
Diss. ETH No. 20005

Adaptation of activity

recognition systems

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

Kilian Förster

Dipl.-Ing. TU Ilmenau
MEngSt University of Auckland

born July 23, 1980
citizen of Germany

accepted on the recommendation of

Prof. Dr. Gerhard Tröster, examiner
Prof. Dr. José del R. Millán, co-examiner

2011

Kilian Förster

Adaptation of activity recognition systems

Diss. ETH No. 20005

ETH Zurich, Switzerland, 2011

ISBN 978-3-909386-22-2

Printed by Lulu.com

Copies may be ordered online from http://www.lulu.com

c© Kilian Förster 2011

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of the author.

Acknowledgements

My time in the Wearable Computing Group of ETH Zurich has been
a fantastic and rewarding experience. I am grateful to Prof. Dr. Ger-
hard Tröster, my academic supervisor, for giving me this opportunity,
offering his support and allowing me freedom in my work. I would also
like to thank Prof. Dr. José del R. Millán for co-examining my PhD
thesis.

In addition I would also particularly like to thank Dr. Daniel Roggen
for welcoming my participation in the Opportunity project. During our
long discussions he provided valuable academic advice and contribu-
tions to my work. Thank you too to Dr. Ricardo Chavarriaga for his
expertise in electroencephalography, all the awesome ideas he shared
and his support within our collaboration, and to Dr. Thomas Stiefmeier
for introducing me to the lab in the first months when we shared an
office and worked together on the WearIT@Work project.

To all members of the IfE, thank you for the collegial spirit and the
warm, supportive environment you provided. In particular, I would like
to mention the colleagues who participated in my experiments and con-
tributed to my research: Alberto, Bernd, Bert, Christina, Christoph,
Claudia, Clemens, Conny, Fredy, Holger, Johannes, Marc, Martin,
Mirco, Niko, Thomas H., Thomas K., Sebastian, Silvan. I would also
like to acknowledge the help and support of Ruth, who always had a
stamp at hand when one was needed. A valuable contribution to my
research was made by Fabian and Samuel within their master projects.
I’m grateful for their initiative and hard work.

As my spare time activities provided the essential balance to my
work in the last few years, I would like to acknowledge all my friends
who made that time memorable. In particular, thanks to Lisa for all the
weekend visits to Switzerland, and to Lesley for not only proof-reading
this thesis, but also for our numerous and spontaneous trips into the
wild.

Finally I want to thank the most important people to me, my par-
ents and my sister. They have always been there supporting me in every
way possible, and if it was not for their continuous help and advice I
would not have been able to pursue my goals.

Zürich, November 2011 Kilian Förster

Contents

Acknowledgments iii

Abstract ix

Zusammenfassung xi

1. Introduction 1
1.1. Activity and gesture recognition in non-stationary envi-

ronments . 2
1.1.1. Adaptive learning 3
1.1.2. Reducing supervision 3
1.1.3. Interaction with an adaptive recognition system . 4

1.2. Research questions . 4
1.3. Thesis outline . 4

2. Activity recognition and adaptation 7
2.1. Introduction . 8
2.2. Definitions and terminology 8

2.2.1. Motion based human activity recognition 9
2.2.2. Segmentation . 9
2.2.3. Feature . 9
2.2.4. Classification . 9
2.2.5. Non-stationarity 10
2.2.6. Stability and plasticity 11

2.3. Related work . 12
2.3.1. Non-stationarities in recognition tasks 12
2.3.2. Adaptive learning and classification 13
2.3.3. Adaptation in activity recognition and related fields 15
2.3.4. Evaluating adaptive recognition systems and co-

adaptation . 17

3. Unsupervised classifier self-calibration 19
3.1. Introduction . 20
3.2. Method description . 20
3.3. Characterization on synthetic dataset 22
3.4. Validation on HCI scenario 25

vi

3.4.1. Without self-calibration 26
3.4.2. With self-calibration 27

3.5. Validation on fitness scenario 29
3.6. Discussion . 34

4. Classifier adaptation based on error feedback 37
4.1. Introduction . 38
4.2. Incremental kNN using CE signal for classifier adaptation 39

4.2.1. Incremental learning kNN classifier 40
4.2.2. Characterization on artificial dataset 43
4.2.3. Validation on gesture recognition dataset 50
4.2.4. Discussion . 50

4.3. Reinforcing a recognition system using negative rewards 52
4.3.1. Reinforcement learning background 53
4.3.2. State of the art 55
4.3.3. Requirements posed by the learning scenario . . 56
4.3.4. Instance Based Reinforcement Learning method

description . 57
4.3.5. Evaluation of RL methods on gesture dataset . . 59
4.3.6. Discussion . 63

4.4. RL gesture recognition case study 65
4.4.1. System setup . 65
4.4.2. Study protocol 67
4.4.3. Evaluation . 68
4.4.4. Discussion . 70

5. Implicit error feedback generation using brain signals 71
5.1. Introduction . 72
5.2. State of the art in ErrP recognition 73
5.3. ErrP-based adaptive gesture recognition experiment . . 73

5.3.1. Gesture-controlled computer game 75
5.3.2. Measurement setup 75
5.3.3. Experimental protocol 76

5.4. EEG ErrP Recognition 78
5.4.1. Classification based on Bayesian filtering 78
5.4.2. ErrP Classification 80

5.5. Adaptive gesture recognition guided by ErrP 82
5.5.1. Gesture classification 82
5.5.2. Influence of the ErrP detection accuracy on the

adaptation . 83

vii

5.5.3. Adaptation assuming the ErrP recognition per-
formance resulting from the HCI gesture experi-
ment . 84

5.6. Discussion . 86
5.7. Conclusion . 88

6. Adaptive recognition and user behavior 89
6.1. Introduction . 90

6.1.1. Issues of co-adaptation 90
6.1.2. Gesture recognition scenario 91

6.2. Online adaptation experiment setup 92
6.2.1. Gesture-controlled computer game 92
6.2.2. Online adaptive gesture recognition 94
6.2.3. Experimental protocol 97

6.3. Analysis of user→system adaptation 98
6.4. Analysis of system→user adaptation 101
6.5. Discussion . 103

6.5.1. On the experiment 103
6.5.2. On user→system adaptation 103
6.5.3. On system→user adaptation 104

6.6. Conclusion . 105

7. Conclusion 107
7.1. Summary of achievements 108
7.2. Discussion . 110
7.3. Outlook . 111

Glossary 115

Abbreviations 117

Bibliography 119

Curriculum Vitae 133

Abstract

Advances in mobile computer systems, signal processing and sensing
technology enable new computing applications to support the user any-
where and anytime. One such application is activity aware computing
where the user’s activities are taken into account to provide appropriate
assistance.

The crucial element enabling this assistance is activity recognition.
Human motion patterns, associated with a specific activity, have to be
found in signals captured from motion sensors. These sensors are on the
user’s body or within their environment. Activity recognition systems
are usually trained during the design phase with prerecorded, annotated
examples of typical activity patterns. Accounting for all possible user
or sensor characteristics, potentially resulting in non-stationary motion
signals, would be costly and requires a vast amount of training data.
New characteristics might also be developed throughout the ongoing
usage of the system, which cannot be captured in training data.

The objective of this thesis is to explore adaptive techniques with
the goal of overcoming the restrictions posed by static, trained at design
time only, activity recognition systems. We focus on adaptive learn-
ing, which has shown potential in different recognition tasks with non-
stationary signal characteristics.

Ideally, the activity recognition system adapts continuously to the
current signal characteristics, actively guided by the user. Supervi-
sion, where the user consciously provides ground truth information,
is deemed obtrusive and may interfere with the target application. We
therefore investigate incremental learning techniques with particular
focus on reducing the amount of supervision required.

One step in this direction is an unsupervised self-calibration strat-
egy, which allows for classifier adaptation. The key benefit of this ap-
proach is the reduction of obtrusive supervision required from the user.
Validation on two datasets has shown an average recognition accuracy
improvement of up to 33.3% and 13.4% for displaced motion sensors.
However, improvement can not be guaranteed for each individual case.

The user can also be taken in the loop to indicate system’s recogni-
tion errors. Indicating recognition errors is less obtrusive compared to
providing ground truth, yet enables supervision according to the user’s
intention. We evaluate two approaches capitalizing on this form of su-

x

pervision, firstly an incremental learning k-Nearest-Neighbor classifier,
and secondly a reinforcement learning method. The adaptation of the
recognition system, to a new user, results in an accuracy increase of
10.3% and 36% respectively.

Another possibility, to reduce obtrusiveness of supervision, is to
detect system recognition errors implicitly through the user’s brain sig-
nals. The adaptation of an activity recognition system to a specific
user, capitalizing on brain based error feedback, results in an accuracy
improvement of 6.8%.

Finally we investigate the influence of an adaptive activity recogni-
tion system on the user behavior. In an online gesture recognition ex-
periment users interact with a static as well as an adaptive recognition
system. We found indications that the interaction with the adaptive
recognition system not only increases the recognition performance, but
also enables the users to perform gestures in a way most convenient
and natural to them.

Zusammenfassung

Die Miniaturisierung von Computersystemen und Sensoren, sowie
Fortschritte in der Signalverarbeitung, erlauben die Nutzung dieser
Technologien nahezu jederzeit und an jedem Ort. Dies erschließt neue
Anwendungsbereiche, in denen das Computersystem den Benutzer kon-
tinuierlich und situationsabhängig unterstützt. Ein wichtiger Baustein
für eine situationsabhängige Unterstützung ist die Erkennung und Ver-
arbeitung von Aktivitäten, die vom Benutzer ausgeführt werden.

Ein Aktivitätserkennungssystem misst die Bewegungen des Be-
nutzers mit Hilfe von Sensoren und durchsucht die resultierenden
Signale nach spezifischen Bewegungsmustern. Die Bewegungssensoren
können hierbei sowohl am Körper des Benutzers als auch in dessen
Umgebung angebracht sein. Die Zuordnung von Bewegungsmustern zu
Aktivitätsklassen wird in der Regel basierend auf vorab aufgezeich-
neten Datensätzen durch Lernalgorithmen erstellt. Um alle möglichen
Benutzer- und Sensorcharakteristiken in das Lernen mit einbeziehen
zu können, sind umfangreiche Lerndatensätze nötig, deren Erstellung
sehr aufwendig ist. Des Weiteren können Signalcharakteristiken, die
erst in der Zukunft auftreten, nicht durch einen solchen Lerndatensatz
abgedeckt werden.

Das Ziel dieser Arbeit ist es, adaptive Lernmethoden zur Ak-
tivitätserkennung zu untersuchen, um Bewegungsmuster nicht nur ein-
malig zu lernen, sondern bei Bedarf auch anpassen zu können. Hierbei
liegt der Fokus auf adaptiven Lernalgorithmen, die in ähnlicher Form
bereits in andere Mustererkennungsanwendungen eingesetzt werden. Im
Idealfall passt sich das Aktivitätserkennungssystem kontinuierlich an
die Charakteristiken des Eingangssignals an, was durch inkrementelle
Lernalgorithmen ermöglicht wird.

Der Benutzer kann die Adaption direkt steuern, indem er zu jeder
Zeit angibt, welche Aktivitäten er gerade ausführt. Die Bereitstellung
zusätzliche Informationen ist jedoch störend für den Benutzer und
schränkt die Benutzbarkeit eines adaptiven Aktivitätserkennungssys-
tems ein. Aus diesem Grund befasst sich ein weiterer Teil dieser Arbeit
mit der Frage, wie die zusätzliche Informationsmenge, die zur Adaption
benötigt wird, sowie der Aufwand für deren Bereitstellung reduziert
werden können.

Eine Möglichkeit der Adaption, bei der vom Benutzer keine

xii

zusätzlichen Informationen benötigt werden, ist eine Selbstkalibrierung
der Aktivitätserkennung. Die Validierung dieses Ansatzes wird auf zwei
Datensätzen durchgeführt, bei denen sich die Signalcharakteristiken
durch unterschiedliche Sensorpositionen am Körper ändern. Die Adap-
tion der Aktivitätserkennung auf eine neue Sensorposition mit Hilfe der
Selbstkalibrierung führte zu einer Verbesserung der Erkennungsrate um
33.3% bzw. 13.4% auf den beiden Datensätzen.

In einem weiteren Lernansatz werden Informationen über Erken-
nungsfehler, die vom Benutzer identifiziert und angegeben werden,
für die Adaption genutzt. Verglichen mit der Angabe der tatsächlich
ausgeführten Aktivität ist die Angabe von Erkennungsfehlern ein-
facher und weniger störend. Zwei verschiedene Ansätze zur Nutzung
der Erkennungsfehler werden untersucht - ein erweiterter ’k-Nearest-
Neighbor-Klassifizierer’ sowie eine ’Reinforcement Learning’ Metho-
de. Die Adaption des Aktivitätserkennungssystems auf die spezi-
fischen Charakteristiken eines neuen Benutzers resultierte in einer
Verbesserung der Erkennungsrate um 10.3% mit dem ’k-Nearest-
Neighbor-’ bzw. 36% mit dem ’Reinforcement Learning’ Ansatz.

Statt einer expliziten Angabe der Erkennungsfehler durch den Be-
nutzer können diese auch indirekt über dessen Hirnströme ermittelt
werden. Ein so auf einen neuen Benutzer adaptiertes Aktivitätserken-
nungssystem ergab eine Verbesserung der Erkennungsrate um durch-
schnittlich 6.8%.

Abschließend wird untersucht, wie sich eine Adaption des Ak-
tivitätserkennungssystems auf das Verhalten des Benutzers auswirkt.
Im Rahmen eines Experiments werden Handgesten des Benutzers
vom Aktivitätserkennungssystem erkannt, welches in verschiedenen
Durchgängen sowohl mit wie auch ohne Adaption betrieben wird.
Die Nutzung des adaptiven Aktivitätserkennungssystem führt zu einer
Verbesserung der Erkennungsrate. Außerdem gibt es Anzeichen dafür,
dass der Benutzer bei aktivierter Adaption seine Gesten anpassen kann,
so dass diese komfortabler und natürlicher ausgeführt werden können.

1
Introduction

In this chapter we motivate the use of adaptive techniques
for activity recognition. We present the requirements and
challenges adaptation poses on activity recognition systems.
Furthermore the main research questions, as well as the out-
line of the thesis, are given.

2 Chapter 1: Introduction

1.1. Activity and gesture recognition in non-stati-

onary environments

The type and usage of personal computing systems has changed signif-
icantly in the last decade. Miniaturized and mobile systems are super-
seding immobile computing terminals. In combination with advances in
signal processing and sensing technology new applications have arisen
which support the user anywhere and anytime, taking their location,
situation, activities and even emotion, into account. This is commonly
termed context aware computing [1]. A typical example is a mobile
smart-phone with an integrated positioning system for location aware
support to find local amenities. Sports computers are another typical
application, providing information about physiological and movement
parameters, used to improve the users workout efficiency.

In this thesis we focus on activities and gestures as contextual in-
formation. An activity aware system can, for example, monitor user’s
activities of daily living to automatically create a diary [2]. It can also
read the user’s gestures which allows for human computer interaction
[3].

The crucial building block that enables activity aware computing
is activity recognition. In this thesis we focus on motion based human
activity recognition. This can be accomplished by finding specific pat-
terns in human motion captured either by sensors worn on the body
or placed in the user’s environment. The motion based activity recog-
nition system must be trained before use in order for it to distinguish
different motion patterns. Training is usually performed initially dur-
ing the design phase, making use of prerecorded annotated examples of
typical activity patterns. The underlying assumption is, that the train-
ing patterns contain all possible variations which might be observed
during future use of the system. These variations may include different
measurement setups, different environments or different user behavior
to name but a few.

Given that the activity aware system is intended to be used by
anybody at any time and place, this assumption is difficult to fulfill.
Human motion patterns are not stationary and can vary due to dif-
ferences between users or environments. Specific user characteristics
such as gender, age, height and weight can affect movement charac-
teristics. In addition variations within the user’s environment can be
influential, such as altered movements due to different types of clothing.
Changes in the sensor system may also occur. Sensors can be mounted

1.1. Activity and gesture recognition in non-stationary environments 3

at different locations or be replaced by newer models. Such factors can
affect the sensor readings and therefore the subsequent recognition. We
refer to variations that occur over time and affect the recognition per-
formance of a recognition system as non-stationarities (definition in
Section 2.2.5).

Accounting for all possible non-stationarities would require a vast
amount of training examples. Not only would they be expensive to
acquire, but also new signal characteristics, developed in the future,
cannot be captured.

Novel techniques are required to cope with non-stationarities in ac-
tivity recognition. A promising direction, gaining attention not only in
the field of activity recognition, is adaptive learning. The use of adaptive
techniques in activity recognition poses new challenges. The learning
should be guided by the user to ensure their intention is taken into
account. At the same time this supervision needs to be minimized as
it is deemed obtrusive. Interaction with an adaptive system also raises
questions about effects on the user’s behavior.

1.1.1. Adaptive learning

Capitalizing on adaptive learning techniques may result in a recognition
system able to cope with non-stationarities. An adaptive recognition
system is designed to learn changing user behaviors or novel environ-
mental characteristics throughout its usage. In this thesis we focus on
incremental learning [4], which allows to integrate new knowledge as
soon as it becomes available, and address the resulting challenges for
activity recognition.

1.1.2. Reducing supervision

In tasks, where a defined mapping between activity and input data is to
be learned, supervision is essential. We see supervision as information
provided by the user, in addition to any sensed motion signal. Typically
incremental learning approaches require a ground truth label for each
activity instance to learn. This annotation information would have to be
given continuously by the user during system use. This is very obtrusive,
may interfere with the target application and affect the acceptance of
such adaptive activity recognition systems.

Ways to reduce supervision required, as well as making supervision
less obtrusive for the user, need to be found.

4 Chapter 1: Introduction

1.1.3. Interaction with an adaptive recognition system

Users can adjust their behavior to meet the expectation of an activity
recognition system they interact with. For example in a gesture recog-
nition application, the user may learn to perform some gestures in a
way that the system can recognize them better.

When the activity recognition is static, the user exploring different
behaviors cannot influence the system’s recognition parameters. In the
case of adaptive activity recognition however, it is not clear how the
user, that adjusts their behavior, affects the learning of the recognition
system. Likewise, adaptation of the recognition system may influence
the user’s behavior. Understanding this co-adaptation enables us to
evaluate the limitations as well as the usefulness of adaptive activity
recognition.

1.2. Research questions

With the ideas and motivations given above, we address the following
research questions in this thesis:

• Which methods allow for incremental adaptation of an activity
recognition system, also in the case of limited supervision?

• How can we minimize the supervision required?

• Can an activity recognition system adapt without supervision?

• How can supervision provided by the user be less obtrusive and
more implicit?

• How do adaptive recognition system and users both adjust their
behavior to influence each other?

1.3. Thesis outline

In Chapter 2 we give definitions for typical terms used throughout
the thesis. Furthermore an overview of adaptive learning strategies in
activity recognition and related fields is provided.

A method for unsupervised adaptation is proposed in Chapter 3. A
thorough evaluation of this approach on artificially generated data, as
well as real motion data, is performed.

1.3. Thesis outline 5

In Chapter 4 incremental learning in a setting with reduced su-
pervision is presented. The focus is on the use of error feedback as
additional information which is provided by the users. Two different
approaches are investigated. The first is based on an incremental k-
Nearest-Neighbor (kNN) classifier while the second capitalizes on re-
inforcement learning. Both methods are simulated in a gesture recog-
nition scenario. The reinforcement learning approach is furthermore
evaluated in an online adaptive gesture recognition case study.

A novel way of automatic error feedback generation by means of
brain signals is presented in Chapter 5. For that purpose an extended
dataset was recorded in a gesture recognition scenario comprising of
hand motion data and brain signals. The potential of brain signals as a
form of supervision for the incremental kNN learning, as presented in
Chapter 4, is investigated based on the data recorded.

The influence of adaptive gesture recognition on the behavior of
the user is the subject of Chapter 6. In an experiment users interact
with an online gesture recognition system in both a static and an adap-
tive setting. We investigate differences in user behavior in the different
experimental settings based on motion trajectories.

In Chapter 7 we summarize the significant achievements of this
thesis alongside a discussion and give an outlook for future research.

6 Chapter 1: Introduction

2
Activity recognition

and adaptation

In this chapter we introduce the activity recognition chain.
Furthermore we present definitions for typical terms used
throughout the thesis. We also give an overview of the types
of non-stationarities present in related recognition applica-
tions. In addition related work in adaptive learning is pre-
sented and reviewed.

8 Chapter 2: Activity recognition and adaptation

2.1. Introduction

Activity recognition is a way to automatically infer human activities
from sensor readings by means of machine learning techniques [5]. A
typical state of the art activity recognition system is built from three
elements, as depicted in figure 2.1.

Figure 2.1: The typical activity recognition chain. Sensor readings are
preprocessed and fed into a classifier which maps the signal to an
activity-class based on a model.

Sensors capture information related to user activities. In a pre-
processing step the sensor signal is segmented into regions of interest.
Discriminative features, specific to the target activities, are extracted
from these segments. The classifier assigns an activity class to each sig-
nal segment by mapping the according feature values to a given model.
Besides the activity classes there may also be a NULL-class to which
all signal segments, that do not contain an activity, are assigned to.
In this thesis we do not deal with the NULL-class problem by making
sure that each signal segment forwarded to the classifier contains an
activity.

Classifier models are typically trained with signals recorded in a
similar setting as the target application. This includes the type and
position of sensors as well environmental properties and the user. The
underlying assumption is that the characteristics captured in the train-
ing signals are also present during actual use of the activity recognition
system.

Trained models may not be fully applicable if signal characteristics
are non-stationary. In such cases adaptive techniques are required to
fit the trained models to the new characteristics.

2.2. Definitions and terminology

In this section we give definitions and explanations for specific terms
as they are used throughout this thesis.

2.2. Definitions and terminology 9

2.2.1. Motion based human activity recognition

Activity recognition describes the inference of an agent’s activities from
observations related to the agent and their environment. In our case
the agent is human whose motion patterns are observed. Therefore
the activities we take into account are all tied to patterns measurable
with motion sensors. Typical activities can be for example modes of
locomotion, sports exercises or hand gestures.

In this thesis we focus on two distinct activity types: hand gestures
and continuous periodic movements, for example running. Since we
refer to hand gestures as a form of motion we use activity recognition
and gesture recognition interchangeably throughout this thesis.

2.2.2. Segmentation

Segmentation is the process of finding regions in a continuous signal
stream that contain human activities. Each resulting segment contains
exactly one type of activity. If the activity has a distinct start and end,
which is the case for example for a hand gesture, the length of the
segment is exactly the length of this activity.

2.2.3. Feature

Features are measurable properties of the observed activity. They are
selected so that they allow for a discrimination of the target activities.
Usually several different features are combined in a feature vector f .
Ideally the features are independent from each other, so that each of
them describes a different property. Typcially we calculate a feature
vector on a signal segment containing an activity. In this case we refer
to the feature vector for this segment as activity instance x.

2.2.4. Classification

Classification is the process of assigning an observation a class member-
ship. An observation is represented by the feature vector of an activity
instance x. The class c is one activity from a set of possible activities.

To each observation represented by x the most probable class c, of
all possible activity classes K, is assigned.

c = argmax
c∈K

(P (c|x)) (2.1)

10 Chapter 2: Activity recognition and adaptation

The posterior probability P (c|x) is the probability of class c given the
feature vector x. It can be derived via Bayes theorem.

P (c|x) =
P (x|c)P (c)

P (x)
(2.2)

With P (x|c) being the conditional probability of x given c, P (c) being
the class prior, and P (x) being the marginal probability of x.

2.2.5. Non-stationarity

We employ the stationarity definition commonly used in the field of
stochastic processes. “A stationary process is one whose distribution
remains the same as time progresses” [6]. We can apply this definition
to the distributions the activity classification is based on.

We consider a classification problem stationary if the posterior prob-
ability P (c|x), the class prior P (c), and the conditional probability
P (x|c) remain the same for any time difference τ .

Pt(x) = Pt+τ (x) (2.3)

Pt(c) = Pt+τ (c) (2.4)

Pt(x|c) = Pt+τ (x|c) (2.5)

Accordingly a non-stationarity is present in the classification prob-
lem, if at least one of the Equations 2.3 – 2.5 is not fulfilled. This is
in line with the non-stationarity definition given by Kelly et al. [7],
Widmer and Kubat [8] and Yang and Zhou [9]. The cause for a non-
stationaritiy is usually hidden, which means it is not know a priori, it
is not explicitly sensed and not represented by predictive features [10].

