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Abstract

In recent years, the number of surveillance cameras installed to monitor private
and public spaces and areas has increased dramatically. To a large extent, the
currently applied tools for an automated analysis detect precisely pre-defined
concepts of abnormal behavior, such as an intruder in a prohibited zone. Alter-
natively, the video streams are constantly recorded or observed by operators.
For many visual surveillance applications however, an ideal analysis software
would automatically interpret the entire scene and alert in case of any suspi-
cious situation.

The developments presented in this thesis aim at an automatic and independent
detection of abnormal behavior in surveillance videos. To this end, we follow
the indirect route of modeling the frequently observed normal behavior, and
detect abnormal events as outliers to these models of normality. We show that
encoding the video data in hierarchical models is extremely useful with respect
to anomaly detection performance and semantic interpretability of the spotted
abnormal events.

We present four different methods. In a first part, we propose tracker-trees as
a supervised manner to arrange more and less specialized trackers in a tree-
like structure and show how to interpret their relative outputs. Due to recent
transfer-learning techniques, we identify in a second step how the training ef-
fort for the tracker-tree can significantly be reduced. In order to adapt more
precisely to the characteristics of a particular scenario, self-learning techniques
are called for. Accordingly, we develop an unsupervised approach that is in-
spired by recent biological findings and models the observed human behavior
in distinct hierarchies for appearance and motion. One step further, we finally
demonstrate that the incorporation of the temporal characteristics in activities
leads to preciser and more interpretable behavior models which are still learned
in a data-driven manner.



ii ABSTRACT

All the approaches to model normal behavior are clearly geared towards the de-
tection of abnormal situations. In particular, we are interested in autonomous
living scenarios, where (elderly) people are living on their own and an auto-
mated alert system would greatly improve their personal safety. Thanks to
the generic characteristics, our techniques are widely applicable and we addi-
tionally show the use for webcam or traffic analysis and industrial workflow
monitoring.



Zusammenfassung

Videoüberwachungssysteme werden seit einigen Jahren systematisch in pri-
vaten und öffentlichen Räumen und Plätzen eingesetzt. Die Anwendungssze-
narien sind vielseitig. In vielen Fällen soll die Sicherheit von Personen ver-
bessert werden, zum Teil auch präventiv. Kameras werden zum Beispiel auch
verwendet, um Verkehrskontrollen durchzuführen, Menschenströme zu analy-
sieren oder Eindringlinge zu erkennen. In der Praxis werden die Videodaten
oft von ausgebildetem Personal konstant überwacht, oder zur nachträglichen
Kontrolle auf Speichermedien aufgezeichnet.

Eine automatische Warnung bei abnormalen oder unerwarteten Ereignissen ist
für vielen weiterreichende Anwendungen jedoch wünschenswert oder sogar
notwendig. In der vorliegenden Doktorarbeit erarbeiten wir Methoden, die un-
abhängig von menschlichem Zutun eine Szene analysieren, Modelle von nor-
malen Aktivitäten in dieser Szene erstellen und so ausserordentliche Ereignisse
erkennen können. Wir zeigen, dass diese indirekte Beschreibung des Abnor-
malen Vorteile mit sich bringt in Bezug auf eine flexible Anwendbarkeit sowie
eine Erkennung von verschiedenen Ereignissen, die nicht von vornherein spe-
zifiziert werden müssen. In allen Methoden setzen wir hierarchische Modelle
ein, die eine gewisse semantische Interpretation der abnormalen Ereignissen
ermöglichen.

Wir stellen vier verschiedene Ansätze vor. Erstens werden in den Tracker-Trees
mehr oder weniger spezialisierte und manuell trainierte Trackers hierarchisch
angeordnet. Diese werden parallel ausgewertet, und auf Grund von gegensei-
tigen Widersprüchen können abnormale Situationen erkannt werden. In einer
zweiten Phase zeigen wir wie die einzelnen Trackers mit minimalem Aufwand
trainiert werden. Da jedoch viele Überwachungsszenen einzigartig sind, ist es
unerlässlich, dass sich die Modelle genau der Szene anpassen. Die dritte Me-
thode ist darauf ausgerichtet, Modelle von normalem Verhalten ohne menschli-
che Hilfe zu erstellen. In einem biologisch motivierten, zweistufigen Verfahren
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werden die Bewegungen des beobachteten Menschen automatisch modelliert.
Schlussendlich zeigen wir wie der explizite Einbezug von zeitlichen Zusam-
menhängen in ein solches Modell eine automatische Erkennung von interpre-
tierbaren Tätigkeiten ermöglicht, und zugleich die Erkennungsrate von abnor-
malen Ereignissen verbessert.

Die meisten Experimente in dieser Doktorarbeit sind ausgerichtet auf eine au-
tomatische Erkennung von abnormalen und gefährlichen Situationen in Wohn-
räumen von (älteren) Menschen. Stürze zu detektieren ist ein Ziel, aber auch
andere Ungereimtheiten sollen aufgedeckt werden, wie zum Beispiel wenn die
Person plötzlich anfängt zu hinken. Damit könnte die persönliche Sicherheit
dieser Menschen erheblich gesteigert werden. Da die vorgestellten Techniken
aber nicht anwendungsspezifisch sind, zeigen wir auch, wie sie zur Verkehrs-
überwachung, zur Analyse von Webcam-Daten und zur Interpretation von Ar-
beitsabläufen in der Industrie eingesetzt werden können.
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1
Introduction

The automatic analysis of surveillance videos is a major field of investigation
in computer vision research and industry. This holds especially for techniques
that interpret the behavior in the monitored scene and is mainly due to the
enormous variety of situations that occur in practice. One crucial aspect is to
detect and report situations of special interest, in particular when unexpected
things happen. Some solutions exist that work in well-constrained surveillance
settings and show good results if they are tuned to a specific pre-defined ap-
plication. However, for many application scenarios, an ideal automated visual
surveillance system would autonomously interpret the scene and automatically
recognize abnormal events. It would then notify operators or users accordingly,
ideally including some semantic information with respect to the detected event.

In this thesis, the goal is to develop methods and techniques, that enable to
approach such an ideal surveillance system. Within this active field of research,
we propose techniques to automatically examine and interpret the behavior in
the surveillance scene. A large part of the work is devoted to the visual analysis
of human behavior and abnormal event detection in indoor scenarios. In this
context, a working system would alert of dangerous situations and improve the
personal safety of (elderly) people living on their own.

1.1 Video Surveillance

In the last two decades, the number of surveillance cameras installed to monitor
private and public spaces has increased dramatically. This is mainly due to
the rising fear of people about crime. To this end, cameras are installed in
many public places, such as airports, train stations, city centers, or shopping
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Figure 1.1: Traditionally, video streams from surveillance cameras are
watched by human operators who are trained to spot abnormal events. An
alternative is to record the video streams on storage devices for future view-
ing in case something interesting had happened. Recent approaches inspect
the streams with rule-based processing. In this thesis, we investigate towards
a fully automated analysis of the surveillance video for a robust detection of
abnormal events.

malls. Other interesting applications of visual surveillance systems include the
examination of crowd motion, traffic flow monitoring, biometric identification,
the assessment of industrial processes or human behavior interpretation in retail
spaces. From an economic perspective, the visual surveillance market is huge,
and a significant part is invested in adequate software solutions1.

Deployed by companies such as IBM, Bosch, GE, Honeywell, Siemens, Ob-
jectVideo, or BRS labs, current surveillance systems to some extent include
automatic video processing. For example, techniques for the detection of an
intruder, a car driving against the traffic or an unattended piece of luggage ex-
ist currently. They apply rule-based detectors that are manually tuned to well-
defined settings, in order to raise an alert in case a suspicious configuration is
met. An operator then has to verify the video stream and initiate the accord-
ing actions as indicated in Figure 1.1. Hence, in general, real-time monitoring
installations still rely on constant verification by a knowledgeable human op-
erator. In contrast, many closed circuit television (CCTV) systems record the
video to storage devices and delete it after a certain period. This is useful to
go back in time and identify the involved persons, for example if a theft or an
aggression had happened. Of course, this retrospective analysis does neither
prevent the crime nor detects it when it happens. Consequently, and due to the

1The market research firm Markets&Markets estimate the global video surveillance market to
grow to $37.7 billion in 2015 [Markets & Markets 2011].
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Figure 1.2: Different visual surveillance scenarios at varying scale levels that
we deal with in this thesis.

large amount of human monitoring effort involved, smart surveillance software
solutions are highly desirable [Frost & Sullivan 2008].

In computer vision research, sophisticated solutions to various surveillance
tasks have been proposed in the last couple of years (see [Gong et al. 2011,
Lavee et al. 2009, Hu et al. 2004, Dee and Velastin 2008] for surveys). The
goal is to analyze the monitored scene and extract information that is useful
for a previously specified application. Very roughly, the different tasks can be
grouped into different scale levels, as illustrated in Figure 1.2 (see also [Breit-
enstein 2009]).

The visual processing for surveillance applications often starts with the track-
ing of foreground objects which are commonly obtained through background
modeling [Stauffer and Grimson 1999, Cucchiara et al. 2003, Zhao and Neva-
tia 2004]. If the appearance of the tracked objects is known and can be trained a
priori, tracking-by-detection approaches are a well-suited alternative, in partic-
ular if human behavior is examined (e.g., [Andriluka et al. 2008, Breitenstein
et al. 2009a, Wu and Nevatia 2007]). For an increased robustness, additional
application-specific priors can be added, for example to model social interac-
tions [Pellegrini et al. 2009] or include scene properties as in [Huang et al.
2008, Stalder et al. 2010]).

Tracked trajectories are then in many cases used to learn patterns of normal ac-
tivity for scene-specific trajectory models (e.g., [Stauffer and Grimson 2000,
Hu et al. 2006, Basharat et al. 2008, Wang et al. 2006]) or to discover
functional scene regions [Turek et al. 2010, Makris and Ellis 2005]. One
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step further, [Hospedales et al. 2009, Kuettel et al. 2010, Wang et al. 2009]
propose unsupervised techniques to mine spatial and temporal properties and
rules that govern a traffic scene. They allow for data-driven segmentation
and interpretation of a surveillance scene with respect to space and time. If
larger scenes are monitored, target tracking sometimes fails due to very small,
indistinguishable agents. In this case, flow and motion vectors can be com-
puted and analyzed, for example in very crowded scenes [Ali and Shah 2007,
Mehran et al. 2009].

If the analysis of human behavior in the scene needs to be more precise, a
human centered perspective is required and detailed body motions are inter-
preted. Often, a set of predefined human actions are modeled with diverse tech-
niques and recognized during runtime. Popular such approaches are described
in [Efros et al. 2003, Gorelick et al. 2007, Laptev 2005, Dollar et al. 2005,
Schindler and Van Gool 2008, Yao et al. 2010]. Not relying on labeled training
data, other approaches automatically learn human action categories [Niebles et
al. 2008] or temporally segment human activities [Zhou et al. 2008, Turaga et
al. 2009] in an unsupervised manner.

Most of the mentioned techniques are specifically developed for the application
in a single scale level (c.f. Figure 1.2) which limits their general applicability.
In this thesis, we try to overcome this limitation.

1.2 Anomaly Detection

(a) Fall of a person (b) Shift change (c) Street festival

Figure 1.3: Abnormal events that occur in the different scenarios of Figure 1.2.
All of them were detected with the techniques described in this thesis.

Abnormal behavior detection is an important element for any surveillance sys-
tem and often required in practice. This is true not only in visual surveillance,
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but also for example for computer network security or to detect credit card
fraud and illegal transactions in banking (see [Chandola et al. 2009] for a sur-
vey on anomaly detection). One major issue lies in the fact, that the application
scenarios are very different and require the techniques to be adapted and tuned
accordingly. In Figure 1.3 we show three exemplary abnormal events that were
detected with the techniques proposed in this thesis.

In most computer vision approaches, abnormal events are identified as out-
liers to previously trained models of normality (e.g. [Johnson and Hogg 1995,
Makris and Ellis 2005]). If motion patterns in the scene are available, statistical
outliers are then detected as abnormal events based on low level motion fea-
tures (e.g. [Adam et al. 2008, Stauffer and Grimson 2000]), or high-level spe-
cific object tracking [Hu et al. 2006, Basharat et al. 2008, Hendel et al. 2010].
In crowded scenes, optical flow vectors are quantized and modeled in order
to detect deviations to normality, as for example in [Kim and Grauman 2009,
Kratz and Nishino 2009]. Due to the fact that trained models of normality can
hardly contain all expected configurations, Boiman and Irani [Boiman and Irani
2005] attempt to compose the current observation from space-time fragments
in the database in order to detect irregular situations.

In an unsupervised approach, Zhong et al. [Zhong et al. 2004] learn a database
of observed scene-motion prototypes and calculate the similarity in order to
detect abnormal patterns. In the same spirit but to be more memory-efficient,
Breitenstein et al.[Breitenstein et al. 2009b] apply clustering techniques to
model normal behavior on a scene level. Using only appearance features, they
can cope with the low, irregular frame-rate of a webcam stream. The before-
mentioned spatio-temporal scene modeling techniques of [Hospedales et al.
2009] and [Kuettel et al. 2010] also include the ability to report abnormal
events as atypical configurations.

1.3 Indoor Monitoring of Humans

Of particular interest in this thesis is the application scenario of autonomous
living where the detection of abnormal situation is of crucial interest. The
daily life of mostly elderly persons is recorded and interpreted, for example in
order to assess the health status of the person or to alert in case of suspicious
situations. One approach to register the behavior in peoples houses is to install
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many different sensors in so-called smart homes for technology-assisted liv-
ing [Cook and Das 2007]. For example, Rachidi and Cook [Rashidi and Cook
2010] use motion and contact sensor recordings from several months to dis-
cover activities of daily living in an unsupervised manner. Introducing vision
sensors, Zouba et al. [Zouba et al. 2009] fuse person tracking in videos and
environmental sensory data at a high level to recognize daily living activities at
home.

In the context of elderly person monitoring, fall detection is prevailing con-
cern, as it represents a major health issue [Tinetti 2003]. Many solutions using
various sensors have been proposed for the automatic generation of alarms
in suspect cases [Noury et al. 2007]. The approaches include wearable, ac-
celerometer based systems (e.g., [Li et al. 2009, Chen et al. 2005]) but also
concepts relying on vision. Wireless wearable devices are very reliable, how-
ever they have the clear disadvantage that the concerned person may forget to
wear or to recharge them.

Vision based techniques on the other hand have the advantage of being non-
invasive, as they monitor the person from a distance. Many of the approaches
proposed in the past rely on precisely modeling a fall. During runtime, the
event is re-detected and an alarm is emitted. Such approaches are for exam-
ple based on the three-dimensional modeling of the visual hull of a person
in [Anderson et al. 2009], the detection of a fall from shape and motion his-
tory [Rougier et al. 2007, Nasution and Emmanuel 2007], or rely on 3D head
tracking [Rougier et al. 2006]. Nait-Charif and McKenna [Nait-Charif and
McKenna 2004] use an overhead camera to track the person and define zones
of usual inactivity. They argue that if the monitored person is inactive at a dif-
ferent locations, this corresponds to an abnormal event. In a different approach,
Cucchiara et al. [Cucchiara et al. 2005] use a posture classification system for
a more detailed human behavior analysis that permits the detection of a fallen
person.

1.4 Our Paradigms

In contrast to the afore mentioned approaches for visual fall detection, we do
not explicitly model a fall because we want to detect abnormal behavior in a
larger sense. Unexpected motion, for example when the person is waving to
signal something or when he suddenly starts to limp might also be of interest
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and therefore should be detected by our algorithms. Furthermore, in contrast to
most of the above mentioned approaches, we aim at the development of tech-
niques which are broadly applicable. We will show how to monitor persons,
but also apply the same techniques to different surveillance scenarios at differ-
ent scale levels and reliably detect abnormal events. Due to these reasons, we
follow the indirect path and model the observed behavior in the scene. Out-
liers and statistical deviations from this model of normality are interpreted as
abnormal events.

Within the scope of developments and findings in the DIRAC research project2

that are partly summarized in [Weinshall et al. 2012], we have initiated the
usefulness of hierarchical models. This is especially true for the detection of
abnormal events in surveillance scenarios. Due to the fact that we mostly do
not know a priori what surprising situations to expect in the future, a reasoning
at different levels of detail is called for. As we will show, subtle behavior
changes, such a different person walking into the room can equally be detected
as a major event, such as a fall. Additionally, the hierarchy paves the way for a
semantic interpretation of the abnormal event.

One option is to learn such models of normal scene behavior from labeled train-
ing data. This will be demonstrated in Chapters 2 and 3 and has the advantage
that a re-detection at runtime of the learned concepts is possible. In contrast,
unsupervised model learning, as shown in Chapters 4 and 5, can easily adapt
to the specificities of the observed behavior in a certain scene. Such models
can include update mechanisms that account for shifts in the normal behavior
during runtime.

Our long-term vision is to be able to mount a camera and process the video data
without human intervention. The algorithms should autonomously pick-up the
observed behavioral concepts, and adapt and refine the models of normality
over time in order to detect any kind of abnormal situations. In this thesis, we
make an attempt to move closer to this goal.

1.5 Contributions

The contributions of this thesis are summarized as follows:
2Project funded by the European Commission in FP7, IST-027787, ”Detection and Identifica-

tion of Rare Audio-visual Cues”, www.diracproject.org.

www.diracproject.org
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• We apply multiple human body trackers on a single person. Every in-
volved tracker follows a certain aspect of human motion, and they are
arranged in a hierarchical, tree-like structure. From their relative inter-
actions and confidence levels, we show how to detect different abnormal
events. As the trackers are trained and labeled off-line, semantic reason-
ing becomes feasible.

• We show how to update a set of previously trained human motion track-
ers, by including a transfer learning stage. With minimal human inter-
vention, the knowledge from the available trackers is used in order to
label and train new activity trackers.

• In a different approach, we establish a data-driven approach to automat-
ically model human behavior in hierarchies. This works without human
intervention and includes separate models for human appearance and
motion. We show how to detect abnormal events at runtime, that can
be semantically interpreted in the hierarchies.

• In fact, this separate hierarchical description of (human) appearance and
motion has biological relevance. We conducted a behavioral study, that
showed very interesting results when comparing our approach to the be-
havioral responses of trained monkeys.

• The performance of the abnormal event detection is directly related to the
quality of the established models of normality. We show that if we build
such unsupervised models in a way that temporal constraints of activities
are respected, meaningful human actions are automatically discovered in
the modeling phase. In addition, when applied to unseen data, previous
abnormal event detection techniques are outperformed.

• Not only (abnormal) human activities are considered, but we extend our
techniques to multiple visual surveillance tasks. For example, we are
able to interpret and monitor traffic scenes or observe various events in
webcam streams from places of public interest.

• In industrial environments, the compliance with temporally consistent
work-flows is crucial in many manufacturing processes. We show how
to automatically extract such work-flow models and use them for the
interpretation of abnormal events in industrial scenarios.
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1.6 Organization of the Thesis

This thesis is structured as follows.

In Chapter 2, the idea of tracker-trees is presented. The reasoning among track-
ers that incorporate different assumptions is performed in a tree-like structure.
To this end, we employ publicly available human trackers or detectors, but also
present a silhouette-based tracking technique, that relies on low dimensional
modeling of the activity. Experiments show the applicability in different in-
door surveillance scenarios, where the behavior of a person is monitored. We
show how the abnormal event detection in the tracker-tree outperforms other
generative modeling techniques.

Chapter 3 extends the tracker-tree concept in order to learn and incorporate new
activity concepts. We make use of recent transfer-learning techniques that act
as an expert to label unknown activity samples. The augmented tracker-tree,
obtained with minimal labeling effort then recognizes previously unknown ac-
tivity concepts.

In Chapter 4, our first approach to unsupervised behavior learning and abnor-
mal event detection is presented. In two hierarchies, responsible for appear-
ance and motion encoding, respectively, the observations are modeled without
any human interaction. At run-time, the two hierarchies are used to interpret
new observations. If outliers persist, a concept change has occurred, and we
additionally show how our model can be updated during runtime. We also
demonstrate that the two hierarchies have in fact a biological motivation, as
behavioral experiments performed with monkeys lead to corresponding results
and interpretations.

In Chapter 5, we introduce a technique to unsupervised modeling of activities
that makes use of the temporal structure of the human activities captured in
the video. On one hand, this leads to activity models that turn out to be well
interpretable and can perform state-of-the-art automatic action discovery. On
the other hand, if these models are used for the interpretation of unseen videos,
activities are re-detected and abnormal activities are spotted robustly and accu-
rately.

Chapter 6 aims at extending the concept of abnormal behavior spotting to other,
not person-focused scenarios. We show applications for road / traffic monitor-
ing and the surveillance of public spaces from webcam streams. To this end,
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we need to introduce adequate feature representations. Finally, we modify the
previous method and extend it with additional assumptions to build a represen-
tative work-flow model. This enables the automatic discovery and monitoring
of industrial work-flows.

Chapter 7 finally concludes this dissertation, discusses the important findings
and gives lines of future research.



2
Tracker-Trees

2.1 Introduction

In this chapter we detect abnormal events following the indirect route of de-
tecting them as deviations from models of usual human behavior. This said,
in order to cover the wide range of unusual events that may be of interest, this
calls for modeling a wide spectrum of usual events, often at different levels
of granularity. We do this in a supervised setting, where different concepts
of normal behavior are known and integrated in the model. For instance, the
calamity of falling would be detected as deviating from all the normal cate-
gories like walking, standing, or sitting. Our proposal is to build an entire tree
of trackers, as sketched in Figure 2.1. The aspiration is to detect a gamut of
unusual events, which will also gradually get more subtle and semantically rich
as one moves up in the tree.

The idea of fusing multiple trackers as parallel or cascaded observers is not
new and has for example successfully been used for visual tracking problems.
Toyama and Hager [Toyama and Hager 1999] introduced the concept of In-
cremental focus of attention that uses multiple trackers at different levels of
accuracy for robust tracking. They argue that more robust trackers on lower
levels can be used as fall-back options and for re-initialization if more precise
trackers loose the target due to unexpected visual perturbations. Whereas the
tracker configuration is fixed in this work, Stenger et al. [Stenger et al. 2009]
learn how to combine multiple observation models for target tracking. In par-
allel or cascaded evaluation, they switch between the observers based on the
observer’s confidence, in order to robustly determine the target location over a
long time.
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Figure 2.1: Overview of the proposed tracker tree with increasingly informed
trackers for increasing concept levels Q1 to Q5. Each circle depicts one im-
plemented tracker. On level Q1, any kind of foreground blob is tracked. Level
Q2 encodes partial human appearances, whereas on level Q3 entire persons are
detected. Level Q4 involves trackers that go after specific human actions, and
on level Q5, action trackers are tuned to individual persons.

