures is to capture different kinds of
visual properties that allow us to associate a semantic interpretation with
the resulting clusters. Single-link clustering adds images to a cluster as
long as they yield a good match to at least one cluster member. This
results in elongated clusters that tend to span a certain area. As a result,
if visual features are the basis for clustering, this procedure can group
panoramas of images that have been taken from the same viewpoint, or
series of images around an object. In contrast, complete-link clustering
enforces that a new image matches to all cluster members. This strategy
will therefore result in very tight clusters that contain similar views
of the same object or building. Average-link clustering, finally, takes
a compromise between those two extremes and provides clusters that
still prefer views of the same object, while allowing more flexibility in
viewpoint shifts. In our approach we do not want to restrict ourselves
to any single of those alternatives; instead, we pursue them in parallel.
Such an approach makes it possible to derive additional information from
a comparison of cluster outcomes. For example, we may first identify
distinct objects or landmark buildings through complete- or average-
link clusters and later find out which of them are located close to each
other by their membership in the same single-link cluster. Table 4.3
summarizes the linkages and cutoff-distances used for each modality.

4.4. Labeling Clusters 117

4.4 Labeling Clusters

In the preceding sections, images with similar content or annotations
were grouped into clusters, which ideally should depict a single entity.
In this section, the goal is to look into the contents of the clusters in
more detail. First, we classify the clusters into objects and events. In a
next step, we derive textual labels for the clusters from the associated
metadata. Furthermore, we introduce an approach to formulate text
queries from the labels, which are submitted to Wikipedia to assign
articles to the clusters. A final verification step uses the images found
in the Wikipedia articles to verify this assignment.

4.4.1 Classification into Objects and Events

To discriminate between objects and events, we rely on the collected
metadata for the photos in each cluster. An “object” is here defined as
any rigid physical item with a fixed position, such as landmark buildings,
statues, etc. As “events”, we consider occasions that took place at a
specific time and location, for instance concerts, parties, etc. Thus, we
include as features f1, f2 the number of unique days the photos in a
cluster were taken at (obtained from the photos’ timestamps) and the
number of different users who “contributed” photos to the cluster divided
by the cluster size.

f1 = |D| (4.5)

f2 =
|U |
|N | (4.6)

where |D| is the number of days, |U | the number of users, and |N | the
number of photos in the cluster. Typically, objects such as landmarks
are photographed by many people throughout the year; an event on the
other hand usually takes place only at one or two days and is covered
by fewer users. Note that we only consider clusters with N > 4 here.
We manually labeled a ground truth of about 700 clusters with the class
labels “object”, “event”, and “none”. See Figure 4.7 for an example of
each class. We then trained an individual ID3 decision tree [Quinlan,
1986] for the classes “object” and “event” on half of the labeled data and
used the other half for validation. The task in training and testing was

118 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.7: Class examples: object, event, none.

to discriminate the target class (“object” or “event”) against all other
classes. Cross-validated over 10 random data partitions, this simple
classifier was able to achieve 88% precision for objects and 94% for events
with a standard deviation of 0.07% and 0.04%, respectively. (In fact, due
to the only two features considered we deal here rather with a decision
stump than with a decision tree.)

4.4.2 Linking to Wikipedia

Having the clusters classified into objects and events, the next processing
layer intends to add more descriptive labels. The goal is to not only label
the clusters with the most dominant words, but also to automatically
link them to content on the Internet, such as corresponding Wikipe-
dia articles. Such a solution allows auto-annotation of unlabeled im-
ages, even down to outlining object-parts using the information from
other pictures of the same entity. A recognition service building upon
our labeled database could then match the query to the correspond-
ing database entry and return the assigned Wikipedia content to the
user. Such systems have been proposed before (e.g . [Paletta et al., 2006;
Quack et al., 2008]), but the automatic collection of the database from
user-generated content has not been addressed yet.

The proposed approach first finds relevant word combinations from the
text associated with each cluster using a frequent itemset mining al-
gorithm. The resulting frequent combinations are then used to query
Wikipedia in a second step. An image based matching step finally veri-
fies that the links are indeed correct.

4.4. Labeling Clusters 119

Frequent Labels

Flickr and similar community photo collections provide us with text
associated to photos. However, the text is often noisy, and not all images
are labeled. Furthermore, if we want to use the text to find out more
about the object by querying Internet search engines, we need to create
queries from the raw tags. Any combination of words from the text
could be the “correct” query. However, finding and trying all possible
combinations would mean considering 2N combinations of words, where
N can easily be in the hundreds. We therefore resort to frequent itemset
mining (see Chapter 2.4) to find the most frequent combinations of words
efficiently. Those can serve both as labels for the objects and as query
input for the next stage.

In our setting, the text associated with each photo (tags, caption, titles,
etc.) generates a transaction, and the database consists of the set of
photos in a cluster. We use an implementation [Borgelt, 2005] of the
FP-Growth algorithm to mine the frequent itemsets for each cluster,
using a minimal support threshold of 0.15 (i.e. 15%). In order to ensure
scalability, only the top 15 itemsets per cluster are kept.

The advantage of using itemset mining over other probabilistic method
is its speed and scalability. Tens of thousands of word combinations
can be processed in fractions of seconds. Furthermore, mining variants
such as maximal or closed frequent itemsets, as well as additional stat-
istical tests on the sets, offer further opportunities for optimization (see
Chapter 2.4). For instance, maximal frequent itemsets (itemsets with
no frequent superset) are especially useful for human-readable labels on
clusters, since their subsets are not listed as additional labels.

Querying Wikipedia and Link Verification

We use each frequent itemset mined in the previous section to submit a
query to an Internet search engine. More specifically, we query Google
(www.google.com), limiting the search to wikipedia.org. By doing so,
the search covers Wikipedia in all available languages, so terms in differ-
ent languages can be handled automatically. For each result list, the top
8 results are kept. Note that in the worst case, this generates 15∗8 = 120
possible URLs per cluster. We keep a score for each page, which counts

120 4. Mining Objects and Events in large, multimodal Datasets

how often the same page was retrieved using different queries. Next,
we crawl each of the URLs and parse the corresponding Wikipedia page
for images. The idea is now to use the Wikipedia content to verify the
proposed linking between the cluster and the Wikipedia page. Chances
are high, that our clusters contain some images taken from similar view-
points as the ones used in Wikipedia. Thus, we extract features from
the Wikipedia images and try to match them to all images in the cluster
using the same method as described in Section 4.3.2. If we find a match-
ing image, the proposed link is kept, otherwise it is rejected. Figure 4.8
visualizes the individual steps in linking clusters to Wikipedia content.
The tags for the cluster (a) are mined to create frequent itemsets (b).
Note how the proximity to the Louvre introduces noisy words such as
“museum”, and how the expression “arc du triomphe” could refer also
to the other, larger Arc Du Triomphe in Paris. The frequent itemsets
(b) are fed as queries to Google, and the candidate URLs (c) are re-
trieved. The URLs are ranked according to how many queries had the
corresponding URL in their result list. For each URL, the HTML of
the corresponding Wikipedia page (d) is parsed to extract images. The
images contained in the page are downloaded and matched back to the
images in the cluster. Figure 4.8(e) shows the best match from the
cluster with the image from the Wikipedia article (d). If such a match
can be found, the corresponding Wikipedia URL is selected as verified
annotation (f).

4.5 Object-level Auto-Annotation

Using the data that was collected during the mining process, we can
now annotate novel images and even refine the annotations for database
images in several ways:

• Auto-tagging with most confident tags per cluster.

• Assigning related Wikipedia articles to images.

• Placing images (without geotags) on a map.

• Object-level annotation with bounding boxes around the objects.

4.5. Object-level Auto-Annotation 121

museum

museum louvre

carrousel

carrousel triomphe

carrousel triomphe arc

carrousel triomphe arc du

carrousel triomphe du

carrousel arc

carrousel arc du

carrousel du

triomphe

triomphe arc

triomphe arc du

triomphe du

arc

arc du

http://en.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca.

http://en.wikipedia.org/wiki/Axe_historique

http://fr.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://en.wikipedia.org/wiki/Quadriga

http://hu.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://de.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://nl.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://it.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://en.wikipedia.org/wiki/Triumphal_arch

(c)

(d)

(b)(a)

http://en.wikipedia.org/wiki/Arc_de_Triomphe_du_Carrousel

(e)

(f)

Figure 4.8: Matching clusters to Wikipedia articles. The text for the

photos in a cluster (a) is mined for frequent word combinations (b),

which are used to search Wikipedia for candidate URLs (c). Each image

of an article (d) is in return matched to the images in the cluster. If a

correct match (e) can be found, the candidate link is selected (f).

In the following subsection we describe how we estimate bounding boxes
for objects to achieve object-level annotations.

4.5.1 Estimating Bounding Boxes for Objects

Each of the mined object clusters was created by clustering images based
on their pairwise distances as described in Section 4.3.2. The pairwise
distances were calculated based on the number of (inlying) local feature
matches for the image pairs. In other words, each image in a cluster
matches to several other images showing the same object. We can now
use these multiple cross-matches between images and derive an object-

122 4. Mining Objects and Events in large, multimodal Datasets

specific feature confidence value. In spirit this is similar to the feature
confidence values calculated in Section 3.3, but for specific objects in-
stead of object classes. A bounding box can then simply be estimated
around the most confident features.

More specifically, the object-specific confidence value for feature f in
image i is simply calculated as the number of inlying feature matches
stemming from all other images:

co
if = ‖ ∀ f | f ∈ Iij ‖ j = 1 . . . No (4.7)

where f indexes the features in image i, and No is the number of images
in the current object cluster o.

The estimation of the bounding box is based on a threshold on that
confidence value, where the threshold toi for object o in image i is defined
as

toi = max

(
tmin, α ∗

∑Mi

f=1 co
if

Mi

)
, Mi = ‖ f | co

if > 0 ‖ (4.8)

where tmin and α are parameters with typical values tmin = 2, α = 1
3 .

The bounding box is drawn around all features with confidence higher
than toi , in other words around all features that have a confidence higher
than a fraction α of the mean confidence value. Examples of the resulting
confidence values and estimated bounding boxes are shown in Figures 4.9
and 4.10. The colors reflect the confidence value, the higher the value the
brighter the color. In most cases, features which are selected as confident
are very well located on the objects with few outliers. The occasional
outliers typically receive a substantially lower vote. Thus, the simple
bounding box estimation based on a threshold on the vote is sufficiently
precise in most cases.

Note, that a more sophisticated localization of a bounding box by using
a method such as Hough voting [Leibe et al., 2008; Lowe, 1999] is not
straightforward here: since we don’t have training images of the objects,
we don’t know its extent and the location of features in relation to its
center. Learning such a representation automatically from the mined
data is left as future work.

These bounding boxes do not only allow object-level annotation, they
can also improve indexing of features for the corresponding objects: only

4.5. Object-level Auto-Annotation 123

Figure 4.9: Object-specific feature confidence values and bounding

boxes. Part I: St. Peters Basilica, Rome.

124 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.10: Object-specific feature confidence values and bounding

boxes. Part II: various examples of Paris sights).

4.6. Experiments and Results 125

Images 222’757
Size Metadata 1.1 GB
Size Features 111 GB
Images assigned to clusters 73’236
Verified Wikipedia Links 861
Images in clusters linked to Wikipedia articles 15670
Distances computed 217’330’144
Distances <∞ 751’457

Table 4.4: Dataset statistics

the features lying within the bounding boxes need to be considered for
indexing. This will lower the signal-to-noise ratio in an index built on
top of the mined data.

4.6 Experiments and Results

In the following, we present results on the whole dataset collected to
this date, stemming from the 70′000 geographic tiles that were inspected
by our algorithm. We first give an overview over the dataset, followed
by subsections discussing the results of the individual processing layers.
Table 4.4 summarizes the dataset statistics. In total over 220′000 images
were downloaded from Flickr, their visual features amounting to 111 GB,
and their metadata (tags, geotags, EXIF data etc.) to 1.1GB. Over 200
million pairwise distances had to be computed, less than 1 million was
smaller than infinity. (Note that without the geographic tiling, we would
have had to calculate over 20 billion pairwise similarities). In the end, a
little over 73′000 photos could be assigned to a cluster.

4.6.1 Clusters

Here, we present results for different types of clustering. We start with
a specific example to give an impression of the results we found. Fig-
ure 4.11 shows examples from the area around the Pantheon in Rome,
and Table 4.5 summarizes numerical data for this example. The cor-
responding tile is among those with the largest number of elements,

126 4. Mining Objects and Events in large, multimodal Datasets

Images in tile 2250
Clusters 27
Cluster mean size 75
Cluster max size 546
Cluster min size 4
Mean precision 10 largest clusters 98%

Table 4.5: Summary of Pantheon Results

containing 2′250 images (several tiles overlap at this location; we report
the numbers for the dominant one). It is well visible how the clustering
splits the data into several semantically separate objects and contexts.
For example, indoor (a) and frontal outdoor views (b) of the Pantheon
are found as separate entities. Both contain a large number of pho-
tos: 546 and 481, respectively. Smaller clusters describe more specific
elements, such as the view from the Pantheon onto the piazza (e), the
obelisk situated behind the Pantheon (c), and even the tomb of Vic-
tor Emmanuel II (d) inside the Pantheon. Calculating the mean of the
photo locations in each cluster allows us to place the cluster on a map.
Clearly, the locations of the different clusters are estimated very close
to the true positions of the corresponding entities. The clusters shown
in this figure were obtained using single-link clustering. Note how espe-
cially for clusters (a), (b), and (c), this allows us to merge a wide variety
of views of the same object, since only the closest matching pair has to be
connected by a distance smaller than the threshold. In total 27 clusters
were found in this area, with a mean size of 75 photos. We evaluate
clustering accuracy in terms of the cluster precision, i.e. the number of
correct images divided by the total number of images in the cluster. As
“correct”, we count every image which contains the object the cluster
refers to. If there are special contexts, such as an indoor view for an
object, only those (e.g . indoor views) are counted as correct. Given that
definition, the mean precision of the 10 largest clusters is over 98%. Note
that since we deal with an unsupervised mining problem, we cannot give
reliable results for recall. Qualitatively spoken, however, recall values
will not be as impressive, since it may happen that photos of one object
are spread over multiple clusters. Furthermore, it would be unrealistic
to expect exhaustive recall from un-controlled databases such as Flickr.

4.6. Experiments and Results 127

For comparison, we also ran a clustering based purely on text, using
all text similarities between the photos in this area. Depending on the
parameters, we were only able to get 1-3 clusters with a precision of
about 60%. Not only were we not able to discriminate between indoor
and outdoor views based on text features, the clusters also contained
many outliers which did not contain the relevant object at all. For
instance, only 116 of the photos in the area carry tags such as “inside”
or “interior”, making a discrimination based on text very difficult. In
contrast, cluster (a) in Figure 4.11 contains over 500 photos of the inside
of the Pantheon. (The word “Pantheon” appears with 1′245 photos).
Also in comparison to [Simon et al., 2007], we are able to retrieve larger
clusters while maintaining high precision.

To examine the results of the different types of visual clustering fur-
ther, consider another example shown in Figure 4.12. It depicts the
area around the Louvre in Paris. Figure 4.12(a) shows the estimated
mean positions of single-link clusters. In total, the area is covered by
176 clusters; the largest cluster contains 418 elements, the mean size is
17 elements. One of the clusters (marked in yellow) is shown in Fig-
ure 4.12(b). Here, each pin represents the location of one photo. Note
how strongly the positions vary. Some examples of the clusters’ contents
are shown in the column next to the map, again visualizing the men-
tioned variability in viewpoints. In contrast, Figure 4.12(c) shows the
complete-link clusters for the same area. The more restrictive clustering
criterion results in smaller and more compact clusters; the mean size is
only 4 elements, and the maximum is 5. 207 complete-link clusters were
found for this region; again one cluster is selected and its elements are
shown in Figure 4.12(d). Their locations are more compact, and the
contents of the cluster have less variability, as the examples next to the
map demonstrate. Also note again the grid overlaid on the maps in (a)
and (c), which shows the tiles we used to retrieve photos by their geotags
(again, 4 cells make up a tile).

The results for average link clustering turned out to be quite similar to
the ones obtained with complete-link clustering and are not shown here.

128 4. Mining Objects and Events in large, multimodal Datasets

4.6.2 Objects and Events

The classifier described in Section 4.4.1 allows us not only to detect ob-
jects, but sometimes even events. Applying the ID3-tree to the entire
dataset resulted in the following distribution of objects and events: of
6′511 clusters (single-link), 4′315 were classified as objects, 719 as events.
Visual inspection on randomly picked clusters showed that the classific-
ation precision is very accurate, similar to the results obtained on the
validation set in Section 4.4.1. Figure 4.13 shows some examples of event
clusters. The first cluster contains images from 3 different events in a
series taking place on different days (”Oxford Geek nights”) and was
recognized due to the same location it took place in. The second (a
movie premiere in Italy) and third event (an exhibition in a gallery in
Paris) were both covered by two different photographers. The last line
represents the majority of events: an event from a single day, covered by
only one photographer.

An example where our simple classification into objects and events fails,
is shown in Figure 4.14. The example shows a window located in the
Vatican in Rome, from which the pope addresses the people. The clus-
tering identified this particular window, and the labels refer to the pope.
However, due to the distribution over several dates in several years, the
cluster was classified as object and not as event. However, in this par-
ticular case the classification is hard to define: is it the place, the event,
or the person that define the clusters’ semantics?

Objects and event clusters can also be visualized on a map, as shown
in Figure 4.15. Different classes of clusters are represented by different
pin colors, the pin location is set at the mean position of the geo-tags of
the images in the cluster. The example shows the area around the Sacre
Coeur in Paris. Again, most of the clusters correspond to objects, only
a few of them are events.

The smaller number of event clusters can be explained by two factors:
relying mostly on visual cues, we can only detect events which take
place in an environment where the background matches between photos.
Second, it seems that so far, in general fewer people geotag photos of
events.

4.6. Experiments and Results 129

4.6.3 Multimodal Linking to Wikipedia

Figure 4.16 shows some typical results for the multimodal linking to
Wikipedia. Each result is represented by a pair of images: the left image
was extracted from Wikipedia, the one on the right is its closest match
in the cluster (there are typically many more matching images in each
cluster.) Below each pair, we provide the URL of the mined Wikipedia
article, followed by the cluster statistics. For each cluster, we report the
number of photos, the number of users who took them, and the number
of different days the photos were taken at. We also report the precision,
obtained again by manual inspection as described above. In general the
precision is very high, ranging between 93% and 99%. The precision
values are also summarized in Figure 4.17.

Especially very well known landmarks, such as the Sacre Coeur (Fig-
ure 4.16 1), the Colosseum (4,5), or the Trevi fountain (14) are covered
by a large number of photos with very few false positives. Lesser known
objects, such as the Radcliffe Camera (15) have fewer images and are
thus also more vulnerable to a few false positives. Staying with the
Radcliffe Camera (15), note how multiple matching Wikipedia articles
have been verified for the object. The same effect can be observed in
example (13) or example (14), where articles in multiple languages were
retrieved. Some matches are truly amazing, for instance example (5),
where a painting matched to a photo of the Colosseum, or (12) and (13)
with strong clutter and viewpoint change.

While most examples in Figure 4.16 refer to rather well known land-
marks, some rare gems were mined, too. A few examples are shown
in Figure 4.18. Example (1) does not only link to the article Sainte
Chapelle, but also to an article about stained glass; similarly Mona Lisa
(2) is linked to a specific article and a more general one about Leonardo
Da Vinci. In example (3), both the context “Forum Romanum” and
the specific “Temple of Vesta” could be verified. Examples of smaller,
even lesser known entities are shown in (4,5,6), note the maypole on
Viktualienmarkt in Munich in (6): one of the articles explains the loc-
ation, the other the tradition. Destinations with fewer tourists, such
as Tallinn and Zurich (7,8) tend to have less photo coverage and also
less content on Wikipedia. Nevertheless, some locations could be iden-
tified by our mining pipeline (7,8). Finally, example (9) is a lucky shot,

130 4. Mining Objects and Events in large, multimodal Datasets

where an event could be linked to a person and verified. By coincidence
Wikipedia contains an image of an event (Jules Verne Adventures Film
Festival, April 2007), which is also covered on Flickr and labeled with
the attending actors’ name. Clearly, only larger events are covered in
Wikipedia, so that the chance of detecting a correct link for any event
is rather small. Furthermore, homography based matching between im-
ages is well-suited for rigid objects and scenes, but less suited for events.
Future work could thus extend the system by classifying event scenes
(wedding, concert, etc.) based on a bag-of-features approach [Bosch et
al., 2006] and label it using the textual meta-data rather than linking it
to Wikipedia.

Table 4.4 contains statistics for the Wikipedia linking results. In total,
861 unique Wikipedia articles were verified by matching their images to
our clusters as described above. The precision of this assignment was
about 94%, i.e. 94% of the articles referred to a cluster which contained
images of the article’s correct subject. These articles covered 423 single-
link clusters with 15′670 images. That is, about a quarter of all images
in clusters could be related to a Wikipedia article.

Querying Wikipedia with the queries given by the frequent itemsets had
resulted in over 20′000 URLs as linking candidates and in more than
twice as many images parsed from the articles. This demonstrates how
effective our method is in mining relevant links out of a vast amount of
irrelevant data.

4.6.4 Auto-annotation

Based on the object-specific feature confidence values derived in Sec-
tion 4.5 we can estimate bounding boxes for mined objects, both for the
existing database images but also for novel “query” images. We first
show some results for object-level annotation of the mined database im-
ages. Combining the estimated bounding boxes and the information ob-
tained from Wikipedia linking, we can create very appealing annotation
displays. To that end, the links and tags are “attached” to the estimated
bounding boxes. This is shown with a few examples in Figure 4.20.

To evaluate the quality of the object-level auto-annotation we created
a groundtruth set of 320 images labeled with bounding boxes. More

4.6. Experiments and Results 131

specifically, the groundtruth was created as follows: from the object-
clusters that could be linked to a Wikipedia article, images were drawn
at random. Each image and the corresponding Wikipedia URL were
shown to an annotating person, who was given the task to label the
object the Wikipedia article was referring to with a bounding box.

This annotated groundtruth was then compared to the bounding boxes
detected by our system. A bounding box was counted as correct detec-
tion (true positive), if the intersection-over-union with the annotation
was greater than 0.5. All other bounding boxes returned by our system
were counted as false positives. This evaluation is the same that is com-
monly used in object class detection. Figure 4.21 shows ROC curves for
that task. The curves were generated by varying through the range of
the object-specific feature confidence thresholds the bounding boxes were
estimated with. The overall recognition rate reaches 70%. This level is
about the same as the values in retrieval tasks for specific objects such
as [Philbin et al., 2007]. However, the labelling relies purely on automat-
ically detected cross-matches between clustered images, i.e. the system
needs to decide automatically which fragments of a scene belong to the
mined object and which fragments are part of the (sourrounding) back-
ground. Often, this discrimination is not easy, sometimes even hardly
possible. Furthermore, sometimes the annotation refers to a larger scene,
sometimes only to a specific object within a scene. Another source of
error are clusters with few images which do not allow the calculation of
a reliable feature confidence value, due to the lack of matching features.
This is illustrated in Figure 4.22 (top), where the mean intersection over
union (IOU) value for true positive detections is plotted over the cluster
size for an object. Clearly, the IOU value is the higher the larger the
cluster get. Figure 4.22 (bottom) shows corresponding ROC curves, i.e.
when considering only detections “created” from clusters with the given
minimal size. As expected, the ratio of true positive detections increases
at the cost of recall the larger the minimal cluster size is chosen.