Kuncheva [11] summarizes four different types of non-stationarities:

NS1 Random noise: The amount of noise present in the system.
According to our definition this is not an actual non-stationarity
since it won’t affect the distributions given in Equations 2.3 – 2.5
unless the amount of noise varies over time.

NS2 Abrupt changes: The statistical properties of the distributions
(Equations 2.3 – 2.5) change abruptly at a specific time t1 (e.g.
Pt1(x) 6= Pt1+τ (x) for τ → 0).

2.2. Definitions and terminology 11

NS3 Drift: A drift is a gradual change which follows a trend. If for
example Pt+τ (x) is Gaussian distributed, changing the mean of
the distribution µ by ∆µ for every time step τ would be considered
a drift.

µt+kτ = µt + k∆µ k = 1, 2, 3, . . . (2.6)

NS4 Systematic trends: This refers to the idea of recurring contexts.
For example a distribution P (x) already observed at time t+ τ1
may reappear at time t+ τ2 with τ1 < τ2, allowing the reuse of
information obtained earlier.

Pt(x) = Pt+τ (x), τ ≤ τ1 (2.7)

Pt(x) 6= Pt+τ (x), τ1 < τ < τ2 (2.8)

Pt(x) = Pt+τ (x), τ ≥ τ2 (2.9)

In this thesis we focus on two typical sources of non-stationarities
likely to occur during every day use of an activity recognition system.

In the first case the non-stationarity is caused by changes in motion
capturing. A displacement of body-worn motion sensors may occur in
particular when a sensor is removed in the evening and reattached the
next morning for example, resulting in an abrupt change of the motion
signal distribution (NS2). Also variations in the sensor position are
likely, as sensors have to be comfortable to wear and cannot be fixed
too tightly. A sensor that slowly slides down a limb segment for example
may result in a drift in the sensed motion signal (NS3).

In the second case the non-stationarity is caused by changes in the
user behavior. The user’s performance of activities or gestures can vary
over time resulting in abrupt changes or drifts (NS2, NS3). Furthermore
the system may be taken over by a new user. A different user is likely
to show a different behavior when performing gestures or activities and
therefore abruptly change the motion signal distribution (NS2).

2.2.6. Stability and plasticity

In the context of adaptive learning, especially when considering life
long learning, there is the issue of stability and plasticity [12].

12 Chapter 2: Activity recognition and adaptation

Stability

A recognition system that continuously learns and adapts should not
be affected by irrelevant inputs. For example it should not discard pre-
viously learned knowledge (e.g. about input data distributions) when
irrelevant inputs (e.g. noisy signals caused by a temporary sensor fail-
ure) are observed.

Plasticity

An adaptive recognition system should integrate new knowledge as soon
as it becomes available. For example the statistics of the expected input
data distribution should be adapted in response to inputs that are
processed.

Stability-plasticity dilemma

Carpenter and Grossberg state that “the properties of plasticity and
stability are intimately related” [12]. According to them a system has
to be plastic to learn from significant new inputs while at the same
time remaining stable in response to irrelevant inputs.

2.3. Related work

In several recognition applications adaptive approaches have been pro-
posed to tackle non-stationary characteristics in the input signals. In
this section we give an overview of non-stationarities typical for activity
recognition and related fields, and discuss adaptive techniques to cope
with them.

2.3.1. Non-stationarities in recognition tasks

Non-stationarities are a challenge in many machine learning applica-
tions and recognition tasks. In data mining the term concept drift is
utilized [8]. Typical causes for a non-stationarity are for example a new
user of an activity recognition system [13] or the change of illumination
in image recognition [14].

The type of non-stationarities and their effect on the statistical
properties of the input signal can be manifold and is application de-
pendent. In a natural and continuous environment gradual drifts as

2.3. Related work 13

well as abrupt changes are expected (e.g. seasonal, demographic, ha-
bitual) [11]. In the following we list recognition applications together
with typical reasons for the occurrence of non-stationarities.

• Brain-computer interfaces: Brain signals can contain drifts
within a recording session as well as abrupt changes between
different recording sessions for the same user. Varying back-
ground brain activities are one cause for these drifts and changes
[15, 16, 17, 18].

• Handwriting recognition: Individuals have different writing
styles. Therefore abrupt changes in the shape of the characters
may occur when a handwriting recognition system gets used by
a different user [19, 20, 21, 22].

• Speech recognition: Vocal characteristics vary between speak-
ers leading to abrupt changes in the signal statistics when
the speaker changes [23, 24, 25, 26]. Other sources of non-
stationarities within this application are abrupt or gradual
changes in background noise (e.g. when moving to a different loca-
tion) or variations in channel characteristics (e.g. when changing
the recording device) [27].

• Activity recognition: The change to a new user can lead to
abrupt changes in the sensor signal statistics [28]. Furthermore
users may vary their behavior for example due to psycho-motor
learning [29], aging [30, 31], injuries or illnesses [32], which may
result in gradual or abrupt signal changes. The position and char-
acteristics of sensors can also influence the stationarity of the
signal readings [33, 34].

2.3.2. Adaptive learning and classification

Adaptive learning techniques tackle the challenge of non-stationarities
in recognition tasks by adapting the classifier model to changed data
distributions. We can distinguish between two different learning strate-
gies, batch learning and incremental learning.

Batch and incremental learning

In batch learning a new classifier model is trained on a batch of data.
This batch contains the most recent data available reflecting the latest

14 Chapter 2: Activity recognition and adaptation

statistical properties of the data distribution [8]. This learning prin-
ciple can be applied in combination with any standard classification
algorithm like a Support Vector Machine (SVM) [35] or Bayes Classi-
fier [36]. A drawback of this approach is that statistics obtained from
a previous batch are completely discarded every time a new batch is
learned. This includes any knowledge that was previously learned and
which might still be partly valid. It may also take time to collect a
new batch of data large enough to train a classifier model with the new
statistics. A change detection method may be necessary to indicate
when retraining a new classifier model is required [37, 11, 38].

With incremental learning strategies the classifier model continu-
ously adapts to match the statistics from the incoming data [10]. In
contrast to batch learning, it is not necessary to collect a certain amount
of data for training. Instead each incoming data instance is used to in-
crementally learn the classifier model. Some learning and classification
methods support incremental learning by nature. Examples of those
are the k-Nearest-Neighbor (kNN) [36] classifier, and methods based on
vector quantization like the Self Organizing Map (SOM) [39] and the
Neural Gas Network (NGN) [40]. Other classification algorithms have
been extended to allow for incremental learning, e.g. the support vector
machine [41] or hidden Markov models (HMM) [42, 43, 44, 45, 46].

Both strategies, incremental and batch learning, have to forget the
outdated knowledge when learning new characteristics [8]. In batch
mode this can be accomplished by setting a batch size which contains
enough data to reflect the current statistical properties of the input
distributions, without containing any data from outdated input dis-
tributions. This allows the amount of data used from the past to be
adjusted and subsequently used for training the new model [47]. In-
cremental learning algorithms usually implement a learning rate pa-
rameter. It regulates how much information captured in the model is
updated by the newly acquired data instance. The learning rate is a
parameter in adaptive learning that is strongly related to the stability-
plasticity dilemma (Section 2.2.6). A high learning rate will allow for
a rapid adaptation to new input data statistics while a lower learning
rate makes a system more stable.

Learning and supervision

Aside from different learning strategies, learning algorithms can also be
distinguished by the amount of supervision they require. In supervised

2.3. Related work 15

learning the ground truth label is available for every data instance.
This is typical for initial training of a classifier based on an annotated
training dataset. Furthermore in some data mining applications it is
assumed that ground truth labels become available at some point after
the classification of each instance [8]. Widely used learning and clas-
sification methods like Naive Bayes, kNN or SVM rely on supervised
learning [36].

In unsupervised learning no ground truth information is available for
the training data. In this case learning is based on finding structures in
the data. This is typical for clustering algorithms, which assign similar
data instances the same cluster membership [48]. The SOM or the NGN
also represent structures in the input data without an explicit class
assignment [39, 40]. The SOM and the NGN also have been extended
for learning in non-stationary environments [49, 50].

In between the extremes of unsupervised and supervised learning
lies semi-supervised learning [51, 52, 53]. In this case labels are only
available for some instances in the training data. The classifier model is
trained based on the labeled examples supported by structures found in
the training data. Semi-supervised approaches are usually not capable
of incremental learning.

In Reinforcement Learning (RL) [54] the training of a classifier is not
based on ground truth labels but on rewards. For each decision made
by the classifier a reward is given. Rewards do not directly contain in-
formation about the ground truth labels but instead provide a measure
of how good the decision was. The classifier model is adapted based
on past experiences, so that the expected reward for future decisions is
maximized.

2.3.3. Adaptation in activity recognition and related fields

Several adaptive approaches have been proposed for different recogni-
tion tasks to tackle non-stationarities.

Handwriting recognition

Incremental prototype adaptation has been proposed to adapt a hand-
writing recognition system to the writing style of a certain user [55].
Letter prototypes are adapted using letter instances collected during
system use. The labels for the letter instances can be collected in a
self-supervised manner, where the prediction of the classifier is reused
as the ground truth label [56, 57]. It is also possible to calibrate a

16 Chapter 2: Activity recognition and adaptation

generic classifier model towards a certain user prior to system use [58].
In this case labeled data has to be collected for system calibration.

Brain-computer interfaces

For brain-computer interface (BCI) applications a calibration step is
proposed before each session. Incremental classifier model adaptation
has been effective for such purposes [15, 17, 59, 60, 61]. In this case
a supervised approach is used requiring the collection of labeled ex-
amples during system use. This can be difficult depending on the BCI
application.

Speech recognition

Adaptation by model selection is widely used in speech recognition
[62, 23, 63]. Several models are trained based on different speaker char-
acteristics. During system use the best fitting model for the current
speaker is chosen at runtime. In addition the calibration of a generic
speaker model, with small amounts of user specific training data, was
proposed [64]. The collection of calibration data can either be super-
vised [26] or self-supervised based on the generic speaker model [25].

Activity recognition

A widely used approach to cope with different users in activity recog-
nition applications is to train a model based on large datasets recorded
from a high number of subjects [28, 13, 34]. This is supposed to result
in a user independent classifier which is valid for any future subject. It
has been shown though, that the performance of such user independent
classifiers often leads to a lower performance compared to user specific
classifiers [28, 13, 34]. The calibration of a generic classifier model to-
wards a specific user has also been proposed for activity recognition. In
this case either labeled user-specific data is collected to calibrate the
system [65] or a general bio-mechanics model is adjusted based on the
physiological features of the new user [33, 66].

To address the variations associated with sensors mounted on dif-
ferent body locations a model selection approach has been used [67].
For each specific body location a classifier model is trained and chosen
according to the detected sensor location. Lester et al. [34] trained a
classifier on data recorded from several different sensor locations on
the user’s body. This is supposed to result in a classifier model, valid

2.3. Related work 17

for all possible sensor locations. Kunze et al. [68] proposed the use of
an additional sensor modality, namely a gyroscope, to compensate for
the impact that a changed sensor location has on the readings of an
acceleration sensor.

2.3.4. Evaluating adaptive recognition systems and co-adap-
tation

“Evaluating systems is a difficult task, and it becomes even more dif-
ficult when the system is adaptive” [69]. Typically adaptive recog-
nition systems are evaluated empirically in the following manner
[56, 57, 58, 18, 61, 59, 60, 62, 26, 25, 28, 13]:

• A dataset containing data typical for the application is recorded
or taken from a repository.

• The recognition system is simulated using the dataset - once
with the adaptive method under evaluation and once with a non-
adaptive baseline method.

• A performance metric is calculated from the simulation results.
Usually the recognition accuracy or the recognition error rate are
used as performance metric.

• The performances of the adaptive and the non-adaptive recogni-
tion are compared to evaluate the benefit of the adaptation.

Such empirical evaluation strategies are, amongst others, also com-
mon for user-adaptive human-computer interfaces (HCI) [70]. The eval-
uation focus is solely on the adaptive system. Interactions between
the user and the adaptive system are only investigated from the sys-
tem’s point of view. Even the collection of user’s opinions (e.g. through
questionnaires or user interviews) is usually targeted only at getting
information about the success of the adaptation compared to the non-
adaptive case [71]. A change of user behavior, caused by the adaptive
nature of the system, is not evaluated.

Mackay claims that people and technology co-adapt, when people
interpret and adapt technology, which in return influences the behavior
of people [72, 73]. Such a co-adaptation has for example been observed
for BCIs [74] or a robotic prosthetic hand controlled via electromyog-
raphy (EMG) signals [75]. A co-adaptation between user and system
may also exist when using an adaptive activity recognition system. To

18 Chapter 2: Activity recognition and adaptation

our knowledge co-adaptation for adaptive activity recognition has not
been studied yet.

3
Unsupervised

classifier

self-calibration

In this chapter we propose a method for classifier adaptation
through unsupervised self-calibration. We investigate the ba-
sic behavior of this approach, based on an artifical dataset,
in order to understand it’s potential and limitations. The
applicability of the calibration method to activity and gesture
recognition is validated on two activity recognition datasets.

20 Chapter 3: Unsupervised classifier self-calibration

3.1. Introduction

We propose a classifier self-calibration strategy for adapting an activity
recognition system to non-stationarities caused by the displacement of
acceleration sensors on one limb segment.

With an unsupervised approach continuous supervision by the user
is not required. The adaptation is guided by characteristics contained
in the input data.

We use classifiers capable of incremental learning to adapt to vari-
ations in the statistics of the input signal, especially drifts or displace-
ments of class distributions in the feature space. The signal of a dis-
placed sensor will show a similar distribution shape compared to the
original sensor position. The mean and potentially also the variance are
likely to change though.

The activity recognition system is initially trained on pre-recorded
data. When a sensor displacement occurs resulting in a reduced recog-
nition performance the calibration adapts the classifier to the changed
characteristics.

We apply the self-calibration method to one synthetic dataset in
addition to two activity recognition datasets, namely HCI gestures and
aerobic fitness activities. We use mean and variance features in a two
dimensional feature space together with a nearest centroid classifier
(NCC) as a way to simplify visualization and analysis of the systems’s
behavior.

3.2. Method description

Our method integrates in the typical activity recognition chain as a
self-calibration extension as depicted in Figure 3.1. The system can op-
erate in two settings: normal operation where the self-calibration is dis-
abled, and calibration mode with active self-calibration. As long as the
sensor remains exactly in the position used during training no calibra-
tion is necessary. If sensor displacement leads to reduced classification
performance, the calibration mode is activated (calib start cond = 1),
adapting the classifier to the changed situation. When a predefined stop
condition is fulfilled (calib stop cond = 1) the calibration is stopped
and the classifier continues in normal operation.

In calibration mode the classifier classifies the incoming feature vec-
tors x. The predicted class c̃ is used as the class label c for incremental
learning. We term c a self-label since it is generated by the classifier

3.2. Method description 21

Figure 3.1: The classification chain with additional self-calibration. This
approach differs from the standard classification chain as self-labeled
samples xc

i can be fed into the incremental learning mechanism of the
classifier.

itself. The self-calibration module receives the feature vectors xi as well
as the related self-label ci from the classifier. In the calibration process
these self-labeled samples xc

i are used to adapt the model of the clas-
sifier. The combination of feature vectors with labels provided by the
classifier enables the use of supervised incremental learning strategies
available for several classification algorithms.

We use a NCC classifier which allows for the observation of the
underlying model, namely the class centers in feature space. This assists
in explaining the adaption process behavior. For incremental learning
with the NCC classifier we adopt the learning rule typically used in
vector quantization techniques like the SOM [39] or the growing neural
gas (GNG) [76]. This learning strategy consists of the following steps:

• A data sample xi is presented and classified to class ci by the
NCC classifier

• The class center CCc
i of class c within the NCC model at time i

is moved towards the presented self-labeled sample xc
i yielding a

new class center CCc
i+1.

The amount of learning is regulated by a constant learning rate (LR)
which adjusts by how much the class center CCc

i is moved towards x.

22 Chapter 3: Unsupervised classifier self-calibration

The learning rule is:

CCc
i+1 = (1− LR) · CCc

i + LR · xc
i (3.1)

The self-calibration start condition is triggered when the sensor dis-
placement happens and subsequently the performance of the classifier
decreases. This is comparable to a user noticing degrading system per-
formance and triggering a classifier self-calibration.

The stopping criterion we use for the synthetic dataset is based
on the gradient of the Euclidean distance d0,i(CC

c
0, CC

c
i) between the

class center at time i and the class center before adaption at time 0.
We stop the calibration when the absolute mean of the gradient over
the last n calibration steps is below a preset threshold ST .

|
1

n

∑

∇(d(0,i−n), d(0,i−n+1), d(0,i−n+2), . . . , d(0,i)))| ≤ ST (3.2)

In the beginning of the adaptation process distance d(.) increases
rapidly, resulting in a high gradient. Once the adapted class center is
close to the real class center this distance only changes slightly. In this
case the gradient is small and below ST , therefore the calibration is
stopped.

In our validation on the two real-world activity datasets (Sections
3.4 and 3.5) we are limited in the number of data instances we can
use for the calibration. For these simulations we do not use the gra-
dient based stop criterion and stop the calibration when all available
instances have been presented.

3.3. Characterization on synthetic dataset

To characterize the self-calibration we perform several simulations
based on a two class problem with Gaussian distributions in a two
dimensional feature space. We are interested in the accuracy increase
by the calibration in case of a displaced sensor, and therefore displaced
class centers. The self-calibration is characterized for different distri-
bution overlaps reflected by different maximum accuracies an optimal
classifier can reach on this dataset.

Figure 3.2 shows the synthetic dataset in the feature space and the
NCC classifier adaptation process. The two 2D Gaussian distributions
of class A and B both have a variance of 1. The distributions shown
reflect the new situation, for example after a sensor displacement. Their

3.3. Characterization on synthetic dataset 23

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Feature 1

F
e
a
tu

re
 2

CC
A

0

CC
B

0

AB

CC
A

0

CC
B

0

AB

Figure 3.2: We show one specific example of how the adaptation of the
class centers can look like. The clouds represent the Gaussian distri-
butions for the classes A and B. The lines are the adaptation paths
from the learned class centers CCA

0 and CCB
0 of the initial distribu-

tion (initial sensor position) towards the new class centers of the new
distribution (displaced sensor).

overlap can be varied by changing the distance between the distribution
centers. Changing the overlap allows us to vary the maximum accuracy
an optimal classifier can achieve on these distributions. Points CCA

0

and CCB
0 in this feature space represent the ideal NCC model before

the change (sensor displacement). The figure demonstrates the paths
of the initially trained class centers moving towards the center of the
distributions during the calibration. This represents one simulation run.
Each simulation run consists of the following steps:

1. Initialization:

• Set dataset distribution overlap for an accuracy between 60-
100% of an optimal NCC classifier.

• Randomly initialize the initial class centers CCA
0 and CCB

0 .

• Calculate accuracy before calibration based on the selected
distribution means and the class centers CCA

0 and CCB
0 .

2. Self-calibration:

• Set i = 0

24 Chapter 3: Unsupervised classifier self-calibration

0.5
0.6

0.7
0.8

0.9

0.6

0.7

0.8

0.9

1
−0.1

0

0.1

0.2

0.3

0.4

Accuracy before calibrationAccuracy of optimal NCC

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 i
n
c
re

a
s
e

Figure 3.3: Average increase in accuracy for the simulated self-
calibration. We varied the distance between the initial distributions
A and B to change the accuracy an optimal NCC can reach. Further-
more the new (displaced) dsitributions were placed randamly in the
feature space, with the same distance as initially, to simulate different
accuracies before adaptation.

• Draw an instance xi randomly from the distributions and
classify it to class ci according to CCA

i and CCB
i .

• Update CCA
i and CCB

i according to the learning rule (Equa-
tion 3.1) with the learning rate set to LR = 0.01, and set
i = i+ 1.

• Repeat the previous two steps until the calibration stop cri-
terion (Equation 3.2) with n = 10 and ST = 0.005 is met.

3. Evaluation

• Calculate accuracy after calibration based on the selected
distribution means and the final class centers CCA

i and
CCB

i .

• Calculate accuracy increase = (accuracy after calibration) -
(accuracy before calibration)

In Figure 3.3 the average increase in accuracy is plotted for different
accuracies before calibration and different distribution overlaps result-

3.4. Validation on HCI scenario 25

ing in different optimal accuracies. The results are averages over 10,000
simulation runs. When accuracy before calibration is higher than 50%,
meaning better than guessing in our two class problem, there is in aver-
age an increase in accuracy for the calibrated classifier. The higher the
accuracy before calibration is, the lower the room for improvement and
therefore the increase in accuracy. The lower the distribution overlap,
and the higher the accuracy an optimal classifier can achieve, the higher
the expected increase in accuracy. For high distribution overlaps, and
a close to optimal initial classifier, the expected improvement by the
self-calibration is slightly negative. It is a surprising result that with
an imperfect self-labeling by the initial classifier a better calibrated
classifier can be achieved.

In an actual activity recognition scenario more classes have to be
distinguished and their distributions are usually not Gaussian. We in-
vestigate this case in the following sections.

3.4. Validation on HCI scenario

We characterize our approach on a gesture based human computer in-
terface scenario. The activity classes are arm gestures describing five
geometric structures: a triangle, an upside-down triangle, a circle, a
square and an infinity symbol.

As the focus is on sensor displacement we aim to minimize the
variability induced by the subject. In order to achieve this we cut out
a template of each shape from a Styrofoam plate. The subject must
move their hand alongside these templates, effectively guiding their
movements.

In order to capture the gestures we attached six USB acceleration
sensors to the right forearm of the subject. We roughly aligned them
to minimize rotational variation. The sensors were all calibrated and
verified before the experiment. For each of the five gestures we recorded
50 repetitions. The duration of each recorded gesture is between five
and eight seconds.

Several typical features were extracted from the acceleration signal.
We chose to use only mean and variance features calculated on the
acceleration signal y-axis. The two dimensional feature set provides
sufficient discriminative power and allows for good visualization of the
feature space. This is helpful to analyze the calibration mechanism.

3.4. Validation on HCI scenario 27

S
e
n
s
o
r

p
o
s
it
io

n
 f
o
r

tr
a
in

in
g
 (

u
)

Sensor position for testing (v)

0.88

0.72

0.24

0.71

0.66

0.20

0.72

0.87

0.42

0.73

0.81

0.21

0.37

0.55

0.86

0.41

0.47

0.45

0.74

0.83

0.30

0.84

0.76

0.20

0.73

0.83

0.48

0.67

0.83

0.22

0.21

0.23

0.42

0.21

0.24

0.83

A
c
c
u
ra

c
y

1 2 3 4 5 6

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

Figure 3.5: Accuracies for training a classifier on sensor position u and
testing on position v

−200 0 200

200

250

300

350

Sensor position 2

Mean

V
a
ri
a
n
c
e

−200 0 200

200

250

300

350

Sensor position 3

Mean

V
a
ri
a
n
c
e

−200 0 200

200

250

300

350

Sensor position 4

Mean

V
a
ri
a
n
c
e

Figure 3.6: Feature spaces for the sensor positions 2, 3 and 4. The
feature spaces of sensor positions 2 and 4 are more similar compared
to positions 2 and 3. This explains the differences in the classification
accuracies when training on position 2 and testing on positions 3 and
4.

3.4.2. With self-calibration

We calibrate the classifiers trained on the data from sensor position u
by using a subset of the data obtained from sensor position v. After the
calibration the classifier is tested on the remainder of the data obtained

28 Chapter 3: Unsupervised classifier self-calibration

v = u |v − u| = 1 |v − u| > 1
mean std mean std mean std

HCI dataset:

before calib. 84.9 2.1 50.0 21.0 48.7 24.4
after calib. 82.4 2.0 63.5 19.8 59.4 22.5

rel. imp. -2.9 1.2 33.3 25.6 31.1 30.2

Full fitness dataset:

before calib. 83.0 5.7 65.7 4.1 42.0 9.1
after calib. 82.8 5.9 74.4 9.9 49.5 9.4

rel. imp. -0.2 1.8 13.4 14.8 20.5 23.1

Reduced fitness dataset:

before calib. 95.1 3.4 89.4 4.8 67.3 9.5
after calib. 95.4 3.6 95.8 3.6 69.8 10.8

rel. imp. 0.4 4.0 7.2 5.1 4.1 12.6

Table 3.1: Accuracies (in %) before calibration, after calibration and the
relative improvement by the calibration. The improvement is relative
to the accuracy before calibration. v denotes the sensor position before,
and u after the change.

from sensor position v. A three fold cross calibration is applied, using
two folds to calibrate the classifier and one fold to test it on the new
sensor position. The data samples used for the calibration are selected
randomly from all classes and are not presented in any specific order.