Whereas the underlying idea of these works is somewhat similar in the sense
that they rely on more robust and more specific trackers, we follow a very
different goal. Robust target tracking is not our principal rationale to count
on such trackers. In the tracker-tree, we want to detect expected and unex-
pected configurations of trackers with high tracking confidence. Therefore we
explicitly construct a hierarchy of trackers, with possibly multiple trackers at
the same level. From the simultaneous outputs of a multitude of trackers, we
show how to detect normal and abnormal behavior in the scene. Since these
trackers all follow a known concept and are arranged in a hierarchical manner,
a semantic interpretation can be deduced on the nature of the abnormal event.
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In this chapter, we introduce the idea of tracker-trees in detail in Section 2.2.
As we want to apply a tracker-tree in an indoor monitoring scenario, we need
trackers that are suitable for the application. Therefore, we explain in Sec-
tion 2.3 our method for appearance-based activity tracking, that we use for
many trackers in the tracker-tree. Subsequently, we show our implementation
of the tracker-tree for abnormal human behavior detection (Section 2.4). In
Sections 2.5 and 2.6, an extensive number of qualitative and quantitative ex-
periments is proposed.

The main parts of this chapter were published in [Nater et al. 2009].

2.2 Tracker-Tree Concept

Visual trackers in general incorporate a certain amount of information about
the normal situations they are applied to. For example, an articulated body
motion tracker is highly tuned to a walking person and exploits strong pri-
ors for successful tracking, whereas a simple blob tracker relies on very weak
assumptions. We propose to arrange multiple different trackers in a tree-like
hierarchy, where the location of each tracker is based on the information it re-
lies on. Trackers further up in the tree have been trained for a narrow activity
concept whereas trackers closer to the root node are able to track a broad va-
riety of motion patterns. The tracker-tree described here is geared toward the
detection of unusual events in the home (e.g., for elderly care) where we as-
sume the video camera to be static. The principle however is not restricted to
this scenario. The used tracker-tree is shown in Figure 2.1, where the circles
correspond to the implemented trackers. The green interconnections indicate
the hierarchical dependencies.

The root node on level Q1 is a simple, generic blob tracker, going after any-
thing moving that is not background. One level up, inside the black box (Q2
and Q3), a tracking-by-detection framework is used to track multiple body
parts (lower body, upper body, head-shoulders) at level Q2 and to detect a per-
son at level Q3 . On these levels, people are tracked, independent of their
activity. One further level up on Q4, four trackers detect a person walking,
sitting, picking up an object or lying down. This level could be considered an
action-specific level. Then there is one higher level (Q5), which specializes the
walking tracker towards trackers that are tuned particularly towards the gait of
specific people. Hence, our hierarchy consists of multiple levels, within which
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families of trackers are trained to cover the normal conditions at that level. No-
tice that at one level there could be multiple such families. For example, if
one would also have a running tracker at the action level, it would make sense
to also have a family of person specific running trackers one level up. Going
to higher levels, the trackers are endowed with stronger and stronger knowl-
edge about the (normal) world. In our current implementation, all the different
trackers operate autonomously, i.e. a tracker does not depend on the outcome
of any other.

Unusual events are detected when and where a level can deal well with an
event (can explain it with the available trackers), whereas none of the relevant
trackers at the immediately higher level can. This is motivated by the fact that
a tracker that uses more knowledge about the world should be more robust. If
none of the more informed trackers can deal with the data, but the less informed
one can, then this is a sign that something unusual is going on. Indeed, using
more information is only advantageous as long as this information is correct.
In the case of an unusual event, none of the usual, extra pieces of information
apply. A performance reversal occurs in the sense that the weaker tracker better
explains the data than any of the more informed trackers. An interesting aspect
of the hierarchical approach is that unusual events at multiple, semantic levels
can be handled and interpreted. For instance, if none of the people trackers can
explain the data well, but the blob tracker follows an object, we may have a
pet entering the home of a person not having one. If none of the normal action
specific trackers does well, but tracking by full body detection still works, this
might be an indication of an unusual human action like limping. If walking is
detected, but the gait does not correspond to any of the known individuals, an
intruder or at least someone not observed before seems to be in the house. As
elderly people often are the victims of scams, this would indeed be noteworthy
and a sufficient condition to activate some remote attention by an assistant.

To explain the concept more formally we re-use the terminology of [Weinshall
et al. 2012], in the sense that we find in our tracker-tree simultaneously dis-
junctive and conjunctive nodes. Each tracker instance is characterized with a
confidence score q, that captures how well it can interpret the observed data.
This score can equally be binary.

As a disjunctive example within the tree, a person (general level) can perform
different actions, which are modeled by different action trackers (specific level;
here walking, sitting, picking up and lying down). Thus, the total score q4 of
the more specific concept on level Q4 is
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q4 = qWalk + qSit + qPickup + qLiedown. (2.1)

An incongruent or abnormal motion pattern occurs if a discrepancy exists be-
tween the more general and the more specific classifier, i.e.

qgeneral � qspecific, here : q3 � q4 (2.2)

In other words, an abnormal activity is reported if a person is in the scene (Q3

active) but non of the known activities on level Q4 is detected.

In the same vein, individual walking trackers on Q5 are sub-concepts to the
generic walking tracker, and model the gait pattern of individual persons known
to the system.

On the other hand, the trackers inside the black box in Figure 2.1 form a con-
junctive hierarchy that considers the person as composed of body parts. Sepa-
rate detectors check whether legs, upper body, and body shoulder patterns are
found. In case the person is fully visible and in a familiar pose, all three parts
should be detected. From the conjunctive perspective, the indication strength
of finding a person amounts to

q2 = qHead · qUpperBody · qLowerBody (2.3)

In this case, an incongruent event is detected if q2 � q3, i.e. all body parts
are detected, but no person is tracked in the scene. In fact, we found little
practical use for this way of handling conjunctive tree sections, but we propose
an adapted reasoning for occlusion handling.

Occlusion Handling Partial occlusions occur frequently in in-house surveil-
lance scenarios, e.g., furniture partially blocking the view of a person. In the
tracker tree, this means that a person is detected and q3 is valid, but at least one
of the body parts fails (q2 small). Without proper training (including training
images of occlued objects), such an occlusion leads to the case that q2 � q3
which according to [Weinshall et al. 2012] theoretically corresponds to an
invalid model.

We propose a different interpretation which considers the body part trackers as
conditioners for the action trackers. Since the actions (level Q4) are trained on
examples of fully visible persons, the validity of any of these trackers cannot be
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expected to hold when the person is only partly visible. In the case of occlusion
by a sofa, for example, the lower body part is missing and therefore no action
is expected to be valid, as all action-specific trackers are critically dependent
on the visibility of what are in that case the relevant body parts, i.e. the legs.

To address this problem, occlusion detection is incorporated into the approach
and prevents trackers that need invisible parts to flag incongruences. For exam-
ple, if a person is observed (yellow detector) but not all of his body parts, this
blocks incongruences higher up in the tree from being signaled if the absence
of that body part precludes action detectors from functioning properly.

2.3 Appearance-based Probabilistic Activity Track-
ing

In this section, we describe a shape based tracking approach which is based on
manifold learning and nicely fits in the concept of more or less informed track-
ers. This technique allows for the creation of different trackers by combining
different sets of training data and consequently making the trackers more or
less specific. We use this family of trackers at different levels in our tracker-
tree implementation.

Manifold learning is a popular technique in human activity modeling and recog-
nition (see [Moeslund et al. 2006] for a survey on human motion under-
standing). The fact that consistent human actions have a small number of in-
trinsic degrees of freedom can be exploited for designing a low dimensional
manifold which describes the principal aspects of the observed human activ-
ity while omitting details. Learning manifolds and mapping functions to ap-
pearance space and body pose space is for example used successfully to in-
fer 3D body poses from silhouettes [Elgammal and Lee 2004, Jaeggli et al.
2007], possibly including dynamical information as in [Urtasun et al. 2006a,
Li et al. 2007]. In a Bayesian tracking framework, the human motion with
its dynamics is encoded in low dimensional manifolds that are used to esti-
mate observation likelihoods (e.g. [Lee and Elgammal 2007, Gammeter et al.
2008]).

Inspired by these ideas, we establish our tracking method which unlike other
approaches does not infer 3D human poses, but simply models and interprets
the person’s appearances in a probabilistic form. While more sophisticated
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(a) (b) (c) (d)

Figure 2.2: Image representation: (a) original, (b) segmented, (c) rescaled, (d)
distance transformed.

descriptions of human body configurations could be used, we argue that for the
detection of abnormal situations in our indoor setting, the analysis of human
silhouettes appears to be adequate

Representation. In order to encode the shape of the tracked persons, we use
silhouettes obtained from background subtraction. Inspired by [Zivkovic and
van der Heijden 2006], the background is adapted over time, and foreground
masks are obtained in YUV color-space. The silhouettes are resized to a fixed
dimension and normalized, as shown in Figure 2.2. The binary images are
then further encoded by a signed distance transform, bounded to maximal and
minimal values and finally each frame is reshaped in a vector.

2.3.1 Model Generation

In the training phase, we generate a model representing the human appearances
from a training video with one action concept. The extracted feature vectors
are stacked into a feature matrix.

Dimensionality reduction. The high dimensionality of the shape representa-
tion space is reduced with respect to the included training data. As we want
to use the low dimensional manifold for tracking, we impose the requirement
that the chronological order of the input frames has to be reproduced in the
embedding. This means, that the Euclidean distances of consecutive frames,
measured in latent space, should be small.
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We use Isomap [Tenenbaum et al. 2000] as a nonlinear dimensionality reduc-
tion technique, which has proven to meet our expectations and also produces
compact and interpretable manifolds. We fix the latent space to be three di-
mensional, encoding enough variance for successful reconstruction and still
permitting efficient tracking. An example of such manifold is shown in Fig-
ure 2.3. It was obtained from one person’s continuous unconstrained walking.
Points correspond to video frames and their temporal order is indicated by the
connections. For some of the frames, the according silhouette is displayed.
Gray-scales qualitatively reflect the dimension which intuitively encodes the
persons walking direction, reaching from right (light grey) to left (dark grey),
with frontal/dorsal orientations in between. The manifold also represents the
person’s gait with open leg states being spatially separated from closed ones.

Figure 2.3: Visualization of the low-dimensional representation: Manifold
of 600 encoded silhouettes obtained from a sequence of one person’s uncon-
strained walking (See text for details).

Gaussian Process regression. Isomap is a data-driven technique to reduce the
dimensionality of the input data based on local distances, therefore no explicit
mapping is formulated in the framework (in contrast to linear dimensionality
reduction techniques such as principal component analysis). For the genera-
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tive association between latent space and image representation, we learn a re-
gression function by using Gaussian Process [Rasmussen and Williams 2006].
To this end, we employ the Gaussian Process toolbox [Lawrence 2003] and
compute the mapping function M : z �→ y which estimates the shape repre-
sentation y and its variance for any latent point z. For the ease of notation,
we denote the predicted shape obtained by mapping a predicted latent point ẑ
simply as ŷ(ẑ). In Figure 2.4(b), an feature example in image space represen-
tation is shown after Isomap embedding and Gaussian Process reconstruction
of Figure 2.4(a).

(a) (b)

Figure 2.4: Illustration of silhouette modelling in the manifold: (a) Input de-
scriptor, (b) embedded and reconstructed.

2.3.2 Tracking

After having learned a low dimensional manifold representing a set of en-
coded silhouettes for a specific action class, the next step is to explain un-
seen test sequences within this model. This is done with a Bayesian tracking
approach [Doucet et al. 2000] by using a six dimensional particle filtering
technique. For every hypothesized sample θi = {ui, vi, si, zi} the observa-
tion likelihood is evaluated, where {u, v} is the bounding box location in the
image, s its scale (with fixed aspect ratio), and z the tracked shape in the low-
dimensional embedding space1.

1The six dimensions in the search space are determined from the three dimensions in image
space and the dimensionality of the underlying embedding. In our experiments, we used three-
dimensional embeddings, that showed to reflect well the trained actions. If actions of a different
complexity would be modelled, the particle filter would need to be adapted accordingly.
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Likelihood formulation: For every particle θi, the likelihood of the shape
observation given this sample is estimated, using the following formulation:

p (yobs|θi) ∝ N
�
d (yobs, ŷ(θi)) ; 0,σ

2
�

(2.4)

with d (yobs, ŷ) a distance function between the observed yobs and the pre-
dicted ŷ shapes, both represented as distance transformed silhouettes. The
likelihood is in this case normally distributed with zero mean and σ

2 variance.
More precisely, if we denote the shapes yobs and ŷ as vectors of K elements
yk and ŷk, k = 1 . . .K, the distance function becomes

d (yobs, ŷ) =
K�

k=1

βk|ykŷk| (2.5)

with

βk =

�
1 if sign(yk) �= sign(ŷk)
0 if sign(yk) = sign(ŷk)

(2.6)

such that equally signed pixels in the observed and the predicted shape do not
increase the distance.

With this likelihood formulation we obtain a posterior probability density func-
tion over all samples θi given the shape observation yobs for each frame in the
test sequence.

Illustration: The proposed silhouette based tracking approach is illustrated
in Figure 2.5, where two frames of a publicly available video sequence2 are
shown. On the upper left of each frame, the background subtracted silhouette
is presented, and on the lower left, the image space representation of the parti-
cle filter sample with the highest weight is shown. The latter corresponds to the
shape encoded in the low dimensional model which best matches the observed
silhouette. Trained in a controlled lab setup, the learned model can nonetheless
be applied on any sequence and accurate tracking is possible even with noisy
background subtraction. The tracking approach works well as long as the ob-
served shape can be well described by the model, i.e.the likelihood term has
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Figure 2.5: Application of the proposed silhouette based tracking approach on
a publicly available video sequence, from which two frames are shown. The
background subtracted image and the best corresponding shape in the model
are depicted on the left.

clearly pronounced peaks, whereas it results in small posterior probabilities for
out-of-model observations.

Tracking priors: In this probabilistic formulation it is possible to easily in-
corporate scene-specific knowledge by adding tracking priors. For example,
in some experiments a ground plane prior is used for the stabilization of the
tracker and for limiting the search space of the particle filter.

2.4 Implementation

The outline of the proposed tracker-tree was already presented in Figure 2.1,
where all the implemented trackers were schematically depicted in circles. The
tracker instances are placed on five hierarchical concept-levels Q1−Q5. Next,
each level will be detailed and the corresponding trackers that we employ on
this level are explained. We use previously proposed state-of-the-art methods
as well as the custom-built technique of Section 2.3 trained for different levels
of generalization.

2video downloaded from www.openvisor.org, 2009/05/27

www.openvisor.org
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2.4.1 Trackers in the Tree

Level Q1: The least informed and thus most general tracker in the tracker tree
is meant to trace any foreground blob, subject to any kind of deformation. This
is a simple, generic blob tracker which uses no information about the nature
of the foreground object. For this purpose, a color-histogram based CAMShift
tracking approach [Bradski 1998] is used in its OpenCV implementation. This
tracker delivers an ellipse of the approximate target location in each frame.

Level Q2: The trackers on this level make a first step towards the descrip-
tion of human body shapes. For tracking people independent of their activity,
we use a set of body-part trackers, namely for the lower body, the upper body
and the head-shoulders. For these three trackers, we generate an embedding
using the method of Section 2.3. The image data provided during the training
procedure is chosen with respect to the specified body-part of the tracker. For
each of these three trackers, the obtained low-dimensional manifolds are sim-
ilar to the one shown in Figure 2.3 and encode the principal motion such that
tracking remains possible within this manifold. Particle filter based tracking is
accomplished and the output is a probability that quantizes the match between
observation and body part model.

Level Q3: The tracker instance on level Q3 in the upper part of the black
box in Figure 2.1 is a state-of-the-art person detector based on discriminatively
trained part models [Felzenszwalb et al. 2008]. It is used as provided by the
authors on the website and follows a tracking-by-detection approach.

Level Q4: On this level, we are interested in tracking different basic human
actions. As shown in Figure 2.1, we dispose of four different action trackers.
Each of them is based on training data modeled as described in Section 2.3. The
trained action concepts are unconstrained indoor walking, sitting on a chair or
on the couch, picking up an item from the floor and lying down on a couch. For
generalization reasons, these trackers are trained from recordings of multiple
people performing the actions. Consequently, the manifolds encode some vari-
ability with respect to execution style of the action. For example, the walking
manifold looks similar but denser and richer compared to the one in Figure 2.3
which was obtained from a single person’s walking only.

Level Q5: On the most specific level in the current tracker-tree, the aim is
to track one particular person performing a specific action. In that sense, this
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is a specialization of the action specific trackers one level down and we rely
therefore on a modification of the non-personal walking tracker in Q4. The
goal is here to separately model the appearance of two persons by providing
individual training data and learning two distinct manifolds. Besides tracking
the considered person, the tracker outputs a probability quantizing how well
the observed silhouette fits in with the individual model. This output score is
evaluated relative to the non-personal walking tracker at level Q4: The discrep-
ancy in terms of posterior probability between person specific and non-personal
trackers provides information on the walker’s identity.

2.4.2 Setup

Training. The trackers that are based on the technique of Section 2.3 require
a training with data corresponding to the activity concept each tracker reflects.
This training is done in a supervised manner with accordingly segmented train-
ing data. To this end, we record a set of training videos in a controlled envi-
ronment, using an RGB camera with a V GA frame resolution and a frame rate
set to 15 fps. The extracted full-body silhouettes are resized to 40× 40 pixels,
for the body-parts, this full-body representation is separated into smaller parts.
For the trackers in Q2 and Q4, recordings of 3 − 5 persons are used. Each of
these trackers is trained with 1000 − 3000 images. The two person-specific
trackers in Q5 are trained with recordings from single persons, each of them
comprising approximately 500 frames. The noise term σ

2 in the particle filter
(c.f. Equation 2.4) is estimated from the training data.

Runtime Analysis. At runtime, when applied to unseen video sequences, we
run all the trackers in parallel. Initialization on the first frame in image space
is done either manually, or with indication from the person detector in Q3. In
manifold space, the particles are initialized randomly. As seen in Section 2.2,
each tracker needs to deliver a confidence score q, such that reasoning in the
tree can be performed. This confidence score reveals whether the tracker is con-
fident in explaining the current observation or not. For the Bayesian trackers in
Q2, Q4 and Q5, the respective scores are set to be the (temporally smoothed)
data likelihood of Equation 2.4 corresponding to the particle with the maximal
weight. The total number of particles is empirically fixed to 1500. The blob
tracker in Q1 is always active as long as the person is in the scene and the per-
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son detector (Q3) is said active if a person is detected. Hence, q1 and q3 are
binary.

2.5 Illustrative Experiments

We illustrate the functioning of our tracker tree in a series of experiments and
demonstrate its capacities for the detection of abnormal situations in living-
room scenarios. The four subsections here depict short illustrative use cases,
each of them highlighting a different aspect of the tracker-tree. Subsequently,
in Section 2.6, we demonstrate the operation of the tracker-tree in a more com-
prehensive and quantitative manner3.

2.5.1 Illustration 1: Normal Operation

In a first experiment, we want to show the properties of the different trackers
in the tracker tree applied to a scene without any abnormality. In Figure 2.6,
an extract of a publicly available sequence4 is given, showing a person enter-
ing the room, walking a couple of steps and sitting down. Three snapshots
from this video are displayed in Figure 2.6(a-c). For the entire sequence, the
tracker’s output probabilities on a logarithmic scale are plotted in the bottom
part of Figure 2.6 and the instants corresponding to the frames are indicated
by vertical black lines. In the images, the white ellipse indicates the gen-
eral object tracker [Bradski 1998], the other bounding boxes correspond to
the trackers. The color code of Figure 2.1 is applied. In the probability graph
we introduce an empirically determined threshold which is used to decide on
the reliability of the tracker. In other words, this threshold could indicate to the
system whether the particular tracker is likely to explain the observation. The
threshold is indicated by a black dotted horizontal line and accordingly, only
trackers with above-threshold probabilities are visualized in the frames. Note
that the yellow bounding box in the images corresponds to the part model de-
tector [Felzenszwalb et al. 2008], for which no probability output is available
and thus only a binary curve is plotted. In this sequence however, this detector
is always active.

3Most videos can be downloaded from www.vision.ee.ethz.ch/fnater/
tracker-trees/.

4video downloaded from www.openvisor.org, 2009/05/27

www.vision.ee.ethz.ch/fnater/tracker-trees/
www.vision.ee.ethz.ch/fnater/tracker-trees/
www.openvisor.org
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(a) Walk frontal (b) Walk sideways (c) Sit

Figure 2.6: Results for the first test sequence: The behavior of the different
trackers in the framework is presented. The images on top show three frames
from the sequence, their corresponding instants are indicated in the plot on the
lower part. The confident trackers are visualized in the frames. The color code
is taken from Figure 2.1 (see text for interpretation).

From the lower part of Figure 2.6 it can be seen that as long as the person is
walking (a,b), the observation is well explained by the underlying model of the
walking tracker (black bounding box and line) as the output probability is high.
When the person starts to sit down the walking tracker fails and also the lower
body part tracker has a transitory instability. Thereafter, the person remains
seated (c) and the sitting tracker is able to explain the situation. All the body-
part trackers are also active. This small example shows the basic functioning of
the tracker-tree, applied to test data that was recorded in a very different setting
(different person, different scene), compared to the training setup.

2.5.2 Illustration 2: Occlusion Reasoning and Fall Detection

In a second sequence presented in Figure 2.7, a person is in the room (a),
walking behind the sofa towards the shelf on the left (b), taking a book and
reading it (c), turning towards the other shelf (d, e), where the book is placed.



26 2. TRACKER-TREES

(a)
W

alk
(b)

Low
erbody

occluded
(c)

U
pperbody

perturbed
(d)

W
alking

(e)
U

pperbody
perturbed

(f)
Low

erbody
occluded

(g)
Stum

bling
(h)

Fall

Figure
2.7:R

esults
forthe

second
testsequence:The

system
’s

reaction
in

the
case

ofocclusions
and

an
abnorm

alevent
is

illustrated.
W

hen
the

person
is

reading
a

large
book,the

upper-body
m

odelis
perturbed.

O
nly

the
confidenttrackers

are
displayed

w
ith

bounding-boxes.



2.5. ILLUSTRATIVE EXPERIMENTS 27

Figure 2.8: Evolution over time of the tracker confidences for the sequence
of Figure 2.7. The color code of Figure 2.1 is used and the person-specific
walking trackers are omitted.

Coming from behind the chair on the right (f), he wants to move to the front,
when suddenly he stumbles across the edge of the carpet (g) and falls (h). The
same color code is used as in the previous video, omitting the unused sitting,
picking and lying trackers as well as the person-specific walking trackers.

