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Abstract

Advances in mobile computer systems, signal processing and sensing
technology enable new computing applications to support the user any-
where and anytime. One such application is activity aware computing
where the user’s activities are taken into account to provide appropriate
assistance.

The crucial element enabling this assistance is activity recognition.
Human motion patterns, associated with a specific activity, have to be
found in signals captured from motion sensors. These sensors are on the
user’s body or within their environment. Activity recognition systems
are usually trained during the design phase with prerecorded, annotated
examples of typical activity patterns. Accounting for all possible user
or sensor characteristics, potentially resulting in non-stationary motion
signals, would be costly and requires a vast amount of training data.
New characteristics might also be developed throughout the ongoing
usage of the system, which cannot be captured in training data.

The objective of this thesis is to explore adaptive techniques with
the goal of overcoming the restrictions posed by static, trained at design
time only, activity recognition systems. We focus on adaptive learn-
ing, which has shown potential in different recognition tasks with non-
stationary signal characteristics.

Ideally, the activity recognition system adapts continuously to the
current signal characteristics, actively guided by the user. Supervi-
sion, where the user consciously provides ground truth information,
is deemed obtrusive and may interfere with the target application. We
therefore investigate incremental learning techniques with particular
focus on reducing the amount of supervision required.

One step in this direction is an unsupervised self-calibration strat-
egy, which allows for classifier adaptation. The key benefit of this ap-
proach is the reduction of obtrusive supervision required from the user.
Validation on two datasets has shown an average recognition accuracy
improvement of up to 33.3% and 13.4% for displaced motion sensors.
However, improvement can not be guaranteed for each individual case.

The user can also be taken in the loop to indicate system’s recogni-
tion errors. Indicating recognition errors is less obtrusive compared to
providing ground truth, yet enables supervision according to the user’s
intention. We evaluate two approaches capitalizing on this form of su-



pervision, firstly an incremental learning k-Nearest-Neighbor classifier,
and secondly a reinforcement learning method. The adaptation of the
recognition system, to a new user, results in an accuracy increase of
10.3% and 36% respectively.

Another possibility, to reduce obtrusiveness of supervision, is to
detect system recognition errors implicitly through the user’s brain sig-
nals. The adaptation of an activity recognition system to a specific
user, capitalizing on brain based error feedback, results in an accuracy
improvement of 6.8%.

Finally we investigate the influence of an adaptive activity recogni-
tion system on the user behavior. In an online gesture recognition ex-
periment users interact with a static as well as an adaptive recognition
system. We found indications that the interaction with the adaptive
recognition system not only increases the recognition performance, but
also enables the users to perform gestures in a way most convenient
and natural to them.



Zusammenfassung

Die Miniaturisierung von Computersystemen und Sensoren, sowie
Fortschritte in der Signalverarbeitung, erlauben die Nutzung dieser
Technologien nahezu jederzeit und an jedem Ort. Dies erschlieft neue
Anwendungsbereiche, in denen das Computersystem den Benutzer kon-
tinuierlich und situationsabhingig unterstiitzt. Ein wichtiger Baustein
fiir eine situationsabhéngige Unterstiitzung ist die Erkennung und Ver-
arbeitung von Aktivitdten, die vom Benutzer ausgefiihrt werden.

Ein Aktivitatserkennungssystem misst die Bewegungen des Be-
nutzers mit Hilfe von Sensoren und durchsucht die resultierenden
Signale nach spezifischen Bewegungsmustern. Die Bewegungssensoren
konnen hierbei sowohl am Korper des Benutzers als auch in dessen
Umgebung angebracht sein. Die Zuordnung von Bewegungsmustern zu
Aktivitatsklassen wird in der Regel basierend auf vorab aufgezeich-
neten Datenséitzen durch Lernalgorithmen erstellt. Um alle moglichen
Benutzer- und Sensorcharakteristiken in das Lernen mit einbeziehen
zu konnen, sind umfangreiche Lerndatensitze notig, deren Erstellung
sehr aufwendig ist. Des Weiteren kénnen Signalcharakteristiken, die
erst in der Zukunft auftreten, nicht durch einen solchen Lerndatensatz
abgedeckt werden.

Das Ziel dieser Arbeit ist es, adaptive Lernmethoden zur Ak-
tivitdtserkennung zu untersuchen, um Bewegungsmuster nicht nur ein-
malig zu lernen, sondern bei Bedarf auch anpassen zu kénnen. Hierbei
liegt der Fokus auf adaptiven Lernalgorithmen, die in &hnlicher Form
bereits in andere Mustererkennungsanwendungen eingesetzt werden. Im
Idealfall passt sich das Aktivitdtserkennungssystem kontinuierlich an
die Charakteristiken des Eingangssignals an, was durch inkrementelle
Lernalgorithmen erméglicht wird.

Der Benutzer kann die Adaption direkt steuern, indem er zu jeder
Zeit angibt, welche Aktivitdten er gerade ausfiihrt. Die Bereitstellung
zusétzliche Informationen ist jedoch storend fiir den Benutzer und
schrankt die Benutzbarkeit eines adaptiven Aktivitdtserkennungssys-
tems ein. Aus diesem Grund befasst sich ein weiterer Teil dieser Arbeit
mit der Frage, wie die zusétzliche Informationsmenge, die zur Adaption
benétigt wird, sowie der Aufwand fiir deren Bereitstellung reduziert
werden konnen.

Eine Moglichkeit der Adaption, bei der vom Benutzer keine



xii

zusétzlichen Informationen benétigt werden, ist eine Selbstkalibrierung
der Aktivitatserkennung. Die Validierung dieses Ansatzes wird auf zwei
Datensétzen durchgefithrt, bei denen sich die Signalcharakteristiken
durch unterschiedliche Sensorpositionen am Korper dndern. Die Adap-
tion der Aktivitdtserkennung auf eine neue Sensorposition mit Hilfe der
Selbstkalibrierung fiihrte zu einer Verbesserung der Erkennungsrate um
33.3% bzw. 13.4% auf den beiden Datensétzen.

In einem weiteren Lernansatz werden Informationen iiber Erken-
nungsfehler, die vom Benutzer identifiziert und angegeben werden,
fiir die Adaption genutzt. Verglichen mit der Angabe der tatséchlich
ausgefiihrten Aktivitdat ist die Angabe von Erkennungsfehlern ein-
facher und weniger storend. Zwei verschiedene Ansétze zur Nutzung
der Erkennungsfehler werden untersucht - ein erweiterter ’k-Nearest-
Neighbor-Klassifizierer’ sowie eine 'Reinforcement Learning’ Metho-
de. Die Adaption des Aktivitdtserkennungssystems auf die spezi-
fischen Charakteristiken eines neuen Benutzers resultierte in einer
Verbesserung der Erkennungsrate um 10.3% mit dem ’k-Nearest-
Neighbor-> bzw. 36% mit dem 'Reinforcement Learning’ Ansatz.

Statt einer expliziten Angabe der Erkennungsfehler durch den Be-
nutzer konnen diese auch indirekt {iber dessen Hirnstrome ermittelt
werden. Ein so auf einen neuen Benutzer adaptiertes Aktivitdtserken-
nungssystem ergab eine Verbesserung der Erkennungsrate um durch-
schnittlich 6.8%.

Abschlieflend wird untersucht, wie sich eine Adaption des Ak-
tivitatserkennungssystems auf das Verhalten des Benutzers auswirkt.
Im Rahmen eines Experiments werden Handgesten des Benutzers
vom Aktivitdtserkennungssystem erkannt, welches in verschiedenen
Durchgédngen sowohl mit wie auch ohne Adaption betrieben wird.
Die Nutzung des adaptiven Aktivitatserkennungssystem fithrt zu einer
Verbesserung der Erkennungsrate. Auflerdem gibt es Anzeichen dafiir,
dass der Benutzer bei aktivierter Adaption seine Gesten anpassen kann,
so dass diese komfortabler und natiirlicher ausgefiithrt werden konnen.



Introduction

In this chapter we motivate the use of adaptive techniques
for activity recognition. We present the requirements and
challenges adaptation poses on activity recognition systems.
Furthermore the main research questions, as well as the out-
line of the thesis, are given.



2 Chapter 1: Introduction

1.1. Activity and gesture recognition in non-stati-
onary environments

The type and usage of personal computing systems has changed signif-
icantly in the last decade. Miniaturized and mobile systems are super-
seding immobile computing terminals. In combination with advances in
signal processing and sensing technology new applications have arisen
which support the user anywhere and anytime, taking their location,
situation, activities and even emotion, into account. This is commonly
termed context aware computing [1]. A typical example is a mobile
smart-phone with an integrated positioning system for location aware
support to find local amenities. Sports computers are another typical
application, providing information about physiological and movement
parameters, used to improve the users workout efficiency.

In this thesis we focus on activities and gestures as contextual in-
formation. An activity aware system can, for example, monitor user’s
activities of daily living to automatically create a diary [2]. It can also
read the user’s gestures which allows for human computer interaction
[3].

The crucial building block that enables activity aware computing
is activity recognition. In this thesis we focus on motion based human
activity recognition. This can be accomplished by finding specific pat-
terns in human motion captured either by sensors worn on the body
or placed in the user’s environment. The motion based activity recog-
nition system must be trained before use in order for it to distinguish
different motion patterns. Training is usually performed initially dur-
ing the design phase, making use of prerecorded annotated examples of
typical activity patterns. The underlying assumption is, that the train-
ing patterns contain all possible variations which might be observed
during future use of the system. These variations may include different
measurement setups, different environments or different user behavior
to name but a few.

Given that the activity aware system is intended to be used by
anybody at any time and place, this assumption is difficult to fulfill.
Human motion patterns are not stationary and can vary due to dif-
ferences between users or environments. Specific user characteristics
such as gender, age, height and weight can affect movement charac-
teristics. In addition variations within the user’s environment can be
influential, such as altered movements due to different types of clothing.
Changes in the sensor system may also occur. Sensors can be mounted
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at different locations or be replaced by newer models. Such factors can
affect the sensor readings and therefore the subsequent recognition. We
refer to variations that occur over time and affect the recognition per-
formance of a recognition system as non-stationarities (definition in
Section 2.2.5).

Accounting for all possible non-stationarities would require a vast
amount of training examples. Not only would they be expensive to
acquire, but also new signal characteristics, developed in the future,
cannot be captured.

Novel techniques are required to cope with non-stationarities in ac-
tivity recognition. A promising direction, gaining attention not only in
the field of activity recognition, is adaptive learning. The use of adaptive
techniques in activity recognition poses new challenges. The learning
should be guided by the user to ensure their intention is taken into
account. At the same time this supervision needs to be minimized as
it is deemed obtrusive. Interaction with an adaptive system also raises
questions about effects on the user’s behavior.

1.1.1. Adaptive learning

Capitalizing on adaptive learning techniques may result in a recognition
system able to cope with non-stationarities. An adaptive recognition
system is designed to learn changing user behaviors or novel environ-
mental characteristics throughout its usage. In this thesis we focus on
incremental learning [4], which allows to integrate new knowledge as
soon as it becomes available, and address the resulting challenges for
activity recognition.

1.1.2. Reducing supervision

In tasks, where a defined mapping between activity and input data is to
be learned, supervision is essential. We see supervision as information
provided by the user, in addition to any sensed motion signal. Typically
incremental learning approaches require a ground truth label for each
activity instance to learn. This annotation information would have to be
given continuously by the user during system use. This is very obtrusive,
may interfere with the target application and affect the acceptance of
such adaptive activity recognition systems.

Ways to reduce supervision required, as well as making supervision
less obtrusive for the user, need to be found.
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1.1.3. Interaction with an adaptive recognition system

Users can adjust their behavior to meet the expectation of an activity
recognition system they interact with. For example in a gesture recog-
nition application, the user may learn to perform some gestures in a
way that the system can recognize them better.

When the activity recognition is static, the user exploring different
behaviors cannot influence the system’s recognition parameters. In the
case of adaptive activity recognition however, it is not clear how the
user, that adjusts their behavior, affects the learning of the recognition
system. Likewise, adaptation of the recognition system may influence
the user’s behavior. Understanding this co-adaptation enables us to
evaluate the limitations as well as the usefulness of adaptive activity
recognition.

1.2. Research questions

With the ideas and motivations given above, we address the following
research questions in this thesis:

e Which methods allow for incremental adaptation of an activity
recognition system, also in the case of limited supervision?

e How can we minimize the supervision required?
e Can an activity recognition system adapt without supervision?

e How can supervision provided by the user be less obtrusive and
more implicit?

e How do adaptive recognition system and users both adjust their
behavior to influence each other?

1.3. Thesis outline

In Chapter 2 we give definitions for typical terms used throughout
the thesis. Furthermore an overview of adaptive learning strategies in
activity recognition and related fields is provided.

A method for unsupervised adaptation is proposed in Chapter 3. A
thorough evaluation of this approach on artificially generated data, as
well as real motion data, is performed.
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In Chapter 4 incremental learning in a setting with reduced su-
pervision is presented. The focus is on the use of error feedback as
additional information which is provided by the users. Two different
approaches are investigated. The first is based on an incremental k-
Nearest-Neighbor (kNN) classifier while the second capitalizes on re-
inforcement learning. Both methods are simulated in a gesture recog-
nition scenario. The reinforcement learning approach is furthermore
evaluated in an online adaptive gesture recognition case study.

A novel way of automatic error feedback generation by means of
brain signals is presented in Chapter 5. For that purpose an extended
dataset was recorded in a gesture recognition scenario comprising of
hand motion data and brain signals. The potential of brain signals as a
form of supervision for the incremental kNN learning, as presented in
Chapter 4, is investigated based on the data recorded.

The influence of adaptive gesture recognition on the behavior of
the user is the subject of Chapter 6. In an experiment users interact
with an online gesture recognition system in both a static and an adap-
tive setting. We investigate differences in user behavior in the different
experimental settings based on motion trajectories.

In Chapter 7 we summarize the significant achievements of this
thesis alongside a discussion and give an outlook for future research.
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Chapter 1: Introduction



Activity recognition
and adaptation

In this chapter we introduce the activity recognition chain.
Furthermore we present definitions for typical terms used
throughout the thesis. We also give an overview of the types
of non-stationarities present in related recognition applica-
tions. In addition related work in adaptive learning is pre-
sented and reviewed.
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2.1. Introduction

Activity recognition is a way to automatically infer human activities
from sensor readings by means of machine learning techniques [5]. A
typical state of the art activity recognition system is built from three
elements, as depicted in figure 2.1.

. classifier
sensor ———P| pre-processing p———Pp

| model |

Figure 2.1: The typical activity recognition chain. Sensor readings are
preprocessed and fed into a classifier which maps the signal to an
activity-class based on a model.

Sensors capture information related to user activities. In a pre-
processing step the sensor signal is segmented into regions of interest.
Discriminative features, specific to the target activities, are extracted
from these segments. The classifier assigns an activity class to each sig-
nal segment by mapping the according feature values to a given model.
Besides the activity classes there may also be a NULL-class to which
all signal segments, that do not contain an activity, are assigned to.
In this thesis we do not deal with the NULL-class problem by making
sure that each signal segment forwarded to the classifier contains an
activity.

Classifier models are typically trained with signals recorded in a
similar setting as the target application. This includes the type and
position of sensors as well environmental properties and the user. The
underlying assumption is that the characteristics captured in the train-
ing signals are also present during actual use of the activity recognition
system.

Trained models may not be fully applicable if signal characteristics
are non-stationary. In such cases adaptive techniques are required to
fit the trained models to the new characteristics.

2.2. Definitions and terminology

In this section we give definitions and explanations for specific terms
as they are used throughout this thesis.
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2.2.1. Motion based human activity recognition

Activity recognition describes the inference of an agent’s activities from
observations related to the agent and their environment. In our case
the agent is human whose motion patterns are observed. Therefore
the activities we take into account are all tied to patterns measurable
with motion sensors. Typical activities can be for example modes of
locomotion, sports exercises or hand gestures.

In this thesis we focus on two distinct activity types: hand gestures
and continuous periodic movements, for example running. Since we
refer to hand gestures as a form of motion we use activity recognition
and gesture recognition interchangeably throughout this thesis.

2.2.2. Segmentation

Segmentation is the process of finding regions in a continuous signal
stream that contain human activities. Each resulting segment contains
exactly one type of activity. If the activity has a distinct start and end,
which is the case for example for a hand gesture, the length of the
segment is exactly the length of this activity.

2.2.3. Feature

Features are measurable properties of the observed activity. They are
selected so that they allow for a discrimination of the target activities.
Usually several different features are combined in a feature vector f.
Ideally the features are independent from each other, so that each of
them describes a different property. Typcially we calculate a feature
vector on a signal segment containing an activity. In this case we refer
to the feature vector for this segment as activity instance x.

2.2.4. Classification

Classification is the process of assigning an observation a class member-
ship. An observation is represented by the feature vector of an activity
instance x. The class c is one activity from a set of possible activities.

To each observation represented by x the most probable class ¢, of
all possible activity classes K, is assigned.

¢ = argmax(P(c|x)) (2.1)
ceK
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The posterior probability P(c|x) is the probability of class ¢ given the
feature vector x. It can be derived via Bayes theorem.

P(x[e)P(c)

P(c|x) = Px)

(2.2)

With P(x|c) being the conditional probability of x given ¢, P(c) being
the class prior, and P(x) being the marginal probability of x.

2.2.5. Non-stationarity

We employ the stationarity definition commonly used in the field of
stochastic processes. “A stationary process is one whose distribution
remains the same as time progresses” [6]. We can apply this definition
to the distributions the activity classification is based on.

We consider a classification problem stationary if the posterior prob-
ability P(c|x), the class prior P(c), and the conditional probability
P(x|c) remain the same for any time difference 7.

Py(x) = Pryr(x) (2.3)
Py(c) = Prir(c) (2.4)
Py(x|c) = Piir(x[c) (25)

Accordingly a non-stationarity is present in the classification prob-
lem, if at least one of the Equations 2.3 — 2.5 is not fulfilled. This is
in line with the non-stationarity definition given by Kelly et al. [7],
Widmer and Kubat [8] and Yang and Zhou [9]. The cause for a non-
stationaritiy is usually hidden, which means it is not know a priori, it
is not explicitly sensed and not represented by predictive features [10].

Kuncheva [11] summarizes four different types of non-stationarities:

NS1 Random noise: The amount of noise present in the system.
According to our definition this is not an actual non-stationarity
since it won'’t affect the distributions given in Equations 2.3 — 2.5
unless the amount of noise varies over time.

NS2 Abrupt changes: The statistical properties of the distributions
(Equations 2.3 — 2.5) change abruptly at a specific time ¢; (e.g.
P, (x) # Py, +-(x) for 7 — 0).
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NS3 Drift: A drift is a gradual change which follows a trend. If for
example Py .(x) is Gaussian distributed, changing the mean of
the distribution p by Ap for every time step 7 would be considered
a drift.

Mttkr = MUt +kAu k= 1,2,3,... (26)

NS4 Systematic trends: This refers to the idea of recurring contexts.
For example a distribution P(x) already observed at time ¢ + 7
may reappear at time t + 7o with 7 < 73, allowing the reuse of
information obtained earlier.

Pi(x) = Piyr(x), T<7 (2.7)
Pi(x) # Pryr(x), 1 <T<T (2.8)
P(x) = Piyr(X), T> T2 (2.9)

In this thesis we focus on two typical sources of non-stationarities
likely to occur during every day use of an activity recognition system.