The calibration results of all sensor displacement combinations and
folds are plotted in Figure 3.7. The accuracies of the classifiers after the
calibration are plotted against the accuracies of the initial classifiers.
The points above the diagonal line are the cases where the calibration
improved the classifier. The points below the line are the cases where
the calibration deteriorated the classifier. For sensor positions where
the accuracy before calibration is already > 80% (e.g. v = u) the cali-
bration is only beneficial for half of the cases. This is according to our
simulation results on the synthetic dataset where an already close to
optimal classifier was likely to be worsened by the calibration. When
the class centers CCc

0 in the NCC model are already optimal it is likely

3.5. Validation on fitness scenario 29

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy before calibration

A
c
c
u
ra

c
y
 a

ft
e
r

c
a
lib

ra
ti
o
n

Figure 3.7: This plot shows the accuracies before calibration against
the accuracies after calibration for the HCI dataset. Each * marks one
sensor displacement combination, for example training on u = 1 and
testing on v = 2. With six sensor positions 72 sensor displacement com-
binations are possible, including calibration on the undisplaced sensor.
The vertical bars show mean and std in the according bins.

that the calibration slightly changes them, resulting in a worse classifi-
cation. The cases where the calibration is beneficial outranges the cases
where it is not. A summary of the results is listed in Table 3.1.

3.5. Validation on fitness scenario

In addition to the HCI scenario we validate our approach on an aerobic
fitness scenario.

We recorded the acceleration of the left leg for six different typical
aerobic movements shown in Figure 3.8. For this purpose we placed ten
bluetooth acceleration sensors at the subject’s leg, five on the lower leg
and five on the thigh, as depicted in figure 3.4. We placed the sensors
equidistantly and with the same orientation as we focus on translational
displacement. The sensors were all calibrated and verified before the
experiment.

For the recordings an experienced subject copied the movements an
aerobic instructor performed in a video. The video, containing all six

30 Chapter 3: Unsupervised classifier self-calibration

classes in equal shares, had a duration of 4:22 minutes and was repeated
five times.

Figure 3.8: The fitness scenario includes 6 classes: (1) flick kicks, (2)
knee lifts, (3) jumping jacks, (4) superman jumps, (5) high knee runs,
(6) feet back runs. For each class, the extent of the body movements is
shown on two example pictures.

For the data of each sensor we calculat the acceleration magnitude
and extract mean and variance features based on a sliding window of
eight seconds with two thirds overlap. The resulting two dimensional
feature space for each sensor position is depicted in Figure 3.9. We

3.5. Validation on fitness scenario 31

observe that directly adjacent sensor positions show less difference in
feature space than sensor positions which are further apart. There is
also less similarity between sensor positions 5 and 6, despite being adja-
cent, as they are on different limb segments. For the positions (4,5,7-10)
we can observe overlaps between the classes “flick kicks” and “high knee
runs”. There are also overlaps between the classes “jumping jacks” and
“sumperman jumps” for all sensor positions.

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 1

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 2

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 3

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 4

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 5

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 6

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 7

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 8

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 9

1.5 2.0 2.5
0.5

1.0

1.5
Sensor 10

Mean

V
a

ri
a

n
c
e

Figure 3.9: Feature space of the fitness dataset for each of the 10 sensors

The feature spaces of sensors placed on different limb segments are
too different for succesful calibration. Therefore we focus solely on sen-
sor displacements on the same limb segment. Since the results we ob-
tained for the lower leg and the thigh are similar, we will detail only
sensor displacements on the lower leg.

We train on sensor position v and test on all five sensors positions
u in order to simulate a sensor displacement on the lower leg. The
accuracies obtained when training a classifier on one sensor location
and testing it on the same (v = u) is in average 83.0%. If we test on
the direct neighboring sensors |v − u| = 1 the average accuracy drops
to 65.7%. If we test on sensor positions which are even further apart

32 Chapter 3: Unsupervised classifier self-calibration

(|v − u| > 1) the accuracy of the classifiers trained on u decreases to
42.0%.

We apply the classifier self-calibration described in Section 3.2 to
the displaced sensors in a similar manner as described in Section 3.4.
The accuracies after calibration versus the accuracies before calibration
are plotted in Figure 3.10 for all sensor combinations and folds.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy before calibration

A
c
c
u
ra

c
y
 a

ft
e
r

c
a
lib

ra
ti
o
n

Figure 3.10: This plot shows the accuracies before calibration against
the accuracies after calibration for the fitness dataset. Each * marks
one sensor displacement combination, for example training on u = 1
and testing on v = 2. With five sensor positions 50 sensor displacement
combinations are possible, including calibration on the undisplaced sen-
sor. The vertical bars show mean and std in the according bins.

The calibration of classifiers operated on displaced sensor positions
on the lower leg is beneficial in most of the cases. Classifiers with a
close to optimal initial accuracy (in this case above 70%) are less likely
to be improved through self-calibration.

The simulations in Section 3.3 show that the expected improvement
of the self-calibration increases when there is a better class separation
and therefore a higher accuracy of an optimal classifier. To validate this
finding we remove the two overlapping classes (1 and 3) from the fit-
tness dataset and evaluate the self-calibration on the resulting reduced
fittness dataset.

In Figure 3.11 we show two examples of the calibration dynamics.
In the first case we apply the calibration to the fitness dataset. For class

3.5. Validation on fitness scenario 33

4 the calibrated class centers do not end up close to the optimal class
center. This is a typical case where less class separation confuses the
self-calibration and only one class center, here that of class 3, benefits.
For the reduced fitness dataset the class center of class 4 ends up closer
to the optimal class center.

1200 1400 1600 1800 2000 2200 2400
600

700

800

900

1000

1100

1200

1300

Mean

V
a

ri
a

n
c
e

Full fitness dataset

1

2 3
4

5

6

1200 1400 1600 1800 2000 2200 2400
600

700

800

900

1000

1100

1200

1300

Mean

V
a

ri
a

n
c
e

Reduced fitness dataset

2

4

5

6

Figure 3.11: Adaptation paths of the class centers during calibration
on the full (top) and the reduced (bottom) fitness dataset. The NCC
classifier is initially trained on sensor position 1 and calibrated on sen-
sor position 2. The numbers in the plots indicate the different classes
aligned to Figure 3.9.

For both, the reduced and the full fitness datasets, we see that some
class centers (e.g. class 6) end up quite distant from the optimal class
centers even though their paths seem to lead directly to the optimum.
This indicates that we did not use enough instances for the calibration
to reach the optimal class centers.

The accuracies obtained when training a classifier on one body lo-
cation and testing it on the same location (v = u) reach an average of
95.1% with the reduced dataset. If we test on the direct neighboring
sensors |v − u| = 1 the average accuracy drops to 89.4%. If we test on
sensor positions which are even more distant (|v − u| > 1) the average
accuracy of the classifiers decreases to 67.3%. In the case of the reduced

34 Chapter 3: Unsupervised classifier self-calibration

dataset the sensor displacement has less influence on the accuracies of
classifiers working on displaced sensors, compared to the full dataset.

The accuracies after calibration against the accuracies before cali-
bration, for the reduced fitness dataset, are plotted in Figure 3.12. In
this case the classifiers with an accuracy before calibration greater than
80% are likely to improve to an accuracy after calibration of greater
than 90%. The classifiers with an accuracy before calibration of less
than 80% are less likely to be improved by the self-calibration. The
ones which benefit from the calibration improve only to 75%. This is
because the classifier improves for three of the four classes, sacrificing
one class. A detailed summary of all results is given in Table 3.1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy before calibration

A
c
c
u
ra

c
y
 a

ft
e
r

c
a
lib

ra
ti
o
n

Figure 3.12: This plot shows the accuracies before calibration against
the accuracies after calibration for the reduced fitness dataset. Each
* marks one sensor displacement combination, for example training
on u = 1 and testing on v = 2. With five sensor positions 50 sen-
sor displacement combinations are possible, including calibration on
the undisplaced sensor. The vertical bars show mean and std in the
according bins.

3.6. Discussion

The unsupervised classifier self-calibration method presented in this
chapter allows for the adaptation of a classifier to a new sensor posi-
tion. The validation on two scenarios, namely HCI gesture recognition

3.6. Discussion 35

and fitness aerobic activity recognition, has shown improvements in
the classification accuracy by 33.3% and 13.4%, in case of a slightly
displaced sensor (|v − u| = 1).

The validation is based on mean and variance features which are
affected by sensor displacement. Other features might be less position
dependent and reduce the influence of sensor displacement.

Currently the calibration procedure has to be started when there is
a decrease in classification performance, e.g. from sensor displacement.
The displacement itself does not have to be explicitly detected. In many
applications the calibration start may be a manual trigger by the user.
There could also be a first time use calibration mechanism, for example
after attachment to the body. Change detection algorithms [77, 78] may
eventually trigger calibration automatically.

From our experiments on synthetic and real-world datasets we have
seen that our approach is more effective when there is minimal confu-
sion between classes. The calibration is likely to worsen the classifiers
in cases where there is a high confusion between classes. The amount of
sensor displacement also has an influence on the calibration. In many
cases the calibration of less displaced sensors leads to better results
compared to highly displaced sensors. This is related to the class overlap
mentioned. In particular for different body segments the self-calibration
was not beneficial due to highly different class distributions in the fea-
ture space. It also has to be noted that the calibration in average leads
to an improved classification. However this improvement can not be
guaranteed for individual cases.

Our approach operates as an add-on to the typical classification
chain and should not be restricted to the NCC classification algorithm,
so long as incremental learning is supported. For example a k-Nearest-
Neighbor classifier could potentially be used instead of the NCC since it
supports incremental learning by nature. Other classification methods,
like the Support Vector Machine or Hidden Markov Models have also
been extended for incremental learning [41, 42, 43]. The behavior of
these methods in combination with the self-calibration has yet to be
evaluated though. In addition, our approach is potentially applicable
to different sensor modalities or other sources of variability.

36 Chapter 3: Unsupervised classifier self-calibration

4
Classifier adaptation

based on error

feedback

In this chapter we present two approaches for classifier
adaptation based on error feedback. The first is an improved
incremental kNN classifier with two learning modes, one for
error- and one for correct-learning. The second approach
is based on RL where the error feedback is translated into
a reward signal. Both approaches are evaluated on a real
world gesture recognition dataset. Furthermore we validate
our findings for the RL approach in an adaptive online ges-
ture recognition case study.

38 Chapter 4: Classifier adaptation based on error feedback

4.1. Introduction

The unsupervised self-calibration method described in Chapter 3 does
not take the user’s intention into account. Therefore it can not be guar-
anteed that the adapted classifier performs better, according to the
user’s expectation. In this chapter we address this drawback and focus
on a specific type of supervision, namely error feedback, given by the
user. We investigate the learning and adaptation towards a new user
within a gesture recognition scenario.

We assume that the users can become aware of the system’s recog-
nition result for each input gesture, directly after the gesture is per-
formed. They can therefore compare their intended gesture command
with the recognition results, and identify recognition errors.

A feedback given by the user about recognition errors can be trans-
lated into a correct/error (CE) teacher signal, indicating for each ges-
ture or activity if the recognition result was correct or wrong. If the user
indicates an error after the recognition of a certain instance, an error
signal is generated. If no error is indicated a correct signal is generated.

The user can indicate recognition errors to the system via a
user→system feedback channel. In our case the feedback input can be
generated by a simple button, pushed whenever an error is perceived.
Compared to ground truth feedback this is less obtrusive since the ac-
tual class label doesn’t have to be communicated. This is especially true
in applications where many different classes have to be distinguished,
as more sophisticated input mechanisms, e.g. a full keyboard, would be
required.

Another advantage of the error feedback is that interaction is only
required from the user in the error case. When no error feedback is
given by the user it is assumed that the recognition was correct. Once
the system has adapted and reached reasonable performance only little
interaction will be required from the user.

There are also other possibilities to capture the error information
from the user without explicit interaction. Implicit interaction could
occur through physiological signals like heart rate, electrodermal activ-
ity or brain waves. It has been shown that changes in the heart rate or
the electrodermal activity of a person are linked to stress and emotions
[79, 80, 81]. Stress symptoms or specific emotions could be triggered
particularly when using a system that makes errors and does not react
in the way the user expects it. In electroencephalography (EEG) signals
that capture brain activity, typical patterns linked to errors have been

4.2. Incremental kNN using CE signal for classifier adaptation 39

identified. These patterns have been observed both for users making
the errors, as well as for users affected by a system making errors [82].
In Chapter 5 we investigate this option in more detail.

4.2. Incremental kNN using CE signal for classifier

adaptation

kNN classifier

incremental
learning

x c~

s

t t

t

Ct

c~tx t st

Figure 4.1: An instance xt is classified by Ct to prediction c̃t. The
instance xt together with the prediction c̃t and the teacher signal st
are used for incremental learning.

In Figure 4.1 we show the principle of our teacher based kNN learn-
ing. An instance xt is fed into the classifier Ct and classified to predic-
tion c̃t. For each classification result we get the according teacher signal
st. The instance xt together with the prediction c̃t and the teacher sig-
nal st are used for incremental learning the classifier Ct, resulting in an
adapted classifier Ct+1.

The typically incremental learning kNN classifier requires ground
truth supervision for learning. In this section we extend such a classifier
to support learning with a supervising CE teacher signal st and evaluate
it on a gesture recognition dataset.

We assume the following learning scenario. Initially the recognition
system is trained on prerecorded training data from different potential
users. After this initialization phase the system is deployed to a new,
so far unseen user for operation (no data of this new user is contained
in the training data). It is assumed that this new user will behave in
a similar way as captured in the training data. The recognition system
is therefore assumed to have a performance better than guessing, but
lower than if it was specifically trained for this user [13]. To adapt the
pre-trained classifier to the new user we perform incremental learning
guided by a CE teacher signal.

40 Chapter 4: Classifier adaptation based on error feedback

4.2.1. Incremental learning kNN classifier

We use a weighted kNN classifier [83] where a weight is assigned to
every data point in the classifier model. The kNN classifier Ct valid at
time t consists of a model Mc,t for each class c.

Ct = {M1,t,M2,t,M3,t, ...} (4.1)

Each modelMc,t consists of data points which are represented by tuples
mapping a feature vector fi of weight wi,t to class c.

Mc,t = {(f1, w1,t, c), (f2, w2,t, c), (f3, w3,t, c), ...} (4.2)

When training the classifier in non-incremental mode, all weights
(wi,t=0) of the added feature vector fi are set to 1.

For the classification of new instances xt the weights (wi,t) of the k
nearest neighbors (NN), belonging to the same class, are summed up
to the sum of weights (SWc).

SWc =
∑

i

wi,t ∀ NNi of class c (4.3)

The resulting prediction is

c̃ = argmax
c

(SWc) (4.4)

We extend the kNN learning to support learning from the CE
teacher signal st. For each labeled training instance this signal has
one of the following two states:

• correct : We assume the class prediction c̃t of this instance is cor-
rect and corresponds to the ground truth

• error : We assume the class prediction c̃t of this instance is incor-
rect and differs from the ground truth

Our kNN learning strategy comprises of two learning processes -
one for instances xt where st = correct and one for instances xt where
st = error.

To learn a correct instance xt the feature vector f of this instance
is added to the classifier model together with a weight wi,t = 1 and
the class label c̃t. The weights of the l neighboring data points, which
are of the same class as the learned instance, are increased according

4.2. Incremental kNN using CE signal for classifier adaptation 41

Algorithm 1 correct learning of instance xt with label c̃t

1: add (xt, 1, c̃t) to Mc,t

2: find the l NN of ft within Ct

3: for each found NN j do

4: if cj = c̃t then

5: wj,t+1 = Winc(wj,t)
6: end if

7: end for

to the weight adjustment function Winc. The correct learning strategy
is outlined in Algorithm 1.

When learning from error instances the actual ground truth class is
not known. It is known however, that the ground truth is different from
the predicted class label c̃t. We exploit this information in our error
learning strategy. We find the l data points in the classifier model, which
are neighbors of the instance xt to learn. The weights of the neighboring
points, which are of the error class c̃t, are decreased according to the
weight adjustment function Wdec. Data points with a weight below
a fixed removal threshold κ are removed from the classifier models, as
they contribute only marginally to the classification result, but increase
the computational complexity. The error learning strategy is outlined
in Algorithm 2.

Algorithm 2 error learning of instance xt with label c̃t
1: find the l NN of xt within Ct

2: for each found NN j do

3: if cj = c̃t then

4: wj,t+1 = Wdec(wj,t)
5: end if

6: end for

7: for each (fm, wm,t, c) in Ct do

8: if wm,t < κ then

9: remove (fm, wm,t, c) from Ct

10: end if

11: end for

The weight adjustment functions (see figure 4.2) were chosen as
follows:

Winc(wi,t) = −
(wi,t − 2)2

2
+ 2; Wdec(wi,t) =

w2
i,t

2
(4.5)

The concave and convex shape control the weight increase and de-
crease. Weights are limited (wi,t ∈ [0, 2]) to prevent single instances

42 Chapter 4: Classifier adaptation based on error feedback

0 0.5 1 1.5 2
0

1

2

w
i,t+1

 = W
inc

(w
i,t

)

w
i,t

w
i,
t+

1

0 0.5 1 1.5 2
0

1

2

w
i,t+1

 = W
dec

(w
i,t

)

w
i,t

w
i,
t+

1

Figure 4.2: Weight adjustment functions Winc and Wdec, used to in-
crease and decrease the weights of the neighboring instances.

biasing the classification. The quadradic functions affect low weight
values (wi,t < 1) more than high weight values (wi,t > 1). When the
classifier has been operated in a stationary condition the weights in the
classifier model will be high (wi,t ∼ 2). In this case the classifier model
is more stable compared to a situation where the weights are small
(wi,t << 2), but will also take longer to adapt to a non-stationarity.

Due to the incremental learning the number of data points in the
classifier models are not constant. On one hand this could lead to con-
tinuous growth of the number of data points and increasing memory
requirements. On the other hand continuous removal of data points
could lead to a classifier model containing no information. We subse-
quently add several extensions to the kNN classifier to cope with the
variable number of data points in the model during learning and clas-
sification.

To prevent a bias towards one class in the classification the sum of
weights over all data points within the models Mc,t of class c should
be similar. An equalization mechanism stops learning, when the sum of
weights of class c (

∑

wMc,t) differs by α ∈ [0, 1] from the mean between
the highest (maxK(

∑

wMK,t)) and the lowest (minK(
∑

wMK,t)) sum
of weights of all classes K.

The correct learning for a specific class c is stopped if the following
condition is fulfilled:

∑

w

Mc,t >
1

2
(maxK(

∑

w

MK,t) +minK(
∑

w

MK,t)) · (1 + α) (4.6)

The error learning for a specific class c is stopped if the following

4.2. Incremental kNN using CE signal for classifier adaptation 43

condition is fulfilled:

∑

w

Mc,t <
1

2
(maxK(

∑

w

MK,t) +minK(
∑

w

MK,t)) · (1− α) (4.7)

We also stop the error learning for class c when the number of data
points present in its model (#Mc,t) reaches an absolute lower limit δ:

#Mc,t ≤ δ (4.8)

The number k of NN to take into account for the classification of
new instances is defining the neighborhood radius within the feature
space. With a constant k this radius changes when the number of data
points in the classifier model changes. The radius is kept constant by
adapting k at every time step depending on the number of data points
in the classifier model. We define k as the number of points being the
fraction R ∈ [0, 1] of all data points in the classifier model:

kt = R ·#Ct (4.9)

With #Ct denoting the number of all data points within the classifier
model at time t.

Similarly the radius for learning, defined by l, depends on the num-
ber of points in the classifier model. To keep the learning radius con-
stant we define a learning rate LR ∈ [0, 1] from which l is calculated
at every time step as follows:

lt = LR ·#Ct (4.10)

4.2.2. Characterization on artificial dataset

We characterize our incremental kNN learning based on simulations
using an artificial dataset. In an initial training phase, all training in-
stances x from an initial training set are added to the kNN classifier
model, with weight wi,0 = 1. Each new instance xt is then classified
and the prediction c̃t together with the teacher signal st are used for
learning. We generate the CE teacher signal st by comparing the re-
sult of the online classification to the ground truth. If the prediction
c̃t matches ground truth, then st = correct - otherwise st = error is
generated.

44 Chapter 4: Classifier adaptation based on error feedback

−5 0 5
−6

−4

−2

0

2

4

6

d

d

dd

feature 1

fe
a

tu
re

 2

−5 0 5
−6

−4

−2

0

2

4

6

feature 1

β

fe
a

tu
re

 2

Figure 4.3: Artificial dataset consisting of four classes. Each class is rep-
resented by a two dimensional Gaussian distribution with the centers
placed at the corners of a square. Left plot: the class overlap and there-
fore the optimally achievable classification accuracy can be adjusted
by changing the class distance d. Right plot: The distributions can be
rotated by an angle β to simulate a non-stationarity.

Artificial dataset generation

The artificial dataset we generate (Figure 4.3) allows us to characterize
the behavior of our learning algorithm in case of a non-stationarity in
the input data. It consists of four classes, each represented by a two
dimensional Gaussian distribution with a diagonal covariance matrix

Σ =

[

1 0
0 1

]

. The distribution centers for each class are placed at the

edges of a square with side length d. This distance between classes is
used to adjust the class overlap, and therefore the maximum accuracy
an optimal classifier can achieve. To simulate a non-stationarity as it
could appear e.g. at a sensor position change, we introduce an angle β
by which the dataset can be rotated.

The distributions are sampled with an equal number of samples per
class.

We generate three datasets with different parameters. The initial
training set is used to train the initial classifier Ct=0. A non-stationarity
is simulated by a rotation of the data by angle βadapt in the adaptation
set. The performance of the adapted classifier Ct is evaluated on the
adaptation test set. The parameters d and β are changed according to
the intended analysis. A summary of the generated datasets is provided
in Table 4.1

4.2. Incremental kNN using CE signal for classifier adaptation 45

dataset d β in ◦ # samples
initial train set dsim 0 100
adaptation set dsim βadapt 1000

adaptation test set dsim βadapt 800

Table 4.1: Summary of the generated artificial datasets with the ac-
cording parameters.

Influence of initial accuracy

In our learning scenario according to Figure 4.1 each instance xt is
classified to prediction c̃t before it is used for incremental learning. If
the prediction is according to the ground truth the teacher signal will be
correct and correct learning will be applied (Algorithm 1). In case of a
wrong prediction the teacher signal will be error and error learning will
be applied (Algorithm 2). The performance of the classifier Ct therefore
has a direct influence on the classifier learning.

For our simulations we empirically select the following learning and
classification parameters relevant for Algorithms 1 and 2, and Equa-
tions 4.6 - 4.10:

R = 0.05 κ = 0.1 α = 0.1 LR = 0.05 δ = 13

In Figure 4.4 we show the adaptation of the classifier for βadapt of 30
◦,

50◦ and 70◦. We chose dsim = 3.95 which results in a good separa-
tion between classes. The initial accuracies of classifier Ct=0 tested on
the adaptation test sets are 75.0% (30◦), 36.9% (50◦) and 11.1% (70◦)
respectively. These are the accuracies before the adaptation is started.
The simulation of the upper-bound accuracy (ub acc) the adapted clas-
sifier can reach resulted in 94.3% (determined by training a kNN clas-
sifier on the adaptation set and testing it on the adaptation test set).

In all three cases of βadapt the adapted classifiers reach the upper-
bound accuracy. The lower the initial accuracy for Ct=0, the longer
the adaptation takes. During the adaptation phase, when the classifier
is still improving, the number of data points in the model, as well as
the weights, remain nearly constant. This indicates that the increase
of weights, and the addition of new data points, are at similar levels
as the decrease of weights and the removal of data points. When the
performance of the adapted classifier gets close to the upper-bound

46 Chapter 4: Classifier adaptation based on error feedback

0 500 1000
0

50

100

β
adapt

 = 30°
a

c
c
 i
n

 %

0 500 1000
0

50

100

β
adapt

 = 50°

adapted acc

init acc

ub acc

0 500 1000
0

50

100

β
adapt

 = 70°

0 500 1000
0

1000

2000

t

#
 d

a
ta

 p
o

in
ts

0 500 1000
0

1000

2000

0 500 1000
0

1000

2000

t
0 500 1000

0

1000

2000

0 500 1000
0

1000

2000

t

0 500 1000
0

1000

2000

w
e

ig
h

t
s
u

m

data points

weight sum

Figure 4.4: Top Row: Accuracy increase of the adapted classifier over
sample index t for dsim = 3.95 and three different βadapt. The esti-
mates of the initial accuracy (init acc) and the upper-bound accuracy
(ub acc) are given as baselines. The indexes where the performance
of the adapted classifier reaches 90% of the upper-bound accuracy are
marked with a vertical line. The lower the initial accuracy the longer
the learning takes to reach 90% of the upper-bound accuracy. Bottom
Row: Number of data points in the kNN model as well as the sum of
weights (

∑

wMc,t) combined for all classes c over index t. Both values
remain nearly constant until the performance of the adapted classifier
is close to the upper-bound accuracy. Afterwards the number of points,
as well as the sum of weights, increase, because the correct learning
dominates.

accuracy the correct learning dominates and the number of data points
in the model, as well as their weights, increase.