Selected true positive detection examples are shown in Figure 4.23, Fig-
ure 4.24 shows examples of false detections. It is worth noting, that most
false positive detections are under-estimations of the true bounding-
boxes. This is mostly due to lack of feature coverage. In total, 17′485
different photos could automatically be labeled with at least one bound-
ing box. Note, that this refers only to photos which could also be linked

132 4. Mining Objects and Events in large, multimodal Datasets

to a Wikipedia article beforehand. With the database we built in this pa-
per, annotation is not limited to the images that are already contained in
the mined database. Auto-annotation of unlabeled “query” images with
geo-location, object level bounding-box annotation, and corresponding
Wikipedia article becomes also feasible. In a real world system, users
could simply select the rough geographic area (e.g . by drawing a bound-
ing box around Paris on the map), and photos would automatically be
placed at their exact position and annotated with bounding boxes and
Wikipedia articles. To demonstrate this capability, we downloaded 6
sample query images of sights in Paris from Google, see Figure 4.19.
These are images which are neither present on Flickr, nor on Wikipedia.
We load all clusters which we found in the Paris area (the full area as
given in Table 4.2) and which could be assigned to a Wikipedia article, as
described in the previous steps. These conditions hold for 167 clusters.
Now, we simply match the query images to the clusters and record the
best-matching image and cluster. This process only takes a few minutes,
and the result is shown in Figure 4.19. The result location is selected as
the mean location of all images in the matching cluster. Note the pre-
cision of the placement in the magnified map elements. All images are
also linked to the correct Wikipedia article in the spirit of Figures 4.16
and 4.18. Note how similar the Arc de Triomphe and Arc de Triomphe
du Carousel are (first and second image in the left column). Also note
how close the two objects Arc de Triomphe du Carousel and the Louvre
Pyramid are (second and third map in the left column). Our method is
able to handle these uncertainties robustly and to discriminate between
similar objects at different locations and different objects at the same
location. In contrast, a direct matching of query images to Wikipedia
images would not be possible in most cases, since the viewpoint changes
might be too large. The number of images in our clusters (connected by
a single-link clustering method) literally bridges the gap between the un-
annotated query image and the Wikipedia image via the clusters created
from Flickr data. Combining this method with scalable indexing [Phil-
bin et al., 2007] for local features will allow for auto-annotation of many
holiday snaps within seconds.

4.7. Related Work 133

4.7 Related Work

Since the mining method proposed in this chapter covers an entire,
multi-modal processing pipeline, it touches on a large variety of pre-
vious publications. Working with data from community photo collec-
tions has received increasing attention lately [Aurnhammer et al., 2006;
Jaffe et al., 2006; Lew et al., 2006]. However, most of those approaches
are based either on text [Jaffe et al., 2006] or only global visual features.
The local visual features which are used in this work, however, allow to
find very good and extremely accurate matches between the depicted
objects even under significant changes in viewpoint, imaging conditions,
scale, lighting, clutter, noise, and partial occlusion. A similar approach
would not be possible using global measures such as color or texture his-
tograms. Philbin and Zisserman [Philbin et al., 2007] also worked with
local features and multiple view geometry on a database of landmark
buildings obtained from Flickr. The main goal of that work was to de-
rive a scalable indexing method for local visual features, the database
was retrieved and annotated manually. The work most similar to ours
is probably [Simon et al., 2007; Snavely et al., 2006]. Here, the authors
also proposed clustering images from community photo collections using
multi-view geometry based matching between images. The goal was to
derive canonical views for certain landmarks and to use those as entry
points for browsing. Initial image collections were retrieved by querying
photo collections with known keywords such as “Rome”, “Pantheon”,
etc. As we will demonstrate, our fully unsupervised approach based
on geographic tiling is not only more flexible, but also more scalable.
(The dataset used in [Simon et al., 2007] contained 20′000 photos, while
ours is one order of magnitude larger). Furthermore, we add several
layers of processing which extract semantic information, such as classi-
fication into objects and events, and which automatically include other
content sources such as Wikipedia for unsupervised labeling of objects.
To the best of our knowledge, this work is the first to propose this kind
of pipeline, taking as an input only a geographic tiling of the world
and resulting in an output of automatically mined landmark objects,
together with their semantics in the form of automatically created links
to Wikipedia.

134 4. Mining Objects and Events in large, multimodal Datasets

Similar in scale are the experiments conducted in the recent work [Hays
and Efros, 2008]. Here, the geographic location an image was taken at
is estimated by comparing it to a huge database of images downloaded
from Flickr. The overall objective is to find near duplicate images of the
same scene very efficiently. To that end, the authors process 6 million
geo-referenced images to create a reference database with good cover-
age of the earth. The images are encoded using several global feature
types (tiny images [Torralba et al., 2008], GIST [Oliva and Torralba,
2001], color histograms, etc.). Estimating the location the picture was
taken at is now simply done by finding the nearest neighbour(s) in the
database. This works astonishingly well, reaching absolut recognition
rates of up to 16% for locating an unseen test-image within 200km of its
correct location. However, these recognition rates are not sufficient for
the applications we have in mind. The method also don’t allow precise
description of objects in the images, as with our system, which builds
on local features instead of global ones. In summary, [Hays and Efros,
2008] is a work quite complementary to ours.

Finally another approach with the focus on reconstructing 3D models
from images collected in community photo collections similar to [Simon
et al., 2007], was just recently proposed in [Li et al., 2008b].

4.8 Discussion and Conclusions

We have presented a fully unsupervised mining pipeline for community
photo collections. The sole input is a grid of tiles on a world map.
The output is a database of mined objects and events, many of them
labeled with an automatically created and verified link to Wikipedia.
The pipeline chains processing steps of several modalities in a highly
effective way. The basis is a pairwise similarity calculation with local
visual features and homography-based geometric verification for each
tile. Hierarchical clustering was demonstrated to be a very effective
method to extract clusters of the same entities in different contexts (in-
door, outdoor, etc.). We observed that the clustering step on visual data
is far more reliable than on text labels. A simple tree-based classifier on
the metadata of photos was introduced to discriminate between object
an event clusters. Itemset mining on the text of the clusters created

4.8. Discussion and Conclusions 135

with visual features was proposed to mine frequent word combinations
per cluster. Those were used to search Wikipedia for potentially relev-
ant articles. The relevance was verified by matching images from the
Wikipedia articles back to the mined clusters. Both the clustering and
linking to Wikipedia showed high precision. Finally, in a last step we
demonstrated how the database can be used to auto-annotate unlabeled
images without geotags down to object-level annotation of objects with
bounding boxes, assignment of geographi location, textual tags and re-
lated content.

Besides the effective mining pipeline proposed in the paper, we also car-
ried out one of the largest experiments with local visual features on data
from community photo collections by processing over 200′000 photos.
The results of this large-scale experiment are very encouraging and open
a wealth of novel research opportunities. They include in particular
improved auto-annotation of data from multimodal information sources,
processing at even larger scales by integrating scalabale feature matching
methods and distributed processing, and more precise object level an-
notations. Combinations with complementary works such as [Hays and
Efros, 2008; Simon et al., 2007; Snavely et al., 2006] would allow for in-
teresting applications. Finally, integrating mining methods and scalable
retrieval, in combination with continually growing amounts of available
data will probably lead to the creation of very exciting auto-annotation
and retrieval systems in the coming years.

136 4. Mining Objects and Events in large, multimodal Datasets

(a)

546

(b)

481

(c)

32

(e)

31

(d)

7

Figure 4.11: Clusters found around the Pantheon and the number of

photos contained in each. Note the automatic separation into indoor

(a), outdoor (b), and panorama views (e), and the discovery of separate

objects (c,d). Mean locations of the photos are shown on the map. (e) is

estimated at about the same position as (b) and is therefore not drawn

on the map.

4.8. Discussion and Conclusions 137

(a) (b)

(c) (d)

Figure 4.12: Clusters around the Louvre: (a) shows single-link clusters,

the photos of the cluster marked in yellow are located as shown in (b).

(c) shows complete-link clusters for the same area, again with the photos

of the yellow cluster in (d). (Only clusters with at least 4 elements are

shown).

138 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.13: Typical events mined by our methods.

Figure 4.14: Misclassification (?) example. The Pope’s window in

Rome, labeled as object. The textual labels derived from the tags are

xvi, popebenedictxvi, benedict, stpeters, pope

4.8. Discussion and Conclusions 139

Figure 4.15: Object and event clusters on a map. Blue pins represent

events, green pins objects. Red pins could not be classified as either one.

Sample images of two selected clusters are shown below the map.

140 4. Mining Objects and Events in large, multimodal Datasets

(2) http://en.wikipedia.org/wiki/Moulin_Rouge

66 Elements, 39 users, 50 days. Precision: 100%

(3) http://en.wikipedia.org/wiki/Temple_of_Apollo_Sosianus

33 elements, 22 users, 33 days. Precision: 98.4%

(7) http://en.wikipedia.org/wiki/Panth%C3%A9on,_Paris

48 elements, 31 users, 37 days. Precision: 98%
(12) http://en.wikipedia.org/wiki/Old_Town_Square_(Prague)

262 elements, 122 users, 195 days. Precision: 98%.

(13)http://en.wikipedia.org/wiki/Monument_to_Vittorio_Emanuele_II

 http://it.wikipedia.org/wiki/Vittorio_Emanuele_II_di_Savoia

 http://it.wikipedia.org/wiki/Monumento_a_Vittorio_Emanuele_II

336 elements, 162 users, 249 days. Precision: 99%

(4) http://en.wikipedia.org/wiki/Colosseum

 http://no.wikipedia.org/wiki/Colosseum

 http://sv.wikipedia.org/wiki/Colosseum

582 elements, 190 users, 252 days. Precision: 100%

(5) See (4), matchted to the same cluster.

(1) http://en.wikipedia.org/wiki/Basilica_of_the_Sacr%C3%A9_C%C5%93ur

426 Elements, 233 users, 287 days. Precision: 100%

(9) http://en.wikipedia.org/wiki/Tour_Montparnasse

40 elements, 10 users, 11 days. Precision: 100%

(10) http://en.wikipedia.org/wiki/Campo_dei_Miracoli

 http://it.wikipedia.org/wiki/Battistero_di_Pisa

33 elements, 24 users, 21 days. Precision: 94%

(8) http://en.wikipedia.org/wiki/Notre_Dame_de_Paris

588 elements, 287 users, 334 days. Precision: 100%

(6) http://en.wikipedia.org/wiki/Arc_de_Triomphe

567 elements, 233 users, 298 days. Precision: 98%
(11) http://en.wikipedia.org/wiki/Dancing_House

105 elements, 65 users, 87 days. Precision: 99.9%

(14) http://en.wikipedia.org/wiki/Trevi_Fountain

 http://it.wikipedia.org/wiki/Fontana_di_Trevi

 http://de.wikipedia.org/wiki/Fontana_di_Trevi

829 elements, 363 users, 432 days. Precision: 98%

(15) http://en.wikipedia.org/wiki/Radcliffe_Camera

 http://en.wikipedia.org/wiki/Bodleian_Library

41 elements, 31 users, 34 days. Precision: 93%

Figure 4.16: A world tour with Flickr and Wikipedia. The left image

in each pair stems from Wikipedia, the right image is the best match in

a mined cluster. The Wikipedia links which could be verified this way

are reported below the images, together with the cluster statistics. Note

the high precision scores and the size of some clusters. (See text for a

detailed discussion).

4.8. Discussion and Conclusions 141

Figure 4.17: Precision within selected clusters.

(2) http://en.wikipedia.org/wiki/Leonardo_da_Vinci

 http://en.wikipedia.org/wiki/Lisa_del_Giocondo

14 elements, 12 users, 12 days . Precision: 100%

(3) http://en.wikipedia.org/wiki/Roman_Forum

 http://en.wikipedia.org/wiki/Temple_of_Vesta

 7 elements, 7 users, 7 days Precision: 100%

(8) http://en.wikipedia.org/wiki/Tallinn

http://de.wikipedia.org/wiki/Tallinn

16 elements, 9 users, 16 days. Precision: 100%

(9) http://en.wikipedia.org/wiki/Zachary_Quinto

7 elements, 1 users, 1 days . Precision: 100.

(4) http://en.wikipedia.org/wiki/Lennon_Wall

7 elements, 7 users, 7 days. Precision: 100%.

(7) http://de.wikipedia.org/wiki/Altstadt_(Stadt_Z%C3%BCrich)

16 elements, 2 users, 11 days. Precision: 100%.

(1) http://en.wikipedia.org/wiki/Sainte-Chapelle

 http://en.wikipedia.org/wiki/Stained_glass

198 elements, 70 users, 70 days. Precision: 99%

(5) http://en.wikipedia.org/wiki/Rathaus-Glockenspiel

8 elements, 7 users, 7 days. Precsion: 100%.

(6) http://en.wikipedia.org/wiki/Viktualienmarkt

 http://en.wikipedia.org/wiki/Maypole

8 elements, 7 users, 7 days. Precison: 100%.

Figure 4.18: Additional, surprising mining results. See text for a dis-

cussion.

142 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.19: Auto-annotation of novel images using the mined clusters.

4.8. Discussion and Conclusions 143

http://en.wikipedia.org/wiki/St._Peter’s_Basilica

http://en.wikipedia.org/wiki/Notre_Dame_de_Pari

http://en.wikipedia.org/wiki/Basilica_di_Santa_Maria_della_Salute

http://en.wikipedia.org/wiki/Campo_dei_Miracoli

http://en.wikipedia.org/wiki/Astronomical_clock

http://it.wikipedia.org/wiki/Teatro_di_Marcello

http://de.wikipedia.org/wiki/Invalidendom

Figure 4.20: Results of automatic object-level annotation with bound-

ing boxes.

144 4. Mining Objects and Events in large, multimodal Datasets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Figure 4.21: ROC curves for automatically created bounding boxes on

mined data.

4.8. Discussion and Conclusions 145

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size

M
ea

n
IO

U

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Min Cluster size 0
Min Cluster size 100
Min Cluster size 500

Figure 4.22: Top: Mean intersection over union value (IOU) for de-

tected bounding boxes at different minimal cluster sizes. Bottom: ROC

curves by cluster size.

146 4. Mining Objects and Events in large, multimodal Datasets

Figure 4.23: True positive detection examples. Yellow (dashed) line:

annotation. Green (solid) line: detection.

4.8. Discussion and Conclusions 147

(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.24: False positive detection examples. Yellow line: annotation.

Red line: detection. First row: False positives due to mismatch with an-

notation. In (a) the annotated Wikipedia article is ’St. Mark’s Campanile’ in

(b) Viktualienmarkt. In both cases the learnt object-levlel annotation refers to

another aspect at the same location. (St. Mark’s Square and Maypole, respect-

ively). Second row: particularly challenging examples. In (c) the groundtruth

annotation for Colloseum includes the stone in the foreground, (d) extremely

cluttered scene and small object (Prague Astronomical Clock), (e) difficulties

of separating fore- and background, if images in cluster are taken from same

viewpoint. (f) and (g): typical under-estimation of bounding box size due to

lack of feature coverage.

5
Retrieval in a Multimodal

Context

In the preceding chapters we looked into mining visual data at sev-
eral levels. We mined basic feature configurations in Chapter 3, and in
Chapter 4 we proposed a system which automatically mines objects and
events from community photo collections. In this chapter, we access the
databases from the retrieval side. Stepping one more step closer to a fully
functional object recognition system, we look into the retrieval process
and the user-interaction with the system, including the user interface.

Retrieval and mining are closely related topics. Mining data from sources
such as the Web, allows us to create indices and entry points to access
the data. If we are able to detect occurrences of certain object classes
(Chapter 3), the database could be accessed by searching for the cor-
responding class names. Mining specific objects and their descriptions
from the Internet (Chapter 4) allows us to access the index either with
text search to find images depicting the object, or with a query image of
the object, to learn more about it, for instance by reading a Wikipedia
article. Such a capability has a wealth of applications, especially for the
rising number of camera-equipped mobile phones in use, and the growing
amount of digital imagery being shared on the Web.

The Web and the use of mobile devices for retrieval define a multimodal
context, which should be exploited by retrieval applications. We ex-
ploited the multi-modality of the data in community photo collections
in the previous chapter to make the connection between an object and
related Internet content. This allows retrieval with one modality, re-
questing content for another as result. For instance, taking a picture of

150 5. Retrieval in a Multimodal Context

a building with a mobile phone returns related Wikipedia pages. The
multimodal context can also be used to support the retrieval process.
For example, the geographic position of the user making a request from
a mobile device can be used to restrict the search space to objects within
her vicinity.

This chapter explores such applications by discussing several prototype
applications that were implemented in the course of this thesis. The
chapter is organized as follows. In Section 5.1 we look shortly into the
history of image retrieval. In Section 5.2 we discuss retrieval applications
for mobile devices, and the potential impact these devices will have as an
interface in the near future. This is followed by an evaluation of several
prototype applications for mobile devices, including a city-guide and a
slide-tagging application for meeting rooms. In Section 5.3 we focus on
applications for the Web. Finally, in Section 5.4 we propose an approach
to locate and extract text in natural scenes, as an additional means to
support multimodal retrieval in visual data. The chapter concludes with
a discussion of related works and a summary of the results.

5.1 The Query by Example Paradigm Re-

visited

Understanding and interpreting the content of an image is one of the fun-
damental problems of computer vision research. A substantial amount
of work has been carried out in the 1990’s, trying to exploit global fea-
ture descriptors such as color, shape and texture to build image retrieval
systems. The typical usage scenario proposed to start with an example
image as a query and to use its (global) features to retrieve similar im-
ages from a database. Similarity is typically expressed as a distance in
feature space either for a single feature type or a combination of mul-
tiple types. Such an interaction with the system is commonly termed
Query by Example (QBE). Some of the early systems that worked ac-
cording to this paradigm include the QBIC project [Flickner et al., 1995]
at IBM, BlobWorld [Carson et al., 1999], NeTra [Ma and Manjunath,
1999], PicHunter [Cox et al., 2000] and MARS [Rui and Huang, 1999],
and many others.

5.1. The Query by Example Paradigm Revisited 151

However, relying on an example image as a starting point for the search
also arrives with certain limitations to the system’s usefulness. After
all, where would the user get the example image from? And if he had
it already, why would he want to search for another image with similar
content? QBE is typically combined with other entry points into the
retrieval process. One approach consists of initiating search with a text
retrieval on the meta-data associated with the images in the database
to obtain a set of initial sample images. The process then continues
with content-based image retrieval by selecting the sample closest to the
expected result. Cortina [Quack et al., 2004] was one of the systems
which applied this solution to search a few million images from the Web.

Other approaches are category-based browsing, or retrieval within the
database, i.e. the queries are selected from (sub-)images in the database.
The latter is especially relevant for video data, where the task consists
of finding an object from a query frame in other shots of the video.
Here, the influential work by Sivic and Zisserman [Sivic and Zisserman,
2003] probably marks the turning point, where interest in the community
shifted from similarity retrieval to object-level retrieval and from global
image features to (visual vocabularies of) local appearance features.

Similarity retrieval and retrieval within a closed database are of interest
mostly to users in the publishing and media industry, trying to find
similar data for a given image, for instance when looking for illustrations
and photos to illustrate news articles, or archive video data for a given
topic.

With the widespread availability of digital cameras, on-line photo sharing
platforms, and mobile phones with integrated cameras, the QBE concept
in its “purest” form is suddenly of relevance again: using a mobile phone,
the user can “generate” an example-image with a single click and even
transmit it to a retrieval system automatically. With this application
the focus shifts to identifying a specific object in the query image, rather
than retrieving similar images. In other words, the main purpose of the
system is not to return more images of the same, but to identify a specific
object in the image and to return multimodal information about it. This
could ease Web search from mobile devices: instead of tedious typing of
keyword queries on small buttons, sending a picture is sufficient to start
searching. Figure 5.1 shows the results from a study [Kamvar and Baluja,
2006] conducted by Google. It shows the time a user spends typing a

152 5. Retrieval in a Multimodal Context

Figure 5.1: Time required to enter a keyword query on a mobile device

in relation to query length (in characters). Figure by [Kamvar and Bal-

uja, 2006]

query on a mobile phone keypad for a given number of characters in the
query. It is quite stumbling, that the average time spent typing amounts
to roughly 40s. Beyond the limitations imposed by typing of queries, in
some cases the user may not even know the correct query to enter, e.g .
for an unknown landmark building in a foreign city. This concept, i.e.
the possibility to interact efficiently with physical objects (or “things”
for that matter) and to access digital information about them is often
termed “The Internet of Things”.

The following section explores the application of object recognition in
this context. We put an emphasis on the user perspective on image and
video retrieval by investigating various applications, systems and user
interfaces for object-level retrieval in visual databases.

5.2 Object Recognition for Mobile Devices

Extending the Internet to physical objects — the Internet of Things
— promises humans to live in a smart, highly networked world, which
allows for a wide range of interactions with this environment. One of
the most convenient interactions is the request for information about
physical objects. For this purpose several methods are currently being
discussed. Most of them rely on some kind of unique marker integrated
in or attached to the object. Some of these markers can be analyzed

5.2. Object Recognition for Mobile Devices 153

using different kinds of wireless near field communication (for instance
RFID tags [Want, 2004] or Bluetooth beacons [Fuhrmann and Harbaum,
2003]), others are visual markers and can be analyzed using cameras, for
instance standard 1D-barcodes [Adelmann et al., 2006] or their modern
counterparts, the 2D codes [Rohs and Gfeller, 2004].

A second development concerns the input devices for interaction with
physical objects. In recent years mobile phones have become sophist-
icated multimedia computers that can be used as flexible interaction
devices with the user’s environment. Besides the obvious telephone
capabilities, current devices offer integrated cameras and a wide range
of additional communication channels such as Bluetooth, WLAN and
GPRS/UMTS/3G access to the Internet. People are used to the device
they own and usually carry it with them all day. Furthermore, with the
phone-number, a device is already tied to a specific person. Thus it is
only natural to use the mobile phone as a personal input device for the
Internet of Things.

Indeed, some of the technologies mentioned above have already been in-
tegrated in mobile phones, for instance barcode readers or RFID readers.
The ultimate system, however, would not rely on markers to recognize
objects, but rather identify it by their looks, i.e. using visual object re-
cognition from a mobile phone’s camera image. Since the large majority
of mobile phones contain an integrated camera, a significant user base
can be addressed at once. With such a system, snapping a picture of an
object would be sufficient to request all the desired information on it.
While this vision is far from being reality for arbitrary types of objects,
with the methods presented in the preceding chapters we are able to
recognize certain types of objects very reliably and “hyperlink” them to
digital information.

Using object recognition methods to hyperlink physical objects with the
digital world brings several advantages. For instance, certain types of
objects are not well suited to attach markers. This includes also large
landmark buildings, where markers might only be attached at few loc-
ations at the building. (such an experiment has been attempted with
the Semapedia project 1). Furthermore, a user might want to request
information from a distance, for instance for a church tower which is up

1http://www.semapedia.org

154 5. Retrieval in a Multimodal Context

to several hundred meters away. But even if the object is close, markers
can be impractical. A barcode or RFID attached to the label of an object
displayed in the museum would be difficult to access if the room is very
crowded. Taking a picture of the item can be done from any position
where it is visible. Furthermore, consistent tagging of the objects is of-
ten difficult to achieve. One example are outdoor advertising posters. If
a poster company wanted to “hyperlink” all their poster locations, they
would have to install an RFID or bluetooth beacon in each advertising
panel or attach a barcode to each of them, which requires a standardized
system and results in costs for installation and maintenance. Another
field of application are presentation screens in smart meeting rooms or
information screens in public areas. The content displayed on the screen
is constantly changing and it would be an involved process to add mark-
ers to all displayed content.

Using object recognition to interact with these objects requires only a
database of images. That being said, object recognition does not come
without restrictions, either. For instance, it is currently (and maybe
always) impossible to discriminate between highly similar objects, such
as two slightly different versions of the same product in a store. Fur-
thermore, efficient indexing and searching visual features for millions or
billions of items is still a considerable research challenge. (Chapter 6 of
this thesis presents some possible methods to scale retrieval in databases
of local image features).