In the first case the non-stationarity is caused by changes in motion
capturing. A displacement of body-worn motion sensors may occur in
particular when a sensor is removed in the evening and reattached the
next morning for example, resulting in an abrupt change of the motion
signal distribution (NS2). Also variations in the sensor position are
likely, as sensors have to be comfortable to wear and cannot be fixed
too tightly. A sensor that slowly slides down a limb segment for example
may result in a drift in the sensed motion signal (NS3).

In the second case the non-stationarity is caused by changes in the
user behavior. The user’s performance of activities or gestures can vary
over time resulting in abrupt changes or drifts (NS2, NS3). Furthermore
the system may be taken over by a new user. A different user is likely
to show a different behavior when performing gestures or activities and
therefore abruptly change the motion signal distribution (NS2).

2.2.6. Stability and plasticity

In the context of adaptive learning, especially when considering life
long learning, there is the issue of stability and plasticity [12].
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Stability

A recognition system that continuously learns and adapts should not
be affected by irrelevant inputs. For example it should not discard pre-
viously learned knowledge (e.g. about input data distributions) when
irrelevant inputs (e.g. noisy signals caused by a temporary sensor fail-
ure) are observed.

Plasticity

An adaptive recognition system should integrate new knowledge as soon
as it becomes available. For example the statistics of the expected input
data distribution should be adapted in response to inputs that are
processed.

Stability-plasticity dilemma

Carpenter and Grossberg state that “the properties of plasticity and
stability are intimately related” [12]. According to them a system has
to be plastic to learn from significant new inputs while at the same
time remaining stable in response to irrelevant inputs.

2.3. Related work

In several recognition applications adaptive approaches have been pro-
posed to tackle non-stationary characteristics in the input signals. In
this section we give an overview of non-stationarities typical for activity
recognition and related fields, and discuss adaptive techniques to cope
with them.

2.3.1. Non-stationarities in recognition tasks

Non-stationarities are a challenge in many machine learning applica-
tions and recognition tasks. In data mining the term concept drift is
utilized [8]. Typical causes for a non-stationarity are for example a new
user of an activity recognition system [13] or the change of illumination
in image recognition [14].

The type of non-stationarities and their effect on the statistical
properties of the input signal can be manifold and is application de-
pendent. In a natural and continuous environment gradual drifts as
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well as abrupt changes are expected (e.g. seasonal, demographic, ha-
bitual) [11]. In the following we list recognition applications together
with typical reasons for the occurrence of non-stationarities.

Brain-computer interfaces: Brain signals can contain drifts
within a recording session as well as abrupt changes between
different recording sessions for the same user. Varying back-
ground brain activities are one cause for these drifts and changes
[15, 16, 17, 18].

Handwriting recognition: Individuals have different writing
styles. Therefore abrupt changes in the shape of the characters
may occur when a handwriting recognition system gets used by
a different user [19, 20, 21, 22].

Speech recognition: Vocal characteristics vary between speak-
ers leading to abrupt changes in the signal statistics when
the speaker changes [23, 24, 25, 26]. Other sources of non-
stationarities within this application are abrupt or gradual
changes in background noise (e.g. when moving to a different loca-
tion) or variations in channel characteristics (e.g. when changing
the recording device) [27].

Activity recognition: The change to a new user can lead to
abrupt changes in the sensor signal statistics [28]. Furthermore
users may vary their behavior for example due to psycho-motor
learning [29], aging [30, 31], injuries or illnesses [32], which may
result in gradual or abrupt signal changes. The position and char-
acteristics of sensors can also influence the stationarity of the
signal readings [33, 34].

2.3.2. Adaptive learning and classification

Adaptive learning techniques tackle the challenge of non-stationarities
in recognition tasks by adapting the classifier model to changed data
distributions. We can distinguish between two different learning strate-
gies, batch learning and incremental learning.

Batch and incremental learning

In batch learning a new classifier model is trained on a batch of data.
This batch contains the most recent data available reflecting the latest
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statistical properties of the data distribution [8]. This learning prin-
ciple can be applied in combination with any standard classification
algorithm like a Support Vector Machine (SVM) [35] or Bayes Classi-
fier [36]. A drawback of this approach is that statistics obtained from
a previous batch are completely discarded every time a new batch is
learned. This includes any knowledge that was previously learned and
which might still be partly valid. It may also take time to collect a
new batch of data large enough to train a classifier model with the new
statistics. A change detection method may be necessary to indicate
when retraining a new classifier model is required [37, 11, 38].

With incremental learning strategies the classifier model continu-
ously adapts to match the statistics from the incoming data [10]. In
contrast to batch learning, it is not necessary to collect a certain amount
of data for training. Instead each incoming data instance is used to in-
crementally learn the classifier model. Some learning and classification
methods support incremental learning by nature. Examples of those
are the k-Nearest-Neighbor (kNN) [36] classifier, and methods based on
vector quantization like the Self Organizing Map (SOM) [39] and the
Neural Gas Network (NGN) [40]. Other classification algorithms have
been extended to allow for incremental learning, e.g. the support vector
machine [41] or hidden Markov models (HMM) [42, 43, 44, 45, 46].

Both strategies, incremental and batch learning, have to forget the
outdated knowledge when learning new characteristics [8]. In batch
mode this can be accomplished by setting a batch size which contains
enough data to reflect the current statistical properties of the input
distributions, without containing any data from outdated input dis-
tributions. This allows the amount of data used from the past to be
adjusted and subsequently used for training the new model [47]. In-
cremental learning algorithms usually implement a learning rate pa-
rameter. It regulates how much information captured in the model is
updated by the newly acquired data instance. The learning rate is a
parameter in adaptive learning that is strongly related to the stability-
plasticity dilemma (Section 2.2.6). A high learning rate will allow for
a rapid adaptation to new input data statistics while a lower learning
rate makes a system more stable.

Learning and supervision

Aside from different learning strategies, learning algorithms can also be
distinguished by the amount of supervision they require. In supervised
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learning the ground truth label is available for every data instance.
This is typical for initial training of a classifier based on an annotated
training dataset. Furthermore in some data mining applications it is
assumed that ground truth labels become available at some point after
the classification of each instance [8]. Widely used learning and clas-
sification methods like Naive Bayes, kNN or SVM rely on supervised
learning [36].

In unsupervised learning no ground truth information is available for
the training data. In this case learning is based on finding structures in
the data. This is typical for clustering algorithms, which assign similar
data instances the same cluster membership [48]. The SOM or the NGN
also represent structures in the input data without an explicit class
assignment [39, 40]. The SOM and the NGN also have been extended
for learning in non-stationary environments [49, 50].

In between the extremes of unsupervised and supervised learning
lies semi-supervised learning [51, 52, 53]. In this case labels are only
available for some instances in the training data. The classifier model is
trained based on the labeled examples supported by structures found in
the training data. Semi-supervised approaches are usually not capable
of incremental learning.

In Reinforcement Learning (RL) [54] the training of a classifier is not
based on ground truth labels but on rewards. For each decision made
by the classifier a reward is given. Rewards do not directly contain in-
formation about the ground truth labels but instead provide a measure
of how good the decision was. The classifier model is adapted based
on past experiences, so that the expected reward for future decisions is
maximized.

2.3.3. Adaptation in activity recognition and related fields

Several adaptive approaches have been proposed for different recogni-
tion tasks to tackle non-stationarities.

Handwriting recognition

Incremental prototype adaptation has been proposed to adapt a hand-
writing recognition system to the writing style of a certain user [55].
Letter prototypes are adapted using letter instances collected during
system use. The labels for the letter instances can be collected in a
self-supervised manner, where the prediction of the classifier is reused
as the ground truth label [56, 57]. It is also possible to calibrate a
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generic classifier model towards a certain user prior to system use [58].
In this case labeled data has to be collected for system calibration.

Brain-computer interfaces

For brain-computer interface (BCI) applications a calibration step is
proposed before each session. Incremental classifier model adaptation
has been effective for such purposes [15, 17, 59, 60, 61]. In this case
a supervised approach is used requiring the collection of labeled ex-
amples during system use. This can be difficult depending on the BCI
application.

Speech recognition

Adaptation by model selection is widely used in speech recognition
[62, 23, 63]. Several models are trained based on different speaker char-
acteristics. During system use the best fitting model for the current
speaker is chosen at runtime. In addition the calibration of a generic
speaker model, with small amounts of user specific training data, was
proposed [64]. The collection of calibration data can either be super-
vised [26] or self-supervised based on the generic speaker model [25].

Activity recognition

A widely used approach to cope with different users in activity recog-
nition applications is to train a model based on large datasets recorded
from a high number of subjects [28, 13, 34]. This is supposed to result
in a user independent classifier which is valid for any future subject. It
has been shown though, that the performance of such user independent
classifiers often leads to a lower performance compared to user specific
classifiers [28, 13, 34]. The calibration of a generic classifier model to-
wards a specific user has also been proposed for activity recognition. In
this case either labeled user-specific data is collected to calibrate the
system [65] or a general bio-mechanics model is adjusted based on the
physiological features of the new user [33, 66].

To address the variations associated with sensors mounted on dif-
ferent body locations a model selection approach has been used [67].
For each specific body location a classifier model is trained and chosen
according to the detected sensor location. Lester et al. [34] trained a
classifier on data recorded from several different sensor locations on
the user’s body. This is supposed to result in a classifier model, valid
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for all possible sensor locations. Kunze et al. [68] proposed the use of
an additional sensor modality, namely a gyroscope, to compensate for
the impact that a changed sensor location has on the readings of an
acceleration sensor.

2.3.4. Evaluating adaptive recognition systems and co-adap-
tation

“Evaluating systems is a difficult task, and it becomes even more dif-
ficult when the system is adaptive” [69]. Typically adaptive recog-
nition systems are evaluated empirically in the following manner
[56, 57, 58, 18, 61, 59, 60, 62, 26, 25, 28, 13]:

e A dataset containing data typical for the application is recorded
or taken from a repository.

e The recognition system is simulated using the dataset - once
with the adaptive method under evaluation and once with a non-
adaptive baseline method.

e A performance metric is calculated from the simulation results.
Usually the recognition accuracy or the recognition error rate are
used as performance metric.

e The performances of the adaptive and the non-adaptive recogni-
tion are compared to evaluate the benefit of the adaptation.

Such empirical evaluation strategies are, amongst others, also com-
mon for user-adaptive human-computer interfaces (HCI) [70]. The eval-
uation focus is solely on the adaptive system. Interactions between
the user and the adaptive system are only investigated from the sys-
tem’s point of view. Even the collection of user’s opinions (e.g. through
questionnaires or user interviews) is usually targeted only at getting
information about the success of the adaptation compared to the non-
adaptive case [71]. A change of user behavior, caused by the adaptive
nature of the system, is not evaluated.

Mackay claims that people and technology co-adapt, when people
interpret and adapt technology, which in return influences the behavior
of people [72, 73]. Such a co-adaptation has for example been observed
for BClIs [74] or a robotic prosthetic hand controlled via electromyog-
raphy (EMG) signals [75]. A co-adaptation between user and system
may also exist when using an adaptive activity recognition system. To
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our knowledge co-adaptation for adaptive activity recognition has not
been studied yet.



Unsupervised
classifier
self-calibration

In this chapter we propose a method for classifier adaptation
through unsupervised self-calibration. We investigate the ba-
sic behavior of this approach, based on an artifical dataset,
in order to understand it’s potential and limitations. The
applicability of the calibration method to activity and gesture
recognition is validated on two activity recognition datasets.
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3.1. Introduction

We propose a classifier self-calibration strategy for adapting an activity
recognition system to non-stationarities caused by the displacement of
acceleration sensors on one limb segment.

With an unsupervised approach continuous supervision by the user
is not required. The adaptation is guided by characteristics contained
in the input data.

We use classifiers capable of incremental learning to adapt to vari-
ations in the statistics of the input signal, especially drifts or displace-
ments of class distributions in the feature space. The signal of a dis-
placed sensor will show a similar distribution shape compared to the
original sensor position. The mean and potentially also the variance are
likely to change though.

The activity recognition system is initially trained on pre-recorded
data. When a sensor displacement occurs resulting in a reduced recog-
nition performance the calibration adapts the classifier to the changed
characteristics.

We apply the self-calibration method to one synthetic dataset in
addition to two activity recognition datasets, namely HCI gestures and
aerobic fitness activities. We use mean and variance features in a two
dimensional feature space together with a nearest centroid classifier
(NCC) as a way to simplify visualization and analysis of the systems’s
behavior.

3.2. Method description

Our method integrates in the typical activity recognition chain as a
self-calibration extension as depicted in Figure 3.1. The system can op-
erate in two settings: normal operation where the self-calibration is dis-
abled, and calibration mode with active self-calibration. As long as the
sensor remains exactly in the position used during training no calibra-
tion is necessary. If sensor displacement leads to reduced classification
performance, the calibration mode is activated (calib_start_cond = 1),
adapting the classifier to the changed situation. When a predefined stop
condition is fulfilled (calib_stop_cond = 1) the calibration is stopped
and the classifier continues in normal operation.

In calibration mode the classifier classifies the incoming feature vec-
tors x. The predicted class ¢ is used as the class label ¢ for incremental
learning. We term c¢ a self-label since it is generated by the classifier



3.2. Method description 21

standard classification chain

« |
i e
I motion sensor P| preprocessing classifier >
Ci
L - |4 - - 4 |
| incremental I
1 learning
self-calibration |
| x&
i |
I .
| calib_start_cond |
| calib_stop_cond I |
|
|

Figure 3.1: The classification chain with additional self-calibration. This
approach differs from the standard classification chain as self-labeled
samples x{ can be fed into the incremental learning mechanism of the
classifier.

itself. The self-calibration module receives the feature vectors x; as well
as the related self-label ¢; from the classifier. In the calibration process
these self-labeled samples x§ are used to adapt the model of the clas-
sifier. The combination of feature vectors with labels provided by the
classifier enables the use of supervised incremental learning strategies
available for several classification algorithms.

We use a NCC classifier which allows for the observation of the
underlying model, namely the class centers in feature space. This assists
in explaining the adaption process behavior. For incremental learning
with the NCC classifier we adopt the learning rule typically used in
vector quantization techniques like the SOM [39] or the growing neural
gas (GNG) [76]. This learning strategy consists of the following steps:

e A data sample x; is presented and classified to class ¢; by the
NCC classifier

e The class center CCy of class ¢ within the NCC model at time %
is moved towards the presented self-labeled sample x{ yielding a
new class center CCY, ;.

The amount of learning is regulated by a constant learning rate (LR)
which adjusts by how much the class center CCY is moved towards x.
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The learning rule is:

CC{,y, =(1—-LR)-CC{ + LR -xj§ (3.1)

The self-calibration start condition is triggered when the sensor dis-
placement happens and subsequently the performance of the classifier
decreases. This is comparable to a user noticing degrading system per-
formance and triggering a classifier self-calibration.

The stopping criterion we use for the synthetic dataset is based
on the gradient of the Euclidean distance dg ;(CC§, CCf) between the
class center at time ¢ and the class center before adaption at time 0.
We stop the calibration when the absolute mean of the gradient over
the last n calibration steps is below a preset threshold ST'.

1
|5 Z V(d0,i—n)» d(0,i—n+1)> A0,i—n+2)s - - d(0,0)))] < ST (3.2)

In the beginning of the adaptation process distance d(.) increases
rapidly, resulting in a high gradient. Once the adapted class center is
close to the real class center this distance only changes slightly. In this
case the gradient is small and below ST, therefore the calibration is
stopped.

In our validation on the two real-world activity datasets (Sections
3.4 and 3.5) we are limited in the number of data instances we can
use for the calibration. For these simulations we do not use the gra-
dient based stop criterion and stop the calibration when all available
instances have been presented.

3.3. Characterization on synthetic dataset

To characterize the self-calibration we perform several simulations
based on a two class problem with Gaussian distributions in a two
dimensional feature space. We are interested in the accuracy increase
by the calibration in case of a displaced sensor, and therefore displaced
class centers. The self-calibration is characterized for different distri-
bution overlaps reflected by different maximum accuracies an optimal
classifier can reach on this dataset.

Figure 3.2 shows the synthetic dataset in the feature space and the
NCC classifier adaptation process. The two 2D Gaussian distributions
of class A and B both have a variance of 1. The distributions shown
reflect the new situation, for example after a sensor displacement. Their
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Figure 3.2: We show one specific example of how the adaptation of the
class centers can look like. The clouds represent the Gaussian distri-
butions for the classes A and B. The lines are the adaptation paths
from the learned class centers CCg' and CCE of the initial distribu-
tion (initial sensor position) towards the new class centers of the new
distribution (displaced sensor).

overlap can be varied by changing the distance between the distribution
centers. Changing the overlap allows us to vary the maximum accuracy
an optimal classifier can achieve on these distributions. Points C'C§!
and CCP in this feature space represent the ideal NCC model before
the change (sensor displacement). The figure demonstrates the paths
of the initially trained class centers moving towards the center of the
distributions during the calibration. This represents one simulation run.
Each simulation run consists of the following steps:

1. Initialization:

e Set dataset distribution overlap for an accuracy between 60-
100% of an optimal NCC classifier.

e Randomly initialize the initial class centers CC§' and CCP.

e (Calculate accuracy before calibration based on the selected
distribution means and the class centers CC3' and CCE.

2. Self-calibration:

e Seti=0
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Figure 3.3: Average increase in accuracy for the simulated self-
calibration. We varied the distance between the initial distributions
A and B to change the accuracy an optimal NCC can reach. Further-
more the new (displaced) dsitributions were placed randamly in the
feature space, with the same distance as initially, to simulate different
accuracies before adaptation.

e Draw an instance x; randomly from the distributions and
classify it to class ¢; according to CC{* and CCPE.

e Update CC#* and CCP according to the learning rule (Equa-
tion 3.1) with the learning rate set to LR = 0.01, and set
i=14 1.

e Repeat the previous two steps until the calibration stop cri-
terion (Equation 3.2) with n = 10 and ST = 0.005 is met.

3. Evaluation

e Calculate accuracy after calibration based on the selected
distribution means and the final class centers CC{ and
CCE.

e Calculate accuracy increase = (accuracy after calibration) -
(accuracy before calibration)

In Figure 3.3 the average increase in accuracy is plotted for different
accuracies before calibration and different distribution overlaps result-



3.4. Validation on HCI scenario 25

ing in different optimal accuracies. The results are averages over 10,000
simulation runs. When accuracy before calibration is higher than 50%,
meaning better than guessing in our two class problem, there is in aver-
age an increase in accuracy for the calibrated classifier. The higher the
accuracy before calibration is, the lower the room for improvement and
therefore the increase in accuracy. The lower the distribution overlap,
and the higher the accuracy an optimal classifier can achieve, the higher
the expected increase in accuracy. For high distribution overlaps, and
a close to optimal initial classifier, the expected improvement by the
self-calibration is slightly negative. It is a surprising result that with
an imperfect self-labeling by the initial classifier a better calibrated
classifier can be achieved.

In an actual activity recognition scenario more classes have to be
distinguished and their distributions are usually not Gaussian. We in-
vestigate this case in the following sections.

3.4. Validation on HCI scenario

We characterize our approach on a gesture based human computer in-
terface scenario. The activity classes are arm gestures describing five
geometric structures: a triangle, an upside-down triangle, a circle, a
square and an infinity symbol.