In Figure 4.5 we show the simulation results when the class sep-
aration is inferior (dsim = 1.85). The initial accuracies in this case
are 56.3% (30◦), 40.8% (50◦) and 27.3% (70◦) respectively. The upper-
bound accuracy in this case is 64.3%. The general behavior is similar to
the one shown in Figure 4.4, with the adaptation being faster when the
initial accuracy is higher. However, the increase rate of data points and
weights in the model is lower. This is caused by the lower upper-bound
accuracy which makes correct and error learning more even as more
error instances are generated.

4.2. Incremental kNN using CE signal for classifier adaptation 47

0 500 1000
0

50

100

β
adapt

 = 30°
a

c
c
 i
n

 %

0 500 1000
0

50

100

β
adapt

 = 50°

adapted acc

init acc

ub acc

0 500 1000
0

50

100

β
adapt

 = 70°

0 500 1000
0

1000

2000

t

#
 d

a
ta

 p
o

in
ts

0 500 1000
0

1000

2000

0 500 1000
0

1000

2000

t
0 500 1000

0

1000

2000

0 500 1000
0

1000

2000

t

0 500 1000
0

1000

2000

w
e

ig
h

t
s
u

m

data points

weight sum

Figure 4.5: Similar to Figure 4.4 we show the results for dsim = 1.85.
The lower the initial accuracy, the longer the adaptation takes to reach
the upper-bound accuracy. The increase in the number of data points
and the sum of weights is slower compared to Figure 4.4 as more error
learning is present.

Influence of learning rate

The learning rate is an important parameter in any adaptive learning
application. A high learning rate allows for a fast adaptation to a non-
stationarity but comes at the cost of a higher sensitivity to noise. A low
learning rate is makes the learning more robust to noise but also reduces
plasticity. In the following we investigate the effect of the learning rate
LR (see Equation 4.10) on our incremental learning kNN approach.

In figure 4.6 we show the adaptation of the classifier for three differ-
ent LR values, namely 0.005, 0.1 and 0.4. The other learning parameters
are:

R = 0.05 κ = 0.1 α = 0.1 δ = 13

The simulation datasets are configured with dsim = 3.85 and βadapt =
70◦.

A higher learning rate, e.g. LR = 0.1 compared to LR = 0.005,
leads to a faster increase of the weights. This leads to a faster learning
so that the upper-bound accuracy is reached earlier. The change of the
number of data points in the classifier model is also affected by the
learning rate. With a higher LR the weights of more data points are
adjusted.

48 Chapter 4: Classifier adaptation based on error feedback

0 500 1000
0

50

100

LR = 0.005
a

c
c
 i
n

 %

0 500 1000
0

50

100

LR = 0.1

adapted acc

init acc

max acc

0 500 1000
0

50

100

LR = 0.4

0 500 1000
0

1000

2000

t

#
 d

a
ta

 p
o

in
ts

0 500 1000
0

1000

2000

0 500 1000
0

1000

2000

t
0 500 1000

0

1000

2000

0 500 1000
0

1000

2000

t

0 500 1000
0

1000

2000

w
e

ig
h

t
s
u

m

data points

weight sum

Figure 4.6: The plots illustrate the effect of the learning rate LR on the
adaptation. The dataset is configured with dsim = 3.85 and βadapt =
70◦. A higher learning rate LR makes the classifier more plastic and
allows for faster learning (compare LR = 0.005 and LR = 0.1). This
is also reflected by a stronger increase in the sum of weights when
the learning rate is higher. Faster learning comes at a cost of stability
though, as a too high learning rate leads to catastrophic forgetting (see
LR = 0.4).

A high learning rate, e.g. LR = 0.4 in this case, results in a poor
adaptation, with the adapted accuracy not reaching the upper-bound.
This is due to a decrease of the number of data points in the classifier
model due to error learning. This may eventually lead to the loss of
one class, which can be seen as catastrophic forgetting. The inability
to recognize one class leads to only error learning for this class and
therefore a continuous removal of points until the balancing mechanism
(Equation 4.8) stops the learning. In such a case the learning is never
reactivated since no data points can be added for this class.

Our simulations have shown that the stability of the learning is
not only affected by the learning rate but also depends on the initial
accuracy, the number of points in the classifier model and the parame-
ters of the equalization method. The higher the initial accuracy is, the
less error learning is performed which reduces the risk of catastrophic
forgetting. The more points a classifier model has, the more have to
be forgotten before the result is catastrophic. This leads to a higher
stability. The parameters of the equalization method (Equations 4.6,
4.7 and 4.8) regulate when the learning is stopped. The more conserva-

4.2. Incremental kNN using CE signal for classifier adaptation 49

tively these parameters are chosen (i.e. the more balanced the number
of data points for each class is, with large δ and small α), the more
stable the learning is. The downside of this however, is that it may
delay the learning.

Comparison to learning from ground truth

We compare our learning approach combining correct and error learn-
ing from a CE teacher with correct learning from a ground truth
teacher. In Figure 4.7 we show the according learning curves for
βadapt = 50◦ with the following learning parameters:

R = 0.08 κ = 0.1 α = 0.02 LR = 0.01 δ = 15

0 200 400 600 800 1000
0

20

40

60

80

100

a
c
c
 i
n
 %

t

correct+error

ground truth

init acc

ub acc

Figure 4.7: Comparison between learning from the CE teacher with cor-
rect and error learning and the ground truth teacher with only correct
learning on the artificial dataset with βadapt = 50◦. Both variants con-
verge to the estimated upper bound. The learning from the CE teacher
allows for a faster convergence compared to the ground truth learning.

The combination of correct and error learning based on the CE teacher
outperforms the correct only learning with ground truth in terms of
learning speed. This can be explained through the error learning, which
allows the active removal of those data points from the model, leading to
misclassifications. Removal of data points with the correct only learning
is not possible.

50 Chapter 4: Classifier adaptation based on error feedback

4.2.3. Validation on gesture recognition dataset

We validate our approach on a hand gesture dataset (see Section 5.3 for
details of the recording setup). We simulate a new-user scenario, where
the pretrained gesture recognition system is adapted to a new user. The
dataset consists of five different hand gestures (c = 1..5) performed by
seven subjects in a human computer interface scenario. The recognition
is based on gesture instances (xt) containing six features calculated
from the segmented hand acceleration (refer to Section 5.5.1 for details
on the dataset preprocessing).

We generate an initial train set containing 480 gestures selected
randomly from six of the seven subjects, equally distributed over all
classes. The adaptation set and the adaptation test set are generated
from the left out subject containing 2240 and 500 gestures respectively.

The simulations are performed in the same way as described in sec-
tion 4.2.2. Each simulation is repeated 20 times with different dataset
permutations to eliminate the influence of a specific instance order. The
learning parameters were empirically chosen as follows:

R = 0.02 κ = 0.1 α = 0.4 LR = 0.002 δ = 48

The results, averaged over all subjects and all dataset permutations,
are shown in Figure 4.8. In this case the incremental learning based on
the CE teacher performs worse than the learning from ground truth.
The estimated upper bound accuracy of 87.2% is not reached. This
could be caused by certain classes being less good recognizable, and
therefore also harder to learn since less correct instances are available
for these classes. Nevertheless the accuracy is increased by 14.4% over
the subject independent baseline of 72.1%, reaching 82.5%.

4.2.4. Discussion

With the presented incremental online kNN learning method it is pos-
sible to adapt a pretrained classifier to new input data characteristics
based on a CE teacher. The validation on a real world gesture recog-
nition dataset has shown the effectiveness of our approach. In average
the adaptation through online learning from the CE teacher increased
the accuracy by 10.3% over the subject independent baseline of 68.3%.

It has to be noted though, that our method is sensitive to the or-
der of the input samples. Incrementally learning the classifier with a
different order of the same instances will result in a slightly different
classifier.

4.2. Incremental kNN using CE signal for classifier adaptation 51

0 500 1000 1500 2000 2500
50

60

70

80

90

100

a
c
c
 i
n
 %

t

correct+error

ground truth

init acc

ub acc

Figure 4.8: Learning from a CE teacher and from ground truth on
the real world gesture dataset. With learning from the CE teacher the
accuracy is improved by 14.4% over the initial subject independent
accuracy. The increase is less compared to learning from ground truth
and the estimated upper bound is not reached.

The number of data points in the classifier model continuously in-
creases during the learning when the teacher provides more correct than
error signals. This is likely to happen in recognition tasks with good
class separation and therefore a high upper-bound accuracy. A mecha-
nism which limits the correct learning, when enough data points are in
the classifier model, would reduce the memory requirements, and make
our approach applicable for life-long learning.

We propose quadratic weight adjustment functions designed to limit
the weights to the range [0, 2]. This ensures a good stability-plasticity
tradeoff and also showed good results on the dataset used. Other weight
adjustment functions, e.g. exponential or linear, or altering the possible
range of the weights, can change the learning behavior.

The teacher signal we simulated for the evaluation of our approach is
free of errors. An imperfect teacher signal will affect the learning speed
and the stability of the approach. In applications with a potentially
imperfect teacher this should be taken into consideration.

52 Chapter 4: Classifier adaptation based on error feedback

4.3. Reinforcing a recognition system using negative

rewards

RL is a machine learning principle based on rewards received from
the environment. It is a bio-inspired approach related to the learning
behavior of animals [54]. In this section the typical RL terminology is
used which we map to our context in the following way:

• State (S): Activity instance represented by a feature vector cal-
culated from motion signals

• Agent: Activity recognition system

• Action (a):Output action related to the recognized activity class

• Reward (r): RL specific supervision signal, for example ex-
tracted from error feedback

For a given state St the agent chooses an action at according to
policy π which results in a reward rt+1 from the environment. This
principle is depicted in Figure 4.9. In the course of time the agent ex-
plores possible actions for different observed states and receives the
according rewards. Once the agent has gained some experience by ex-
ploring several state action pairs (SAP), it can optimize policy π to
choose the action with the highest expected reward for a given state.

RL Agent {at = π(St)}

Environment

atrt+1

St+1

St

Figure 4.9: Principle of RL. The agent receives a state St from the
environment and issues action at according to policy π. For the state
action combination it receives a reward rt+1 and refines the policy
accordingly. [54]

The CE signal generated from the user’s feedback can be interpreted
as a reward signal r to a RL agent. In this section we investigate the

4.3. Reinforcing a recognition system using negative rewards 53

learning and adaptation of a RL gesture recognition system, based on
CE feedback.

4.3.1. Reinforcement learning background

In RL the agent performs an action at according to a given state St,
with the goal of reward maximization. The function that performs the
state action mapping is the so called policy π [54]:

at = π(St) (4.11)

It is assumed that a new state St+1 only depends on state St and
action at. The environment the agent interacts with has to therefore
fulfill the Markov property [84].

The policy π controls the selection of the best action for a given
state, according to the Q-value. The Q-value is a measure for the ex-
pected reward of a state-action pair (SAP). It is calculated based on
the Q-function, also known as Bellman equation [85], for a given SAP
(S, a) and a policy π.

Qπ(S, a) = E{rt+1 + γRπ
t+1} (4.12)

The discount factor γ ∈ [0, 1] is used to reduce the influence of future
rewards Rπ

t+1. In many applications it is assumed that the reward rt+1,
that directly follows a SAP, is more directly linked to the quality of the
last action and therefore should be weighted higher then the following
rewards.

The Q-function that results in the highest output for a SAP given
all possible policies π is considered the optimal Q-function Q∗(S, a).

Q∗(S, a) = max
π

Qπ(S, a) (4.13)

The policy that is based on the optimal Q-function is the optimal
policy π∗. It always selects the action with the maximum Q-value and
is therefore called the greedy policy.

π∗(S) ∈ argmaxaQ
∗(S, a) (4.14)

To learn the policy for a given task there are two different proce-
dures. In on-policy learning the RL system updates the policy incre-
mentally with each new SAP that is experienced. The off-policy learn-
ing strategy consist of two stages. Initially a fixed preliminary policy is

54 Chapter 4: Classifier adaptation based on error feedback

applied (e.g. random action selection) to capture SAPs. Secondly these
SAPs are used to learn a new policy which is then applied for actual
use of the system.

Another important aspect regarding the policy π is the exploitation
vs. exploration trade off. A good policy should be exploited as much
as possible to maximize the reward. Nevertheless exploration of the
state-action space is important during learning of the policy to find a
globally optimal solution for the state-action mapping. In the following
we describe three typical approaches to allow for exploration in the
policy.

• ǫ-greedy policy [54]: With a probability of ǫt a random action
is selected over the action with the highest Q-value for the SAP.

at ←

{

a = argmaxāQt(St, ā) p(exploit) = 1− εt,
a = random action in A p(explore) = εt

(4.15)

For learning a state-action mapping in a static environment ǫt
can be decreased over time with e.g. ǫt = 1

t . This ensures high
exploration in the beginning of the learning process. Finally ex-
ploitation dominates the policy, when the system has successfully
learned a Q-function. In non-stationary environments, where the
state-action space is subject to changes over time, a constant ex-
ploration factor can be set in order to explore novel behaviors.

• Boltzmann exploitation [54]: In this exploration scheme prob-
abilities are calculated for each possible action at, given a state St.
The action at is chosen randomly according to the probabilities
p(a|St) of all possible actions a given St.

p(a|St) =
eQt(a,St)/τt
N
∑

b=1

eQt(b,St)/τt

(4.16)

N is the total number of possible actions and τt ∈ ℜ
+
0 is the

exploration rate. The higher τt the more exploration is performed.
Similar to the ǫ-greedy policy, the exploration factor τt can be
decreased over time to allow for more exploration in the early
learning phase and more exploitation thereafter.

4.3. Reinforcing a recognition system using negative rewards 55

• Optimistic initial value [54]: With an optimistic initialization
of the Q-function several possible actions are explored before the
Q-function converges. Even with a greedy policy this leads to a
fair amount of exploration. Since the amount of exploration be-
comes less with the system learning, the optimistic initialization
is best used for stationary environments.

4.3.2. State of the art

One of the earliest applications where RL was successfully applied was
Backgammon. The TD Gammon [86] RL approach is based on a neural
network and discrete states, actions and rewards. In 1995, when TD
Gammon was proposed, it was superior to other artificial intelligence
players. In contrast to later RL methods this approach does not use
a Q(S, a) function to evaluate the expected reward for a SAP. Instead
only the quality of the state is evaluated.

The Attention-Gated RL (AGRL) [87] is also based on a neural
network, but in contrast to TD Gammon uses a Q(S, a) function to
estimate the expected reward for a SAP.

The SARSA [88, 54] RL approach has already been widely used
and applied to applications like automatic spoken dialogue strategy
optimization [89], adaptive music generation [90], and channel control
in cellular networks [91]. This approach is named after the inputs of
the Q-function update rule: state (St), action (at), reward rt+1, state
(St+1) and action (at+1). The Q-function is usually represented by a
table of SAPs and therefore requires a finite number of discrete states
and actions. An extended version of SARSA is the Least-Squares Policy
Iteration (LSPI) [84]. In contrast to the traditional SARSA the Q-
function is not represented by a table but modeled by basis functions
which span the state space. This allows for a continuous state space
representation. To find the right basis functions a priori knowledge of
the state space is required. Furthermore, the state space has to remain
constant over time.

An alternative state space representation is persued by Santamaria
et al. In their Instance Based RL approach (INST)[92] new SAPs are
stored as individual instances in the state space. This allows for contin-
uous state space representation. Q-values for a new SAP are estimated
by interpolation from stored SAPs close to the new SAP in the state
space.

Q-Learning [93, 94] is a RL principle for off-policy learning. It is

56 Chapter 4: Classifier adaptation based on error feedback

based on a similar Q-value update rule as SARSA. As one main dif-
ference Q-value updates for a certain SAP are based on estimates for
all possible next SAPs. This is necessary since future SAPs are not
observable in off-policy learning

An alternative off-policy RL method is PEGASUS [95], a policy
search algorithm. Based on a model of the environment, it searches for
an optimal policy to be used later for the actual control tasks. This
approach has been applied to autonomous helicopter flying [96].

4.3.3. Requirements posed by the learning scenario

The approaches just explained all have different properties. We focus
on a gesture recognition scenario, similar to the one presented in Sec-
tion 4.2.3, where the gesture recognition system is adapted to a new
user. The learning is based on the same CE teacher signal generated
from user feedback as described in Section 4.1. In the following we
list the requirements our scenario poses on a RL method for gesture
recognition:

• Arbitrary continuous state space
The gestures captured are represented by a multidimensional fea-
ture vector of continuous real values. The characteristics of the
state space are not known a priori and can vary depending on
the environmental characteristics (e.g. the user behavior or sen-
sor placement).

• Discrete action space
For every state one discrete action is chosen.

• Discrete reward The feedback given by the user is binary, either
the last action was correct or an error. This binary feedback is
translated into a discrete reward.

• Q(S, a)-function
A reward is always given for a SAP and does not solely depend on
the state. Therefore a reward estimation is required, that takes
into account both the state and the action.

• On-policy
We are aiming at a system which continuously adapts and im-
proves within the application. This requires on-policy RL, so that
new knowledge can be incrementally integrated while the system
is used.

4.3. Reinforcing a recognition system using negative rewards 57

In Table 4.2 we compare the RL approaches listed in Section 4.3.2
and investigate their applicability to our scenario based on the require-
ments posed.

Algorithm Requirements

ar
b
it
ra
ry

co
n
ti
n
u
-

ou
s
st
at
e
sp
ac
e

d
is
cr
et
e
ac
ti
on

sp
ac
e

Q
(S
,a
)-
fu
n
ct
io
n

d
is
cr
et
e
re
w
ar
d

on
-p
ol
ic
y

TD Gammon x x x x
AGRL x x x x x
REINFORCE x x x x
SARSA x x x x
LSPI x x x x
INST x x x x x
Q-Learning x x x x
PEGASUS x x x x

Table 4.2: Reinforcement learning algorithms overview. “x” indicates,
which requirement is met by the algorithm

AGRL and INST both fulfill our requirements. AGRL is based on a
neural network trained by back-propagation. This is known to require
a high number of instance presentations and therefore a large amount
of training data [97, 98]. As it is desirable within our target application
to learn from a small number of instances, we focus for our further
evaluation on INST, which is not limited by that.

4.3.4. Instance Based Reinforcement Learning method de-
scription

The instance based RL method we propose for our learning scenario is
based on work by Santamaria et al. [92]. Q-values of possible actions at
for an observed state st are interpolated from previously observed SAP.
The observed SAPs are combined with their corresponding Q-value and

58 Chapter 4: Classifier adaptation based on error feedback

stored in the memory C as cases ci(Si, ai, Qi). The Q-values of possible
actions at for a new state St are interpolated from the cases ci in the
neighborhood NNt of St. Neighboring cases are those which states Si

are within a predefined radius τk around St.

NNt = {ci ∈ C|d(St, Si) ≤ τk} (4.17)

As a distance measure d(St, Si) we use the Euclidean distance.
The estimate of a Q-value for a SAP Q̂(St, at) is derived by an

interpolation based on the neighborhood NNt using a kernel function
K(d(St, Si):

Q̂(St, at) =
∑

∀ci(ai=at)∈NNt

K(d(Si, St))
∑

cj(ai=at)∈NNt

K(d(Sj , St))
Qi (4.18)

We make use of a Gaussian kernel function which has already shown
good results in combination with the INST approach [92].

K(d) = exp(
d

τk
) (4.19)

As soon as the reward rt for an observed SAP becomes available
the Q-values of the cases in the memory are updated according to the
following rule.

Qi = Qi + LRei(rt+1 − Q̂(St, at)) ∀ci ∈ NNt (4.20)

Here LR ∈ [0, 1] is the learning rate and ei is a distance based weight
parameter. The closer the state Si of a case ci is to the observed state
St, the more ci is affected by the update.

ei =
K(d(Si, St))

∑

cj(ai=at)∈NNt

K(d(Sj , St))
(4.21)

The reward rt+1 is generated from the CE signal so that erroneous
actions are punished while good actions are rewarded.

r =

{

1 chosen action is correct
−1 chosen action is error

(4.22)

A new case is added to the memory when the distance between
the newly observed state St and the nearest case ci, with the same

4.3. Reinforcing a recognition system using negative rewards 59

action, is higher then a preset minimum distance τd. This ensures good
coverage of the state space while at the same time limiting memory
requirements.

In Algorithm 3 we give a summary of the learning and Q-value
update for this approach.

Algorithm 3 INST with ε-greedy policy

1: for all time steps t do
2: observe state St

3: estimate Q̂(St, at) according to equ. 4.18

4: at ←

{

a = argmaxā(Q̂(St, at)) exploit (prob. 1− ε)
a random action ∈ A explore (prob. ε)

5: apply at and receive reward rt+1 from the user
6: update Q-values according to equ. 4.20
7: if min(d(Si, St)) ≥ τd for all NNi with action at then
8: add new case c(St, at, Qinit) to memory
9: end if

10: end for

4.3.5. Evaluation of RL methods on gesture dataset

We evaluate the INST RL approach on the same dataset as we did with
the incremental kNN (see Section 4.2.3). We simulate the CE teacher by
comparing for each input gesture the resulting action (predicted class)
to the ground truth. If the action matches the ground truth correct,
otherwise error is generated.

We consider two distinct learning cases:

LC1 Learning from scratch: A user starts using the recognition
system which is randomly initialized and is not capable of recog-
nizing the gestures yet. While the system is used and rewarded it
learns the correct mapping from sensor data to gesture recogni-
tion output.

LC2 Learning after user change: The system is used by user A and
learns the gestures of this user from scratch. At a later point the
system is given to user B. Since user B is likely to perform the
gestures slightly different, when compared with user A, the recog-
nition performance drops. Therefore the system has to adapt, to
match the behavior of the new user B, to continue with optimal

60 Chapter 4: Classifier adaptation based on error feedback

performance. The adaptation is based on the same reinforcement
learning principle as in LC1.

The dataset is split in a training set (1155 gestures) and an evalua-
tion set (100 gestures) for each subject. To simulate LC1, one gesture
instance of the training set is presented to the RL gesture recogni-
tion system at each time step. The resulting action is compared to the
ground truth and an error signal is generated if the action and the
ground truth differ. The error signal is translated into a reward and fed
back to the RL system.

At each time step the RL system is evaluated based on the evalu-
ation set. This leads to an accuracy value at regular intervals, which
allows to track the learning of the gesture recognition system.

The simulation of LC2 is analog to LC1. At first the learning and
evaluation of the system is based on the dataset of Subject A. After-
wards the training gestures of Subject B are presented to the system.
When training from gestures of Subject A the system is also tested on
gestures from Subject A. This process is identical for Subject B.

For each subject or subject combination the simulations are re-
peated at least 10 times with different random data permutations. The
presented values are averages taken from all simulation runs.

Algorithm parameter selection

The parameters τd, τk, LR and ǫ for the INST RL algorithm have to
be chosen according to the application and the expected characteristics
of the input data (see Equations 4.17, 4.20 and Algorithm 3).

We choose τd and τk based on parameter sweeps on the evaluation
dataset, so that they fit the data distributions expected in the state
space. In Figure 4.10 we show the results for the sweep of τd and τk
in the LC1 setting at different time steps. For this simulation we chose
LR = 0.4. The plots show optimal results for τd = 0.8 and τk = 1.6,
at all time steps evaluated. For all further simulations we therefore use
these values.

For the learning rate LR a trade off between stability and plasticity
has to be found. In Figure 4.11 we show the result for the sweep of
parameter LR in the LC1 and LC2 setting. A change of the learning
rate has only a small effect on the learning behavior. This applies to
learning from scratch (LC1) as well as to learning after user change
(LC2). We choose LR = 0.4 for the following simulations.