5.2.1 Mobile Interfaces

In this section we discuss some of the options for system architecture and
user interaction when designing a retrieval system for mobile devices.
The options to consider include the distribution of processing tasks to
client or server side, or wether a request-response or a real-time stream-
ing interface should be offered to the user. Many of these options depend
on the processing capabilities of today’s mobile phones and on the band-
width available on mobile communication networks. In the following
sections we discuss some prototype applications of mobile user interfaces
we implemented.

5.2. Object Recognition for Mobile Devices 155

Client-side vs. Server-side Processing

One of the first questions to consider is which tasks can or should be done
on the phone itself and which tasks are better delegated to a server-side
processing system. One extreme would be to implement a whole system
including feature extraction, database storage and database search on
the mobile phone itself. This is currently only possible for applications
with small databases (a few thousand items at most, probably) and on
high-end devices due to limitations of CPU and memory. An overview
of the capabilities of currently available phones is given in Table 5.1. It
can be seen that CPU speed is a few hundred MHz at most, and only
the latest and most expensive devices have more than 100MB of RAM.

Phone Model Type Year CPU RAM GPS WiFi Camera
Nokia 6230 C 2004 ? 6 MB no no 0.3 MP
Nokia 6630 HE 2004 220 Mhz 10 MB no no 1.3 MP
Nokia N70 HE 2005 220 MHz 22 MB no no 2.0 MP
Nokia N95 HE 2007 332 MHz 128 MB yes yes 5.0 MP
Apple iPhone 3G HE 2008 412 MHz 128 MB yes yes 2.0 MP

Table 5.1: Capabilities of typical mobile phones. Type denoted as: HE

(High-end device). C (Simple consumer device).

For larger databases, one could consider moving at least the feature ex-
traction to the client, and sending features as query to a server. While
the set of local feature descriptors for a typical query image is usually
not more compact than a compressed image, the advantages would be
distributed processing for the feature extraction, and increased privacy,
since only features instead of images are transmitted. We thus imple-
mented SIFT and SURF feature extraction on the Symbian [Edwards,
2004] mobile platform using platform specific C++.

Feature extraction runtimes using SIFT and SURF for a few typical im-
ages are shown in Figure 5.2. The implementation is a rather straight-
forward port of the workstation source codes, i.e. not optimized for the
mobile beyond the changes that are required due to the architecture of
the embedded platform. It can be seen, how SURF outperforms SIFT
by about the same factor as on a PC. However, absolute runtimes are
extremely high, in average more than 10s for SURF on a typical im-

156 5. Retrieval in a Multimodal Context

anastacia marccain swissair bertel bell joystick

10

20

30

40

50

60

70

80

a
v
e

ra
g

e
 c

o
m

p
u

ta
ti
o

n
a

l
ti
m

e
 [

s
]

picture

SURF

SIFT

Figure 5.2: SIFT and SURF on a mobile Phone (Nokia 6630).

age. In contrast, on a modern PC SURF feature extraction takes a few
hundred ms [Bay et al., 2006b]. The absolute recognition times could
be reduced by avoiding floating point operations. Only just recently
client-side applications have been proposed [Wagner et al., 2008] which
allow real-time extraction of SIFT features on client-side devices through
heavy optimization.

Considering the fragmentation of the mobile phone ecosystem (e.g . oper-
ating systems, processors, etc.) and the rather low processing capabilities
of even high-end devices, a server-side approach for object recognition
seems preferable. The main challenge is now posed by transmitting the
image data to the server and rendering the response. Here, we imple-
mented three prototype applications:

1. Single shot server-side processing with manual release

2. Continuous real-time recognition from video streams

3. Hybrid: Single shot server-side processing with automatic release

5.2. Object Recognition for Mobile Devices 157

Figure 5.3: Client software for the cityguide application: the user snaps

a picture, waits a few seconds, and is redirected to the corresponding

Wikipedia page.

The implementation on the devices was carried out in several student
projects, detailed descriptions can be found in the respective reports [Breu
and Müller, 2008; Jecker and Knecht, 2008; Ulrich, 2006].

Single shot server-side processing with manual release

The simplest application consists of sending a single image initiated when
the user presses a button on the phone. The image is transmitted to a
server, sent through an object recognition pipeline, and the response is
sent back to the phone. Often, the response will be an URL to a web-
page with information about the recognized object. Thus, our sample
application opens the phone’s internal browser and renders the web-page
for the URL. This process is shown in Figure 5.3 with screenshots from
our application. The client-side software was programmed in C++ for
Symbian.

158 5. Retrieval in a Multimodal Context

Continuous real-time recognition from video streams

A more user-friendly application than the one in the previous section
would label recognized objects continuously on the phone’s screen. In a
server-side implementation of the actual object recognition pipeline, this
requires sending a continuous video stream to the server and detecting
objects from it. Our implementation [Jecker and Knecht, 2008] builds on
available open-source packages 2 to allow MPEG video-streaming from
Symbian devices via Bluetooth or Wireless LAN to a server. We exten-
ded the server software with a thread for object recognition. Incoming
frames are matched to the database of objects at regular time-intervals.
If a match is detected, the object is tracked through the subsequent
frames. Tracking is done by simply matching local features of the data-
base object continuously (SURF features allow this kind of real-time
matching) and the coordinates of a bounding box around the matched
features are sent back to the client. Along with the bounding box, a
string with the title is transmitted. The Symbian client was extended
to receive both the bounding box and the string with the object’s name,
and display them on the screen accordingly. This is shown in Figure 5.4.

When the object is lost while tracking, the database is queried again
with the incoming frames, and the process above is repeated. Note, that
the system is currently limited to recognize on object in the field of view,
but could easily be extended to handle multiple recognitions. Obviously,
receiving and processing many parallel streams would put a lot of burden
on a server system, too.

Hybrid: Single shot server-side processing with automatic re-
lease

Finally, we implemented an intermediate or hybrid approach. The idea
is to lower the burden on the server by avoiding processing of live video
streams, but maintaining usability over the single shot version. We pro-
pose to initiate queries from the client automatically, when appropriate.
More specifically, when the user holds the camera still (pointed at a
target), a request will be initiated. The appropriate time to initiate a
request will be determined by analyzing motion on the client device. We

2http://www.movino.org/

5.2. Object Recognition for Mobile Devices 159

Figure 5.4: Screenshots of our real-time, server side object recognition

system for mobile devices.

160 5. Retrieval in a Multimodal Context

Figure 5.5: Motion detection for a mobile visual search interface.

implemented a prototype based on optical motion detection from the
camera video feed on the client device. For that purpose we relied on an
implementation of motion history images [Davis, 2001], which are part
of the Nokia Computer Vision Library for Symbian3. If the observed
motion falls below a predefined threshold, a request is sent to the server
and the name of the detected object (if any) is displayed on the screen.
Figure 5.5 shows an example.

This approach could be extended by implementing client-side tracking
of objects. The tracking algorithm on the phone should be sufficiently
simple to run in real-time under the restrictions posed by the processing
capabilities by todays mobile phones. To handle drift, tracking could be
verified by sending a request to the server for more precise positioning
and re-initialization of tracking on the client.

3http://research.nokia.com/research/projects/nokiacv/

5.2. Object Recognition for Mobile Devices 161

5.2.2 Sample Applications

In this section we propose and evaluate two sample application scenarios
for object retrieval from camera-equipped mobile phones.

The first one is slide tagging in smart meeting rooms. Users have the
ability to ”click” on slides or sections of slides that are being presented
to record them for their notes or to add tags. The second application
is a cityguide on the mobile phone. Users have the possibility to take
a picture of a sight, send it to a recognition service, and receive the
corresponding Wikipedia article as an answer. For this application, the
search space is limited by integrating location information, namely cell-
tower ids or GPS.

Both systems are experimentally evaluated in different dimensions, in-
cluding different phone models with different camera qualities, for the
trade-offs using different kinds of search space restriction (geographic
location etc.), and with and without projective geometry verification
stage.

5.2.3 Hyperlinked Slides: Interactive Meeting Rooms

Today’s meeting rooms are being equipped with an increasing number
of electronic capturing devices, which allow recording of meetings across
modalities [Abowd, 1999; Amir et al., 2001]. They often include audio
recording, video recording, whiteboard capturing and, last but not least,
framegrabbing from the slide projector. These installations are usually
deployed to facilitate two tasks: allowing off-line retrieval and brows-
ing in the recorded meeting corpus and turning the meeting rooms into
smart interactive environments. In the work at hand, we focus on the
captured presentation slides which are a central part of today’s present-
ations. As shown in Figure 5.6, the slides usually contain the speaker’s
main statements in written form, accompanied by illustrations and pic-
tures, which facilitate understanding and memorizing the presentation.
Indeed, the slides can be seen as the “glue” between all the recorded
modalities. Thus, they make a natural entry point to a database of
recorded presentations.

A typical usage scenario for such a system could look as follows: Using
the integrated camera of her mobile phone, an attendee to a meeting

162 5. Retrieval in a Multimodal Context

Figure 5.6: Typical presentation slides from the AMI corpus database.

Figure 5.7: The user ”tags” a presented slide using our mobile applica-

tion by taking a picture (left), which is automatically transmitted to the

server and recognized (middle), a response is given in an automatically

opened WAP browser (right).

5.2. Object Recognition for Mobile Devices 163

takes a picture of a slide which is of interest to her. The picture is
transmitted to a recognition server over a mobile Internet connection
(UMTS, GPRS etc.). On the server, features are extracted from the
picture and are matched to the database of captured slides. The correct
slide is recognized, added to the users’ personal “bookmarks”, and she
receives a confirmation in a WAP browser on her mobile phone. Note
that the messaging from the phone can be done using standard MMS
or using a custom client-side application which we programmed in C++
on the Symbian platform. Figure 5.7 shows screenshots of our mobile
application for a typical usage scenario.

Back at her PC, the user has access to all her bookmarked slides at
any time, using a web frontend which allows easy browsing of the slides
she bookmarked. From each bookmarked slide she has the possibility
to open a meeting browser which plays the other modalities, such as
video and audio recordings, starting at the pint in time the slide was
displayed. By photographing only a section of a slide, the user has also
the possibility to highlight certain elements (both text or figures) — in
other words, the mobile phone becomes a digital marker tool.

Of course one could assume a very simple slide bookmarking method,
which only relies on timestamping. The client-side would simply trans-
mit the current time, which would be synchronized with the timestamped
slides. Our system does not only allow for more flexible applications (the
aforementioned “highlighting” of slide elements) but is also more robust
against synchronization errors in time. In fact, using a “soft” time re-
striction of some minutes up to even several hours would make our system
more scalable and unite the best of both worlds. Finally, a system like
ours could also discriminate between multiple parallel sessions, which
are common at larger conferences.

The basic functionality of the proposed slide recognition system on the
server is as follows: for incoming queries, scale invariant local features
are extracted. For each feature a nearest neighbor search in the refer-
ence database of slides is executed. The resulting putative matches are
verified using projective geometry constraints. The next two subsections
describe these steps in more detail.

164 5. Retrieval in a Multimodal Context

Slide Recognition System

We start from a collection of presentation slides which are stored as im-
ages. This output can be easily obtained using a screen capture mech-
anism connected to the presentation beamer. From the image files, we
extract scale invariant features around localized interest points. In our
implementation we use again SURF [Bay et al., 2006b] detector and
descriptor combination.

Slide recognition consists again of the two steps feature matching and
global geometric verification. For the feature matching we compare the
feature vectors from the query image to those of the images in the data-
base. In this example we use linear feature matching based on the Eu-
clidean distance as in the previous chapters. Since the database objects
(the slides) are planar, we can again rely on a 2D homography mapping
[Hartley and Zisserman, 2004] for the geometry filter. The result of such
a geometric verification with a homography is shown in Figure 5.8.

Experiments

For our experiments we used data from the AMI meeting room cor-
pus [Carletta et al. (17 authors), 2005]. This set contains the images of
slides which have been collected over an extended period using a screen-
capture card in a PC connected to the beamer in the presentation room.
Slides are captured at regular time intervals and stored as JPEG files.
To be able to synchronize with the other modalities (e.g . speech and
video recordings), each captured slide is timestamped.

To create the ground truth data, we projected the slides obtained from
the AMI corpus in our own meeting room setting and took pictures with
the integrated camera of two different mobile phone models. Namely,
we used a Nokia N70, which is a high-end model with a 2 megapixel
camera, and a Nokia 6230, which is an older model with a low quality
VGA camera. (See Table 5.1 for a detailed comparison of the phone
models.) We took 61 pictures with the N70 and 44 images with the
Nokia 6230 4. Figure 5.9 shows some examples of query images. The

4The query images with groundtruth are made available for download under
http://www.vision.ee.ethz.ch/datasets/.

5.2. Object Recognition for Mobile Devices 165

Figure 5.8: Geometric verification with a homography. Top rows:

matches for a query image with the correct database image. Top left:

before homography filter, top right: after homography filter. As the

match between the slides is correct most of the putative feature matches

survive the homography filter. At the bottom rows we match the same

image to a false database image. As can be seen at the bottom left, a lot

of false putative matches would arise without geometric verification, in

extreme cases their count can be similar to or higher than for the correct

image pair. At the bottom right all the false matches are removed, only

features from the (correctly) matching frame survive and the difference

in matching with the correct pair is drastically increased.

166 5. Retrieval in a Multimodal Context

(a) (b) (c) (d)

Figure 5.9: Examples of query images, from left to right: (a) with

compositions of text and image, (b) taken from varying viewpoints, at

different camera zoom levels or may contain clutter, (c) example which

selects a specific region of a slide, or (d) contains large amounts of text.

reference database consists of the AMI corpus subset for the IDIAP
scenario meetings, which contains 1098 captured slide images.

We extracted SURF features from the reference slides in the database at
two resolutions, 800x600 pixels and 640x480 pixels. For the 1098 slides
this resulted in a database of 1.02 ∗ 106 and 0.72 ∗ 106 feature vectors,
respectively. For the SURF feature extraction we used the standard
settings of the detector.

The resolutions of the query images were left unchanged as received
from the mobile phone camera. We ran experiments with and without
homography check, and the query images were matched to the database
images at both resolutions. A homography was only calculated if at least
10 features matched between two slides. If there were less matches or
if no consistent homography model could be found with RANSAC, the
pair was declared unmatched. If there were multiple matching slides,
only the best was used to evaluate precision. Since the corpus contains
some duplicate slides, a true match was declared if at least one of the
duplicates was recognized.

Table 5.2 shows the recognition rates, for the different phone models, dif-
ferent resolutions and with and without homography filter. At 800x600
resolution, the homography filter gives an improvement of about 2%
or 4% for each phone type, respectively. The recognition rate with a
modern phone reaches 100%, the lower quality camera in the older 6230
model results in lower recognition rates. The results for the 640x480
database confirm the results of the 800x600 case, but yield overall lower

5.2. Object Recognition for Mobile Devices 167

recognition scores. This is due to the fact that at lower resolution fewer
features are extracted.

Prec. w geometry Prec. w/o geometry
800x600 640x480 800x600 640x480

Nokia N70 100% 98,3% 98,3% 96,7%
Nokia 6230 97,7% 93,2% 91% 86,3%

Table 5.2: Summary of recognition rates for slide database.

As mentioned above, recognition with local features also allows for the
“highlighting” of parts of slides. This is especially interesting, when
combined with a video stream from the phone. The movement of the
phone can be tracked and an overlay can be shown on the tracked slides.
An example is shown in Figure 5.10. The 320 × 240 feed has been
matched to the slide collection, and the track has been highlighted on
the identified slide. Using a camera-phone, it is possible to virtually
“draw” on slides. For a real world system, some stabilization of the
tracks would be required, to cope with the shaky lines created from the
unstable hand-camera movement.

5.2.4 Hyperlinked Buildings: A Cityguide on a Mo-
bile Phone

The second application for the Internet of Things we present in this
chapter deals with a very different kind of objects. We “hyperlink”
buildings (tourist sights etc.) to digital content. Thus this application
forms an interface to a database like the one presented in Chapter 4. In
this chapter we are particularly interested in the retrieval performance
depending on the camera quality and the inclusion of multimodal context
such as geographic location information in the retrieval process.

Visual Data and Geographic Location

From the user perspective, the interaction process remains the same as
in the meeting room scenario: by the click of a button on the mobile
phone, a picture is taken and transmitted to the server. However, unlike

168 5. Retrieval in a Multimodal Context

Figure 5.10: Virtual highlighting of slides.

in the meeting room application, the guide client-side application adds
location information to the request, making the search multimodal. The
geographic information consists of the current position read from an
integrated or external (bluetooth) GPS device and/or the current cell-
tower id CGI (Cell Global Identity).

While GPS returns longitude and latitude information, which makes
localization simple, CGI needs some more explanation. The localization
reflects the GSM mobile phone network and is based on the cellular
structure of this network. Since the phone is connected to one or several
antennae, it is possible to determine in which cell the subscriber currently
is. Localization can now either build on exact positioning based on
triangulation between several antennae, on rough positioning given the
location of the corresponding cell-tower, or on prior observations of the
same cell id at a given location [Spirito et al., 2001]. The first two
options are usually only possible for network operators, since the access

5.2. Object Recognition for Mobile Devices 169

Element Name Example
MCC Mobile Country Code 228 (Switzerland)
MNC Mobile Network Code 1 (Swisscom), 2 (Sunrise), 3 (Orange)
LAC Location Area Code 20000
CI Cell Identity 26337608

Table 5.3: Cell Global Identity

to the required data and functionality is not publicly available. However,
some phones allow to retrieve information about the current cell, which
enables us to use the third option.

The precision of this kind of cell-based positioning depends on the size
of the cell. Cells in cities are small and have an extension of 200 – 300
meters, in other words, the location of mobile subscribers can be determ-
ined with a high accuracy. However, in the country-side the cells have
an extension of several kilometers. (The largest cell in Switzerland has
a radius of 35km.) The shape of a cell is a much more complex struc-
ture than what is generally assumed. It can be composed of dozens of
geographic polygons and each polygon in turn can be composed of thou-
sands of coordinates. Each such cell is identified by a CGI. It is created
by concatenating the four elements shown in Table 5.3. Note that the
LAC and the CI are operator specific, i.e. the same geographic location
has different LACs depending on the MNC. The CGI can be obtained
using the APIs of some mobile phone platforms, e.g . with Symbian but
not with J2ME (Java platform Micro Edition). When creating a refer-
ence database, we can note the CGIs at the location of the object or the
location, where the picture was taken. When comparing a query image
to the database, the CGI associated with the incoming image is used to
restrict the search to objects with the same CGI.

Combining a picture and location data (either GPS or CGI) forms a
perfect query to search for information on static, physical objects. As
mentioned before, location information alone would in general not be
sufficient to access the relevant information: the object of interest could
be several hundred meters away (e.g. a church tower), or there could
be a lot of objects of interest in the same area (e.g. the St. Mark’s
square in Venice is surrounded by a large number of objects of interest).
Furthermore, in urban areas with tall buildings and narrow roads, GPS

170 5. Retrieval in a Multimodal Context

Figure 5.11: Client software for the cityguide application: the user

snaps a picture, waits a few seconds, and is redirected to the corres-

ponding Wikipedia page.

data is often imprecise. On the other hand, relying on the picture only
would not be feasible, either: the size of the database would make real-
time queries and precise results very difficult to achieve.

After the query has been processed, the user receives the requested in-
formation directly on the screen of her mobile phone. In our demo ap-
plication we open a web browser with the Wikipedia page corresponding
to the object. This is illustrated in Figure 5.11.

System Design

The cityguide system consists of a server side recognition system and a
client-side software on the mobile phone.

The server-side elements consist of a relational database for storage of
image metadata (GPS locations, cell information etc.) and information
about the stored sights. We used mySQL for this purpose. The image

5.2. Object Recognition for Mobile Devices 171

recognition is implemented as a server in C++ which can be accessed
via HTTP.

Queries from the client software are transmitted to the server as HTTP
POST requests. A middleware written in PHP and Ruby restricts the
search by location if needed and passes this pre-processed query to the
recognition server. The associated content for the best match is sent
back to the client and is displayed in an automatically opened browser,
as shown in Figure 5.11.

Client software on the mobile phone was implemented both in Symbian
C++ and Java5. Note that the feature extraction of the query hap-
pens on the server side, i.e. the full query image is transmitted to the
server. Alternatively, our system can also be accessed using the Multi-
media Message Service (MMS). A picture is transmitted to the server
by sending it as an MMS message to an e-mail address. The response
(Wikipedia URL) is returned as an SMS message.

Object Recognition Method

The data from the client-side application is transmitted to the recogni-
tion server, where a visual search restricted by the transmitted location
is initiated. If GPS data is used, all database objects in a preset radius
are searched (different radii are evaluated in the experimental section). If
only cell-tower information is used, the search is restricted to the objects
annotated with the same CGI string.

The object recognition approach is very similar to the method discussed
for the meeting room slides. That is, putative matches between pairs
of query and database images are found by nearest neighbor search for
their SURF [Bay et al., 2006b] descriptors. These putative matches are
validated with a geometry filter.

Experiments

To evaluate the proposed method, we collected a database of 147 photos
covering 9 touristic sights and their locations. The 147 images cover the

5Unfortunately, only the Symbian version allows access to the celltower ids.

172 5. Retrieval in a Multimodal Context

9 objects from multiple sides, at least 3 per object. The database images
were taken with a regular point-and-shoot camera. To determine their
GPS location and CGIs we developed a tracker application in Symbian
C++ which runs on a mobile phone and stores the current GPS data (as
obtained from an external bluetooth GPS device) and CGI cell inform-
ation at regular time intervals. This log is synchronized by timestamps
with the database photos.

We collected another 126 test (query) images, taken with different mobile
phones (Nokia N70 and Nokia 6280, both with 2 Megapixel camera) on
different days and times of day, by different users and from random
viewpoints. Of the 126 query images 91 contain objects in the database
and 35 contain images of other buildings or background (also annotated
with GPS and CGI). This is an important prerequisite to test the system
with negative queries, an experiment which has been neglected in several
other works. Compared to the MPG-20 database6 we have fewer objects
but each of them covered from multiple sides (in total about 30 unique
representations), more challenging viewpoints for each side (distance up
to 500 meters), full annotation with both GPS data and celltower ids,
and more than 4 times as many query images. The database with all
annotations (GPS, cellids, objects Wikipedia pages etc.) is available for
download 7. Both database and query images were re-scaled to 500×375
pixels. (Sample images from the database are visible in Figure 5.12 and
are discussed a few paragraphs below).

Note that the CGI (Cell Global Identity) depends on the network oper-
ator, since each operator defines its own set of cell ids. If the operator
does not release the locations of the cells (which is common practice in
many countries for privacy reasons), we have to find a mapping between
the cell ids of different operators. We achieved such an experimental
mapping by using our tracker application: tracks obtained with SIM
cards of different mobile network operators were synchronized by their
GPS locations: if GPS points were closer than 50m, a correspondence
between the respective cell ids was established. This mapping is far from
complete, but it simulates an approach which is currently followed by
several initiatives on the Web.

6http://dib.joanneum.at/cape/MPG-20/
7http://www.vision.ee.ethz.ch/datasets/

5.2. Object Recognition for Mobile Devices 173

Prec. w. geometry Prec. w/o geometry Time
Full database linear 88.0% 67.4% 5.43s
GPS 300m radius 89.6% 76.1% 3.15s
Cell id 74.6% 73.9% 2.78s

Table 5.4: Summary of recognition rates for cityguide.