Again, the relative tracker outputs allow for interpretations of what is going on
in the scene. The evolution of tracker confidences over time is displayed in
Figure 2.8. For example, the system detects an occlusion (b,c,f) if the walking
tracker fails, but some body parts, in this case head-shoulder and upper body
are still visible. In the same category falls the event in (e), where the person
is holding a book such that the upper body tracker is perturbed. This demon-
strates the use of body part trackers, especially in living room scenarios where
multiple occluders are usually present.

A fall is detected when a foreground object is tracked but cannot be explained
by any of the more specific trackers, as seen in Fig 2.7(h). None of the tracking
models trained for normal human behavior can cope with this special situa-
tion. Here we additionally make use of the sequential information that we had
observed a person right before the fall happened.

2.5.3 Illustration 3: Limping

In a third experiment, we show the tracker tree’s behavior to a person in the
scene who is limping. This action was not included during the training phase
and should therefore be detected as unusual. In a short sequence shown in
Figure 2.9, a person is walking normally towards the right, turns around (a)
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and suddenly starts to limp (b). Finally, his legs are occluded by the desk
in the foreground (c). From the bottom part of Figure 2.9, where the same
signals are plotted as in the previous experiments, it can be seen that all the
trackers behave normally until approximately second 3, when the person is
walking normally. When he starts to limp, all the body part trackers (on level
Q2 in the implemented tracker tree) and the person detector in Q3 are still
following the target, the walking tracker in Q4 however shows periodic drops
in its output score. This occurs in the part of the walking cycle, where the
limping is characterized, i.e. when tightening the leg. In this case, an abnormal
event is noted from the fact that all lower level trackers agree, whereas no
higher level tracker explains the situation. In the end of the sequence, where
the legs are invisible, no evidence is given for abnormal walking, due to the
fact that not all body part trackers remain active.

(a) Walking (b) Limping (c) Lower body occluded
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Figure 2.9: Illustration of the tracker trees output to a limping action. The ab-
normal event is detected temporarily during the walking cycle, all part trackers
agree whereas the (normal) walking tracker cannot cope with the situation.

2.5.4 Illustration 4: Intruder Detection

For the intruder detection task, we include the two person specific walking
trackers (Figure 2.1, level Q5) as well as the general person walking tracker in
Q4. In Figure 2.10, the principle is demonstrated with three short sequences,
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(a) Person 1 (b) Tracker scores for person 1

(c) Person 2 (d) Tracker scores for person 2

(e) Intruder (f) Tracker scores for the intruder

Figure 2.10: Results for the person identification task. Three different persons
are walking through the room, and the corresponding tracker output scores are
plotted aside. From the discrepancy between general (black) and the two per-
son specific models (cyan and orange), the abnormal walking pattern belonging
to an intruder is spotted. For visibility, all the other trackers in the system are
omitted. The vertical black line in the plots denotes the instant for which the
video frame is displayed.

starring two familiar and one unknown person respectively. In Figure 2.10(a,b),
we track the first familiar person. In this case, the probability outputs for the
multiple person tracker (black) and the person 1 tracker (cyan) correlate, while
the person 2 tracker (orange) explains the situation less accurately. The oppo-
site happens in Figure 2.10(c,d), where the second known person is tracked.
If a third, unknown person is in the scene (Figure 2.10(e,f)), his appearance is
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well modeled by the general person tracker, while the person specific ones tend
to fail. The person must therefore be an intruder (in the sense of someone not
known to the system yet).

2.5.5 Illustration 5: Recordings in a Different Setup

In the DIRAC project, we have received video data from the Living Lab at
Oregon Health and Science University (OHSU). The data was recorded with a
RGB-camera in RAW format at 24 fps and different persons acting in a small
apartment. For an increased field of view, a fish-eye lens was employed. For
our tests, we use two videos and show example results on short extracts.

To run the tracker-tree, the videos need to be preprocessed, i.e. the frames are
debayered, the fisheye-distortion is corrected [Havlena et al. 2009] and the im-
ages are cropped. Then, the videos are analyzed in the tracker tree and abnor-
mal situations are reported. As the recording setup and the person’s behavior
differs quite considerably from the training conditions, it is also interesting to
highlight some failure cases. In Figure 2.11, a few frames of the two sequences
are displayed. The indicated trackers are again the active trackers at the highest
level in the tree and the color-code of Figure 2.1 is used.

In the first row, normal walking and an abnormal gait pattern are correctly
detected. In fact, in Figure 2.11(b) the actress moves her leg over the audio
cable in an unexpected manner in order not to stumble. This can be seen as
an abnormal gait pattern, similar to the limping case. In the second row of
Figure 2.11, the trackers are distorted due to erroneous foreground extraction
(opening the refrigerator in (d)). The new foreground object perturbs the head-
shoulders and the upper-body trackers. In Figure 2.11(f), the person leans over
the kitchen desk. This motion is apparently unfamiliar to all trained concepts.
Since the blob tracker still tracks the person, an abnormal event is signaled in
the same way as for a fall.
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(a) walk (b) person abnormal (gait) (c) walk

(d) person incomplete (?) (e) walk (f) object abnormal (?)

Figure 2.11: Per-frame results for the OHSU video sequence. In (d) and (f),
the tracker-tree brakes down and fails to correctly interpret the situation.

2.6 Quantitative Experiments

2.6.1 Experiment 1: ETHZ Sequence

We perform a more in-depth evaluation of the tracker-tree on a video sequence
which was recorded in a living-room environment. A single person is moni-
tored and incongruent events are spotted. The test video of about 1000 images
contains diverse every-day actions such as walking, walking behind occluding
objects, sitting on different chairs, or picking up small objects. It also con-
tains abnormal events, e.g., when the person falls, limps, jumps over the sofa
or when an intruder enters the room.

In Figure 2.12 we present the output scores of the different trackers for a short
fragment of the video sequence. The plotted curves depict the confidences of
the individual trackers, the color code of Figure 2.1 is applied. The horizontal
line indicates the threshold that is used to assess if a tracker is confident or not.
The reasoning in the tree is then performed and the detected incongruent events
are highlighted in red.

In Figure 2.13 we show exemplary result frames, where the active trackers are
visualized as bounding boxes in corresponding colors. As long as the person
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Figure 2.12: Extract of one tracked sequence, the tracker output scores are
plotted over time, the color code of Figure 2.1 is used. The individual walking
trackers are omitted and the horizontal threshold is used for classification. For
illustration, incongruent patterns are highlighted in red.

(a) Walking (b) Picking up (c) Lower body occluded

(d) Fall (e) Limping (f) Intruder

Figure 2.13: Selected frames from one sequence. The active trackers are visu-
alized by the bounding box using the color code of Figure 2.1. If an incongru-
ence occurs, the entire frame is marked in red.

behaves according to expectations (walks, picks up an object, or walks be-
hind the sofa), the tracker-tree accepts the situation. When an incongruence in
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the motion pattern is detected, an abnormal event is detected and the frame is
marked in red (fall, limping, intruder).

In the following, we analyze the performance of the tracker-tree for abnormal
event detection and compare it to state-of-the-art methods. To this end, we
sweep the threshold that is applied to the tracker confidence scores and com-
pare the tree’s output with the ground truth annotation of the test sequence.
As baseline comparison, we learn a Gaussian Mixture Model (GMM) from the
training data using the EM algorithm [Bishop 2007, McLachlan and Krishnan
1997]. Similarly to most of our trackers, GMMs represent the data in a gener-
ative manner, but without a hierarchical structure. We train the k mixtures with
the same full-body silhouette representations of the different actions that were
used for training the trackers on level Q4.

The results are displayed as ROC curve in Figure 2.14. Note that the ROC
curve for the tracker-tree has a particular shape and does not reach full recog-
nition since the nonlinear classifier reasoning is applied after fixing the thresh-
old. Due to the reasoning in the hierarchy, the tracker-tree outperforms GMM
outlier detection regardless of the number of mixture components.
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Figure 2.14: ROC curve evaluation of abnormal action detection using the
tracker-tree. Due to the hierarchical reasoning, tracker-trees outperform com-
parable state-of-the-art methods based on GMMs.
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2.6.2 Experiment 2: DIRAC Data

To demonstrate the use of the tracker-tree in the DIRAC project, we installed a
mock-up living room at the Computer Vision Lab at ETHZ. The scene consists
of a couch, a chair, a television, a shelf, cupboards, a carpet on the floor and
a lamp in the background. This installation is similar to the previous one, that
was used to record training data and for previous experiments. The video was
recorded with an AVT Marlin fire-wire camera, having a resolution of 640x480
pixels and a frame rate of 15 frames per second.

In this test video, the person walks into the living room and performs various
actions: walks around, walks behind the couch, sits down, reads, stands up,
falls, lies down, etc. The test video contains 2380 frames.

Qualitative experiments

In Figure 2.15 we show a number of selected frames for the DIRAC sequence.
The person is tracked throughout the video sequence, and the active trackers
are displayed. For the sake of visibility, not all active trackers are shown, but
always the most informed (highest in the tree of Figure 2.1) and most confident
is depicted, using the color-code of Figure 2.1. For example, if walking is
observed, only the bounding box output of the walking tracker is displayed in
black, even though other less informed trackers, such as the foreground blob
tracker, or the different body part trackers, are also active.

The person is tracked precisely in terms of location and size of the bounding
box throughout the entire sequence. Different trackers appear at different in-
stances in time, according to the activities performed by the protagonist. We
now run through a number or interesting cases:

When the person moves behind the couch, the lower body is not visible from
the camera location, hence the person is half occluded and not all body parts
are tracked. This can be observed in Figure 2.15(b). As said previously, this
corresponds to a missing part inside the black box of Figure 2.1. Since this
situation might happen often in our scenario, we do not signal an anomaly,
but rather observe an ’incomplete’ person. In this case we do not expect any
higher-level tracker to be active, since they have been trained on entirely visible
persons. Not detecting all body parts however may also have other reasons. If
for example the person has some unknown upper or lower body pose (as in
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(a) walk (b) person incomplete (c) sit

(d) pick-up (e) walk (f) object abnormal (fall)

(g) person incomplete (h) person abnormal (limp) (i) sit

(j) lie down (k) person incomplete (l) walk

Figure 2.15: Selected frames of the DIRAC sequence. The active trackers on
the highest level in the tree is displayed, using the color code of Figure 2.1 The
detected abnormal events are indicated with a red frame.

Figure 2.15(g)), the head might still be tracked (green), and the person is still
detected by the person detector (yellow). This actually happens often during
transitions from one action to another. These transitions might not be modeled
by the action trackers, but body parts are observed. An example is the transition
from lying to sitting, as depicted in Figure 2.15(k). Other actions, such as
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picking up an object from the floor, or in our case picking a pen from the table
are recognized as such (Figure 2.15(d)). Also, lying down on the couch is
successfully tracked (Figure 2.15(j)).

If the person falls and lies immobile on the floor, none of the trackers that go af-
ter normal human motion or body parts in normal configuration remain active,
and only a foreground object is tracked (white bounding box in Figure 2.15(f)).
In this case, an abnormal event is reported. After standing up, the person might
have hurt himself and starts to limp (Figure 2.15(h)). In this case, the walking
tracker, trained on normal walking motion will lose confidence, while all the
body part trackers still validate the observation. In this case, an anomaly is
detected. As all the body parts are visible, this must be an unknown action.

Quantitative evaluation

As we have already demonstrated the abnormal event detection capacities of
the tracker-tree in the previous subsection, we here follow a different aim. We
want to quantify the action detection performance of the action trackers in the
tree. Hence, we evaluate the manifold-based action trackers on level Q4 in
Figure 2.1 individually and jointly in terms of recall and precision.
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Figure 2.16: Evaluation of the action recognition performances of our activity
trackers. Each trackers is run individually and its score is compared to the
ground-truth.
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Figure 2.16 depicts the four Recall-Precision-Curves for the action trackers,
(walk, sit, pickup and lie down, respectively). The curves are obtained indi-
vidually, which means that each tracker assesses the observation independent
of the output of the other trackers. We sweep the detection threshold that is
applied to the tracker output score and compare it to the manual ground-truth
annotation5. From these curves, it appears that the walking and lying track-
ers are relatively precise, whereas the picking-up and sitting trackers perform
worse.
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Figure 2.17: Overall performance of the action level Q4 in the tracker-tree.
The max-pooling operation improves the action detection performance. The
indicated threshold is used for the tracker display in Figure 2.15.

The RPC depicted in Figure 2.17 combines the outputs of all the trackers. In
fact, from the conjunctive tracker hierarchy, we know that only one tracker at
this level in the hierarchy can possibly be active at the time. Therefore a max-
pooling operation is performed before applying the classification threshold.
This improves the correct detection of the performed action (note the different
scale on the abscissa). In black we indicate the threshold that is chosen for the
per frame results in Figure 2.15. At this threshold, the action trackers show a
recall of 86% at a precision of 97%.

5The recall is the true-positive rate and quantifies the retrieved positive samples (i.e. detected
abnormal frames) compared to the ground-truth of positive samples. The precision is the fraction of
the correctly detected positive samples with respect to all detected samples. For better readability
1− precision is shown.
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To evaluate the abnormal event detection capacity of the tracker tree, we apply
the threshold of Figure 2.17 on the tracker’s scores. Then the abnormality
reasoning is performed in the tracker-tree and we compare the per-frame output
to the manually annotated abnormality labels. The overall system has a recall
of 75% at a precision of 81% for abnormality detection task on the DIRAC
sequence.

2.6.3 Discussion

We see from the experiments that it is useful to interpret the independent
tracker outputs in a tree-like structure. Irregularities with respect to the ex-
pected output scores of the different trackers can be detected quite reliably. A
reasoning is possible since all the trackers have previously determined tracking
capacities and target classes. Depending on the tree level, wehre the anomaly
is signalled, different interpretations can be given. This is important, as the
appropriate response will depend in the type of alarm. Furthermore, the higher
the quality of the available trackers and the preciser they are tuned to the appli-
cation scenario, the better the events in the scene can be interpreted.

The major limitation of the current tracker-tree implementation is certainly the
silhouette-based tracking technique of Section 2.3. Such trackers will fail un-
der circumstances that make background subtraction intractable, such as illu-
mination changes, displaced furniture, moving camera or high noise level. In
particular, the intruder detection relies on shape characteristics of the individual
persons, and is highly sensible to noise. Other more sophisticated techniques
(e.g., gait recognition) could be used instead for improving the performance.
However, these issues concern the current implementation of the tracker-tree,
but do not affect the validity of the presented anomaly detection concept. On
the positive side it should be mentioned that in all the observed failure cases,
the tree never completely broke down, and that the trackers recovered automat-
ically, for example when the refrigerator in Figure 2.11(d) was closed again.

2.7 Conclusions

In this chapter, we have proposed tracker-trees as a model of human behavior.
Unusual events are detected in cases where the behavior is not modeled ex-
plicitly. The underlying idea is to build a hierarchy of trackers in a supervised
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and pre-defined manner. The location of each tracker in the global structure
depends on how strong its prior expectations about the world are that are be-
ing exploited. We have argued that the multi-layer hierarchy allows one to
make rather specific interpretations about the detected activity and the kind of
unusual event that has occurred. High up in the tree semantically more compli-
cated events are detected than lower down. From qualitative and quantitative
examples, we show the applicability of the tracker-tree for the detection of
abnormal events, such as falls, in indoor surveillance scenes, where (elderly)
people are being monitored when they are alone.

It is clear that unusual is not the same as important. Not all unusual events
detected by such system will be relevant, and vice versa. An extensive such
system will contain explicit trackers and detectors for several relevant cases. To
make a step towards this direction, we present in the next chapter a technique
to update the tracker-tree with minimal manual effort.

Clearly, the tracker tree as proposed here is just an example of how such struc-
tures may be put to use. A practical system would require the integration of
many different trackers, selected with respect to the target application.





3
Activity Update via Transfer
Learning

3.1 Introduction

In order to recognize the (abnormal) activities of a person in an in-house sce-
nario, we have proposed the tracker-tree in the previous chapter. We have
shown how known concepts can be recognized and labeled, and abnormal
events are detected. Specialized trackers are trained with manually segmented
and labeled training videos, as outlined in Section 2.3. However, this training
process is cumbersome and limits the adaptation to new activity concepts or to
different application settings.

We propose to augment this static model with an update procedure, based on
transfer learning. To classify the activity samples, that are unknown in the
tracker tree, we build a multi-class model which exploits prior knowledge of
known classes and incrementally learns the new actions. This transfer-learning
stage requires minimal human effort and provides labels for the new activities.

We give an overview of the update procedure in Section 3.2, the transfer learn-
ing technique is summarized in Section 3.3 and experimentally validated in
Section 3.4.

The contents of this chapter are based on [Nater et al. 2011c]. The work was
done in a close collaboration with Tatiana Tommasi and Barbara Caputo from
IDIAP Research Institute in Martigny, Switzerland.
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3.2 Overview

Figure 3.1: Schematic overview of our approach to combine activity tracking
with transfer learning. In surveillance videos, an initial model recognizes fa-
miliar activities (1) or detects abnormalities (2). Together with minimal human
interaction (3), the transfer learning algorithm returns labels (4) such that the
activity model can be extended with new classes.

The overall procedure of the proposed activity update is outlined in Figure 3.1.
We follow the previous tracker-tree concept, but reduce the tree to two lev-
els, i.e. we focus in particular on level Q4 of Figure 2.1, where each tracker is
trained to one specific activity class and also include the blob tracker of Q1.
The trackers are run in parallel. A user-defined threshold, applied on the ac-
tivity trackers’ output scores, determines active and inactive trackers. Of all
the active trackers, the one with the maximal posterior probability determines
the activity label of the current frame and the bounding box of the person, as
illustrated in Figure 3.2. The cropped and labeled frames are delivered to the
transfer learning stage (Arrow 1 in Figure 3.1). If non of the known action
is observed, the foreground-blob tracker determines the bounding box of the
person, which is handed over, labeled as unknown (Arrow 2). In the trans-
fer learning stage, the information from minimal human annotation (Arrow 3)
and the familiar action concepts is exploited to label these unknown samples
(Arrow 4). From these newly labeled samples, we learn new manifold-based
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activity trackers with the technique of Section 2.3, and they are integrated be-
sides the existing ones. In this sense, the transfer learning algorithm acts as an
artificial expert to label previously unlabeled samples.

Figure 3.2: To demonstrate the update of the tracker-tree, we partially use the
original tree of Figure 2.1. The person is tracked by a set of activity-specific
trackers and the general foreground blob tracker. If an action tracker is active
(here: picking up in green), it provides labeled bounding boxes (Arrow 1 in
Figure 3.1).

The interaction between activity tracking and transfer learning is useful due to
their complementary nature:

• Generative tracking with multiple activity trackers provides labels for
familiar activities and detects abnormal situations. In both cases, the
location of the person is determined with a bounding box.

• Discriminative classification interprets the abnormal situations in order
to label new activities. Knowledge transfer uses prior information from
known classes for a more efficient and accurate labeling of new ones.
Human annotation of at least one frame is necessary to provide the de-
sired semantic label.

The approach has several application-specific advantages. Firstly, if only few
labeled samples of some actions are available, we can exploit prior knowledge
acquired under different conditions in terms of location, observed person and
employed recording camera. Furthermore, human annotation of one sample
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per class enables the semantic interpretation of the activities. For example,
it is desirable to include a fall in the model, in order to automatically take
appropriate action in case it is detected again, e.g., call an ambulance. Like
this, the model continuously becomes richer in what it knows, such that diverse
activity concepts can be recognized and the performance increases over time.
Finally, a shift in an activity concept, e.g., a person gradually starts to limp, can
also be integrated.

Related Work. The use of transfer learning for activity recognition problems
has been introduced in recent works for example for cross view action recog-
nition [Liu et al. 2011], for domain adaptation [Xian-Ming and Shao-Zi 2009,
Yang et al. 2010, Hu et al. 2011] or to transfer across sensor networks [van
Kasteren et al. 2010]. Furthermore, in a scenario similar to ours but not us-
ing video data, Rashidi and Cook [Rashidi and Cook 2011] use transfer learn-
ing to adapt models of daily activities between different residents in different
smart homes. However none of these works consider the possibility to up-
date the set of class knowledge models when the newly acquired information
contains actions which were not seen before. In visual object classification,
knowledge transfer is applied to solve a N

� class problem when N classes
are already known, with N

� and N disjoint groups [Lampert et al. 2009,
Jie et al. 2011].

3.3 Knowledge Transfer for Unusual Event Learn-
ing

Transfer learning can help to reduce the labeling effort for recognizing a set
of new activities. The idea is to transfer from known classes the useful part
of information while solving the new multi-class problem. Here, we briefly
describe the employed method, as proposed in [Tommasi et al. 2010], and
extend it to a multi-class setting.

Adaptive knowledge transfer

From a set of l labeled samples {xi, yi}li=1
, where xi ∈ X ⊂ Rd and yi ∈

Y = {−1, 1}, the goal is to learn a linear function

f(x) = w ·φ(x) + b (3.1)
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Figure 3.3: Schematic presentation of the transfer learning strategy. The ac-
tivity classes on the left (red) are prior knowledge, the right classes (blue) are
the new target activities. In a multi-class one-vs-all scheme new hyperplanes
are obtained. For classes 1,2 and 3 we learn from the corresponding source
knowledge while for classes 4 and 5 a weighted combination of all the known
hyperplanes is used as prior. (Figure credits: Tatiana Tommasi)

which assigns the correct label to an unseen test sample x. The function φ(x)
maps the input samples to a high dimensional feature space where the inner
product can be easily calculated through a kernel function [Cristianini and
Shawe-Taylor 2000]

K(x,x�) = φ(x) ·φ(x�). (3.2)

As opposed to the classical theory of Least-Square Support Vector Machines
(LS-SVM) [Suykens et al. 2002], the optimization problem is slightly modified
by introducing a regularization term, that accounts for the adaptation to classes
of prior knowledge [Tommasi et al. 2010]. The idea is to constrain the new
model to be close to a set of k pre-trained models. With a linear dependency
with respect to the models of prior knowledge w�

j (i.e. βjw�
j), the objective

becomes:

min
w,b

1

2
�w −

k�

j=1

βjw
�
j�2 +

C

2

l�

i=1

ζi[yi −w ·φ(xi)− b]2. (3.3)

In this case, w and b are the initial model parameters and ζi a weight introduced
to cope with unbalanced data distributions, For a solution of this objective func-
tion, the Leave-One-Out (LOO) prediction is used as an unbiased estimator of
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the classifier generalization error and hence, to find the best value of β. For the
detailed solution, we refer to [Tommasi et al. 2010].