4.3. Reinforcing a recognition system using negative rewards 61

after 50 gestures
τ k

0.8 1.6 2.4 3.2 4

5
4
3
2
1

0.1

after 100 gestures
a

ccu
ra

cy

0.8 1.6 2.4 3.2 4

5
4
3
2
1

0.1

after 500 gestures

τ
d

τ k

0.8 1.6 2.4 3.2 4

5
4
3
2
1

0.1

after 1155 gestures

τ
d

a
ccu

ra
cy

0.8 1.6 2.4 3.2 4

5
4
3
2
1

0.1

0.3

0.4

0.5

0.4

0.6

0.4

0.6

0.8

0.4

0.6

0.8

Figure 4.10: Parameter sweep for τd and τk. The bright area shows the
parameter combinations with the best accuracy after learning from the
given number of gestures. The parameter combination τd = 0.8 and
τk = 1.6 leads to optimal results after learning from 50, 100, 500 and
1155 instances respectively.

For all simulations the exploration rate is empirically set to ǫ = 0.01
(see Equation 4.15). A summary of the simulation parameters is given
in Table 4.3.

Parameter Value
τd 0.8
τk 1.6
LR 0.4
ǫ 0.01

Table 4.3: Selected learning parameters for simulating the learning be-
havior of INST on the gesture recognition dataset (see Equations 4.17,
4.20 and Algorithm 3).

62 Chapter 4: Classifier adaptation based on error feedback

gesture #

α

LC1 LC2

a
ccu

ra
cy

462 924 1386 1848 2310

0.9

0.5

0.1 0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.11: Parameter sweep for LR. The learning rate parameter only
slightly influences the learning behavior with this dataset. This applies
to the LC1 (up to gesture number 1155) as well as to LC2 (from gesture
number 1156 onwards). The best result is achieved with LR = 0.4.

Simulation results

The simulation result of the learning behavior for LC1 and LC2 is shown
in Figure 4.12. The first 1155 input gestures are based on LC1 while
the following 1155 input gestures are based on LC2. After 175 gestures
the system has learned enough to achieve an accuracy of 72% (90% of
the maximum accuracy). The maximum accuracy is the accuracy after
learning from 1155 gestures in the LC1 case, which results in 80%.
When user B starts using the system (at gesture number 1156) there
is a severe drop in accuracy, down to 46%. This indicates that user
B performs the gestures differently compared to user A. The learning
curve for LC2 has a similar shape compared to LC1 but rises slightly
slower. It takes 205 input gestures after the user change to reach 90%
of the maximum accuracy.

From this perspective there is no benefit when starting with a pre-
trained system compared to starting from scratch. It must be noted
however, that the accuracy drops to 46% when user B starts using
the system, which is still better than guessing (20% accuracy) The RL
improves the recognition accuracy for user B by 36%.

4.3. Reinforcing a recognition system using negative rewards 63

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

gesture #

A
cc

u
ra

cy

LC1 LC2

Mean

Mean + std

Mean − std

Figure 4.12: Simulation result for the learning cases LC1 and LC2. User
A starts using the system which is so far untrained. As the user gestures
and indicate errors, the system learns the state-action mapping (LC1).
At gesture number 1155 user A passes the system over to user B (LC2).
The recognition accuracy drops due to the fact that user B performs
the gestures differently compared to user A. While user B continues
to input gestures and rewards, the system adapts which leads to an
improved recognition performance. The result is given as an average
over all users and all data permutations with the according standard
deviation.

4.3.6. Discussion

A recognition system based on the INST RL algorithm can be learned
based on the input of gestures and the corresponding error feedback.
We have demonstrated this in two scenarios; learning from scratch and
learning after change of user. In both cases a maximum recognition
accuracy of 80% has been reached. A reasonable performance (90%
of the maximum accuracy) was achieved after learning from 175 and
205 instances respectively. The relative improvement of the recognition
accuracy, achieved through adaptation, is 36% after the new user took
over the system (LC2).

The parameter sweeps indicate, that the selection of correct learning
parameters is essential for an optimal learning performance. Parame-
ter values depend on the application and may also vary depending on

64 Chapter 4: Classifier adaptation based on error feedback

the user. This is a potential drawback since parameters obtained for a
certain group of users may not fit for a new user.

Our simulation results show that learning from scratch is slightly
faster compared to learning after user change. In the user change case
the system has to unlearn some knowledge about the old user as well
as learn the gestures of the new user. This unlearning step delays the
system’s learning of the new user behavior. Even though the learning
after system hand-over is slightly slower compared to learning from
scratch, it might still be beneficial for the new user, since the system
performs initially better.

4.4. RL gesture recognition case study 65

4.4. RL gesture recognition case study

We conduct a case study to validate the applicability of learning based
on CE feedback in the gesture recognition scenario. A computer game
is controlled by hand gestures which are recognized online. Gesture
recognition is based on the INST RL algorithm described in Section
4.3.4.

4.4.1. System setup

The user plays a computer game where an object (a colored dot) has to
be moved towards a target position (a black dot) within a two dimen-
sional playing grid (see Figure 4.13). Four different input hand gestures
are used to move the object in the four directions of the grid, which are
the four output actions of the gesture recognition; namely left, right,
up and down. Each input gesture moves the object to the next grid
position in the according direction until the target position is reached.

Figure 4.13: Screenshot of the computer game played during the case
study. Goal of the game is to move the colored dot to the position of
the black dot within the two dimensional grid. The game is controlled
by four hand gestures for the four respective directions. Each gesture
moves the colored dot in the relating direction to the next grid position.

To capture the hand movement a tri-axial acceleration sensor, in-
tegrated in a Texas Instruments ez430 [99] sports watch, is mounted

66 Chapter 4: Classifier adaptation based on error feedback

at the user’s wrist. The sensor is sampled with a rate of 23.8 Hz. The
user can give error feedback by pushing a button on the sports watch if
an input gesture hasn’t been recognized correctly. The feedback has to
be given prior to performing the next input gesture. The acceleration
data as well as the feedback information is transmitted wirelessly to
the game computer. In Figure 4.14 we show the full setup comprising
of the user, the game computer and the sensor watch.

Figure 4.14: The user performs hand gestures to control the computer
game. The hand movement is captured by a sports watch integrated
acceleration sensor and transmitted wirelessly to the game computer.
System recognition errors can be indicated by the user by pushing a
button on the sports watch.

The acceleration signal is segmented based on the standard devi-
ation of the low-pass filtered acceleration magnitude. All parts of the
signal with a standard deviation below a preset threshold are omit-
ted as depicted in Figure 4.15. Each remaining signal segment contains
exactly one gesture.

For each signal segment mean and standard deviation are calculated
on the signals of each sensor axis, forming a six dimensional state vector
St. The action at according to the given state St is chosen by the
gesture recognition system based on the RL agent operating the INST
algorithm (see Figure 4.9 and Algorithm 3). The resulting action moves
the colored dot on the game grid. The output action is observed by the

4.4. RL gesture recognition case study 67

0 20 40 60 80 100

10
−1

10
0

10
1

10
2

10
3

10
4

Sample index

S
td

 o
f

a
c
c
le

ra
ti
o

n

Std(Acc)

Threshold

Figure 4.15: Segmentation of the continuous acceleration signal. The
marked segments show the parts of the acceleration signal where the
standard deviation is greater than a preset threshold. Each of these
segments contains a gesture.

user so that system recognition errors can be identified by them and
fed back into the system as reward rt+1. Each new input gesture, in
combination with the given error feedback, is used by the system to
learn state-action mapping.

The learning parameters for the INST algorithm were empirically
selected based on data recorded from two test subjects prior to the case
study. The chosen parameters are listed in the following table.

Parameter Value
LR 0.01
τk 20
τd 3
ε 0.01

4.4.2. Study protocol

Each participant received an instruction sheet prior to the study. The
sheet explained in detail how to play the computer game, when to input
gestures and when to push the error feedback button. The gestures were
described as hand movements “left”, “right”, “up” and “down” without

68 Chapter 4: Classifier adaptation based on error feedback

further explanation. This gives the participants the freedom to perform
the actions in the way most comfortable to them. The participants are
free to choose if they want to perform the gestures with their left or
right hand, and to mount the sensor watch on the according wrist.

Before the participants perform the actual study tasks, they play
an introduction game. The system is untrained and learns the state-
action mapping from scratch based on the input gestures and the error
feedback. This first game allows the participants to get used to the
system, the gestures, and the error feedback.

The study consists of the following three tasks. Each task lasts until
100 gestures are captured.

Task 1 Learning from scratch: This task is similar to the introduction
game. The participant starts using the untrained system which
learns the state-action mapping from the gesture input and the
error feedback.

Task 2 Learning after sensor displacement: The participant removes
and reattaches the sensor watch on the wrist. This is likely to
induce a sensor displacement since the sensor is likely to be placed
at a slightly different location compared to before. In this task the
system is not learning from scratch but instead starts from the
state-action mapping learned during Task 1. The system has to
adapt to the readings of the displaced sensor.

Task 3 Learning after sensor relocation: In this setting the sensor is
moved to the wrist of the alternate arm and the gestures are per-
formed with the according hand. This induces a stronger change
compared to Task 2. The system starts learning from the state-
action mapping learned during Task 1. The system has to adapt
to the readings of the relocated sensor. This includes the changes
induced by the subject performing the gestures with the other
hand.

For each subject the duration for all tasks together was between
35 and 50 minutes including an introduction and short breaks between
individual tasks. The study was conducted with 18 subjects aged 21 to
57 years.

4.4.3. Evaluation

We evaluate the learning behavior of the RL gesture recognition system
based on the error feedback given by the participants. The error feed-

4.4. RL gesture recognition case study 69

back allows us to estimate the recognition accuracy âcc = 1− #errors
#gestures .

In Figure 4.16 we show the accuracy over the number of input gestures,
averaged across all participants. The accuracy is estimated on a sliding
window of 10 gestures.

20 40 60 80 100

50

55

60

65

70

75

80

85

90

Gesture #

E
st

im
a
te

d
 a

cc
u

ra
cy

 i
n

 %

Task 1 − From scratch

Task 2 − Sensor displacement

Task 3 − Sensor relocation

Figure 4.16: Estimated accuracy over the number of input gestures
for the three case study tasks. The plot shows averages over all study
participants. Task 1: The system is able to learn a state-action mapping
from the input gestures and the error feedback. Task 2: Despite the
slight sensor displacement the mapping learned in Task 1 still fits. Task
3: The sensor relocation induces a change that requires an adaptation
of the state-action mapping.

For Task 1 a steep increase in accuracy can be observed for the first
60 input gestures. The curve flattens out at about 80% accuracy. The
system is therefore able to learn state-action mapping from the gesture
input and the user feedback. For Task 2 the accuracy is at the 80% level
from the beginning. This indicates that the mapping learned in Task
1 also fits quite well in Task 2, despite the slight sensor displacement.
For Task 3 the accuracy is below 55% in the beginning and rises to
the 80% mark within the first 60 gestures. The change induced by the
relocated sensor, in addition to a potentially different gesture execution
with the alternate gesture hand, requires an adaptation of the state-
action mapping. This adaptation process can be considered successful
since the 80% accuracy level is reached again.

70 Chapter 4: Classifier adaptation based on error feedback

There seems to be a slight decrease of performance in the second half
of each task. It is not clear if this is caused by the users changing their
behavior or failure to provide feedback during the tasks (see Section
4.4.4). Furthermore it may be just an artifact caused by the small
window size and the limited number of subjects.

4.4.4. Discussion

The results from our case study confirm our simulation results from Sec-
tion 4.3. It is possible to learn and adapt a RL based gesture recognition
system solely from the input gestures and a user generated reward. In
our case study about 60 input gestures were necessary for the system
to learn a state-action mapping that resulted in a gesture recognition
accuracy of 80%.

One drawback of this approach is that failure to give feedback by the
user may result in a less accurate system performance. In our case study
we have observed that users forgot to input the feedback occasionally,
especially when the system had reached a reasonable performance. This
may also be caused by their attention being more drawn to playing the
game than to identifying recognition errors.

We did not restrict the participants of the study in the way they
performed the gestures. Despite the different gesture executions of var-
ious users, the system was still able to learn the gestures. This may
increase the comfort of a gesture recognition system since the users are
able to perform the gestures in a way comfortable to them and not in
the way the system designer intended.

5
Implicit error

feedback generation

using brain signals

In this chapter we present a novel idea for unobtrusive er-
ror feedback generation from brain signals. We evaluate the
potential of this approach on a dataset, containing brain sig-
nals and motion data, recorded in an extensive gesture recog-
nition experiment. The challenges and adaptation potential,
capitalizing on brain based error feedback, is investigated.

5.2. State of the art in ErrP recognition 73

5.2. State of the art in ErrP recognition

Several studies have suggested the existence of a neural system in rela-
tion to error processing [103]. Specifically, stereotypical electrophysio-
logical signals have been consistently reported to appear as a response
to erroneous actions [104] or unexpected action outcomes [102]. These
signals – termed error-related negativity (ERN) and feedback-related
negativity (FRN)— are characterized by a negative deflection of the
EEG signals in fronto-central areas of the scalp, followed by a centro-
parietal positive peak. Typical signal latencies are 50 to 100ms in the
case of ERNs and around 250ms for FRNs. Neurophysiological stud-
ies have provided evidence of error-based learning. Specifically, it has
been suggested that these signals reflect conscious error processing,
post-error adjustment of response strategies [104], and reward-based
adaptive behavior [102].

Moreover, research on BCI has shown that it is possible to recog-
nize EEG error-related signals (ErrP) on single occurrences better than
guessing (two-class problem, > 50% accuracy) [105, 106, 107]. Based
on this fact, these signals have been proposed to be used to correct
erroneous motor action in speed-response human-computer interaction
[107], as well as to increase the information transfer rate of EEG-based
BCI systems [105]. Experimental measures taken over different time pe-
riods (up to two years apart) show that these potentials are stable over
time, despite the time delay between recordings. Current protocols for
EEG signal analysis require motionless subjects to avoid contaminat-
ing the subtler EEG signals (10-100µV) with EMG signals (1-30mV)
from muscle activity [108]. In order to use EEG systems in naturalistic
settings however, researchers have begun investigating limited subject
mobility [109].

5.3. ErrP-based adaptive gesture recognition exper-

iment

We conduct an experiment in order to investigate the ErrP based adap-
tation of a gesture recognition system to a new user. A game is con-
trolled by HCI hand gestures. The gesture recognition system is trained
in a user independent manner. The system is then given to a new user.
Each gesture instance xt, performed by this user, is classified by the
gesture recognition system to gesture class c̃t. ErrP analysis indicates
whether the action taken by the computer game, and thus the classifi-

74 Chapter 5: Implicit error feedback generation using brain signals

cation of the gesture, was correct or erroneous (teacher signal st). Based
on this information the gesture recognition system adapts to the new
user. In Figure 5.2 we illustrate this concept. This scenario is based on

ErrP
Analysis

Gesture
Recognition

Adaptation

st

User

xt

 Ot Game
Application

 ct

Game
Action

~

Figure 5.2: The user performs a hand gesture with the intention to
control the game application. The hand acceleration is sensed and fed
as gesture instance xt into the pre-trained gesture recognition system.
The recognized gesture class c̃t is used to control the game application.
The user observes the game and the resulting action. If the action differs
from the user’s expectation the gesture was not correctly recognized
from the hand acceleration. The user will perceive this deviation from
the expected behavior resulting in an ErrP in the EEG signal instance
Ot. The result st of the ErrP analysis, together with gesture instance
xt, are used to adapt the gesture recognition.

a game to maintain the user’s involvement during experimental sessions
[82, 105]. The game is designed so that a typical gesture input speed of
30 gestures

min is achieved. This allows for acquisition of a large number of
gesture instances (> 2000) in a short amount of time (< 2 hours).

The goal of this experiment is to collect a dataset, containing hand
gesture acceleration instances xt and the according EEG signal in-
stances Ot, within our scenario (Figure 5.2) to assess adaptation strate-
gies in offline simulations. The online gesture recognition during the
experiment is therefore not based on the acceleration data but on a
reliable light barrier gesture recognition system (described in Section
5.3.2), that provides the gesture ground truth ct. Since the light barrier
based gesture recognition is deemed error free, recognition errors are
artificially generated (resulting in c̃t), to trigger ErrP events in the EEG
signal Ot for later offline evaluation. The actual experimental setup is
depicted in Figure 5.3.

5.3. ErrP-based adaptive gesture recognition experiment 75

EEG
Dataset

Gesture
Recognition

User

Light Barriers
Reed Switch

Ot Game
Application

ct

Game
Action

xt

Recognition Error
Generator

Gesture
Dataset

 ct~

Figure 5.3: The user performs a hand gesture with the intention to con-
trol the game application. The gesture is reliably recognized based on a
light barrier frame and a reed switch. Recognition errors are artificially
induced in the gesture ground truth ct. The resulting output c̃t is used
to control the game application. For every induced recognition error
it is assumed that an ErrP is triggered in Ot. During the experiment
hand gesture acceleration instances xt and EEG signal instances Ot are
recorded for later offline analysis.

5.3.1. Gesture-controlled computer game

The subjects play a computerized version of a “memory game” con-
sisting of 8 image pairs (Figure 5.4). The 16 images are randomly dis-
tributed in a four by four matrix and hidden behind question marks.
The subjects have to find identical pairs of images, which are then
removed from the screen. If two images are flipped and don’t match,
they are hidden again before new images can be selected. The game is
finished when all image pairs were correctly found.

The game input interface is based on five hand gesture classes. Left,
right, up and down hand movements shift the image selection cursor in
the corresponding direction. Flipping an image is controlled by closing
and opening the hand.

5.3.2. Measurement setup

The online recognition of the gestures during the data collection is
based on light barriers and a reed switch. This ensures accurate gesture
ground truth for the collection of a reference dataset. Three horizontal

76 Chapter 5: Implicit error feedback generation using brain signals

and three vertical infrared light barriers return the sequence of hand
positions (Figure 5.4) from which the gesture is inferred. The closing
gesture is detected from a reed switch on the subjects hand activated
by a magnet on the subjects fingers.

acceleration sensor

magnet

reed switch

EEG capEOG electrodes

EMG electrodes

light barrier frame

screen

x
y

z

Figure 5.4: The computer game is presented on the screen; the light-
barrier frame, magnet and reed switches capture game control gestures;
the acceleration sensor (orientation relative to hand) and the EEG elec-
trode cap stream data to a PC for recording and offline analysis.

A tri-axial acceleration sensor at the subjects fingertips records the
motion of the hand for offline acceleration-based gesture recognition
simulations. The acceleration sensor is sampled at 64 Hz and con-
nected via USB to the experiment computer. This computer also runs
the memory game. Another computer records EEG with the Biosemi
ActiveTwo system and active electrodes. Both computers are intercon-
nected using a shared data line to ensure a synchronized data recording.

5.3.3. Experimental protocol

Seven healthy male subjects aged 25 to 47 participated. For each sub-
ject we recorded 14 sessions with a duration of three to five minutes.
One session corresponds to one “memory game”. Between recording

5.3. ErrP-based adaptive gesture recognition experiment 77

sessions the subjects could rest for one to two minutes. We recorded
more than 2700 hand gestures per subject. The experiment lasted about
two hours per subject including setup and introduction.

In each session we randomly induced between 5% and 33% of gesture
recognition errors in ct to provoke ErrP events. To induce an error the
error generater (Figure 5.3) selects a random gesture c̃t instead of the
actual recognized gesture ct. For example if the subject closes their
hand to turn a card, the card would not be turned but instead the
cursor would be moved in a random direction. If no error is induced
c̃t = ct.

78 Chapter 5: Implicit error feedback generation using brain signals

5.4. EEG ErrP Recognition

In the EEG signal analysis (see Figure 5.2) we classify the EEG signal
Ot into error (st = 1) and correct (st = 1) based on the presence of
ErrP. An error detected from the EEG signal indicates, that the ges-
ture performed by the user was not recognized correctly by the gesture
recognition, and therefore the game output action did not meet the
expectation of the user. We exploit the fronto-central distribution of
ErrP [82, 105], using the time signals of EEG electrodes FCz and Cz
(see Figure 5.5b for scalp positions) as input features for a Bayesian
filter [110].

In order to remove the background brain activity and to enhance
localized activity, raw EEG potentials are spatially filtered by comput-
ing the Common Average Reference, i.e. by subtracting, at each time
step, the average potential of all electrodes from each electrode. We
exclude from the analysis the most external EEG channels, since those
are more likely affected by muscular artifacts related to facial or head
movements. In addition, signals of selected electrodes exceeding 80µV
amplitude are discarded. Following previous studies in this type of po-
tentials, signals are then filtered (1–10 Hz bandpass) and subsampled
with a sampling rate of 64 Hz before classification. The input vector Ot

for the classifier (see Section 5.4.1) is composed by the time samples on
electrodes FCz and Cz within the [200 400] ms time window after the
end of the hand gesture.

5.4.1. Classification based on Bayesian filtering

The Bayesian filter estimates the state probabilities at each sampling
time step according to the observations and the previous state estima-
tions [111]. Through discrete observations of a continuous EEG signal
we want to find out, if the output action on the screen matches the
input gesture intended by the user.

To build the Bayesian filter, two possible states are defined at each
time t: st ∈ {1, 0} for erroneous and correct gesture recognition, re-
spectively. At each sampling time step t observations Ot are given by a
vector with components FCz and Cz corresponding to the electrodes
of the same name: Ot = [FCzt, Czt]. Observations and states from time
zero to T are respectively noted O0:T and s0:T .

A transition model is defined by a first order Markov hypothesis
for states over time: P (st|s0:t−1) = P (st|st−1) for t = 0 . . . T . Since

5.4. EEG ErrP Recognition 79

the state during a potential ErrP instance doesn’t change, the transi-
tion model corresponds to the identity matrix: P (st|st−1) = 1 if st =
st−1 and zero otherwise.

The sensor model is given by the probability distribution P (Ot|st)
which predicts observations given the state. Then the decomposition of
the joint probability is given by:

P (s0:TO0:T) = P (s0)P (O0|s0)

T
∏

t=1

(P (st|st−1)P (Ot|st)) (5.1)

The classification consists in estimating P (st|O0:t), i.e. the proba-
bility of the state (error or correct) knowing the observations (EEG
activity). It can be obtained in a recurrent manner. First the state is
predicted (Equation 5.2) based on the transition model. Secondly the
state estimation (Equation 5.3) is computed based on the sensor model.

P (st|O0:t−1) =
∑

st−1

(P (st|st−1)P (st−1|O0:t−1)) (5.2)

P (st|O0:t) ∝ P (Ot|st)P (st|O0:t−1) (5.3)

Since the state doesn’t change within one signal occurrence the
transition model corresponds to the identity matrix. the prediction–
estimation recurrent calculus is simplified:

P (st|st−1) = 1 if st = st−1 and zero otherwise (5.4)

P (st = 1 |O1:t) ∝
1

C
P (Ot|st)P (st−1 = 1 |O1:t−1) (5.5)

P (st = 0 |O1:t) ∝
1

C
P (Ot|st)P (st−1 = 0 |O1:t−1) (5.6)

with C being a normalization factor.
At the end of the EEG occurrence at time t = T , an erroneous trial is
detected if

P (sT = 1|O1:T) > ψ (5.7)

where ψ is our current decision threshold and T = 400ms. Estimations
from both channels are combined using a naive fusion.

P (Ot|st) = P (FCzt|st)P (Czt|st) (5.8)

80 Chapter 5: Implicit error feedback generation using brain signals

The sensor model P (Ot|st) is defined by a mono-dimensional Gaus-
sian distribution with a mean µt and a variance σ2

t . Having two in-
put channels and two possible states, there are four Gaussian distribu-
tions at each time t, and eight parameters to identify. This approach
updates the estimated state probability as new samples are available.
Since the prediction-estimation update multiplies two probabilities, the
next state estimate would be close to zero if one of the multiplied val-
ues would be close to zero. This would effectively stop the recursive
Bayesian estimation. To avoid this effect, a lower limit for probabilities
was introduced, so that any P (st |Ot) < 0.01 is forced to be equal to
0.01. Figure 5.5a shows the average EEG activity (error minus correct
condition) for all subjects.

(a) (b)

Figure 5.5: (a) Average ErrP on the FCz electrode for the different
subjects. The difference signal between the signal with error condition
and the signal with correct condition is shown. thick line: average over
all subjects; thin dashed lines individual averages for each of the seven
subjects. The time (t=0) refers to the end of the input gesture after
which an ErrP might occur.
(b) Electrode positions shown over the scalp.