We present experiments for three scenarios: linear search over the whole
database without location restriction, restriction by GPS with differ-
ent search radii, and restriction by cellid. For all cases we compare the
trade-off between search time and recognition rate. A pair of images was
considered matched, if at least 20 features matched (with and without
geometry filter). From the images which fulfilled this criterion the one
with the most matches was returned as a response. Table 5.4 summar-
izes the results. For the baseline, linear search over the entire database
without geometry filter we achieve 67.4% recognition rate. This value is
outperformed by over 20% with the introduction of the geometry filter,
resulting in 88% recognition rate. This is due to the removal of false
positive matches.

Restricting search by GPS location with a radius of 300 meters is about
40% faster while increasing precision slightly for the case with geometry
filter and more substantially for the case without filter. Restriction by
cell-tower CGI is slightly faster but significantly worse in precision. This
seems mostly due to the fact that our CGI correspondences for different
operators might be incomplete. For a real world application, where an
operator would hopefully contribute the cell id information or a search
radius bound by GPS coordinates we would thus expect better results.

Overall the best results are achieved with GPS and a rather large radius
of several hundred meters. In Figure 5.13 we plot the precision versus
time for different radii. At 100 meters we retrieve most of the of the
objects correctly, but only between 300 and 500 meters we achieve the
same recognition rates as for linear search, however at significantly higher
speed. In fact, this speed-up over linear search will obviously be even
larger, the more items are in the database. The recognition times can
be further sped up with a suitable indexing structure such as the ones
discussed in Chapter 6.

174 5. Retrieval in a Multimodal Context

Visual results are shown in Figure 5.12. Section (a) shows query images
in the left column and best matching database images for each query in
the right column. Note the distance of the query image to the database
image in the first row and the zoom and low contrast of the query in
the second row. Section (b) contains a query image at the top and the
best database match at the bottom. Besides the viewpoint change and
occlusion through the lamp and railing, note that query and database
image have very different weather and lighting conditions since they were
taken several weeks apart. Section (c) shows another query database
pair, this time for a facade with strong cropping and change of angle.
The last image in section (d) contains a typical “negative” query image,
which should not return any matching object.

The results show the beneficial effects of the geometry filter. Overall
recognition rates could be improved with better coverage of database
items with additional images, for instance based on the mining approach
discussed in Chapter 4. Restricting search to a geographic radius of a few
hundred meters increases speed significantly even in our test database
and will be essential for large-scale real world applications. At the same
time, the results show that relying only on GPS information (objects
up to several dozen meters away) would not be suitable for a real-world
guiding application. Being able to “select” from many possible objects
in the the user’s vicinity (including far away objects) by simply pointing
the mobile phone camera to the desired target brings significant usability
benefits to the users.

5.3 Object Recognition for Web Applica-

tions

As mentioned earlier in this work, the combination of the availability of
cheap digital recording devices and the change of the Internet towards a
more interactive, multimedial platform (“Web 2.0”) opens new possibil-
ities for object recognition applications on the Web.

Two sample applications we implemented shall serve as an example for
what kind of applications are to be expected in the coming years. Our
applications are an interface for auto-annotation on community photo

5.3. Object Recognition for Web Applications 175

collection, and a desktop application for 3D reconstruction of photos.
Both applications build on the mining methods introduced in Chapter 4.

5.3.1 Auto Annotation for Community Photo Col-
lections

The goal of this application is to provide a simple, web-based auto-
annotation interface for photos on Flickr. The application implements
the process proposed in Chapter 4.6 and build directly on the mined
object clusters. The user initiates an annotation by dragging one of his
photosets from Flickr to a map, as shown in Figure 5.14. The applic-
ation identifies the country the set was dragged onto and tries to find
annotations for the photos in the set, by matching it with the mined
object clusters from that country. Currently the response time is not
real-time and the annotation is not done on the bounding box level yet,
but these features can easily be added.

The application is implemented using the Flickr API. Users can log-
in with their Flickr username, their photosets show up, and they can
proceed with the annotation process as just described.

5.3.2 Browsing Photos in 3D

The ability to share images on the Web leads to collections with sig-
nificant amounts of photos of the same object. We exploited this fact
already in Chapter 4 by clustering photos which belong to the same ob-
ject. The photos in the resulting clusters show an object from varying
viewpoints, which allows reconstruction of the 3D scene around the ob-
ject. In theory, a complete and precise 3D reconstruction from pictures
taken with a large variety of cameras is possible. In practice, however,
this is quite challenging. An easier task consists of estimating the approx-
imate camera positions in 3D-space. This allows browsing photos in 3D,
as proposed in [Snavely et al., 2006]. The focus of that particular work
is on the 3D reconstruction process The creation of the photo-clusters
the reconstruction is based on is not discussed. The combination of our
mining work with 3D browsing as in [Snavely et al., 2006] thus offers

176 5. Retrieval in a Multimodal Context

the potential for exciting user interfaces to data in community photo
collections.

To investigate this potential in some more detail, we created a simplified
implementation of the system described in [Snavely et al., 2006]. Our sys-
tem consists of a “classic” Structure-from-Motion (SfM) pipeline [Hartley
and Zisserman, 2004]. The main challenges in our setting are estimat-
ing the correct intrinsic camera parameters from EXIF data provided
with the photos, and the selection of a “good” starting pair of images
for the SfM process. Sensor data required to calculate the internals
for each camera is read automatically from EXIF files, from a data-
base downloaded from the Web, or by crawling camera datasheets from
the Web. The starting pair is selected by creating “tracks” of features
through matched images, as proposed in [Snavely et al., 2006]. (Our im-
plementation uses connected component analysis on a graph of matched
features to identify good feature tracks). Point correspondences for 3D-
reconstruction were calculated from Harris corners [Harris and Stephens,
1988], due to their more accurate localization compared to the Hessian
used in the SURF interest point detector. The implementation of the
required framework was carried out by Fabio Magagna during his MSc
thesis, which summarizes the details of the approach in [Magagna, 2008].

Figure 5.15 shows sample results. The examples demonstrate that it is
possible to calculate correct 3D representations for browsing from the
data acquired with the method from Chapter 4 – without additional
supervision. However, full 3D reconstruction of objects, especially for
smaller clusters and for more complex items than the ones shown in
Figure 5.15 would require substantial additional refinements at the 3D
reconstruction pipeline.

While writing this thesis, a work which shows very similar results ap-
peared in [Li et al., 2008b].

5.3. Object Recognition for Web Applications 177

(c) (d)

(a) (b)

Figure 5.12: Result images for the city-guide application, see text for

details.

178 5. Retrieval in a Multimodal Context

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Search Radius [m]

R
ec

og
ni

tio
n

R
at

e
[%

]

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Search Radius [m]

M
at

ch
in

g
T

im
e

[s
]

Figure 5.13: Recognition rate (left) and matching time (right) depend-

ing on radius around query location.

Figure 5.14: Interface for auto-annotation of Flickr photos. Users start

an annotation task by simply dragging a set of photos to a country as

shown in the example.

5.3. Object Recognition for Web Applications 179

Figure 5.15: Examples of 3D reconstruction from community photo

collection data. The photos are positioned at the estimated camera

locations, the object is represented by a point-cloud calculated from

point correspondences. In clockwise direction: Arc du Triomphe, Notre

Dame de Paris (close-up), Notre Dame de Paris, Trevi Fountain Rome.

(Only a small selection of cameras is shown)

180 5. Retrieval in a Multimodal Context

5.4 Detecting and Reading Text in Images

In the preceding sections we described methods and showed implement-
ations of systems that mine or retrieve certain types objects, e.g . land-
mark buildings from digital repositories such as online community photo
collections. Many of those images also contain another very specific type
of “object”, namely text. Text is omnipresent in our surroundings – it
appears on street signs, store signs, product packagings, etc. A good
retrieval system for visual data would make use of this information by
extracting and indexing it. This would allow multimodal retrieval based
on text keywords, or potentially other applications, such as geotagging
an image based on a street name which was read from a street sign
present in the image.

However, unlike text in scanned documents, the text in those natural
scenes can appear anywhere in the image, in any font, at any scale, with
(perspective) distortions, variable lighting, and large amounts of clutter.
Figure 5.16 shows a few examples of text in images from flickr.com.
Nevertheless, text has very characteristic visual properties. Thus, one
might try to learn these properties and use them to locate text in images
such as the ones from Figure 5.16. In a second step, OCR (Optical
Character Recognition) could be applied on the detected regions, and
make the extracted text available to a retrieval system.

We propose an approach for text localization based on the Viola-Jones
face detector [Viola and Jones, 2001b]. This is motivated by the observa-
tion that text, just like faces, seems to be composed of quite simple and
characteristic patterns. The hope is thus, that adapted features might
be learned well with an approach similar to face detection.

This chapter summarizes a joint work with my former Masters student
Martin Renold. His report [Renold, 2008] contains further implementa-
tion details and additional interesting evaluations.

5.4.1 Text Detection Approach

Our text detection approach is an adaption of the Viola-Jones method
for face detection [Viola and Jones, 2001b]. Their system consists of a

5.4. Detecting and Reading Text in Images 181

Figure 5.16: Examples of text in natural scenes

trained classifier for faces, which is evaluated on rectangular windows at
all locations and scales to locate faces in previously unseen images.

To make this extraordinary large detection problem solvable in reason-
able time, their well-known method relies on a few key ideas, which are
summarized in the following:

• Image features are based on rectangular blocks and can be com-
puted using so-called integral images at any scale in constant time.

• A simple threshold is used to treat a feature as a weak classifier.

• Adaboost is used to automatically select a subset of all weak clas-
sifiers and to combine them into a strong classifier.

• A cascade of increasingly complex strong classifiers allows to reject
easy background early on without sacrificing much computation.

We discuss our slightly modified version of this pipeline for text detection
in the following sections.

182 5. Retrieval in a Multimodal Context

R

W

Figure 5.17: Block based features are parameterized by their location

and size. All possible rectangles within this 10x10 raster are considered

during training.

Figure 5.18: The intensity based features used. The absolute intensity

difference between the black and the white region is calculated. Left:

comparing block to window intensity; right: Haar-like edge features

5.4.2 Features

Text detection differs from face detection in several aspects, which leads
to the following requirements for our features:

• the features should be invariant to color inversion, since both black
on white and white on black text should be detected.

• while frontal face detection may use well-located features of the
face (like the eye region) the position and shape of letters are not
fixed. Therefore statistical properties (e.g . the texture) are more
important.

We thus propose to use four types of features based on intensity, variance,
edges, and a scanline property. These features are calculated as follows:

Similar to [Viola and Jones, 2001b] most of our features are based
on calculating measures on the pixels within a sub-rectangle R of the

5.4. Detecting and Reading Text in Images 183

window W , which is to be classified as text or non-text. The geometry
of this sub-rectangle is parameterized as in Figure 5.17. Figure 5.18
shows three intensity-based features calculated from such sub-rectangles.
These features are similar to the ones used in [Viola and Jones, 2001b].
The main purpose of the first feature (full block), is to check whether
the regions above and below the text line have a color different from
the text. The horizontal and vertical Haar-like features (2nd and 3rd
in Figure 5.18) are also used in [Viola and Jones, 2001b]. However, we
use absolute values in order to detect black and white text equally well.
Both feature types are contrast normalized with respect to the whole
window.

Another simple feature is the variance of the gray level values of pixels
inside a region. It is motivated by the observation, that regions with
very low intensity variance are quite common (sky, uniform surfaces)
and rarely contain text. Furthermore, the feature can be calculated ef-
ficiently from the squared integral image. We used two variants of this
feature type. The first feature is simply the variance inside the whole
detection window. Conveniently this value needs to be calculated any-
way to contrast-normalize intensity based features. The second feature
calculates the ratio between the variance inside a subrectangle and the
variance of the whole window. This has the effect of contrast normaliza-
tion. One property of this feature is, that it checks, whether a subregion
contains only bright or only dark pixels instead of text.

A third type of features is based on edges. The idea is that text has
a certain minimum and maximum number of edges. Those statistics
are different for horizontal and vertical edges, and also depend on the
position within the detection window (e.g . there is usually a blank stripe
above and below the text). The challenge is to somehow “count” the
number of edges with just a few lookups in an integral image. To that
end, we first perform edge detection on the original grayscale image
I(x, y) using the Sobel operator. This results in the gradient images
Gx(x, y) and Gy(x, y):

Gx(x, y) = I(x, y) ∗ Sx(x, y) (5.1)

Gy(x, y) = I(x, y) ∗ Sy(x, y) (5.2)

184 5. Retrieval in a Multimodal Context

with

Sx =
1
8

1 0 −1
2 0 −2
1 0 −1

 and Sy =

1
8

1 2 1
0 0 0
−1 −2 −1

 . (5.3)

For the next processing steps, only the absolute values |Gx(x, y)| and

Figure 5.19: The values of |Gx(x, y)| of the same text at different

resolutions. We are interested in counting the number of vertical edges

inside the horizontal stripe region R, independent of the resolution.

|Gy(x, y)| are considered. Let us further assume that the original image
is a clean black-and-white binary image. Figure 5.19 shows an example
of the |Gx(x, y)| values in a rectangular block R. The sum along a single
horizontal pixel row

g(R, y) =
∑

x∈Rx

|Gx(x, y)| (5.4)

is now a good approximating of the number of vertical edges crossing
this row. When combining all h pixel rows inside the w× h rectangle R

to get a more robust feature, the values of g(y) have to be averaged to
still get an equivalent to the number of edges:

ex(R) =
1
h

∑

(x,y)∈R

|Gx(x, y)|

ey(R) =
1
w

∑

(x,y)∈R

|Gy(x, y)|

Because the text will rarely be clean black on white, ex and ey depend
on the contrast of the text and the amount of noise in the window. Thus,

5.4. Detecting and Reading Text in Images 185

three normalization methods were put into the feature pool for Adaboost
to choose from. For the contrast:

window contrast: f1 =
fx(R)
s(W)

(5.5)

block contrast: f2 =
fx(R)
s(R)

(5.6)

where s(R) and s(W) are the standard deviation of the block R and win-
dow W , respectively. To tackle the noise problem, a third normalization
comparing to the number of edges within the whole detection window
was used:

f3 =
fx(R)
fx(W)

. (5.7)

Combining the three normalization methods f1, f2 and f3 with ex, ey

and ex +ey results in nine different feature types. As a tenth edge based
feature, we used the fraction of the horizontal edges:

fr =
fx(R)

fx(R) + fy(R)
. (5.8)

Finally, a last feature type – scanline based features – was discovered
rather coincidentally. Starting from a border pixel of the detection win-
dow, all pixels along a given scanline are walked through at the full
image resolution (Figure 5.20). The idea is to find the minimum or
maximum segment length in the binarized image. Binarization is done
with a hysteresis to reduce noise effects near the transitions.

The high and low threshold values are centered around the window mean
intensity, with a distance chosen by Adaboost (between 0.5 and and 2
times s(W)).

We will show in the experimental section that adding each of the intro-
duced feature types improves recognition rates.

5.4.3 Classifier Training

Training the feature cascade using boosting requires labeled training
windows as input. On training images, readable text lines were thus

186 5. Retrieval in a Multimodal Context

Figure 5.20: 10 horizontal, 10 vertical and 2 diagonal scanlines were

in the feature pool. The intensity value is tracked and binarized (with

hysteresis) along the selected scanline. The result is the minimum or

maximum distance between two transitions.

manually labeled with rectangles, including some space above and below
the letters. These labels were split into detection windows with width-
to-height ratio 2:1 and then used as positive samples for Adaboost. An
example annotation is shown in Figure 5.21.

Figure 5.21: Annotation Sample: overlapping 2 × 1 windows used for

annotation, one example window is marked in green.

Bootstrappingg was done by randomly sampling background windows
until their number was equal to the number of the foreground windows.
The last stage of the cascade was allowed to train with only half as
many background samples. The training stops when there is not enough
background left in the training set.

Classifier training follows mostly the approach proposed by [Viola and
Jones, 2001b]. The only significant difference in our implementation is
the use of Discrete Adaboost with a modification for asymmetric learn-
ing, which updates the weights for each boosting round in an asymmetric
way. It is based on an approach proposed in [Viola and Jones, 2001a] for
Asymmetric Adaboost, but applied to Discrete Adaboost: before each

5.4. Detecting and Reading Text in Images 187

boosting round the weights of the positive samples are multiplied by a
factor C and the weights of the negative samples are divided by C. The
factor C is defined as

C = exp(
k

T
) (5.9)

where T is the total number of boosting rounds and k a constant chosen
by the user. Note that k = 0 stands for the symmetric case. Good
choices for k turned out to be 1 < k < 4.

One problem that arises here is that the number of boosting rounds T

has to be known before the boosting starts. Because the performance
on the validation set is used as a stopping criterion, T depends on how
well the selected features work. But this depends again on the choice of
C. To resolve this, each stage is trained twice: once with T set to the
number of boosting rounds of the previous stage, and once again with
T set to the result of the first training round. This could be repeated
several times until T converges, but one iteration seems to be enough for
practical purposes.

5.4.4 Detection and Reading

Detecting text in a novel image is carried out by executing three steps:

1. Detect windows containing text-fragments using the trained clas-
sifier

2. Combine detected windows into lines of text

3. Read the text lines using OCR

Each of these steps is described in the following.

Detecting text fragments

For a test image all windows of all scales are classified in either text or
non-text using a classifier cascade trained as described in the previous
section. A minimum text window size of 40 × 20 pixels was used. The

188 5. Retrieval in a Multimodal Context

maximum size of the scanning window is limited only by the image di-
mensions. Scanning windows are set at steps of 0.4 (horizontal) and 0.2
(vertical) of the window size at the current scale.

Combining text fragments

The raw detection windows are clustered using a greedy window merging
approach. Isolated detections are discarded, assuming that they are
false positives. A detection rectangle R1 is merged to the cluster of the
rectangle R2 if their intersection-over-union measure is higher than 0.4:

|R1 ∩R2|
|R1 ∪R2| > 0.4 (5.10)

The merging procedure between windows and clusters is the same as the
one used in single-link hierarchical agglomerative clustering. The prior
knowledge that text detections are more likely to cluster horizontally
than vertically is used by enlarging all raw detection windows horizont-
ally by 1/3 of their original width before clustering. This turned out
to have the additional benefit of including the first or last letter of a
text-line, which were often missed before.

Clusters consisting of less than three detection windows are discarded.
To remove outliers, for each of the remaining clusters, the text height is
estimated by the log-average within the cluster:

ĥ = exp(
1
n

n∑

i=1

log(hi)) (5.11)

The final text bounding box created from each cluster is the union of
all detection windows, excluding windows that are more than one scale
step above the estimated height ĥ. This modification was added due to
the observation, that including all detection windows often lead to an
over-estimated bounding box size.

Reading Text using OCR

The final step for making the detected text accessible to a retrieval sys-
tem consists of decoding it using Optical Character Recognition (OCR).

5.4. Detecting and Reading Text in Images 189

For that purpose we rely on existing OCR engines. Results obtained
using several commercial and open-source engines are presented in Sec-
tion 5.4.5.

Due to the challenging nature of the text we extracted from images of
natural scenes, several pre-processing steps are necessary, before feeding
a text window into an OCR engine. First, the detected regions are cut
out and their histogram is normalized. In order to keep processing times
low, the resulting cropped image is scaled down to a maximum height
of 80 pixels.

Most OCR programs accept greyscale images as input, however earlier
works such as [Chen and Yuille, 2004] reported to get better results with
prior binarization of text areas. In general, binarization is a well studied
topic in Computer Vision, a recent study for the specific task of text
binarization under challenging conditions is for example [Lu and Tan,
2007].

Note that most binarization methods assume a black on white text and
will give very poor results for white on black. Because of this, white on
black images must be detected and inverted before binarization. Since
there are usually more background pixels than text pixels, this can be
done simply by counting the pixels below the mean intensity. The image
is inverted if more than 50% of the pixels are below the mean intensity.

We considered three different thresholding approaches for binarization:
Otsu’s global thresholding, Niblack’s adaptive thresholding and Sauvolas
algorithm which is a variant of Niblack (details can be found in [Lu and
Tan, 2007]). Figure 5.22 shows an example with the three thresholding
methods applied. It is evident that in contrast to scanned text, for
natural scenes, global thresholding is not an option, since it can’t handle
effects such as gradients.

Figure 5.22: Original image, global threshold (Otsu), local threshold

(Sauvola).

190 5. Retrieval in a Multimodal Context

5.4.5 Experiments and Results

We present results of our method on a series of datasets, with a focus on
detection precision, but also reporting results on the whole recognition
pipeline including OCR performance. Three different datasets were used
as training and testsets:

FlickrText. We collected a text dataset consisting of pictures of street
signs and advertisement panels in the region of Zürich. This set also con-
tains images of book pages, newspapers, and a few URLs and numbers
displayed on LCD screens. Additionally about a quarter of the images
were downloaded from Flickr8. Only text in roman letters was collected
and annotated. In total, we labeled 599 rectangles in 209 images split
into 3423 detection windows.

The background regions were also labeled manually in order to have text,
non-text and unlabeled data. Unlabeled areas were necessary for special
cases, in particular small, unreadable, rotated and heavily distorted text,
as well as artistic fonts and graffiti. It turned out that the training
process often stopped because it could not find enough false positives
to train on. Thus, additional city scene images were collected from
Flickr, and examples which contained many false positives were labeled
as additional background training data. Alltogether, background regions
from 632 images were thus used. Images from the Flickr set were then
split randomly into three subsets of equal size for training, validation
and testing.

CamPhoneText. For this set, we took pictures of signs, newspapers,
screens, etc. using low-quality mobile phone cameras. We annotated the
readable text in 88 challenging low-quality images (640× 480 with blur
and noise). This set is intended as a particularly challenging test set.

ICDAR. The ICDAR set is a benchmark set9 used in the 2003 and
2005 Text Locating Competitions [Lucas, 2005] of the International Con-

8www.flickr.com
9http://algoval.essex.ac.uk/icdar/Datasets.html

5.4. Detecting and Reading Text in Images 191

ference on Document Analysis and Recognition (ICDAR). The set con-
sist of 258 training images and 251 test images.

We evaluate the performance of our approach by measuring the quality
of the text detection and text reading separately.

Text detection

Text localization is measured by evaluating the correct detection of the
individual 2:1 letter annotation windows. We evaluate the results using
ROC curves, plotting correct detections vs. false positives. The false
positive rate is simply measured by running the detector on the labeled
background regions in the testing set. The positive responses are coun-
ted and divided by the total number of classified windows. This way,
detections that overlap with a text region are never counted as false
positives.

For the true positive rate, we used two measures. The strict hit rate re-
quires that each window is detected at its exact position. The permissive
hit rate (or just hit rate) counts a true positive for the ground-truth
window A, if there is any text window B detected with an intersection-
over-union value higher than 0.4:

|A ∩B|
|A ∪B| > 0.4 (5.12)

This measure is more realistic, since the detection of individual letters
does not need to be perfect, as clustering merges the letters later. Note
that we use a value of 0.4 for the threshold, which is lower than in other
object recognition tasks, where it is typically 0.5. The reason is that the
small letters contain more uncertainty already in their annotation.

Overall detection results are shown in Figure 5.23. The ROC curves are
created by varying the Adaboost threshold of the last stage. The differ-
ent outcomes for the same training run are due to the random sampling
of background during the training process. The overall recognition rate
is with 98% extremely high. Compared with the state-of-the-art repor-
ted in [Lucas, 2005; Chen and Yuille, 2004] it seems we reach the same
level of precision, however, direct comparison is difficult, since different
evaluation measures on different datasets are used. (The evaluation is

192 5. Retrieval in a Multimodal Context

Figure 5.23: Detection results on Flickr set. Left: ROC curves for six

training runs. Right: complexity of the cascade for the same training

runs (expressed in the number of features used by the classifier).

on a detected word level - our algorithm detects individual text win-
dows, which are then merged to lines of text, but no discrimination of
individual words is attempted at this stage). It would be interesting to
test our system in a new benchmark like [Lucas, 2005], by extending our
algorithm to extract individual words.