One-vs-All multi-class extension

Let’s start from a prior knowledge problem with N different activity classes
and train a multi-class SVM classifier with the one-vs-all approach. Only the
parameters that describe the hyperplanes {w�

j}Nj=1
are memorized while the

data is not stored. As target task we consider to solve a (N +N
�) multi-class

problem where N categories are the same as in the original source task and
N

� classes are new. However, now only very few samples for each class are
available.

The binary transfer approach described previously can be used separately to
learn each of the (N + N

�) one-vs-all hyperplanes (see Figure 3.3). The N

hyperplanes associated to the same classes considered in prior knowledge, are
now trained to separate some new positive samples against a different negative
set due to the presence of N � new classes. In these cases the βββ vector reduces
to one single value in [0, 1]. The method also exploits a linear combination of
prior knowledge hyperplanes to separate each of the N

� new categories from
all the others. The idea that a combination of visual characteristics, which
differentiate between the known actions, can still be useful to characterize the
new ones when only few labeled samples are available.

3.4 Experiments

We perform two experiments to demonstrate the activity update. First, we show
the performance of activity classification via transfer learning, then we verify
how the newly learned classes improve the activity recognition performance of
the (reduced) tracker-tree model. We use the same data for both tasks.

3.4.1 Dataset and Setting

In our experiments, we include 5 different activities to be recognized. These
are walk, sit down, pick up, lie down and fall. We consider different cases that
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might also appear in real-life scenarios. As depicted in Figure 3.4, we include
two different indoor scenes, two camera types that were used for recording and
three different persons.

(a) Camera 1, Scene 1 (b) Camera 1, Scene 2

(c) Camera 2, Scene 1 (d) Persons 1, 2, 3

Figure 3.4: Different settings are used for the experiments. We recorded in two
different indoor scenes, with two different cameras and three persons perform
the activities.

Cameras. Camera 1 has V GA resolution and records at 15 frames per sec-
ond. The used lens introduces minimal distortion. Camera 2 has a resolution of
1624×1234 pixels and records at 12 frames per second. A fish-eye lens with a
large field of view introduces distortion, that needs to be corrected. To this end,
we apply the technique of [Havlena et al. 2009] and rectify the images cylin-
drically, i.e. straight, physically vertical lines are preserved. For visualization
purposes, the relevant image region is cropped out in Figure 3.4(c).

Sequences. We dispose of 12 video sequences, which were recorded as de-
tailed in Table 3.11. They contain between 1000 and 3000 frames and depict

1Data available from www.vision.ee.ethz.ch/˜fnater

www.vision.ee.ethz.ch/~fnater
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a single person who performs all the five activities. We manually provide a
frame by frame ground truth annotation for each sequence. Transitions (e.g.,
standing up after a fall) are termed with no activity.

Seq 1a, Seq 1b, Seq1c : {Scene 1, Person 1, Camera 2}
Seq 2a, Seq 2b, Seq2c : {Scene 1, Person 2, Camera 2}
Seq 3a, Seq 3b, Seq3c : {Scene 1, Person 3, Camera 1}
Seq 4a, Seq 4b, Seq4c : {Scene 2, Person 3, Camera 1}

Table 3.1: Three sequences were recorded for every parameter combination.

Initial processing. We run the tracker tree with the three initial activity track-
ers (walk, sit down, pick up) and the blob tracker on all the sequences. The
known activities are spotted and abnormal events are detected. Each frame is
labeled and the bounding box of the person is obtained. This forms the basis
for further analysis.

3.4.2 Transfer Learning

As explained in Section 3.2, the transfer learning step is used as an expert
exploiting prior knowledge and labeling new samples that are then used to
update the tracking system. Having an accurate classification process is crucial
for the performance of the final action recognition method. We validate the
proposed transfer approach in four cases. As prior knowledge we used Seq ∗a
with the N = 3 activities labeled in the initial processing. Seq ∗b is used to
extract randomly 10 frames for each of all the N + N

� = 5 actions (initial
processing and new activities). This defines the training set for the target task.
Finally Seq ∗c is used as test set.

The PHOG features [Bosch et al. 2007] (histogram bins=9, angle=180, lev-
els=3) are calculated on the provided bounding box around the person and they
are used together with the RBF kernel in all the experiments. The learning
parameters are chosen by cross validation on prior knowledge. To implement
the multi-class transfer learning method we started from [Tommasi et al. 2010]
using the code released by the authors2.

We compare three methods that are applied to the test sequence:
2http://www.idiap.ch/˜ttommasi/

http://www.idiap.ch/~ttommasi/
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• Initial Model: The prior knowledge model learned on the 3 initial activ-
ities.

• No Transfer: The model learned on few samples of the 5 activities.

• Transfer: The model learned on few samples of the 5 activities transfer-
ring from prior knowledge.

The plotted values correspond to the average recognition rate on 10 runs of the
experiment (the random selection of training frames from Seq ∗b is repeated 10
times). The significance of the comparison between Transfer and No Transfer
is evaluated through the sign test [Gibbons 1985]: a square marker is reported
on the graph if p < 0.05. The four experiments differ by the existing rela-
tion between prior knowledge and target task and the results are presented in
Figure 3.5.

Case 1: same person, same camera, same scene. The acting person, the
background scene and the recording camera are the same in prior and new se-
quence. Specifically we used Seq 1a, Seq 1b and Seq 1c. Classification results
are reported in Figure 3.5 (a): transferring from prior knowledge guarantees a
significant advantage compared to learning from scratch. The same experiment
was repeated using Seq 3a, Seq 3b and Seq 3c, with equal results.

Case 2: different person, same camera, same scene. The background scene
and the recording camera are fixed, but the acting person in prior knowledge
is different with respect to the one in the training and test videos. We used
respectively Seq 2a, Seq 1b and Seq 1c. The results are reported in Figure 3.5
(b). Even if the actions in prior knowledge are performed by a different person,
transferring information still guarantees an advantage in learning. The same
experiment was repeated inverting the role of the two acting persons and using
Seq 1a, Seq 2b and Seq 2c with analogous results.

Case 3: different person, different camera, same scene. Prior knowledge
and new task involve different persons, they are also recorded with a different
camera but the scene remains the same. Specifically we considered Seq 3a, Seq
1b and Seq 1c. Figure 3.5 (c) shows the results: here Transfer is still signifi-
cantly better than No Transfer but the gain in terms of recognition performance
is small.

Case 4: different person, different camera, different scene. Finally we
consider a prior knowledge setting where the person, the camera used and the
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 3.5: Average recognition rate results on ten runs evaluated varying the
number of samples per class in the training set. The significance of the compar-
ison between Transfer and No Transfer is evaluated through the sign test and a
square marker is reported on the graph if p < 0.05. Passing from case 1 to case
4 the prior knowledge is less and less relevant, consequently the advantage of
Transfer w.r.t. No Transfer decreases.

background scene are different with respect to the one used in the training and
test videos. We used Seq 4a, Seq 1b and Seq 1c and the results are reported in
Figure 3.5 (d). Here the transfer learning system automatically realizes that the
information coming from prior knowledge is not useful for the new task and
Transfer performs as No Transfer.

Comparing all the four graphs in Figure 3.5, the progressively lower relevance
of prior knowledge with respect to the new target task can be read in the de-
creasing recognition rate result for the Initial Model. Globally, the classifiers
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obtained with Transfer learning perform better or at least equally to No trans-
fer. Therefore we use the transfer learning to fix the activity class labels that
are delivered to update the activity trackers.

3.4.3 Activity Tracking

Given an updated set of activity trackers, we evaluate how the activity recogni-
tion performance increases with respect to the initial processing. The predicted
activities are compared to the ground truth. We use Seq ∗b for evaluation since
it was not used previously for testing the classification. Activities are predicted
for three cases: (i) the initial tracker set, (ii) the tracker set after the transfer
learning update with one-shot learning and (iii) after the update with 10 manu-
ally labeled frames.

In Figure 3.6 we provide detailed insights for the activity update. The cases
1 (same scene, same person, same camera) and 4 (different scene, different
person, different camera) are depicted. In Figure 3.6, ROC curves are shown
for the initial and updated (one-shot and 10 samples) tracker sets. To this end,
the threshold that determines the active trackers, is gradually increased. This
results in different numbers of true-positives and false-positives. For the con-
fusion matrices in Figure 3.6 and all further experiments, the threshold is kept
fix.

One-shot labeling already improves the activity tracking performance consider-
ably with respect to the initial tracker set. If the labels provided by the one-shot
learning are correct as in case 1, the benefit of labeling 10 frames is marginal.
If it turns out that one manually labeled sample is not sufficient for a good
classification accuracy, as in the most difficult case 4, manual annotation of
10 frames improves the final performance. In the confusion matrices, the pre-
dicted activities are reported vs. the ground truth in terms of number of frames
and underlie this finding. Cases 2 and 3 are very similar to case 1, i.e. the
transfer learning with one manually labeled sample is sufficient.

In Table 3.2, we report the evaluation of the activity recognition in terms
of overall true-positive-rate and false-positive-rate for different cases of prior
knowledge and target tasks. The first four columns report results obtained on
the same sequences used for the experiments in Figure 3.5, the last two columns
contain the results for other test sequences. In all cases, the augmentation of
the tracker set with new trackers learned from the transferred labels helps. In
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Tracker test sequence 1b 3b 2b
Tracker update sequence 1c 3c 2c
Transfer prior sequence 1a 2a 3a 4a 3a 1a
Corresponds to case 1 2 3 4 1 2

Initial processing
TPR 0.50 0.45 0.44
FPR 0.13 0.17 0.06

Updated (1-shot)
TPR 0.78 0.78 0.78 0.59 0.72 0.62
FPR 0.14 0.14 0.14 0.16 0.17 0.05

Updated (10 samples)
TPR 0.81 0.82 0.81 0.81 0.73 0.66
FPR 0.15 0.17 0.15 0.15 0.22 0.13

Table 3.2: Results for different sequences, the predicted activity is compared
to the ground truth. Different cases are reported in terms of true positive rate
(TPR) and false positive rate (FPR). The updated activity set outperforms the
initial one. In most situations, the results obtained with 10 labeled samples are
only marginally better than using one-shot learning.

five of the six evaluated cases however, the annotation of ten frames vs. one
frame only improves the performance marginally. We underline that the num-
ber of labeled training samples needed is in any case two or at least one order of
magnitude smaller than what originally requested to train the activity trackers
in Section 2.3.

3.5 Conclusions

Starting from the output of the tracker-tree that detects known activities un-
usual events in surveillance videos, we presented here a strategy to learn these
new events. These events can be new activity concepts or also abnormal, but
relevant events that shall be recognized in the future. We only need a very small
number of training samples since we exploit prior knowledge of activities that
were known already. The intermediate transfer-learning process serves as ar-
tificial expert and permits the accurate labeling of multiple video frames. We
are then able to integrate the new activity concepts in the tracker-tree besides
the existing ones and hence improve the activity detection performance of the
tracker tree during runtime.





4
Unsupervised Behavior Analysis in
Two Hierarchies

4.1 Introduction

In the previous chapter, we presented an approach to incrementally learn new
actions during runtime, that requires manual labeling of few activity samples.
Here we go one step further and propose to model the observed behavior with-
out any human assistance. In the context of in-house monitoring, one faces the
challenges that every person behaves differently and the camera setup and the
room layout changes for every installed system. Therefore, a model learned
off-line in lab-settings is likely not to represent the observations well, and ab-
normal event detection might fail in practice. Due to these reasons, we are
interested in modeling the observed behavior of the actually concerned person
as accurately as possible. In this chapter, we propose a technique inspired by
biological findings, that learns human behavior in a completely unsupervised
manner.

In a biological perspective, it is of utmost importance for the survival of all
animals to correctly recognize motion. In particular, human locomotion con-
sists of motion patterns that involve different movements of all limbs and are
therefore widely used to study visual motion perception on a psychophysical
level but also for modeling with algorithms. Recent computational techniques
to model human motion therefore incorporate biologically motivated strategies
(e.g., [Giese and Poggio 2003, Jhuang et al. 2007, Escobar et al. 2009]. In a
different study, Lange and Lappe [Lange and Lappe 2006] propose a neurally
plausible model that explains the visual perception of biological motion. Ac-
cording to their findings, snapshot responses of the first stage (form) are tem-
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(a) Normal action (b) Abnormal event

(c) Human behavior analysis

Figure 4.1: Human behavior in an input image stream is analyzed in a cascade
of two hierarchical models. They are established in an unsupervised manner
and permit the characterization of normal and abnormal events for example in
in-house monitoring scenes.

porally integrated in the second stage (motion). An analogue concept can be
relied on for computational action modeling as for example done in [Schindler
and Van Gool 2008].

Our model consists of two hierarchical representations arranged in a cascade,
as illustrated in Figure 4.1(c). The first stage encodes human appearances
and is built by a top-down process, whereas the second hierarchy explains se-
quences of appearances (i.e. actions or behavioral patterns) and is built from
a bottom-up analysis. In fact, given a sequence of images, we first map these
images to a finite set of symbols describing what is observed. Secondly, we an-
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alyze the sequence of symbols to characterize in which order the observations
occur. We call these sequences micro-actions since they usually correspond
to basic body motions. Finally, the evaluation could be augmented by learn-
ing the temporal (e.g. within a day or a week) and spatial dependencies. All
this together models the normal behavior of a person in a scene (Section 4.2).
Our approach is additionally motivated by the recent work of [Lin et al. 2009]
which also relies on a hierarchical representation, but targets action recognition
in a supervised setting.

At runtime, the learned structure is used as a model of normality to which
unseen data is compared (Section 4.3). The person is tracked and statistical
outliers with respect to appearance and action are detected robustly and effi-
ciently at different hierarchical levels. We additionally show how to update
this model in order to incorporate newly observed normal instances. Experi-
ments in Section 4.4 target the surveillance of humans in indoor environments
and show abnormal event detection capacities of our approach.

To underline the biological relevance of our approach, we compare the per-
formance of our computational model to responses of monkeys for the task of
discrimination of locomotion direction (Section 4.5). Trained and evaluated
on the same input data, we show parallels and shortcomings between monkeys
behavior and the two-stage computational model.

The elaborations in this chapter are based on [Nater et al. 2010a] and [Nater et
al. 2010b].

4.2 Human Behavior Modelling in Hierarchies

In the following, we present our approach to model human behavior in two
hierarchies, dedicated to encode the appearance and the motion of the person,
respectively.

4.2.1 Appearance Hierarchy (H1)

We start from an image stream

S = �x1, . . . ,xT �, xt ∈ X (4.1)
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Figure 4.2: Illustration of the unsupervised learning approach, composed of
two hierarchies. In H1, a sequence of images is mapped by clustering to a
number of discrete symbols, in H2 the sequence of these symbols is analyzed.

of T frames which is described in an arbitrary feature space X . The goal is to
group similar image descriptors together and create a finite number of clusters
representing the data in a compact form. Hence, we propose to use a k-means
clustering algorithm [Jain et al. 1999], applied hierarchically to the training
data in a top-down procedure with a distance measure d(xi,xj) defined in X .
The root node cluster C(1) describes all xt ∈ S . Moving down in the hierarchy,
the data associated to one cluster on layer l, i.e.C(l) ⊆ X is separated into k

sub-clusters on layer l + 1:

C(1) = X , C(l)

i
=

k�

k�=1

C(l−1)

k� . (4.2)
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This process is repeated until a certain stopping criterion is met, for example
when the number of data points in a cluster gets too small. An example of the
resulting tree structure H1 is presented in Figure 4.2 using k = 2.

By creating a hierarchical representation, the clusters become more specific
when moving down the tree structure. While the cluster at the root node has to
describe all xt in the training set and thus exhibits a large intra-cluster variance,
clusters at lower layers only contain similar data and therefore describe this
data more precisely.

Eventually, each feature vector xt is mapped to a symbol rt which is the num-
ber of its corresponding leaf node cluster. The image stream is accordingly
expressed by the sequence of symbols, i.e.

S �→ R = �r1, . . . , rT �, rt ∈ IN ∪ {�}. (4.3)

In order to obtain compact clusters and to cope with noisy data, we remove
statistical outliers at every clustering step with the formulation of Section 4.3.1.
The symbol r = � is assigned to an xt that is not matched to a leaf node
cluster. For their use at runtime, all obtained clusters C(l)

i
are represented with

their centers ci and the distribution D
(l)

i
of distances di = d(ci,x) of all the

samples x assigned to this cluster.

4.2.2 Illustration

We demonstrate the mapping of input images to clusters in the tree structure.
An indoor training sequence1 of about 7, 100 images was recorded at 15 frames
per second in V GA resolution. It contains diverse ’every-day’ actions such as
walking, walking behind occluding objects, sitting on different chairs, picking
up small objects, etc., repeated a few times.

Feature extraction. We apply background subtraction2 on the input images
for the extraction of foreground blobs. The resulting silhouettes are rescaled to
a fixed number of pixels (40× 40 in our case) and a signed distance transform

1Data available from www.vision.ee.ethz.ch/˜fnater/.
2We operate on static camera images and in scenes with few moving objects, but other appear-

ance features could be used similarly. However, we did not notice any failures of our approach that
were caused by bad foreground segmentation.

www.vision.ee.ethz.ch/~fnater/
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is applied. Maximum and minimum pixel values are bounded and an offset
is added to obtain non-negative values (c.f. Figure 4.3). Finally, the rows are
concatenated in a vector that defines the fixed length image features x (N =
1600), describing the appearance of one person in the scene.

(a) (b) (c) (d)

Figure 4.3: Feature extraction: (a) original, (b) segmented, (c) postprocessed
and rescaled, (d) distance transformed.

Distance measure. As a distance measure to compare the feature vectors
in the clustering procedure, we use the χ

2 test statistic as in [Belongie et al.
2002]. Two samples xu and xv with elements xu(n) and xv(n), n = 1 . . . N
are at a distance

d(xu,xv) =
1

2

N�

n=1

[xu(n)− xv(n)]2

xu(n) + xv(n)
. (4.4)

This said, the silhouette features are extracted and clustered (k = 2) in order
to build H1. The outcome is visualized in Figure 4.4, where a random set of
silhouettes is shown for each cluster at different layers. Similar appearances
are grouped well into the same cluster for a hierarchcal depth of l = 5 already.

4.2.3 Action Hierarchy (H2)

As depicted in Figure 4.2, we start from the sequence of symbols R defined in
Equation (4.3). The goal is to exploit the information in this sequence and ex-
tract frequent patterns which we refer to as micro-actions. Their variable length
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Figure 4.4: Visualization of the proposed binary tree for the hierarchical ap-
pearance representation (H1). For each of the displayed clusters at different
layers C(l)

i
, randomly chosen silhouettes are displayed.

naturally defines a hierarchy, since longer actions automatically represent more
information. Our approach is inspired by the work of Fidler et al. [Fidler et al.
2006, Fidler and Leonardis 2007], where neighboring generic visual parts are
combined in a hierarchy, in order to form entire objects on higher levels. At
each level only the statistically relevant parts are chosen and noise is omitted.
Since our input is a one-dimensional state sequence, we combine temporally
adjacent generic parts (micro-actions) for the hierarchical combination of new,
more informative ones.

More in detail, we first define a set of basic actions a
(1)

i
that encode a state

change rt → rt+1 in the sequence of symbols:

A(1) = {a(1)
i

:= rt → rt+1 | rt �= rt+1, P (a(1)
i

) > θact}, (4.5)
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where P (ai) is the occurrence probability of the micro-action ai. The param-
eter θact is defined such that only frequently occurring symbol changes are
considered, thereby discarding spurious changes. From the second level on,
higher level micro-actions with length λ are the combination of lower level
micro-actions, i.e.

A(λ) = {a(λ)
i

:= a
(λ−1)

p → a
(λ−1)

q | P (a(λ)
i

) > θact}. (4.6)

The frequency condition θact naturally introduces a limit on the maximal length
of the micro-actions (longer micro-actions appear less frequently). The symbol
r = �, attributed to a feature vector which is not matched to any leaf node
cluster, is excluded from the description of any a

λ
i

.

We want to be independent of a labeling of the states (they might even not be
attributed a clear label as they are learned through an unsupervised procedure)
and the method we propose relies much more on the assumption that, within the
target scenario, normal actions are likely to be repeated. This fact is exploited
for the extraction of usual temporal patterns. Summarizing, we continuously
replace the original sequence of symbols �r1, . . . , rt� by frequent patterns a

λ
i

and we can represent the image stream as a series of micro-actions of different
lengths λ:

S �→ R �→ �a(λ)
1

, . . . , a
(λ)

t �, a
(λ)

i
∈ A(λ)

. (4.7)

Note that in this formulation, micro-actions can overlap, which is in line with
the observation that often no clear-cut boundaries of actions can be defined [Natara-
jan and Nevatia 2008, Satkin and Hebert 2010].

4.2.4 Illustration

Action recognition We employ a publicly available dataset [Lin et al. 2009]
that is previously used for action recognition. To illustrate the extraction of
micro-actions, we select two right arm motions (’turn left’ and ’stop left’).
The two sequences additionally have introductory walking, they are sticked to-
gether and analyzed as shown in Figure 4.5. Binary silhouettes are provided in
the dataset, we quantize them in the same way as in Section 4.2.2. In a first step,
the appearance hierarchy of Section 4.2.1 is grown and the plotted sequence in
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the bottom of Figure 4.5 depicts the obtained symbols. Next, repeated pat-
terns in this sequence are extracted first on the basic level a(1) (i.e. transitions,
Equation (4.6)), then growing in length on higher levels (Equation (4.7)). The
finally meaningful micro-actions are presented in the upper part of Figure 4.5
and correspond to the actions which are to be recognized, but discovered in an
unsupervised manner.

Indoor surveillance If we apply the same procedure to the previously de-
scribed indoor training video, the sequence of symbols is more complex and
various repeated micro-actions appear at different hierarchical levels. A selec-
tion is shown in Figure 4.6. In case the system would be required to constantly
report activities, they could be labeled manually for ease of human reference
(‘walking’, ‘sitting down’, ’getting up’, ‘picking up from the floor’). This split
into units that intuitively correspond to basic actions, demonstrates that within
the repeated action context, it is possible to isolate and segment these actions
in an unsupervised manner.

4.3 Runtime Processing

In this section, we show how the established model of normality is employed
for the runtime analysis of unseen images. H1 will be used for tracking and the
interpretation of the appearance, H2 is used for the interpretation of actions.
In both hierarchies, abnormalities can be spotted.