5.4.2. ErrP Classification

As shown in Section 5.4.1, the Bayesian Filtering based classifier al-
lows for classification of individual ErrP occurrences. We trained our

5.4. EEG ErrP Recognition 81

classifier subject dependent for each subject on eight of the fourteen
recorded memory game sessions, estimating µt and σ

2
t for the two states

st. We tested on the remaining six recordings. We consider the activity
of electrodes in the [200,400] ms time windows after the feedback pre-
sentation, estimating the state probabilities according to these obser-
vations. Figure 5.6 shows receiver operating characteristics (ROC) for
all subjects, where sensitivity represents the amount of true positives
(error class) and specificity represents the amount of true negatives
(correct class). Different sensitivity-specificity combinations were com-
puted varying the decision threshold ψ (as defined in eq. 5.7).
It is important to notice that the particular task performed by subjects
may induce EMG artifacts due to arm and facial movements [112]. Nev-
ertheless, in the current experimental protocol we reduce this aspect as
gesture recognition feedback is only provided once the gesture has been
completed. The classification of ErrP occurrences is better than guess-
ing. In the following section we investigate the benefit of using this
ErrP classification result for adapting the acceleration based gesture
recognition system.

Figure 5.6: Receiver operating characteristics (ROC) curves of ErrP
classification for all subjects. For each subject the classification of ErrP
occurrences performs better than guessing.

82 Chapter 5: Implicit error feedback generation using brain signals

5.5. Adaptive gesture recognition guided by ErrP

We investigate how the error feedback signal st, as provided by the ErrP
classification, can be used to adapt the gesture recognition system. This
analysis is based on the gesture dataset recorded during the experiment
(Section 5.3), which contains the subject’s hand acceleration.

5.5.1. Gesture classification

We distinguish the five game control gestures based on the hand accel-
eration. We segment the signal using the gesture-start and gesture-end
signal provided by the light-barrier frame. During initial training of
classifiers prior to adaptation, the ground truth label ct of gesture in-
stances xt is provided by the light-barrier frame. We did no dataset
cleaning or outlier removal as this would not be possible in the real ap-
plication of such a system. We simulate the adaptation process based
on the pre-recorded dataset.

For the training and during the operation, we calculate the following
acceleration features on three windows (full gesture, first and second
half of the gesture): mean, standard deviation, minimum, maximum
and energy. We do this on the three axes of the acceleration signal
as well as on its magnitude. In addition the correlation for each axes
pair xy, xz and yz is calculated. This yields 63 features. We perform a
probabilistic feature selection [113] combined with a scatter search [114]
to select a feature subset [115]. This yields a six-dimensional feature
vector xt containing: the mean on the y-axis, the first half on the y-
axis and on the magnitude, the minimum on the magnitude, the mean
of the first half of the z -axis and the standard deviation on the first
half of the x -axis.

We classify the gestures xt with the incremental kNN classifier de-
scribed in Section 4.2 since it supports learning from a CE teacher
signal st. The learning of the initial classifier is based on standard kNN
learning by adding the training instances with a weight of 1 to the clas-
sifier model. The incremental online adaptation is based on the correct
and error learning strategies. The learning parameters were empirically
set to the values listed in Table 5.1.

To train the user independent classifier Ct=0 on the recorded dataset
we combine the data of all subjects, leaving out the subject we want to
adapt to. From this combined dataset we randomly select 480 training
instances, evenly distributed over all classes. An initial training set of

5.5. Adaptive gesture recognition guided by ErrP 83

parameter value
LR 0.002
R 0.02
κ 0.1
α 0.4
δ 48

Table 5.1: Parameters for the incremental kNN classier as used in the
simulations of the ErrP based adaptation (see Algorithms 1, 2 and
Equations 4.6, 4.7, 4.8, 4.9, 4.10).

this size results in an initial classifier while limiting the computational
complexity for classification.

The data of the left out subject is split into an adaptation set and
a test set. The adaptation set contains 2248 instances while the test set
contains 500 instances. During operation, the instances in the adap-
tation set are iteratively (one at a time) presented to the system for
classification and adaptation. The initial user independent classifier C0

and the resulting user adapted classifier CT (after presenting the adap-
tation set) are tested on the test set.

For the following evaluations we simulate the ErrP based teacher
signal st in the following way. A gesture instance xt is classified by Ct.
If the predicted gesture class c̃t matches the ground truth (c̃t = ct), the
recognition was correct and the teacher signal is set to correct(st = 0).
If c̃t does not match the ground truth ((c̃t 6= ct) the recognition was
wrong and the teacher signal is set to error (st = 1). Furthermore we
simulate different ErrP recognition performances by randomly inverting
the teacher signal st according to the probabilities given by the targeted
ErrP recognition sensitivity and specificity.

5.5.2. Influence of the ErrP detection accuracy on the adap-
tation

The ErrP recognition performance (see Section 5.4) is a key param-
eter for successful user adaptation of the gesture recognition system.
We investigate how the sensitivity and the specificity of ErrP recogni-
tion can influence the adaptation of the gesture recognition system. In
Figure 5.7 we show the adaptation result for different simulated ErrP

84 Chapter 5: Implicit error feedback generation using brain signals

E
rr

P
 s

e
n

s
it
iv

it
y

ErrP specificity

0 0.5 1

1

0.5

0

re
l.
 a

c
c
.

im
p

ro
v
e

m
e

n
t

in
 %

0

5

10

E
rr

P
 s

e
n

s
it
iv

it
y

ErrP specificity

0 0.5 1

1

0.5

0

#
 o

f
s
ig

.
s
u

b
je

c
ts

0

1

2

3

4

5

6

7

Figure 5.7: ROC analysis of the gesture recognition system adaptation
behavior for all possible combinations of ErrP sensitivity and specificity.
Average over 20 simulations and 7 subjects from different random data
permutations. Left plot: Number of subjects for which the adaptation
leads to a significant (one sided t-test with α = 0.05) improvement of
the gesture recognition. Right plot: Average relative improvement of
the gesture recognition accuracy.

sensitivity-specificity combinations. The average subject independent
baseline accuracy of the gesture recognition is 74.7%.

In case of a perfect ErrP signal (sensitivity = specificity = 1) we
achieve an increase of 17.1% in accuracy compared to our baseline. A
low sensitivity affects the adaptation slightly more than a low speci-
ficity. This is also reflected by the average relative improvement of the
adapted classifier. The increase is less with a lower specificity than with
a lower sensitivity. In general with an ErrP detection performing bet-
ter than chance (sensitivity + specificity ≥ 1) an improvement of the
gesture recognition system can be expected.

5.5.3. Adaptation assuming the ErrP recognition performance
resulting from the HCI gesture experiment

The ErrP recognition can be tuned to any working point on its ROC
curve (see Section 5.4). In the following analysis we choose the optimal
working point based on the ErrP analysis of the EEG data recorded
from the HCI gesture experiment. The ErrP recognition performance
varies between subjects. Therefore we choose the working points for
each subject individually.

For each subject we calculate the accuracy gains, when adapting

5.5. Adaptive gesture recognition guided by ErrP 85

0 0.5 1

−10

−5

0

5

10

re
l.
 a

c
c
u
ra

c
y
 g

a
in

 i
n
 %

ErrP specificity

Optimal sens./spec. combination for subject 3

0 0.5 1
0

0.5

1

E
rr

P
 s

e
n
s
it
iv

it
y

rel. acc.gain

ErrP ROC curve

Figure 5.8: The curve shows the expected accuracy gain for the adap-
tation of the gesture recognition system, relative to the subject inde-
pendent baseline, for all points on the ErrP ROC curve of this sub-
ject. The vertical line marks the maximum of the accuracy gain. Its
intersection with the ErrP ROC curve marks the optimal ErrP sensi-
tivity/specificity combination.

the gesture recognition with the possible sensitivity/specificity com-
binations for this subject, according to the ROC curves in Figure 5.6.
The optimal sensitivity/specificity combination for each subject is that,
where the accuracy gain by adaptation, compared to the subject inde-
pendent baseline, is maximal. An example of such an optimization is
shown in Figure 5.8.

In Figure 5.9 we show the selected optimal working points for all
subjects. With the exception of one subject, they all fall in the region
where we can expect an improved adapted gesture recognition system.
The exact ErrP sensitivity and specificity values, together with the
expected improvement and the resulting accuracy of the gesture recog-
nition, are listed in Table 5.2 for each subject individually. For six of
the seven subjects a significant (one sided t-test with α = 0.05) gain in
accuracy can be expected through adaptation.

86 Chapter 5: Implicit error feedback generation using brain signals

E
rr

P
 s

e
n

s
it
iv

it
y

ErrP specificity

0 0.5 1

1

0.5

0

re
l.
 a

c
c
.

im
p

ro
v
e

m
e

n
t

in
 %

0

5

10

Figure 5.9: The * mark the ErrP sensitivity/specificity combinations
for each subject which lead to the, in this case, optimal user adapted
gesture recognition system.

Subject 1 2 3 4 5 6 7 AVG
SI accuracy (C0) 74.8 79.4 77.2 89.7 77.0 64.6 59.8 74.7
ErrP threshold 0.87 0.16 0.09 0.14 0.80 0.35 0.71 0.45
ErrP sensitivity 0.76 0.58 0.57 0.13 0.70 0.73 0.76 0.60
ErrP specificity 0.38 0.58 0.64 0.93 0.56 0.47 0.34 0.56
Adapt. acc. (CT) 81.3 81.5 83.4 89.9 80.0 72.0 67.2 79.3
Acc. gain in % 8.8∗ 2.7∗ 8.0∗ 0.4 4.0∗ 11.4∗ 12.2∗ 6.8

Table 5.2: Detailed simulation results for the gesture recognition adap-
tation based on ErrP. The subject independent (SI) recognition baseline
for classifier C0 and the accuracy after adaptation for CT are given to-
gether with the according ErrP recognition parameters. The ∗ indicates
a significant improvement (one sided t-test with α = 0.05). All results
are averages of 20 simulations with different random data permutations.

5.6. Discussion

In this work we assess, for the first time, the recognition of EEG error-
related potential occurrences in a complex and realistic task. Compared
to previously reported experiments [82, 105, 110], the visual stimuli,
by the “memory game” application, were more complex. Furthermore
the subjects were cognitively involved in game playing and explicitly
allowed movements, unlike in the other experiments. The differences
in the experimental protocol (i.e. subject moving during the record-
ing, complex visual feedback, different cognitive demand of the exper-
imental task) together with the intrinsic variability, noise, and non-
stationarities of brain signals, explain the low ErrP recognition accura-

5.6. Discussion 87

cies obtained in the current study (see Figure 5.6) compared to previous
studies. Nevertheless, it should be recognized that it is not possible to
achieve 100% ErrP recognition accuracy from EEG signals due to the
low signal-to-noise ratio, EEG non-stationarity and EMG contamina-
tion. Indeed, best classification performances for ErrP recognition in
previous, controlled experiments lies generally around 80% [82, 105].
Therefore our ErrP recognition results are encouraging.

Despite the low ErrP recognition performance, it was still possible to
use the ErrP information to successfully adapt the gesture recognition
system towards a specific user. The gain in performance of the adapted
gesture recognition system is dependent on the ErrP recognition. The
better the ErrP recognition performs the larger the improvement in
gesture recognition that can be expected.

As we rely on a subject independent gesture recognition system
as a basis for our adaptation it is important that the initial gesture
recognition reaches a sufficient recognition performance.

In our experimental setup for data collection we assume that the
subjects intention is correctly captured by the gesture recognition.
There might still be cases where the subject performs a gesture con-
trary to their intention by mistake. This mistake might also be reflected
in the brain signal as an error. As we do not capture the users intention
directly we can not assess the influence of user mistakes.

During the data recording experiment the gesture recognition errors
are added artificially and randomly, so that the subjects can not adapt
their movement strategies to improve the gesture recognition. Therefore
the simulated improvements of the gesture recognition are independent
of potential changes in the user behavior.

In the proposed adaptation schemes the ErrP recognition is inter-
preted as a binary value, and all occurrences are used for adaptation.
However, the output of the Bayesian filter based classifier provides a
posterior probability of the state class and can therefore be also used as
a reliability measure of the classification. Previous studies in BCI appli-
cations have shown that rejection mechanisms based on the probability
values may lead to improvements in the overall information transfer
rate provided by the EEG decoding systems [116]. Similarly the ges-
ture recognition adaptation could take only those gesture instances into
account, which are clearly identified as error or correct. This might im-
prove the gesture recognition adaptation.

88 Chapter 5: Implicit error feedback generation using brain signals

5.7. Conclusion

We have investigated online user adaptation guided by a ErrP based
error feedback signal. We chose a gesture based HCI scenario to eval-
uate our approach. We tested the system using perfect error feedback
signals and also evaluated the performance when this feedback is implic-
itly provided by the user through decoding of the user’s brain activity.
To our knowledge, this is the first attempt to use brain signals related
to the perception of errors for the improvement of activity recognition
systems. Simulations of perfect decoding of such signals show that the-
oretically the recognition accuracy can be increased by up to 17.1%
over the user independent classifier. Using single-trial recognition of
actual EEG data recorded during the gesture based HCI experiment,
the accuracy increase for the adapted gesture recognition reaches 6.8%
in average. This shows that brain signals (i.e. EEG) generated dur-
ing real human-computer interaction provide information that can be
integrated into the activity recognition chain so as to improve its per-
formance.

In the short term EEG-based user adaptation remains unlikely in
real-world scenarios given the current state of the sensing technology,
its sensitivity to motion artifacts, and the desire for invisible wearables.
However portable sensing platforms are now becoming available, and
there is an active research effort along these lines [117].

6
Adaptive recognition

and user behavior

In this chapter we focus on the influence of system adapta-
tion on user behavior. We investigate how the user changes
their behavior when interacting with an adaptive gesture
recognition system compared to a static system. Further-
more the effect of a change in user behavior on the adapta-
tion is studied.

90 Chapter 6: Adaptive recognition and user behavior

6.1. Introduction

In the previous chapters we have presented different methods for adapt-
ing a recognition system to the user (system→user adaptation). When-
ever a user interacts with an activity aware system that provides an
immediate feedback to the user (user in the loop), there is also the po-
tential for the user to adapt their behavior according to the feedback
they receive. It is known, that humans adapt their movement strate-
gies to achieve certain goals in varying environmental conditions, for
example during grasping tasks [118, 119]. Also in handwriting recogni-
tion an adaptation of the user to the system, in order to improve the
recognition, has been observed [120]. A co-adaptation between user and
system has also been investigated for BCIs [74] and a robotic prosthetic
hand controlled via EMG signals [75]. Such a co-adaptation may also
be present when interacting with an activity recognition system, with
the user adapting the way gestures or activities are performed. The
goals pursued by the adapting user could be a better recognition, more
convenient or less tiring movements, or a faster input of commands
(e.g. in HCI applications). Thus, the user also adapts to the system
(user→system adaptation).

6.1.1. Issues of co-adaptation

To design better activity or gesture recognition systems, with the user
in the loop, we have to take into account the user’s ability to adapt.
The user↔system co-adaptation has to be understood, especially with
systems that provide adaptive mechanisms.

The two adaptive processes, the user and the system, may influence
each other, which may result in the adaptation not being possible or
beneficial. For example when one process adapts faster than the other,
the faster process might continuously change conditions that the slower
process is not capable of following. This is linked to stability issues
[121], when two systems (or the system and the user) adapt to each
other concurrently. It is also not clear how useful system adaptation
is, when user adaptation is already present. The user might have more
freedom in adapting their behavior than the system does. On the other
hand, the adaptive recognition system may give the user more comfort,
e.g. by providing a higher recognition rate, or enabling a more efficient
behavior by giving more freedom in the movement execution.

We investigate these aspects on a gesture recognition experiment.
The experiment is designed so that it allows for evaluation of the sys-

6.1. Introduction 91

tem’s adaptation behavior according to the gesture recognition accu-
racy. Furthermore the user behavior can be investigated by analyzing
the users’ hand gesture trajectories.

6.1.2. Gesture recognition scenario

We consider an experimental setup, comprising of the key elements of an
activity aware assistant (activity sensing, provision of a user feedback
based on the sensed activity, user can communicate with the assistant).
Such a setup allows for the study of co-adaptation dynamics.

Our scenario combines the characteristics outlined above. Hand ges-
tures are recognized from the user’s hand movements, captured by an
optical motion tracker. The actions according to the input gestures are
observed by the user via a computer screen. Gesture ground truth can
be indicated by the user to the system.

The gesture recognition system is pre-trained in a user-independent
fashion. Initially it is not optimized for a specific new user. Nevertheless
it can recognize gestures with reasonably high accuracy if they are
performed according to the system’s model.

We investigate two different adaptation processes; the adaptation of
the user to the system (user→system) and the adaptation of the system
to the user (system→user). In the first case the user uses the feedback
given by the system to adapt their movement strategy in a way that
is most compliant with the system’s model, effectively improving the
recognition. In the second case the system uses the feedback, given by
the user, to adapt it’s model to best reflect this user’s properties.

The key point is to understand the user↔system co-adaptation dy-
namics. Users adapt to the characteristics of the system they interact
with [122]. Here, at the same time, the recognition system attempts to
adapt to the user. We investigate whether a better performance in the
system, observed after a long period of interaction, is the result of the
system’s adaptive mechanism or due to the natural adaptation of the
user as they become more used to the system.

We also make the hypothesis, that the system’s adaptive behavior
affects the user’s behavior and comfort, by allowing for more freedom
(e.g. in gesture execution) together with a higher recognition perfor-
mance.

92 Chapter 6: Adaptive recognition and user behavior

Gesture
Recognition

Adaptation

User

xt

Game
Application

ct

Game
Output

~

ct

Figure 6.1: The user performs a hand gesture to control the applica-
tion. The sensed hand trajectory xt is fed into the pretrained gesture
recognition system. The recognized gesture class c̃t controls the game
application. The user observes the game and the action resulting. They
input the ground truth ct of the intended gesture. The ground truth
ct, together with the gesture input trajectory xt, are used to adapt the
recognition system.

6.2. Online adaptation experiment setup

We investigate user adaptation within a scenario where a game is con-
trolled by HCI hand gestures. The gesture recognition system is initially
trained in a user-independent manner. The system is then given to a
new, so far unseen, user. Each gesture xt performed by this user is
classified by the gesture recognition system to c̃t, with the resulting
action outputted on the computer screen. The user indicates the in-
tended ground truth ct of their last gesture to the system. Based on
this information the gesture recognition system is adapted to the new
user. In Figure 6.1 we illustrate this concept.

We decouple the problem of adaptation from the problem of user
feedback, and focus on the former aspect, to study the user↔system co-
adaptation dynamics. Thus, ground truth feedback is inputted by the
user via a computer keyboard directly after every gesture they perform.

6.2.1. Gesture-controlled computer game

The subjects play a computerized version of a “memory game similar”
to the one described in Section 5.3. This time 18 image pairs have to
be found (Figure 6.2).

6.2. Online adaptation experiment setup 93

optical tracker

game screen

optical marker

keyboard

Figure 6.2: Experimental setup. The computer game is presented on the
screen. The optical motion tracker, based on a camera and an optical
marker, captures the input gestures. Ground truth is inputted via the
keyboard.

The game input interface differs from the one described in Section
5.3. Here it is based on six right hand gestures, namely the numbers one
to six written with the right hand in the air. The gestures were inspired
by [123]. The gestures are defined as single stroke gestures as depicted
in Figure 6.3. An image at position (x, y) in the game matrix is selected
by entering the according coordinates with two adjacent hand gestures.
The first gesture selects the column, the second gesture the row. A
selection of column or row can not be reverted or changed. The selected
column is highlighted on the screen by drawing red frames around every
image placeholder within this column. After the user enters the row
number, only the selected image is highlighted with a red frame and
revealed. By highlighting the chosen column and row the user gets
feedback on the recognition result of the inputted gestures.

The movement of the user’s hand is captured by an optical tracking
system. An optical marker is placed on the subject’s right hand and
tracked with a sampling rate of 25 Hz and a resolution of 640x480
pixels. The ground truth of a gesture is inputted by the subject via
the numbers 1 to 6 on a computer keyboard, operated with the left
hand. A new gesture can only be inputted, if the ground truth has

94 Chapter 6: Adaptive recognition and user behavior

Figure 6.3: Single stroke gestures c = 1, . . . , 6. The dot marks the start
and finish-point of the trajectory described by the hand movement
when drawing the number in the air. The dashed lines mark the section
of the trajectory necessary to achieve an identical start and finish-point.
The arrow indicates the direction of the movement.

been indicated prior to the start of the movement. This ensures that
ground truth input is given for each gesture performed.

6.2.2. Online adaptive gesture recognition

During system use, the user’s gestures are recognized online. The mo-
tion trajectory of the hand is captured by an optical motion tracking
system. The continuous trajectory is segmented automatically based on
the movement speed. This is possible because the hand remains mostly
static between gestures, while it moves faster while performing a ges-
ture. The speed is calculated based on the distance traveled between
two location samples. The resulting speed signal is low pass filtered
to eliminate noise. A movement speed of more than 10 pixels per sec-
ond indicates a gesture. A plausibility analysis eliminates all segments
shorter than 14 and longer than 100 samples. All resulting segments
xt are assumed to contain a valid gesture, therefore this segmentation
also acts as a NULL class rejection.

Gesture classification based on Active Shape Models

The classification of the gestures is based on Active Shape Models
(ASM) [124]. ASMs allow for an investigation and comparison of ges-
tures according to motion trajectories. Motion trajectories can be bet-
ter interpreted compared to abstract features typically used with other
classification methods.

For each class c a ASM is built from training examples. Prior to
model generation the training trajectory instances xi,c are aligned and
resampled to contain n = 30 equidistant points each. Since each point

6.2. Online adaptation experiment setup 95

is represented by a x- and a y-coordinate, each trajectory instance
xi, c is 2n dimensional. The ASM consists of the mean trajectory x̄c of
the training instances and eigenvectors pk,c that capture the variation
within the training set. For N training trajectory instances of class c
x̄c is calculated using

x̄c =
1

N

N
∑

i=1

xi,c (6.1)

To calculate the eigenvectors pk,c we first calculate for each trajectory
instance xi,c the deviation dxi,x from the mean trajectory x̄c,

dxi,c = xi,c − x̄c (6.2)

and then the 2n× 2n covariance matrix Σc.

Σc =
1

N

N
∑

i=1

dxi,cdx
T
i,c (6.3)

The variation in the training set is described by the eigenvectors pk,c

of Σc, such that
Σcpk,c = λk,cpk,c (6.4)

with λk,c being th kth eigenvalue (k = 1, . . . , 2n) of Σc. To cope with
noise within the training set we keep all l eigenvectors pl,c in the ASM
of each class c, which are in the direction of the strongest variations
and capture 95% of it.

l
∑

k=1

λk,c = 0.95 (6.5)

The training examples were recorded from five different users prior
to the experiment. The setup of the training data recording was iden-
tical to the experiment setup. The instruction given to the training
subjects, on how to perform the gestures, was done in the same way as
later with the experiment subjects.

20 training examples per class were used to build the user inde-
pendent classifier model. The ASMs for each class are shown in Figure
6.4. The eigenvectors cover different trajectory sizes or start/end-point
variations, to support robust classification.

A new input gesture is classified to one of the gesture classes (Figure
6.3) in the following way. The segmented gesture trajectory is aligned
and resampled in the same way as the training trajectory resulting in

96 Chapter 6: Adaptive recognition and user behavior

0 200 400 600
0

100

200

300

400

x

y

c = 1

0 200 400 600
0

100

200

300

400

x

y

c = 2

0 200 400 600
0

100

200

300

400

x

y

c = 3

0 200 400 600
0

100

200

300

400

x

y

c = 4

0 200 400 600
0

100

200

300

400

x

y

c = 5

0 200 400 600
0

100

200

300

400

x

y

c = 6

Figure 6.4: Active Shape Models for the six classes. The black line is the
mean trajectory x̄c. Both the dashed, and the dash-dotted line illustrate
the variations captured by the first eigenvector p1,c for ±3

√

λ1,c.

a gesture trajectory instance xj to classify. xj is fitted to the mean
trajectories x̄c of all classes c along the directions of variation given by
pk,c.

At first the difference between the trajectory xj to classify and the
mean trajectory x̄c is calculated.

dxj,c = xj − x̄c (6.6)

Then the amount of variation in direction of the eigenvectors pk,c is
determined.

λj,k,c = dxj,cpk,c for k = 1, . . . , l (6.7)

With pk,c and λj,k,c xj can be fitted to x̄c resulting in a fitted trajectory
xj,c.

xj,c = x̄c+(λj,1,cp1,c+λj,2,cp2,c, . . . , λj,k,cpk,c) for k = 1, . . . , l (6.8)

This results in six trajectories xj,1, . . . ,xj,6, one for each class c, which
best fit the according ASMs of the six classes. For each fitted trajectory,
the Euclidean distance to the mean trajectory of the according model,
is calculated. The gesture is classified to prediction c̃ where the fitted
trajectory xj,c has the minimum distance to the mean trajectory x̄c of
the model.

c̃ = argminc(
√

(xj,c − x̄c)(xj,c − x̄c)T) (6.9)

6.2. Online adaptation experiment setup 97

Adaptive classification

The gesture classification can either be used in static or in adaptive
mode. Adaptation of the gesture classifier is accomplished by a batch
approach. The 30 training examples per class are kept in memory. When
a new gesture instance with label c becomes available, it replaces the
oldest example in the training memory of class c. A new ASM is built
from the updated training data of class c. This continuously and in-
crementally adapts the gesture recognition to the characteristics of the
user inputting the new gestures.