As the focus is on sensor displacement we aim to minimize the
variability induced by the subject. In order to achieve this we cut out
a template of each shape from a Styrofoam plate. The subject must
move their hand alongside these templates, effectively guiding their
movements.

In order to capture the gestures we attached six USB acceleration
sensors to the right forearm of the subject. We roughly aligned them
to minimize rotational variation. The sensors were all calibrated and
verified before the experiment. For each of the five gestures we recorded
50 repetitions. The duration of each recorded gesture is between five
and eight seconds.

Several typical features were extracted from the acceleration signal.
We chose to use only mean and variance features calculated on the
acceleration signal y-axis. The two dimensional feature set provides
sufficient discriminative power and allows for good visualization of the
feature space. This is helpful to analyze the calibration mechanism.
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Figure 3.4: HCI scenario, left image: Six sensors are attached to the
subjects right forearm. Fitness scenario, right image: Ten sensors are
attached to the subject’s left leg - five on the thigh and five on the
lower leg.

3.4.1. Without self-calibration

In Figure 3.5 we show the results of training the NCC classifier on
one sensor position u and testing on all sensor positions v. Training
and testing on the same sensor position (v = u) result in the highest
accuracies, with an 84.9% average. Testing on the direct neighboring
sensors of u (Jv — u| = 1) results in an accuracy decline to 50.0%. If
we test on sensor positions which are even further apart (jv —u| > 1),
accuracy decreases to 48.7%.

The classifiers trained on sensor positions v = 1 and u = 2 perform
better on the more distant sensor positions v = 4 and v = 5 than on
the closer sensor position v = 3. The same behavior can be observed for
sensor positions u = 4 and u = 5 with respect to sensor position v = 6.
This can be explained by a slight rotation of sensors 3 and 6 compared
to other sensors, despite the alignment we performed. As we operate
only on the y-axis of the accelerometer, and not on the magnitude of
all three axes, the measurements are affected by sensor rotation. This
effect is shown in Figure 3.6 where we show the feature spaces for sensor
positions 2, 3 and 4.
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Figure 3.5: Accuracies for training a classifier on sensor position u and
testing on position v

350

W
o
=]

Variance

n
a
o

200

-200

Sensor position 2 Sensor position 3

*
*

% 350
* *

Fxx

el
" *
£ o

(5]

o

S
*

Variance

Sensor position 4

Variance
n w
a o
o o
*
mﬁ@ *
%
P

200

250 . &
S
200 *e
0 200 -200 0 200
Mean Mean

-200 0 200
Mean

Figure 3.6: Feature spaces for the sensor positions 2, 3 and 4. The
feature spaces of sensor positions 2 and 4 are more similar compared
to positions 2 and 3. This explains the differences in the classification
accuracies when training on position 2 and testing on positions 3 and

4.

3.4.2. With self-calibration

We calibrate the classifiers trained on the data from sensor position u
by using a subset of the data obtained from sensor position v. After the
calibration the classifier is tested on the remainder of the data obtained
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v=u |[v—u|l=1 [v—u|>1
mean  std mean std mean std
HCI dataset:

before calib. 84.9 2.1 50.0 21.0 487 24.4
after calib. 82.4 2.0 63.5 19.8 59.4 225
rel. imp. 29 1.2 33.3 25.6 31.1 30.2

Full fitness dataset:
before calib. 83.0 5.7 65.7 4.1 42.0 9.1
after calib. 82.8 5.9 74.4 9.9 49.5 94
rel. imp. -0.2 1.8 13.4 14.8 20.5 23.1

Reduced fitness dataset:

before calib. 95.1 34 89.4 4.8 67.3 9.5
after calib. 954 3.6 95.8 3.6 69.8 10.8
rel. imp. 04 4.0 7.2 5.1 4.1 12.6

Table 3.1: Accuracies (in %) before calibration, after calibration and the
relative improvement by the calibration. The improvement is relative
to the accuracy before calibration. v denotes the sensor position before,
and u after the change.

from sensor position v. A three fold cross calibration is applied, using
two folds to calibrate the classifier and one fold to test it on the new
sensor position. The data samples used for the calibration are selected
randomly from all classes and are not presented in any specific order.
The calibration results of all sensor displacement combinations and
folds are plotted in Figure 3.7. The accuracies of the classifiers after the
calibration are plotted against the accuracies of the initial classifiers.
The points above the diagonal line are the cases where the calibration
improved the classifier. The points below the line are the cases where
the calibration deteriorated the classifier. For sensor positions where
the accuracy before calibration is already > 80% (e.g. v = ) the cali-
bration is only beneficial for half of the cases. This is according to our
simulation results on the synthetic dataset where an already close to
optimal classifier was likely to be worsened by the calibration. When
the class centers C'C§ in the NCC model are already optimal it is likely
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Figure 3.7: This plot shows the accuracies before calibration against
the accuracies after calibration for the HCI dataset. Each * marks one
sensor displacement combination, for example training on v = 1 and
testing on v = 2. With six sensor positions 72 sensor displacement com-
binations are possible, including calibration on the undisplaced sensor.
The vertical bars show mean and std in the according bins.

that the calibration slightly changes them, resulting in a worse classifi-
cation. The cases where the calibration is beneficial outranges the cases
where it is not. A summary of the results is listed in Table 3.1.

3.5. Validation on fitness scenario

In addition to the HCI scenario we validate our approach on an aerobic
fitness scenario.

We recorded the acceleration of the left leg for six different typical
aerobic movements shown in Figure 3.8. For this purpose we placed ten
bluetooth acceleration sensors at the subject’s leg, five on the lower leg
and five on the thigh, as depicted in figure 3.4. We placed the sensors
equidistantly and with the same orientation as we focus on translational
displacement. The sensors were all calibrated and verified before the
experiment.

For the recordings an experienced subject copied the movements an
aerobic instructor performed in a video. The video, containing all six
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classes in equal shares, had a duration of 4:22 minutes and was repeated
five times.

Giass 1

Figure 3.8: The fitness scenario includes 6 classes: (1) flick kicks, (2)
knee lifts, (3) jumping jacks, (4) superman jumps, (5) high knee runs,
(6) feet back runs. For each class, the extent of the body movements is
shown on two example pictures.

For the data of each sensor we calculat the acceleration magnitude
and extract mean and variance features based on a sliding window of
eight seconds with two thirds overlap. The resulting two dimensional
feature space for each sensor position is depicted in Figure 3.9. We
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observe that directly adjacent sensor positions show less difference in
feature space than sensor positions which are further apart. There is
also less similarity between sensor positions 5 and 6, despite being adja-
cent, as they are on different limb segments. For the positions (4,5,7-10)
we can observe overlaps between the classes “flick kicks” and “high knee
runs”. There are also overlaps between the classes “jumping jacks” and
“sumperman jumps” for all sensor positions.
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Figure 3.9: Feature space of the fitness dataset for each of the 10 sensors

The feature spaces of sensors placed on different limb segments are
too different for succesful calibration. Therefore we focus solely on sen-
sor displacements on the same limb segment. Since the results we ob-
tained for the lower leg and the thigh are similar, we will detail only
sensor displacements on the lower leg.

We train on sensor position v and test on all five sensors positions
uw in order to simulate a sensor displacement on the lower leg. The
accuracies obtained when training a classifier on one sensor location
and testing it on the same (v = ) is in average 83.0%. If we test on
the direct neighboring sensors |v — u| = 1 the average accuracy drops
to 65.7%. If we test on sensor positions which are even further apart
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(v —u| > 1) the accuracy of the classifiers trained on u decreases to
42.0%.

We apply the classifier self-calibration described in Section 3.2 to
the displaced sensors in a similar manner as described in Section 3.4.
The accuracies after calibration versus the accuracies before calibration
are plotted in Figure 3.10 for all sensor combinations and folds.
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Figure 3.10: This plot shows the accuracies before calibration against
the accuracies after calibration for the fitness dataset. Each * marks
one sensor displacement combination, for example training on u = 1
and testing on v = 2. With five sensor positions 50 sensor displacement
combinations are possible, including calibration on the undisplaced sen-
sor. The vertical bars show mean and std in the according bins.

The calibration of classifiers operated on displaced sensor positions
on the lower leg is beneficial in most of the cases. Classifiers with a
close to optimal initial accuracy (in this case above 70%) are less likely
to be improved through self-calibration.

The simulations in Section 3.3 show that the expected improvement
of the self-calibration increases when there is a better class separation
and therefore a higher accuracy of an optimal classifier. To validate this
finding we remove the two overlapping classes (1 and 3) from the fit-
tness dataset and evaluate the self-calibration on the resulting reduced
fittness dataset.

In Figure 3.11 we show two examples of the calibration dynamics.
In the first case we apply the calibration to the fitness dataset. For class
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4 the calibrated class centers do not end up close to the optimal class
center. This is a typical case where less class separation confuses the
self-calibration and only one class center, here that of class 3, benefits.
For the reduced fitness dataset the class center of class 4 ends up closer
to the optimal class center.
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Figure 3.11: Adaptation paths of the class centers during calibration
on the full (top) and the reduced (bottom) fitness dataset. The NCC
classifier is initially trained on sensor position 1 and calibrated on sen-
sor position 2. The numbers in the plots indicate the different classes
aligned to Figure 3.9.

For both, the reduced and the full fitness datasets, we see that some
class centers (e.g. class 6) end up quite distant from the optimal class
centers even though their paths seem to lead directly to the optimum.
This indicates that we did not use enough instances for the calibration
to reach the optimal class centers.

The accuracies obtained when training a classifier on one body lo-
cation and testing it on the same location (v = u) reach an average of
95.1% with the reduced dataset. If we test on the direct neighboring
sensors |[v — u| = 1 the average accuracy drops to 89.4%. If we test on
sensor positions which are even more distant (Jv — u| > 1) the average
accuracy of the classifiers decreases to 67.3%. In the case of the reduced



34 Chapter 3: Unsupervised classifier self-calibration

dataset the sensor displacement has less influence on the accuracies of
classifiers working on displaced sensors, compared to the full dataset.

The accuracies after calibration against the accuracies before cali-
bration, for the reduced fitness dataset, are plotted in Figure 3.12. In
this case the classifiers with an accuracy before calibration greater than
80% are likely to improve to an accuracy after calibration of greater
than 90%. The classifiers with an accuracy before calibration of less
than 80% are less likely to be improved by the self-calibration. The
ones which benefit from the calibration improve only to 75%. This is
because the classifier improves for three of the four classes, sacrificing
one class. A detailed summary of all results is given in Table 3.1.
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Figure 3.12: This plot shows the accuracies before calibration against
the accuracies after calibration for the reduced fitness dataset. Each
* marks one sensor displacement combination, for example training
on v = 1 and testing on v = 2. With five sensor positions 50 sen-
sor displacement combinations are possible, including calibration on
the undisplaced sensor. The vertical bars show mean and std in the
according bins.

3.6. Discussion

The unsupervised classifier self-calibration method presented in this
chapter allows for the adaptation of a classifier to a new sensor posi-
tion. The validation on two scenarios, namely HCI gesture recognition



3.6. Discussion 35

and fitness aerobic activity recognition, has shown improvements in
the classification accuracy by 33.3% and 13.4%, in case of a slightly
displaced sensor (jv —u| = 1).

The validation is based on mean and variance features which are
affected by sensor displacement. Other features might be less position
dependent and reduce the influence of sensor displacement.

Currently the calibration procedure has to be started when there is
a decrease in classification performance, e.g. from sensor displacement.
The displacement itself does not have to be explicitly detected. In many
applications the calibration start may be a manual trigger by the user.
There could also be a first time use calibration mechanism, for example
after attachment to the body. Change detection algorithms [77, 78] may
eventually trigger calibration automatically.

From our experiments on synthetic and real-world datasets we have
seen that our approach is more effective when there is minimal confu-
sion between classes. The calibration is likely to worsen the classifiers
in cases where there is a high confusion between classes. The amount of
sensor displacement also has an influence on the calibration. In many
cases the calibration of less displaced sensors leads to better results
compared to highly displaced sensors. This is related to the class overlap
mentioned. In particular for different body segments the self-calibration
was not beneficial due to highly different class distributions in the fea-
ture space. It also has to be noted that the calibration in average leads
to an improved classification. However this improvement can not be
guaranteed for individual cases.

Our approach operates as an add-on to the typical classification
chain and should not be restricted to the NCC classification algorithm,
so long as incremental learning is supported. For example a k-Nearest-
Neighbor classifier could potentially be used instead of the NCC since it
supports incremental learning by nature. Other classification methods,
like the Support Vector Machine or Hidden Markov Models have also
been extended for incremental learning [41, 42, 43]. The behavior of
these methods in combination with the self-calibration has yet to be
evaluated though. In addition, our approach is potentially applicable
to different sensor modalities or other sources of variability.
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Classifier adaptation

based on error
feedback

In this chapter we present two approaches for classifier
adaptation based on error feedback. The first is an improved
incremental kNN classifier with two learning modes, one for
error- and one for correct-learning. The second approach
is based on RL where the error feedback is translated into
a reward signal. Both approaches are evaluated on a real
world gesture recognition dataset. Furthermore we validate
our findings for the RL approach in an adaptive online ges-
ture recognition case study.
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4.1. Introduction

The unsupervised self-calibration method described in Chapter 3 does
not take the user’s intention into account. Therefore it can not be guar-
anteed that the adapted classifier performs better, according to the
user’s expectation. In this chapter we address this drawback and focus
on a specific type of supervision, namely error feedback, given by the
user. We investigate the learning and adaptation towards a new user
within a gesture recognition scenario.

We assume that the users can become aware of the system’s recog-
nition result for each input gesture, directly after the gesture is per-
formed. They can therefore compare their intended gesture command
with the recognition results, and identify recognition errors.

A feedback given by the user about recognition errors can be trans-
lated into a correct/error (CE) teacher signal, indicating for each ges-
ture or activity if the recognition result was correct or wrong. If the user
indicates an error after the recognition of a certain instance, an error
signal is generated. If no error is indicated a correct signal is generated.

The user can indicate recognition errors to the system via a
user—system feedback channel. In our case the feedback input can be
generated by a simple button, pushed whenever an error is perceived.
Compared to ground truth feedback this is less obtrusive since the ac-
tual class label doesn’t have to be communicated. This is especially true
in applications where many different classes have to be distinguished,
as more sophisticated input mechanisms, e.g. a full keyboard, would be
required.

Another advantage of the error feedback is that interaction is only
required from the user in the error case. When no error feedback is
given by the user it is assumed that the recognition was correct. Once
the system has adapted and reached reasonable performance only little
interaction will be required from the user.

There are also other possibilities to capture the error information
from the user without explicit interaction. Implicit interaction could
occur through physiological signals like heart rate, electrodermal activ-
ity or brain waves. It has been shown that changes in the heart rate or
the electrodermal activity of a person are linked to stress and emotions
[79, 80, 81]. Stress symptoms or specific emotions could be triggered
particularly when using a system that makes errors and does not react
in the way the user expects it. In electroencephalography (EEG) signals
that capture brain activity, typical patterns linked to errors have been
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identified. These patterns have been observed both for users making
the errors, as well as for users affected by a system making errors [82].
In Chapter 5 we investigate this option in more detail.

4.2. Incremental kNN using CE signal for classifier

adaptation
T

incremental

learning -
Xt_* >Ct
kNN classifier C,

Figure 4.1: An instance x; is classified by C; to prediction ¢. The
instance x; together with the prediction ¢; and the teacher signal s;
are used for incremental learning.

In Figure 4.1 we show the principle of our teacher based kNN learn-
ing. An instance x; is fed into the classifier C; and classified to predic-
tion ¢é. For each classification result we get the according teacher signal
s¢. The instance x; together with the prediction ¢; and the teacher sig-
nal s; are used for incremental learning the classifier Cy, resulting in an
adapted classifier Cy4 1.

The typically incremental learning kNN classifier requires ground
truth supervision for learning. In this section we extend such a classifier
to support learning with a supervising CE teacher signal s; and evaluate
it on a gesture recognition dataset.

We assume the following learning scenario. Initially the recognition
system is trained on prerecorded training data from different potential
users. After this initialization phase the system is deployed to a new,
so far unseen user for operation (no data of this new user is contained
in the training data). It is assumed that this new user will behave in
a similar way as captured in the training data. The recognition system
is therefore assumed to have a performance better than guessing, but
lower than if it was specifically trained for this user [13]. To adapt the
pre-trained classifier to the new user we perform incremental learning
guided by a CE teacher signal.
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4.2.1. Incremental learning kNN classifier

We use a weighted kNN classifier [83] where a weight is assigned to
every data point in the classifier model. The kNN classifier C; valid at
time ¢ consists of a model M, ; for each class c.

Cy={My 4, My, M3y, ...} (4.1)

Each model M, ; consists of data points which are represented by tuples
mapping a feature vector f; of weight w; . to class c.

Mc,t = {(f17 Wit C)a (an w2 t, 6)7 (f37 w3, t, C)a } (42)

When training the classifier in non-incremental mode, all weights
(w; 1=0) of the added feature vector f; are set to 1.

For the classification of new instances x; the weights (w; ;) of the k
nearest neighbors (NN), belonging to the same class, are summed up
to the sum of weights (SW,).

SW,. = Zwm VYV NN; of class ¢ (4.3)

The resulting prediction is

¢ = argmax(SW,) (4.4)

We extend the kNN learning to support learning from the CE
teacher signal s;. For each labeled training instance this signal has
one of the following two states:

e correct: We assume the class prediction ¢ of this instance is cor-
rect and corresponds to the ground truth

e crror: We assume the class prediction ¢; of this instance is incor-
rect and differs from the ground truth

Our kNN learning strategy comprises of two learning processes -
one for instances x; where s; = correct and one for instances x; where
S¢ = error.

To learn a correct instance x; the feature vector f of this instance
is added to the classifier model together with a weight w;; = 1 and
the class label ¢;. The weights of the [ neighboring data points, which
are of the same class as the learned instance, are increased according
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Algorithm 1 correct learning of instance x; with label &

add (x¢,1,¢t) to Mc ¢
: find the [ NN of fy within C}
: for each found NN j do
if ¢c; = ¢; then
Wy 41 = Wine(wj,¢)
end if
end for

NPT

to the weight adjustment function Wj,.. The correct learning strategy
is outlined in Algorithm 1.

When learning from error instances the actual ground truth class is
not known. It is known however, that the ground truth is different from
the predicted class label ¢;. We exploit this information in our error
learning strategy. We find the [ data points in the classifier model, which
are neighbors of the instance x; to learn. The weights of the neighboring
points, which are of the error class ¢;, are decreased according to the
weight adjustment function Wy... Data points with a weight below
a fixed removal threshold k are removed from the classifier models, as
they contribute only marginally to the classification result, but increase
the computational complexity. The error learning strategy is outlined
in Algorithm 2.

Algorithm 2 error learning of instance x; with label ¢;

1: find the [ NN of x¢ within C}
2: for each found NN j do

3: if c; = ¢t then

4: Wy t41 = Waec(wj,¢)

5: end if

6: end for

7: for each (fm,wm,t,c) in C¢ do
8: if wm,t <k then

9: remove (fm, Wm,¢, ) from Ct
10: end if

11: end for

The weight adjustment functions (see figure 4.2) were chosen as
follows:

wis — 2)° “.
%juz Wiee(wie) = —*

The concave and convex shape control the weight increase and de-
crease. Weights are limited (w;; € [0,2]) to prevent single instances

Winc(wi,t) = -

(4.5)
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Wi o1 = WineW,) Witer = WaeeWi )
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Figure 4.2: Weight adjustment functions Wj;,. and Wye., used to in-
crease and decrease the weights of the neighboring instances.

biasing the classification. The quadradic functions affect low weight
values (w;; < 1) more than high weight values (w;; > 1). When the
classifier has been operated in a stationary condition the weights in the
classifier model will be high (w;; ~ 2). In this case the classifier model
is more stable compared to a situation where the weights are small
(w;r << 2), but will also take longer to adapt to a non-stationarity.