4.3.1 Data-dependent Inlier

Given a query image with extracted features x, we want to determine its clus-
ter membership Ci based on the distance d(x, ci). According to the curse of
dimensionality, distances in high dimensional spaces tend to lose their sig-
nificance and it is therefore difficult to find a fixed distance threshold for the
classification of the query. Hence, we apply the concept of data-dependent in-
lier [Knorr and Ng 1998], comparing d(x, ci) to the distance distribution Di

of the cluster Ci. For each cluster Ci with center ci, this distribution Di of the
distances di = d(ci,xt) for all training samples xt that were assigned to this
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(a) ’walk’

(b) ’sit’

(c) ’pick up’

Figure 4.6: Examples of segmented actions as produced with our method. In
an unsupervised manner repetitive microactions are extracted, which can be
labeled manually, if desired. Repetitions in the training dataset are presented
in rows.



66 4. UNSUPERVISED BEHAVIOR ANALYSIS IN TWO HIERARCHIES

cluster was estimated during training. The probability that the query point x is
an inlier to Ci is

pinlier (d(x, ci)) = 1−
� d(x,ci)

ξ=0

Di(ξ)dξ. (4.8)

For classifying a sample as inlier, its inlier probability must exceed a certain
threshold:

pinlier (d(x, ci)) ≥ θinlier. (4.9)

In the analysis of unseen data, we keep θinlier = 0.05 which means that x is
classified as outlier if its distance to the considered cluster center is larger than
95% of the data in that cluster.

4.3.2 Target Tracking

In every frame we want to determine the location and scale of the bounding
box, i.e. find xt that best matches the trained model. This is important for a
correct and robust symbol mapping as well as a precise tracking of the human
target. We apply a best search strategy in which the local neighborhood of the
output at the previous time step is exhaustively scanned. Each feature repre-
sentation x�

t extracted from a hypothesized location and scale is evaluated by
using Equation (4.9) and is propagated as far as possible in H1, from the root
towards the leaves. With this inlier formulation, an observed image representa-
tion x�

t can sometimes be matched to more than one cluster on the same layer.
In that case, all connected lower layer clusters are evaluated subsequently. As
tracking result xt, the hypothesis which applies to a cluster at the lowest possi-
ble layer with maximal pinlier is searched for. Ideally this is a leaf node cluster
and its symbol rt is attributed to xt.

If no leaf node cluster is reached, no symbol can be attached to this observa-
tion. Furthermore, if the observation is already outlier to the root node cluster,
the target cannot be tracked in H1. In order not to lose the target, it is si-
multaneously followed by a generic foreground object tracker, which specifies
the bounding box in this case. To this end, we use the same mode estimating
tracker [Bradski 1998] as in the root node of the tracker-tree in Chapter 2. In
our current implementation, this tracker is also used to establish a prior for the
exhaustive search, which additionally speeds up the tracking procedure.
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4.3.3 Abnormal Appearance

An abnormal (or novel) appearance is identified in H1 on hierarchical level l if
the tracking result xt is inlier to at least one cluster at level l but is outlier to all
of its connected clusters in layer l + 1. Since no leaf node can be matched to
xt in this case, the symbol rt = � is attributed, characterizing an unknown (not
matching) state. Of course, if xt is outlier at the root node already, it is also
abnormal. This outlier detection paradigm is in line with state of the art novelty
detection in a disjunctive hierarchy [Weinshall et al. 2012]. This additionally
motivates the use of a hierarchical structure for data modeling.

Although the tree-like model is learned in an unsupervised manner, it helps
to order and interpret anomalies. Completely new poses tend to be outliers to
clusters close to the tree root already, while not that different poses are matched
on some layers before being detected as outliers. Hence, and as we will show
in the experimental section, this hierarchy assists with a semantic interpretation
of the abnormal poses.

This said, novelty detection in H1 is based exclusively on the appearance per
frame. The identification of abnormal actions is achieved in H2.

4.3.4 Abnormal Actions

Abnormal action analysis is based on the mapping S �→ R and the hierarchical
model of usual actions encoded in the hierarchy H2. In that sense, the sequence
R is scanned for its correspondence to A(λ).

The sequence of symbols rt extracted at runtime is analyzed as in Equation (4.5)
and Equation (4.6) and combined into micro-actions a(λ)

i
with different lengths

λ. Each micro-action is then compared to the set of normal micro-actions A(λ).
If it is found in the database, it is considered to be normal behavior at level λ.
The length of the action is used to know how usual the behavior is. If xt is
mapped to the unknown state rt = �, no micro-action can be established and
the sequence analysis breaks down temporarily. This is due to the prerequisite
that usual actions require a sequence of usual appearances.
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4.3.5 Scene Context

Additionally, our approach can be embedded in a scene context learning frame-
work. There are a certain number of events or actions which can be usual in
one part of the scene but are not in another one. Thinking of in-house visual
surveillance, this might be the presence of a person lying on a couch vs.the
person lying on the floor. Considering only human appearances, the two sce-
narios might look the same, but with additional scene information, they could
be told apart. Then, the second case could be pointed out as abnormal. For ex-
ample, lying on the couch could be observed often, whereas lying on the floor
not. The same idea applies to actions performed at a certain time of day, for
example, a person observed walking through a living room at 4 a.m. should
not necessarily be considered normal.

This family of unusual events could be accounted for by learning statistics
on the spatial and temporal extent of the previously established symbols and
micro-actions. However, the incorporation of such techniques into our method
is not the focus of this thesis.

4.3.6 Model Update

After the training phase, the model of normal behavior usually remains fixed.
Obviously, not all possible appearances and actions can be learnt off-line, due
to the lack of sufficient training data. Furthermore, the normality concept might
change over time and thus the model needs to be adapted continuously. For
example, a different walking style like limping is (correctly) classified as ab-
normal since it can not be modeled through a normal action sequence. Yet, if
it starts to appear frequently, it might turn into a normal behavior, for example
due to a lasting deterioration of the person’s physical state. It is therefore de-
sirable to design a dynamic method, able to extend (or even shrink) the model
of normality.

Appearance update The hierarchical model H1, can essentially be modi-
fied in two ways. Firstly, new appearances which are classified as outliers at
runtime might need to be included if they occur often. Secondly, some existing
cluster could be further refined, e.g. for the distinction between two persons.
Since we focus on the scenario where a single person should be monitored
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when left to his own devices, we will only deal with the first case as yet. It is
clear that for long-term, real-world usage, the system should be enriched with
a method to identify the person of interest and to notice the presence of others
(like care-takers).

At runtime we collect all feature vectors that are outliers at a certain layer in the
hierarchy. During a supporting phase, for instance when the system is in an idle
mode since no person is in the room, we incrementally update the hierarchy.
The creation of new clusters is investigated at the specified layer, besides the
existing ones. To that end, we apply the same hierarchical clustering approach
to the set of outliers. It is important not to change the existing hierarchy since
already established knowledge should not get lost. Assuming that also ’real
outliers’ could be in the update data, we follow a restrictive policy and set the
threshold θinlier (Equation (4.9)) to a high value already for clustering. Finally,
new leaf node clusters are established and new symbols are defined.

Micro-action update Established micro-actions by definition have a suffi-
cient frequency of occurrence (Equation (4.6)). We propose to estimate these
probabilities incrementally, by updating them with new observations during
runtime, using the principle of exponential forgetting. Hence, frequent, new
micro-actions become available for the next level and less frequent micro-
actions are removed. Micro-actions using new symbols in H1 are included au-
tomatically, since they will first get picked up by lower levels (Equation (4.5))
and then might be used for longer micro-actions as soon as they occur often.

Summarizing, one could start with an empty database, with everything consid-
ered abnormal at the beginning. When humans (moving objects in general) are
observed several times, first appearances and later micro-actions are added to
the model of normality.

4.4 Experiments

In this section, we validate the proposed approach with a series of experiments.
To the best of our knowledge, there is no standard dataset for testing in-the-
home visual monitoring techniques. As the experiments will show, the method
is successful at detecting salient appearances and behaviors which are mean-
ingful also from a human point of view. We want to re-emphasize at this point,
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that the main goal of this work is to assist in the prolonged, independent living
of elderly or handicapped people. Hence, we focus on scenarios with only that
single person in the scene. As such system would need to be deployed in many
homes, the unsupervised approach behind it is of particular importance.

4.4.1 Behavior Analysis

The training video recorded in the indoor environment was already introduced
in Section 4.2.2. The test footage of about 1, 000 images was recorded in the
same setting as the training sequence, but now contains abnormalities such
as heavy waving, jumping over the sofa and a fall. The model of normality
was established as explained previously (appearance clustering in Figure 4.4,
extraction of frequent micro-actions like the ones in Figure 4.6), and we now
want to explain the test sequence by means of this model. The target person
is tracked and appearances and actions are interpreted. A selection of the per-
frame results are visualized in Figure 4.7.

The color of the bounding box indicates the layer l in H1 farthest from the root,
on which the observation is still considered normal according to Equation (4.9).
A red bounding box is drawn if the observation is outlier to the root node, (its
dimensions are in that case determined by the mode estimating tracker [Bradski
1998]), nuances of orange are used for intermediate layers and green encodes
an appearance that is described in a leaf node.

The vertical black bar on the left side of the bounding box represents the level
λ in H2 on which the sequence of symbols is normal. The length of the bar
is adjusted accordingly. In case the appearance does not reach a leaf node in
H1, i.e. the bounding box is not green, the action level cannot be calculated
and therefore vanishes.

The plots in Figure 4.8 indicate three temporal characteristics:

• The maximal inlier probability (in the matching cluster) remains at high
value and is stable as long as one leaf node cluster is matched. We also
show the 5% threshold θinlier which is used for the classification of ab-
normalities.

• The matching cluster identity (symbol rt) changes over time (0 = �)
which allows for the recognition of micro-actions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.7: Our method tracks the person, analyzes the appearance in H1 and
interprets the micro-action in H2. Here we present various normal and abnor-
mal instances of the test sequence. The color of the bounding box encodes the
layer in H1, on which the observation is normal, the length of the black bar on
the left side of the bounding box indicates the micro-action level in H2.

• The micro-actions are matched hierarchically and the maximal length is
plotted.
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Figure 4.8: Three representative values are plotted over time, the inlier proba-
bility at the leaf node level of H1, the matched symbol rt and the micro-action
length a

(λ). Two actions are highlighted (see text for details).

Two patterns (’walking’ and ’sitting’) are highlighted in color, which in fact
correspond to the same micro-actions as shown in Figure 4.6(a) and Figure 4.6(b).
The frames of Figure 4.7 are localized in time with the letters in the top plot of
Figure 4.8.

We now run through a number of interesting episodes in the test video. In
(a) everything is normal, the action level is not so high yet since the sequence
just started. (b) and (i) are two abnormal events at different levels within H1,
whereas (e), (g) and (h) are outliers to the root node already. In these cases, a
practical system would probably generate an alarm. This also demonstrates the
use of the hierarchy: the leaning person in (b) is detected abnormal close to the
leaves, while the waiving in (i) is more severe but still an upright pose. Severe
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abnormalities are detected at the root node. Note that lying on the couch (g)
was not present in the training set, therefore it is judged abnormal at first. On
the other hand, occlusions were trained for and their handling in (d) does not
cause problems. It is interesting to compare (c) and (f): Although the same
appearances are present, (f) needs special attention, since it resulted from an
unknown action (jumping over the couch in (e)) and hence holds a small black
action bar.

4.4.2 Model Update

(a)

(b) (c) (d)

Figure 4.9: Illustration of the update procedure: (a) some feature cropped im-
age regions and their corresponding feature representations used for the update
of H1, (b) normal appearances stay normal after the update, (c) lying turns
normal after the update and (d) real outliers are still detected.

A second experiment illustrates the benefit of the model update. The video
used for the update contains the repeated ‘abnormality’ of the person lying
on the couch but also a real irregular event (i.e. the person falls). This set of



74 4. UNSUPERVISED BEHAVIOR ANALYSIS IN TWO HIERARCHIES

appearance feature vectors, outliers to the root node of H1, is stored during
the analysis of the sequence and a some randomly chosen outlier samples are
displayed in Figure 4.9(a). All abnormal appearances are used for updating the
model though.

After this update, when analyzing yet another video sequence, previously nor-
mal appearances stay normal (Figure 4.9(b)), lying is now included in the
model of normality and handled accordingly (c), while other events remain
outliers (d). The model would need to see some more occurrences of lying on
the couch in order to also recognize the micro-action ’lying down’ as normal.
This had not happened yet, whence the small black action bar in Figure 4.9(c).

Figure 4.10: Recall-precision curves for the video sequence of Figure 4.7 ver-
ifies the applicability of our technique.

To quantize the experimental results, we manually annotated abnormal events
per frame for the sequence of Figure 4.8. A RPC plot, depicted in Figure 4.10,
measures the performance by sweeping parameter θinlier (Equation (4.9)) for
different model configurations. The benefit of a hierarchical model is apparent
when the two model depths are compared. Indeed, moving down in H1 (from
layer 1 to layer 5) increases the precision dramatically. This is essential for
our task. Also the effect of the model update that includes the lying poses is
observed. More precisely, this means that at a precision of 98%, the recall
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increases from 32% (root node level) to 78% (leaf node level), respectively to
81% after the update.

Although these measures demonstrate the abnormal event detection capacity
of our method, they have a limited significance. In fact, they only capture
the abnormality detection performances at a single layer in the hierarchy. The
real benefit of the hierarchical model is the detection of outliers at the differ-
ent layers. Hence, a fall (detected at the root, as depicted in Figure 4.7(h))
is considered more a severe abnormal event compared to the slightly inclined
hand-washing in Figure 4.7(b) that is an outlier only at the leaves. Unfortu-
nately it remains unclear how to integrate these subjective semantic concepts
into a quantitative measure.

4.5 Behavioral Relevance

In this section, we demonstrate the behavioral relevance of the human behav-
ior model, described in this chapter. This is motivated by the fact, that the
correct recognition of behavior is of utmost importance for the survival of an-
imals. Hence, we investigate how our algorithms compare to the capacities
of macaque monkeys for analyzing simple walking patterns. In particular, we
investigate the discrimination of human locomotion direction.

While discrimination between right- and leftward walking is possible based on
shape cues only, forward and backward walking requires motion for a success-
ful distinction [Lange and Lappe 2006]. A recent behavioral study in macaque
monkeys investigated the perception of walking direction and how well these
animals generalized from a trained categorization of walking to other walking
speeds and running [Vangeneugden et al. 2010]. The question now arises how
our previously developed technique relates to these findings. This is particu-
larly interesting, as we also rely on the separated encoding of typical appear-
ance and motion patterns. We compare the behavior of our algorithm to the
monkeys behavior with the same input stimuli for the task of human locomo-
tion coding at different walking and running speeds. We first introduce the test
setup and the tasks, then show how our computational model is used and finally
present the experiments.

This section was the result of an inspiring collaboration with Joris Vangeneug-
den and Rufin Vogels at K.U. Leuven, Belgium. It was published in [Nater et
al. 2010b].
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4.5.1 Subjects and Apparatus

Three rhesus monkeys (Macaca mulatta) M1, M2 and M3 served as subjects
in this study. The heads of the monkeys were kept immobilized during the
sessions (approx. 3h/day) in order to capture the position of one eye via an in-
frared tracking device (EyeLink II, SR Research, sampling rate 1000 Hz). The
recording setup is displayed in Figure 4.11. Eye positions were sampled to as-
sure that the subjects fixated the stimuli. In order to obtain a juice reward (oper-
ant conditioning), successful fixation, within a predefined window measuring
1.3◦ − 1.7◦, and a correct saccade towards one of the response targets were
required (c.f. Figure 4.12). More specifically, each trial started with the pre-
sentation of a small red square at the center of the screen (size = 0.12× 0.12).
The subjects had to fixate this square for 500 ms, followed by the presentation
of the stimulus (duration = 1086 ms; 65 frames at a 60 Hz frame rate). Before
making a direct eye movement saccade to one of the two response targets, the
monkeys had to fixate the small red square for another 100 ms. During the
complete trial duration, monkeys had to maintain their eye position within the
predefined window. Failure to do so resulted in a trial abort. Response tar-
gets were located at 8.4◦ eccentricity, either on the right, left of upper part of
the screen. The stimuli, described below, measured approximately 6◦ by 2.8◦

degrees (height/ width at the maximal lateral extension respectively).

All animal care, experimental and surgical protocols complied with Belgian
and European guidelines and were approved by the K.U. Leuven Ethical Com-
mittee for animal experiments.

4.5.2 Stimuli

Stimuli were generated by motion-capturing a male human adult of average
physical constitution walking at 2.5, 4.2 or 6 or running at 8, 10 or 12 km/h.
Specifications of the procedure can be found in [Vangeneugden et al. 2010].
Eenriched stimulus versions were rendered by connecting the joints, i.e. coor-
dinates, of an otherwise invisible agent by geometrical cylinder-like primitives,
hence forward labeled as humanoids. Importantly, all stimuli were displayed
resembling treadmill locomotion, devoid of any extrinsic/translatory motion
component (c.f. Figure 4.13).
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Figure 4.11: Recording setup for the behavioral study. (Figure credits: Joris
Vangeneugden)

4.5.3 Tasks and Training

The three monkeys were extensively trained in discriminating between differ-
ent locomotion categories. In a first task, they were instructed to discriminate
between different facing directions (LR/RL task shown in Figure 4.14(a)) when
observing the stimulus (video) that shows a person that is either walking to-
wards the right (LR fwd) or towards the left (RL fwd). The second task is
designed to distinguish forward from backward locomotion (FWD/BWD task
shown in Figure 4.14(b)). In that case, the stimulus shows a person walking
towards the right, but either forward (LR fwd) or backward (LR bwd). The
LR bwd condition was generated by playing the LR fwd video in reverse.
The start frame of the movie stimuli was randomized across trials to avoid that
the animals responded to a particular pose occurring at a particular time in the
movie. Training was done only at 4.2 km/h walking speed.

Substantial training was needed for our monkeys to learn FWD/BWD discrim-
inations, while LR/RL discrimination was made more easily (c.f. [Vangeneug-
den et al. 2010]). E.g., the number of trials required to reach 75% correct in
a session for the LR/RL task was 1323 trials, while the same monkey required
37, 238 trials to achieve a similar performance level in the FWD/BWD task.
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(a) LR/RL task (b) FWD/BWD task

Figure 4.12: Illustration of the recording procedure. The gray fields indicate
what was presented to the monkeys on the screen, with the respective durations
indicated below each screen-shot. The dotted rectangles around the blue fixa-
tion targets represent the windows in which the eye movements (saccades) had
to land. In green are the correct targets the monkeys had to saccade to in order
to obtain a juice reward. The timing in milliseconds is displayed beneath the
gray screens.

Nevertheless, all three monkeys reached behavioral proficiency at the end of
the training sessions.

4.5.4 Generalization Test

Trained at one speed only, the monkeys were tested for generalization to other
speeds in the two described tasks. This was realized by interleaving trials of
the trained speed with trials from the other speeds in a 90:10 ratio. Moreover,
in order to avoid associative learning on these new stimuli, we always rewarded
the monkeys on these other speed stimuli (still correct responses on the trained
speed were required to obtain a juice reward).
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(a) stimuli for the 6 speeds (b) ankle trajectories

Figure 4.13: Stimuli presented in the behavioral and the computational exper-
iments. In (a), snapshots of the 6 walking speeds are depicted and the training
speed is framed. (b) shows the ankle trajectories for the same speeds. With
increasing speed, step size increases as well as vertical displacements grow.

4.5.5 Computational Model

Training We use our technique described previously in this chapter to encode
the human behavior in appearance (H1) and motion (H2) hierarchies. To train
the model, we use the 4.2 km/h stimuli as depicted in Figure 4.14, transformed
to the silhouette-based representation. Since our model is designed to cope
with larger amount of data, 6 repetitions of the same stimuli were used for
training. The learned appearance hierarchy (H1) consists of 4 layers resulting
in 8 leaf node clusters. Separate models were trained for LR fwd, RL fwd

and LR bwd.

Generalization test During testing, we use the LR fwd and the RL fwd

models for the LR/RL task, whereas in the FWD/BWD task we apply the LR fwd

and the LR bwd models. New stimuli at different walking and running speeds
are presented to the model in order to test the generalization capacity.

Each model applied to the test data delivers two output values per frame, that
characterize how well each test frame matches H1 and H2 (assuming H1 has
validated the stimulus), respectively. The value for H1 captures the appearance
only by measuring the similarity to one of the leaf node cluster centers. Addi-
tionally, H2 requires the correct motion and searches for the a corresponding
micro-action with maximal length. To finally achieve the output score (appear-
ance score from H1, sequence score from H2) we combine two models with
contrary training. They are evaluated at each frame and a likelihood ratio is
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(a) LR/RL task: LR fwd vs. RL fwd

(b) FWD/BWD task: LR fwd vs. LR bwd

Figure 4.14: Selected frames of the sequence stimuli presented for the LR/RL
and the FWD/BWD task at 4.2 km/h walking speed

calculated and averaged across the whole stimulus. This results in one output
value per evaluated speed for H1 and H2. If for example a stimulus with walk-
ing from left to right is described well in LR fwd, but not in RL fwd, its
score is high. On the other hand, if both models perform equally well, no clear
decision can be drawn and the score is in proximity of 1 (chance level).

4.5.6 Experiment 1: LR/RL Task

The results are depicted in Figure 4.15, the monkeys responses are shown in
panel (a), the appearance score (H1) in panel (b) and the sequence score (H2)
in (c). Bold lines indicate the average results, dotted ones display individual
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performances for monkeys or different stimuli. Black boxes at 4.2 km/h point
out the training speed. Chance level is marked with the dashed horizontal line.

In the behavioral study (Figure 4.15(a)), categorization generalizes relatively
well across the different walking and running speeds (binomial tests; p < 0.05
for 14 out of 15 generalization points). This suggests that the discrimination is
based on spatial or motion cues that are common to the different speeds.

For the computational part, the results for H2 (Figure 4.15(c)) indicate a sim-
ilar interpretation for slower walking speeds (2.5-6 km/h). In a more detailed
analysis, we observe that for these speeds, the task is already solvable in H1.
Apparently, the appearances are distinctive enough. For the running stimuli
on the other hand, silhouettes are different, thus the performance in H1 drops,
which also influences H2. Further, in H1 the trained walking speed clearly
outperforms all the other speeds. The data-driven machine learning approach
does not generalize as well as monkeys are able to.

4.5.7 Experiment 2: FWD/BWD Task

The results for the FWD/BWD task are visualized in Figure 4.16 in the same
manner as for the previous task. The behavioral data from the speed-generalization
tests shows that the categorization is specific to walking: in each monkey, gen-
eralization is significant (binomial test: p < 0.05) for the walking, but not
the running patterns. In fact, in each monkey there is an abrupt drop of the
performance when the locomotion changes from walking to running.