6.2.3. Experimental protocol

At the start of the experiment each subject was introduced to the sys-
tem. We explained the operational principle of the motion tracking
device, and stated that the gesture recognition is based on hand trajec-
tories. The subjects were shown a printout of Figure 6.3 and given the
chance to practice the gestures several times. The printout was removed
before the experiment started. To allow for accurate segmentation, the
subjects were instructed to perform the gestures at a reasonable speed
and hold their hand still between gestures. The subjects were not in-
formed about any static or adaptive behavior of the system.

For each subject the experiment was divided into the following four
tasks T.

T1: Offline data acquisition - The subject randomly performs 30
gestures from each of the six classes outside the actual game appli-
cation. The ground truth from each gesture is recorded together
with the gesture trajectory. This task is a plain data recording
without online gesture recognition and without feedback to the
user. It is identical to the data recording from the initial training
subjects.

T2: Online use of the non-adaptive system - The subject plays
the memory game. Input gestures are recognized online based on
the initially trained user independent classifier. After each gesture
the subject indicates the ground truth of their last gesture. The
gesture trajectories, the ground truth and the recognition results,
are stored for later evaluation.

T3: Online use of the adaptive system - This task is similar to T2,
except that the gesture recognition is adaptive. The ground truth

98 Chapter 6: Adaptive recognition and user behavior

Subject
Task 1 2 3 4 5 6 7 8 AVG STD
T1 93.9 69.4 69.4 71.1 85.6 80.6 60.6 78.3 76.1 10.6
T2 92.9 76.1 70.4 69.1 84.7 54.5 47.0 79.6 71.8 15.2
T3 93.8 95.8 94.8 93.0 98.9 93.7 86.0 91.1 93.4 3.7
T4 88.2 85.1 81.7 76.8 84.0 46.8 44.6 81.5 73.6 17.5

Table 6.1: Gesture recognition accuracies for all subjects and all exper-
iment tasks in percentages.

information provided by the subject is used to continuously adapt
the gesture recognition to the new user. The gesture trajectories,
the ground truth and the recognition results, are stored for later
evaluation.

T4: Online use of the non-adaptive system - This task is iden-
tical to T2. It is used as a verification task to ensure that po-
tential improvements observed in T3 are not solely caused by
user→system adaptation but actually the result of system→user
adaptation. The recognition performance in this task is therefore
expected to be similar compared to T2.

After T2, T3 and T4, the subjects fill in a questionnaire about
their perception of the system’s performance and their own behavior.
In each of these tasks at least 150 gestures are performed per subject
(6500 gestures in total for all subjects). Between all tasks the subjects
took a short break of three to four minutes to recover.

We conducted the experiment with eight right-handed subjects aged
25 to 60. The experiment subjects are different from the subjects used
for creating the initial ASM classifier. The duration of the whole proce-
dure was about two hours per subject, including 15 minutes of system
setup and procedure explanation.

6.3. Analysis of user→system adaptation

The recognition system can only recognize gesture trajectories that
match the initially trained ASMs. We investigate in how far the user
is capable of adapting their gesture execution in a way that is compli-
ant with the recognition system. We refer to this as the user→system
adaptation.

6.3. Analysis of user→system adaptation 99

In T1 of the experiment the subject performs the gestures without
obtaining feedback about how well their gestures match the gesture
classifier. After the experiment the recorded gestures were classified
offline, based on the user-independent classifier. The resulting accuracy
acts as a baseline of the gesture recognition performance, when no
adaptation, neither from the user nor from the system, is present.

In T2 and T4 the subject can see on the computer screen if the
input gesture resulted in the intended action, and therefore if the ges-
ture was correctly recognized. This information enables the subject to
explore different gesture executions, in case gestures are not correctly
recognized. The resulting gesture recognition accuracy for these tasks
can be compared with the accuracy obtained from T1 to investigate
the effect of user→system adaptation. Gesture recognition accuracy is
calculated using

accuracy =
gestures correctly classified

gestures performed
(6.10)

In Table 6.1 we list the accuracies for the gesture recognition for all
subjects and all tasks. In average over all subjects the gesture recogni-
tion accuracy for T2 and T4 (71.8% and 73.6%) is lower compared to
the T1 baseline (76.1%). A more detailed look reveals that this accu-
racy difference is not a trend valid for all subjects. Some subjects clearly
benefit from the feedback and manage to adapt their gesture execution
(e.g. Subject 2). For others the feedback doesn’t have a noticeable ef-
fect (e.g. Subject 8) or even leads to a less system compliant gesture
execution and worse recognition (e.g. Subject 7). This indicates that
the gesture exploration, and the use of the feedback, varies between
subjects. To further investigate this we focus on extreme examples of
specific subjects.

Examples for user→system adaptation

To get a better understanding of the user→system adaptation we look
at two extreme cases in more detail (Subject 2 and Subject 7).

The gestures of class 6 performed by Subject 2 in T1 of the experi-
ment were hardly recognized by the user-independent classifier (10.0%
correctly classified). In contrast, the gestures of the same class were
recognized much better in T2 (64.8% correctly classified). In Figure 6.5
we show the average hand trajectories for this case. For T1 there is a
clear difference between the trajectories of the gestures incorrectly and

100 Chapter 6: Adaptive recognition and user behavior

200 400 600

100

200

300

400

x

y

(a) T1: wrong

200 400 600

100

200

300

400

x

y

(b) T1: all

200 400 600

100

200

300

400

x

y

(c) T1: correct

200 400 600

100

200

300

400

x

y

(d) T2: wrong

200 400 600

100

200

300

400

x

y

(e) T2: all

200 400 600

100

200

300

400

x

y

(f) T2: correct

Figure 6.5: Trajectories for gesture class c = 6 of Subject 2 performed
in T1 and T2. The trajectories shown are averages over all incorrectly
classified gestures, all gestures and all correctly classified gestures.

correctly recognized (Figures 6.5 (a) and (c)). The main difference is
the trajectory end point which is much lower for the incorrectly rec-
ognized gestures compared with those correctly recognized. In T2 the
subject uses the feedback to learn a gesture execution that leads to
a better recognition of class 6. The correctly recognized gestures still
have a high trajectory end point compared to the incorrectly classified
ones (Figures 6.5 (d) and (f)). For the incorrectly recognized gestures
the trajectory end point in T2 is higher than it is in T1 (Figure 6.5
(a) and (d)). The average trajectory of all class 6 gestures has a higher
trajectory end point in T2 compared to T1 (Figures 6.5 (e) and (b)).
This indicates that the user adapted to the system’s expectation of a
higher trajectory end point.

The gestures of class 3 performed by Subject 7 in T1 were bet-
ter recognized (43.3%) than the gestures of the same class during T2
(18.6%). In Figure 6.6 we show the average hand trajectories for this
case. The average trajectory of the incorrectly classified gestures shows
a loop between the upper and lower curve of the digit 3 (Figures 6.6
(a) and (d)). This loop is not present in the trajectories of the gestures
that were correctly classified (Figures 6.6 (c) and (f)). Furthermore the
incorrectly classified gestures have a smaller upper curve in the trajec-
tory than the correctly classified ones. The lower recognition rate in

6.4. Analysis of system→user adaptation 101

200 400 600

100

200

300

400

x

y

(a) T1: wrong

200 400 600

100

200

300

400

x

y

(b) T1: all

200 400 600

100

200

300

400

x

y

(c) T1: correct

200 400 600

100

200

300

400

x

y

(d) T2: wrong

200 400 600

100

200

300

400

x

y

(e) T2: all

200 400 600

100

200

300

400

x

y

(f) T2: correct

Figure 6.6: Trajectories for gesture class c = 3 of Subject 7 performed
in T1 and T2. The trajectories shown are averages across all incorrectly
classified gestures, all gestures (correct and incorrect) and all correctly
classified gestures.

T2 indicates that the subject was not able to use the feedback from
the system to adjust their movement strategy, to match the system’s
model. In contrast they performed the gestures even more in the way
that was less recognizable, as can be seen on the average trajectory
over all gestures of T1 and T2 (Figures 6.6 (b) and (e)). This might be
caused by the subject exploring different gesture execution strategies
without being able to find one that leads to a robust recognition.

6.4. Analysis of system→user adaptation

We investigate the online adaptation of the gesture recognition system
towards the actual user. With each new gesture input the recognition
system adapts incrementally to the user (T3 of the experiment).

The results listed in Table 6.1 clearly show the benefit of the system
adaptation. For all subjects the adaptive system (T3) achieves a better
recognition performance compared to the non-adaptive cases (T1, T2
and T4). In average the adaptive recognition system outperforms the
non-adaptive system by about 20% in accuracy.

102 Chapter 6: Adaptive recognition and user behavior

200 400 600

100

200

300

400

x

y

Figure 6.7: Gesture trajectory for Subject 2 and gesture 6 performed
in T3. The trajectory shown is the average over all correctly classified
gestures. For this subject all gestures were classified correctly in T3.

200 400 600

100

200

300

400

x

y

(a) T3: wrong

200 400 600

100

200

300

400

x

y

(b) T3: all

200 400 600

100

200

300

400

x
y

(c) T3: correct

Figure 6.8: Gesture trajectories for Subject 7 and gesture 3 performed
in T3. The trajectories shown are averages over all incorrectly classified
gestures, all gestures and all correctly classified gestures.

Examples for system→user adaptation

We look again at the two cases we already investigated in Section 6.3.
Namely the gestures of class 6 from Subject 2 and the gestures of class
3 from Subject 7

In Figure 6.7 we show the average gesture trajectory for T3 of Sub-
ject 2. All gestures of class 6 were correctly recognized in this setting.
The average correct gesture trajectory from T3 (Figure 6.7) is very
similar to the average correct trajectory from T2 (Figure 6.5 (f)). This
indicates that Subject 2 has learned to perform the gesture in a system
compliant way during T2 and maintained this knowledge during T3
despite the system being adaptive.

The average trajectories of the class 3 gestures of Subject 7 per-
formed during T3 of the experiment are shown in Figure 6.8. In this
setting 79.0% of all gestures of class 3 were correctly recognized. The
average trajectory for the correctly recognized gestures (Figure 6.8 (c))
shows a small loop between the upper and lower curve of the digit and
a small upper curve. This is similar to the gesture trajectories of the

6.5. Discussion 103

incorrectly classified gestures during T1 and T2 (Figures 6.6 (a) and
(d)). The adapted recognition system of T3 was therefore capable of
correctly classifying the gestures which were formerly misclassified. The
average trajectory of all gestures of class 3 during T3 (Figure 6.8 (b)) is
also similar to the average trajectory of T1 (Figure 6.6 (b)). This indi-
cates that the adapted recognition system enables the user to fall back
to their way of performing the gestures, while the system maintains a
better recognition performance compared to T1 and T2.

6.5. Discussion

We carefully chose the application scenario and designed the exper-
iment in a way, that eliminates potential error sources, and reduces
the likelihood of misinterpretations. Nevertheless we discuss potential
issues with our setup and our results.

6.5.1. On the experiment

The experiment design we chose in this chapter is not focused on an
evaluation of a novel gesture recognition approach. Conversely, we in-
tend to show the differences between the evaluation of an adaptive on-
line recognition system on pre-recorded data and the evaluation within
the actual online application. Our special focus hereby is on adaptation
effects, from the user as well as from the system. Therefore we chose
the optical hand trajectory tracking together with the ASM approach,
allowing for a visualization of the gestures in 2D space. Our findings
are not limited to optical motion tracking and should also be applicable
to other sensor modalities that capture a form of motion or movements
(for example an inertial measurement unit (IMU)).

The system adaptation is based on ground truth information pro-
vided by the user. Even though this approach works well for our pur-
pose, it is not appropriate for an actual gesture recognition application.
The ground truth feedback supersedes the purpose of the online recog-
nition. Within an actual application a minimally obtrusive form of user
feedback has to be chosen to guide the adaptation (see e.g. Chapter 5).

6.5.2. On user→system adaptation

The comparison of the gesture recognition accuracies in experiment
T1 and T2 show major differences for several subjects, despite us tak-
ing special care to perform T1 and T2 as similarly to one another.

104 Chapter 6: Adaptive recognition and user behavior

This shows that evaluations based on data recordings in a setting only
slightly different from the actual application (e.g. without feedback or
without involvement of the user in the task) may not apply to the ac-
tual application. When the user gets feedback from the system about
the recognition, they may learn a specific behavior to meet the sys-
tem’s expectation. We observed such a user adaptation for several users.
The effect and impact of the user adaptation is diverse throughout the
subjects though. Even for the same subject we can observe different
behaviors for different gesture classes.

When evaluating the system online within the target application
other factors may also come into play. The memory game for example,
played during T2 to T4, takes the attention of the user away from the
gesture execution. This may lead to the user focusing less on how they
perform the gestures and more on the actual game playing. This is
an important aspect for such systems, as gesture execution should be
intuitive, and not require much attention. The user may also get tired
during the experiment due to its physical and mental demand. Lesser
attention on the gesture execution or tiredness may result in a change
of the gesture trajectory. We aimed at minimizing the effect of tiredness
by giving subjects rest periods between experiment tasks.

6.5.3. On system→user adaptation

The adaptive recognition system, used in T3 of the experiment, pro-
vides a benefit for the user in form of a better gesture recognition.
Furthermore, it allows the user to retain their own gesture execution
style minimizing the effort of exploring other gesture movements which
might be better recognized by the system. The adaptive behavior of the
system can therefore increase the comfort for the user during system
interaction. This finding is also supported by the questionnaire results.
Six out of the eight subjects reported that they were able to focus more
on the actual game playing during T3 compared to T2 and T4.

It is not possible to completely separate the system adaptation from
the user adaptation though. The improvements observed in T3 of the
experiment might be a result of combined adaptation efforts, from the
system as well as from the user. Nevertheless, in our case there is evi-
dence that the main increase in recognition accuracy is caused by the
system adaptation. This is indicated by the fact that the recognition
accuracy in T3 is higher compared to T4, even though the subject has
more practice when performing T4, compared to T3. A system→user

6.6. Conclusion 105

adaptation has therefore clear benefits, even when the user is capable
of adapting, too.

6.6. Conclusion

We investigated the user↔system co-adaptation of a gesture recogni-
tion system from the user as well as the system perspective. The adap-
tive gesture recognition is based on optical hand trajectory tracking
combined with an ASM based classifier. In an online gesture recognition
experiment we recorded more than 6500 gestures from eight subjects.
The conditions covered by the experiment are:

1. A gesture data recording without feedback

2. A gesture controlled game playing with a static recognition sys-
tem

3. A gesture controlled game playing with an adaptive recognition
system

User→system adaptation

We observed that the subjects change their gesture execution when
they become aware of the recognition result provided by the game ap-
plication via the computer screen. The gestures recorded during the
task, where no feedback was given to the users, were recognized with
an accuracy of 76.1%. When the users get feedback on their gestures
the average accuracies are 71.8% and 73.6%. It is a surprising result
that the subjects are in average not able to benefit from the provided
feedback, which contradicts our expectations. One reason for this could
be, that in the feedback task the subjects focus mainly on the game
playing, and concentrate less on the gesture execution compared to the
no feedback task.

System→user adaptation

When the recognition system adapts to the user, based on ground truth
provided, the gesture recognition accuracy increases to 93.4%. This in-
crease in performance is likely to be caused by the system adapting
to the user and confirms our expectation on an adaptive recognition
system. This result is even more outstanding when taking into account

106 Chapter 6: Adaptive recognition and user behavior

that the user→system adaptation, on average, did not lead to an im-
provement. From the user’s point of view the benefit is not only in the
increased recognition rate but also in the higher comfort, as they can
perform gestures in ways most natural to them.

7
Conclusion

In this chapter we summarize and discuss the achievements
of this thesis. In addition we provide an outlook for potential
further research in the field of adaptive activity recognition.

108 Chapter 7: Conclusion

7.1. Summary of achievements

Activity recognition is an important building block for context aware
computing. The typical approach, inferring activities from motion sen-
sor signals based on a static classifier model, has it’s limitations. It
cannot cope with non-stationary sensor signals caused by a different
user behavior or novel characteristics of the environment. An activity
recognition system that is intended to be used over long periods of time,
in different environments, and by different users, has to be capable of
adapting to such non-stationarities.

One possible solution we evaluated in this thesis is the use of in-
cremental learning techniques. These techniques allow for the adap-
tation of a classifier by integrating new knowledge when it becomes
available. The following achievements are part of our contributions to
enable adaptive activity recognition and to make it more applicable to
the real world.

• We proposed and evaluated three different incremental adapta-
tion methods for activity recognition. They differ in the amount
of supervision they require as well as in the learning principle
they are based on.

– The first approach (Chapter 3) is an unsupervised classifier
self-calibration. It does not require any supervision from the
user to adapt the classifier but instead capitalizes on struc-
tures in the input data. If the recognition accuracy before
calibration is better than chance, an improvement by self-
calibration can be expected. We have validated this find-
ing for adaptation towards changes in the sensor system,
namely the displacement of acceleration sensors on one limb
segment. Simulations of the self-calibration on two datasets
have shown an accuracy improvement of 33.3% and 13.4%,
resulting in 63.5% and 74.4% of accuracy in case of a sligthly
displaced sensor.

– The second method (Section 4.2) is based on an incremen-
tal learning kNN classifier. We developed a novel incremental
learning mechanism for a special form of supervision, namely
error feedback. This feedback is given by the user whenever
an activity instance is not classified correctly. In simulations
on a real world gesture recognition dataset an improvement

7.1. Summary of achievements 109

of the recognition accuracy by 10.3% was achieved by adapt-
ing to a new user, compared to the user independent baseline
accuracy of 68.3%.

– The third method (Section 4.3) is based on Reinforcement
Learning (RL) and also capitalizes on error feedback. In this
case the error feedback from the user is translated into a re-
ward signal. The RL aims to maximize the future expected
reward by learning from past experiences. In contrast to the
kNN approach the system based on RL can not only adapt
to a new user but also learn the behavior of a user from
scratch. We have shown this on a real world gesture recog-
nition dataset. After 175 input gestures the system adapted
to the new user achieving 90% of the maximum accuracy.
Learning the behavior of a new user from scratch took a sim-
ilar amount of input gestures and resulted in a similar recog-
nition performance in comparison to the adaptation from a
pre-trained system. The adaptation to a new user from a
pretrained state increased the recognition performance by
36% compared to the baseline accuray of 46%.

• We conducted an online gesture recognition case study (Section
4.4) to validate the potential of incremental learning from error
feedback. The participants of the study controlled a computer
game by hand gestures which were recognized online. The adap-
tation of the gesture recognition was supervised by the user giving
error feedback. We investigated three different learning scenarios:
learning a new user behavior from scratch, adaptation to a dis-
placed sensor and adaptation to a relocated sensor. In all three
scenarios the learning and adaptation, based on the error feed-
back provided by the user, was successful and beneficial.

• We proposed a novel way for user feedback generation capital-
izing on advances in EEG signal processing (Chapter 5). The
user doesn’t have to explicitly indicate a recognition error. In-
stead this information is extracted from the user’s brain signals.
This implicit user feedback is less obtrusive for the user since it
doesn’t require their attention. We conducted an online gesture
recognition experiment to evaluate the potential of brain based
error feedback generation. In simulations on the recorded brain
signals it was possible to detect gesture recognition errors with
above random accuracy. The average sensitivity and specificity

110 Chapter 7: Conclusion

achieved were 0.60 and 0.56 respectively. Despite the imperfect
error feedback it was still possible to adapt the user indepen-
dent gesture classifier to a new user. The average gain in gesture
recognition accuracy was 6.8%.

• We investigated the influence of an adaptive recognition system
on the user’s behavior in an online gesture recognition exper-
iment (Chapter 6). The experiment covers three conditions: a
gesture data recording, gesture controlled game playing with a
static recognition system, and game playing with an adaptive
recognition system. We observed that users changed their gesture
execution when they became aware of the gesture recognition re-
sults via the game application. The users were not able to adapt
their behavior to match the expectation of the static recognition
system. In contrast the users’ interaction with the adaptive sys-
tem led to an improvement in the gesture recognition. There are
indications that the adaptive system also enabled the users to
perform the gestures in a way most convenient and natural to
them.

7.2. Discussion

The adaptive methods we proposed and evaluated showed potential for
the application of activity and gesture recognition. It must be noted
though, that unsupervised adaptation has it’s limitations since an im-
provement can not be guaranteed. In contrast the supervision provided
by the error feedback reflects the user’s intention and actively guides
the adaptation.

The error feedback contains less information compared to ground
truth feedback. This also influences the adaptation which might be
slower or less accurate with error feedback. Nevertheless error feedback
is easier to obtain and less obtrusive for the user, especially when the
feedback is generated implicitly by the user.

With the proposed usage of EEG error related potentials for au-
tomatic implicit error feedback generation the subject doesn’t have to
explicitly focus on giving feedback. From this point of view it is even
less obtrusive than an error button which has to be explicitly pushed.
Considering the extensive measurement system required for capturing
the user’s brain signal, this approach is still not ready for every day use
though.

7.3. Outlook 111

When designing adaptive recognition systems the behavior of the
user should also be taken into account. In a gesture recognition task
we have seen that users adapt to the system they use. This leads to a
user-system co-adaptation which is hard to predict and dependent on
the application, the system setup, and the user.

7.3. Outlook

With the insights gained in this thesis we formulate further research
directions of interest.

• The incremental learning algorithms we proposed assume that the
error information provided for each instance is correct. We have
already seen that imperfect error feedback, for example when it is
extracted from brain signals, affects the adaptation performance.
A learning method more robust to such imperfect feedback would
lead to a better and also potentially faster adaptation.

• The error feedback could be combined with a confidence or qual-
ity value. For example this value could indicate how confident
the system is, that the error feedback is actually correct. This
confidence could be taken into account when learning and adapt-
ing, for example by weighting the instances accordingly, or by
omitting the feedback when the confidence is too low.

• The supervision required could also be further reduced by inte-
grating active learning methods [125]. In this case the idea is not
to learn from all instances that become available but to choose
those which seem to be most beneficial. Usually a label is re-
quested for the instances that were selected for learning. These
labels might also be replaced by error information.

• EEG signals are affected by contaminations from motion arti-
facts. In applications like activity or gesture recognition, where
movements are required and wanted, this can lead to a reduced
error recognition performance. An additional EMG measurement
could be used to remove motion artifacts from the EEG signal to
improve the error feedback.

• The implicit error feedback generation from brain signals was
investigated with a complex and obtrusive EEG measurement
device. Less obtrusive and even fully wearable EEG measurement

112 Chapter 7: Conclusion

systems started to appear on the market lately. Such system could
improve the comfort and make this approach usable in everyday
life.

• So far we explored brain signals for an implicit generation of the
error feedback from the user. Other physiological signals like the
heart rate or the electrodermal activity could also provide valu-
able information for adaptation. A combination of these physio-
logical signals could improve the quality of the error information
provided.

• We investigated the co-adaptation behavior between an adaptive
gesture recognition system and the user. In our case the recog-
nition system operated on one fixed set of learning rate parame-
ters. To date it is not clear how the user and the system behavior
influence each other when a different learning rate is used, and
therefore a different plasticity and stability of the system is given.
A general understanding of this co-adaptation would be beneficial
for the future design of any adaptive activity or gesture recogni-
tion system.