The total runtime to produce the raw detection results on a typical
1600 × 1200 JPEG image is about 0.5s (Pentium 4, 2.40GHz). The
actual detection part (after the integral images are calculated) takes
0.18s. Figure 5.24 shows raw text detection windows in difficult natural
scenes.

Figure 5.25 shows how the various feature types are selected and com-
bined. Each of them leads to a substantial precision improvement while
at the same time reducing classifier complexity. It is worth noting that
in the first four stages Adaboost selects only edge based features. In the
later stages all feature types are selected, with a slight preference for
edge based features.

Figures 5.26 and 5.27 show example results on the ICDAR trial test set.
The results show the detected text after clustering the individual detec-
tion windows. Figure 5.27 shows some typical false positive windows.
It is also typical, that multiple fasle positives appear at the same loca-
tion. Both figures demonstrate the tradeoff that has to be found between
tolerating false positives and missing some of the more difficult text.

5.4. Detecting and Reading Text in Images 193

Figure 5.24: Raw detection results: All results correspond to the

highest ROC curve in Figure 5.23. Note the handwritten text in the

topmost line, rotated text, and gradient in the 2nd and 3rd image, re-

spectively, and the large amount of text handled in the last example.

The number at the bottom is not detected due to the lack of spacing to

the barcode.

194 5. Retrieval in a Multimodal Context

Figure 5.25: Feature Selection and Combination by Adaboost. Effect

on detection performance (left), and classifier complexity (right).

Figure 5.26: Two difficult text areas from the ICDAR trial test set.

True positives in red and false positives in blue. Operating at a higher

false positive rate (45 ∗ 10−6) allows to find more of the text.

5.4. Detecting and Reading Text in Images 195

Figure 5.27: False positives. Some typical false positives when running

at 45∗10−6 false positives (blue, background). At 5∗10−6 false positives

(red) only the correct text is found.

Figures 5.28, 5.29 and 5.30 shows additional example results for the text
detection after clustering raw detections.

Reading Text

To measure the OCR performance, the ground truth and the OCR out-
put for each image were treated as a “bag of words”. This is based on
the assumption that a word has been located correctly, if it was read
correctly. We counted the number of true positives and false positives.
The true positives where counted with a strict measure for correctly read
words and a softer measure counting “almost correctly” read words. “Al-
most correct” is defined as words with a Levenshtein [Levenshtein, 1966]
(edit) distance to their groundtruth counterpart smaller than one third
of the correct word length.

All detected words, that do not refer do any word in the groundtruth we
call “clutter”. (Essentially, these are false positives).

196 5. Retrieval in a Multimodal Context

Figure 5.28: Example detections (I). True positives in red, false posit-

ives in blue. Note the variety of viewpoints and fonts, including hand-

written text.

5.4. Detecting and Reading Text in Images 197

Figure 5.29: Sample detections (II). Note the text appearing in differ-

ent contexts, including station lists, cell-phone screens, cars, and stores.

Evaluation was carried out mainly on the CamPhoneText set, and on
the ICDAR set. We used the very challenging CamPhoneText, since it
simulates a mobile application scenario, where users send in text photo-
graphed with their mobile phone, with the goal to initiate a web-search
based on the extracted text.

Three different OCR engines were tested, two of them free software and
one commercial: Tesseract10, GOCR11 and the ABBYY FineReader En-
gine (FRE)12. The results on the ICDAR set are shown in Figure 5.31
(left). FRE outperforms Tesseract in terms of quality, however Tesseract
is faster. Overall, the rate of correctly read words is with 8% quite poor,
which is surprising after the good localisation results observed earlier.

10http://code.google.com/p/tesseract-ocr/
11http://jocr.sourceforge.net/
12http://www.abbyy.com/

198 5. Retrieval in a Multimodal Context

Figure 5.30: Sample detections (III)

Unfortunately, the ICDAR competition [Lucas, 2005] did not evaluate
reading of text, such that no means of comparison is given. The abso-
lute performance on the CamPhoneText dataset Figure 5.31 (right) is
drastically lower due to the low resolution and heavy blur of the text in
most images. While some text was not found by the detector, much of
the correctly located text could not be read due to the blur.

In contrast to the PhoneCamText set, the ICDAR set contains high
quality and high resolution images. Missed detections were rather due
to special fonts, cluttered backgrounds and single letters or digits. Our
detector requires a minimum of about three letters, and the FlickrText
training set did not include many images with special fonts. An experi-
mental training of the detector with a more challenging dataset resulted
in a more complex classifier, without a significant improvement in pre-
cision.

5.4. Detecting and Reading Text in Images 199

Figure 5.31: Comparing the different OCR engines after Niblack ad-

aptive thresholding, on the ICDAR datasets (left) and on the CamPhon-

eText dataset (right). This is the result of the complete system, meaning

that a missed word can be either unreadable or not located.

As a verification, we also feed the whole image (without a localization
step) to the OCR engine. The output were only false positives in most
cases.

The effect of binarization can best be seen with Tesseract in Figure 5.33.
Niblacks method turned out to work best, possibly because the advant-
age of Sauvolas method would be mainly on empty regions, which do
not appear often within the well-located text boxes. Both implement-
ations had two additional hard (non-adaptive) thresholds for very dark
and very bright regions, suppressing the most obvious noise.

Unlike Tesseract, FRE performed almost equally well on the original
greyscale image as with Niblack binarization (see Figure 5.33 (right)).
Scaling the image up did help sometimes, for example for the image
shown in Figure 5.32.

Once text in an image has been located and read this opens a wealth
of possibilities for improved retrieval applications. One entertaining ex-
ample is shown in Figure 5.34. The task is to guess the location a picture
was taken at by the text detected in an image. In this example the loca-
tion (Haapse, Estonia, where a large fraction of this thesis was written)
is correctly identified.

200 5. Retrieval in a Multimodal Context

Figure 5.32: A sample image from the low quality dataset. Using FRE,

initially only the text “QZH-737695” was returned. The text “www

schmdJer comm” could be read after scaling up the image.

In summary, our boosting-based approach for text detection showed very
good results with EER of over 90% on images of natural scenes. The
combination of the proposed features led to a strong and effective classi-
fier, while maintaining fast execution times. It turned out, however, that
reading the text from the extracted regions poses substantial challenges
to current OCR engines. Especially on low quality images taken with
phone cameras, the result of OCR due to blur and clutter is of very low
precision. In conclusion, currently text recognition in natural scenes is
only feasible for images of high quality and by employing powerful OCR
techniques on the detected text windows.

5.4. Detecting and Reading Text in Images 201

Figure 5.33: Left: Results with Tesseract on the PhoneCamText set

using the raw greyscale regions, using global thresholding (Otsu), and

using an adaptive threshold (Niblack and Sauvola). Right: Compar-

ing different methods on the PhoneCamText set with the FRE Engine:

without binarization, Niblack binarization, resized images, and different

operating point of detector (higher true positive rate).

HAAPSE I

(a)

(b) (c) (d)

(e)

Figure 5.34: Guessing location from text in images. (a) Where was

this picture taken? Detected text is labeled with the bounding box. (b)

Close-up of the text. (c) After binarization. (d) Text returned from

OCR. (e) Result when sending the text from (d) to Google maps. The

picture was taken by the author of this thesis in the small village Haapse,

Estonia, indeed.

202 5. Retrieval in a Multimodal Context

5.5 Related Work

Our work on retrieval relates to a wide range of work carried out in this
field. In the widest sense, it relates to the early works on image retrieval
mentioned in the introduction of this chapter. Our work on retrieval for
mobile devices relates to more recent work in several aspects. One aspect
covers work related to our smart meeting room application, for instance
the use of camera-equipped mobile phones as an interaction device for
large screens. Here, Ballagas et al. have suggested a system [Ballagas et
al., 2005] which allows users to select objects on large displays using the
mobile phone. However, their method relies on additional 2D barcodes
to determine the position of the camera and is meant to use the mobile
phone like a computer mouse in order to drag and drop elements on the
screen. Very recently, in [Boring et al., 2007] a system similar to ours
has been proposed for recognizing icons on displays. While the screens
are conceptually similar to the ones used in meeting rooms, we are not
aware of any other work that has proposed using camera-equipped mo-
bile phones for tagging or retrieval of slides in smart meeting rooms. The
most similar works in that respect deal with slide retrieval from station-
ary devices. For instance [Vinciarelli and Odobez, 2006] have proposed
a system, which applies optical character recognition (OCR) to slides
captured from the presentation beamer. Retrieval and browsing is done
with the extracted text. In contrast to our work, the method cannot deal
with illustrations or pictures in the slides. SlideFinder [Niblack, 1999] is
a system which extracts text and image data from the original slide data.
Image retrieval is based on global color histograms and thus limited to
recognize graphical elements or to some extent the global layout of the
slide. Using only the stored original presentation files instead of the
captured image data does not allow for the synchronization of the slides
to other modalities such as recorded speech or video. Both systems are
only meant for query-by-keyword retrieval and browsing from a desktop
PC. While our system could also be used for off-line retrieval with query-
by-example, we focus on tagging from mobile phones. This requires the
identification of the correct slide reliably from varying viewpoints, which
would not be possible with the cited approaches.

Another aspect is covered by work on guiding applications on mobile
devices. [Bay et al., 2006a] have suggested a museum guide on a tablet

5.5. Related Work 203

PC. The system showed good performance in recognizing 3D exhibition
objects using scale invariant local features. However, in their system
the whole database resisted on the client device, which is generally not
possible for smaller devices such as mobile phones and larger databases.
A similar system on a mobile phone, but with somewhat simpler object
recognition is the one proposed in [Föckler et al., 2005]. The sugges-
ted recognition relies on simple color histograms, which turns out not
to be very robust to lighting changes in museum environments. Dis-
criminating instances of the objects in our applications, namely slides or
outdoor images of touristic sights, is even less reliable with global color
histograms.

The work most similar to our mobile city guide application is maybe [Paletta
et al., 2006]. Similar to the cityguide application presented in this pa-
per, the authors also suggest a cityguide on a mobile phone using local
features. However, their focus is on improving recognition capabilities
using informative and compact iSift features instead of SIFT features.
Our work differs significantly in several points: we use multiple view geo-
metry to improve recognition, we rely on SURF features (which are also
more compact and faster than SIFT features), and we also investigate
numerically the effects of restriction by GPS or cell ids on the recogni-
tion rate and matching speed. Finally, the test databases we propose
contain images taken from viewpoints with much larger variation than
the databases used in [Paletta et al., 2006].

Text extraction from natural scenes (Section 5.4) has also been covered
by a small number of recent works. An overview of early text inform-
ation extraction systems can be found in [Jung et al., 2004]. More re-
cently [Chen and Yuille, 2004] proposed an approach very similar to ours.
It is worth mentioning that this system was ranked second in the ICDAR
2005 Text Locating Competition [Lucas, 2005], only being 2% lower in
precision than the first-ranked method, but 40 times faster. A similar
approach was also taken in [Wu, 2005], where text localization was part
of a spam classification system. While their methods are also based on
the concepts from [Viola and Jones, 2001b], our method differs in several
ways. First, we propose a different set of features to detect text. Fur-
thermore, we evaluated feasibility of text detection on data taken with
mobile phone cameras, with the goal to extend our object recognition
system with text recognition on mobile devices. Finally, preliminary res-

204 5. Retrieval in a Multimodal Context

ults not included in this thesis indicate, that our approach can be also
used to efficiently detect and decode 2D barcodes in natural scenes.

5.6 Discussion and Conclusions

We have presented retrieval applications for multimodal scenarios. The
applications focus on identifying a specific object in a scene and to return
related multimodal information about the identified object. The required
information about objects can be collected e.g . with a mining process,
as presented in Chapter 4.

We have put a strong focus on object recognition for mobile phones,
which allows users to request information on objects by taking a picture
of them. Our approach to object recognition for mobile devices relies
on server-side recognition, combined with an optimized user interfaceon
the client-side. On the server-side, we have implemented a recognition
system and evaluated its capabilities in two challenging scenarios: slide
tagging from screens in smart meeting rooms and a cityguide on a mo-
bile phone. For both applications the object recognition system is based
on state-of-the-art local features, combined with a geometric verification
of potential matches. Multimodal information such as the geographic
location of the mobile user are added to the query process in order to
increase precision and scalability. Evaluation carried out for both ap-
plications showed the benefits of using a geometric verification, while
recognizing both planar slides and 3D buildings from challenging images
taken with mobile phone cameras.

For the mobile user interface, we have investigated several options, in-
cluding real-time streaming and augmentation of objects on the screen
with 2D bounding boxes, and a motion detection based interface for auto-
matic initiation of queries to the server. Especially the motion detection
based approach seems interesting for further evaluation. Identifying an
object from databases with millions of items on the device itself will
probably be infeasible for at least a few years. Thus, server-side recogni-
tion offers significant advantages. The load on the server can be reduced
by iniitating queries sporadically. On advanced mobile phones such as
the iPhone client-side tracking of detected objects could now be added,

5.6. Discussion and Conclusions 205

which would result in an improved user experience and would allow for
interesting mobile augmented reality applications.

In addition to the mobile user interfaces we also introduced two sample
applications for the Web. One application exhibits a simple drag-and-
drop user-interface for auto-annotation of photos in community photo
collections with detected landmark buildings etc. The second applica-
tion reconstructs a 3D point cloud and camera position estimations from
clusters of photos belonging to the same object. Such an application is
intended for appealing browsing of photos in community photo collec-
tions. Both applications build directly on the results from the mining
method presented in Chapter 4.

Finally, we have also proposed an approach to localize text in images
of natural scenes. This has applications for both mobile- and web ap-
plications, allowing to access the text in the images for keyword search,
or conversely, using it to initiate text queries from images in a QBE
scenario. The approach is based on the Viola-Jones approach for face
detection using modified features which obtained good results on chal-
lenging benchmark datasets.

6
Scaling Retrieval

6.1 Introduction

In the preceding chapters we introduced several methods for object-
level mining and retrieval of visual data. All of these methods have in
common, that they rely on local image features for recognition. The
recognition process always includes a matching step, where, for a query
feature vector, the matching vectors from a database have to be iden-
tified. To make a mining or recognition system scalable, this matching
step has to be efficient. One way to achieve scalability is to reduce
the amount of data that has to be searched by including background
knowledge. We did this in Chapter 4 when we carried out matching of
images per geographic tile. And in Chapter 5 we reduced the search
space for landmark buildings by including geographic location data with
the query. However, sometimes we can’t avoid searching databases with
millions of items. Either because the data does not offer any possibility
to restrict search with another modality (e.g . a database of book or CD
covers), or when even with the inclusion of restrictions the number items
to be searched are in the order of hundreds of thousands. Finally, for
many real-world applications interactive response times and the ability
to process queries from multiple users efficiently are desired. These cases
require scalable methods to search large databases of local features.

Using visual vocabularies (see Chapter 2.3) has recently been shown to
scale to large amounts of data, when using large vocabulary sizes [Nistér
and Stewénius, 2006; Philbin et al., 2007]. However, significant amount
of research has been carried out over many years trying to solve the

208 6. Scaling Retrieval

underlying general problem, namely the efficient identification of (ap-
proximate) nearest neighbors in high-dimensional spaces. Some of these
methods promise advantages over the visual words approach, mostly by
avoiding the time consuming clustering process, which is required to cre-
ate visual vocabularies. The goals of this chapter are thus twofold: first
we want to investigate the performance of alternative methods to the
clustering approach, especially methods which would in theory promise
better scalability than k-means clustering. Second, we are interested in
investigating the unique properties of databases of local image features
compared to “general” nearest neighbor search problems, and which im-
pact these properties have on the design choices for a scalable retrieval
method.

The main contributions of this chapter are: 1) an extensive evaluation of
the “classic” algorithms LSH, metric trees, and the more recent Redund-
ant Bit Vectors (RBV) in terms of NN search versus scalability on large
databases of local image features. 2) An evaluation of strategies to move
from NN search to an image or object retrieval system. 3) An exhaustive
evaluation and comparison to recent clustering-based methods for large
benchmark datasets. We limit our evaluation to the appearance feature
indexing problem in this chapter. Geometric verification can be added
to improve any such method.

The chapter is organized as follows: we start with an introduction of
datasets and evaluation measures in Section 6.2. We continue with sum-
maries of the methods we consider for evaluation in Section 6.3. This
is followed by an evaluation in terms of nearest neighbor (NN) retrieval
performance in Section 6.4. Section 6.5 discusses the steps to get from
NN search to object retrieval. In Section 6.6 we evaluate a selected al-
gorithm (forests of metric trees) on large datasets and compare to other
state-of-the-art methods. The chapter ends with a discussion of related
work and our findings in Sections 6.7 and 6.8.

This chapter is based on an evaluation carried out by my two former stu-
dents David Scheiner and Reto Schwarz during their Masters thesis [Scheiner
and Schwarz, 2007].

6.2. Datasets, Features, and Evaluation Metrics 209

6.2 Datasets, Features, and Evaluation Met-

rics

We will evaluate the different methods on recent benchmark data from [Nistér
and Stewénius, 2006; Philbin et al., 2007] and on additional large data-
sets, which we collected ourselves. More specifically, throughout the
chapter we will report results on the following sets:

UK Set: A collection of 2500 objects, each shot from four different
viewpoints, introduced in [Nistér and Stewénius, 2006].

UK Set Small: The first 5 000 images of the UK Set. The query set
consists of the first viewpoint of the first 500 objects. All query images
are removed from the database, resulting in a data set of 4 500 images.

Oxford Set: A dataset containing 5000 images of different Oxford
landmarks from [Philbin et al., 2007].

Amazon Set: A database of 52 000 DVD covers we downloaded from
amazon.com. 79 query images were photographed from real DVDs using
mobile phone cameras.

DMOZ Noise set: 1 million random images we downloaded following
links on the first few levels of the Open Directory Project. This set is
intended as a large noise set.

Figure 6.1 shows some example images from the datasets, and Table 6.1
shows a summary of the dataset sizes. For each set we extracted SURF [Bay
et al., 2006b] features, which results in a bag of 64-dimensional feature
vectors for each image. We chose SURF features due to their fast ex-
traction times and good recognition performance in prior evaluations.

We consider several evaluation measures. To investigate the quality of
nearest neighbor (NN) search, we measure how well an algorithm per-
forms in finding the true NN. The effective distance error E was proposed

210 6. Scaling Retrieval

Dataset # Images # Features # Q # Q-feat.

UK 10 200 15 297 858 2550 3 863 723

UK S 4 500 1 736 564 500 167 617

Oxford 5 063 21 406 572 55 105 881

Amazon 52 002 55 021 426 79 400 559

DMOZ 1 146 819 328 528 420 - -

Table 6.1: Dataset Statistics: Number of database images, number of

database features, number of query images and query features.

by [Gionis et al., 1999]: given the distance dt to the true NN and the
distance dalg to the NN found by the algorithm for each query point
q ∈ Q, the effective distance error is calculated as follows:

E =
1
|Q|

∑

q∈Q

(
dalg(q)
dt(q)

− 1
)

(6.1)

where Q is the set of all query points. It measures the average error
resulting from the approximate nature of the algorithms. In addition to
E, we also consider the fraction of true NNs found (for a set of ground
truth query points) by each algorithm.

To evaluate algorithms on the retrieval system level, we use the mean
average precision (mAP) measure, as proposed by [Philbin et al., 2007].
Average precision (AP) is the area under the precision-recall curve for a
query. An ideal precision-recall curve has a precision of 1 over all recall
levels and with this an average precision of 1. Mean average precision is
obtained by averaging the AP values for several queries of a test set. On
the UK Set the same metric as in [Nistér and Stewénius, 2006] was used,
which is a score defined by the average fraction of correct (i.e. depicting
the same object) images in the first four results, i.e. a score in the range
[0, 4].

6.3 Overview of Methods

We complement the works using k-means clustering by investigating sev-
eral NN search methods; Locality Sensitive Hashing (LSH) [Datar et al.,

6.3. Overview of Methods 211

Figure 6.1: Query image and three true positives for each the UK Set,

Oxford Set and Amazon Set

2004], Redundant Bit Vectors (RBV) [Goldstein et al., 2005], and met-
ric trees [Uhlmann, 1991]. All methods have been suggested to perform
well in high-dimensional spaces. LSH is probably the most popular ap-
proximate NN search technique today. Metric trees (or the similar ball-
trees) represent “classic” exact methods with good performance. Not-
ably, in [Liu et al., 2004] a study on smaller datasets showed that metric
trees can be adapted to handle the approximate NN problem with a
speed-up of up to 30 times over LSH. RBVs are a rather new approach
which recently received interest due to their speed-up over LSH at low
memory consumption. These methods represent a good variety of differ-
ent approaches to NN search with a good performance in earlier studies
and with a high potential for scalability. In the following sections, we
evaluate how the methods compare in terms of finding the correct NNs
versus their consumption of resources. We start with a summary of the
theory for each method.

212 6. Scaling Retrieval

6.3.1 Locality Sensitive Hashing

LSH [Gionis et al., 1999] is a popular family of algorithms for approx-
imate NN search. Its basic idea is to apply several hash functions to the
points in the database, which ensure that points lying close to each other
have a higher probability of collision than points far apart. A query point
is treated with the same hash functions, and points found in the match-
ing buckets are retrieved. We chose an algorithm proposed in [Datar et
al., 2004], which works directly in the Euclidean space (unlike [Gionis et
al., 1999] and related methods which operate in Hamming space). The
employed hashing procedure maps d-dimensional points d ∈ Rd to the
integer range by random projections

h(d) = ba · d + b

w
c (6.2)

With this, the integer range is segmented into r sections of width w =
INT MAX/r. b is randomly selected from a uniform distribution [0, w].
The elements of vector a are drawn from a p−stable distribution, in
our implementation a Gaussian distribution, since we use an L2 norm
(see [Datar et al., 2004] for details). For increasing r, the width w of
the segment in which random projections fall decreases. By this scheme,
close-by points are mapped into the same sections of a projection with
high probability. Random collisions are further minimized by concaten-
ating k random projections

x(d) = (ba1 · d + b

w
c, ..., bak · d + b

w
c) (6.3)

into a random has function x. By increasing k, the probability that two
points far away accidentally map to the same x diminishes, while two
close points likely result in the same x-value. Therefore the probability
that two random points map to the same hash key converges to zero.

6.3.2 Redundant Bit Vectors

Redundant Bit Vectors (RBVs) are a rather new method, proposed
in [Goldstein et al., 2005] as an approach for high-dimensional nearest
neighbor search and originally intended for indexing audio fingerprints.

6.3. Overview of Methods 213

While one of the main strengths of the method is its ability to quickly
discard items that don’t have a match in the database (“negative quer-
ies”), it can also handle (bounded) NN search. [Goldstein et al., 2005]
reports good results, especially an order of magnitude speedup over LSH
in an audio fingerprinting database. A particularly interesting property
of RBVs is their small memory footprint.

The main idea of the RBV algorithm is to quantize the query space
(instead of the feature space, as in almost all other fast NN matching
approaches). The argumentation is, that in high dimensional spaces loc-
ality properties are weak, and thus the grouping of the database into bins
defined by locality is rarely helpful while searching. To that end, each
dimension of the query vector is split into Q bins. Next the algorithm
constructs an individual hypercube of side length 2ε around each data
point x1 . . . xn ∈ Rd. This hypercube overlaps with one or more of the
Q bins in each dimension. The set of all n data points falling into a
bin is represented by a bit vector of length n, where a 1 means that the
corresponding point extends into the bin for that dimension.

Thus for each dimension, a Q× n bit field representation of the data is
created. The total memory requirement for all bit fields is Q · n · d bits.
The side length 2εi of each hypercube is determined by calculating the
average distance to t randomly selected data points. The resulting value
is then multiplied by a tunable factor r.