Due to the incremental learning the number of data points in the
classifier models are not constant. On one hand this could lead to con-
tinuous growth of the number of data points and increasing memory
requirements. On the other hand continuous removal of data points
could lead to a classifier model containing no information. We subse-
quently add several extensions to the kNN classifier to cope with the
variable number of data points in the model during learning and clas-
sification.

To prevent a bias towards one class in the classification the sum of
weights over all data points within the models M. of class ¢ should
be similar. An equalization mechanism stops learning, when the sum of
weights of class ¢ (>, M. ) differs by a € [0, 1] from the mean between
the highest (maxzk (>_, Mk +)) and the lowest (ming (>, Mk +)) sum
of weights of all classes K.

The correct learning for a specific class c is stopped if the following
condition is fulfilled:

S M, > %(maxK(Z M) +minge (3" M) - (1+a)  (46)

The error learning for a specific class ¢ is stopped if the following
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condition is fulfilled:
1 .
%:Mm < i(maxK(zw: Mg ,) + mmK(zw: Mgy)) - 1—a) (47)

We also stop the error learning for class ¢ when the number of data
points present in its model (#M, ) reaches an absolute lower limit ¢:

#Mc,t é 0 (48)

The number k£ of NN to take into account for the classification of
new instances is defining the neighborhood radius within the feature
space. With a constant & this radius changes when the number of data
points in the classifier model changes. The radius is kept constant by
adapting k at every time step depending on the number of data points
in the classifier model. We define k£ as the number of points being the
fraction R € [0,1] of all data points in the classifier model:

ki = R #C, (4.9)

With #C; denoting the number of all data points within the classifier
model at time t.

Similarly the radius for learning, defined by [, depends on the num-
ber of points in the classifier model. To keep the learning radius con-
stant we define a learning rate LR € [0,1] from which [ is calculated
at every time step as follows:

l, = LR - #C, (4.10)

4.2.2. Characterization on artificial dataset

We characterize our incremental kNN learning based on simulations
using an artificial dataset. In an initial training phase, all training in-
stances x from an initial training set are added to the kNN classifier
model, with weight w; o = 1. Each new instance x; is then classified
and the prediction ¢ together with the teacher signal s; are used for
learning. We generate the CE teacher signal s; by comparing the re-
sult of the online classification to the ground truth. If the prediction
¢ matches ground truth, then s; = correct - otherwise s; = error is
generated.
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Figure 4.3: Artificial dataset consisting of four classes. Each class is rep-
resented by a two dimensional Gaussian distribution with the centers
placed at the corners of a square. Left plot: the class overlap and there-
fore the optimally achievable classification accuracy can be adjusted
by changing the class distance d. Right plot: The distributions can be
rotated by an angle 8 to simulate a non-stationarity.

Artificial dataset generation

The artificial dataset we generate (Figure 4.3) allows us to characterize
the behavior of our learning algorithm in case of a non-stationarity in
the input data. It consists of four classes, each represented by a two
dimensional Gaussian distribution with a diagonal covariance matrix

Y= { (1) (1) ] . The distribution centers for each class are placed at the

edges of a square with side length d. This distance between classes is
used to adjust the class overlap, and therefore the maximum accuracy
an optimal classifier can achieve. To simulate a non-stationarity as it
could appear e.g. at a sensor position change, we introduce an angle (8
by which the dataset can be rotated.

The distributions are sampled with an equal number of samples per
class.

We generate three datasets with different parameters. The initial
training set is used to train the initial classifier C;—g. A non-stationarity
is simulated by a rotation of the data by angle Baqqqpt in the adaptation
set. The performance of the adapted classifier C; is evaluated on the
adaptation test set. The parameters d and 3 are changed according to
the intended analysis. A summary of the generated datasets is provided
in Table 4.1



4.2. Incremental kNN using CE signal for classifier adaptation 45

dataset ‘ d B in ©  # samples
initial train set dsim 0 100
adaptation set dsim  Badapt 1000
adaptation test set | dsim  Badapt 800

Table 4.1: Summary of the generated artificial datasets with the ac-
cording parameters.

Influence of initial accuracy

In our learning scenario according to Figure 4.1 each instance x; is
classified to prediction ¢ before it is used for incremental learning. If
the prediction is according to the ground truth the teacher signal will be
correct and correct learning will be applied (Algorithm 1). In case of a
wrong prediction the teacher signal will be error and error learning will
be applied (Algorithm 2). The performance of the classifier Cy therefore
has a direct influence on the classifier learning.

For our simulations we empirically select the following learning and
classification parameters relevant for Algorithms 1 and 2, and Equa-
tions 4.6 - 4.10:

R=005 k=01 ao=01 LR=005 0=13

In Figure 4.4 we show the adaptation of the classifier for S,qqp+ of 30°,
50° and 70°. We chose dg;;, = 3.95 which results in a good separa-
tion between classes. The initial accuracies of classifier C;—( tested on
the adaptation test sets are 75.0% (30°), 36.9% (50°) and 11.1% (70°)
respectively. These are the accuracies before the adaptation is started.
The simulation of the upper-bound accuracy (ub acc) the adapted clas-
sifier can reach resulted in 94.3% (determined by training a kNN clas-
sifier on the adaptation set and testing it on the adaptation test set).
In all three cases of Bqqapt the adapted classifiers reach the upper-
bound accuracy. The lower the initial accuracy for Ci—g, the longer
the adaptation takes. During the adaptation phase, when the classifier
is still improving, the number of data points in the model, as well as
the weights, remain nearly constant. This indicates that the increase
of weights, and the addition of new data points, are at similar levels
as the decrease of weights and the removal of data points. When the
performance of the adapted classifier gets close to the upper-bound
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Figure 4.4: Top Row: Accuracy increase of the adapted classifier over
sample index ¢ for dgm, = 3.95 and three different Buqqpe. The esti-
mates of the initial accuracy (init acc) and the upper-bound accuracy
(ub acc) are given as baselines. The indexes where the performance
of the adapted classifier reaches 90% of the upper-bound accuracy are
marked with a vertical line. The lower the initial accuracy the longer
the learning takes to reach 90% of the upper-bound accuracy. Bottom
Row: Number of data points in the kNN model as well as the sum of
weights (>, M. +) combined for all classes ¢ over index t. Both values
remain nearly constant until the performance of the adapted classifier
is close to the upper-bound accuracy. Afterwards the number of points,
as well as the sum of weights, increase, because the correct learning
dominates.

accuracy the correct learning dominates and the number of data points
in the model, as well as their weights, increase.

In Figure 4.5 we show the simulation results when the class sep-
aration is inferior (dg;, = 1.85). The initial accuracies in this case
are 56.3% (30°), 40.8% (50°) and 27.3% (70°) respectively. The upper-
bound accuracy in this case is 64.3%. The general behavior is similar to
the one shown in Figure 4.4, with the adaptation being faster when the
initial accuracy is higher. However, the increase rate of data points and
weights in the model is lower. This is caused by the lower upper-bound
accuracy which makes correct and error learning more even as more
error instances are generated.
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Figure 4.5: Similar to Figure 4.4 we show the results for dg;,, = 1.85.
The lower the initial accuracy, the longer the adaptation takes to reach
the upper-bound accuracy. The increase in the number of data points
and the sum of weights is slower compared to Figure 4.4 as more error
learning is present.

Influence of learning rate

The learning rate is an important parameter in any adaptive learning
application. A high learning rate allows for a fast adaptation to a non-
stationarity but comes at the cost of a higher sensitivity to noise. A low
learning rate is makes the learning more robust to noise but also reduces
plasticity. In the following we investigate the effect of the learning rate
LR (see Equation 4.10) on our incremental learning kNN approach.

In figure 4.6 we show the adaptation of the classifier for three differ-
ent LR values, namely 0.005, 0.1 and 0.4. The other learning parameters
are:

R=005 k=01 a=01 §=13

The simulation datasets are configured with dg;,, = 3.85 and Badept =
70°.

A higher learning rate, e.g. LR = 0.1 compared to LR = 0.005,
leads to a faster increase of the weights. This leads to a faster learning
so that the upper-bound accuracy is reached earlier. The change of the
number of data points in the classifier model is also affected by the
learning rate. With a higher LR the weights of more data points are
adjusted.
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Figure 4.6: The plots illustrate the effect of the learning rate LR on the
adaptation. The dataset is configured with dgim = 3.85 and Bagapt =
70°. A higher learning rate LR makes the classifier more plastic and
allows for faster learning (compare LR = 0.005 and LR = 0.1). This
is also reflected by a stronger increase in the sum of weights when
the learning rate is higher. Faster learning comes at a cost of stability
though, as a too high learning rate leads to catastrophic forgetting (see
LR =04).

A high learning rate, e.g. LR = 0.4 in this case, results in a poor
adaptation, with the adapted accuracy not reaching the upper-bound.
This is due to a decrease of the number of data points in the classifier
model due to error learning. This may eventually lead to the loss of
one class, which can be seen as catastrophic forgetting. The inability
to recognize one class leads to only error learning for this class and
therefore a continuous removal of points until the balancing mechanism
(Equation 4.8) stops the learning. In such a case the learning is never
reactivated since no data points can be added for this class.

Our simulations have shown that the stability of the learning is
not only affected by the learning rate but also depends on the initial
accuracy, the number of points in the classifier model and the parame-
ters of the equalization method. The higher the initial accuracy is, the
less error learning is performed which reduces the risk of catastrophic
forgetting. The more points a classifier model has, the more have to
be forgotten before the result is catastrophic. This leads to a higher
stability. The parameters of the equalization method (Equations 4.6,
4.7 and 4.8) regulate when the learning is stopped. The more conserva-
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tively these parameters are chosen (i.e. the more balanced the number
of data points for each class is, with large 0 and small «), the more
stable the learning is. The downside of this however, is that it may
delay the learning.

Comparison to learning from ground truth

We compare our learning approach combining correct and error learn-
ing from a CE teacher with correct learning from a ground truth
teacher. In Figure 4.7 we show the according learning curves for
Badapt = 50° with the following learning parameters:

R=008 k=01 a=002 LR=001 6=15
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Figure 4.7: Comparison between learning from the CE teacher with cor-
rect and error learning and the ground truth teacher with only correct
learning on the artificial dataset with Bg4qp: = 50°. Both variants con-
verge to the estimated upper bound. The learning from the CE teacher
allows for a faster convergence compared to the ground truth learning.

The combination of correct and error learning based on the CE teacher
outperforms the correct only learning with ground truth in terms of
learning speed. This can be explained through the error learning, which
allows the active removal of those data points from the model, leading to
misclassifications. Removal of data points with the correct only learning
is not possible.
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4.2.3. Validation on gesture recognition dataset

We validate our approach on a hand gesture dataset (see Section 5.3 for
details of the recording setup). We simulate a new-user scenario, where
the pretrained gesture recognition system is adapted to a new user. The
dataset consists of five different hand gestures (¢ = 1..5) performed by
seven subjects in a human computer interface scenario. The recognition
is based on gesture instances (x:) containing six features calculated
from the segmented hand acceleration (refer to Section 5.5.1 for details
on the dataset preprocessing).

We generate an initial train set containing 480 gestures selected
randomly from six of the seven subjects, equally distributed over all
classes. The adaptation set and the adaptation test set are generated
from the left out subject containing 2240 and 500 gestures respectively.

The simulations are performed in the same way as described in sec-
tion 4.2.2. Each simulation is repeated 20 times with different dataset
permutations to eliminate the influence of a specific instance order. The
learning parameters were empirically chosen as follows:

R=002 k=01 «a=04 LR=0.002 §=48

The results, averaged over all subjects and all dataset permutations,
are shown in Figure 4.8. In this case the incremental learning based on
the CE teacher performs worse than the learning from ground truth.
The estimated upper bound accuracy of 87.2% is not reached. This
could be caused by certain classes being less good recognizable, and
therefore also harder to learn since less correct instances are available
for these classes. Nevertheless the accuracy is increased by 14.4% over
the subject independent baseline of 72.1%, reaching 82.5%.

4.2.4. Discussion

With the presented incremental online kNN learning method it is pos-
sible to adapt a pretrained classifier to new input data characteristics
based on a CE teacher. The validation on a real world gesture recog-
nition dataset has shown the effectiveness of our approach. In average
the adaptation through online learning from the CE teacher increased
the accuracy by 10.3% over the subject independent baseline of 68.3%.

It has to be noted though, that our method is sensitive to the or-
der of the input samples. Incrementally learning the classifier with a
different order of the same instances will result in a slightly different
classifier.
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Figure 4.8: Learning from a CE teacher and from ground truth on
the real world gesture dataset. With learning from the CE teacher the
accuracy is improved by 14.4% over the initial subject independent
accuracy. The increase is less compared to learning from ground truth
and the estimated upper bound is not reached.

The number of data points in the classifier model continuously in-
creases during the learning when the teacher provides more correct than
error signals. This is likely to happen in recognition tasks with good
class separation and therefore a high upper-bound accuracy. A mecha-
nism which limits the correct learning, when enough data points are in
the classifier model, would reduce the memory requirements, and make
our approach applicable for life-long learning.

We propose quadratic weight adjustment functions designed to limit
the weights to the range [0, 2]. This ensures a good stability-plasticity
tradeoff and also showed good results on the dataset used. Other weight
adjustment functions, e.g. exponential or linear, or altering the possible
range of the weights, can change the learning behavior.

The teacher signal we simulated for the evaluation of our approach is
free of errors. An imperfect teacher signal will affect the learning speed
and the stability of the approach. In applications with a potentially
imperfect teacher this should be taken into consideration.
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4.3. Reinforcing a recognition system using negative
rewards

RL is a machine learning principle based on rewards received from
the environment. It is a bio-inspired approach related to the learning
behavior of animals [54]. In this section the typical RL terminology is
used which we map to our context in the following way:

e State (.5): Activity instance represented by a feature vector cal-
culated from motion signals

e Agent: Activity recognition system
e Action (a): Output action related to the recognized activity class

e Reward (r): RL specific supervision signal, for example ex-
tracted from error feedback

For a given state S; the agent chooses an action a; according to
policy m which results in a reward r;y; from the environment. This
principle is depicted in Figure 4.9. In the course of time the agent ex-
plores possible actions for different observed states and receives the
according rewards. Once the agent has gained some experience by ex-
ploring several state action pairs (SAP), it can optimize policy 7 to
choose the action with the highest expected reward for a given state.

RL Agent {a; = w(S:)}

S
Tt+1 Qg

St+1

Environment

Figure 4.9: Principle of RL. The agent receives a state S; from the
environment and issues action a; according to policy w. For the state
action combination it receives a reward r;y; and refines the policy
accordingly. [54]

The CE signal generated from the user’s feedback can be interpreted
as a reward signal r to a RL agent. In this section we investigate the



4.3. Reinforcing a recognition system using negative rewards 53

learning and adaptation of a RL gesture recognition system, based on
CE feedback.

4.3.1. Reinforcement learning background

In RL the agent performs an action a; according to a given state S,
with the goal of reward maximization. The function that performs the
state action mapping is the so called policy 7 [54]:

a; = m(Sy) (4.11)

It is assumed that a new state S;y; only depends on state S; and
action a;. The environment the agent interacts with has to therefore
fulfill the Markov property [84].

The policy m controls the selection of the best action for a given
state, according to the Q-value. The Q-value is a measure for the ex-
pected reward of a state-action pair (SAP). It is calculated based on
the Q-function, also known as Bellman equation [85], for a given SAP
(S,a) and a policy .

Q™ (S,a) = E{riy1 +yR 4} (4.12)

The discount factor v € [0, 1] is used to reduce the influence of future
rewards RY, ;. In many applications it is assumed that the reward 7441,
that directly follows a SAP, is more directly linked to the quality of the
last action and therefore should be weighted higher then the following
rewards.

The Q-function that results in the highest output for a SAP given
all possible policies 7 is considered the optimal Q-function Q*(S, a).

Q*(S,a) = mT?,xQ”(S, a) (4.13)

The policy that is based on the optimal Q-function is the optimal
policy 7*. It always selects the action with the maximum Q-value and
is therefore called the greedy policy.

7 (S) € argmax,Q" (S, a) (4.14)

To learn the policy for a given task there are two different proce-
dures. In on-policy learning the RL system updates the policy incre-
mentally with each new SAP that is experienced. The off-policy learn-
ing strategy consist of two stages. Initially a fixed preliminary policy is
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applied (e.g. random action selection) to capture SAPs. Secondly these
SAPs are used to learn a new policy which is then applied for actual
use of the system.

Another important aspect regarding the policy 7 is the exploitation
vs. exploration trade off. A good policy should be exploited as much
as possible to maximize the reward. Nevertheless exploration of the
state-action space is important during learning of the policy to find a
globally optimal solution for the state-action mapping. In the following
we describe three typical approaches to allow for exploration in the

policy.

e c-greedy policy [54]: With a probability of €; a random action
is selected over the action with the highest Q-value for the SAP.

o « | a=argmaxg Q:(Sy, a) p(exploit) = 1 — gy,
¢ a = random action in A p(explore) = g;
(4.15)

For learning a state-action mapping in a static environment e¢;
can be decreased over time with e.g. ¢, = % This ensures high
exploration in the beginning of the learning process. Finally ex-
ploitation dominates the policy, when the system has successfully
learned a Q-function. In non-stationary environments, where the
state-action space is subject to changes over time, a constant ex-
ploration factor can be set in order to explore novel behaviors.

¢ Boltzmann exploitation [54]: In this exploration scheme prob-
abilities are calculated for each possible action a;, given a state S;.
The action a, is chosen randomly according to the probabilities
p(a]St) of all possible actions a given S;.

eQ‘(a’S‘)/Tt

p(alSy) = (4.16)

> eQe(b,Se)/Te
b=1

N is the total number of possible actions and 7, € Ry is the
exploration rate. The higher 74 the more exploration is performed.
Similar to the e-greedy policy, the exploration factor 7 can be
decreased over time to allow for more exploration in the early
learning phase and more exploitation thereafter.
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e Optimistic initial value [54]: With an optimistic initialization
of the Q-function several possible actions are explored before the
Q-function converges. Even with a greedy policy this leads to a
fair amount of exploration. Since the amount of exploration be-
comes less with the system learning, the optimistic initialization
is best used for stationary environments.

4.3.2. State of the art

One of the earliest applications where RL was successfully applied was
Backgammon. The TD Gammon [86] RL approach is based on a neural
network and discrete states, actions and rewards. In 1995, when TD
Gammon was proposed, it was superior to other artificial intelligence
players. In contrast to later RL methods this approach does not use
a Q(S,a) function to evaluate the expected reward for a SAP. Instead
only the quality of the state is evaluated.

The Attention-Gated RL (AGRL) [87] is also based on a neural
network, but in contrast to TD Gammon uses a Q(S,a) function to
estimate the expected reward for a SAP.