Glossary

Notation Description
a action
âcc accuracy estimate
α balance parameter
β rotation angle
c activity/gesture class
c̃ class prediction
CC class center
d side length of square
d(.) Euclidean distance
δ stop learning parameter
e distance based weight parameter
ε exploration rate
f feature vector
i index
K set of all possible classes c
k number of nearest neighbors
κ removal weight threshold
K(.) kernel function
l learning neighborhood radius
λ eigenvalue
LR learning rate
M classifier model
µ mean
NN neighborhood
O EEG signal instance
p eigenvector
π policy
Q(.) Q-function
R classification neighborhood radius
r reward
S state

116 Glossary

Notation Description
s teacher signal
w weight
Σ covariance matrix
ST stop learning threshold
SW sum of weights
t time
τ time difference
τd maximum density parameter
τk kernel radius parameter
u sensor position for training
v sensor position for testing
Wdec weight decrease function
Winc weight increase function
x activity/gesture instance

Abbreviations

Notation Description
2D 2-dimensional
AVG average
BCI brain-computer interface
CE correct/error
EEG electroencephalography
EMG electromyography
ERN error related negativity
ErrP error related potential
FRN feedback related negativity
GNG growing neural gas
HCI human-computer interface
IMU inertial measurement unit
kNN k-Nearest-Neighbor
LC learning case
NCC nearest centroid classifier
NGN neural gas network
RL reinforcement learning
ROC receiver operating characteristics
SAP state-action pair
SI subject independent
SOM self organizing map
std standard deviation
USB universal serial bus

Bibliography

[1] A. K. Dey and G. D. Abowd. Towards a better understanding
of context and context-awareness. In CHI 2000 workshop on the
what, who, where, when, and how of context-awareness, volume 4,
pages 1–6. Citeseer, 2000.

[2] Jun Yang. Toward physical activity diary: motion recognition us-
ing simple acceleration features with mobile phones. In Proceed-
ings of the 1st international workshop on Interactive multimedia
for consumer electronics, IMCE ’09, pages 1–10, New York, NY,
USA, 2009. ACM.

[3] Antonio Camurri and Volbe Gualtiero. Gesture-Based Communi-
cation in Human-Computer Interaction, volume 2915. Springer-
Verlag, 2003.

[4] Christophe Giraud-Carrier. A note on the utility of incremental
learning. AI Communications, 13(4):215–223, December 2000.

[5] Holger Junker. Human Activity Recognition and Gesture Spotting
with Body-Worn Sensors. PhD thesis, ETH Zurich, 2005.

[6] E. Parzen. Stochastic processes, volume 24. Society for Industrial
Mathematics, 1999.

[7] Mark G. Kelly, David J. Hand, and Niall M. Adams. The impact
of changing populations on classifier performance. In KDD ’99:
Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 367–371, New
York, NY, USA, 1999. ACM.

[8] Gerhard Widmer and Miroslav Kubat. Learning in the presence
of concept drift and hidden contexts. Mach. Learn., 23(1):69–101,
1996.

[9] Chunyu Yang and Jie Zhou. Non-stationary data sequence clas-
sification using online class priors estimation. Pattern Recogn.,
41(8):2656–2664, 2008.

120 Bibliography

[10] Alexey Tsymbal. The problem of concept drift: Definitions and
related work. Technical report, Department of Computer Science,
Trinity College, 2004.

[11] Ludmila I. Kuncheva. Classifier ensembles for changing environ-
ments. In Fabio Roli, Josef Kittler, and Terry Windeatt, edi-
tors, Multiple Classifier Systems, volume 3077 of Lecture Notes
in Computer Science, pages 1–15. Springer, 0 2004.

[12] Gail A Carpenter and Stephen Grossberg. A massively paral-
lel architecture for a self-organizing neural pattern recognition
machine. Comput. Vision Graph. Image Process., 37(1):54–115,
1987.

[13] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and
Michael L. Littman. Activity recognition from accelerometer
data. American Association for Artificial Intelligence, 2005.

[14] Thomas G. Dietterich, Gerhard Widmer, and Miroslav Kubat.
Special issue on context sensitivity and concept drift. Mach.
Learn., 32(2), 1998.

[15] J. del R. Millan. On the Need for On-Line Learning in Brain-
Computer interfaces. In Proc. of the Int. Joint Conf. on Neural
Networks, 2004.

[16] P. Shenoy, Matthias Krauledat, B. Blankertz, R. P. N. Rao, and
K. R. Müller. TUTORIAL: Towards adaptive classification for
BCI. Journal of Neural Engineering, 3, 2006.

[17] A. Buttfield, P. W. Ferrez, and J. del R. Millan. Towards a robust
bci: error potentials and online learning. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 14(2):164–168,
2006.

[18] Matthias Krauledat. Analysis of Nonstationarities in EEG Sig-
nals for Improving Brain-Computer Interface Performance. PhD
thesis, Technischen Universität Berlin, 2008.

[19] John C. Platt and Nada P. Mati’c. A constructive rbf network for
writer adaptation. In Advances in Neural Information Processing
Systems. MIT Press, 1997.

Bibliography 121

[20] Anja Brakensiek, Andreas Kosmala, and Gerhard Rigoll. Com-
paring adaptation techniques for on-line handwriting recognition.
icdar, 00:0486, 0 2001.

[21] Alessandro Vinciarelli and Samy Bengio. Writer adaptation tech-
niques in hmm based off-line cursive script recognition. Pattern
Recogn. Lett., 23(8):905–916, 2002.

[22] Scott D. Connell and Anil K. Jain. Writer adaptation for on-
line handwriting recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 24(3):329–346, 0 2002.

[23] Randy Gomez, Akinobu Lee, Tomoki Toda, Hiroshi Saruwatari,
and Kiyohiro Shikano. Improving Rapid Unsupervised Speaker
Adaptation Based on HMM-Sufficient Statistics in Noisy Envi-
ronments Using Multi-Template Models. IEICE Trans Inf Syst,
E89-D(3):998–1005, 2006.

[24] Gyucheol Jang, Minho Jin, and Chgang D. Yoo. Speaker adapta-
tion based on confidence-weighted training. In Eurospeech, pages
1617–1620, 2003.

[25] J. Neto, C. Martins, and L. Almeida. Unsupervised speaker-
adaptation for hybrid hmm-mlp continuous speech recognition
system, 1995.

[26] Yun Tang and R. Rose. Rapid speaker adaptation using clus-
tered maximum-likelihood linear basis with sparse training data.
IEEE Transactions on Audio, Speech, and Language Processing,
16(3):607–616, 2008.

[27] Puming Zhan, Martin Westphal, Michael Finke, and Alex Waibel.
Speaker normalization and speaker adaptation - a combination
for conversational speech recognition. In Proceedings of Eu-
rospeech Conference, pages 2087–2090, 1997.

[28] Ling Bao and Stephen S. Intille. Activity recognition from user-
annotated acceleration data. In Proc. of the 2nd Int Pervasive
Computing Conference, pages 1–17, 2004.

[29] Norbert Olivier and Ulrike Rockmann. Grundlagen der Bewe-
gunswissenschaft und -lehre. Grundlagen der Sportwissenschaft.
Verlag Karl Hofmann, 2003.

122 Bibliography

[30] David A Winter, Aftab E Patla, James S Frank, and Sharon E
Walt. Biomechanical walking pattern changes in the fit and
healthy elderly. Phys Ther (United states), 70(6):340–347, 0 1990.

[31] Réjean Hébert, Carol Brayne, and David Spiegelhalter. Inci-
dence of functional decline and improvement in a community-
dwelling, very elderly population. American Journal of Epidemi-
ology, 145(10):935–944, 1997.

[32] Jeffrey M Hausdorff, Chung-Kang Peng, Ary L. Goldberger, and
Andrew L Stoll. Gait unsteadiness and fall risk in two affective
disorders: a preliminary study. BMC Psychiatry, 4(39), 2004.

[33] Farid Parvini and Cyrus Shahabi. Utilizing bio-mechanical char-
acteristics for user-independent gesture recognition. In ICDEW
’05: Proceedings of the 21st International Conference on Data
Engineering Workshops, page 1170, Washington, DC, USA, 2005.
IEEE Computer Society.

[34] Jonathan Lester, Tanzeem Choudhury, and Gaetano Borriello. A
practical approach to recognizing physical activities. In Lecture
Notes in Computer Science : Pervasive Computing, pages 1–16,
2006.

[35] N. Cristianini and J. Shawe-Taylor. An introduction to support
Vector Machines: and other kernel-based learning methods. Cam-
bridge university press, 2006.

[36] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2000.

[37] C. Alippi and M. Roveri. Just-in-time adaptive classifiers in non-
stationary conditions. In International Joint Conference on Neu-
ral Networks, pages 1014–1019, 2007.

[38] Ralf Klinkenberg and Thorsten Joachims. Detecting concept
drift with support vector machines. In ICML ’00: Proceedings of
the Seventeenth International Conference on Machine Learning,
pages 487–494, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

[39] T. Kohonen. Self-Organizing Maps. Springer, 2001.

Bibliography 123

[40] T. Martinetz and K. Schulten. A ”neural gas” network learns
topologies. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kan-
gas, editors, Artificial Neural Networks, pages 397–402. Elsevier,
Amsterdam, 1991.

[41] S. Mika, C. Schäfer, P. Laskov, Tax D., and K. R. Müller.
Handbook of Computational Statistics, chapter 15, pages 841–876.
Springer, Berlin, 2004.

[42] Qiang Huo and Chin-Hui Lee. On-line adaptive learning of the
continuous density hidden markov model based on approximate
recursive bayes estimate. Speech and Audio Processing, IEEE
Transactions on, 5(2):161–172, 1997.

[43] Gianluigi Mongillo and Sophie Deneve. Online learning with hid-
den markov models. Neural Computation, 20:1706–1716, 2008.

[44] B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, and J. M. Buh-
mann. Topology free hidden markov models: application to back-
ground modeling. Computer Vision, 2001. ICCV 2001. Proceed-
ings. Eighth IEEE International Conference on, 1:294–301 vol.1,
2001.

[45] J. C. Stiller and G. Radons. Online estimation of hidden markov
models. Signal Processing Letters, IEEE, 6(8):213–215, 1999.

[46] Jun Mizuno, Tasuya Watanabe, Kazuya Ueki, Kazuyuki Amano,
Eiji Takimoto, and Akira Maruoka. On-line estimation of hidden
markov model parameters. In DS ’00: Proceedings of the Third
International Conference on Discovery Science, pages 155–169,
London, UK, 2000. Springer-Verlag.

[47] L Cohen, G Avrahami, M Last, A Kandel, and O Kipersztok.
Incremental classification of nonstationary data streams. In Pro-
ceedings of the Second International Workshop on Knowledge
Discovery in Data Streams, pages 117–124, 2005.

[48] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduc-
tion to Data Mining. Addison Wesley, us ed edition, May 2005.

[49] Bernd Fritzke. A self-organizing network that can follow non-
stationary distributions. In ICANN ’97: Proceedings of the 7th
International Conference on Artificial Neural Networks, pages
613–618, 1997.

124 Bibliography

[50] R. Salas, S. Moreno, H. Allende, and C. Moraga. A robust
and flexible model of hierarchical self-organizing maps for non-
stationary environments. Neurocomput., 70(16-18):2744–2757,
2007.

[51] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised
Learning (Adaptive Computation and Machine Learning). The
MIT Press, 2006.

[52] V Vapnik. Statistical Learning Theory. Wiley, 1998.

[53] R. Dara, S. C. Kremer, and D. A. Stacey. Clustering unlabeled
data with soms improves classification of labeled real-world data.
Neural Networks, 2002. IJCNN ’02. Proceedings of the 2002 In-
ternational Joint Conference on, 3:2237–2242, 2002.

[54] R. S. Sutton and A. G. Barto. Reinforcement learning: An intro-
duction. The MIT press, 1998.

[55] T. Artieres and P. Gallinari. Stroke level hmms for on-line hand-
writing recognition. In Frontiers in Handwriting Recognition,
2002. Proceedings. Eighth International Workshop on, pages 227
– 232, 2002.

[56] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. On-line adapta-
tion in recognition of handwritten alphanumeric characters. In
Document Analysis and Recognition, 1999. ICDAR ’99. Proceed-
ings of the Fifth International Conference on, pages 792 –795, sep
1999.

[57] Ali Nosary, Laurent Heutte, and Thierry Paquet. Unsupervised
writer adaptation applied to handwritten text recognition. Pat-
tern Recognition, 37(2):385 – 388, 2004.

[58] S. D. Connell and N. K. Jain. Writer adaptation of online hand-
writing models. In Document Analysis and Recognition, 1999.
ICDAR ’99. Proceedings of the Fifth International Conference
on, pages 434 –437, 1999.

[59] G. G. Molina. Bci adaptation using incremental-svm learn-
ing. In Neural Engineering, 2007. CNE ’07. 3rd International
IEEE/EMBS Conference on, pages 337 –341, may 2007.

Bibliography 125

[60] C. Vidaurre, A. Schlogl, R. Cabeza, R. Scherer, and
G. Pfurtscheller. A fully on-line adaptive bci. Biomedical En-
gineering, IEEE Transactions on, 53(6):1214 –1219, june 2006.

[61] Pradeep Shenoy, Matthias Krauledat, Benjamin Blankertz, Ra-
jesh P N Rao, and Klaus-Robert Müller. Towards adaptive clas-
sification for bci. Journal of Neural Engineering, 3(1):R13, 2006.

[62] Ernest J. Pusateri and Timothy J. Hazen. Rapid speaker adap-
tation using speaker clustering. In Proc. of ICASSP. unknown,
2002.

[63] X. He and Y. Zhao. Fast model selection based speaker adap-
tation for nonnative speech. IEEE Trans. on Speech and Audio
Processing, 11(4):298–307, 2003.

[64] J. M. Baker, L. Deng, J. Glass, S. Khudanpur, Lee C.-H., N. Mor-
gan, and D. O’Shaughnessy. Research developments and direc-
tions in speech recognition and understanding, part 1. IEEE
Signal Processing Magazine, 26(3):75–80, 2009.

[65] R. Ohmura, N. Hashida, and M. Imai. Preliminary evaluation of
personal adaptation techniques in accelerometer-based activity
recognition. In Proc. 13th IEEE Int. Symposium on Wearable
Computers: Late Breaking Results, 2009.

[66] T. Maekawa and S. Watanabe. Unsupervised activity recognition
with user’s physical characteristics data. In Proc. International
Symposium on Wearable Computers (ISWC 2011), 2011.

[67] Kai Kunze and P. Lukowicz. Using acceleration signatures from
everyday activities for on-body device location. InWearable Com-
puters11th IEEE International Symposium on Wearable Comput-
ers, pages 115–116, 2007.

[68] Kai Kunze and Paul Lukowicz. Dealing with sensor displacement
in motion based onbody activity recognition systems. In Ubi-
Comp ’08: Proceedings of the 10th international conference on
Ubiquitous computing, pages 20–29, 2008.

[69] K. Höök. Evaluating the utility and usability of an adaptive
hypermedia system. Knowledge-Based Systems, 10(5):311–319,
1998.

126 Bibliography

[70] Stephan Weibelzahl. Evaluation of Adaptive Systems. PhD thesis,
University of Education Freiburg, 2002.

[71] C. Gena. Methods and techniques for the evaluation of user-
adaptive systems. The knowledge engineering review, 20(01):1–
37, 2005.

[72] W. E. Mackay. From gaia to hci: On multi-disciplinary design
and co-adaptation. 2008.

[73] W. E. Mackay. Users and customizable software: A co-adaptive
phenomenon. PhD thesis, Massachusetts Institute of Technology,
1990.

[74] B. Mahmoudi, J. DiGiovanna, J. C. Principe, and J. C. Sanchez.
Co-adaptive learning in brain-machine interfaces. Brain inspired
cognitive systems. Sao Luis, Brazil, 2008.

[75] Ryu Kato, F. Matsumoto, H. Yokoi, T. Arai, and T. Onishi.
Co-adaptation system between human and machine in welfare
robotics-development of adaptive emg prosthetic hand. Nippon
Kikai Gakkai Robotikusu, Mekatoronikusu Koenkai Koen Ron-
bunshu (CD-ROM), 2006:2P2–A18, 2006.

[76] Bernd Fritzke. A growing neural gas network learns topologies.
In Advances in Neural Information Processing Systems 7, pages
625–632. MIT Press, 1995.

[77] C. Alippi and M. Roveri. A computational intelligence-based
criterion to detect non-stationarity trends. In International Joint
Conference on Neural Networks, pages 5040–5044, 2006.

[78] C. Alippi and M. Roveri. An adaptive cusum-based test for signal
change detection. In Proceedings of IEEE International Sympo-
sium on Circuits and Systems, 2006.

[79] Cornelia Setz, Bert Arnrich, Johannes Schumm, Roberto
La Marca, Gerhard Tröster, and Ulrike Ehlert. Discriminat-
ing stress from cognitive load using a wearable eda device.
IEEE Transactions on Information Technology in Biomedicine,
14(2):410–417, 2010.

[80] Ashish Kapoor, Winslow Burleson, and Rosalind W. Picard. Au-
tomatic prediction of frustration. In International Journal of
Human Computer Studies, 2007.

Bibliography 127

[81] R. S. Lazarus. Psychological stress and the coping process. Mc-
Graw Hill, New York, 1966.

[82] R. Chavarriaga, P. W. Ferrez, and J. del R. Millán. To err is
human: Learning from error potentials in brain-computer inter-
faces. In International Conference on Cognitive Neurodynamics,
2007.

[83] Avrim Blum. Online Algorithms: The State of the Art, chapter 4.
Fiat and Woeginger eds., 1998. 5.

[84] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Rein-
forcement Learning and Dynamic Programming using Function
Approximators. Automation And Control Engineering, page 280,
2010.

[85] Richard Bellman. Dynamic Programming. Princeton University
Press, 2010.

[86] G. Tesauro. Temporal difference learning and td-gammon. Com-
munications of the ACM, 38(3):58–68, 1995.

[87] P. R. Roelfsema and A. Ooyen. Attention-gated reinforcement
learning of internal representations for classification. Neural Com-
putation, 17(10):2176–2214, 2005.

[88] G. A. Rummery and M. Niranjan. On-line Q-learning using con-
nectionist systems. Citeseer, 1994.

[89] V. Rieser and M. Pinkal. Bootstrapping Reinforcement Learning-
based Dialogue Strategies from Wizard-of-Oz data. German Re-
search Center for Artificial Intelligence, 2008.

[90] S. Le Groux and P. F. M. J. Verschure. Towards adaptive Music
Generation By Reinforcement Learning of Musical Tension. In
SMC Conference 2010, 2010.

[91] N. Lilith and K. Dogançay. Reduced-state SARSA featuring ex-
tended channel reassignment for dynamic channel allocation in
mobile cellular networks. Networking-ICN 2005, pages 531–542,
2005.

[92] J. C. Santamaria, R. S. Sutton, and A. Ram. Experiments with
reinforcement learning in problems with continuous state and ac-
tion spaces. Adaptive behavior, 6(2):163, 1997.

128 Bibliography

[93] C. Watkins. Learning from delayed rewards. PhD thesis, Cam-
bridge University, 1989.

[94] J. Peng and R. J. Williams. Incremental multi-step Q-learning.
Machine Learning, 22(1):283–290, 1996.

[95] A. Y. Ng and M. Jordan. PEGASUS: A policy search method for
large MDPs and POMDPs. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence, 2000.

[96] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse,
E. Berger, and E. Liang. Autonomous inverted helicopter flight
via reinforcement learning. Experimental Robotics IX, pages 363–
372, 2006.

[97] S. Haykin. Neural networks: a comprehensive foundation. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, 1994.

[98] K. Swingler. Applying neural networks: a practical guide. Morgan
Kaufmann, 1996.

[99] ez430-chronos development tool user’s guide (rev. c). Technical
report, Texas Instruments, 2010.

[100] S. Nieuwenhuis, K. R. Ridderinkhof, J. Blom, G. P. Band, and
A. Kok. Error-related brain potentials are differentially related to
awareness of response errors: Evidence from an antisaccade task.
Psychophysiology, 38(5):752–760, Sep 2001.

[101] A. Yasuda, A. Sato, K. Miyawaki, H. Kumano, and T. Kuboki.
Error-related negativity reflects detection of negative reward pre-
diction error. Neuroreport, 15(16):2561–2565, Nov 15 2004.

[102] Michael J Frank, Brion S Woroch, and Tim Curran. Error-related
negativity predicts reinforcement learning and conflict biases.
Neuron, 47(4):495–501, Aug 2005.

[103] Stephan F Taylor, Emily R Stern, and William J Gehring. Neu-
ral systems for error monitoring: Recent findings and theoretical
perspectives. Neuroscientist, 13(2):160–172, 2007.

[104] M. Falkenstein, J. Hoormann, S. Christ, and J. Hohnsbein. ERP
components on reaction errors and their functional significance:
A tutorial. Biol Psychol, 51(2-3):87–107, Jan 2000.

Bibliography 129

[105] Pierre W. Ferrez and José del R. Millán. Error-related EEG po-
tentials generated during simulated brain-computer interaction.
IEEE Trans Biomed Eng, 55:923–929, 2008.

[106] G. Schalk, J. R. Wolpaw, D. J. McFarland, and G. Pfurtscheller.
EEG-based communication: Presence of an error potential. Clin
Neurophysiol, 111(12):2138–2144, Dec 2000.

[107] L. C. Parra, C. D. Spence, A. D. Gerson, and P. Sajda. Response
error correction–A demonstration of improved human-machine
performance using real-time EEG monitoring. IEEE Trans Neu-
ral Syst Rehabil Eng, 11(2):173–177, June 2003.

[108] Mehrdad Fatourechi, Ali Bashashati, Rabab KWard, and Gary E
Birch. EMG and EOG artifacts in brain computer interface sys-
tems: A survey. Clin Neurophysiol, 118(3):480–494, Mar 2007.

[109] Scott Makeig, Klaus Gramann, Tzyy-Ping Jung, Terrence J. Se-
jnowski, and Howard Poizner. Linking brain, mind and behavior.
International Journal of Psychophysiology, 73(2):95 – 100, 2009.
Neural Processes in Clinical Psychophysiology.

[110] Jean-Marc Bollon, Ricardo Chavarriaga, José del R. Millán, and
Pierre Bessière. EEG error-related potentials detection with a
Bayesian filter. In 4th International IEEE EMBS Conference on
Neural Engineering, Antalya Turkey, 2009.

[111] A. H. Jazwinski. Stochastic processes and filtering theory, vol-
ume 63. Academic Pr, 1970.

[112] A. Schlögl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb,
and G. Pfurtscheller. A fully automated correction method of
EOG artifacts in EEG recordings. Clin Neurophysiol, 118(1):98–
104, Jan 2007.

[113] Huan Liu and Rudy Setiono. A probabilistic approach to feature
selection - a filter solution. In ICML’96, pages 319–327, 1996.

[114] Felix Garci’a Lopez, Miguel Garci’a Torres, Belen Melian Batista,
Jose A. Moreno Perez, and J. Marcos Moreno-Vega. Solving fea-
ture subset selection problem by a parallel scatter search. Eu-
ropean Journal of Operational Research, 169(2):477–489, March
2006.

130 Bibliography

[115] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations (The
Morgan Kaufmann Series in Data Management Systems). Mor-
gan Kaufmann, 1st edition, October 1999.

[116] José del R Millán, Frédéric Renkens, Josep Mouriño, and Wul-
fram Gerstner. Noninvasive brain-actuated control of a mobile
robot by human EEG. IEEE Trans Biomed Eng, 51(6):1026–
1033, 2004.

[117] A. J. Casson, S. Smith, J. S. Duncan, and E. Rodriguez-Villegas.
Wearable EEG: what is it, why is it needed and what does it
entail? In Proc IEEE Eng Med Biol Soc., pages 5867–5870, 2008.

[118] Kurt Andrew Thoroughman. Human motor learning in station-
ary and nonstationary novel dynamic environments: psychophys-
ical, electromyographical, and computational verification and ex-
tension of the inverse model hypothesis. PhD thesis, Johns Hop-
kins University, 1999.

[119] Thomas M. Brashers-Krug. Consolidation in Human Motor
Learning. PhD thesis, Massachusetts Institute of Technology,
1995.

[120] K. C. Santosh and Cholwich Nattee. A comprehensive survey on
on-line handwriting recognition technology and its real applica-
tion to the nepalese natural handwriting. Kathmandu University
Journal of Science, Engineering and Technology, 2009.

[121] Stefano Nolfi and Dario Floreano. Coevolving predator and prey
robots: Do ”arms races” arise in artificial evolution? Artif. Life,
4:311–335, October 1998.

[122] Oliver Amft, Roman Amstutz, Asim Smailagic, Daniel Siewiorek,
and Gerhard Tröster. Gesture controlled user input to complete
questionnaires on wristworn watches. In HCII 2009: Proceedings
of the 13th International Conference on Human-Computer Inter-
action, volume 5611 of Lecture Notes in Computer Science, pages
131–140. Springer, 2009.

[123] F. Fang, Y. Xu, and CS Chen. Gesture interface: Modeling and
learning. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 1747–1752. IEEE, 1994.

Bibliography 131

[124] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, et al. Active
shape models-their training and application. Computer vision
and image understanding, 61(1):38–59, 1995.

[125] B. Settles. Active learning literature survey. Machine Learning,
15(2), 1994.