Computational findings show that the evaluation of the appearance exclusively
is not sufficient for solving this task (Figure 4.16(b)). This is not surprising,
since the appearances are the same for both stimuli. However, if their ordering
is considered (Figure 4.16(c)), the task is solvable for walking speeds, and
the scores resemble a lot monkeys responses. At higher speeds, due to wrong
appearance classification in H1, the sequence is not reliable in H2 anymore.

The lack of significant transfer from the trained walking to running suggests
that the animals learned a particular motion trajectory “template”. Indeed, ex-
amination of the ankle trajectories (cf. Figure 4.13(b)) reveals a relatively high
similarity between those trajectories for the three walking speeds, which are in
turn rather distinct from those of the three running patterns. This might also be
a reason for the performance drop of the computational model.
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(a) Monkeys responses

(b) H1 output

(c) H2 output

Figure 4.15: LR/RL task: Monkeys performance and model scores for 6 tested
speeds
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(a) Task

(b) H1 output

(c) H2 output

Figure 4.16: FWD/BWD task: Monkeys performance and model scores for 6
tested speeds.
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4.5.8 Discussion

At the behavioral level in the monkeys we noticed a clear qualitative difference
in generalization performances across tasks. Whereas the monkeys were quite
apt at discriminating other speeds not seen before in the LR/RL task, a clear
step-wise function was observed in the FWD/BWD task. In the LR/RL, when
confronted with other walking speeds, i.e. 2.5 or 6 km/h, all three monkeys
could correctly categorize these locomotions significantly higher than chance
level. However this was not the case when confronted with locomotions at
running speeds, a trend present in all three monkeys.

The broader generalization observed in RL/LR task compared to the FWD/BWD
task shows that such motion cues are less specific. Alternatively, the monkeys
might have used spatial features that are common to the walking and running
humanoids that face in a particular direction. The fact that one could solve
the view task quite simply by basing decisions on the presentation of just one
frame could explain the observed (almost) perfect generalization. This is anal-
ogous to the first hierarchical analysis stage, which works on the per-frame
appearances of actions. However, at this stage, the model shows a slightly dif-
ferent pattern, performing quite robustly for the trained locomotion, with clear
drop-offs already for the neighboring speeds. This is clearly due to over-fitting
of the model to the trained action. When implementing the second hierarchical
stage of the model, which incorporates the evolution of the per-frame appear-
ances over time, model’s performance resembles the monkey’s performances
more closely, especially for the FWD/BWD task. Compared to the monkeys,
the model not only picks up on the informative differences, e.g., static infor-
mation on the bending of the back, but takes into account all the pixel-level
differences.

In summary, we see that monkeys have the capability to generalize well for
simple tasks where snapshot information is sufficient. This might be due to
prior knowledge based on different functional features, which is so far not in-
cluded in the computational model at all.

4.6 Conclusions

We have presented an approach for the unsupervised analysis of human activity
in surveillance scenes. In particular, we have focused on an application to
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support prolonged independent living. The ideas are very general however, and
can be extended to other scenarios. The method involves two automatically
generated and updated hierarchies learned in an unsupervised manner. One
deals with the normal appearances, and from appearance transitions, the second
builds up a database of normal actions or episodes. Due to the hierarchical
nature of this model of normality, it is easier to name deviations from normality
and to analyze those at different semantic levels (a human would still have to
give such names to different cases, but that is a small effort). The system is
able to adapt itself and can include new modes of normality. Hence, also the
semantic level increases and after sufficiently long learning periods, it would
become possible to detect deviations from certain routines.

In addition, we have presented a study that demonstrates the behavioral rel-
evance as we were able to reproduce, at least to some extent, monkey’s re-
sponses with our two-stage computational model. The algorithm however does
not have the same generalization capacities which suggests that monkeys inte-
grate the training in a (semantically) broader manner than the computer does.





5
Temporal Relations in Activity
Analysis

5.1 Introduction

Figure 5.1: In videos, each frame strongly correlates with its neighbors. Our
approach exploits this fact and enables the segmentation of the video and the
interpretation of unseen sequences.

In Chapter 4 we have proposed a technique for unsupervised, bottom-up mod-
eling of the behavior in a surveillance scene in order to detect abnormal situ-
ations. In the same category, techniques have been proposed in the literature,
aiming at the interpretation of motion in public places (e.g. [Stauffer and Grim-
son 2000, Hospedales et al. 2009, Kuettel et al. 2010, Wang et al. 2009]), the
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analysis of human actions as in [Niebles et al. 2008, Turaga et al. 2009] or
the discovery of facial events [Zhou et al. 2010]. Unfortunately, such methods
often suffer from either (i) strong constraints which limit their use to specific
applications, (ii) the need for prior knowledge (e.g., the number of activities or
the structure of the model, as for the technique of Chapter 4) and/or, (iii) being
too abstract for easy interpretation.

Here, we want to overcome the mentioned limitations of previous works by ex-
plicitly including the temporal characteristic of activities in videos during the
model building and reasoning. Whereas the the technique of Chapter 4 sepa-
rates appearance and motion into two distinct model components, we merge the
two aspects in this chapter. In fact, we demonstrate how the inclusion of tem-
poral information enables unsupervised activity discovery and precise activity
modeling, such that abnormal events are robustly detected during runtime.

Observing the different sequences in Figure 5.1, one easily observes that in-
crements between frames are quite small compared to the changes throughout
the whole sequence. For instance, the behavior of a tracked person (2nd row)
is composed of a certain repertoire of activities with transitions in between that
are typically short in comparison. This can also be observed at larger scales,
like day-night changes or seasonal changes (3rd and 4th row) and already sug-
gests a hierarchical structure. Some observations might be salient, such as the
big tent in a street festival (3rd row in Figure 5.1). In this chapter, we explain
our approach with respect to the modeling and interpretation of human activ-
ities, as shown in the sequence of the second row in Figure 5.1. In Chapter 6
we will show further applications in different surveillance scenarios.

The contributions made in this chapter are twofold:

• We propose an unsupervised technique to segment the data into compact
and meaningful activities. To this end, we explore the strong temporal
relations in the video (Section 5.2). The automatically discovered activi-
ties are efficiently represented and continuously refined in a hierarchical
manner (Section 5.3).

• Analysis and interpretation of unseen data is demonstrated as a result
of the coarse to fine representation in the hierarchy. This enables the
detection of abnormal events (Section 5.4).

Experimental results, presented in Section 5.5 show the usefulness of the pro-
posed technique. Using human activity datasets, we demonstrate the segmen-
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tation of the input video into meaningful activity snippets. The subsequent
detection of abnormal situations based on the modeled activities outperforms
the technique of Chapter 4.

The work presented in this chapter has been published in [Nater et al. 2011a].

5.2 Activities in Videos

Figure 5.2: Overview of the proposed hierarchical model that splits and repre-
sents the data in a coarse to fine manner. As an example, we consider indoor
actions. At the top node, the entire video stream is taken into account, while at
lower levels, more specific concepts, like picking up, or walking leftwards are
found.

Due to the large variety of observations included in a surveillance video, it of-
ten is difficult to build a single model which describes the data and its dynamic
behavior precisely. In this work, we automatically split the data stream into
meaningful subsequences. We call these subsequences activities. If they are
consistent and have low complexity, they can be represented more easily and
precisely. This principle is exploited by arranging the video data in a hierarchi-
cal manner as outlined in Figure 5.2. In a long data-stream, some activities may
be very distinct and can be segmented high up, while more subtle differences
only appear deeper down. The concept of exploiting the temporal structure ex-
hibited in human activities is similar to the motion segments in [Niebles et al.
2010] or the micro-actions in our previous work of Chapter 4.
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In order to build up such a hierarchy of activities, we exploit the strong link
between temporally adjacent observations in videos. Hence, activities are char-
acterized to have a certain duration, to be observed frequently, and to be inter-
connected by shorter transitions. In other words, with high probability, neigh-
boring frames share their activity label. The advantages of our approach are:

Definition of activities. Activities are automatically explored from their tempo-
ral characteristics based on discriminative modeling techniques. No prior
knowledge on the boundaries or the total number or activities is required.

General vs. specific. The dilemma between generalization capacity and preci-
sion of the model is naturally handled in the hierarchy. Nodes higher up in
our hierarchical model are general and represent a broad variety of activ-
ities (e.g., ’an object is moving’), whereas lower nodes only incorporate
very specific activity patterns (e.g., ’a person walking to the right’).

Interpretation. If the model is applied to new, unseen data at runtime, the
search through the hierarchy is not only more efficient, it also allows con-
clusions about the nature of the unseen data. In particular, a new observa-
tion can either be assigned to a known activity or is recognized as outlier
at a certain level in the hierarchy.

In the following section, we show how we discover the human activity concepts
in such a hierarchical activity model.

5.3 Activity Discovery

Our approach is inspired by the principle of invariant or slowly varying fea-
tures. Wiskott and Sejnowski [Wiskott and Sejnowski 2002] have proposed
Slow Feature Analysis (SFA) as an unsupervised learning technique for con-
tinuous data streams, inspired by human learning capacities. Recently, Klampfl
and Maass [Klampfl and Maass 2009] have shown that SFA yields the classifi-
cation capacities of Fisher’s Linear Discriminant, if temporally adjacent sam-
ples in the data stream are likely to belong to the same class. This requirement
is fulfilled in our setting, as we analyze continuous streams of images and
assume that activities therein are performed over a certain time span and the
transitions from one activity to the next are relatively short in comparison. For
example, in the case of human action recognition, activities correspond to the
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human actions, like walking or sitting, which are executed for a certain dura-
tion. The transitions between these activities are normally quite short without
a clearcut boundary.

Given an image stream, S = {I1, I2, . . . , IT } of T images, It ∈ IRn×m, each
image It is represented by a D-dimensional feature vector ft ∈ IRD. As the
applications in Chapter 6 will show, the image representation is not critical and
different feature types can be used.

5.3.1 Temporal Data Segmentation

In the segmentation step, the goal is to split the data stream into its composing
activities. A broader set of activities is partitioned into temporally distinct
subsets.

Slow Feature Analysis. The output signal zt of the Slow Feature Analysis
represents the slowest components in ft, i.e., it minimizes the average temporal
variation:

min JSFA = min t(∆zt), where ∆zt = ||zt − zt−1||2. (5.1)

To avoid the trivial solution z ≡ 0, additional constraints for zero mean and
unit variance are introduced. Multiple slow features need to be decorrelated
and they are ordered by decreasing slowness.

Let yt = ft − t(ft) be the zero-mean feature vector. Considering only
linear functions of the form z = wTy, it can be shown [Wiskott 2003] that the
objective becomes

min JSFA(w) :=
wTḊw

wTDw
, (5.2)

where
D = t(ytyt

T) (5.3)

is the covariance matrix of the data and

Ḋ = t

�
(yt − yt−1)(yt − yt−1)

T
�

(5.4)

the covariance matrix of the temporal differences. The weight vectors w which
minimize Equation (5.2) are the solutions to the generalized eigenvalue prob-
lem

Ḋw = λDw. (5.5)
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The slowest varying components in y are their projections onto the eigenvec-
tors w associated to the smallest eigenvalues λ [Wiskott 2003]. We select the
dSFA slowest components to establish the subspace of slow features.

Clustering. In the SFA subspace, distinct activities are discriminatively mapped
to distinct high density regions with sparse transitions [Klampfl and Maass
2009]. Hence, we choose to estimate a Gaussian Mixture Model (GMM) in or-
der to find these high density regions (i.e. clusters) and assign the data-points to
the activity clusters. By means of expectation maximization (EM) [McLachlan
and Krishnan 1997], the Gaussian mixtures are iteratively refined and adapted
to the data. Initialization is done with k-means.

Once the EM-algorithm converged, the cluster index to a data point is deter-
mined by the mixture component with maximal posterior probability [Bishop
2007]. Since the desired number of clusters is not known a priori, a sweep over
k is performed and the model accuracy i.e. the overall log-likelihood �(k,Mk)
as the sum over all data-points of the posterior probabilities given the model
Mk is calculated. The relative difference d(k) as a function of the number of
clusters k, i.e.

d(k) =
�(k,Mk)− �(k − 1,Mk−1)

�(k + 1,Mk+1)− �(k,Mk)
, with k ≥ 2. (5.6)

characterizes the curvature of �(k,Mk). Intuitively this quantifies how much
relative gain in likelihood each additional cluster yields. We then select

k
� = argmax

k

(d(k)) (5.7)

as the optimal number of clusters, i.e. the number of clusters with the maximal
likelihood gain1. Once k is set, every cluster determines a detected activity,
and the data is assigned accordingly. A post-processing step ensures temporal
smoothness and discards very short sequences.

5.3.2 Building the Activity Hierarchy

The data segmentation procedure explained above is applied recursively on the
data. In the first step, we split according to the most dominant (slowest) cues in

1Indeed, in our case, the exact selection of k is not very critical. As seen subsequently, the
model is further refined in a hierarchical manner, therefore activities that do not appear at one
clustering step will be modeled further down in the hierarchy. This fact is actually one of the
advantages of our hierarchical modelling procedure.



5.3. ACTIVITY DISCOVERY 93

the entire data-stream, and a number of subsets (activity concepts) result from
the procedure. Each of these concepts is further analyzed in order to create a
hierarchical model. If necessary, the segmentation process is repeated for each
obtained subset. As fewer data is now analyzed, discriminative components
that were not apparent in the previous subspace may now appear. This is en-
couraged since we keep the dimensionality dSFA � D of the SFA subspace
fixed across the entire hierarchy.

Each (sub-) set of segmented activity data refers to a node in the hierarchical
model, as already sketched in Figure 5.2. At high levels, the established nodes
T

j

i
(node i on level j) contain very broad activity concepts while at lower levels

in the hierarchy, specific actions are found.

Basic activities. The decision whether or not a node is further refined is based
on the representation of the corresponding data in the SFA space. The data
is projected so that the average distance between consecutive samples is mini-
mized, c.f. Equation (5.1). If the distances are approximately equal across the
whole sequence, the data is well described by its slowest components [Wiskott
and Sejnowski 2002]. In this case, we define a basic activity A and the data is
not split any further. This corresponds to a leaf node in the hierarchy. On the
other hand, if major parts of the data are connected with short distances in the
subspace, there must be a few consecutive samples which lie far apart, such
that the unit variance constraint is fulfilled. This case is consistent with the as-
sumption of [Klampfl and Maass 2009], hence, splitting the data is stimulated.

As a simple measure of data compactness, we use the median of distances
between consecutive samples in the projected SFA space. This median measure
turns out to be robust against outliers, and reflects well the concept above. If
we measure a small median value, the data is further segmented. For a larger
median, a basic activity A is detected.

5.3.3 Illustration

To get an intuition of the processing, we now discuss our activity detection
technique with respect to the human activity dataset introduced by Turaga et
al. [Turaga et al. 2009] and show how our results compare to theirs. We use
silhouette data from two views as provided by the authors, and encode them by
applying a signed distance transform to each silhouette. In line with the feature
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Figure 5.3: The data projections (a) and the temporal evolution of the slowest
components (b) characterize the discriminative SFA subspace.

encodings in previous chapters, the distance transform is bounded to arbitrary
maximal and minimal values, and reduces the sensitivity to small modifica-
tions at the edges when comparing two silhouettes. Finally, these silhouettes
are downscaled to a fixed size and reshaped to a feature vector. The dataset
includes five actions (throw, bend, squat, bat, pick phone), the all start and end
with an idle upright pose. Each of action is repeated ten times at different exe-
cution speeds. We randomly permute the actions and the repetitions in order to
form the input video. The goal is to automatically split this long activity video
into its composing actions.

Following the procedure of Section 5.3.1, we project the activity data in to the
subspace of slow features. In Figure 5.3(a) the resulting manifold is displayed.
For visualization reasons, we chose dSFA = 2. In Figure 5.3(b), the temporal
evolution of the two slowest components is plotted. From the orthogonal be-
havior of the two slowest components, the discriminative characteristics of the
SFA subspace is verified.

In Figure 5.4, the first two dimensions of the clustered SFA subspace (dSFA =
3) are displayed. This manifold is obtained at the root node, where all five
actions are included. The sketched hierarchy shows that four basic activities
are extracted at the first split. The pink node is subdivided further, yielding
two more basic activities. In Figure 5.5 the stopping criterion is verified. The
empirical distributions of distances ∆zt and their medians are shown. For
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Figure 5.4: Illustration of the hierarchical activity discovery procedure. In the
first three-dimensional SFA subspace, five activities are segmented. One of
them is further refined (c.f. Figure 5.5). The clusters are indicated with color
in the subspace, and the corresponding silhouettes are displayed. For visual-
ization reasons, only two of the analyzed three SFA dimensions are shown.

nodes T 1

1
and T

2

5
, the shift of the mode towards the origin suggests to further

split these nodes.

We automatically discovered six basic activities (A1 − A6). The samples that
were filtered out during clustering (short sequences and outliers) are collected
in A0. From the results reported in Figure 5.6, one can notice that activities
A1−A5 perfectly match the five ground-truth actions as defined by Turaga et
al. [Turaga et al. 2009]. A6 corresponds to standing still, as observed at the
beginning and the end of each action, but not annotated in the ground-truth.
The confusion matrix in Figure 5.6(a) is obtained from the compositions of the
ground truth snippets following the evaluation of [Turaga et al. 2009]. We
clearly outperform their results (100% vs. 86% accuracy). The proportion
of the discovered activities with respect to the total number of frames is re-
ported in brackets and indicated by the field coloring. Since standing still is
not included in the ground-truth annotation, this difference obviously lowers
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Figure 5.5: Demonstration of the splitting criterion based on the distribution of
distances between consecutive samples in the SFA space. For basic activities,
the median is higher, and they are not further segmented, while nodes T 1

1
and

T
2

5
are subdivided (c.f. Figure 5.4).

the values. In Figure 5.6(b) the temporal evolution of discovered and ground
truth activities are depicted for half of the sequence. Again, the observation
is that the our activity assignments are correct in every case, but sometimes
incomplete or too short, due to the intermediate standing still.

5.3.4 Data Modeling

As we want to use the hierarchy to classify the activities in previously unseen
videos, the data underlying each of its nodes is additionally modeled with re-
spect to shape and dynamics. Biological studies on human motion perception
suggest that motion analysis is performed from sequences of appearance snap-
shots [Lange and Lappe 2006]. Taking this into account, we create an extended
feature vector

vt = (ft,ft−1, . . .ft−n)
T (5.8)

as the concatenation of the last n feature representations, like proposed in [Ur-
tasun et al. 2006b]. We model the zero-mean feature vector xt = vt − t(vt)
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Figure 5.6: (a) Automatically discovered basic activities (A0 − A6) vs. the
ground truth, (b) Color coded labeling for the discovered and the ground truth
actions (see text for details).

by means of Principal Component Analysis (PCA). To show the analogies with
the SFA formulation above, we briefly review this technique.

Principal Component Analysis. PCA is a well known technique for low
dimensional data representation. In order to maximally capture the information
in the D-dimensional data, PCA projects this data into a linear subspace which
maximizes the variance [Bishop 2007], i.e.

max JPCA(wp) := Vart(w
T
pxt) = wT

pCwp (5.9)
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Figure 5.7: (a) Two principal components in the PCA subspace. (b) Two train-
ing images and one outlier projected and reconstructed.

where C = t(xtxT
t ) is the data covariance matrix. Again, additional con-

straints on unit variance and orthonormality exclude trivial solutions. PCA can
also be formulated in terms of minimizing the mean reconstruction error:

e = t

�
(xt − x∗

t )
2
�
, where x∗

t =
d�

i=1

at,iwp,i. (5.10)

Keeping only the first d < D principal components compresses the data. The
reconstructed datapoint x∗

t is then an approximation of the original xt, but
relies only on the d-dimensional representation at. The general solution to
Equation (5.9) is obtained by solving the eigenvalue problem

wp = λpCwp. (5.11)

The eigenvectors wp that correspond to the d largest eigenvalues λp are se-
lected as projection basis. In Figure 5.7(a), the two dimensional PCA manifold
of the activity data at the root node T

1

1
is shown. As seen from Figure 5.7(b),

this model represents well the training data, but has a high reconstruction error
for an unfamiliar shape.

Starting from the same dataset, Figure 5.3(a) and Figure 5.7(a) show the two
subspaces obtained with SFA and PCA, respectively. This verifies that, even
though the formulations of the two techniques are similar, PCA creates a gen-
erative data model while SFA encodes differences and delivers the desired dis-
criminative characterization.
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Hierarchical Model The data in each node T j

i
in the activity hierarchy is rep-

resented with the model M j

i
in a PCA space with a fixed number of dimensions

dPCA � D. As seen, when moving down in the hierarchy, the data in each
node describes more specific activity concepts. Likewise, the models naturally
are more general at the top of the hierarchy and more precise at leaf nodes, as
sketched in Figure 5.2. At the leaf nodes, each basic activity A is described by
model MA. As we do not assume the data to be free from abnormal situations
and noise, we exclude the samples with highest reconstruction error at each
step of activity refinement in the hierarchy.

5.4 Analysis of Unseen Data

We now show how the hierarchical model enables the efficient detection of
known activities and abnormal situations that may occur in unseen data.

5.4.1 Activity Detection

Starting from an unseen sequence of images, we first run the same feature
extraction procedure as proposed in Equation 5.8 to obtain the image features
x�. From the training, we dispose of a set of basic activities A and the task is
to identify A ∈ A, which best explains the new observations. To this end, x� is
projected into the PCA subspaces that characterize the basic activities, and the
reconstruction errors are calculated. The leaf node model MA with be lowest
reconstruction error eMA determines the discovered activity

A
� = argmin

A

eMA(x
�), where A ∈ A. (5.12)

The hierarchical arrangement of the activity nodes makes sure that not all PCA
models need to be tested, as discussed in the next section.

Simultaneous target localization and activity detection. In certain applica-
tions, only a sub-region of the entire scene might be considered. For example,
if the actions of a person are analyzed, the features will only describe this
person but not the surroundings. In order to correctly detect the performed
activity, this sub-region needs to be localized correctly. We therefore opt to
jointly solve the tasks of target localization and activity detection and integrate
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the search for an optimal location in the previous formulation for activity de-
tection. At various image locations ρ (including scale), the reconstruction error
eMA(x

�|ρ) is determined for activity A. If we evaluate multiple activities, the
optimal location and activity are found simultaneously, i.e.,

(ρ�, A�) = argmin
A,ρ

eMA(x
�|ρ). where A ∈ A. (5.13)

For efficiency reasons and since temporal consistency is assumed, only the
local neighborhood of ρ∗t−1

(the location at the previous timestep) is scanned.
This technique is usually referred to as tracking.

5.4.2 Exploiting the Hierarchy

We now show how the hierarchical model paves the way for a more sophisti-
cated and efficient analysis of unseen data. As seen previously, the hierarchy
consists of a set of more general and more specific human activity models.
Since each node (except the leafs, of course) is connected to its more specific
sub-nodes, we can apply the anomaly reasoning in a disjunctive hierarchy, as
proposed in [Weinshall et al. 2012]. To this end, we first need to determine if
an observation is well described by a certain node in the hierarchy.