Note that the size of the Q bins for each dimension depends on ε and
that the bins are not of equal size. To determine the sizes of the bins,
tentative bin boundaries are created by adding and subtracting ε values
from each data point. For each dimension, a list is built and sorted. The
lists are partitioned in 2n/Q blocks. The first and the last element in a
block define the boundaries of a bin.

At query time, for all dimensions the bins containing the query point
are selected, and the associated bit vector column is retrieved. All bit
vector columns found are combined using the bitwise AND operation on
blocks of 64 bits (64 bit architecture). The i-th non-zero entry in the
resulting vector indicates that the query point falls within the hypercube
of the i-th data point. For a small r, this often leads to a result vector
containing only zeros, since the algorithm was designed to discard neg-
ative queries. For (approximate) NN retrieval a slightly adapted version

214 6. Scaling Retrieval

is required. We introduce the following cut-off criterion: while we AND
the dimensions, naturally with each AND-operation less non-zero bit vec-
tor elements are left. If the number of non zero entries drops below a
threshold value, we stop early. This leaves us with a set of NN candid-
ates instead of only one single closest, which we search in linear fashion.
This procedure adds softness to the method, which helped finding more
true NN at low cost in speed. In fact, by stopping AND-ing early, we save
some processing time, which is “recycled” for the linear search at the
end.

6.3.3 Metric Trees

Metric trees were introduced in [Uhlmann, 1991]. In a metric tree, the
data points are partitioned by their distance to certain pivot points. At
every node of the tree, two points (the pivots) of the dataset are selected.
Then the distance to the two pivots is calculated for all points in the
node, and the points are assigned to the closer node. In this fashion
the data is split into two sets, which are sent to the child nodes, and
the process is repeated. When a node only contains one data point, the
process is stopped. This node then constitutes a leaf of the metric tree.

Literature on metric trees describes many possibilities to optimize the
tradeoff between quality and resource-consumption of these tree algorithms [Ciac-
cia et al., 1997; Liu et al., 2004; Moore, 2000]. However, since most works
only deal with comparatively small data sets (up to 100,000 data points)
or “low” dimensionality (up to d ≤ 30), it is not immediately evident
how these optimizations would perform on large data sets. Thus, we im-
plemented several variations of metric trees and tested them on our data.
The methods differ by three characteristics: the partitioning scheme, the
handling of data near partition boundaries, and pivot selection.

Partitioning schemes are either spherical or symmetrical. For the former,
a hypersphere is drawn around one of the pivots. All data points inside
the sphere are assigned to the node whose pivot defines the sphere’s
center. All remaining data points are assigned to the other node. In a
symmetrical partitioning scheme, a hyperplane is created which separ-
ates the space at equal distance to the pivots.

6.4. Evaluation in terms of NN Search 215

Since splitting the data between the pivots is a hard decision, points near
the boundary might lead to false decisions while traversing a tree. One
method to avoid this problem is to introduce overlapping boundaries, or
“spilling” [Liu et al., 2004; 2007]. Points lying inside an overlap region
belong to both pivots. Therefore, these data points are duplicated and
assigned to both child nodes. This procedure can be carried out while
building the tree (“buildup spilling”) or during lookup (“lookup spilling”,
or “backtracking”).

Finally, there are several ways to select the pivots, the simplest being
a random selection. We use a “ping-pong” scheme: at each node one
pivot is selected at random, its distance to all other points in the current
set is calculated, and the point farthest away is selected as the second
pivot. This process is repeated until no points remain. After intensive
prior experiments, we identified the following variants of metric trees as
promising candidates:

mtreesph: tree with spherical partitioning. The radius of the sphere
is the mean of the distance from the pivot to all other data-
points. Lookup spilling is implemented using an overlapping re-
gion, defined as the fraction d of the sphere radius. If a query
point lies inside the overlap range, it is “duplicated” and sent to
both children.

mtreesym: symmetrical partitioning and lookup spilling by an over-
lap region along the separating hyperplane instead of the sphere,
defined by the fraction d of the distance between the pivots.

Note that spilling requires additional memory for the duplication of data
points. One way to optimize memory usage is the hybrid spill tree [Liu,
2006]. The basic idea is not to spill at each node, but only where it
would make a substantial difference. We tried several proposed schemes
but did not observe improvements over regular spilling on our data.

6.4 Evaluation in terms of NN Search

Our first set of experiments compares the three proposed algorithms
in terms of NN search. A good algorithm has the following desirable
properties:

216 6. Scaling Retrieval

Figure 6.2: Quality of NN search: Effective Distance Error

1. It is fast in finding the NN.

2. The index representation is compact (in memory).

3. The time to build the index is manageable.

4. There are few parameters to optimize.

Thus, in this series of experiments we set the quality of NN search in
relation to the first three criteria. The last criterion (number of paramet-
ers) will be discussed at the end of this section. We compare the different
NN methods on the UK Small dataset (see Section 6.2). For each al-
gorithm, we varied its parameters and studied the effect on performance
in precision, resource consumption, and build time. We selected the res-
ult which showed the best performance and/or performance vs. resource
trade-off and compare them in Figures 6.2 and 6.3. Figure 6.2 shows the
results for the effective distance error measure. The curves are obtained
by varying one free parameter for each algorithm.

6.4. Evaluation in terms of NN Search 217

 0
 100
 200
 300
 400
 500
 600
 700

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
g.

 lo
ok

up
 ti

m
e

sp
ee

du
p

mtreesph
mtreesym

LSH
RBV

 0

 50

 100

 150

 200

 250

 300

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
g.

 m
em

or
y

us
ag

e
[M

B
]

 0
 50

 100
 150
 200
 250
 300
 350

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
g.

 b
ui

ld
 ti

m
e

[s
]

fraction of true nearest neighbors found

Figure 6.3: Quality of NN search: Fraction of True Nearest Neighbors

For LSH, we varied the parameter r (number of sections) between 150
and 375. Small r values result in a large number of collisions. Therefore,
each bucket contains many data points, which have to be searched in a
linear fashion. In general, this leads to a low error rate at a higher cost
in computation. The number of concatenated functions k is set to 10,
as suggested by [Datar et al., 2004]. Other values were also tested but
do not push the results beyond those reached with k = 10. Increasing
k leads to fewer collisions, whereas decreasing r leads to more collisions.
As both parameters have a coupled effect, only r is swept. The hash
table size was set to 12 bits. Different table sizes were tested, but did
not result in an improvement.

For RBV, the parameter r (which controls the hypercube size) was var-
ied in the range [0.05, 0.3]. Several values for the number of bins per
dimension Q were tested. Q = 12 gave the best results and is shown
in this summary. As suggested in [Goldstein et al., 2005], t (number of
randomly selected datapoints) was set to 100.

218 6. Scaling Retrieval

Finally, we show two metric tree versions using spilling during lookup,
which gave the best results in our prior evaluations. Curves are generated
by varying the spilling parameter d between [0, 0.1] for the spherical
mtree mtreesph and [0, 0.7] for the symmetrical mtree mtreesym. Higher
overlap d results in better error rates, but comes at a cost in speed, since
more branches have to be considered during lookup.

As Figure 6.2 shows, all algorithms reach about the same level of effective
distance error, with metrics trees and RBV slightly better than LSH.
The highest speed-up over linear search at low effective distance error is
reached by the trees (first row of plots). It is interesting to observe how
LSH can be increased in speed, but not only at cost in error, but also
at a cost in memory requirements and build time (2nd and 3rd rows).
The second row also shows, that the lowest memory usage is achieved
by RBVs. The memory consumption of trees is higher than the one of
RBV, but stable compared to LSH. Trees also exhibit the lowest build
time (3rd row). Also note the low absolute value of the build time: in
about 1 minute, we can build a tree for the UK Small dataset, which
consists of 1.7 million features.

Figure 6.3 shows the results for the fraction of true NNs found. The
curves are again obtained by sweeping through the same parameter
ranges described above. RBVs recover the largest fraction of true NNs.
The worst performance in these terms is again achieved with LSH. Trees
recall a smaller fraction of true NNs, but offer the highest speed-up at
low to medium NN-recall values.

With our intention of scaling to even larger datasets, in summary the
best results are achieved using the metric trees. They offer a good trade-
off in scalability (speed-up and build time) at reasonable loss in precision
over linear search. RBV performs very well in terms of precision. How-
ever the speed-up over linear search is not high enough. Considering
that it is a fairly novel method, further research might lead to improve-
ments here. Surprisingly, LSH did not perform as well as expected and
seems to be the worst of the three methods. In spite of our careful im-
plementation, a possible explanation might be that we did not find the
optimal parameters for this method. However, even if this is true, it
does not speak in favor of LSH. On very large datasets it is extremely
time-consuming — if not impossible — to optimize many parameters.

6.5. From NNs to retrieval in large databases 219

Note that by using local features, we can afford losing some of the NNs:
objects in images are typically covered by hundreds of features. It just
has to be assured that a sufficient number of features is extracted, so
that later processing stages (such as RANSAC) have enough data, even
if we potentially lose a large fraction of NNs. This situation is different
from early research in the field of large-scale image databases: the global
image features typically used in those early works did not offer this kind
of redundancy.

6.5 From NNs to retrieval in large data-

bases

From the experiments in the previous section, we learned that we can
achieve significant speed-up over linear search, mostly at the cost of
losing some true NNs. In this section, we want to devise strategies to
handle those losses and recover some of the precision. The first question
to be answered is whether a retrieval system requires all the true NNs to
achieve good overall precision. Figure 6.4 (top) shows overall recognition
score1 versus fraction of true NNs found in the UK Small Set. Linear
search is at the top-left with the baseline score of 1.62. It is clearly
visible that all algorithms come close to the performance of linear search
by recovering only 30%− 50% of the true NNs. This effect is due to the
aforementioned redundancy coming with the use of local features, which
liberates us from retrieving the true NN for each feature. An immediate
conclusion from this insight is that we might try to recover some of the
true NNs by retrieving k near neighbors instead of only one — hoping
that by this we add less noise to the results than we gain precision.

Thus, in Figure 6.4 (middle) we show an experiment which reports mAP
vs. k for the Oxford Set using linear search over the entire set. The
ranking of results is defined by the number of “votes” each image gets,
i.e. by the number of features from the query image that matched in the
database image. The scatter points correspond to different parameter
settings of each algorithm. Since we retrieve not only the NN, but k near

1Here, a slightly modified UK score was used. Query images are not included in
the result set, and the remaining 3 correct images are weighted by their retrieved
position, the maximum is 1 + 1/2 + 1/3 = 1.833.

220 6. Scaling Retrieval

neighbors, we can also apply different voting strategies, which correspond
to the different curves. Regardless of the voting strategy, a maximum
performance is reached around k = 15. The gain over using only the
closest NN is quite substantial. The three different voting strategies are
intended to suppress noisy votes and are defined as follows: singlecount
allows only one vote (match) for each feature per image, inverse weight-
ing and inverse quadratic weighting weight votes by the inverse distance
between data and query point. While the inverse weighting even lowered
the results, singlecount weighting helped to gain a few percent. This ef-
fect can be explained by the removal of multiple votes stemming from
repeated and non-discriminative patterns.

6.5.1 Forests of randomized metric trees

Based on the experiments in Section 6.4 and the results above, we focus
on one of the algorithms to scale to large datasets. We chose the metric
tree due to the speed-up we observed in Section 6.4 and the ease to
handle it compared to the other methods. The only drawback is the
larger memory consumption. Considering, however, the lesson learned
from Figure 6.4 that it is not only sufficient but beneficial to retrieve k

near neighbors, we do not have to build complete trees. Rather, we can
build a smaller tree from a random sample of the data. All remaining
points of the set are then inserted into the tree and appended to a list of
features for the leaf they fall in. This way, we save memory and are able
to retrieve multiple close matches for query points at the same time. In
fact, this representation is very similar to the “visual words” obtained
from k-means clustering in [Nistér and Stewénius, 2006; Philbin et al.,
2007]. Note that metric trees are in general unbalanced. The number of
levels on each side of the root is data dependent, trees will generally be
deeper where data is dense.

During lookup, each query point is inserted into the tree, and all the
images in the matching leaf receive a vote. In addition, lookup-spilling
is applied, such that each query point may fall in multiple leaves, i.e.
may generate multiple votes. Furthermore, we introduce a new spilling
variant, which we call “insert spilling”: while inserting the full data in
the tree (which was built from a random subset of the data) we have
this additional possibility for spilling.

6.5. From NNs to retrieval in large databases 221

Figure 6.4: True NN vs. ranking score (top) and mAP vs. number of

near neighbors k (bottom)

222 6. Scaling Retrieval

Finally, instead of using one single tree, we can use multiple smaller trees,
each built from a random subset of the data, i.e. forests of randomized
metric trees. In the next section we evaluate this method on a variety
of large datasets. In spirit this idea is along the lines of [Moosmann et
al., 2006; Ozuysal et al., 2007], where different types of randomized trees
have been used. The differences here are that randomness is based on
the random subset used to build the trees, that our trees are built on NN
search, and that we consider retrieval in very large datasets (as opposed
to classification on smaller sets).

6.6 Evaluation on Large Datasets

In the previous sections we compared several approximate NN search
algorithms and concluded that metric trees offer the best opportunities
to scale to the truly large datasets introduced in Section 6.2. Below,
we will evaluate the metric trees under this aspect, and compare their
performance to the k-means methods of [Nistér and Stewénius, 2006;
Philbin et al., 2007].

We first compare performances on the Oxford data using the mAP meas-
ure for different tree configurations. The trees we compare differ in the
size of the random data sample used to create the tree, in the spilling
parameters, and, if multiple trees are used, in the number of trees in the
forest. All trees are symmetric metric trees. Figure 6.5 shows results
for individual trees created from random samples of different sizes and
with different spilling configurations. One can see that the performance
is dependent on the sample size and its optimum is reached at a fraction
of the full set size. This is the same effect observed before for voting
with k near neighbors instead just the NN: if the tree size approaches
the size of the full dataset, only few features remain in the leaf nodes
and few votes are generated for each query feature.

The three curves in the plot represent three different spilling configura-
tions, each defined by a pair of spill factors. The first spilling parameter
denotes insert spilling, the second parameter is for lookup spilling. A
higher spilling factor (0.5 vs. 0.1) gives better results – both for spilling
during insert and lookup. Note how the effect of spilling appears only
for sample sizes larger than about 2M.

6.6. Evaluation on Large Datasets 223

0 5 10 15

x 10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m
A

P

size of random subset for tree creation

spill factors 0.1/0.1
spill factors 0.1/0.5
spill factors 0.5/0.5

Figure 6.5: Forests of metric trees: mAP for different random sample

sizes and spilling settings.

Table 6.2(a) shows mAP results for different forests. Using larger forests
improves the mAP up to 0.539. Again, increasing spilling from 0.1 to
0.6 improves the recognition rates (0.444 vs. 0.539). We also tried
spilling values higher than 0.6. However, the additional gain in precision
was small, while the lookup time increased substantially. Table 6.2(b)
compares these results to the results reported in [Philbin et al., 2007] on
the Oxford Set. Note that this comparison is in terms of a “bag of words
model”, before verification using multiple-view geometry. These results
are competitive with the state-of-the-art and lie in between hierarchical
k-means (HKM) [Nistér and Stewénius, 2006] and approximate k-means
(AKM) [Philbin et al., 2007]. Note that our best single tree result on
the Oxford set (Table 6.2(a)) is higher than both HKM versions. As
a baseline, we also report the result we obtained using linear search.
This result is still slightly better than all three methods, confirming that
linear search constitutes indeed a suitable baseline – which validates our
assumptions from Section 6.4. The rightmost column of Table 6.2(b)
compares performance on the (full) UK set. Here, metric trees perform
again better than [Nistér and Stewénius, 2006] and only slightly worse
than [Philbin et al., 2007].

224 6. Scaling Retrieval

(a)

Forest mAP Forest mAP

.1/.5 .5/.5 .1/.5 .5/.5 .6/.6

1 × 3M 0.307 0.339 1 × 7M 0.333 0.395 0.444

2 × 3M 0.343 0.380 2 × 7M 0.378 0.400 0.485

4 × 3M 0.380 0.412 4 × 7M 0.419 0.438 0.525

6 × 3M 0.391 0.418 6 × 7M 0.444 0.463 0.539

(b)

Oxford UK

Method [mAP] [Score]

HKM-1 [Nistér and Stewénius, 2006; Philbin et al., 2007] 0.439 3.16

HKM-4 [Nistér and Stewénius, 2006; Philbin et al., 2007] 0.353 3.29

AKM [Philbin et al., 2007] 0.618 3.45

This Work 0.539 3.34

Linear Search 0.672 3.53

(c)

Forest % 1st cor.

1 × 1M 46.8%

1 × 5M 49.4%

6 × 1M 70.8%

6 × 5M 83.5%

Linear 95.0%

Table 6.2: Evaluation of forests on Oxford set (a), comparison to other

works on Oxford and UK sets (b), results on Amazon set (c).

With the Amazon set we introduce a new set and a new task. It is
similar to the CD retrieval application in [Nistér and Stewénius, 2006].
We envision a scenario where users take picture of a DVD cover using
the camera of their mobile phone and after recognition may read critics
about the DVD, buy it on-line etc. This is different from the task on
the Oxford set presented in [Philbin et al., 2007], where retrieval is per-
formed only for a query selected from images already in the database,
i.e. the feature vectors of the query images were in the dataset while the
visual vocabulary was created. Further, the task is to retrieve a correct
item in the first position. Query images were taken with mobile phone
cameras, under challenging viewpoints, with specularities etc., and are

6.6. Evaluation on Large Datasets 225

(a)

Set Tree Time MB # feat DB # feat./q

1M 0.09s 80

Oxford 5M 0.12s 400 21 406 572 1925

10M 0.15s 800

1M 0.08s 80

UK 5M 0.12s 400 11 434 135 1515

10M 0.17s 800

1M 0.08s 80

Amazon 5M 0.09s 400 55 021 426 1370

10M 0.10s 800

(b)

Set Tree t/tree mAP %1st corr.

Oxford+DMOZ 5x3M 0.15s 0.215 -

UK+DMOZ 10x1M 0.14s 0.230 -

Amz.+DMOZ 10x1M 0.08s - 44.3%

Table 6.3: Lookup times and memory usage in MB for single trees (a),

performance metrics in DMOZ set (1 million images)(b).

very challenging compared to the data in [Nistér and Stewénius, 2006;
Philbin et al., 2007]. The database consists of about 52 000 covers with
over 55 million features. Table 6.2(c) summarizes the results. The spill-
ing setup was 0.1/0.1 for all configurations. With a forest of 6 trees built
from 5 million sampled features, we reach a precision of 83% in the first
position of the ranked list. This is quite good, considering the difficult
query images and the “one shot” option for this task. Some example
results for this task are shown in Appendix A.

6.6.1 Computation Times and Scaling

We first report lookup times for the Oxford, UK, and Amazon sets in
Table 6.3(a). It shows the average lookup time per image using a single
tree of the given size. We also report the size of the database and the
average number of features per query image. To test the scalability of
the tree method, we performed tests on the DMOZ noise set with over
one million images. The images from the original datasets were mixed

226 6. Scaling Retrieval

into this set before tree construction, and the same retrieval experiments
were performed again. Note that the data from DMOZ is extremely
challenging, since it contains truly random images, some of them with an
excessive number of features, which influence the “bag-of-words” voting
procedure substantially. Recognition rates and runtimes on this set are
reported in Table 6.3(b). The effect of the noise set reduces recognition
performance by about 50%. This is similar to the results in [Philbin et
al., 2007], where a reduction by about 40% was reported for a noise set
consisting of images retrieved from flickr. We assume that the higher loss
here can be explained by the more “distractive” content of the DMOZ
set. In terms of speed, the metric trees scale very well with a lookup time
of about 0.1s per tree for over 300 million features. In the worst case,
where a forest of trees would have to be searched sequentially, we would
achieve retrieval in 1 second on 1 M images using a single PC. For many
practical applications, the tree search would however be parallelized.

Memory usage is influenced by several parameters. Each node requires:
two unsigned integers (each 4 bytes) to indicate the array position of
the actual descriptor data for the pivot. (No pointers are used since
they consume 8 bytes on a 64-bit architecture). Another two unsigned
integers store the ids of the child nodes. Therefore, the size of one node is
ns = 16 bytes. A SURF descriptor vector can be described with ds = 64
bytes. The memory required for the tree is

memtree = in · (ns + ds) (6.4)

where in is the size of the random sample used to build the tree. With
this, a tree built from 1 million vectors requires 80MB using byte-valued
SURF features. The 4th column of Table 6.3 shows the memory usage
for the different tree examples. The complete 6× 7M forest for the best
result obtained on the Oxford set would require 3.36GB.

For the inverted files in the leaf nodes, storage depends strongly on the
implementation, a straightforward approach with a leaf size ls (typically
4 bytes) and a total of dn features in the database requires

memleaf list = dn · ls (6.5)

For a large dataset such as the Amazon or DMOZ set, this would add
to the memory usage 220MB, or 1.2GB respectively. If insert spilling is

6.7. Related Work 227

used, these numbers increase, since some points fall into multiple leaves.
However, there is an extensive body of work from document retrieval on
how to store the lists more efficiently using several kinds of compression.
A good summary can be found in [Zobel and Moffat, 2006].

6.7 Related Work

Searching large databases of local visual features is a topic, which is
receiving increasing attention. The main body of work for that particular
application has only been carried out in the last few years, following the
increased popularity of local visual features for object recognition. Early
works, such as [Lowe, 2004] proposed to use classic k-d trees coupled with
the best-bin-first method and demonstrated scalability on 100 000 SIFT
descriptors. The well-known work [Sivic and Zisserman, 2003] by Sivic
et al . suggested video retrieval based on clustering appearance features
into ”visual words” using k-means. Finding nearest neighbors for query
features is replaced by finding the closest cluster centroid (visual word),
and indexing is solved using inverted files of visual words. The rather
simple k-means clustering method seems to adapt to the structure of the
feature space surprisingly well and results in outstanding retrieval results
on full feature movies. The main disadvantage of such an approach is
the scalability of the clustering process, especially for large numbers of
visual words or clusters. Thus, [Nistér and Stewénius, 2006] recently
suggested a hierarchical k-means approach and [Philbin et al., 2007]
proposed an approximate “flat” k-means. Both methods speed-up the k-
means clustering process significantly and therefore allow creating larger
vocabularies. Both works also show significantly improved recognition
performance using larger vocabularies.

In addition to [Nistér and Stewénius, 2006; Philbin et al., 2007; Sivic and
Zisserman, 2003] our evaluation relates to a large body of work dealing
with (approximate) nearest neighbor retrieval in high-dimensional vector
spaces, independent of the specific application or data-type. Not aston-
ishingly, well-known approximate nearest neighbor search methods such
as k-d trees, metric trees and Locality Sensitive Hashing (LSH) have
been compared on several smaller datasets before, for instance in [Liu et
al., 2004]. However, these comparative evaluations have not been car-

228 6. Scaling Retrieval

ried out on databases of local image features, the characteristics of which
have a strong influence on design choices, as we could show in Section 6.5
of this chapter.

6.8 Discussion and Conclusions

In this chapter, we have evaluated methods for large-scale retrieval in
databases of local image features at several levels of the processing
pipeline. Our first contribution is the evaluation of some of the most pop-
ular (approximate) NN methods on current benchmark data for large-
scale object recognition. Our comparison of the methods LSH, RBVs and
metric trees has shown that among those methods, metric trees offer the
best speed-up. For the comparison between LSH and metric trees this
confirms results in [Liu et al., 2004] on smaller datasets. While [Gold-
stein et al., 2005] showed that RBVs outperform LSH, we could show
that at least for local image features, spilling metric trees outperform
both LSH and RBV. The cost for this speed-up comes in a loss of true
NNs retrieved, compared to linear NN search.