The SARSA [88, 54] RL approach has already been widely used
and applied to applications like automatic spoken dialogue strategy
optimization [89], adaptive music generation [90], and channel control
in cellular networks [91]. This approach is named after the inputs of
the Q-function update rule: state (S;), action (a;), reward 7441, state
(St+1) and action (at11). The Q-function is usually represented by a
table of SAPs and therefore requires a finite number of discrete states
and actions. An extended version of SARSA is the Least-Squares Policy
Iteration (LSPI) [84]. In contrast to the traditional SARSA the Q-
function is not represented by a table but modeled by basis functions
which span the state space. This allows for a continuous state space
representation. To find the right basis functions a priori knowledge of
the state space is required. Furthermore, the state space has to remain
constant over time.

An alternative state space representation is persued by Santamaria
et al. In their Instance Based RL approach (INST)[92] new SAPs are
stored as individual instances in the state space. This allows for contin-
uous state space representation. Q-values for a new SAP are estimated
by interpolation from stored SAPs close to the new SAP in the state
space.

Q-Learning [93, 94] is a RL principle for off-policy learning. It is
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based on a similar Q-value update rule as SARSA. As one main dif-
ference Q-value updates for a certain SAP are based on estimates for
all possible next SAPs. This is necessary since future SAPs are not
observable in off-policy learning

An alternative off-policy RL method is PEGASUS [95], a policy
search algorithm. Based on a model of the environment, it searches for
an optimal policy to be used later for the actual control tasks. This
approach has been applied to autonomous helicopter flying [96].

4.3.3. Requirements posed by the learning scenario

The approaches just explained all have different properties. We focus
on a gesture recognition scenario, similar to the one presented in Sec-
tion 4.2.3, where the gesture recognition system is adapted to a new
user. The learning is based on the same CE teacher signal generated
from user feedback as described in Section 4.1. In the following we
list the requirements our scenario poses on a RL method for gesture
recognition:

e Arbitrary continuous state space
The gestures captured are represented by a multidimensional fea-
ture vector of continuous real values. The characteristics of the
state space are not known a priori and can vary depending on
the environmental characteristics (e.g. the user behavior or sen-
sor placement).

e Discrete action space
For every state one discrete action is chosen.

e Discrete reward The feedback given by the user is binary, either
the last action was correct or an error. This binary feedback is
translated into a discrete reward.

e (S, a)-function
A reward is always given for a SAP and does not solely depend on
the state. Therefore a reward estimation is required, that takes
into account both the state and the action.

e On-policy
We are aiming at a system which continuously adapts and im-
proves within the application. This requires on-policy RL, so that
new knowledge can be incrementally integrated while the system
is used.
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In Table 4.2 we compare the RL approaches listed in Section 4.3.2
and investigate their applicability to our scenario based on the require-
ments posed.

Algorithm Requirements
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TD Gammon X X X X
AGRL X X X X X
REINFORCE X X X X
SARSA X X X X
LSPI X X X X
INST X X X X X
@-Learning X X X X
PEGASUS X X X X

[

Table 4.2: Reinforcement learning algorithms overview. “x” indicates,
which requirement is met by the algorithm

AGRL and INST both fulfill our requirements. AGRL is based on a
neural network trained by back-propagation. This is known to require
a high number of instance presentations and therefore a large amount
of training data [97, 98]. As it is desirable within our target application
to learn from a small number of instances, we focus for our further
evaluation on INST, which is not limited by that.

4.3.4. Instance Based Reinforcement Learning method de-
scription

The instance based RL method we propose for our learning scenario is
based on work by Santamaria et al. [92]. Q-values of possible actions a;
for an observed state s; are interpolated from previously observed SAP.
The observed SAPs are combined with their corresponding Q-value and
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stored in the memory C as cases ¢;(S;, a;, Q;). The Q-values of possible
actions a; for a new state S; are interpolated from the cases ¢; in the
neighborhood N N; of S;. Neighboring cases are those which states .S;
are within a predefined radius 75 around .S;.

NNy = {c; € Cld(S¢, Si) < 71} (4.17)

As a distance measure d(Sy, S;) we use the Euclidean distance.
The estimate of a Q-value for a SAP Q(S;, a;) is derived by an
interpolation based on the neighborhood NN, using a kernel function

K(d(St7 Sz)

X B K (d(S;i, St))
Q(St,ar) = Z > K(d(S;,5))

Vei(a;=at)EN Ny ¢;(ai=as)ENN,

Qi (418)

We make use of a Gaussian kernel function which has already shown
good results in combination with the INST approach [92].

d
K(d) = exp(—) (4.19)
Tk
As soon as the reward r; for an observed SAP becomes available
the Q-values of the cases in the memory are updated according to the
following rule.

Qi =Q; + LRei(rt-&-l - Q(St, Clt)) Ve; € NN (420)

Here LR € [0,1] is the learning rate and e; is a distance based weight
parameter. The closer the state S; of a case ¢; is to the observed state
St, the more ¢; is affected by the update.

K (d(S;, S))
> K(d(S;, St))

c;j(a;=ay)EN N

(4.21)

€, =

The reward ry;; is generated from the CE signal so that erroneous
actions are punished while good actions are rewarded.

{ 1 chosen action is correct
T =

-1 chosen action is error (4.22)

A new case is added to the memory when the distance between
the newly observed state S; and the nearest case c;, with the same
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action, is higher then a preset minimum distance 7;. This ensures good
coverage of the state space while at the same time limiting memory
requirements.

In Algorithm 3 we give a summary of the learning and Q-value
update for this approach.

Algorithm 3 INST with e-greedy policy

1: for all time steps t do
2:  observe state Sy
3:  estimate Q(St, a;) according to equ. 4.18

a = arg maxgz(Q(St, ar)) exploit (prob. 1 —¢)
4: ay < .
arandom action € A explore (prob. €)

5. apply a; and receive reward ryy1 from the user

6: update Q-values according to equ. 4.20

7. if min(d(S;, St)) > 74 for all NN; with action a; then
8: add new case ¢(St, at, Qinit) to memory

9: end if

10: end for

4.3.5. Evaluation of RL methods on gesture dataset

We evaluate the INST RL approach on the same dataset as we did with
the incremental kNN (see Section 4.2.3). We simulate the CE teacher by
comparing for each input gesture the resulting action (predicted class)
to the ground truth. If the action matches the ground truth correct,
otherwise error is generated.

We consider two distinct learning cases:

LC1 Learning from scratch: A user starts using the recognition
system which is randomly initialized and is not capable of recog-
nizing the gestures yet. While the system is used and rewarded it
learns the correct mapping from sensor data to gesture recogni-
tion output.

LC2 Learning after user change: The system is used by user A and
learns the gestures of this user from scratch. At a later point the
system is given to user B. Since user B is likely to perform the
gestures slightly different, when compared with user A, the recog-
nition performance drops. Therefore the system has to adapt, to
match the behavior of the new user B, to continue with optimal
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performance. The adaptation is based on the same reinforcement
learning principle as in LCI.

The dataset is split in a training set (1155 gestures) and an evalua-
tion set (100 gestures) for each subject. To simulate LC1, one gesture
instance of the training set is presented to the RL gesture recogni-
tion system at each time step. The resulting action is compared to the
ground truth and an error signal is generated if the action and the
ground truth differ. The error signal is translated into a reward and fed
back to the RL system.

At each time step the RL system is evaluated based on the evalu-
ation set. This leads to an accuracy value at regular intervals, which
allows to track the learning of the gesture recognition system.

The simulation of LC2 is analog to LC1. At first the learning and
evaluation of the system is based on the dataset of Subject A. After-
wards the training gestures of Subject B are presented to the system.
When training from gestures of Subject A the system is also tested on
gestures from Subject A. This process is identical for Subject B.

For each subject or subject combination the simulations are re-
peated at least 10 times with different random data permutations. The
presented values are averages taken from all simulation runs.

Algorithm parameter selection

The parameters 74, 7, LR and € for the INST RL algorithm have to
be chosen according to the application and the expected characteristics
of the input data (see Equations 4.17, 4.20 and Algorithm 3).

We choose 74 and 75, based on parameter sweeps on the evaluation
dataset, so that they fit the data distributions expected in the state
space. In Figure 4.10 we show the results for the sweep of 74 and 7%
in the LC1 setting at different time steps. For this simulation we chose
LR = 0.4. The plots show optimal results for 7; = 0.8 and 7, = 1.6,
at all time steps evaluated. For all further simulations we therefore use
these values.

For the learning rate LR a trade off between stability and plasticity
has to be found. In Figure 4.11 we show the result for the sweep of
parameter LR in the LC1 and LC2 setting. A change of the learning
rate has only a small effect on the learning behavior. This applies to
learning from scratch (LC1) as well as to learning after user change
(LC2). We choose LR = 0.4 for the following simulations.
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Figure 4.10: Parameter sweep for 75 and 7. The bright area shows the
parameter combinations with the best accuracy after learning from the
given number of gestures. The parameter combination 74 = 0.8 and
7, = 1.6 leads to optimal results after learning from 50, 100, 500 and
1155 instances respectively.

For all simulations the exploration rate is empirically set to e = 0.01
(see Equation 4.15). A summary of the simulation parameters is given
in Table 4.3.

Parameter | Value

Td 08
Tk 1.6
LR 0.4
€ 0.01

Table 4.3: Selected learning parameters for simulating the learning be-
havior of INST on the gesture recognition dataset (see Equations 4.17,
4.20 and Algorithm 3).
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Figure 4.11: Parameter sweep for LR. The learning rate parameter only
slightly influences the learning behavior with this dataset. This applies
to the LC1 (up to gesture number 1155) as well as to LC2 (from gesture
number 1156 onwards). The best result is achieved with LR = 0.4.

Simulation results

The simulation result of the learning behavior for LC1 and LC2 is shown
in Figure 4.12. The first 1155 input gestures are based on LC1 while
the following 1155 input gestures are based on LC2. After 175 gestures
the system has learned enough to achieve an accuracy of 72% (90% of
the maximum accuracy). The maximum accuracy is the accuracy after
learning from 1155 gestures in the LC1 case, which results in 80%.
When user B starts using the system (at gesture number 1156) there
is a severe drop in accuracy, down to 46%. This indicates that user
B performs the gestures differently compared to user A. The learning
curve for LC2 has a similar shape compared to LC1 but rises slightly
slower. It takes 205 input gestures after the user change to reach 90%
of the maximum accuracy.

From this perspective there is no benefit when starting with a pre-
trained system compared to starting from scratch. It must be noted
however, that the accuracy drops to 46% when user B starts using
the system, which is still better than guessing (20% accuracy) The RL
improves the recognition accuracy for user B by 36%.
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Figure 4.12: Simulation result for the learning cases LC1 and LC2. User
A starts using the system which is so far untrained. As the user gestures
and indicate errors, the system learns the state-action mapping (LC1).
At gesture number 1155 user A passes the system over to user B (LC2).
The recognition accuracy drops due to the fact that user B performs
the gestures differently compared to user A. While user B continues
to input gestures and rewards, the system adapts which leads to an
improved recognition performance. The result is given as an average
over all users and all data permutations with the according standard
deviation.

4.3.6. Discussion

A recognition system based on the INST RL algorithm can be learned
based on the input of gestures and the corresponding error feedback.
We have demonstrated this in two scenarios; learning from scratch and
learning after change of user. In both cases a maximum recognition
accuracy of 80% has been reached. A reasonable performance (90%
of the maximum accuracy) was achieved after learning from 175 and
205 instances respectively. The relative improvement of the recognition
accuracy, achieved through adaptation, is 36% after the new user took
over the system (LC2).

The parameter sweeps indicate, that the selection of correct learning
parameters is essential for an optimal learning performance. Parame-
ter values depend on the application and may also vary depending on
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the user. This is a potential drawback since parameters obtained for a
certain group of users may not fit for a new user.

Our simulation results show that learning from scratch is slightly
faster compared to learning after user change. In the user change case
the system has to unlearn some knowledge about the old user as well
as learn the gestures of the new user. This unlearning step delays the
system’s learning of the new user behavior. Even though the learning
after system hand-over is slightly slower compared to learning from
scratch, it might still be beneficial for the new user, since the system
performs initially better.
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4.4. RL gesture recognition case study

We conduct a case study to validate the applicability of learning based
on CE feedback in the gesture recognition scenario. A computer game
is controlled by hand gestures which are recognized online. Gesture
recognition is based on the INST RL algorithm described in Section
4.3.4.

4.4.1. System setup

The user plays a computer game where an object (a colored dot) has to
be moved towards a target position (a black dot) within a two dimen-
sional playing grid (see Figure 4.13). Four different input hand gestures
are used to move the object in the four directions of the grid, which are
the four output actions of the gesture recognition; namely left, right,
up and down. Each input gesture moves the object to the next grid
position in the according direction until the target position is reached.

Level: 1 Gesture: 0

[ T 1 i 1 ]

Figure 4.13: Screenshot of the computer game played during the case
study. Goal of the game is to move the colored dot to the position of
the black dot within the two dimensional grid. The game is controlled
by four hand gestures for the four respective directions. Each gesture
moves the colored dot in the relating direction to the next grid position.

To capture the hand movement a tri-axial acceleration sensor, in-
tegrated in a Texas Instruments ez430 [99] sports watch, is mounted
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at the user’s wrist. The sensor is sampled with a rate of 23.8 Hz. The
user can give error feedback by pushing a button on the sports watch if
an input gesture hasn’t been recognized correctly. The feedback has to
be given prior to performing the next input gesture. The acceleration
data as well as the feedback information is transmitted wirelessly to
the game computer. In Figure 4.14 we show the full setup comprising
of the user, the game computer and the sensor watch.

Figure 4.14: The user performs hand gestures to control the computer
game. The hand movement is captured by a sports watch integrated
acceleration sensor and transmitted wirelessly to the game computer.
System recognition errors can be indicated by the user by pushing a
button on the sports watch.

The acceleration signal is segmented based on the standard devi-
ation of the low-pass filtered acceleration magnitude. All parts of the
signal with a standard deviation below a preset threshold are omit-
ted as depicted in Figure 4.15. Each remaining signal segment contains
exactly one gesture.

For each signal segment mean and standard deviation are calculated
on the signals of each sensor axis, forming a six dimensional state vector
S¢. The action a; according to the given state S; is chosen by the
gesture recognition system based on the RL agent operating the INST
algorithm (see Figure 4.9 and Algorithm 3). The resulting action moves
the colored dot on the game grid. The output action is observed by the
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Figure 4.15: Segmentation of the continuous acceleration signal. The
marked segments show the parts of the acceleration signal where the
standard deviation is greater than a preset threshold. Each of these
segments contains a gesture.

user so that system recognition errors can be identified by them and
fed back into the system as reward r;y1. Each new input gesture, in
combination with the given error feedback, is used by the system to
learn state-action mapping.

The learning parameters for the INST algorithm were empirically
selected based on data recorded from two test subjects prior to the case
study. The chosen parameters are listed in the following table.

Parameter ‘ Value

LR 0.01
Tk 20
Td 3

€ 0.01

4.4.2. Study protocol

Each participant received an instruction sheet prior to the study. The
sheet explained in detail how to play the computer game, when to input
gestures and when to push the error feedback button. The gestures were
described as hand movements “left”, “right”, “up” and “down” without
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further explanation. This gives the participants the freedom to perform
the actions in the way most comfortable to them. The participants are
free to choose if they want to perform the gestures with their left or
right hand, and to mount the sensor watch on the according wrist.

Before the participants perform the actual study tasks, they play
an introduction game. The system is untrained and learns the state-
action mapping from scratch based on the input gestures and the error
feedback. This first game allows the participants to get used to the
system, the gestures, and the error feedback.

The study consists of the following three tasks. Each task lasts until
100 gestures are captured.

Task 1 Learning from scratch: This task is similar to the introduction
game. The participant starts using the untrained system which
learns the state-action mapping from the gesture input and the
error feedback.

Task 2 Learning after sensor displacement: The participant removes
and reattaches the sensor watch on the wrist. This is likely to
induce a sensor displacement since the sensor is likely to be placed
at a slightly different location compared to before. In this task the
system is not learning from scratch but instead starts from the
state-action mapping learned during Task 1. The system has to
adapt to the readings of the displaced sensor.

Task 3 Learning after sensor relocation: In this setting the sensor is
moved to the wrist of the alternate arm and the gestures are per-
formed with the according hand. This induces a stronger change
compared to Task 2. The system starts learning from the state-
action mapping learned during Task 1. The system has to adapt
to the readings of the relocated sensor. This includes the changes
induced by the subject performing the gestures with the other
hand.

For each subject the duration for all tasks together was between
35 and 50 minutes including an introduction and short breaks between
individual tasks. The study was conducted with 18 subjects aged 21 to
57 years.

4.4.3. Evaluation

We evaluate the learning behavior of the RL gesture recognition system
based on the error feedback given by the participants. The error feed-
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back allows us to estimate the recognition accuracy acc = 1— ﬁ&
gestures
In Figure 4.16 we show the accuracy over the number of input gestures,
averaged across all participants. The accuracy is estimated on a sliding
window of 10 gestures.
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Figure 4.16: Estimated accuracy over the number of input gestures
for the three case study tasks. The plot shows averages over all study
participants. Task 1: The system is able to learn a state-action mapping
from the input gestures and the error feedback. Task 2: Despite the
slight sensor displacement the mapping learned in Task 1 still fits. Task
3: The sensor relocation induces a change that requires an adaptation
of the state-action mapping.

For Task 1 a steep increase in accuracy can be observed for the first
60 input gestures. The curve flattens out at about 80% accuracy. The
system is therefore able to learn state-action mapping from the gesture
input and the user feedback. For Task 2 the accuracy is at the 80% level
from the beginning. This indicates that the mapping learned in Task
1 also fits quite well in Task 2, despite the slight sensor displacement.
For Task 3 the accuracy is below 55% in the beginning and rises to
the 80% mark within the first 60 gestures. The change induced by the
relocated sensor, in addition to a potentially different gesture execution
with the alternate gesture hand, requires an adaptation of the state-
action mapping. This adaptation process can be considered successful
since the 80% accuracy level is reached again.
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There seems to be a slight decrease of performance in the second half
of each task. It is not clear if this is caused by the users changing their
behavior or failure to provide feedback during the tasks (see Section
4.4.4). Furthermore it may be just an artifact caused by the small
window size and the limited number of subjects.

4.4.4. Discussion

The results from our case study confirm our simulation results from Sec-
tion 4.3. It is possible to learn and adapt a RL based gesture recognition
system solely from the input gestures and a user generated reward. In
our case study about 60 input gestures were necessary for the system
to learn a state-action mapping that resulted in a gesture recognition
accuracy of 80%.

One drawback of this approach is that failure to give feedback by the
user may result in a less accurate system performance. In our case study
we have observed that users forgot to input the feedback occasionally,
especially when the system had reached a reasonable performance. This
may also be caused by their attention being more drawn to playing the
game than to identifying recognition errors.

We did not restrict the participants of the study in the way they
performed the gestures. Despite the different gesture executions of var-
ious users, the system was still able to learn the gestures. This may
increase the comfort of a gesture recognition system since the users are
able to perform the gestures in a way comfortable to them and not in
the way the system designer intended.