A node T j

i
with model M j

i
is considered active for an observation x� based on

its normalized reconstruction error:

active(T j

i
) =





1 if

e
M

j
i
(x�)− µ

M
j
i

σ
M

j
i

< θ

0 otherwise

, (5.14)

where µ
M

j
i

and σ
M

j
i

are respectively the mean and the standard deviation of

the reconstruction error for model M j

i
, obtained from the training data. θ is a

user-defined threshold.

To respect the hierarchical arrangement of activity nodes, each observation
is propagated from the root node to the leaves as sketched in Figure 5.8(a).
Only sub-nodes of active nodes need to be considered, which increases the
efficiency. As long as the observations are according to expectations captured
in the model, there is always a leaf node (i.e. basic activity) which is able to
explain the data.
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(a) Valid activity

(b) Abnormal at level 3

Figure 5.8: Use of the hierarchical model for the interpretation of unseen data.
(a) A known activity is detected for an active leaf node. (b) A reasoning on
abnormal conditions in the hierarchy is deduced from active and inactive nodes
on different levels.

If a more general node validates the observation, but none of its more specific
sub-nodes does, then this signals an abnormal activity (Figure 5.8(b)). Such
abnormality can occur at any level. From the location in the hierarchy where
this happens, interpretations about the nature of the abnormality can be made.
While abnormalities detected high up in the hierarchy reveal severe deviations
from the learned activity model, observations that are identified as abnormal
close to the leaves exhibit only very subtle abnormal behavior. This will be
experimentally verified in the next section.



102 5. TEMPORAL RELATIONS IN ACTIVITY ANALYSIS

5.5 Experiments

In this section we show how the proposed hierarchical activity model performs
for the discovery and interpretation of human behavior in the same indoor sce-
nario as already presented in Section 4.4. Further applications to different tasks
and scene types with different feature configurations are described in Chap-
ter 6.

5.5.1 Experimental Setup

Dataset For the human activity experiments, we use the dataset introduced in
Section 4.4. The videos consist of images of 640 × 480 pixels, recorded at
15 fps. We use the image sequence seq1 (7, 100 frames) with different normal
daily activities to train the model. The evaluation is carried out on the test
sequence seq2 (1, 030 frames) that also contains abnormal events such as a
fall.

Features We utilize the exact same image features as in Section 4.2.2, i.e. the
distance transformed human silhouettes. For motion encoding, n = 5 last
frames are concatenated.

Parameters. At training, an initial noise reduction step is applied to keep 95%
of the data variance in each node. Subsequently, SFA and PCA subspaces are
modeled with dSFA = 3 and dPCA = 3 dimensions. At test, the threshold
θ = 3 is applied for hierarchical reasoning. Different parameter choices sets
did not change the results significantly.

Runtime. Due to the low complexity of the distance computation, the anal-
ysis of unseen data is very efficient. On a standard PC, our current MATLAB
implementation runs at more than 12 frames per second. If a very accurate
target localization is required, the exhaustive search procedure can slow down
the evaluation up to a factor of 10. Model building takes in the order of a few
minutes for our cases.
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Figure 5.9: Experiments (1): From training, nine basic activities emerged im
the the automatically learned hierarchy.

5.5.2 Discovered Activities

The hierarchical model obtained form analyzing seq1 is visualized in Fig-
ure 5.9. For each leaf node activity, some silhouettes are shown that constitute
this activity. The hierarchy nicely encodes the different aspects of behavior
observed in this video. At the hightest level, it distinguishes between upright
poses in T

2

1
and all the other poses in T

2

2
. At lower levels in the hierarchy,

different actions are segmented or walking rightwards (T 3

1
) is separated from

walking to the left (T 3

2
). Most of the discovered basic activities A1−A9 have

a unique semantic interpretation which can be annotated with little effort, as
done in Table 5.1. Hence, meaningful human activities are discovered auto-
matically. Only A5 seems to mix occluded and non-occluded leftwards walk-
ing. Note that this is achieved despite the noisy silhouette features sometimes
containing holes or gaps.

5.5.3 Runtime Analysis and Abnormal Event Detection

The model is applied to the test sequence seq2 and the unseen observations are
assigned to previously learned basic activities or abnormal situations are de-
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Basic activity Human interpretation
A1 Occluded walking to the right
A2 Turning from frontal walking towards the right
A3 Walking to the right
A4 Turning from frontal walking towards the left
A5 Occluded and non-occluded walking towards the left
A6 Picking up an item
A7 Sitting down
A8 Sitting on the couch (sitting position 1)
A9 Sitting on the armchair (sitting position 2)

Table 5.1: Manual human annotation of the nine discovered basic activities.

tected. The observed person is tracked throughout the video and the matching
activity is determined simultaneously. The plot in Figure 5.10(a) characterizes
the evolution of the detected basic activity over time. A0 groups the outliers,
some of them are manually annotated. In Figure 5.10(b) some selected frames
of the test sequence are displayed, they show three normal situations and two
detected anomalies.

We quantitatively compare the overall performance of the proposed technique
to the previous results of Chapter 5. The recall-precision curve is obtained by
sweeping the parameter θ (see Equation 5.14) and is displayed in Figure 5.11.
We group the outliers detected at any level in the hierarchy and detect them
as abnormal events. It appears that we outperform our previous technique.
In particular the recall is increased from 68% to approximately 83% at 99%
precision.

Due to the integration of temporal relations in the model building process, the
discovered activities turn out to be more accurately segmented and well inter-
pretable, compared to the previously used k-means clustering. This enables a
precise modeling of the essential aspects of the human activities even with a
simple PCA model, and allows for accurate abnormal event detection during
runtime.
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Figure 5.11: Experiments (3): Recall-precision curve for the abnormal event
detection task. The manual annotations of the test video are compared to the
automatically detected anomalies. The technique introduced here outperforms
the previous approach of Chapter 4.

5.6 Conclusions

In this chapter, we presented a data-driven approach to activity segmentation
that exploits the temporal relations in video sequences. The small changes from
frame to frame are examined with slow feature analysis, in order to automat-
ically represent the data in a meaningful hierarchy. We have shown how this
model is applied to unseen videos and that the hierarchy can be used to explain
the observations. Due to two linear techniques of low computational complex-
ity, we are able to efficiently detect normal and abnormal activities. Finally,
qualitative and quantitative results demonstrate the validity of our technique.



6
Applications beyond Human
Activity Analysis

6.1 Introduction

Many of the approaches to the unsupervised analysis of scenes or (human) be-
havior and abnormal event detection are specifically designed for a particular
application, for example by relying on sophisticated feature types or scenario-
specific assumptions. This limits the use beyond the application, they are pro-
posed for. In this category falls the approach of Chapter 2, which is exclusively
geared towards the interpretation of human motion.

In this chapter we show how our previously introduced techniques can be ap-
plied to different surveillance scenarios and extract useful information. In fact,
both techniques proposed in Chapter 4 and Chapter 5 are widely applicable and
not restricted to human silhouette features. Here, we only show applications
of the activity analysis of Chapter 5. As we have seen in the experiments of
Section 5.5, it reports superior results due to the incorporation of the temporal
characteristics in the model building process.

In the following, we present two experiments that aim at the interpretation of
street scenes (Section 6.2) and one experiment that deals with the analysis of
webcam image streams with low, possibly variable frame rate (Section 6.3).
Subsequently in Section 6.4, we show how our technique is suited to ana-
lyze industrial workflows if we introduce additional, application-specific con-
straints. Such a workflow model can be used to interpret previously unseen
videos, as demonstrated in Section 6.5.
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The contents of this chapter were published in [Nater et al. 2011a] and [Nater
et al. 2011b].

6.2 Traffic Scene Analysis

In two experiements, we show how the technique of Section 5 is applied for
the surveillance of traffic scenes. Normal behavior and abnormal events are
automatically identified.

6.2.1 Experiment 1: QMU Junction

(a) Driving left to right (b) Driving right to left

(c) Both lanes driving straight (d) Left lane driving straight and turning
right

Figure 6.1: Selection of detected basic activities characterizing the traffic flow
on the street junction.
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(b) Activities plotted over time for the levels corresponding to (a).

Figure 6.2: The hierarchical model for the QMU Junction consists of 29 activ-
ity nodes. The first three layers are scematically displayed in panel (a) and the
activity membership is plotted over time in (b).

In a first experiment, we use the data from [Hospedales et al. 2009], that shows
a busy street junction with vehicles driving and turning in all directions. The
footage is recorded during 1 hour at a frame-rate 25 fps and an image resolution
of 360 × 288 pixels. This data has previously been used for learning spatio-
temporal scene topics in [Hospedales et al. 2009].

Our technique of Section 5 works independently of the choice of features,
hence we use the feature type that seems to be most suitable for the application.
As the most characterizing scene behavior is vehicle and pedestrian motion, we
choose to employ motion descriptors. Following the concept of [Veres et al.
2010], we calculate the motion grid across the entire scene based on local mo-
tion monitors of 18 × 18 pixel patches. To additionally encode the motion
direction, a forgetting rate of 0.95 is applied. Training is done on 50, 000 im-
ages, the runtime evaluation takes into account all 90, 000 frames.

The learning procedure extracts 98 nodes of which 19 are basic activities at
the leafs. Some of these discovered basic activities are depicted in Figure 6.1.
As can be seen, the hierarchical analysis nicely groups co-occurring and in-
terpretable traffic patterns in leaf nodes. Further basic activities for example
summarize streets with only pedestrian motion, cars accelerating, and different
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(a) Ambulance interfers (b) Wrong driving direction

(c) Collision course (d) Conflicting motion of minibus in the
middle

Figure 6.3: Detected anomalies that occured in the scene. Conflicting Image
regions are shaded in red.

turn configurations. In Figure 6.2 we show the obtained activity plotted over
time, for the second and third level in the hierarchy, together with this part of
the activity tree. Without enforcing any larger scale temporal relations, we dis-
cover pseudo-repeated patterns in the data that correspond to different phases
in traffic light cycles. As successfully done for example in [Kuettel et al. 2010],
these patterns can be additionally learned for the detection of irregular ordering
of different familiar activities.

Applying the hierarchical model to unseen data, we can discover diverse irreg-
ular situations. Four such examples are depicted in Figure 6.3, the ambulance
and the wrong driving direction have also been reported in [Hospedales et al.
2009]. Since we use a holistic scene descriptor, unseen configurations, or con-
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flicting motions in different scene regions are also reported. This is for example
useful to detect collision courses or unexpected vehicle motion. Among all the
detected abnormal events, there are hardly any that have no plausible interpre-
tation.

6.2.2 Experiment 2: HUJI Street Crossing

(a) Pedestrians (b) Cars from left to right

(c) Cars from right to left (d) Cars from bottom

Figure 6.4: HUJI crossing: Activities discovered during training, representing
typical street motion.

In a second experiment, we use the HUJI street crossing footage from [Hendel
et al. 2010]. This 2 hour long video is recorded at 10 fps with frames of
320 × 240 pixels. We utilize the same motion descriptors as for the previous
scene. The model is trained with the video of the first hour, and again, typical
scene activities are discovered. The model consists of a tree with 16 nodes of
which 11 are basic activities. Some of them are reported in Figure 6.4, others
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show different car turns or combinations, such as cars driving from right to left
and from left to right.

We apply the model to the second hour of recorded footage and a few detected
abnormal events are depicted in Figure 6.5. These detections mainly relate to
abnormal driving patterns. For example, in panel (c), one can nicely observe,
that the silver SUV is normally driving on the street from left to right, whereas
in this combination, the taxi’s motion is inexplicable and hence reported as
dangerous. In Figure 6.5, the observed driving direction in the region of the
pedestrian crossing is also detected and reported as abnormal.

(a) Waiting on pedestrian crossing (b) Taxi driving backwards

(c) Collision course (d) Abnormal driving direction

Figure 6.5: HUJI crossing: Spotted and manually interpreted anomalies.
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6.3 Webcam Stream Analysis

Despite the fact that webcams typically have a small, often irregular framer-
ate, the temporal relations between frames can still be expoited. They simply
live in a different time-scale than the previous examples. In the case of web-
cams, activities do no longer correspond to vehicle or pedestrian motion, but
reflect for example day-night changes, shadow motion, periods of busy traffic
or empty streets. We show this on the example of the Times Square Webcam
dataset of [Breitenstein et al. 2009b].

6.3.1 Dataset and Features

In the dataset of [Breitenstein et al. 2009b], images from a webcam overseeing
Times Square in New York are recorded at low frame rate over a long period
of time. The images have a resolution of 640 × 480 pixels, the frame-rate is
approximately 0.3 fps and we dispose of recordings from 2 months. For our
processing, we only use every 3rd frame. We downsample the original color
images to 24× 32 pixel grayscale images and concatenate the rows to a vector.
Due to the low frame rate, we do not include motion descriptors (n = 1).

6.3.2 Discovered Hierarchy

The hierarchical model is obtained with data from 17 days comprising approx-
imately 150, 000 images. The discovered hierarchy has 39 nodes, thereof 26
basic activities at the leaves. In Figure 6.6, we display the tree-like structure
for the first four levels, and show typical instances of some nodes, together
with their human interpretation. Day-night changes turn out to be the most
dominant cues, which are separated in the first step.

6.3.3 Abnormal Events

In Figure 6.7 we show nine illustrative abnormal events that are detected among
more than 250, 000 evaluated frames. We detect similar anomalies as reported
in [Breitenstein et al. 2009b], such as the first four cases of Figure 6.7. In ad-
dition, our method also reported many cases of incomplete and broken frames,
camera failures, water on the lens and other salient situations.
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Figure 6.6: Part of the obtained tree with interpreted activities for the Times
Square dataset

.
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Figure 6.7: Automatically detected anomalies: Heavy rain on lens, festival
tent for street festival, particular shadow shape; parked trucks for maintenance
work, camera failure, jam with reflections; strong flashlight, truck parked in
the background, camera moved.



116 6. APPLICATIONS BEYOND HUMAN ACTIVITY ANALYSIS

6.4 Task Discovery in Industrial Workflows

In this section, we aim at the unsupervised discovery of tasks that constitute a
manufacturing workflow, whereas in the Section 6.5, we show how the work-
flow can be modeled in order to interpret previously unseen data and detect
abnormal events.

6.4.1 Overview

Surveillance tasks are nowadays increasingly augmented with vision systems
and smart algorithms to extract information or detect precise (abnormal) events.
In this work, we focus on the interpretation and analysis of industrial scenarios.
Hereby, several challenges must be overcome, such as unfavorable working
conditions with dust, sparks or vibrations, cluttered background, diverse mov-
ing objects or heavy occlusion of the workers. Additionally, the workers look
very similar, as they often wear utility uniforms. In this context, one issue is to
monitor the smooth running of a workflow and detect any abnormal behavior.
Deviations from the workflow may cause severe deterioration of the product
quality or may raise safety or security hazards. Usually, the (normal) workflow
has to be defined beforehand, which is done in an initial training phase with
human intervention.

Relatively few work has been done for the analysis or automatic extraction
of workflows. Recent medical applications use computer vision techniques to
monitor surgical workflows [Blum et al. 2010, Padoy et al. 2009] in supervised
settings. Due to the challenging conditions in industrial environments, sophis-
ticated image processing methods, such as the detection and tracking of objects
or persons are hardly applicable. Approaches which build on these techniques
are very likely to fail in practice. Hence, in the setting of industrial workflow
monitoring, Veres et al. [Veres et al. 2010] proposed to use a holistic scene
representation. The main drawback of all these approaches however is their
need for a manually pre-defined workflow model and annotated tasks. They
can only monitor, but not discover workflows.

Based on the elaborations of Chapter 5, we propose a method to extract mean-
ingful and interpretable workflows in an completely unsupervised manner. In
order to overcome the involved challenges, we make use of clear assumptions
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Figure 6.8: In industrial environments, assembly tasks typically have a re-
peated cyclic structure. They are called workflows and consist of several tasks.
The number of tasks as well as the segmentation is unknown. The goal of
this work is to extract the workflow in an unsupervised manner and provide a
simple yet effective analysis of industrial activity.

that hold for industrial scenarios, such as the repeated structure of the work-
flow. To the best of our knowledge, we are the first to model workflows without
any human intervention during the discovery process.
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With our simple yet effective technique, we examine videos of an assembly line
in a car manufacturing site. An example of such an industrial scene is depicted
in Figure 6.8 which shows an extract of the car production process and the goal
is to establish the assembly cycle in an unsupervised manner. The extracted
workflows turn out to be consistent across different camera views and well
interpretable, also compared to independent human annotation. In addition, in
Section 6.5 we analyze several hours of video data in real-time, which allows
us to interpret the workflow, and reason on different abnormal situations. In
fact, the obtained statistics can be used in order to optimize the workflow and
enable a safe running of the monitored assembly process.

6.4.2 Prerequisites

Goal. Given an image stream from a video camera, we aim to automatically
discover the underlying workflow. No pre-segmentation of the image stream
nor any other supervision is assumed to be available. Let us first define the
following terms used:

Task: A task corresponds to a (physical) action, such as to pick up an object
and place it somewhere.

Workflow: A workflow consists of a certain number of tasks and their transi-
tions.

The goal of workflow discovery is to extract a number of N tasks Tn, with
n ∈ {1, . . . N} and N unknown, that represent the workflow observed in the
scene.

Assumptions. As we aim for a widely applicable approach, we do not rely
on explicitly modeling or recognizing humans, actions, or objects within the
scene. Furthermore, we do not impose restrictions on the camera viewpoint.
Yet, we have noticed some given factors that permit to set up assumptions
concerning the nature of the workflow. They are described in the following.

Static camera: We assume that the workspace is monitored by a static camera.

Image sequence: We assume the image sequence to be temporally consistent,
i.e. neighboring image frames are correlated and are likely to share a common
task label.
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Cyclic workflow: We assume the workflow to have cyclic layout, i.e. the tasks
have always the same ordering and are repeated.

In other words, we are looking for a cyclic workflow observed by a video
camera, as outlined in Figure 6.8. These assumptions are usually satisfied in
industrial assembly lines, where parts or goods are manufactured or assembled
systematically in an identical and repetitive manner. In fact, it is essential to
produce in regular working cycles in order to maximize output while reducing
defects and wastes.

6.4.3 Workflow Extraction Procedure

Our approach to the automatic discovery of a workflow makes use of the above
assumptions and consists of (i) noise reduction for robust analysis, (ii) potential
task spotting and (iii) temporal refinement. The individual steps are described
in more detail in the following.

Noise reduction. The fact, that we are using a static camera, allows us to
use the complete image and extract a holistic image representation. Given
a sequence of images xt ∈ IRd, we apply Principal Component Analysis
(PCA) [Bishop 2007] on the zero-mean input feature vectors x̂t. The data
is projected onto its eigenvectors, and these projections, sorted with respect to
the eigenvalues, span a new orthogonal space. In the first dimensions, maximal
variance of the initial data is encoded, while dimensions with small eigenvalues
most likely represent noise. We choose to select the nPCA � d first compo-
nents in order to keep 80% of the total variance. yt ∈ IRnPCA is the projection
of x̂t onto these components.

Identification of potential tasks. In Chapter 5, we have shown that the tem-
poral structure in image sequences provides a strong cue for learning repre-
sentations. Following this approach, we first learn an embedding using Slow
Feature Analysis (SFA) that explores the temporal dependencies in the data.
Subsequently, we cluster the data in the obtained lowdimensional subspace.

Extraction of invariant signals. SFA [Wiskott and Sejnowski 2002] is a tech-
nique to automatically extract the invariant components in temporal signals.
The output signal zt of the SFA represents the slowest components in yt, as
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seen in Section 5.3. Hence, we apply the same procedure to extract the slow-
est components from the original video signal and select the nSFA slowest
dimensions to span the SFA subspace.

For illustration, Figure 6.9 depicts the first four slow features over time for
the industrial dataset that will be introduced in Section 6.4.4. The repeated
workflow structure can be clearly observed.
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Figure 6.9: The four slowest features over time. The repetitive structure of
the workflow appears in the first dimensions of the SFA subspace, whereas in
higher dimensions, irregularities are encoded.

The slow features are extracted in an unsupervised process and do not neces-
sarily have to represent the desired cycles. It is possible, that slow features
also encode variations in the scene that do not belong to the workflow we are
looking for. This might be due to other overlapping workflows (e.g., bringing
goods to the workplace), variations on a longer period of time (e.g., illumina-
tion changes), or other background motion. It has been recently shown in the
medical community that a selection of the SFA components is feasible in order
to focus on the task one is looking for [De Luca et al. 2011]. However, we did
not observe such issues in our experiments.
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Clustering. In the subspace of selected SFA components, the tasks appear as
clusters of data-points. We choose to apply mean shift clustering [Comaniciu
and Meer 2002] because of its robustness and its capacity to discover nonlinear
cluster structures. Furthermore, we do not need to manually fix the number of
clusters to extract.

Following the SFA subspace properties, we choose the bandwidth of the mean
shift kernel as the expected temporal variations t(∆zt). A two-dimensional
SFA embedding and the obtained cluster centers in black are shown in Fig-
ure 6.10.
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Figure 6.10: Mean shift clustering in two-dimensional SFA space, the initially
detected 21 clusters (black) are refined to six final tasks (red) in the workflow.

Temporal refinement. Like the original data, the measurements in SFA space
are always affected with noise. Based on the assumption of temporal consis-
tency and of a cyclic workflow, we apply the following refinement steps:

Task duration: Tasks are required have a certain duration. Therefore, very
short tasks which only consist of a few images are considered as noise (outliers)
and are removed. In practice, we eliminate all clusters which are shorter than
5 seconds.
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Cyclic workflow: By analyzing the task transitions, a cyclic workflow is en-
forced. Tasks are merged if they jitter or if they yield splits in the workflow.

In more detail, two tasks Ti and Tj are said to jitter and are merged if

P (Ti|Tj) > Θ ∧ P (Tj |Ti) > Θ, (6.1)

where P (Ti|Tj) is the transition probability from Tj to Ti obtained from the
clustered data. Θ is a small user defined threshold, we used Θ = 0.1 for all
experiments.

The assumption of a cyclic workflow implies a unique path, i.e., from one task
Tk only one dominant transition is allowed. Hence, we merge two tasks Ti and
Tj if

P (Ti|Tk) > Θ ∧ P (Tj |Tk) > Θ. (6.2)

To illustrate this procedure, exemplary task transition matrices before and after
imposing the cyclic workflow layout are depicted in Figure 6.11. The centers
of the finally emerged tasks (clusters in the SFA subspace) are marked red in
Figure 6.10.
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Figure 6.11: Transition probabilities between the tasks: (a) after elimination of
small (temporally short) tasks, (b) after imposing a cyclic workflow structure.
The color encodes the (normalized) number of transitions that are observed
from one task to another.
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Model selection. In many subspace problems, it is unclear how to select
the optimal number of latent dimensions. We propose to estimate this model
complexity from the resulting number of tasks.