We thus evaluated the influence of this loss on the overall recognition
performance of a retrieval system with local image features. We could
show that close to linear-search performance can be reached with only
30−50% of true NNs found. Furthermore, we demonstrated that retriev-
ing k near neighbors (instead of the true NN) improves results further.
We also evaluated different match-voting strategies to rank images based
on the matches between their local features. In our experiments, we ob-
served an optimum at k = 15 combined with singlecount voting. These
findings probably hold for most systems with local features. With this
we demonstrated that due to the redundancy offered by local features,
choosing a less precise (in terms of true NN) but faster method is bene-
ficial for Internet-scale retrieval systems, since the loss in precision can
be absorbed with appropriate strategies on higher levels on the system.

It is somewhat astonishing, that LSH did not perform as well as expec-
ted. One reason which canot be excluded, that our implementation is
not as optimized as the one used by the authors of the original work. In
any case however, LSH is a method with many parameters to optimize,
which makes evaluation on large datasets difficult.

6.8. Discussion and Conclusions 229

Due to their superior performance, metric trees were further evaluated
and combined to forests built from random subsets of the data. We
showed that spilling helps improve precision, and we introduced “insert
spilling” for trees built from sampled data. The results were validated
across the largest currently available benchmark data sets and on a new
set of 50′000 DVD covers from amazon.com. Simulating the data avail-
able on the Internet, a large-noise set of 1 million images from DMOZ
was used to test robustness against noise. The overall recognition rates
of spilling metric trees compete with recent clustering methods [Nistér
and Stewénius, 2006; Philbin et al., 2007] on benchmark data, while of-
fering substantially faster index build times not relying on an iterative
clustering procedure.

7
Conclusions and Outlook

In this thesis we have investigated mining and retrieval in databases of
visual data at the object level. Building on state of the art local ap-
pearance methods for object recognition, our main contributions are in
the fields of mining feature configurations as representatives for object
classes, multimodal mining of objects and events from community photo
collections, and multimodal retrieval application for mobile phones. Fur-
ther contributions include a method for detection of text in natural
scenes and an evaluation of algorithms for scalable retrieval in databases
of local features.

7.1 Contributions

The main contributions of this thesis can be summarized as follows:

In Chapter 3 we applied itemset mining algorithms in the domain of
visual data. We adapted this simple, but effective class of methods to
work with configurations of local visual features. We demonstrated, ho
the spatial arrangement of visual words in semi-local neighborhoods can
be encoded as transactions and subsequently mined to identify repeat-
ing patterns of local feature configurations in the data. We showed,
how the detected patterns can be used to mine specific objects from
video data. It turned out to be helpful to base the creation of candid-
ate neighborhoods on motion segmentation. The same approach was
extended to mine feature configurations as evidence for the presence of
instances of object classes. We could show that the mining algorithms
can be used to solve the task of learning frequent feature configurations,

232 7. Conclusions and Outlook

relevant for a given object class. Conducting experiments on state of
the art benchmark data, we could demonstrate that the mined config-
urations show better evidence for the presence of object class instances
than single visual words. Using the of the mined configurations in the
implicit shape model [Leibe et al., 2008], however, did not show the ex-
pected improvement compared to single features. In summary, in spite
of their simplicity, the itemset mining methods turned out to be suitable
tools for the tasks of mining visual data. Compared to other methods
in the field of object class recognition, itemset mining will probably play
out its strengths only when applied to larger amounts of data, where a
rough, but efficient localization of candidates is required.

In Chapter 4 we took mining from the feature level to the object level.
We introduced a combination of methods, which allows for mining ob-
jects and events from community photo collections on the Internet. The
approach relies on geotagged photos, which are clustered based on their
similarities calculated from local feature matches. Beyond the visual
cues we extended our mining method to include multi-modal cues such
as the textual tags describing the photos. A classification based on the
meta-data of the clustered photos was used to divide clusters into ob-
jects and events. Textual labels were learnt for the clusters efficiently, by
using frequent itemset mining in order to identify combinations of tags
relevant for the cluster’s contents. These textual labels were also used
to crawl possibly relevant Wikipedia articles from the Internet. Clos-
ing the loop to the visual modality, images in the crawled articles were
matched back to the mined clusters, to verify the hypothesized assign-
ment between article and photo cluster. Finally, we demonstrated, how
the mined photos can be used to derive object-level auto-annotations
of objects such as landmark buildings in holiday snaps. Experiments
were conducted on hundreds of thousand of photos downloaded from
the Internet. Annotation quality on the mined data was evaluated on
manually labeled groundtruth of several hundred images. The recogni-
tion rates reached with 70% a very satisfactory level on this challenging
task.

In Chapter 5 we took an application-centric view of object recognition.
We demonstrated several prototypes for object recognition applications,
with a special focus on mobile devices. Several prototype implement-
ations for mobile visual search on the object-level were discussed and

7.1. Contributions 233

compared. In all cases the object recognition is performed on the server-
side, while client applications display the results. Namely, we compared
user-initiated recognition, real-time object recognition from streaming
video between client and server, and a hybrid approach, which releases
recognition when motion at the client-side is low. We demonstrated
two sample applications for such a mobile recognition system, namely a
slide recognition system for meeting rooms and a mobile tourist guide.
The latter included several types of geographic information to restrict
the search space. The mobile applications were complemented with two
applications for the desktop or the web, namely auto-annotation and
3D reconstruction – both applications build directly on the results from
Chapter 4. Finally, we introduced a method to localize and read text in
natural images, with the goal to make such cues available to a retrieval
system. The method follows the Viola-Jones approach for face detection,
but adapted to the problem of text detection by using different feature
sets. The recognition capabilities were evaluated on challenging data of
natural scenes, partly taken with mobile phone cameras. It turned out
that the localization method is very robust, but OCR on the extracted
text regions turned out to be more challenging than expected.

In Chapter 6 we evaluated methods which allow to scale object-level
retrieval to large amounts of data in the order of up to 1 million im-
ages. We investigated which properties make nearest neighbor search
for databases of local features different from “general purpose” nearest
neighbor search. We then evaluated three methods (LSH, Redundant
Bit Vectors, and Metric Trees) under that aspect on benchmark data. It
turned out that metric trees offered the best trade-off between precision,
scalability and ease of handling in this evaluation. Therefore we invest-
igated improvements to scale retrieval to larger amounts of data while
maintaining precision. This was achieved by combining several metric
trees into forest, where each tree was built from a random data sample.
The quality of this approach was evaluated and compared to state of
the art methods on several benchmark datasets and showed competitive
precision and recall values for retrieval tasks of up to one million images.

234 7. Conclusions and Outlook

7.2 Perspectives

The following perspectives for extension of the work presented in this
thesis seem worth investigating:

Itemset mining in visual data has potential for several extensions
both at the detail level and in a wider context. Detailed improvements
include: the refinement of the semi-local neighborhood. Here, building
on rotation instead of scale could potentially be more robust, since this
cue is more robust in the underlying feature detectors. The spatial tiling
could be extended to a spatial pyramid, or multiresolution histogram,
respectively. This would allow capturing spatial constraints at several
levels. The calculation of semi-local neighborhood transactions could
be made very efficient by using an integral-histogram inspired approach.
In a wider context, massively parallel deployments as proposed recently
in [Li et al., 2008a] and tests on large datasets from the Internet could be
interesting. In that context, semi-supervised recognition systems would
be particularly exciting. It might be worthwile to revive the recently
somewhat neglected concept of relevance feedback, but using local fea-
tures instead of global ones. Simple methods such as itemset mining
could then potentially be used to learn structural patterns of features
for a given query on-line.

Mining objects and events from community photo collections has
enormous further potential. The amount of (geotagged) photos available
is growing constantly and rapidly, which allows crawling and processing
of enormous amounts of data and consequently identifying many more
objects and events, also in the “long tail” of data. Especially the labeling
of the identified clusters could be extended, using multimodal classific-
ation methods. Interesting directions of future research could be scene
classification (indoor / outdoor / day / night / weather etc.) or the ana-
lysis of events at a visual and textual level, e.g . events such as weddings
could potentially be learned based on visual cues. Auto-annotation on
the object level offers great opportunities for exciting applications such
as auto-tagging of holiday snaps for web-and desktop applications. These
annotations could be improved by investigating the scene geometry in
more detail and based on that derive refined annotations at a high level

7.2. Perspectives 235

of detail, e.g . by labeling certain parts of objects individually. Combin-
ations with other lines of work such as 3D reconstruction [Snavely et al.,
2006] offer further potential. Finally, transferring the concept to other
databases on the Internet, e.g . images of products would be fascinating,
too.

Multimodal retrieval applications from mobile devices can be re-
fined in many ways. Combinations with augmented reality seem partic-
ularly fruitful, considering the rapidly improving capabilities of mobile
devices. In our experience, a combined approach of server-side recogni-
tion and client-side tracking or augmentation seems the most promising.
Inclusion of multimodal cues, such as geographic location will be crucial
for real world deployments. A combination with databases as the ones
mined with the work presented in Chapter 4 is a natural next step. The
work on text detection showed, that even a very well researched field such
as OCR has further potential for improvement and novel applications,
when applying it to natural scenes instead of scanned documents.

Scalable retrieval for local features is a topic which receives a lot of
attention currently. Focussing on the special characteristics introduced
by building on local features instead of global ones seems promising.
The ultimate indexing method would probably combine appearance of
the features and their geometric arrangement to achieve both better pre-
cision and scalability. For Internet Vision applications the combinations
of database mining as in Chapter 4 an scalable indexing methods is very
promising. The information collected on the objects (multiple views etc.)
could be helpful in improving visual vocabularies.

In summary, closing the circle to the introductory statements of this
thesis, we investigated several directions in which computer vision meth-
ods allow for organizing and searching repositories of visual data. The
combination of mined specific objects, cues for the presence of instances
of object classes, and detected text will allow for creating systems, which
decompose and label many common scenes captured in photos. The
trends outlined in the introduction of this thesis are now tackled in the
rising research field “Internet Vision”, which offers both great challenges
and opportunities for further research and applications along some of
the directions touched in this dissertation.

A
Amazon Example Results

238 A. Amazon Example Results

B00004RYWT 0

Analyze This

2, 1.50

B00000JGPE, 11.000

Analyze This

B00004I9Q0, 10.000

Analyze This

B00004RYWI, 4.000

Revenge of Musketeers

B0007CR7HA, 4.000

Cinema Colossal Box III

SAGA

B000GTJSQC, 3.000

Roger Corman s Cult Classics

Jack Nichol

B00005603H 0

American Beauty

0, 0.00

B00005MKXC, 3.000

Smiles of a Summer Night

B000077VOI, 3.000

Ehre zu Fliegen

3898857700, 2.000

Ranma 1 2 Big Trouble in

Nekonron China

B000NKH866, 2.000

Baywatch komplette 7. Sta el

B000G1R4R0, 2.000

Ace Ventura Deluxe Double

Feature

B00005603H 1

American Beauty

0, 0.00

B000GCFJTY, 3.000

Nacht lebenden Toten

Ungeschnittene Fass

B000GIXLWU, 3.000

Sharpe s Challenge

B000244G9K, 3.000

Wisecracks

B00009QUH5, 2.000

I Love You to Death

B00008JNEA, 2.000

Marie Jo et ses 2 amours

B00005KG45 0

Face O

0, 0.00

B0002M70FE, 2.000

Operation Dance Sensation

B000OCXJZ2, 2.000

Hulk

B000HT33JY, 2.000

Death Fighter Protokoll

B000A0GP5Y, 2.000

Longest Yard

B00069FEOW, 2.000

Mann wird gejagt

B00005MFO3 0

Me Myself & Irene

0, 0.00

B000F2C6SC, 2.000

Another Day in Paradise

B000BCINW4, 2.000

retsaMlemmiHhcierginöK

and Commander

B000AC7P5Q, 2.000

Anthropophagus Grim Reaper

B000O3HXRG, 2.000

Le Coeur des Hommes

B000HCO76O, 2.000

Navy CIS Season 2 Vol. 1

B00005N96U 0

Mr. Bean

1, 1.00

B00005N96U, 11.000

Mr. Bean

B00005RISF, 2.000

Bud Spencer & Terence Hill

Box

B00005LIRC, 2.000

Fury

B00008PBZZ, 2.000

Dances Wolves Extended Cut

B0002CHIJW, 2.000

I Spit On Your Grave

B00005UL69 0

Groundhog Day

4, 2.33

B00005UL69, 12.000

Groundhog Day

B00007149X, 6.000

Groundhog Day Stripes

B00005U8EM, 6.000

Groundhog Day

B00004VXXA, 5.000

Groundhog Day

B00006G8JI, 2.000

Big Momma s House Me

Myself & Irene

B000067FYV 0

Rat Race nackte Wahnsinn

1, 1.00

B000067FYV, 6.000

Rat Race nackte Wahnsinn

B00008G8A6, 3.000

Arma Letal 5

B00005LAYW, 3.000

Nur aus Liebe

B000075ASD, 2.000

Derailed Terror im Zug

B000F1IIQ2, 2.000

M*A*S*H Season One

Episode 1 & 2

Figure A.1: Amazon Example Results (I). The leftmost image on each

line is the query image, the remaining images are results, sorted by rank

from left to right.

239

B000069DN0 0

reieGrüfnesserF

0, 0.00

B00005B1XU, 4.000

Hi Yo Silver

B000G6H538, 4.000

Romulus und Remus

B0002IQLOE, 3.000

Secret of Shaolin Kung Fu

a.k.a. Invinci

B0000E6EJ8, 3.000

Natural Born Killers

B0007VZ8SQ, 3.000

Brothers Grimm Cinderella

King Thrushbea

B000088NQR 0

Ringu

1, 1.00

B000089QE4, 10.000

Ring

B000088NQR, 10.000

Ringu

B000777HTI, 5.000

Ring Collector s Set

B000777HSY, 5.000

Ring

B0000A03KH, 4.000

Moon of Wolf

B00008JMG3 0

Ring

5, 3.50

B000G1TP0Y, 7.000

Ring

B000FTWU18, 7.000

Ring

B00005JLTK, 6.000

Ring

B000777HTI, 6.000

Ring Collector s Set

B000777HSY, 6.000

Ring

B00008VDPO 0

Road to Perdition

0, 0.00

B0002MGYTC, 5.000

Cobra nero

B00000JL4L, 4.000

X Movie

B0002CHJ0K, 4.000

Demon Lord Dante Dante

Agonizes

B0002DB0HW, 3.000

El Macho Bionico

B00030N9RI, 3.000

Inside Okinawan Goju Chinen

Kumite d

B00008XF7Z 0

laicepSreztäwhcsmmuD

Edition

1, 1.00

B00008XF7Z, 5.000

laicepSreztäwhcsmmuD

Edition

B000OFF9M0, 4.000

Deluxe Combo Platter

B000098ZT0, 4.000

Fear in Night

B000LPS35I, 4.000

Television s Funniest Foul Ups

B000EOUK66, 3.000

tmaSsuaellöH2MM8

B00009ZY9E 0

O ce Complete First Series

1, 1.00

B00009ZY9E, 12.000

O ce Complete First Series

B0001WHUFK, 5.000

O ce

B00005OKQK, 3.000

Jabberwocky

B000ION244, 3.000

Amsterdam Connection

Bloody Fight

B0001DI55S, 3.000

O ce

B0000AISTX 0

O Brother Where Art Thou?

Mississippi Od

1, 1.00

B0000AISTX, 4.000

O Brother Where Art Thou?

Mississippi Od

B000E0LCFS, 4.000

Ley Lines

B00004VYQT, 3.000

Jane Austen s Ma!a

B000BZFPCW, 3.000

Western von gestern Fuzzys

wilde Abenteu

B0000584ZH, 3.000

Nurse Betty

B0000C0F44 0

Open Hearts

0, 0.00

B00030N9R8, 3.000

Inside Okinawan Goju Chinen

Bunkai Oyo #

B000DZ6VPU, 3.000

Self Defense For Women

B00005B73P, 3.000

Relative Values

6305617791, 3.000

Daddy Long Legs

B00006L9VV, 3.000

Invitation to Wedding

Figure A.2: Amazon Example Results (II).The leftmost image on each

line is the query image, the remaining images are results, sorted by rank

from left to right.

Bibliography

[Abowd, 1999] G. Abowd. Classroom 2000: An experiment with the
instrumentation of a living educational environment. In IBM Systems
Journal, 1999.

[Adelmann et al., 2006] R. Adelmann, M. Langheinrich, and C. Floerke-
meier. A toolkit for bar-code-recognition and -resolving on camera
phones – jump starting the internet of things. In Workshop Mobile and
Embedded Interactive Systems (MEIS’06) at Informatik 2006, 2006.

[Agarwal and Roth, 2002] Shivani Agarwal and Dan Roth. Learning a
sparse representation for object detection. In ECCV02, 2002.

[Agarwal et al., 2004] Shivani Agarwal, Aatif Awan, and Dan Roth.
Learning to detect objects in images via a sparse, part-based rep-
resentation. In Trans. PAMI, 2004.

[Aggarwal and Yu, 1998] C. C. Aggarwal and P. S. Yu. A new frame-
work for itemset generation. In PODS ’98: Proceedings of the seven-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, 1998.

[Agrawal et al., 1993] Rakesh Agrawal, Tomasz Imielinski, and Arun N.
Swami. Mining association rules between sets of items in large data-
bases. In SIGMOD’93, 1993.

[Amir et al., 2001] A. Amir, G. Ashour, and S. Srinivasan. Toward auto-
matic real time preparation of online video proceedings for conference
talks and presentations. In Hawaii Int. Conf. on System Sciences,
2001.

[Antonie et al., 2003] M. Antonie, O. Zäıane, and A. Coman. Associ-
ative classifiers for medical images. In Lecture Notes in A.I. 2797,
Mining Multimedia and Complex Data, 2003.

242 Bibliography

[Aurnhammer et al., 2006] M. Aurnhammer, P. Hanappe, and L. Steels.
Integrating collaborative tagging and emergent semantics for image
retrieval. In Collaborative Web Tagging Workshop (WWW’06), 2006.

[Ballagas et al., 2005] Rafael Ballagas, Michael Rohs, and Jennifer G.
Sheridan. Mobile phones as pointing devices. In PERMID ’05, 2005.

[Ballard, 1981] D. H. Ballard. Generalizing the hough transform to de-
tect arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.

[Bay et al., 2006a] H. Bay, B. Fasel, and L. Van Gool. Interactive mu-
seum guide: Fast and robust recognition of museum objects. In Proc.
Intern. Workshop on Mobile Vision, 2006.

[Bay et al., 2006b] H. Bay, T. Tuytelaars, and L. Van Gool. Surf:
Speeded up robust features. In ECCV’06, 2006.

[Benzécri, 1982] J.P. Benzécri. Construction d’une classification ascend-
ante hiérarchique par la recherche en châıne des voisins réciproques.
Cahiers de l’Analyse des Données, 7(2):209–218, 1982.

[Borenstein and Ullman, 2002] E. Borenstein and S. Ullman. Class-
specific, top-down segmentation. In ECCV02, 2002.

[Borgelt and Berthold, 2002] Christian Borgelt and Michael R. Ber-
thold. Mining molecular fragments: Finding relevant substructures
of molecules. ICDM, 00:51, 2002.

[Borgelt, 2003] Christian Borgelt. Efficient implementations of apriori
and eclat. In Workshop of Frequent Item Set Mining Implementations
(FIMI 2003), 2003.

[Borgelt, 2005] C. Borgelt. An implementation of the fp-growth al-
gorithm. In OSDM’05, 2005.

[Boring et al., 2007] Sebastian Boring, Manuela Altendorfer, Gregor
Broll, Otmar Hilliges, and Andreas Butz. Shoot & copy: Phonecam-
based information transfer from public displays onto mobile phones.
In International Conference on Mobile Technology, Applications and
Systems, 2007.

[Bosch et al., 2006] A. Bosch, A. Zisserman, and X. Munoz. Scene clas-
sification via pLSA. In ECCV’06, 2006.

[Breu and Müller, 2008] M. Breu and M. Müller. A motion-detection
based user interface for mobile visual search. Semester Project, 2008.

Bibliography 243

[Brin et al., 1997] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for market basket data.
SIGMOD Rec., 26(2):255–264, 1997.

[Burl et al., 1998] M. C. Burl, M. Weber, and P. Perona. A probabil-
istic approach to object recognition using local photometry and global
geometry. In ECC98, 1998.

[Carletta et al. (17 authors), 2005] J. Carletta et al. (17 authors). The
ami meeting corpus: A pre-announcement. In MLMI, 2005.

[Carson et al., 1999] C. Carson, M. Thomas, S. Belongie, J. M. Heller-
stein, and J. Malik. Blobworld: A system for region-based image
indexing and retrieval. In Third International Conference on Visual
Information Systems, 1999.

[Chen and Yuille, 2004] Xiangrong Chen and A.L. Yuille. Detecting and
reading text in natural scenes. In CVPR04, 2004.

[Chum and Zisserman, 2007] O. Chum and A. Zisserman. An exemplar
model for learning object classes. In CVPR07, 2007.

[Ciaccia et al., 1997] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-
tree: An efficient access method for similarity search in metric spaces.
In VLDB ’97, 1997.

[Cooley et al., 1993] R. Cooley, J. Srivastava, and B. Mobasher. Web
mining: Information and pattern discovery on the world wide web. In
ICTAI, 1993.

[Cox et al., 2000] Ingemar J. Cox, Matthew L. Miller, Thomas P. Minka,
Thomas Papathomas, and Peter N. Yianilos. The bayesian image re-
trieval system, pichunter: Theory, implementation and psychophysical
experiments. IEEE Transactions on Image Processing (to appear),
9(1):20–37, January 2000.

[Croft and Harper, 1997] W. B. Croft and D. J. Harper. Using prob-
abilistic models of document retrieval without relevance information.
Journal of Documentation, 35, 1997.

[Dalal and Triggs, 2005] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In CVPR’05, 2005.

[Dance et al., 2004] C. Dance, J. Willamowski, L. Fan, C. Bray, and
G. Csurka. Visual categorization with bags of keypoints. In ECCV
SLCV’04, 2004.

244 Bibliography

[Datar et al., 2004] Mayur Datar, Nicole Immorlica, Piotr Indyk, and
Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-
stable distributions. In SCG ’04, 2004.

[Davis, 2001] J.W. Davis. Hierarchical motion history images for recog-
nizing human motion. In Proceedings of IEEE Workshop on Detection
and Recognition of Events in Video, 2001, pages 39–46, 2001.

[de Rham, 1980] C. de Rham. La classification hiérarchique ascendante
selon la méthode des voisins r éciproques. Cahiers de l’Analyse des
Données, 5(2):135–144, 1980.

[Dufour et al., 2002] R.M. Dufour, E.L. Miller, and N.P. Galatsanos.
Template matching based object recognition with unknown geometric
parameters. Image Processing, IEEE Transactions on, 11(12):1385–
1396, Dec 2002.

[Edwards, 2004] L. Edwards. Developing Series 60 Applications. Ad-
dison Wesley, 2004.

[Elkan, 2003] C. Elkan. Using the triangle inequality to accelerate k-
means. In ICML’03, pages 147–253, 2003.

[Farnstrom et al., 2000] Fredrik Farnstrom, James Lewis, , and Charles
Elkan. Scalability for clustering algorithms revisited. SIGKDD Ex-
plorations, 2(1):51—57, 2000.

[Fei-Fei et al., 2003] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian
approach to unsupervised one-shot learning of object categories. In
ECCV03, 2003.

[Fei-Fei et al., 2004] L. Fei-Fei, R. Fergus, and P. Perona. Learning gen-
erative visual models from few training examples: an approach tested
on 101 object categories. In CVPR WGMBV, 2004.

[Feltzenswalb and Hutenlocher, 2005] P. Feltzenswalb and D. Huten-
locher. Pictorial structures for object recognition. IJCV, 61(1), 2005.