Implicit error
feedback generation
using brain signals

In this chapter we present a novel idea for unobtrusive er-
ror feedback generation from brain signals. We evaluate the
potential of this approach on a dataset, containing brain sig-
nals and motion data, recorded in an extensive gesture recog-
nition experiment. The challenges and adaptation potential,
capitalizing on brain based error feedback, is investigated.
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5.1. Introduction

The methods described in Chapter 4 require a specific error feedback
signal from the user to guide the learning and adaptation. So far this
feedback signal was generated explicitly, by the user pushing a button
in case of a system recognition error.

In this chapter we capitalize on advances in electroencephalography
(EEG) signal processing that allow for error related potential (ErrP)
recognition as a source of error feedback. ErrP occurs when someone,
i.e. a user, observes unexpected system behavior [100, 101, 102]. We
evaluate a hand gesture recognition system that takes advantage of
ErrP to adapt.

In Figure 5.1 we sketch the typical ErrP case. A hand gesture x;
is performed by the user. The output of the application, indicating the
recognition result, is provided to the user right after the gesture input.
If the recognition result is contrary to the user’s expectation an ErrP
follows in the user’s EEG signal O; 50 — 250 ms after the recognition
result is provided.
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Figure 5.1: The user performs a hand gesture x; which is not recognized
correctly by the gesture recognition. Feedback about the recognition

result is provided to the user. 50 — 250 ms after the feedback an ErrP
follows in the user’s EEG signal O;.
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5.2. State of the art in ErrP recognition

Several studies have suggested the existence of a neural system in rela-
tion to error processing [103]. Specifically, stereotypical electrophysio-
logical signals have been consistently reported to appear as a response
to erroneous actions [104] or unexpected action outcomes [102]. These
signals — termed error-related negativity (ERN) and feedback-related
negativity (FRN)— are characterized by a negative deflection of the
EEG signals in fronto-central areas of the scalp, followed by a centro-
parietal positive peak. Typical signal latencies are 50 to 100ms in the
case of ERNs and around 250ms for FRNs. Neurophysiological stud-
ies have provided evidence of error-based learning. Specifically, it has
been suggested that these signals reflect conscious error processing,
post-error adjustment of response strategies [104], and reward-based
adaptive behavior [102].

Moreover, research on BCI has shown that it is possible to recog-
nize EEG error-related signals (ErrP) on single occurrences better than
guessing (two-class problem, > 50% accuracy) [105, 106, 107]. Based
on this fact, these signals have been proposed to be used to correct
erroneous motor action in speed-response human-computer interaction
[107], as well as to increase the information transfer rate of EEG-based
BCI systems [105]. Experimental measures taken over different time pe-
riods (up to two years apart) show that these potentials are stable over
time, despite the time delay between recordings. Current protocols for
EEG signal analysis require motionless subjects to avoid contaminat-
ing the subtler EEG signals (10-100uV) with EMG signals (1-30mV)
from muscle activity [108]. In order to use EEG systems in naturalistic
settings however, researchers have begun investigating limited subject
mobility [109].

5.3. ErrP-based adaptive gesture recognition exper-
iment

We conduct an experiment in order to investigate the ErrP based adap-
tation of a gesture recognition system to a new user. A game is con-
trolled by HCI hand gestures. The gesture recognition system is trained
in a user independent manner. The system is then given to a new user.
Each gesture instance x¢, performed by this user, is classified by the
gesture recognition system to gesture class ¢;. ErrP analysis indicates
whether the action taken by the computer game, and thus the classifi-
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cation of the gesture, was correct or erroneous (teacher signal s;). Based
on this information the gesture recognition system adapts to the new
user. In Figure 5.2 we illustrate this concept. This scenario is based on
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Figure 5.2: The user performs a hand gesture with the intention to
control the game application. The hand acceleration is sensed and fed
as gesture instance x; into the pre-trained gesture recognition system.
The recognized gesture class ¢; is used to control the game application.
The user observes the game and the resulting action. If the action differs
from the user’s expectation the gesture was not correctly recognized
from the hand acceleration. The user will perceive this deviation from
the expected behavior resulting in an ErrP in the EEG signal instance
O¢. The result s; of the ErrP analysis, together with gesture instance
X, are used to adapt the gesture recognition.

a game to maintain the user’s involvement during experimental sessions
[82, 105]. The game is designed so that a typical gesture input speed of
30% is achieved. This allows for acquisition of a large number of
gesture instances (> 2000) in a short amount of time (< 2 hours).

The goal of this experiment is to collect a dataset, containing hand
gesture acceleration instances x; and the according EEG signal in-
stances Oy, within our scenario (Figure 5.2) to assess adaptation strate-
gies in offline simulations. The online gesture recognition during the
experiment is therefore not based on the acceleration data but on a
reliable light barrier gesture recognition system (described in Section
5.3.2), that provides the gesture ground truth ¢;. Since the light barrier
based gesture recognition is deemed error free, recognition errors are
artificially generated (resulting in &), to trigger ErrP events in the EEG
signal O, for later offline evaluation. The actual experimental setup is
depicted in Figure 5.3.
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Figure 5.3: The user performs a hand gesture with the intention to con-
trol the game application. The gesture is reliably recognized based on a
light barrier frame and a reed switch. Recognition errors are artificially
induced in the gesture ground truth ¢;. The resulting output ¢; is used
to control the game application. For every induced recognition error
it is assumed that an ErrP is triggered in O;. During the experiment
hand gesture acceleration instances x; and EEG signal instances O; are
recorded for later offline analysis.

5.3.1. Gesture-controlled computer game

The subjects play a computerized version of a “memory game” con-
sisting of 8 image pairs (Figure 5.4). The 16 images are randomly dis-
tributed in a four by four matrix and hidden behind question marks.
The subjects have to find identical pairs of images, which are then
removed from the screen. If two images are flipped and don’t match,
they are hidden again before new images can be selected. The game is
finished when all image pairs were correctly found.

The game input interface is based on five hand gesture classes. Left,
right, up and down hand movements shift the image selection cursor in
the corresponding direction. Flipping an image is controlled by closing
and opening the hand.

5.3.2. Measurement setup

The online recognition of the gestures during the data collection is
based on light barriers and a reed switch. This ensures accurate gesture
ground truth for the collection of a reference dataset. Three horizontal
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and three vertical infrared light barriers return the sequence of hand
positions (Figure 5.4) from which the gesture is inferred. The closing
gesture is detected from a reed switch on the subjects hand activated
by a magnet on the subjects fingers.

screen

EOG electrodes  EEG cap
A\

\

acceleration sensor -

magnet _— I

reed switch
EMG electrodes

RSN

Figure 5.4: The computer game is presented on the screen; the light-
barrier frame, magnet and reed switches capture game control gestures;
the acceleration sensor (orientation relative to hand) and the EEG elec-
trode cap stream data to a PC for recording and offline analysis.

A tri-axial acceleration sensor at the subjects fingertips records the
motion of the hand for offline acceleration-based gesture recognition
simulations. The acceleration sensor is sampled at 64 Hz and con-
nected via USB to the experiment computer. This computer also runs
the memory game. Another computer records EEG with the Biosemi
ActiveTwo system and active electrodes. Both computers are intercon-
nected using a shared data line to ensure a synchronized data recording.

5.3.3. Experimental protocol

Seven healthy male subjects aged 25 to 47 participated. For each sub-
ject we recorded 14 sessions with a duration of three to five minutes.
One session corresponds to one “memory game”. Between recording
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sessions the subjects could rest for one to two minutes. We recorded
more than 2700 hand gestures per subject. The experiment lasted about
two hours per subject including setup and introduction.

In each session we randomly induced between 5% and 33% of gesture
recognition errors in ¢; to provoke ErrP events. To induce an error the
error generater (Figure 5.3) selects a random gesture ¢ instead of the
actual recognized gesture c¢;. For example if the subject closes their
hand to turn a card, the card would not be turned but instead the
cursor would be moved in a random direction. If no error is induced
Ct = Ct.
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5.4. EEG ErrP Recognition

In the EEG signal analysis (see Figure 5.2) we classify the EEG signal
O, into error (s = 1) and correct (s; = 1) based on the presence of
ErrP. An error detected from the EEG signal indicates, that the ges-
ture performed by the user was not recognized correctly by the gesture
recognition, and therefore the game output action did not meet the
expectation of the user. We exploit the fronto-central distribution of
ErrP [82, 105], using the time signals of EEG electrodes FCz and Cz
(see Figure 5.5b for scalp positions) as input features for a Bayesian
filter [110].

In order to remove the background brain activity and to enhance
localized activity, raw EEG potentials are spatially filtered by comput-
ing the Common Average Reference, i.e. by subtracting, at each time
step, the average potential of all electrodes from each electrode. We
exclude from the analysis the most external EEG channels, since those
are more likely affected by muscular artifacts related to facial or head
movements. In addition, signals of selected electrodes exceeding 80V
amplitude are discarded. Following previous studies in this type of po-
tentials, signals are then filtered (1-10 Hz bandpass) and subsampled
with a sampling rate of 64 Hz before classification. The input vector O
for the classifier (see Section 5.4.1) is composed by the time samples on
electrodes FCz and Cz within the [200 400] ms time window after the
end of the hand gesture.

5.4.1. Classification based on Bayesian filtering

The Bayesian filter estimates the state probabilities at each sampling
time step according to the observations and the previous state estima-
tions [111]. Through discrete observations of a continuous EEG signal
we want to find out, if the output action on the screen matches the
input gesture intended by the user.

To build the Bayesian filter, two possible states are defined at each
time ¢: s; € {1,0} for erroneous and correct gesture recognition, re-
spectively. At each sampling time step ¢ observations O are given by a
vector with components F'Cz and Cz corresponding to the electrodes
of the same name: O; = [FFCz;, C'z;]. Observations and states from time
zero to T' are respectively noted Og.r and sq.7.

A transition model is defined by a first order Markov hypothesis
for states over time: P(s¢|so.t—1) = P(s¢|s¢—1) fort = 0...T. Since
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the state during a potential ErrP instance doesn’t change, the transi-
tion model corresponds to the identity matrix: P(s¢|s;—1) = 1 if s; =
s¢—1 and zero otherwise.

The sensor model is given by the probability distribution P(O¢|s;)
which predicts observations given the state. Then the decomposition of
the joint probability is given by:

T
P(SO;TOO;T) = P 00|80 H St‘St 1 (Ot|st)) (51)
t=1

The classification consists in estimating P(s¢|Og.t), i.e. the proba-
bility of the state (error or correct) knowing the observations (EEG
activity). It can be obtained in a recurrent manner. First the state is
predicted (Equation 5.2) based on the transition model. Secondly the
state estimation (Equation 5.3) is computed based on the sensor model.

P(s¢|00:—1) = Y (P(stlse—1)P(st-1100:4-1)) (5-2)

St—1

P(s¢|00:t) o< P(O]st)P(s¢|O0:t—1) (5.3)

Since the state doesn’t change within one signal occurrence the
transition model corresponds to the identity matrix. the prediction—
estimation recurrent calculus is simplified:

P(s¢|s¢—1) = 1if s; = s;—1 and zero otherwise (5.4)
1
P(St =1 |Ol:t) X 5P(Ot|8t)P(8t_1 =1 |01:t—1) (55)

P(St = 0 |01:t) XX *P(OtlSt)P(Stfl = 0 |01;t71) (56)

C

with C' being a normalization factor.
At the end of the EEG occurrence at time ¢t = T, an erroneous trial is
detected if

P(sp =1|0ur) > ¥ (5.7)

where 1) is our current decision threshold and 7" = 400ms. Estimations
from both channels are combined using a naive fusion.
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The sensor model P(Oyls;) is defined by a mono-dimensional Gaus-
sian distribution with a mean p; and a variance o7. Having two in-
put channels and two possible states, there are four Gaussian distribu-
tions at each time ¢, and eight parameters to identify. This approach
updates the estimated state probability as new samples are available.
Since the prediction-estimation update multiplies two probabilities, the
next state estimate would be close to zero if one of the multiplied val-
ues would be close to zero. This would effectively stop the recursive
Bayesian estimation. To avoid this effect, a lower limit for probabilities
was introduced, so that any P(s; |O;) < 0.01 is forced to be equal to
0.01. Figure 5.5a shows the average EEG activity (error minus correct
condition) for all subjects.
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Figure 5.5: (a) Average ErrP on the FCz electrode for the different
subjects. The difference signal between the signal with error condition
and the signal with correct condition is shown. thick line: average over
all subjects; thin dashed lines individual averages for each of the seven
subjects. The time (t=0) refers to the end of the input gesture after
which an ErrP might occur.

(b) Electrode positions shown over the scalp.

5.4.2. ErrP Classification

As shown in Section 5.4.1, the Bayesian Filtering based classifier al-
lows for classification of individual ErrP occurrences. We trained our
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classifier subject dependent for each subject on eight of the fourteen
recorded memory game sessions, estimating ; and o7 for the two states
s¢. We tested on the remaining six recordings. We consider the activity
of electrodes in the [200,400] ms time windows after the feedback pre-
sentation, estimating the state probabilities according to these obser-
vations. Figure 5.6 shows receiver operating characteristics (ROC) for
all subjects, where sensitivity represents the amount of true positives
(error class) and specificity represents the amount of true negatives
(correct class). Different sensitivity-specificity combinations were com-
puted varying the decision threshold ¥ (as defined in eq. 5.7).

It is important to notice that the particular task performed by subjects
may induce EMG artifacts due to arm and facial movements [112]. Nev-
ertheless, in the current experimental protocol we reduce this aspect as
gesture recognition feedback is only provided once the gesture has been
completed. The classification of ErrP occurrences is better than guess-
ing. In the following section we investigate the benefit of using this
ErrP classification result for adapting the acceleration based gesture
recognition system.
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Figure 5.6: Receiver operating characteristics (ROC) curves of ErrP
classification for all subjects. For each subject the classification of ErrP
occurrences performs better than guessing.
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5.5. Adaptive gesture recognition guided by ErrP

We investigate how the error feedback signal s;, as provided by the ErrP
classification, can be used to adapt the gesture recognition system. This
analysis is based on the gesture dataset recorded during the experiment
(Section 5.3), which contains the subject’s hand acceleration.

5.5.1. Gesture classification

We distinguish the five game control gestures based on the hand accel-
eration. We segment the signal using the gesture-start and gesture-end
signal provided by the light-barrier frame. During initial training of
classifiers prior to adaptation, the ground truth label ¢; of gesture in-
stances x; is provided by the light-barrier frame. We did no dataset
cleaning or outlier removal as this would not be possible in the real ap-
plication of such a system. We simulate the adaptation process based
on the pre-recorded dataset.

For the training and during the operation, we calculate the following
acceleration features on three windows (full gesture, first and second
half of the gesture): mean, standard deviation, minimum, maximum
and energy. We do this on the three axes of the acceleration signal
as well as on its magnitude. In addition the correlation for each axes
pair zy, zz and yz is calculated. This yields 63 features. We perform a
probabilistic feature selection [113] combined with a scatter search [114]
to select a feature subset [115]. This yields a six-dimensional feature
vector X¢ containing: the mean on the y-axis, the first half on the y-
axis and on the magnitude, the minimum on the magnitude, the mean
of the first half of the z-axis and the standard deviation on the first
half of the z-axis.

We classify the gestures x; with the incremental kNN classifier de-
scribed in Section 4.2 since it supports learning from a CE teacher
signal s;. The learning of the initial classifier is based on standard kNN
learning by adding the training instances with a weight of 1 to the clas-
sifier model. The incremental online adaptation is based on the correct
and error learning strategies. The learning parameters were empirically
set to the values listed in Table 5.1.

To train the user independent classifier C;—q on the recorded dataset
we combine the data of all subjects, leaving out the subject we want to
adapt to. From this combined dataset we randomly select 480 training
instances, evenly distributed over all classes. An initial training set of
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parameter | value
LR 0.002
R 0.02
K 0.1
« 0.4
) 48

Table 5.1: Parameters for the incremental kNN classier as used in the
simulations of the ErrP based adaptation (see Algorithms 1, 2 and
Equations 4.6, 4.7, 4.8, 4.9, 4.10).

this size results in an initial classifier while limiting the computational
complexity for classification.

The data of the left out subject is split into an adaptation set and
a test set. The adaptation set contains 2248 instances while the test set
contains 500 instances. During operation, the instances in the adap-
tation set are iteratively (one at a time) presented to the system for
classification and adaptation. The initial user independent classifier Cy
and the resulting user adapted classifier Cr (after presenting the adap-
tation set) are tested on the test set.

For the following evaluations we simulate the ErrP based teacher
signal s; in the following way. A gesture instance x; is classified by C;.
If the predicted gesture class ¢ matches the ground truth (& = ¢;), the
recognition was correct and the teacher signal is set to correct( sy = 0).
If ¢; does not match the ground truth ((¢é; # ¢:) the recognition was
wrong and the teacher signal is set to error (s; = 1). Furthermore we
simulate different ErrP recognition performances by randomly inverting
the teacher signal s; according to the probabilities given by the targeted
ErrP recognition sensitivity and specificity.

5.5.2. Influence of the ErrP detection accuracy on the adap-
tation

The ErrP recognition performance (see Section 5.4) is a key param-
eter for successful user adaptation of the gesture recognition system.
We investigate how the sensitivity and the specificity of ErrP recogni-
tion can influence the adaptation of the gesture recognition system. In
Figure 5.7 we show the adaptation result for different simulated ErrP
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Figure 5.7: ROC analysis of the gesture recognition system adaptation
behavior for all possible combinations of ErrP sensitivity and specificity.
Average over 20 simulations and 7 subjects from different random data
permutations. Left plot: Number of subjects for which the adaptation
leads to a significant (one sided t-test with o = 0.05) improvement of
the gesture recognition. Right plot: Average relative improvement of
the gesture recognition accuracy.

sensitivity-specificity combinations. The average subject independent
baseline accuracy of the gesture recognition is 74.7%.

In case of a perfect ErrP signal (sensitivity = specificity = 1) we
achieve an increase of 17.1% in accuracy compared to our baseline. A
low sensitivity affects the adaptation slightly more than a low speci-
ficity. This is also reflected by the average relative improvement of the
adapted classifier. The increase is less with a lower specificity than with
a lower sensitivity. In general with an ErrP detection performing bet-
ter than chance (sensitivity + specificity > 1) an improvement of the
gesture recognition system can be expected.

5.5.3. Adaptation assuming the ErrP recognition performance
resulting from the HCI gesture experiment

The ErrP recognition can be tuned to any working point on its ROC
curve (see Section 5.4). In the following analysis we choose the optimal
working point based on the ErrP analysis of the EEG data recorded
from the HCI gesture experiment. The ErrP recognition performance
varies between subjects. Therefore we choose the working points for
each subject individually.

For each subject we calculate the accuracy gains, when adapting
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Figure 5.8: The curve shows the expected accuracy gain for the adap-
tation of the gesture recognition system, relative to the subject inde-
pendent baseline, for all points on the ErrP ROC curve of this sub-
ject. The vertical line marks the maximum of the accuracy gain. Its
intersection with the ErrP ROC curve marks the optimal ErrP sensi-
tivity/specificity combination.

the gesture recognition with the possible sensitivity/specificity com-
binations for this subject, according to the ROC curves in Figure 5.6.
The optimal sensitivity /specificity combination for each subject is that,
where the accuracy gain by adaptation, compared to the subject inde-
pendent baseline, is maximal. An example of such an optimization is
shown in Figure 5.8.