If a small number of dimensions is chosen, only few clusters emerge and the
model of the working cycle might be overly simple with very general tasks. On
the other hand, if we select more dimensions, many detailed states are identi-
fied, but they might degenerate and not fulfill the cyclic workflow assumption.
Hence, these states are merged during refinement, which results again in a
small number of final tasks. This said, we sweep over dimensionalities and
choose the subspace such that the number of tasks in the workflow is maxi-
mized. This intuition is verified in Table 6.1, where the number of clusters
(tasks) are indicated before and after refinement. In this case, we select the
SFA subspace to be 2-dimensional (nSFA = 2) and the discovered workflow
comprehends six tasks.

SFA dimensionality 1 2 3 4 5 6

# of initial clusters 8 22 39 84 135 170
# of long tasks 6 11 13 13 12 12
# of final cyclic tasks 3 6 6 5 4 4

Table 6.1: Number of initially detected clusters, and discovered tasks as a func-
tion of the SFA subspace dimensionality. In this example, a two-dimensional
representation is selected.

6.4.4 Experimental Setup

Dataset. For our experiments, we use the data which was recorded in the
SCOVIS project.1 The data is recorded in a car manufacturing facility and
the sequences show close views of an assembly area. Two camera views are
provided, the first one monitors the working cell from the side and the second
one is mounted overhead. The RGB-colored frames have a resolution of 704×
576 pixels and are recorded at a framerate of 18 − 25 fps. For the side view
camera, recordings were made for approximately 1.5 working days.

1www.scovis.eu, 3rd SCOVIS industrial dataset (shared upon our request and publicly
available soon).

www.scovis.eu
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Preprocessing. As input to our workflow analysis we convert the images to
grayscale, downscale them by a factor of 8 (88× 72) and finally reshape them
to a 6336-dimensional feature vector. In all our experiments, we only analyze
every 15th frame.

TS3

TS2 TS6

TS4

TS1TS5

Figure 6.12: Automatically discovered cyclic workflow for side view. The
tasks are indicated with their mean images and the transitions are shown.

6.4.5 Discovered Workflows

We use the first hour of recordings for both camera views to apply our proposed
automatic workflow discovery algorithm. The algorithm chooses in both cases
a 2-dimensional SFA embedding. Details for the side view have been shown to
illustrate the procedure in Section 6.4.3.
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Figure 6.13: Automatically discovered cyclic workflow for the overhead view
(camera mounted above the working area). The tasks are indicated with their
mean images and the transitions are shown. Note the good correspondence of
discovered tasks in the two views.

The discovered tasks in the workflows for the side view and the overhead view
are depicted in Figure 6.12 and Figure 6.13, respectively. Tasks are represented
by their mean images and are connected with directed arrows. The small im-
ages next to the arrows depict the average variations of the image intensities
from one task to the next. Each task is numbered with the according task in-
dex, and a manual interpretation for the tasks is given in Table 6.2.

For the side view, six tasks are established, whereas for the overhead view,
seven tasks are found. It appears that the tasks correspond well between the
two viewpoints. All tasks have its relative counterparts in the other view except
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for TO1 and TO2, which are merged in the side view to TS2. This is probably
caused by the fact that the assembly of the different small spare parts is not very
distinctive in the side view. Therefore, a single task is discovered, whereas in
the overhead view, this placement is split into two separate tasks.

For the side view, the temporal sequence of tasks is shown in Figure 6.14 for the
training video. The cyclic behavior of the workflow is apparent, even though,
due to the unsupervised clustering, the assignment of an index to a task is not
necessarily in the order of the workflow. However, if required, this can easily
be adapted by switching the task indices.

0 500 1000 1500 2000 2500 3000
Time [samples]

TS1

TS2

TS3

TS4

TS5

TS6

Figure 6.14: Sequence of matched clusters over time for an extract of the
side view recordings in the discovery phase (also see the transition matrix in
Figure 6.11 (b)).

6.4.6 Comparison to Manual Annotation

A video extract of several workflow repetitions was viewed by an uninvolved
person in order to describe the observed workflow in words. In Table 6.2 the an-
notated tasks are described and the reference is given for the two camera views.
The automatically discovered tasks correspond very well to the tasks described
by the human. Hence, the proposed technique is able to automatically extract
tasks in a cyclic workflow, which are meaningful to human observers.
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Manual task description Side Overhead
Two workers are putting a number of

TS2 TO1, TO2small spare parts (8 components) [...]
Also they carry 2 big spare parts

TS6, TS4 TO5, TO3in the same table.
They are providing welding of the

TS1 TO6spare parts on the table construction.
One of them is manipulating and

TS5 TO4drives a yellow crane for taking the
skeleton of the car in another plant.
This is the end of the workflow.

TS3 TO7The table plant is empty again and
the workers start again [...].

Table 6.2: Comparison of our automatically detected workflow tasks with
manual annotations.

6.5 Workflow Interpretation

Using the model established in the previous section, the analysis of new videos
can provide statistical information on the tasks carried out, or it enables the
detection of abnormalities in the observations.

6.5.1 Modeling the Workflow

Task classification. Our workflow discovery technique provides task labels to
the initially unlabeled image sequence. With this information, any supervised
classification method can be trained. We show here a very simple implementa-
tion.

Training. Task classification is an multi-class classification problem. After
PCA preprocessing, we opt to learn a representation of the labelled training
data using Linear Discriminant Analysis (LDA) [Bishop 2007]. The LDA sub-
space, shown in Figure 6.15, is discriminative and arranges the data in compact
clusters C.
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Figure 6.15: The six established tasks form compact clusters in the LDA space.
At runtime, images are analyzed in this space

Runtime. At runtime, an image x is first projected into the LDA space to x�.
Then, the closest cluster center c ∈ C determines the task label, i.e.,

T
∗(x�) = argmin

c∈C
||x� − c||2. (6.3)

6.5.2 Anomaly Types

Three types of abnormalities can be detected with this simple model:

Appearance: Images which cannot be well assigned to any of the established
clusters are considered as abnormal. This might be due to camera failures,
large movements of the cameras or abnormal incidents in scene. To this end,
we use the reconstruction error of the PCA model from the preprocessing step.

Sequence: The learned task sequence in the workflow should also be respected
at runtime. If the task order changes, or a task is skipped, a problem can be
signaled.
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Timing: Each task is carried out for a certain duration. If the observed duration
differs significantly from the trained one, a manufacturing issue might have
occurred in this task.

We emphasize that a more sophisticated model of the workflow could certainly
be learned. Typically, techniques which rely on Hidden Markov Models are
appropriate. This is beyond the scope of this section, as the principal aim was
to use our techniques for automatic workflow discovery.

6.5.3 Runtime Processing

For the side view camera, we apply the established workflow model for run-
time interpretation of the recordings obtained from a full working day. We
process approximately 40, 000 frames and present the re-detected tasks plotted
over time in Figure 6.16 (a). Figure 6.16 (b) and (c) show zooms of the long
sequence, such that details become visible.

Statistics. In regular working cycles, the tasks are executed at regular speeds.
Hence it is interesting to estimate the duration of each task from the data. A
box-plot of timings for each task is shown in Figure 6.17. TS4 and TS6 for
example, are short and very regular. They correspond to the placement of the
first and second long metallic bar, respectively. In the long task TS1 all the
metallic parts are welded together. TS5 has a very variable timing. In this
task, the assembled parts are delivered with a crane to another plant. Since it
depends on the advancement of neighboring working cells, pauses occur in this
task and its timing seems unpredictable.

Processing time. Since we only perform linear operations on the input fea-
tures to project them into subspaces, the proposed analysis technique is very
efficient. The actual algorithm runs at more than 25 fps on a standard PC using
our MATLAB implementation.

6.5.4 Detected Anomalies

During the runtime processing, several interesting cases are detected automat-
ically:



130 6. APPLICATIONS BEYOND HUMAN ACTIVITY ANALYSIS

0.5
1

1.5
2

2.5
3

x 10
4

Tim
e [sam

ples]

zoom
 1

zoom
 2

3

TS1
TS2
TS3
TS4
TS5
TS6

(a)
longterm

analysis

1
1.05

1.1
1.15

1.2
1.25

x 10
4

Tim
e [sam

ples]

1
2

TS1

TS2

TS3

TS4

TS5

TS6

(b)
zoom

1

1.6
1.65

1.7
1.75

1.8
1.85

x 10
4

Tim
e [sam

ples]

4
5

TS1

TS2

TS3

TS4

TS5

TS6

(c)
zoom

2

Figure
6.16:

A
nalysis

ofunseen
data

w
ith

the
learned

w
orkflow

m
odel.

The
m

atched
tasks

are
plotted

overtim
e.

O
ne

w
orking

day
ofvideo

is
analyzed

and
differentanom

alies
are

spotted.
The

m
arkers

referto
the

descriptions
in

the
text

and
Figure

6.18
and

Figure
6.19.



6.5. WORKFLOW INTERPRETATION 131

0

100

200

300

400

500

600

D
ur

at
io

n 
[#

 sa
m

pl
es

]

TS1 TS2 TS3 TS4 TS5 TS6

Figure 6.17: Box-plot for the duration of the tasks in the workflow. Task visit
timings that are statistical outliers are indicated with crosses. Please note that
for better visibility, the y-axis is bounded, and not all outliers (crosses) are
shown.

Appearance. Figure 6.18 (a) shows an exemplary abnormal event, which is
detected because the image appearance does not apply well to any cluster. In
this image, welding sparks appear at a very abnormal location, and we can
suspect something abnormal going on here.

Timing. From the duration statistics in Figure 6.17, abnormal timings of tasks
can be identified. Three such cases are shown in Figure 6.18 (b), (c) and (d).
They correspond to the markers 2�, 3� and 4� in the plots in Figure 6.16,
respectively and shows a work break at an unnatural instant within the working
cycle, a worker shift change and a break for cleaning of the production space.

Sequence. During the analyzed work day, the sequential pattern of executed
tasks changes. This appears from the comparison of markers 1� and 5� in Fig-
ure 6.16. A closer look is provided in Figure 6.19, where it can be seen that two
tasks are interchanged. During the workflow discovery process in the morning,
the long metallic bar was first placed on the left, then on the right. Later on
however, this learned cyclic structure of the workflow is no longer respected.
The modification occurs right after the change of shift (marker 3�). Apparently,
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(a) Sparks at an abnormal location (b) Coffee break, 2�

(c) Shift change, 3� (d) Cleaning, 4�

Figure 6.18: Abnormal appearance (a) and abnormal timing (b)-(d) is detected
automatically in the analyzed video.

the workers in the afternoon shift prefer to invert the order of the placement.
This is not a critical issue here, but it could have been one. Nevertheless If the
workflow discovery algorithm is run for a longer period of time, our approach
will respect this task switch and will merge those two clusters. This would also
be in line with the human interpretation of Table 6.2.

6.5.5 Discussion

As has been shown, our proposed algorithm is able to automatically extract
meaningful workflows. But what information in the images is really used?
Since SFA is used in the discovery process, the structure of the embedding
provides some information. The first two Eigenimages obtained by SFA pro-
jection are depicted in Figure 6.20. As can be seen, the variance encodes the
motion on the assembly table, which can be interpreted as the presence or ab-
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(a) morning shift 1� (b) afternoon shift 5�

Figure 6.19: Inverted tasks for morning (a) and afternoon shift (b). The place-
ment order of the two long metallic bars is switched.

sence of the parts. In contrast to many other methods which detect and track
people, our approach does not focus on humans. The workers might even be
considered as noise with respect to the entire workflow. Admittedly, they are
somehow implicitly modeled, since they are necessary to bring the parts along.

We point out that this is not a general claim, but surly depends on the actual
scenario. For another working cell, a person or other objects would well define
the workflow. Due to the general structure of our data-driven algorithm, they
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would be picked up automatically in such cases. In summary, our algorithm
chooses to model the workflow in the easiest possible way and respects the
assumptions.

(a) first Eigenimage (b) second Eigenimage

Figure 6.20: Eigenimages of SFA (gray values corresponds to zeros, black to
negative values and white to positive values). High variance is found on the
assembly table, which can be interpreted as the presence or absence of parts.

6.6 Conclusions

In this chapter, we have demonstrated the validity of our techniques for di-
verse surveillance applications. We have exploited and adapted the approach
of Chapter 5 in order to interpret traffic scenes, webcam videos and industrial
workflows. The arisen models of normal scene behavior turn out to be se-
mantically interpretable and accurate for the detection of normal and abnormal
situations in previously unseen data. As the developed approach is generic and
relies on the temporal structure of the underlying activities, the use of specif-
ically tuned features is no longer required. Indeed, we have successfully used
different image descriptors.

As we have shown in Section 6.2 and 6.3, the underlying technique is very
generic and applicable for different types of surveillance footage. One step
further, in Section 6.4, we make use of additional constraints for model build-
ing. In the presented case, these constraints are induced by the repeated cyclic
patterns in the workflow. We explicitly enforce them, while still respecting
temporal consistency and demonstrate that without human interaction nor pa-
rameter tuning, cyclic workflows can be extracted robustly



6.6. CONCLUSIONS 135

Our unsupervised models of surveillance scenes capture the behavior that reg-
ularly occurs in the monitored scene. With simple generative modeling tech-
niques, we can then interpret new videos and detect unseen behavior configu-
rations as abnormal events. Successful cases include for example the discovery
of abnormal ambulance traffic (Figure 6.3), a car irregularly driving on a zebra
crossing (Figure 6.5) or the camera failure and the street festival (Figure 6.7). A
number of abnormal situations in the workflow have also been reported, there
additionally taking into account the duration and the ordering of the workflow
tasks. However, as the scene is modeled in a holistic manner, only events that
are significant enough will be detected. For example, a pedestrian irregularly
crossing the QMU Junction (Section 6.2.1, c.f. [Hospedales et al. 2009]), was
not reported. However, real abnormal events often influence the scene in a
larger area. If an accident happened in the case of the pedestrian crossing the
street, this would certainly have been noticed, as many cars would have been
forced to adapt and modify their driving.





7
Conclusions

In this thesis, we were interested in supervised and unsupervised techniques
for the analysis of surveillance videos and the detection of abnormal behavior
in these videos. In particular, we wanted to interpret human motion in indoor
scenes. To this end, we have presented three independent approaches in Chap-
ters 2, 4 and 5. Chapter 3 was an extension to the tracker-tree of Chapter 2
and Chapter 6 presented applications using the technique of Chapter 5 for dif-
ferent surveillance scenarios that went beyond human motion analysis. This
has proven the wide applicability of the developed approach. Here we summa-
rize the techniques, present a few key-insights and finally sketch the possible
perspectives.

7.1 Summary and Comparison

Table 7.1 summarizes and compares the presented approaches with respect to
some key-properties. In the following, each chapter is reviewed briefly.

Tracker-Trees (Chapter 2). We have developed tracker-trees as a way to rea-
son among more general and more specific visual trackers. Each tracker in the
tree was trained such that it incorporates clear assumptions about what it ex-
pects to observe. The goal was not to improve tracking robustness, but to make
a reasoning from the configuration of more or less confident trackers. This
enabled anomaly detection in a principled manner. We have shown this in ex-
periments, which target the indoor behavior interpretation of (elderly) persons.
The tracker-tree was useful, not only for abnormal event detection, but also
for the re-detection of familiar activities. The few observed failure cases were
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mainly due to erroneous background subtraction. To cope with challenging
real-life issues such as changing illumination, cast shadows or moving furni-
ture, the system would certainly need to be tuned and augmented with more
suitable and robust trackers. However, we have demonstrated that the tracker-
tree concept shows good performances in our setting and could certainly also
be applied for other surveillance scenarios, if suitable trackers are available.

Tracker-Tree Update via Transfer Learning (Chapter 3). In order to facil-
itate the training procedure of the activity trackers used in the tracker-tree, we
successfully integrated a transfer-learning framework. Using prior knowledge
from the known activities together with few human annotations (usually one
per class), we have shown that the method accurately labels new activity con-
cepts. This is especially useful if true abnormal events need to be re-detected
later and require an accurate semantic label.

Cascaded Hierarchies for Appearance and Motion (Chapter 4). We estab-
lished two hierarchies for the modeling of human behavior in an unsupervised
manner. The first hierarchy uses top-down clustering to refine the description
of appearances, while the second hierarchy builds on the output of the first one
to encode motion components in a bottom-up manner. In fact, we have shown
that such a two-stage model is bio-inspired, which was also experimentally
verified in a behavioral study conducted with monkeys. Even though clear par-
allels were observed, monkeys have a better capacity to integrate the training in
a broad manner, whereas a computational model tends to over-fit. For surveil-
lance tasks, experiments conducted on indoor activity videos have shown the
validity of our hierarchical model, both in terms of abnormal event detection
performance and interpretation. We have additionally demonstrated that an
update during runtime is feasible and useful.

Temporal Relations in Activities (Chapter 5). We have observed that the
underlying temporal structure of activities provides a strong cue in (human)
activity analysis. The use of Slow Feature Analysis enables the incorporation
of these temporal relations during the modeling process. We have demon-
strated how to automatically create a hierarchical model, which also leads to
an intrinsic definition of activities from the available training data. The discov-
ered activities often even have a semantic meaning, that could be labeled with
little effort. Applied to unseen data, such a temporally coherent model exhibits
superior performances for abnormal event detection, compared to the previous
technique.
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Furthermore, in Chapter 6 we have demonstrated that thanks to the very generic
concepts, which were incorporated in the modeling process, the technique of
Chapter 5 is also applicable in different surveillance settings and tasks. With
little modification with respect to the features, we have shown street scene anal-
ysis and webcam monitoring with very low frame-rate. Finally, in an industrial
scenario, we have extracted meaningful workflows, and used the models for
abnormal behavior detection.

Figure 7.1: Qualitative summarization of the techniques developed in this the-
sis with respect to two key-aspects. The numbers refer to the chapters.

Analyzing these summaries, we qualitatively recapitulate the developed tech-
niques in Figure 7.1. In this two-dimensional plot, each technique is located
with respect to the required level of supervision and its capacity for seman-
tic interpretation of the analyzed behavior. The approaches of Chapter 2 and
Chapter 3 require labeled training data and therefore incorporate semantic in-
formation. The approaches of Chapter 4 and Chapter 5 are unsupervised and
have the advantage of learning autonomously from the available data. Includ-
ing the temporal relations in the modeling process increases the level of seman-
tic interpretability.
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7.2 Insights

Besides many lessons learned specific to the outcomes and performances of the
developed methods, we have identified a few valuable key-insights.

Behavior modeling in hierarchies. All the presented approaches for abnor-
mal behavior detection in surveillance videos rely on a hierarchical modeling
of the normally observed behavior. The benefit of the hierarchical encoding has
been shown in different experiments, as it outperforms flat-structured models
of similar or higher complexity. This is true equally for human activity model-
ing, the analysis of traffic scenes or the interpretation of webcam streams. The
proposed hierarchical reasoning on anomalies is principled and robust, and fur-
thermore paves the way for semantic interpretation. Abnormal events that are
detected closer to the root tend to be more severe than those identified closer
to the leaves. In that sense, we have also shown that the detection of abnormal
events is possible if we follow the indirect route of modeling normality and
detecting outliers to these models.

Use of temporal information. In particular in Chapter 5 and the applications
in Chapter 6, we have built on a modeling technique that explicitly includes the
temporal relations in the model building process. The observed activities are
analyzed not only with respect to their appearance, but also the characteristics
of consecutive differences are taken into account. In previous works as well
as in the approach of Chapter 4, such cues are either encoded in the features
or on a higher level analysis stage that connects (modeled) appearances. In
contrast, if we take into account the temporal cues to build the hierarchy, this
model reflects well the observed activity concepts, mostly in a semantically
meaningful manner.

Data-driven models. The methods of Chapter 4 and 5 build a bottom-up
representation of normal behavior in an unsupervised manner. Hence, the fre-
quently observed data determines what is expected to happen in the future. We
have found a way to make these data-driven models as accurate and mean-
ingful as possible and have shown how far we can use them for anomaly de-
tection. Obviously, such models lack of higher-level semantic and contextual
understanding of the observed scene, which limits their applicability in some
used-cases. For example, a well-defined, but hard-to-detect concept such as
an abandoned piece of luggage would not be detected with such a bottom-up
approach.
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7.3 Perspectives

The questions answered and the methods developed in this thesis raise multiple
new issues. Here we propose a few promising lines of future work, which
could further improve the quality of abnormal behavior detection and shape
the techniques even more towards practical applicability.

Scene context. Deduced from the last insight above, including contextual
information is useful in many cases. One could learn for example which be-
havior happens in which part of then monitored living room. In the same way,
the timing of activities can also be included. A detected person walking in the
living-room at 2 a.m. would then be less usual compared to daytime motion.
One step further, if the context of a scene is precisely known before training
(for example living-room vs. bedroom), the behavior models could be learned
accordingly and abnormal event detection would be more robust and semanti-
cally meaningful.

Relevance of the detected events. Some types of abnormality can only be
inferred from semantical reasoning withing an activity scene. For example,
when it comes to the correct or wrong usage of objects such as for exam-
ple walking aids, higher level knowledge is required. Equally, some detected
events might not be relevant since they are not really abnormal. One such ex-
ample is the presence of pets in elderly people’s houses, as their behavior and
especially their interaction with the persons is very hard to model and interpret
accurately. Here also, some more informed detector would help. A future task
would therefore be to combine bottom-up data-driven models with top-down
contextual and semantical information.

Features types. Since the goal of the presented work was to automatically
detect abnormal behavior, we were not principally concerned with the repre-
sentation of videos and images. For many applications, the employed feature
types can certainly be improved, especially the silhouette features are prone
to failure. In the case of indoor monitoring, one option is to additionally use
data from depth cameras (e.g., Microsoft Kinect) for improved robustness. Fur-
thermore, the level of detail needs to be adapted with respect to the abnormal
events that shall be detected. For instance, if abnormal pedestrian motion on
street scenes is of interest, our coarse scene representation used in the webcam
experiment (Section 6.3) is clearly insufficient.
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Long-term adaptation. Admittedly, we have tested most of the presented
approaches on comparably short video sequences. Only for the Times-Square
webcam stream, the data recordings of several weeks was analyzed. Therefore
it remains to be shown how our data-driven approaches perform in long-term.
To this end however, they would need to incorporate principled update routines,
that permit the models to adapt over time and incorporate very large amounts
of data.
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