[Fergus et al., 2003] R. Fergus, P. Perona, and A. Zisserman. Ob-
ject class recognition by unsupervised scale-invariant learning. In
CVPR’03, 2003.

[Fergus et al., 2005] R. Fergus, P. Perona, and A. Zisserman. A sparse
object category model for efficient learning and exhaustive recognition.
In CVPR’05, 2005.

Bibliography 245

[Ferrari et al., 2006] V. Ferrari, T. Tuytelaars, and L. Van Gool. Object
detection by contour segment networks. In ECCV’06, 2006.

[Fischler and Bolles., 1981] M. A. Fischler and R. C. Bolles. Random
sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. In Comm. of the ACM,
1981.

[Flickner et al., 1995] Myron Flickner, Harpreet Sawhney, Wayne Ni-
black, Jonathan Ashley, Qian Huang, Byron Dom, Monika Gorkani,
Jim Hafner, Denis Lee, Dragutin Petković, David Steele, and Peter
Yanker. Query by image and video content: The qbic system. IEEE
Computer, 28(9):23–32, September 1995.

[Föckler et al., 2005] Paul Föckler, Thomas Zeidler, Benjamin Brom-
bach, Erich Bruns, and Oliver Bimber. Phoneguide: museum guid-
ance supported by on-device object recognition on mobile phones. In
MUM ’05: Proceedings of the 4th international conference on Mobile
and ubiquitous multimedia, 2005.

[Freund and Schapire, 1997] Y. Freund and R Schapire. A decision-
theoretic generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[Fritz et al., 2005] M. Fritz, B. Leibe, and B. Caputoand B. Schiele. In-
tegrating representative and discriminant models for object category
detection. In ICCV’05, 2005.

[Fuhrmann and Harbaum, 2003] T. Fuhrmann and T. Harbaum. Using
bluetooth for informationally enhanced environments. In Proceedings
of the IADIS International Conference e-Society 2003, 2003.

[Gionis et al., 1999] Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Similarity search in high dimensions via hashing. In VLDB, 1999.

[Goesele et al., 2007] M. Goesele, N. Snavely, B. Curless, H. Hoppe,
and S. Seitz. Multi-view stereo for community photo collections. In
ICCV’07, 2007.

[Goldstein et al., 2005] Jonathan Goldstein, John C. Platt, and Chris-
topher J.C. Burges. Redundant bit vectors for quickly searching high-
dimensional regions. In Det. and Stat. Methods in Machine Learning,
2005.

246 Bibliography

[Griffin et al., 2007] G. Griffin, A.D. Holub, and P. Perona. The caltech
256. Caltech Technical Report, 2007.

[Grimson and Lozano-Pérez, 1987] W. E. L. Grimson and T. Lozano-
Pérez. Localizing overlapping parts by searching the interpretation
tree. IEEE Trans. Pattern Anal. Mach. Intell., 9(4):469–482, 1987.

[Gugl, 2007] S. Gugl. Object class recognition by frequent graph mining.
Master’s thesis, Computer Vision Institute, ETH Zurich, 2007.

[Han et al., 2000] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In SIGMOD ’00: Proceedings
of the 2000 ACM SIGMOD international conference on Management
of data, 2000.

[Hand et al., 2001] D.J. Hand, Heikki Mannila, and Padhraic Smyth.
Principles of Data Mining. MIT Press, 2001.

[Hand, 2001] D.J. Hand. Principles of Data Mining. MIT Press, 2001.

[Harris and Stephens, 1988] C. Harris and M. Stephens. A combined
corner and edge detector. In Proceedings of the 4th Alvey Vision Con-
ference, 1988.

[Hartley and Zisserman, 2004] R. Hartley and A. Zisserman. Multiple
View Geometry in Computer Vision. Cambridge Univ. Press, 2004.

[Hays and Efros, 2008] J. Hays and A. A. Efros. Im2gps: estimating
geographic information from a single image. In CVPR08, 2008.

[Holt and Chun, 1999] John D. Holt and Soon Myoung Chun. Efficient
mining of association rules in text databases. In ACM CIKM, 1999.

[Inokuchi et al., 2003] A. Inokuchi, T. Washio, and H. Motoda. Com-
plete mining of frequent patterns from graphs: Mining graph data.
Machine Learning, 50:321—354, 2003.

[Jaffe et al., 2006] A. Jaffe, M. Naaman, T. Tassa, and M. Davis. Gen-
erating summaries and visualization for large collections of geo-
referenced photographs. In MIR’06, 2006.

[Jain and Dubes, 1988] A.K. Jain and R.C. Dubes. Algorithms for Clus-
tering Data. Prentice Hall, 1988.

[Jecker and Knecht, 2008] Raphael Jecker and Benjamin Knecht. Real-
time server-side object recognition for mobile devices. Semester Pro-
ject, 2008.

Bibliography 247

[Jung et al., 2004] Keechul Jung, Kwang In Kim, and Anil K. Jain. Text
information extraction in images and video: a survey. Pattern Recog-
nition, 37(5):977–997, 2004.

[Kamvar and Baluja, 2006] M. Kamvar and S. Baluja. A large scale
study of wireless search behavior: Google mobile search. In CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in comput-
ing systems, 2006.

[Kaufman and Rousseeuw, 1990] L. Kaufman and P. Rousseeuw. Find-
ing Groups in Data: An Introduction to Cluster Analysis. Wiley, 1990.

[Kuramochi and Karypis, 2001] M. Kuramochi and G. Karypis. Fre-
quent subgraph discovery. In ICDM’01: 1st IEEE Conf. Data Mining,
pages 313–320, 2001.

[Kuramochi and Karypis, 2004] M. Kuramochi and G. Karypis. An effi-
cient algorithm for discovering frequent subgraphs. IEEE Transactions
on Knowledge and Data Engineering, 16(9):1038–1051, 2004.

[Lazebnik et al., 2004] S. Lazebnik, C. Schmid, and J. Ponce. Semi-local
affine parts for object recognition. In BMVC’04, 2004.

[Lazebnik et al., 2006] S. Lazebnik, C. Schmid, and J. Ponce. Beyond
bags of features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR06, 2006.

[Leibe and Schiele, 2003] B. Leibe and B. Schiele. Interleaved object
categorization and segmentation. In BMVC’03, 2003.

[Leibe et al., 2005] Bastian Leibe, Edgar Seemann, and Bernt Schiele.
Pedestrian detection in crowded scenes. In CVPR’05, 2005.

[Leibe et al., 2008] Bastian Leibe, Ales Leonardis, and Bernt Schiele.
Robust object detection with interleaved categorization and segment-
ation. IJCV Special Issue on Learning for Vision and Vision for
Learning, 2008.

[Leung and Malik, 2001] Thomas Leung and Jitendra Malik. Repres-
enting and recognizing the visual appearance of materials using three-
dimensional textons. International Journal of Computer Vision,
43(1):29–44, 2001.

[Levenshtein, 1966] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady, 10:707–
?710, 1966.

248 Bibliography

[Lew et al., 2006] S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-
based multimedia information retrieval: State of the art and chal-
lenges. In ACM Trans. Multimedia Comput. Commun. Appl., 2006.

[Lewis et al., 2007] A. Lewis, M. Purvis, J. Sambells, and C. Turner.
Beginning Google Maps Applications with Rails and Ajax. Apress,
2007.

[Li et al., 2008a] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang.
Pfp: Parallel fp-growth for query recommendation. In ACM Recom-
mendation Systems 08, 2008.

[Li et al., 2008b] X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm.
Modeling and recognition of landmark image collections using iconic
scene graphs. In ECCV08, 2008.

[Liu et al., 2004] T. Liu, A. W. Moore, A. Gray, and K. Yang. An in-
vestigation of practical approximate nearest neighbor algorithms. In
NIPS’04, 2004.

[Liu et al., 2007] T. Liu, C. Rosenberg, and H. A. Rowley. Clustering
billions of images with large scale nearest neighbor search. In WACV
’07, 2007.

[Liu, 2006] Ting Liu. Fast nonparametric machine learning algorithms
for high-dimensional massive data and applications. In PhD Thesis,
2006.

[Lowe, 1991] David G. Lowe. Fitting parameterized three-dimensional
models to images. PAMI, 13(5):441–450, 1991.

[Lowe, 1999] David G. Lowe. Object recognition from local scale-
invariant features. In ICCV99, 1999.

[Lowe, 2004] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2), 2004.

[Lu and Tan, 2007] S. Lu and C. L. Tan. Binarization of badly illumin-
ated document images through shading estimation and compensation.
In Ninth International Conference on Document Analysis and Recog-
nition, 2007. ICDAR 2007., 2007.

[Lucas, 2005] S. M. Lucas. Text locating competition results. In
Eighth International Conference on Document Analysis and Recog-
nition (ICDAR’05), 2005.

Bibliography 249

[Ma and Manjunath, 1999] Wei-Ying Ma and B. S. Manjunath. Netra:
A toolbox for navigating large image databases. Multimedia Systems,
7(3):184–198, 1999.

[MacQueen, 1967] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In University of California Press,
editor, Proceedings of 5-th Berkeley Symposium on Mathematical Stat-
istics and Probability, Berkeley, volume 1, pages 281–297, 1967.

[Magagna, 2008] Fabio Magagna. Unsupervised 3d reconstruction from
images mined in community photo collections. Master’s thesis, ETH
Zurich, Computer Vision Lab, 2008.

[Matas et al., 2002] J. Matas, O. Chum, M. Urban, and T. Pajdla. Ro-
bust wide-baseline stereo from maximally stable extremal regions. In
BMVC’02, 2002.

[Mathes,] Adam Mathes. Folksonomies-cooperative classification and
communication through shared metadata. Website (visited 15.6.2008).

[Metwally et al., 2005] Ahmed Metwally, Divyakant Agrawal, and
Amr El Abbadi. Using association rules for fraud detection in web
advertising networks. In VLDB ’05: Proceedings of the 31st interna-
tional conference on Very large data bases, 2005.

[Mikolajczyk and Schmid, 2004a] K. Mikolajczyk and C. Schmid. Scale
and affine invariant interest point detectors. IJCV, 60(1), 2004.

[Mikolajczyk and Schmid, 2004b] K. Mikolajczyk and C. Schmid. Scale
and affine invariant interest point detectors. IJCV, 60:63–86, 1 2004.

[Mikolajczyk and Schmid, 2005] K. Mikolajczyk and C. Schmid. A per-
formance evaluation of local descriptors. PAMI, 27(10):1615–1630,
2005.

[Mikolajczyk et al., 2005] K. Mikolajczyk, T. Tuytelaars, C. Schmid,
A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool.
A comparison of affine region detectors. IJCV, 65:43–72, 2005.

[Minogue and Gondry, 2002] K. Minogue and M. Gondry. Come into
my world, 2002.

[Minogue and Shadforth, 2001] K. Minogue and D. Shadforth. Can’t get
you out of my head, 2001.

250 Bibliography

[Moore, 2000] Andrew W. Moore. The anchors hierarchy: Using the
triangle inequality to survive high dimensional data. In Conference
on Uncertainty in Artificial Intelligence, 2000.

[Moosmann et al., 2006] F. Moosmann, B. Triggs, and F. Jurie. Ran-
domized clustering forests for building fast and discriminative visual
vocabularies. In NIPS’06, 2006.

[Murase and Nayar, 1995] Hiroshi Murase and Shree K. Nayar. Visual
learning and recognition of 3-d objects from appearance. IJCV,
14(1):5–24, 1995.

[Niblack, 1999] Wayne Niblack. Slidefinder: A tool for browsing present-
ation graphics using content-based retrieval. In CBAIVL ’99, 1999.

[Nistér and Stewénius, 2006] David Nistér and Henrik Stewénius. Scal-
able recognition with a vocabulary tree. In CVPR’06, 2006.

[Nowozin et al., 2007] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and
G. Bakir. Weighted substructure mining for image analysis. In
CVPR07, pages 1–8, June 2007.

[Oliva and Torralba, 2001] Aude Oliva and Antonio Torralba. Model-
ing the shape of the scene: A holistic representation of the spatial
envelope. Int. J. Comput. Vision, 42(3):145–175, 2001.

[Omiecinski, 2003] Edward R. Omiecinski. Alternative interest measures
for mining associations in databases. IEEE Transactions on Know-
ledge and Data Engineering, 15(1):57–69, 2003.

[Opelt et al., 2003] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer.
Generic object recognition with boosting. In Trans. PAMI, 2003.

[Opelt et al., 2006] A. Opelt, A. Pinz, and A. Zisserman. Incremental
learning of object detectors using a visual alphabet. In CVPR’06,
2006.

[Ordonez and Omiecinski, 1999] Carlos Ordonez and Edward Omiecin-
ski. Discovering association rules based on image content. In ADL ’99:
Proceedings of the IEEE Forum on Research and Technology Advances
in Digital Libraries, 1999.

[Osian and Van Gool, 2004] M. Osian and L. Van Gool. Video shot char-
acterization. Machine Vision Applications, 15:172–177, 3 2004.

[Ozuysal et al., 2007] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint
recognition in ten lines of code. In CVPR’07, 2007.

Bibliography 251

[Paletta et al., 2006] L. Paletta, G. Fritz, C. Seifert, P. Luley, and
A. Almer. A mobile vision service for multimedia tourist applications
in urban environments. In IEEE Intel. Transp. Syst. Conf., 2006.

[Pelleg and Moore, 1999] D. Pelleg and A. Moore. Accelerating exact k
-means algorithms with geometric reasoning. In Knowledge Discovery
and Data Mining KDD’99, 1999.

[Pelleg and Moore, 2000] Dan Pelleg and Andrew Moore. X-means: Ex-
tending k-means with efficient estimation of the number of clusters.
In ICML00, 2000.

[Philbin et al., 2007] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zis-
serman. Object retrieval with large vocabularies and fast spatial
matching. In CVPR’07, 2007.

[Piatetsky-Shapiro, 1991] G. Piatetsky-Shapiro. Discovery, analysis,
and presentation of strong rules. In G. Piatetsky-Shapiro and W.J.
Frawley, editors, Knowledge Discovery in Databases. AAAI/MIT
Press, 1991.

[Quack et al., 2004] Till Quack, Ullrich Mönich, Lars Thiele, and B. S.
Manjunath. Cortina: a system for large-scale, content-based web im-
age retrieval. In Proceedings of the 12th annual ACM international
conference on Multimedia, pages 508–511. ACM, 2004.

[Quack et al., 2008] T. Quack, H. Bay, and L. Van Gool. Object recog-
nition for the internet of things. In Internet of Things 2008, 2008.

[Quinlan, 1986] J.R. Quinlan. Induction of decision trees. Mach. Learn.,
1:81–106, 1986.

[Renold, 2008] M. Renold. Detecting and reading text in natural scenes.
Master’s thesis, Computer Vision Lab, ETH Zurich, May 2008.

[Rohs and Gfeller, 2004] M. Rohs and B. Gfeller. Using camera-
equipped mobile phones for interacting with real-world objects. In Ad-
vances in Pervasive Computing, Austrian Computer Society (OCG),
2004.

[Rui and Huang, 1999] Y. Rui and T. S. Huang. A novel relevance feed-
back technique in image retrieval. In Proceedings of 7th ACM Inter-
national Conference on Multimedia (MM), 1999.

[Salton and McGill, 1986] Gerard Salton and Michael J. McGill. Intro-
duction to Modern Information Retrieval. McGraw-Hill, 1986.

252 Bibliography

[Sandvig et al., 2007] J. J. Sandvig, Bamshad Mobasher, and Robin
Burke. Robustness of collaborative recommendation based on asso-
ciation rule mining. In RecSys ’07: Proceedings of the 2007 ACM
conference on Recommender systems, 2007.

[Scheiner and Schwarz, 2007] D. Scheiner and R. Schwarz. High per-
formance object recognition. Master’s thesis, ETH Zurich, Computer
Vision Lab, 2007.

[Schmid and Mohr, 1997] C. Schmid and R. Mohr. Local grayvalue in-
variants for image retrieval. PAMI, 19(5):530–535, 1997.

[Shotton et al., 2006] J. Shotton, J. Winn, C. Rother, and A. Criminisi.
Textonboost: Joint appearance, shape and context modeling for multi-
class object recognition and segmentation. In ECCV’06, 2006.

[Silverstein et al., 1998] C. Silverstein, S. Brin, and R. Motwani. Beyond
market baskets: Generalizing association rules to dependence rules.
Data Min. Knowl. Discov., 2(1):39–68, 1998.

[Simon et al., 2007] I. Simon, N. Snavely, and S. M. Seitz. Scene sum-
marization for online image collections. In ICCV’07, 2007.

[Singhal et al., 1996] A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. In SIGIR ’96, 1996.

[Sivic and Zisserman, 2003] J. Sivic and A. Zisserman. Video google: a
text retrieval approach to object matching in videos. In ICCV’03,
2003.

[Sivic and Zisserman, 2004] Josef Sivic and Andrew Zisserman. Video
data mining using configurations of viewpoint invariant regions. In
CVPR’04, 2004.

[Sivic et al., 2005] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and
W. T. Freeman . Discovering object categories in image collections.
In CVPR05, 2005.

[Smith, 2004] G. Smith. Folksonomy: social classification. Website (vis-
ited 15.6.2008), 8 2004.

[Snavely et al., 2006] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tour-
ism: Exploring photo collections in 3d. ACM Trans. on Graphics,
25(3), 2006.

Bibliography 253

[Spirito et al., 2001] M.A. Spirito, S. Pöykkö, and O. Knuuttila. Ex-
perimental performance of methods to estimate the location of legacy
handsets in gsm. In IEEE Veh. Technol. Conf., 2001, 2001.

[Swain and Ballard, 1991] Michael J. Swain and Dana H. Ballard. Color
indexing. IJCV, 7(1):11–32, 1991.

[Takacs et al., 2008] G. Takacs, V. Chandrasekhar, N. Gelfand,
Y. Xiong, W-C. Chen;, T. Bismpigiannis, R. Grzeszczuk, K. Pulli,
and B. Girod. Outdoors augmented reality on mobile phone using
loxel-based visual feature organization. In ACM International Con-
ference on Multimedia Information Retrieval (MIR’08), 2008.

[Tan et al., 2002] P. Tan, V. Kumar, and J. Srivastava. Selecting the
right interestingness measure for association patterns. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002.

[Tesic et al., 2003] Jelena Tesic, Shawn Newsam, and Bangalore S. Man-
junath. Mining image datasets using perceptual association rules. In
SIAM Sixth Workshop on Mining Scientific and Engineering Datasets,
2003.

[Torralba et al., 2008] A. Torralba, R. Fergus, and Y. Weiss. Small codes
and large image databases for recognition. In CVPR08, June 2008.

[Tuytelaars and Mikolajczyk, 2008] T. Tuytelaars and K. Mikolajczyk.
Local invariant feature detectors: A survey. Foundations and Trends
in Computer Graphics and Vision, 3(3):177–280, 2008.

[Uhlmann, 1991] Jeffrey K. Uhlmann. Satisfying general proxim-
ity/similarity queries with metric trees. In Inf. Proc. Lett, 1991.

[Ulrich, 2006] Tamara Ulrich. Object recognition on a mobile phone:
Part ii. Semester Project, 2006.

[Valiant, 1984] L. G. Valiant. A theory of the learnable. Communica-
tions of the ACM, 27, 1984.

[Various, 2005] Various. The pascal object recognition database collec-
tion (2005), 2005. www.pascal-network.org/challenges/VOC.

[Vergauwen and Van Gool, 2006] M. Vergauwen and L. Van Gool. Web-
based 3d reconstruction service. MVA, 17(6):411–426, 2006.

254 Bibliography

[Vinciarelli and Odobez, 2006] A. Vinciarelli and J. Odobez. Applica-
tion of information retrieval technologies to presentation slides. IEEE
Transactions on Multimedia, 8(5):981–995, 2006.

[Viola and Jones, 2001a] P. Viola and M. Jones. Fast and robust clas-
sification using asymmetric adaboost and a detector cascade. In
NIPS01, 2001.

[Viola and Jones, 2001b] P. Viola and M. Jones. Rapid object detection
using a boosted cascade of simple features. In CVPR01, 2001.

[Wagner et al., 2008] Daniel Wagner, Gerhard Reitmayr, Alessandro
Mulloni, Tom Drummond, and Dieter Schmalstieg. Pose tracking from
natural features on mobile phones. In ISMAR’08, 2008.

[Wal, 2005] Thomas Vander Wal. Folksonomy definition and wikipedia.
Website, 11 2005.

[Want, 2004] R. Want. Rfid - a key to automating everything. In Sci-
entific American, 2004.

[Washio and Motoda, 2003] T. Washio and H. Motoda. State of the art
of graph-based data mining. SIGKDD Explor. Newsl., 5(1):59–68,
2003.

[Webb, 2002] A. Webb. Statistical Pattern Recognition. Wiley, second
edition, 2002.

[Weber et al., 2000a] M. Weber, M. Welling, and P. Perona. Towards
automatic discovery of object categories. In CVPR00, 2000.

[Weber et al., 2000b] Markus Weber, Max Welling, and Pietro Perona.
Unsupervised learning of models for recognition. In ECCV00, 2000.

[Wiskott et al., 1997] Laurenz Wiskott, Jean-Marc Fellous, Norbert
Kruger, and Christoph von der Malsburg. Face recognition by elastic
bunch graph matching. PAMI, 19(7):775–779, 1997.

[Wolfson and Rigoutsos, 1997] Haim J. Wolfson and Isidore Rigoutsos.
Geometric hashing: An overview. IEEE Comput. Sci. Eng., 4(4):10–
21, 1997.

[Wu, 2005] Ching-Tung Wu. Embedded-text detection and its applica-
tion to anti-spam filtering. Master’s thesis, University of California,
Santa Barbara, 2005.

Bibliography 255

[Yan and Han, 2002] X. Yan and J. Han. gspan: Graph-based substruc-
ture pattern mining. In ICDM ’02: Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM’02), 2002.

[Yan and Han, 2003] X. Yan and J. Han. Closegraph: mining closed
frequent graph patterns. In KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003.

[Yang, 2006] Guizhen Yang. Computational aspects of mining maximal
frequent patterns. Theor. Comput. Sci., 362(1):63–85, 2006.

[Zaiane et al., 1998] Osmar R. Zaiane, Jiawei Han, Ze-Nian Li, and Jean
Hou. Mining multimedia data. In CASCON’98, 1998.

[Zaki, 2000] Mohammed J. Zaki. Scalable algorithms for association
mining. IEEE Transactions on Knowledge and Data Engineering,
12(3):372–390, 2000.

[Zobel and Moffat, 2006] Justin Zobel and Alistair Moffat. Inverted files
for text search engines. In ACM Comput. Surv., 2006.

Curriculum Vitae

Personal Data

Name Till Quack
Date of Birth 15.09.1978
Place of Birth Göttingen, Germany
Citizenship Swiss

Education

1984 – 1991 Primary School. Ebmatingen and Pfaffhausen, Switzer-
land

1991 – 1998 High-School. Realgymnasium Rämibühl, Zürich, Switzer-
land

1998 – 2004 Studies of Information Technology and Electrical Engin-
eering at ETH Zurich, Switzerland. Graduation: MSc.
ETH and Dipl. Ing. ETH in Information Technology and
Electrical Engineering

Fall 2004 MSc. Project at University of California at Santa Barbara.
Vision Research Lab

2004 – 2008 Doctoral Student at ETH Zurich, Computer Vision Labor-
atory, Department of Information Technology and Elec-
trical Engineering

Occupations

1998 Marent AG, Technical Author
1998 – 2006 Quack Internet Solutions, founder
2004 – 2008 Research Assistant at ETH Zurich, Computer Vision

Laboratory, Department of Information Technology and
Electrical Engineering

2006 – kooaba AG, co-founder & CTO