In Figure 5.9 we show the selected optimal working points for all
subjects. With the exception of one subject, they all fall in the region
where we can expect an improved adapted gesture recognition system.
The exact ErrP sensitivity and specificity values, together with the
expected improvement and the resulting accuracy of the gesture recog-
nition, are listed in Table 5.2 for each subject individually. For six of
the seven subjects a significant (one sided t-test with o = 0.05) gain in
accuracy can be expected through adaptation.
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Figure 5.9: The * mark the ErrP sensitivity/specificity combinations
for each subject which lead to the, in this case, optimal user adapted
gesture recognition system.

Subject 1 2 3 4 5 6 7 AVG
SI accuracy (Cop) 748 794 772 89.7 77.0 64.6 59.8 74.7
ErrP threshold 087 0.16 0.09 0.14 0.80 0.35 0.71 0.45
ErrP sensitivity 0.76 0.58 0.57 0.13 0.70 0.73 0.76 0.60
ErrP specificity 0.38 0.58 0.64 093 0.56 0.47 0.34 0.56
Adapt. acc. (Cr) | 81.3 81.5 834 89.9 80.0 72.0 67.2 79.3
Acc. gain in % 8.8* 2.7 8.0* 0.4 4.0  11.4* 12.2* 6.8

Table 5.2: Detailed simulation results for the gesture recognition adap-
tation based on ErrP. The subject independent (SI) recognition baseline
for classifier Cy and the accuracy after adaptation for Cp are given to-
gether with the according ErrP recognition parameters. The * indicates
a significant improvement (one sided t-test with o = 0.05). All results
are averages of 20 simulations with different random data permutations.

5.6. Discussion

In this work we assess, for the first time, the recognition of EEG error-
related potential occurrences in a complex and realistic task. Compared
to previously reported experiments [82, 105, 110], the visual stimuli,
by the “memory game” application, were more complex. Furthermore
the subjects were cognitively involved in game playing and explicitly
allowed movements, unlike in the other experiments. The differences
in the experimental protocol (i.e. subject moving during the record-
ing, complex visual feedback, different cognitive demand of the exper-
imental task) together with the intrinsic variability, noise, and non-
stationarities of brain signals, explain the low ErrP recognition accura-



5.6. Discussion 87

cies obtained in the current study (see Figure 5.6) compared to previous
studies. Nevertheless, it should be recognized that it is not possible to
achieve 100% ErrP recognition accuracy from EEG signals due to the
low signal-to-noise ratio, EEG non-stationarity and EMG contamina-
tion. Indeed, best classification performances for ErrP recognition in
previous, controlled experiments lies generally around 80% [82, 105].
Therefore our ErrP recognition results are encouraging.

Despite the low ErrP recognition performance, it was still possible to
use the ErrP information to successfully adapt the gesture recognition
system towards a specific user. The gain in performance of the adapted
gesture recognition system is dependent on the ErrP recognition. The
better the ErrP recognition performs the larger the improvement in
gesture recognition that can be expected.

As we rely on a subject independent gesture recognition system
as a basis for our adaptation it is important that the initial gesture
recognition reaches a sufficient recognition performance.

In our experimental setup for data collection we assume that the
subjects intention is correctly captured by the gesture recognition.
There might still be cases where the subject performs a gesture con-
trary to their intention by mistake. This mistake might also be reflected
in the brain signal as an error. As we do not capture the users intention
directly we can not assess the influence of user mistakes.

During the data recording experiment the gesture recognition errors
are added artificially and randomly, so that the subjects can not adapt
their movement strategies to improve the gesture recognition. Therefore
the simulated improvements of the gesture recognition are independent
of potential changes in the user behavior.

In the proposed adaptation schemes the ErrP recognition is inter-
preted as a binary value, and all occurrences are used for adaptation.
However, the output of the Bayesian filter based classifier provides a
posterior probability of the state class and can therefore be also used as
a reliability measure of the classification. Previous studies in BCI appli-
cations have shown that rejection mechanisms based on the probability
values may lead to improvements in the overall information transfer
rate provided by the EEG decoding systems [116]. Similarly the ges-
ture recognition adaptation could take only those gesture instances into
account, which are clearly identified as error or correct. This might im-
prove the gesture recognition adaptation.
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5.7. Conclusion

We have investigated online user adaptation guided by a ErrP based
error feedback signal. We chose a gesture based HCI scenario to eval-
uate our approach. We tested the system using perfect error feedback
signals and also evaluated the performance when this feedback is implic-
itly provided by the user through decoding of the user’s brain activity.
To our knowledge, this is the first attempt to use brain signals related
to the perception of errors for the improvement of activity recognition
systems. Simulations of perfect decoding of such signals show that the-
oretically the recognition accuracy can be increased by up to 17.1%
over the user independent classifier. Using single-trial recognition of
actual EEG data recorded during the gesture based HCI experiment,
the accuracy increase for the adapted gesture recognition reaches 6.8%
in average. This shows that brain signals (i.e. EEG) generated dur-
ing real human-computer interaction provide information that can be
integrated into the activity recognition chain so as to improve its per-
formance.

In the short term EEG-based user adaptation remains unlikely in
real-world scenarios given the current state of the sensing technology,
its sensitivity to motion artifacts, and the desire for invisible wearables.
However portable sensing platforms are now becoming available, and
there is an active research effort along these lines [117].



Adaptive recognition
and user behavior

In this chapter we focus on the influence of system adapta-
tion on user behavior. We investigate how the user changes
their behavior when interacting with an adaptive gesture
recognition system compared to a static system. Further-
more the effect of a change in user behavior on the adapta-
tion is studied.
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6.1. Introduction

In the previous chapters we have presented different methods for adapt-
ing a recognition system to the user (system—user adaptation). When-
ever a user interacts with an activity aware system that provides an
immediate feedback to the user (user in the loop), there is also the po-
tential for the user to adapt their behavior according to the feedback
they receive. It is known, that humans adapt their movement strate-
gies to achieve certain goals in varying environmental conditions, for
example during grasping tasks [118, 119]. Also in handwriting recogni-
tion an adaptation of the user to the system, in order to improve the
recognition, has been observed [120]. A co-adaptation between user and
system has also been investigated for BCIs [74] and a robotic prosthetic
hand controlled via EMG signals [75]. Such a co-adaptation may also
be present when interacting with an activity recognition system, with
the user adapting the way gestures or activities are performed. The
goals pursued by the adapting user could be a better recognition, more
convenient or less tiring movements, or a faster input of commands
(e.g. in HCI applications). Thus, the user also adapts to the system
(user—system adaptation).

6.1.1. Issues of co-adaptation

To design better activity or gesture recognition systems, with the user
in the loop, we have to take into account the user’s ability to adapt.
The user<»system co-adaptation has to be understood, especially with
systems that provide adaptive mechanisms.

The two adaptive processes, the user and the system, may influence
each other, which may result in the adaptation not being possible or
beneficial. For example when one process adapts faster than the other,
the faster process might continuously change conditions that the slower
process is not capable of following. This is linked to stability issues
[121], when two systems (or the system and the user) adapt to each
other concurrently. It is also not clear how useful system adaptation
is, when user adaptation is already present. The user might have more
freedom in adapting their behavior than the system does. On the other
hand, the adaptive recognition system may give the user more comfort,
e.g. by providing a higher recognition rate, or enabling a more efficient
behavior by giving more freedom in the movement execution.

We investigate these aspects on a gesture recognition experiment.
The experiment is designed so that it allows for evaluation of the sys-
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tem’s adaptation behavior according to the gesture recognition accu-
racy. Furthermore the user behavior can be investigated by analyzing
the users” hand gesture trajectories.

6.1.2. Gesture recognition scenario

We consider an experimental setup, comprising of the key elements of an
activity aware assistant (activity sensing, provision of a user feedback
based on the sensed activity, user can communicate with the assistant).
Such a setup allows for the study of co-adaptation dynamics.

Our scenario combines the characteristics outlined above. Hand ges-
tures are recognized from the user’s hand movements, captured by an
optical motion tracker. The actions according to the input gestures are
observed by the user via a computer screen. Gesture ground truth can
be indicated by the user to the system.

The gesture recognition system is pre-trained in a user-independent
fashion. Initially it is not optimized for a specific new user. Nevertheless
it can recognize gestures with reasonably high accuracy if they are
performed according to the system’s model.

We investigate two different adaptation processes; the adaptation of
the user to the system (user—system) and the adaptation of the system
to the user (system—user). In the first case the user uses the feedback
given by the system to adapt their movement strategy in a way that
is most compliant with the system’s model, effectively improving the
recognition. In the second case the system uses the feedback, given by
the user, to adapt it’s model to best reflect this user’s properties.

The key point is to understand the user<»system co-adaptation dy-
namics. Users adapt to the characteristics of the system they interact
with [122]. Here, at the same time, the recognition system attempts to
adapt to the user. We investigate whether a better performance in the
system, observed after a long period of interaction, is the result of the
system’s adaptive mechanism or due to the natural adaptation of the
user as they become more used to the system.

We also make the hypothesis, that the system’s adaptive behavior
affects the user’s behavior and comfort, by allowing for more freedom
(e.g. in gesture execution) together with a higher recognition perfor-
mance.
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Figure 6.1: The user performs a hand gesture to control the applica-
tion. The sensed hand trajectory x; is fed into the pretrained gesture
recognition system. The recognized gesture class ¢; controls the game
application. The user observes the game and the action resulting. They
input the ground truth ¢; of the intended gesture. The ground truth
¢, together with the gesture input trajectory x;, are used to adapt the
recognition system.

6.2. Online adaptation experiment setup

We investigate user adaptation within a scenario where a game is con-
trolled by HCI hand gestures. The gesture recognition system is initially
trained in a user-independent manner. The system is then given to a
new, so far unseen, user. Each gesture x; performed by this user is
classified by the gesture recognition system to ¢;, with the resulting
action outputted on the computer screen. The user indicates the in-
tended ground truth ¢; of their last gesture to the system. Based on
this information the gesture recognition system is adapted to the new
user. In Figure 6.1 we illustrate this concept.

We decouple the problem of adaptation from the problem of user
feedback, and focus on the former aspect, to study the user<+system co-
adaptation dynamics. Thus, ground truth feedback is inputted by the
user via a computer keyboard directly after every gesture they perform.

6.2.1. Gesture-controlled computer game

The subjects play a computerized version of a “memory game similar”
to the one described in Section 5.3. This time 18 image pairs have to
be found (Figure 6.2).
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|_game screen

Figure 6.2: Experimental setup. The computer game is presented on the
screen. The optical motion tracker, based on a camera and an optical
marker, captures the input gestures. Ground truth is inputted via the
keyboard.

The game input interface differs from the one described in Section
5.3. Here it is based on six right hand gestures, namely the numbers one
to six written with the right hand in the air. The gestures were inspired
by [123]. The gestures are defined as single stroke gestures as depicted
in Figure 6.3. An image at position (z,y) in the game matrix is selected
by entering the according coordinates with two adjacent hand gestures.
The first gesture selects the column, the second gesture the row. A
selection of column or row can not be reverted or changed. The selected
column is highlighted on the screen by drawing red frames around every
image placeholder within this column. After the user enters the row
number, only the selected image is highlighted with a red frame and
revealed. By highlighting the chosen column and row the user gets
feedback on the recognition result of the inputted gestures.

The movement of the user’s hand is captured by an optical tracking
system. An optical marker is placed on the subject’s right hand and
tracked with a sampling rate of 25 Hz and a resolution of 640x480
pixels. The ground truth of a gesture is inputted by the subject via
the numbers 1 to 6 on a computer keyboard, operated with the left
hand. A new gesture can only be inputted, if the ground truth has
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123456

Figure 6.3: Single stroke gestures ¢ = 1,...,6. The dot marks the start
and finish-point of the trajectory described by the hand movement
when drawing the number in the air. The dashed lines mark the section
of the trajectory necessary to achieve an identical start and finish-point.
The arrow indicates the direction of the movement.

been indicated prior to the start of the movement. This ensures that
ground truth input is given for each gesture performed.

6.2.2. Online adaptive gesture recognition

During system use, the user’s gestures are recognized online. The mo-
tion trajectory of the hand is captured by an optical motion tracking
system. The continuous trajectory is segmented automatically based on
the movement speed. This is possible because the hand remains mostly
static between gestures, while it moves faster while performing a ges-
ture. The speed is calculated based on the distance traveled between
two location samples. The resulting speed signal is low pass filtered
to eliminate noise. A movement speed of more than 10 pixels per sec-
ond indicates a gesture. A plausibility analysis eliminates all segments
shorter than 14 and longer than 100 samples. All resulting segments
x; are assumed to contain a valid gesture, therefore this segmentation
also acts as a NULL class rejection.

Gesture classification based on Active Shape Models

The classification of the gestures is based on Active Shape Models
(ASM) [124]. ASMs allow for an investigation and comparison of ges-
tures according to motion trajectories. Motion trajectories can be bet-
ter interpreted compared to abstract features typically used with other
classification methods.

For each class ¢ a ASM is built from training examples. Prior to
model generation the training trajectory instances x; . are aligned and
resampled to contain n = 30 equidistant points each. Since each point
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is represented by a x- and a y-coordinate, each trajectory instance
X;, ¢ is 2n dimensional. The ASM consists of the mean trajectory X. of
the training instances and eigenvectors py . that capture the variation
within the training set. For N training trajectory instances of class ¢
X, is calculated using

1 N
Xe =5 > Xie (6.1)
=1

To calculate the eigenvectors py . we first calculate for each trajectory
instance x; . the deviation dx; , from the mean trajectory X,

dxi,c = Xic— )_(c (62)

)

and then the 2n x 2n covariance matrix X..

N
1 T
s = ~ ; dx; .dx; (6.3)

The variation in the training set is described by the eigenvectors py .
of 3., such that

Ecplqc = Ak,cpk,c (64)

with Ay . being th kth eigenvalue (k = 1,...,2n) of X.. To cope with
noise within the training set we keep all [ eigenvectors p; . in the ASM
of each class ¢, which are in the direction of the strongest variations
and capture 95% of it.

l
> Ak =0.95 (6.5)
k=1

The training examples were recorded from five different users prior
to the experiment. The setup of the training data recording was iden-
tical to the experiment setup. The instruction given to the training
subjects, on how to perform the gestures, was done in the same way as
later with the experiment subjects.

20 training examples per class were used to build the user inde-
pendent classifier model. The ASMs for each class are shown in Figure
6.4. The eigenvectors cover different trajectory sizes or start/end-point
variations, to support robust classification.

A new input gesture is classified to one of the gesture classes (Figure
6.3) in the following way. The segmented gesture trajectory is aligned
and resampled in the same way as the training trajectory resulting in
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Figure 6.4: Active Shape Models for the six classes. The black line is the
mean trajectory X.. Both the dashed, and the dash-dotted line illustrate
the variations captured by the first eigenvector p; . for £3,/A; ..

a gesture trajectory instance x; to classify. x; is fitted to the mean
trajectories X, of all classes ¢ along the directions of variation given by
Pk,c-

At first the difference between the trajectory x; to classify and the
mean trajectory X. is calculated.

de,c =Xj — )_(c (66)

Then the amount of variation in direction of the eigenvectors py . is
determined.
/\j,k,c = de,cpk,c for k= 1, . ,l (67)

With pg.. and A i x; can be fitted to X. resulting in a fitted trajectory
Xj,c-

Xjec= )_(c"'(/\j,l,cpl,c+>\j,2,cp2,07 ceey Aj,k,cpk,c) for k= 17 o 7l (68)

This results in six trajectories x; 1,...,X; 6, one for each class ¢, which
best fit the according ASMs of the six classes. For each fitted trajectory,
the Euclidean distance to the mean trajectory of the according model,
is calculated. The gesture is classified to prediction ¢ where the fitted
trajectory x; . has the minimum distance to the mean trajectory X, of
the model.

c= aTgminc(\/(xj,c - )_(c)(xj,c - >_ct:)T) (6'9)
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Adaptive classification

The gesture classification can either be used in static or in adaptive
mode. Adaptation of the gesture classifier is accomplished by a batch
approach. The 30 training examples per class are kept in memory. When
a new gesture instance with label ¢ becomes available, it replaces the
oldest example in the training memory of class ¢. A new ASM is built
from the updated training data of class c¢. This continuously and in-
crementally adapts the gesture recognition to the characteristics of the
user inputting the new gestures.

6.2.3. Experimental protocol

At the start of the experiment each subject was introduced to the sys-
tem. We explained the operational principle of the motion tracking
device, and stated that the gesture recognition is based on hand trajec-
tories. The subjects were shown a printout of Figure 6.3 and given the
chance to practice the gestures several times. The printout was removed
before the experiment started. To allow for accurate segmentation, the
subjects were instructed to perform the gestures at a reasonable speed
and hold their hand still between gestures. The subjects were not in-
formed about any static or adaptive behavior of the system.

For each subject the experiment was divided into the following four
tasks T.

T1: Offline data acquisition - The subject randomly performs 30
gestures from each of the six classes outside the actual game appli-
cation. The ground truth from each gesture is recorded together
with the gesture trajectory. This task is a plain data recording
without online gesture recognition and without feedback to the
user. It is identical to the data recording from the initial training
subjects.

T2: Online use of the non-adaptive system - The subject plays
the memory game. Input gestures are recognized online based on
the initially trained user independent classifier. After each gesture
the subject indicates the ground truth of their last gesture. The
gesture trajectories, the ground truth and the recognition results,
are stored for later evaluation.

T3: Online use of the adaptive system - This task is similar to T2,
except that the gesture recognition is adaptive. The ground truth
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Subject
Task | 1 2 3 4 5 6 7 8 | AVG STD
T1 [ 939 694 694 711 856 806 606 783 | 761 106
T2 | 929 761 704 69.1 847 545 470 79.6 | 718 152
T3 | 938 958 948 93.0 989 937 860 9L1 | 934 3.7
T4 | 882 851 B81.7 768 840 468 446 815 | 736 175

Table 6.1: Gesture recognition accuracies for all subjects and all exper-
iment tasks in percentages.

information provided by the subject is used to continuously adapt
the gesture recognition to the new user. The gesture trajectories,
the ground truth and the recognition results, are stored for later
evaluation.

T4: Online use of the non-adaptive system - This task is iden-
tical to T2. It is used as a verification task to ensure that po-
tential improvements observed in T3 are not solely caused by
user—system adaptation but actually the result of system—user
adaptation. The recognition performance in this task is therefore
expected to be similar compared to T2.

After T2, T3 and T4, the subjects fill in a questionnaire about
their perception of the system’s performance and their own behavior.
In each of these tasks at least 150 gestures are performed per subject
(6500 gestures in total for all subjects). Between all tasks the subjects
took a short break of three to four minutes to recover.

We conducted the experiment with eight right-handed subjects aged
25 to 60. The experiment subjects are different from the subjects used
for creating the initial ASM classifier. The duration of the whole proce-
dure was about two hours per subject, including 15 minutes of system
setup and procedure explanation.

6.3. Analysis of user—system adaptation

The recognition system can only recognize gesture trajectories that
match the initially trained ASMs. We investigate in how far the user
is capable of adapting their gesture execution in a way that is compli-
ant with the recognition system. We refer to this as the user—system
adaptation.
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In T1 of the experiment the subject performs the gestures without
obtaining feedback about how well their gestures match the gesture
classifier. After the experiment the recorded gestures were classified
offline, based on the user-independent classifier. The resulting accuracy
acts as a baseline of the gesture recognition performance, when no
adaptation, neither from the user nor from the system, is present.

In T2 and T4 the subject can see on the computer screen if the
input gesture resulted in the intended action, and therefore if the ges-
ture was correctly recognized. This information enables the subject to
explore different gesture executions, in case gestures are not correctly
recognized. The resulting gesture recognition accuracy for these tasks
can be compared with the accuracy obtained from T1 to investigate
the effect of user—system adaptation. Gesture recognition accuracy is
calculated using

# gestures correctly classified
accuracy =

6.10
# gestures performed ( )

In Table 6.1 we list the accuracies for the gesture recognition for all
subjects and all tasks. In average over all subjects the gesture recogni-
tion accuracy for T2 and T4 (71.8% and 73.6%) is lower compared to
the T1 baseline (76.1%). A more detailed look reveals that this accu-
racy difference is not a trend valid for all subjects. Some subjects clearly
benefit from the feedback and manage to adapt their gesture execution
(e.g. Subject 2). For others the feedback doesn’t have a noticeable ef-
fect (e.g. Subject 8) or even leads to a less system compliant gesture
execution and worse recognition (e.g. Subject 7). This indicates that
the gesture exploration, and the use of the feedback, varies between
subjects. To further investigate this we focus on extreme examples of
specific subjects.

Examples for user—system adaptation

To get a better understanding of the user—system adaptation we look
at two extreme cases in more detail (Subject 2 and Subject 7).

The gestures of class 6 performed by Subject 2 in T1 of the experi-
ment were hardly recognized by the user-independent classifier (10.0%
correctly classified). In contrast, the gestures of the same class were
recognized much better in T2 (64.8% correctly classified). In Figure 6.5
we show the average hand trajectories for this case. For T1 there is a
clear difference between the trajectories of the gestures incorrectly and
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Figure 6.5: Trajectories for gesture class ¢ = 6 of Subject 2 performed
in T1 and T2. The trajectories shown are averages over all incorrectly
classified gestures, all gestures and all correctly classified gestures.

correctly recognized (Figures 6.5 (a) and (c)). The main difference is
the trajectory end point which is much lower for the incorrectly rec-
ognized gestures compared with those correctly recognized. In T2 the
subject uses the feedback to learn a gesture execution that leads to
a better recognition of class 6. The correctly recognized gestures still
have a high trajectory end point compared to the incorrectly classified
ones (Figures 6.5 (d) and (f)). For the incorrectly recognized gestures
the trajectory end point in T2 is higher than it is in T1 (Figure 6.5
(a) and (d)). The average trajectory of all class 6 gestures has a higher
trajectory end point in T2 compared to T1 (Figures 6.5 (e) and (b)).
This indicates that the user adapted to the system’s expectation of a
higher trajectory end point.

The gestures of class 3 performed by Subject 7 in T1 were bet-
ter recognized (43.3%) than the gestures of the same class during T2
(18.6%). In Figure 6.6 we show the average hand trajectories for this
case. The average trajectory of the incorrectly classified gestures shows
a loop between the upper and lower curve of the digit 3 (Figures 6.6
(a) and (d)). This loop is not present in the trajectories of the gestures
that were correctly classified (Figures 6.6 (c) and (f)). Furthermore the
incorrectly classified gestures have a smaller upper curve in the trajec-
tory than the correctly classified ones. The lower recognition rate in
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Figure 6.6: Trajectories for gesture class ¢ = 3 of Subject 7 performed
in T1 and T2. The trajectories shown are averages across all incorrectly
classified gestures, all gestures (correct and incorrect) and all correctly
classified gestures.

T2 indicates that the subject was not able to use the feedback from
the system to adjust their movement strategy, to match the system’s
model. In contrast they performed the gestures even more in the way
that was less recognizable, as can be seen on the average trajectory
over all gestures of T1 and T2 (Figures 6.6 (b) and (e)). This might be
caused by the subject exploring different gesture execution strategies
without being able to find one that leads to a robust recognition.

6.4. Analysis of system—user adaptation

We investigate the online adaptation of the gesture recognition system
towards the actual user. With each new gesture input the recognition
system adapts incrementally to the user (T3 of the experiment).

The results listed in Table 6.1 clearly show the benefit of the system
adaptation. For all subjects the adaptive system (T3) achieves a better
recognition performance compared to the non-adaptive cases (T1, T2
and T4). In average the adaptive recognition system outperforms the
non-adaptive system by about 20% in accuracy.
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Figure 6.7: Gesture trajectory for Subject 2 and gesture 6 performed
in T3. The trajectory shown is the average over all correctly classified
gestures. For this subject all gestures were classified correctly in T3.
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Figure 6.8: Gesture trajectories for Subject 7 and gesture 3 performed
in T3. The trajectories shown are averages over all incorrectly classified
gestures, all gestures and all correctly classified gestures.

Examples for system—user adaptation

We look again at the two cases we already investigated in Section 6.3.
Namely the gestures of class 6 from Subject 2 and the gestures of class
3 from Subject 7

In Figure 6.7 we show the average gesture trajectory for T3 of Sub-
ject 2. All gestures of class 6 were correctly recognized in this setting.
The average correct gesture trajectory from T3 (Figure 6.7) is very
similar to the average correct trajectory from T2 (Figure 6.5 (f)). This
indicates that Subject 2 has learned to perform the gesture in a system
compliant way during T2 and maintained this knowledge during T3
despite the system being adaptive.

The average trajectories of the class 3 gestures of Subject 7 per-
formed during T3 of the experiment are shown in Figure 6.8. In this
setting 79.0% of all gestures of class 3 were correctly recognized. The
average trajectory for the correctly recognized gestures (Figure 6.8 (c))
shows a small loop between the upper and lower curve of the digit and
a small upper curve. This is similar to the gesture trajectories of the
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incorrectly classified gestures during T1 and T2 (Figures 6.6 (a) and
(d)). The adapted recognition system of T3 was therefore capable of
correctly classifying the gestures which were formerly misclassified. The
average trajectory of all gestures of class 3 during T3 (Figure 6.8 (b)) is
also similar to the average trajectory of T1 (Figure 6.6 (b)). This indi-
cates that the adapted recognition system enables the user to fall back
to their way of performing the gestures, while the system maintains a
better recognition performance compared to T1 and T2.

6.5. Discussion

We carefully chose the application scenario and designed the exper-
iment in a way, that eliminates potential error sources, and reduces
the likelihood of misinterpretations. Nevertheless we discuss potential
issues with our setup and our results.

6.5.1. On the experiment

The experiment design we chose in this chapter is not focused on an
evaluation of a novel gesture recognition approach. Conversely, we in-
tend to show the differences between the evaluation of an adaptive on-
line recognition system on pre-recorded data and the evaluation within
the actual online application. Our special focus hereby is on adaptation
effects, from the user as well as from the system. Therefore we chose
the optical hand trajectory tracking together with the ASM approach,
allowing for a visualization of the gestures in 2D space. Our findings
are not limited to optical motion tracking and should also be applicable
to other sensor modalities that capture a form of motion or movements
(for example an inertial measurement unit (IMU)).

The system adaptation is based on ground truth information pro-
vided by the user. Even though this approach works well for our pur-
pose, it is not appropriate for an actual gesture recognition application.
The ground truth feedback supersedes the purpose of the online recog-
nition. Within an actual application a minimally obtrusive form of user
feedback has to be chosen to guide the adaptation (see e.g. Chapter 5).

6.5.2. On user—system adaptation

The comparison of the gesture recognition accuracies in experiment
T1 and T2 show major differences for several subjects, despite us tak-
ing special care to perform T1 and T2 as similarly to one another.
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This shows that evaluations based on data recordings in a setting only
slightly different from the actual application (e.g. without feedback or
without involvement of the user in the task) may not apply to the ac-
tual application. When the user gets feedback from the system about
the recognition, they may learn a specific behavior to meet the sys-
tem’s expectation. We observed such a user adaptation for several users.
The effect and impact of the user adaptation is diverse throughout the
subjects though. Even for the same subject we can observe different
behaviors for different gesture classes.

When evaluating the system online within the target application
other factors may also come into play. The memory game for example,
played during T2 to T4, takes the attention of the user away from the
gesture execution. This may lead to the user focusing less on how they
perform the gestures and more on the actual game playing. This is
an important aspect for such systems, as gesture execution should be
intuitive, and not require much attention. The user may also get tired
during the experiment due to its physical and mental demand. Lesser
attention on the gesture execution or tiredness may result in a change
of the gesture trajectory. We aimed at minimizing the effect of tiredness
by giving subjects rest periods between experiment tasks.

6.5.3. On system—user adaptation

The adaptive recognition system, used in T3 of the experiment, pro-
vides a benefit for the user in form of a better gesture recognition.
Furthermore, it allows the user to retain their own gesture execution
style minimizing the effort of exploring other gesture movements which
might be better recognized by the system. The adaptive behavior of the
system can therefore increase the comfort for the user during system
interaction. This finding is also supported by the questionnaire results.
Six out of the eight subjects reported that they were able to focus more
on the actual game playing during T3 compared to T2 and T4.

It is not possible to completely separate the system adaptation from
the user adaptation though. The improvements observed in T3 of the
experiment might be a result of combined adaptation efforts, from the
system as well as from the user. Nevertheless, in our case there is evi-
dence that the main increase in recognition accuracy is caused by the
system adaptation. This is indicated by the fact that the recognition
accuracy in T3 is higher compared to T4, even though the subject has
more practice when performing T4, compared to T3. A system—user
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adaptation has therefore clear benefits, even when the user is capable
of adapting, too.

6.6. Conclusion

We investigated the user<ssystem co-adaptation of a gesture recogni-
tion system from the user as well as the system perspective. The adap-
tive gesture recognition is based on optical hand trajectory tracking
combined with an ASM based classifier. In an online gesture recognition
experiment we recorded more than 6500 gestures from eight subjects.
The conditions covered by the experiment are:

1. A gesture data recording without feedback

2. A gesture controlled game playing with a static recognition sys-
tem

3. A gesture controlled game playing with an adaptive recognition
system

User—system adaptation

We observed that the subjects change their gesture execution when
they become aware of the recognition result provided by the game ap-
plication via the computer screen. The gestures recorded during the
task, where no feedback was given to the users, were recognized with
an accuracy of 76.1%. When the users get feedback on their gestures
the average accuracies are 71.8% and 73.6%. It is a surprising result
that the subjects are in average not able to benefit from the provided
feedback, which contradicts our expectations. One reason for this could
be, that in the feedback task the subjects focus mainly on the game
playing, and concentrate less on the gesture execution compared to the
no feedback task.

System—user adaptation

When the recognition system adapts to the user, based on ground truth
provided, the gesture recognition accuracy increases to 93.4%. This in-
crease in performance is likely to be caused by the system adapting
to the user and confirms our expectation on an adaptive recognition
system. This result is even more outstanding when taking into account
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that the user—system adaptation, on average, did not lead to an im-
provement. From the user’s point of view the benefit is not only in the
increased recognition rate but also in the higher comfort, as they can
perform gestures in ways most natural to them.



Conclusion

In this chapter we summarize and discuss the achievements
of this thesis. In addition we provide an outlook for potential
further research in the field of adaptive activity recognition.
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7.1. Summary of achievements

Activity recognition is an important building block for context aware
computing. The typical approach, inferring activities from motion sen-
sor signals based on a static classifier model, has it’s limitations. It
cannot cope with non-stationary sensor signals caused by a different
user behavior or novel characteristics of the environment. An activity
recognition system that is intended to be used over long periods of time,
in different environments, and by different users, has to be capable of
adapting to such non-stationarities.

One possible solution we evaluated in this thesis is the use of in-
cremental learning techniques. These techniques allow for the adap-
tation of a classifier by integrating new knowledge when it becomes
available. The following achievements are part of our contributions to
enable adaptive activity recognition and to make it more applicable to
the real world.

e We proposed and evaluated three different incremental adapta-
tion methods for activity recognition. They differ in the amount
of supervision they require as well as in the learning principle
they are based on.

— The first approach (Chapter 3) is an unsupervised classifier
self-calibration. It does not require any supervision from the
user to adapt the classifier but instead capitalizes on struc-
tures in the input data. If the recognition accuracy before
calibration is better than chance, an improvement by self-
calibration can be expected. We have validated this find-
ing for adaptation towards changes in the sensor system,
namely the displacement of acceleration sensors on one limb
segment. Simulations of the self-calibration on two datasets
have shown an accuracy improvement of 33.3% and 13.4%,
resulting in 63.5% and 74.4% of accuracy in case of a sligthly
displaced sensor.

— The second method (Section 4.2) is based on an incremen-
tal learning kNN classifier. We developed a novel incremental
learning mechanism for a special form of supervision, namely
error feedback. This feedback is given by the user whenever
an activity instance is not classified correctly. In simulations
on a real world gesture recognition dataset an improvement
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of the recognition accuracy by 10.3% was achieved by adapt-
ing to a new user, compared to the user independent baseline
accuracy of 68.3%.

— The third method (Section 4.3) is based on Reinforcement
Learning (RL) and also capitalizes on error feedback. In this
case the error feedback from the user is translated into a re-
ward signal. The RL aims to maximize the future expected
reward by learning from past experiences. In contrast to the
kNN approach the system based on RL can not only adapt
to a new user but also learn the behavior of a user from
scratch. We have shown this on a real world gesture recog-
nition dataset. After 175 input gestures the system adapted
to the new user achieving 90% of the maximum accuracy.
Learning the behavior of a new user from scratch took a sim-
ilar amount of input gestures and resulted in a similar recog-
nition performance in comparison to the adaptation from a
pre-trained system. The adaptation to a new user from a
pretrained state increased the recognition performance by
36% compared to the baseline accuray of 46%.

e We conducted an online gesture recognition case study (Section
4.4) to validate the potential of incremental learning from error
feedback. The participants of the study controlled a computer
game by hand gestures which were recognized online. The adap-
tation of the gesture recognition was supervised by the user giving
error feedback. We investigated three different learning scenarios:
learning a new user behavior from scratch, adaptation to a dis-
placed sensor and adaptation to a relocated sensor. In all three
scenarios the learning and adaptation, based on the error feed-
back provided by the user, was successful and beneficial.

e We proposed a novel way for user feedback generation capital-
izing on advances in EEG signal processing (Chapter 5). The
user doesn’t have to explicitly indicate a recognition error. In-
stead this information is extracted from the user’s brain signals.
This implicit user feedback is less obtrusive for the user since it
doesn’t require their attention. We conducted an online gesture
recognition experiment to evaluate the potential of brain based
error feedback generation. In simulations on the recorded brain
signals it was possible to detect gesture recognition errors with
above random accuracy. The average sensitivity and specificity
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achieved were 0.60 and 0.56 respectively. Despite the imperfect
error feedback it was still possible to adapt the user indepen-
dent gesture classifier to a new user. The average gain in gesture
recognition accuracy was 6.8%.

e We investigated the influence of an adaptive recognition system
on the user’s behavior in an online gesture recognition exper-
iment (Chapter 6). The experiment covers three conditions: a
gesture data recording, gesture controlled game playing with a
static recognition system, and game playing with an adaptive
recognition system. We observed that users changed their gesture
execution when they became aware of the gesture recognition re-
sults via the game application. The users were not able to adapt
their behavior to match the expectation of the static recognition
system. In contrast the users’ interaction with the adaptive sys-
tem led to an improvement in the gesture recognition. There are
indications that the adaptive system also enabled the users to
perform the gestures in a way most convenient and natural to
them.

7.2. Discussion

The adaptive methods we proposed and evaluated showed potential for
the application of activity and gesture recognition. It must be noted
though, that unsupervised adaptation has it’s limitations since an im-
provement can not be guaranteed. In contrast the supervision provided
by the error feedback reflects the user’s intention and actively guides
the adaptation.

The error feedback contains less information compared to ground
truth feedback. This also influences the adaptation which might be
slower or less accurate with error feedback. Nevertheless error feedback
is easier to obtain and less obtrusive for the user, especially when the
feedback is generated implicitly by the user.

With the proposed usage of EEG error related potentials for au-
tomatic implicit error feedback generation the subject doesn’t have to
explicitly focus on giving feedback. From this point of view it is even
less obtrusive than an error button which has to be explicitly pushed.
Considering the extensive measurement system required for capturing
the user’s brain signal, this approach is still not ready for every day use
though.
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When designing adaptive recognition systems the behavior of the
user should also be taken into account. In a gesture recognition task
we have seen that users adapt to the system they use. This leads to a
user-system co-adaptation which is hard to predict and dependent on
the application, the system setup, and the user.

7.3. Outlook

With the insights gained in this thesis we formulate further research
directions of interest.

e The incremental learning algorithms we proposed assume that the
error information provided for each instance is correct. We have
already seen that imperfect error feedback, for example when it is
extracted from brain signals, affects the adaptation performance.
A learning method more robust to such imperfect feedback would
lead to a better and also potentially faster adaptation.

e The error feedback could be combined with a confidence or qual-
ity value. For example this value could indicate how confident
the system is, that the error feedback is actually correct. This
confidence could be taken into account when learning and adapt-
ing, for example by weighting the instances accordingly, or by
omitting the feedback when the confidence is too low.

e The supervision required could also be further reduced by inte-
grating active learning methods [125]. In this case the idea is not
to learn from all instances that become available but to choose
those which seem to be most beneficial. Usually a label is re-
quested for the instances that were selected for learning. These
labels might also be replaced by error information.

e EEG signals are affected by contaminations from motion arti-
facts. In applications like activity or gesture recognition, where
movements are required and wanted, this can lead to a reduced
error recognition performance. An additional EMG measurement
could be used to remove motion artifacts from the EEG signal to
improve the error feedback.

e The implicit error feedback generation from brain signals was
investigated with a complex and obtrusive EEG measurement
device. Less obtrusive and even fully wearable EEG measurement
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systems started to appear on the market lately. Such system could
improve the comfort and make this approach usable in everyday
life.

So far we explored brain signals for an implicit generation of the
error feedback from the user. Other physiological signals like the
heart rate or the electrodermal activity could also provide valu-
able information for adaptation. A combination of these physio-
logical signals could improve the quality of the error information
provided.

We investigated the co-adaptation behavior between an adaptive
gesture recognition system and the user. In our case the recog-
nition system operated on one fixed set of learning rate parame-
ters. To date it is not clear how the user and the system behavior
influence each other when a different learning rate is used, and
therefore a different plasticity and stability of the system is given.
A general understanding of this co-adaptation would be beneficial
for the future design of any adaptive activity or gesture recogni-
tion system.
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balance parameter
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activity /gesture class

class prediction
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Notation
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ST
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t

.

Td

Tk

(3

v
Wdec
Winc

Description

teacher signal

weight

covariance matrix

stop learning threshold
sum of weights

time

time difference

maximum density parameter
kernel radius parameter
sensor position for training
sensor position for testing
weight decrease function
weight increase function
activity/gesture instance
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Notation
2D
AVG
BCI
CE
EEG
EMG
ERN
ErrP
FRN
GNG
HCI
IMU
kNN
LC
NCC
NGN
RL
ROC
SAP
SI
SOM
std
USB

Description
2-dimensional

average

brain-computer interface
correct / error
electroencephalography
electromyography

error related negativity
error related potential
feedback related negativity
growing neural gas
human-computer interface
inertial measurement unit
k-Nearest-Neighbor
learning case

nearest centroid classifier
neural gas network
reinforcement learning
receiver operating characteristics
state-action pair

subject independent

self organizing map
standard deviation
universal serial bus
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